DOE Office of Scientific and Technical Information (OSTI.GOV)
Vattikuti, S.V. Prabhakar, E-mail: vsvprabu@gmail.com; Byon, Chan, E-mail: cbyon@ynu.ac.kr; Reddy, Ch. Venkata
2016-03-15
Highlights: • One-step method for synthesis of mesoporous WS{sub 2} was proposed. • Role of CTAB surfactant on formation of mesoporous WS{sub 2} was elucidated. • Possible growth mechanism of the mesoporous structure is also reported. • 0.1 wt% mesoporous WS{sub 2} catalyst exhibited high photocatalytic activity under UV light. - Abstract: In this paper, we report mesoporous WS{sub 2} nanosheets with a crystalline network that were synthesized using CTAB as a structure-directing agent via self-assembly induced by hydrothermal and thermal evaporation. Powder X-ray diffraction, Raman spectra, and high-resolution X-ray photoelectron spectroscopy results confirmed the formation of WS{sub 2} structures.more » Scanning electron microscopy and transmission electron microscopy were used to observe the as-prepared mesoporous frameworks. The mesoporous WS{sub 2} nanosheets have a surface area of 197 m{sup 2} g{sup −1}. A possible growth mechanism is reported for these mesoporous WS{sub 2} nanosheets. The mesoporous WS{sub 2} nanosheets demonstrate high photocatalytic activity. Among different concentrations, 0.1 wt% mesoporous WS{sub 2} shows superior catalytic activity compared to pristine WS{sub 2} nanosheets.« less
Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries.
Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Wu, Linlin; Wen, Zhaoyin; Shen, Xiaodong
2016-01-19
Highly ordered mesoporous Co3O4 materials have been prepared via a nanocasting route with three-dimensional KIT-6 and two-dimensional SBA-15 ordered mesoporous silicas as templates and Co(NO3)2 · 6H2O as precursor. Through changing the hydrothermal treating temperature of the silica template, ordered mesoporous Co3O4 materials with hierarchical structures have been developed. The larger pores around 10 nm provide an efficient transport for Li ions, while the smaller pores between 3-5 nm offer large electrochemically active areas. Electrochemical impedance analysis proves that the hierarchical structure contributes to a lower charge transfer resistance in the mesoporous Co3O4 electrode than the mono-sized structure. High reversible capacities around 1141 mAh g(-1) of the hierarchically mesoporous Co3O4 materials are obtained, implying their potential applications for high performance Li-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn
Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less
Zhou, Xiaoxia; Chen, Hangrong; Zhu, Yan; Song, Yudian; Chen, Yu; Wang, Yongxia; Gong, Yun; Zhang, Guobin; Shu, Zhu; Cui, Xiangzhi; Zhao, Jinjin; Shi, Jianlin
2013-07-22
Dual-mesoporous ZSM-5 zeolite with highly b axis oriented large mesopores was synthesized by using nonionic copolymer F127 and cationic surfactant CTAB as co-templates. The product contains two types of mesopores--smaller wormlike ones of 3.3 nm in size and highly oriented larger ones of 30-50 nm in diameter along the b axis--and both of them interpenetrate throughout the zeolite crystals and interconnect with zeolite microporosity. The dual-mesoporous zeolite exhibits excellent catalytic performance in the condensation of benzaldehyde with ethanol and greater than 99 % selectivity for benzoin ethyl ether at room temperature, which can be ascribed to the zeolite lattice structure offering catalytically active sites and the hierarchical and oriented mesoporous structure providing fast access of reactants to these sites in the catalytic reaction. The excellent recyclability and high catalytic stability of the catalyst suggest prospective applications of such unique mesoporous zeolites in the chemical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries
NASA Astrophysics Data System (ADS)
Lin, Yu-Sheng; Duh, Jenq-Gong
Lithium titanate is synthesized from titanium isopropoxide and lithium acetate solution under hydrothermal environment and calcinations. Introducing acidized carbon black during synthesis can produce mesoporous Li 4Ti 5O 12. The crystalline structure and morphological observation of the as-synthesized mesoporous Li 4Ti 5O 12 are characterized by X-ray diffraction (XRD) and scanning electron microscopy, respectively. The mesoporous structure can be directly observed through BEI images of the cross-section sample. Besides, N 2 adsorption/desorption isotherm also displays a hysteresis loop, implying the beneficial evidence of mesoporous structure. The pore size distribution of mesoporous lithium titanate evaluated by BJH model is narrow, and the average size of voids is around 4 nm. It is demonstrated that the electrochemical performance is significantly improved by the mesoporous structure. The mesoporous lithium titanate exhibits a stable capacity of 140 mAhg -1 at 0.5 C. Besides, the reversible capacity at 30 C remains over half of that at 0.5 C. The superior C-rate performance is associated with the mesoporous structure, facilitating lithium transportation ability during cycling.
Mesoporous metallic rhodium nanoparticles
NASA Astrophysics Data System (ADS)
Jiang, Bo; Li, Cuiling; Dag, Ömer; Abe, Hideki; Takei, Toshiaki; Imai, Tsubasa; Hossain, Md. Shahriar A.; Islam, Md. Tofazzal; Wood, Kathleen; Henzie, Joel; Yamauchi, Yusuke
2017-05-01
Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ~2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2.
Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.
Lin, Yi-Feng; Chen, Jia-Ling
2014-04-15
Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maluta, Jaqueline R.; Machado, Sergio A. S.; Chaudhary, Umesh
The modification of traditional electrodes with mesoporous carbons is a promising strategy to produce high performance electrodes for electrochemical sensing. The high surface area of mesoporous carbons provides a large number of electroactive sites for binding analytes. Controlling the pore size and structure of mesoporous carbons and modifying their electronic properties via doping offers additional benefits like maximizing transport and tuning the electrochemical processes associated with analyte detection. This work reports a facile method to produce sulfur-doped ordered mesoporous carbon materials (S-OMC) with uniform pore structure, large pore volume, high surface area and semigraphitic structure. The synthesis used thiophenol asmore » a single source of carbon and sulfur, and iron as a catalyst for low temperature carbonization. The S-OMC material was deposited on a glassy carbon electrode and used as a sensor with high sensitivity (11.7 A L mol-1) and selectivity for chloramphenicol detection in presence of other antibiotics. As a proof-of-concept, the sensor was applied to the direct analysis of the drug in reconstituted powdered milk and in commercial eye drops.« less
Maluta, Jaqueline R.; Machado, Sergio A. S.; Chaudhary, Umesh; ...
2017-10-29
The modification of traditional electrodes with mesoporous carbons is a promising strategy to produce high performance electrodes for electrochemical sensing. The high surface area of mesoporous carbons provides a large number of electroactive sites for binding analytes. Controlling the pore size and structure of mesoporous carbons and modifying their electronic properties via doping offers additional benefits like maximizing transport and tuning the electrochemical processes associated with analyte detection. This work reports a facile method to produce sulfur-doped ordered mesoporous carbon materials (S-OMC) with uniform pore structure, large pore volume, high surface area and semigraphitic structure. The synthesis used thiophenol asmore » a single source of carbon and sulfur, and iron as a catalyst for low temperature carbonization. The S-OMC material was deposited on a glassy carbon electrode and used as a sensor with high sensitivity (11.7 A L mol-1) and selectivity for chloramphenicol detection in presence of other antibiotics. As a proof-of-concept, the sensor was applied to the direct analysis of the drug in reconstituted powdered milk and in commercial eye drops.« less
NASA Astrophysics Data System (ADS)
Wang, Yangang; Bai, Xia; Wang, Fei; Qin, Hengfei; Yin, Chaochuang; Kang, Shifei; Li, Xi; Zuo, Yuanhui; Cui, Lifeng
2016-05-01
Highly ordered mesoporous graphitic carbon was synthesized from a simple surfactant-assisted nanocasting route, in which ordered mesoporous silica SBA-15 maintaining its triblock copolymer surfactant was used as a hard template and natural soybean oil (SBO) as a carbon precursor. The hydrophobic domain of the surfactant assisted SBO in infiltration into the template’s mesoporous channels. After the silica template was carbonized and removed, a higher yield of highly-ordered graphitic mesoporous carbon with rod-like morphology was obtained. Because of the improved structural ordering, the mesoporous carbon after amine modification could adsorb more CO2 compared with the amine-functionalized carbon prepared without the assistance of surfactant.
"Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, P. F.; Mayes, R.; Wang, X. Q.
2011-04-20
Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less
Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Fulvio, Pasquale F; Mayes, Richard T
2011-01-01
Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbonmore » nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.« less
Adsorption and release of biocides with mesoporous silica nanoparticles
NASA Astrophysics Data System (ADS)
Popat, Amirali; Liu, Jian; Hu, Qiuhong; Kennedy, Michael; Peters, Brenton; Lu, Gao Qing (Max); Qiao, Shi Zhang
2012-01-01
In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11691j
NASA Astrophysics Data System (ADS)
Li, Guo-Min; Wang, Lian-Cheng; Xu, Yao
2014-08-01
Based on the nanocasting strategy, highly ordered mesoporous CoFe2O4 is synthesized via the ‘two-solvent’ impregnation method using a mesoporous SBA-15 template. An ordered two-dimensional (P6mm) structure is preserved for the CoFe2O4/SBA-15 composite after the nanocasting. After the SBA-15 template is dissolved by NaOH solution, a mesoporous structure composed of aligned nanoparticles can be obtained, and the P6mm structure of the parent SBA-15 is preserved. With a high specific surface area (above 90 m2/g) and ferromagnetic behavior, the obtained material shows potential in light weight microwave absorption application. The minimum reflection loss (RL) can reach -18 dB at about 16 GHz with a thickness of 2 mm and the corresponding absorption bandwidth is 4.5 GHz.
Zhao, Xin; Li, Wei; Chen, Honglei; Wang, Shoujuan; Kong, Fangong; Liu, Shouxin
2017-01-01
Mesoporous carbons have been successfully synthesized via self-assembly using larch-based resins as precursors and triblock copolymers as soft templates. The porous structure of mesoporous carbons can be tailored by adjusting the ratio of hydrophilic/hydrophobic (EO/PO) units owing to interfacial curvature. Interestingly, the porous structures show a distinct change from vortex-like to worm-like pores, to stripe-like pores, and to ordered two-dimensional hexagonal pores as the ratio of hydrophilic/hydrophobic units increases, indicating the significant effect of EO/PO ratio on the porous structure. The mesoporous carbons as supercapacitor electrodes exhibit superior electrochemical capacitive performance and a high degree of reversibility after 2000 cycles for supercapacitors due to the well-defined mesoporosity of the carbon materials. Meanwhile, the superior carbon has a high specific capacitance of 107 F·g−1 in 6 M KOH at a current density of 10 A·g−1. PMID:29156641
Zhao, Xin; Li, Wei; Chen, Honglei; Wang, Shoujuan; Kong, Fangong; Liu, Shouxin
2017-11-20
Mesoporous carbons have been successfully synthesized via self-assembly using larch-based resins as precursors and triblock copolymers as soft templates. The porous structure of mesoporous carbons can be tailored by adjusting the ratio of hydrophilic/hydrophobic (EO/PO) units owing to interfacial curvature. Interestingly, the porous structures show a distinct change from vortex-like to worm-like pores, to stripe-like pores, and to ordered two-dimensional hexagonal pores as the ratio of hydrophilic/hydrophobic units increases, indicating the significant effect of EO/PO ratio on the porous structure. The mesoporous carbons as supercapacitor electrodes exhibit superior electrochemical capacitive performance and a high degree of reversibility after 2000 cycles for supercapacitors due to the well-defined mesoporosity of the carbon materials. Meanwhile, the superior carbon has a high specific capacitance of 107 F·g -1 in 6 M KOH at a current density of 10 A·g -1 .
A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications
NASA Astrophysics Data System (ADS)
Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi
2016-08-01
In this paper, large-scale mesoporous In2O3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In2O3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In2O3. The In2O3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In2O3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.
Lim, Eunho; Jo, Changshin; Lee, Jinwoo
2016-04-21
In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.
NASA Astrophysics Data System (ADS)
Lim, Eunho; Jo, Changshin; Lee, Jinwoo
2016-04-01
In recent years, porous materials have attracted significant attention in various research fields because of their structural merits. In particular, well-designed mesoporous structures with two- or three-dimensionally interconnected pores have been recognized as electrode materials of particular interest for achieving high-performance electrochemical capacitors (ECs). In this mini review, recent progress in the design of mesoporous electrode materials for ECs, from electric double-layer capacitors (EDLCs) and pseudocapacitors (PCs) to hybrid supercapacitors (HSCs), and research challenges for the development of new mesoporous electrode materials has been discussed.
Sen, T; Tiddy, G J T; Casci, J L; Anderson, M W
2003-09-07
The room-temperature synthesis of a macro-mesoporous silica material during the natural creaming process of an oil-in-water emulsion is reported. The material has 3-dimensional interconnected macropores with a strut-like structure similar to meso-cellular silica foams with mesoporous walls of worm-hole structure. The material has very high surface area (approximately 800 m2 g(-1)) with narrow mesopore size distribution.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors.
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J; Mijowska, Ewa
2012-05-29
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
NASA Astrophysics Data System (ADS)
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa
2012-05-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
Two-Dimensional VO2 Mesoporous Microarrays for High-Performance Supercapacitor
NASA Astrophysics Data System (ADS)
Fan, Yuqi; Ouyang, Delong; Li, Bao-Wen; Dang, Feng; Ren, Zongming
2018-05-01
Two-dimensional (2D) mesoporous VO2 microarrays have been prepared using an organic-inorganic liquid interface. The units of microarrays consist of needle-like VO2 particles with a mesoporous structure, in which crack-like pores with a pore size of about 2 nm and depth of 20-100 nm are distributed on the particle surface. The liquid interface acts as a template for the formation of the 2D microarrays, as identified from the kinetic observation. Due to the mesoporous structure of the units and high conductivity of the microarray, such 2D VO2 microarrays exhibit a high specific capacitance of 265 F/g at 1 A/g and excellent rate capability (182 F/g at 10 A/g) and cycling stability, suggesting the effect of unique microstructure for improving the electrochemical performance.
Synthesis of non-siliceous mesoporous oxides.
Gu, Dong; Schüth, Ferdi
2014-01-07
Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.
A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers.
Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan
2009-02-18
A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO(2) (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO(2)), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.
NASA Astrophysics Data System (ADS)
Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin
2008-12-01
A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.
Choi, Sinho; Cho, Yoon-Gyo; Kim, Jieun; Choi, Nam-Soon; Song, Hyun-Kon; Wang, Guoxiu; Park, Soojin
2017-04-01
Porous structured materials have unique architectures and are promising for lithium-ion batteries to enhance performances. In particular, mesoporous materials have many advantages including a high surface area and large void spaces which can increase reactivity and accessibility of lithium ions. This study reports a synthesis of newly developed mesoporous germanium (Ge) particles prepared by a zincothermic reduction at a mild temperature for high performance lithium-ion batteries which can operate in a wide temperature range. The optimized Ge battery anodes with the mesoporous structure exhibit outstanding electrochemical properties in a wide temperature ranging from -20 to 60 °C. Ge anodes exhibit a stable cycling retention at various temperatures (capacity retention of 99% after 100 cycles at 25 °C, 84% after 300 cycles at 60 °C, and 50% after 50 cycles at -20 °C). Furthermore, full cells consisting of the mesoporous Ge anode and an LiFePO 4 cathode show an excellent cyclability at -20 and 25 °C. Mesoporous Ge materials synthesized by the zincothermic reduction can be potentially applied as high performance anode materials for practical lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dey, Sonal; Anderson, Sean T.; Mayanovic, Robert A.; Sakidja, Ridwan; Landskron, Kai; Kokoszka, Berenika; Mandal, Manik; Wang, Zhongwu
2016-01-01
Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K0.07WO3.Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K0.07WO3. Electronic supplementary information (ESI) available: Experimental details of SEM and TEM measurements, SAXS data analysis, the procedure for Rietveld refinement, peak fitting for the Raman results, the modelling approach, UV-Vis and N2 sorption measurements. See DOI: 10.1039/c5nr07941a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn; Duy, Nguyen Van; Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn
2013-02-15
Graphical abstract: Display Omitted Highlights: ► Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ► Enable effective accession of the analytic molecules for the sensor applications. ► The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxidemore » (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 °C.« less
Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng
2017-04-11
Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Qu, Fengyu; Lin, Huiming; Wu, Xiang; Li, Xiaofeng; Qiu, Shilun; Zhu, Guangshan
2010-05-01
The bimodal porous structured silica materials consisting of macropores with the diameter of 5-20 μm and framework-like mesopores with the diameter of 4.7-6.0 nm were prepared using natural Manchurian ash and mango linin as macropored hard templates and P123 as mesopore soft templates, respectively. The macroporous structures of Manchurian ash and mango linin were replicated with the walls containing highly ordered mesoporous silica as well. As-synthesized dual porous silica was characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), transmission electron microscope (TEM) and nitrogen adsorption/desorption, fourier transform IR (FTIR) spectroscopy, and thermo-gravimetric analyzer (TGA). Ibuprofen (Ibu) was employed as a model drug and the release profiles showed that the dual porous material had a sustained drug delivery capability. And such highly ordered dual pore silica materials may have potential applications for bimolecular adsorption/separation and tissue repairing.
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
2012-01-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113
Tri-metallic PtPdAu mesoporous nanoelectrocatalysts.
Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-06-22
The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.
Tri-metallic PtPdAu mesoporous nanoelectrocatalysts
NASA Astrophysics Data System (ADS)
Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-06-01
The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.
Wang, Guoxiu; Liu, Hao; Horvat, Josip; Wang, Bei; Qiao, Shizhang; Park, Jinsoo; Ahn, Hyojun
2010-09-24
Highly ordered mesoporous Co(3)O(4) nanostructures were prepared using KIT-6 and SBA-15 silica as hard templates. The structures were confirmed by small angle X-ray diffraction, high resolution transmission electron microscopy, and N(2) adsorption-desorption isotherm analysis. Both KIT-6 cubic and SBA-15 hexagonal mesoporous Co(3)O(4) samples exhibited a low Néel temperature and bulk antiferromagnetic coupling due to geometric confinement of antiferromagnetic order within the nanoparticles. Mesoporous Co(3)O(4) electrode materials have demonstrated the high lithium storage capacity of more than 1200 mAh g(-1) with an excellent cycle life. They also exhibited a high specific capacitance of 370 F g(-1) as electrodes in supercapacitors.
NASA Astrophysics Data System (ADS)
Cai, Tingwei; Zhou, Min; Han, Guangshuai; Guan, Shiyou
2013-11-01
A novel phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure is synthesized by the facile evaporation induced self-assembly strategy under a basic aqueous condition with SiO2 particles as template. The prepared bimodal mesoporous carbons (BMCs) are composed of ordered mesoporous and disordered mesoporous with diameter of about 3.5 nm and 7.0 nm, respectively. They can be employed as supercapacitor electrodes in H2SO4 aqueous electrolyte after the simple acid-treatment. BMC exhibits an exceptional specific capacitance of 344 F g-1 at the current density of 0.1 A g-1, although it has a relatively low surface area of 722 m2 g-1. And the BMC electrode displays an excellent cycling stability over 10,000 cycles.
Hydrothermal performance of catalyst supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.
A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.
Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke
2017-06-26
Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei
2015-02-01
We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.
Ciraldo, Francesca E.; Goldmann, Wolfgang H.
2018-01-01
Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol–gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications. PMID:29710768
Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia
2016-01-01
The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Meitao; Liang, Chao; Jiang, Huangyong; Shen, Jian; Li, Hexing
2014-03-01
A novel soft-hard cooperative approach was developed to synthesize bioactive mesoporous composite by pre-wrapping Penicillin G amidase with poly(acrylaimde) nanogel skin and subsequently incorporating such Penicillin G amidase nanocapsules into hierarchically mesoporous silica. The as-received bioactive mesoporous composite exhibited comparable activity and extraordinarily high stability in comparison with native Penicillin G amidase and could be used repetitively in the water-medium hydrolysis of penicillin G potassium salt. Furthermore, this strategy could be extended to the synthesis of multifunctional bioactive mesoporous composite by simultaneously introducing glucose oxidase nanocapsules and horseradish peroxidase nanocapsules into hierarchically mesoporous silica, which demonstrated a synergic effect in one-pot tandem oxidation reaction. Improvements in the catalytic performances were attributed to the combinational unique structure from soft polymer skin and hard inorganic mesoporous silica shell, which cooperatively helped enzyme molecules to retain their appropriate geometry and simultaneously decreased the enzyme-support negative interaction and mass transfer limitation under heterogeneous conditions.
Mesoporous ZnS–NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors
Wei, Chengzhen; Cheng, Cheng; Zhao, Junhong; Wang, Zhangtao; Wu, Haipeng; Gu, Kaiyue; Du, Weimin; Pang, Huan
2015-01-01
Mesoporous ZnS–NiS composites are prepared via ion- exchange reactions using ZnS as the precursor. The prepared mesoporous ZnS–NiS composite materials have large surface areas (137.9 m2 g−1) compared with the ZnS precursor. More importantly, the application of these mesoporous ZnS–NiS composites as nonenzymatic glucose sensors was successfully explored. Electrochemical sensors based on mesoporous ZnS–NiS composites exhibit a high selectivity and a low detection limit (0.125 μm) toward the oxidation of glucose, which can mainly be attributed to the morphological characteristics of the mesoporous structure with high specific surface area and a rational composition of the two constituents. In addition, the mesoporous ZnS–NiS composites coated on the surface of electrodes can be used to modify the mass transport regime, and this alteration can, in favorable circumstances, facilitate the amperometric discrimination between species. These results suggest that such mesoporous ZnS–NiS composites are promising materials for nonenzymatic glucose sensors. PMID:25861568
Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan
2006-09-06
Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.
Yin, Peng; Wang, Yuhua; Li, Yan; Deng, Chunhui; Zhang, Xiangmin; Yang, Pengyuan
2012-09-01
In this study, sandwich-structured graphene/mesoporous silica composites (C8-modified graphene@mSiO(2)) were synthesized by coating mesoporous silica onto hydrophilic graphene nanosheets through a surfactant-mediated cocondensation sol-gel process. The newly prepared C8-modified graphene@mSiO(2) nanocomposites possess unique properties of extended plate-like morphology, good water dispersibility, highly open pore structure, uniform pore size (2.8 nm), high surface area (632 m(2)/g), and C8-modified-interior pore walls. The unique structure of the C8-modified graphene@mSiO(2) composite nanosheets not only provide extended planes with hydrophilic surface that prevents aggregation in solution, but also offer a huge number of C8-modified mesopores with high surface area that can ensure an efficient adsorption of peptides through hydrophobic-hydrophobic interaction between C8-moified pore walls and target molecules. The obtained C8-modified graphene@mSiO(2) materials were utilized for size selectively and specifically enriching peptides in standard peptide mixtures and endogenous peptides in real biological samples (mouse brain tissue). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi
2018-03-01
Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.
Mahoney, Luther; Koodali, Ranjit T.
2014-01-01
Evaporation-Induced Self-Assembly (EISA) method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs), photocatalytic degradation of organics and splitting of water, and batteries. PMID:28788590
Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop
2005-06-21
A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH < 2), thus facilitating the approach of hydrolyzed silica sol to the surface of the membrane, poly(sodium 4-styrenesulfonate) (Na+PSS-, denoted as PSS-) was used as an ionic linker. The use of PSS- led to a significant reduction in positive charge on the ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.
Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Matsuoka, Fumiaki; Suh, Hyo Seon
Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. Inmore » situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.« less
A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.
Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan
2014-02-17
Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yu, Pingping; Zhao, Xin; Li, Yingzhi; Zhang, Qinghua
2017-01-01
Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile ;templating and embossing; technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g-1. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg-1 and 103.2 kW kg-1, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.
Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica.
Ji, Yazhou; Caskey, Christopher; Richards, Ryan M
2015-07-09
As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.
Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica
Ji, Yazhou; Caskey, Christopher; Richards, Ryan M.
2015-01-01
As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability. PMID:26274058
Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.
Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun
2018-03-01
Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Gang-Tian; Li, Xiao-Shui; Fu, Xiao-Meng; Wu, Jian-Yuan; Yuan, Bi-Feng; Feng, Yu-Qi
2012-10-14
Silica fiber with highly ordered mesoporous structure and continuously long fibrous property was synthesized on a large-scale for the first time. It can be applied to the rapid (less than 3 min) and effective enrichment of endogenous peptides with a novel lab-in-syringe approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang
Graphical abstract: Electrodeposited mesoporous Co{sub 3}O{sub 4} nanoflake arrays exhibit porous structure composed of mesoporous nanoflakes and high supercapacitor performance. - Highlights: • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays are prepared via electrodeposition method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays show excellent supercapacitor performance. - Abstract: A mesoporous Co{sub 3}O{sub 4} nanoflake array grown on carbon cloth is prepared by a facile electrodeposition method with a following annealing process. The as-prepared Co{sub 3}O{sub 4} nanoflake possesses a continuous mesopores ranging from 2 to 5 nm and grows tightly onmore » the substrate forming a porous net-like structure with macropores of 20–200 nm. The electrochemical performance of the mesoporous Co{sub 3}O{sub 4} nanoflake arrays as pseudocapcitor electrode are investigated by cyclic voltammograms and galvanostatic charge/discharge tests in 2 M KOH. The as-prepared Co{sub 3}O{sub 4} array exhibits a high discharge capacitance and excellent rate capability with 450 F g{sup −1}, 436 F g{sup −1}, 408 F g{sup −1}, 380 F g{sup −1}and 363 F g{sup −1} at 1, 2, 4, 10, and 20 A g{sup −1}, respectively. The specific capacitance of 81% is maintained from 1 A g{sup −1} to 20 A g{sup −1}. The electrode also shows rather good cycling stability and exhibits a specific capacitance of 414 F g{sup −1} after 5000 cycles.« less
Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Honghao, E-mail: honghaoyu@hotmail.com; College of Material Science and Engineering, Shenyang Ligong University, Shenyang, 110168; Xue Xiangxin
2009-11-15
Highly ordered mesoporous materials were successfully synthesized by using the iron ore tailings as the silica source and n-hexadecyltrimethyl ammonium bromide as the template. The samples were detail characterized by powder X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy and N{sub 2} physisorption. The as-synthesized materials had high surface area of 527 m{sup 2} g{sup -1} and the mean pore diameter of 2.65 nm with a well-ordered two-dimensional hexagonal structure. It is feasible to prepare mesoporous MCM-41 materials using the iron ore tailings as precursor.
A Review: Fundamental Aspects of Silicate Mesoporous Materials
ALOthman, Zeid A.
2012-01-01
Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.
Chu, Wei-Cheng; Bastakoti, Bishnu Prasad; Kaneti, Yusuf Valentino; Li, Jheng-Guang; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Kuo, Shiao-Wei
2017-10-04
Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO 2 adsorption capacity (6.72 mmol g -1 at 0 °C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Ki Chang; Kim, Joo Hyun; Kim, Jin Han; Jung, Kyeong Youl; Park, Young-Kwon; Jeon, Jong-Ki
2011-07-01
The objective of the present study is to investigate the catalytic performance of mesoporous alumina that were prepared via spray pyrolysis for double bond migration from 2-butene to 1-butene. The mesoporous alumina particles were prepared via spray pyrolysis by changing the types of organic surfactants and Al precursors. The texture and acidic properties of mesoporous alumina were analyzed through N2 adsorption, SEM, ammonia-temperature programmed desorption, and FT-IR of adsorbed pyridine. The morphologies and texture properties of the mesoporous alumina were found to have been strongly influenced by the combination of the Al precursor and the structure-directing agents. The mesoporous alumina samples had two kinds of acidic sites: a Lewis acid site and a H-bonded weak acid site. 1-Butene was produced selectively through double bond migration of 2-butene over all of the mesoporous alumina catalysts. The catalyst prepared by using a chloride compound as an aluminium precursor and CTAC as a structure-directing agent showed the highest activity in the double bond migration of 2-butene, which was attributed to its large surface area and an overall high amount of acid sites.
Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction
NASA Astrophysics Data System (ADS)
Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng
2016-08-01
Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.
Tao, Guiju; Hua, Zile; Gao, Zhe; Zhu, Yan; Zhu, Yan; Chen, Yu; Shu, Zhu; Zhang, Lingxia; Shi, Jianlin
2013-09-21
Using newly developed mesoporous Mg-Fe bi-metal oxides as supports, a novel kind of high performance transesterification catalysts for biodiesel production has been synthesized. More importantly, the impregnation solvent was for the first time found to substantially affect the structures and catalytic performances of the resultant transesterification catalysts.
NASA Astrophysics Data System (ADS)
Tong, Wei; Huang, Yudai; Cai, Yanjun; Guo, Yong; Wang, Xingchao; Jia, Dianzeng; Sun, Zhipeng; Pang, Weikong; Guo, Zaiping; Zong, Jun
2018-01-01
Hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres have been synthesized by urea-assisted solvothermal method with adding Triton X-100. The structure and morphology of the as-prepared materials were analyzed by X-ray diffraction and electron microscope. The results show that the as-prepared samples can be indexed as hexagonal layered structure with hierarchical architecture, and the possible formation mechanism is speculated. When evaluated as cathode material, the hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 spheres show good electrochemical properties with high initial discharge capacity of 129.9 mAh g-1, and remain the discharge capacity of 95.5 mAh g-1 after 160 cycles at 10C. The excellent electrochemical performance of the as-prepared sample can be attributed to its stable hierarchical mesoporous framework in conjunction with large specific surface, low cation mixing and small particle size. They not only provide a large number of reaction sites for surface or interface reaction, but also shorten the diffusion length of Li+ ions. Meanwhile, the mesoporous spheres composed of nanoparticles can contribute to high rate ability and buffer volume changes during charge/discharge process.
High-performance mesoporous LiFePO₄ from Baker's yeast.
Zhang, Xudong; Zhang, Xueguang; He, Wen; Sun, Caiyun; Ma, Jingyun; Yuan, Junling; Du, Xiaoyong
2013-03-01
Based on the biomineralization assembly concept, a simple and inexpensive biomimetic sol-gel method is found to synthesize high-performance mesoporous LiFePO(4) (HPM-LFP). The key step of this approach is to apply Baker's yeast cells as both a structural template and a biocarbon source. The formation mechanism of ordered hierarchical mesoporous network structure is revealed by characterizing its morphology and microstructure. The HPM-LFP exhibits outstanding electrochemical performances. The HPM-LFP has a high discharge capacity (about 153 mAh g(-1) at a 0.1 C rate), only 2% capacity loss from the initial value after 100 cycles at a current density of 0.1 C. This simple and potentially universal design strategy is currently being pursued in the synthesis of an ideal cathode-active material for high power applications. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Xiaoyan; Xue, Xingkun; Ma, Hailong; Guo, Shouwu; Cheng, Laifei
2017-09-01
Ordered mesoporous carbon nanomaterials (OMCs) co-doped with homogeneous nitrogen and sulfur heteroatoms were prepared by nanocasting with the pyrrole oligomer catalyzed by sulfuric acid as a precursor and ordered mesoporous silica SBA-15 as a hard-template. By multi-technique approach utilization, it was demonstrated that the N and S co-doped OMCs possessed high ordered mesoporous structures, large surface areas and homogeneous distribution of heteroatoms. As a microwave absorber, the as-prepared materials exhibited a minimum reflection loss (RL) of -32.5 dB at the thickness of 2.5 mm and an absorption bandwidth of 3.2 GHz (RL < -10 dB) in X-band (8.2-12.4 GHz). The good microwave absorption performance was mainly originated from the high electrical conductivity induced by the high surface activity and special structures. And microwave energy can be effectively attenuated through multiple reflections and absorptions in complex conductive network. The design strategy in this work would contribute to the production of a lightweight absorber, presenting a strong absorbency and a wide bandwidth in microwave frequency.
Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility.
Hwang, Jongkook; Jo, Changshin; Kim, Min Gyu; Chun, Jinyoung; Lim, Eunho; Kim, Seongseop; Jeong, Sanha; Kim, Youngsik; Lee, Jinwoo
2015-05-26
We report mesoporous composite materials (m-GeO2, m-GeO2/C, and m-Ge-GeO2/C) with large pore size which are synthesized by a simple block copolymer directed self-assembly. m-Ge/GeO2/C shows greatly enhanced Coulombic efficiency, high reversible capacity (1631 mA h g(-1)), and stable cycle life compared with the other mesoporous and bulk GeO2 electrodes. m-Ge/GeO2/C exhibits one of the highest areal capacities (1.65 mA h cm(-2)) among previously reported Ge- and GeO2-based anodes. The superior electrochemical performance in m-Ge/GeO2/C arises from the highly improved kinetics of conversion reaction due to the synergistic effects of the mesoporous structures and the conductive carbon and metallic Ge.
A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties
NASA Astrophysics Data System (ADS)
Xu, Yong; Gao, Dan; Feng, Pei; Gao, Chengde; Peng, Shuping; Ma, HaoTian; Yang, Sheng; Shuai, Cijun
2017-11-01
Mesoporous structure is beneficial to cellular response due to the large specific surface area and high pore volume. In this study, mesoporous silica (SBA15) was incorporated into poly-L-lactic acid (PLLA) to construct composite scaffold by selective laser sintering. The results showed that SBA15 facilitated cells proliferation, which was mainly attributed to its unique intrinsic mesoporous structure and the released bioactive silicon. Moreover, the hydrolyzate of soluble mesoporous silica can adsorb ions to form nucleation sites that promote biomineralization, leading to improve biological activity of the composite scaffold. In addition, the compressive strength, compressive modulus and Vickers hardness of the scaffold were increased by 47.6%, 35.5% and 29.53% respectively with 1.5 wt.% SBA15. It was found that the particle enhancement of uniform distributed SBA15 accounted for the mechanic reinforcement of the composite scaffold. It indicated that the PLLA-SBA15 composite scaffold had potential applications in bone tissue engineering.
Silica-based mesoporous nanoparticles for controlled drug delivery
Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A
2013-01-01
Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012
Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop
2012-07-01
A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.
Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun
2016-04-28
Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.
NASA Astrophysics Data System (ADS)
Logu, T.; Soundarrajan, P.; Sankarasubramanian, K.; Sethuraman, K.
2018-04-01
In this work, a high crystalline and mesoporous nanostructured cadmium sulfide (CdS) thin film was successfully grown on the FTO substrates using facile Electrospray Aerosol Deposition (ESAD) technique. The structural, optical, morphological and electrical properties of CdS thin film have been systematically examined. CdS thin film exhibits the hexagonal wurtzite crystal structure with polycrystalline nature. The optical band gap energy of the prepared film was estimated from the Tauc plot and is 2.43 eV. The SEM and AFM images show that the well-interconnected CdS nanoparticles gives mesoporous like morphology. The fine aerosol generated from the ESAD process induces the alteration in the surface morphological structure of deposited CdS film that consequences in enhanced electrical and photo-physical properties. The photoconductivity of the sample has been studied which demonstrates significant photo current. The present study predicts that mesoporous nanostructured CdS thin film would be given a special interest for optoelectronic applications.
Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability
Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao
2015-01-01
A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188
Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis
NASA Astrophysics Data System (ADS)
Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen
2017-12-01
Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.
Recent progress in mesoporous titania materials: adjusting morphology for innovative applications.
Vivero-Escoto, Juan L; Chiang, Ya-Dong; Wu, Kevin; Yamauchi, Yusuke
2012-02-01
This review article summarizes recent developments in mesoporous titania materials, particularly in the fields of morphology control and applications. We first briefly introduce the history of mesoporous titania materials and then review several synthesis approaches. Currently, mesoporous titania nanoparticles (MTNs) have attracted much attention in various fields, such as medicine, catalysis, separation and optics. Compared with bulk mesoporous titania materials, which are above a micrometer in size, nanometer-sized MTNs have additional properties, such as fast mass transport, strong adhesion to substrates and good dispersion in solution. However, it has generally been known that the successful synthesis of MTNs is very difficult owing to the rapid hydrolysis of titanium-containing precursors and the crystallization of titania upon thermal treatment. Finally, we review four emerging fields including photocatalysis, photovoltaic devices, sensing and biomedical applications of mesoporous titania materials. Because of its high surface area, controlled porous structure, suitable morphology and semiconducting behavior, mesoporous titania is expected to be used in innovative applications.
Kani, Kenya; Malgras, Victor; Jiang, Bo; Hossain, Md Shahriar A; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Huang, Zhenguo; Yamauchi, Yusuke
2018-01-04
Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large-sized cage-type mesopores of mesoporous silica (LP-FDU-12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP-FDU-12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self-organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage-type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Facile synthesis and application of a carbon foam with large mesopores.
Fu, Liling; Qi, Genggeng; Sahore, Ritu; Sougrat, Rachid; DiSalvo, Francis J; Giannelis, Emmanuel P
2013-11-28
By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries.
Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang
2011-09-01
Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheon, Jae Yeong; Kim, Taeyoung; Choi, YongMan; Jeong, Hu Young; Kim, Min Gyu; Sa, Young Jin; Kim, Jaesik; Lee, Zonghoon; Yang, Tae-Hyun; Kwon, Kyungjung; Terasaki, Osamu; Park, Gu-Gon; Adzic, Radoslav R.; Joo, Sang Hoon
2013-01-01
The high cost of the platinum-based cathode catalysts for the oxygen reduction reaction (ORR) has impeded the widespread application of polymer electrolyte fuel cells. We report on a new family of non-precious metal catalysts based on ordered mesoporous porphyrinic carbons (M-OMPC; M = Fe, Co, or FeCo) with high surface areas and tunable pore structures, which were prepared by nanocasting mesoporous silica templates with metalloporphyrin precursors. The FeCo-OMPC catalyst exhibited an excellent ORR activity in an acidic medium, higher than other non-precious metal catalysts. It showed higher kinetic current at 0.9 V than Pt/C catalysts, as well as superior long-term durability and MeOH-tolerance. Density functional theory calculations in combination with extended X-ray absorption fine structure analysis revealed a weakening of the interaction between oxygen atom and FeCo-OMPC compared to Pt/C. This effect and high surface area of FeCo-OMPC appear responsible for its significantly high ORR activity. PMID:24056308
Yu, Byong Yong; Kwak, Seung-Yeop
2011-10-21
Based on a self-assembly strategy, spherical mesoporous cobalt and nickel ferrite nanocrystal clusters with a large surface area and narrow size distribution were successfully synthesized for the first time via a template-free solvothermal process in ethylene glycol and subsequent heat treatment. In this work, the mesopores in the ferrite clusters were derived mainly from interior voids between aggregated primary nanoparticles (with crystallite size of less than 7 nm) and disordered particle packing domains. The concentration of sodium acetate is shown herein to play a crucial role in the formation of mesoporous ferrite spherical clusters. These ferrite clusters were characterized in detail using wide-angle X-ray diffraction, thermogravimetric-differential thermal analysis, (57)Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, standard and high-resolution transmission electron microscopy, and other techniques. The results confirmed the formation of both pure-phase ferrite clusters with highly crystalline spinel structure, uniform size (about 160 nm) and spherical morphology, and worm-like mesopore structures. The BET specific surface areas and mean pore sizes of the mesoporous Co and Ni-ferrite clusters were as high as 160 m(2) g(-1) and 182 m(2) g(-1), and 7.91 nm and 6.87 nm, respectively. A model for the formation of the spherical clusters in our system is proposed on the basis of the results. The magnetic properties of both samples were investigated at 300 K, and it was found that these materials are superparamagnetic. This journal is © The Royal Society of Chemistry 2011
Xiao, Chaoxian; Maligal-Ganesh, Raghu V; Li, Tao; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Winans, Randall E; Huang, Wenyu
2013-10-01
We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Shan; Cheng, Ming; Liu, Guannan; Zhao, Lianjing; Zhang, Bo; Gao, Yuan; Lu, Huiying; Wang, Haiyu; Zhao, Jing; Liu, Fangmeng; Yan, Xu; Zhang, Tong; Lu, Geyu
2018-04-10
Nitrogen dioxide (NO 2 ), as a typical threatening atmospheric pollutant, is hazardous to the environment and human health. Thus, the development of a gas sensor with high response and low detection limit for NO 2 detection is highly important. The highly ordered mesoporous indium trioxide (In 2 O 3 ) prepared by simple nanocasting method using mesoporous silica as template and decorated with Au nanoparticles was investigated for NO 2 detection. The prepared materials were characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Characterization results showed that the samples exhibited ordered mesostructure and were successfully decorated with Au. The gas sensing performance of the sensors based on a series of Au-loaded mesoporous In 2 O 3 were systematically investigated. The Au loading level strongly affected the sensing performance toward NO 2 . The optimal sensor, which was based on 0.5 wt% Au-loaded In 2 O 3 , displayed high sensor response and low detection limit of 10 ppb at low operating temperature of 65 °C. The excellent sensing properties were mainly attributed to the ordered mesoporous structure and the catalytic performance of Au. We believe that the Au-loaded mesoporous In 2 O 3 can provide a promising platform for NO 2 gas sensors with excellent performance. Copyright © 2018 Elsevier Inc. All rights reserved.
CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route
Huo, Chengli; Ouyang, Jing; Yang, Huaming
2014-01-01
Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated. PMID:24419589
Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors
NASA Astrophysics Data System (ADS)
Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo
2017-04-01
Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.
Han, Qing; Wang, Bing; Gao, Jian; Cheng, Zhihua; Zhao, Yang; Zhang, Zhipan; Qu, Liangti
2016-02-23
Delamination of layer materials into two-dimensional single-atom sheets has induced exceptional physical properties, including large surface area, ultrahigh intrinsic carrier mobility, pronounced changes in the energy band structure, and other properties. Here, atomically thin mesoporous nanomesh of graphitic carbon nitride (g-C3N4) is fabricated by solvothermal exfoliation of mesoporous g-C3N4 bulk made from thermal polymerization of freeze-drying assembled Dicyandiamide nanostructure precursor. With the unique structural advantages for aligned energy levels, electron transfer, light harvesting, and the richly available reaction sites, the as-prepared monolayer of mesoporous g-C3N4 nanomesh exhibits a superior photocatalytic hydrogen evolution rate of 8510 μmol h(-1) g(-1) under λ > 420 nm and an apparent quantum efficiency of 5.1% at 420 nm, the highest of all the metal-free g-C3N4 nanosheets photocatalysts.
Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon
2015-02-15
A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less
El-Safty, Sherif A; Mizukami, Fujio; Hanaoka, Takaaki
2005-05-19
Highly ordered cage and cylindrical mesoporeous silica monoliths (HOM) with 2- and 3-dimensional (2D and 3D, respectively) structures, mesopore/micropore volumes, and thick-walled frameworks were successfully fabricated by instant direct templating of lyotropic phases of copolymer (EO(m)-PO(n)-EO(m)) surfactants. Large cage-like pores with uniform constriction sizes up to 10 nm and open cylindrical channel-like mesopores can be easily achieved by this simple and efficient synthesis design. Our results show that the cage-like pores could be fabricated at relatively lower copolymer concentrations used in the lyotropic phase domains at copolymer/TMOS ratios of 35 wt %. These ordered cage pore architectures underwent transition to open-cylindrical pores by increasing the copolymer concentration. High EO/PO block copolymers, in general, were crucially affected on the increase of the interior cavity sizes and on the stability of the cage mesopore characters. However, for F108 (EO(141)PO(44)EO(141)) systems, the fabrication of ordered and stable cage pore monoliths was achieved with significantly higher copolymer concentrations up to 90 wt %. Interestingly, the effective copolymer molecular nature was also observed in the ability to design various ordered mesophase geometries in large domain sizes. Our findings here show evidence that the synthetic strategy provides realistic control over a wide range of mesostructured phase geometries and their extended long-range ordering in the final replicas of the silica monolith frameworks. In addition, the HOM silica monoliths exhibited considerable structural stability against higher thermal temperature (up to 1000 degrees C) and longer hydrothermal treatment times under boiling water and steam. The remarkable structural findings of 3D frameworks, transparent monoliths, and micropores combined with large cage- and cylindrical-like mesopores are expected to find promising uses in materials chemistry.
Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes
NASA Astrophysics Data System (ADS)
Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei
2015-12-01
Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.
NASA Astrophysics Data System (ADS)
Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui
2017-01-01
We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).
A facile synthesis of mesoporous Pdsbnd ZnO nanocomposites as efficient chemical sensor
NASA Astrophysics Data System (ADS)
Ismail, Adel A.; Harraz, Farid A.; Faisal, M.; El-Toni, Ahmed Mohamed; Al-Hajry, A.; Al-Assiri, M. S.
2016-07-01
Mesoporous ZnO was synthesized through the sol-gel method in the presence of triblock co-polymer Pluronic (F-127) template as the structure directing agent. Palladium nanoparticles were photochemically reduced and deposited onto mesoporous ZnO to obtain 1 wt.% Pd/ZnO nanocomposite. Structural and morphological analysis revealed high homogeneity and monodispersity of Pd nanoclusters with small particle sizes ∼ 2-5 nm onto mesoporous ZnO. The electrochemical detection of ethanol in aqueous solutions was conducted at the newly developed Pd/ZnO modified glassy carbon electrode (GCE) by the current-potential (IV) and cyclic voltammetry (CV) techniques and compared with bare GCE or pure ZnO. The presence of Pd dopant greatly enhances the sensitivity of ZnO, and the obtained mesoporous Pd/ZnO sensor has an excellent performance for precision detection of ethanol in aqueous solution with low concentration. The sensitivity was found to be 33.08 μAcm-2 mM-1 at lower concentration zone (0.05-0.8 mM) and 2.13 μAcm-2 mM-1 at higher concentration zone (0.8-12 mM), with a limit of detection (LOD) 19.2 μM. The kinetics study of ethanol oxidation revealed a characteristic feature for a mixed surface and diffusion-controlled process. These excellent sensing characteristics make the mesoporous Pd/ZnO nanocomposite a good candidate for the production of high-performance electrochemical sensors at low ethanol concentration in aqueous solution.
Hierarchical activated mesoporous phenolic-resin-based carbons for supercapacitors.
Wang, Zhao; Zhou, Min; Chen, Hao; Jiang, Jingui; Guan, Shiyou
2014-10-01
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body-centered cubic mesoporous phenolic-resin-based carbon with KOH. The effect of the KOH/carbon-weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon-weight ratio of 6:1 possessed the largest specific surface area (1118 m(2) g(-1)), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g(-1) at a current density of 0.1 A g(-1) in 1 M H2 SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g(-1) retained at 20 A g(-1)) and good long-term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro-mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kuhn, Pierre; Forget, Aurélien; Su, Dangsheng; Thomas, Arne; Antonietti, Markus
2008-10-08
High surface area organic materials featuring both micro- and mesopores were synthesized under ionothermal conditions via the formation of polyaryltriazine networks. While the polytrimerization of nitriles in zinc chloride at 400 degrees C produces microporous polymers, higher reaction temperatures induce the formation of additional spherical mesopores with a narrow dispersity. The nitrogen-rich carbonaceous polymer materials thus obtained present surface areas and porosities up to 3300 m(2) g(-1) and 2.4 cm(3) g(-1), respectively. The key point of this synthesis relies on the occurrence of several high temperature polymerization reactions, where irreversible carbonization reactions coupled with the reversible trimerization of nitriles allow the reorganization of the dynamic triazine network. The ZnCl2 molten salt fulfills the requirement of a high temperature solvent, but is also required as catalyst. Thus, this dynamic polymerization system provides not only highly micro- and mesoporous materials, but also allows controlling the pore structure in amorphous organic materials.
NASA Astrophysics Data System (ADS)
Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan
2014-01-01
Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.
Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen
2013-06-01
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00495c
Kim, Jae-Yup; Kang, Soon Hyung; Kim, Hyun Sik; Sung, Yung-Eun
2010-02-16
Highly ordered mesoporous Al(2)O(3)/TiO(2) was prepared by sol-gel reaction and evaporation-induced self-assembly (EISA) for use in dye-sensitized solar cells. The prepared materials had two-dimensional, hexagonal pore structures with anatase crystalline phases. The average pore size of mesoporous Al(2)O(3)/TiO(2) remained uniform and in the range of 6.33-6.58 nm while the Brunauer-Emmett-Teller (BET) surface area varied from 181 to 212 m(2)/g with increasing the content of Al(2)O(3). The incorporation of Al content retarded crystallite growth, thereby decreasing crystallite size while simultaneously improving the uniformity of pore size and volume. The thin Al(2)O(3) layer was located mostly on the mesopore surface, as confirmed by X-ray photoelectron spectroscopy (XPS). The Al(2)O(3) coating on the mesoporous TiO(2) film contributes to the essential energy barrier which blocks the charge recombination process in dye-sensitized solar cells. Mesoporous Al(2)O(3)/TiO(2) (1 mol % Al(2)O(3)) exhibited enhanced power conversion efficiency (V(oc) = 0.74 V, J(sc) = 15.31 mA/cm(2), fill factor = 57%, efficiency = 6.50%) compared to pure mesoporous TiO(2) (V(oc) = 0.72 V, J(sc) = 16.03 mA/cm(2), fill factor = 51%, efficiency = 5.88%). Therefore, the power conversion efficiency was improved by approximately 10.5%. In particular, the increase in V(oc) and fill factor resulted from the inhibition of charge recombination and the improvement of pore structure.
Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V.
Cui, Chaojie; Qian, Weizhong; Yu, Yuntao; Kong, Chuiyan; Yu, Bo; Xiang, Lan; Wei, Fei
2014-02-12
We report the fabrication of one-dimensional highly electroconductive mesoporous graphene nanofibers (GNFs) by a chemical vapor deposition method using MgCO3·3H2O fibers as the template. The growth of such a unique structure underwent the first in situ decomposition of MgCO3·3H2O fibers to porous MgO fibers, followed by the deposition of carbon on the MgO surface, the removal of MgO by acidic washing, and the final self-assembly of wet graphene from single to double layer in drying process. GNFs exhibited good structural stability, high surface area, mesopores in large amount, and electrical conductivity 3 times that of carbon nanotube aggregates. It, used as an electrode in a 4 V supercapacitor, exhibited high energy density in a wide range of high power density and excellent cycling stability. The short diffusion distance for ions of ionic liquids electrolyte to the surface of GNFs yielded high surface utilization efficiency and a capacitance up to 15 μF/cm(2), higher than single-walled carbon nanotubes.
Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A
2012-08-01
Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.
He, Junkai; Wang, Mingchao; Wang, Wenbo; Miao, Ran; Zhong, Wei; Chen, Sheng-Yu; Poges, Shannon; Jafari, Tahereh; Song, Wenqiao; Liu, Jiachen; Suib, Steven L
2017-12-13
We report on the new facile synthesis of mesoporous NiO/MnO 2 in one step by modifying inverse micelle templated UCT (University of Connecticut) methods. The catalyst shows excellent electrocatalytic activity and stability for both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) in alkaline media after further coating with polyaniline (PANI). For electrochemical performance, the optimized catalyst exhibits a potential gap, ΔE, of 0.75 V to achieve a current of 10 mA cm -2 for the OER and -3 mA cm -2 for the ORR in 0.1 M KOH solution. Extensive characterization methods were applied to investigate the structure-property of the catalyst for correlations with activity (e.g., XRD, BET, SEM, HRTEM, FIB-TEM, XPS, TGA, and Raman). The high electrocatalytic activity of the catalyst closely relates to the good electrical conductivity of PANI, accessible mesoporous structure, high surface area, as well as the synergistic effect of the specific core-shell structure. This work opens a new avenue for the rational design of core-shell structure catalysts for energy conversion and storage applications.
NASA Astrophysics Data System (ADS)
Wei, J. Q.; Chen, X. J.; Wang, P. F.; Han, Y. B.; Xu, J. C.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, X. Q.
2018-06-01
Mesoporous SBA-15 was used to anchor TiO2 nanoparticles into the mesopores to form high surface area TiO2/SBA-15 nanocomposites, and then the influence of mesoporous-structure on the photocatalytic performance was investigated. TiO2/SBA-15 nanocomposites possessed the high specific surface area and appropriate pore size, indicating the excellent adsorption performance. TiO2/SBA-15 nanocomposites exhibited the higher photocatalytic activity to degrade dyes (methylene blue: MB) than TiO2 (removing SBA-15), which should attributed to the excellent adsorption performance of the nanocomposites. MB was absorbed to form the higher concentration near TiO2/SBA-15 photocatalysts, and the photocatalytic degradation for MB was improved.
Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak
2014-12-01
We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent.
Akolekar, Deepak B; Foran, Garry; Bhargava, Suresh K
2004-05-01
Au L(3)-edge X-ray absorption spectroscopic measurements were carried out over a series of mesoporous and microporous materials containing gold nanoparticles to investigate the effects of the host matrix and preparation methods on the properties of gold nanoparticles. The materials of structure type MCM-41, ZSM-5, SAPO-18 and LSX with varying framework composition containing low concentrations of gold nanoparticles were prepared and characterized. In these materials the size of the gold nanoparticles varied in the range approximately 1 to 4 nm. A series of gold nanoparticles within different mesoporous and microporous materials have been investigated using X-ray absorption fine structure (XANES, EXAFS) and other techniques. Information such as atomic distances, bonding and neighbouring environment obtained from XAFS measurements was useful in elucidating the nature and structure of gold nanoparticles on these catalytic materials. The influence of the high-temperature (823, 1113, 1273 K) treatment on gold nanoparticles inside the mesoporous matrix was investigated using the XAFS technique. The XAFS and XANES results confirm various characteristics of gold nanoparticles in these materials suitable for catalysis, fabrication of nanodevices and other applications.
Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties
NASA Astrophysics Data System (ADS)
Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.
2014-02-01
Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Peng, Kang; Dou, Yewei; Chen, Jiasheng; Zhang, Yue; An, Gai
2018-01-01
Wormhole-like mesoporous tin oxide was synthesized via a facile evaporation-induced self-assembly (EISA) method, and the gas-sensing properties were evaluated for different target gases. The effect of calcination temperature on gas-sensing properties of mesoporous tin oxide was investigated. The results demonstrate that the mesoporous tin oxide sensor calcined at 400 °C exhibits remarkable selectivity to ethanol vapors comparison with other target gases and has a good performance in the operating temperature and response/recovery time. This might be attributed to their high specific surface area and porous structure, which can provide more active sites and generate more chemisorbed oxygen spices to promote the diffusion and adsorption of gas molecules on the surface of the gas-sensing material. A possible formation mechanism of the mesoporous tin oxide and the enhanced gas-sensing mechanism are proposed. The mesoporous tin oxide shows prospective detecting application in the gas sensor fields.
Mesoporous carbon nanomaterials in drug delivery and biomedical application.
Zhao, Qinfu; Lin, Yuanzhe; Han, Ning; Li, Xian; Geng, Hongjian; Wang, Xiudan; Cui, Yu; Wang, Siling
2017-01-01
Recent development of nano-technology provides highly efficient and versatile treatment methods to achieve better therapeutic efficacy and lower side effects of malignant cancer. The exploration of drug delivery systems (DDSs) based on nano-material shows great promise in translating nano-technology to clinical use to benefit patients. As an emerging inorganic nanomaterial, mesoporous carbon nanomaterials (MCNs) possess both the mesoporous structure and the carbonaceous composition, endowing them with superior nature compared with mesoporous silica nanomaterials and other carbon-based materials, such as carbon nanotube, graphene and fullerene. In this review, we highlighted the cutting-edge progress of carbon nanomaterials as drug delivery systems (DDSs), including immediate/sustained drug delivery systems and controlled/targeted drug delivery systems. In addition, several representative biomedical applications of mesoporous carbon such as (1) photo-chemo synergistic therapy; (2) delivery of therapeutic biomolecule and (3) in vivo bioimaging are discussed and integrated. Finally, potential challenges and outlook for future development of mesoporous carbon in biomedical fields have been discussed in detail.
Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature.
Han, Kun Kun; Zhou, Yu; Chun, Yuan; Zhu, Jian Hua
2012-02-15
A novel MgO-based porous adsorbent has been synthesized in a facile co-precipitation method for the first time, in order to provide a candidate for trapping CO(2) in flue gas at high temperature. The resulting composite exhibits a mesoporous structure with a wide pore size distribution, due to the even dispersion and distribution of microcrystalline MgO in the framework of alumina to form a concrete-like structure. These sorbents can capture CO(2) at high temperature (150-400°C), possessing high reactivity and stability in cyclic adsorption-desorption processes, providing competitive candidates to control CO(2) emission. Copyright © 2011 Elsevier B.V. All rights reserved.
Chen, Ting-Hao; Yang, Cheng-Hsien; Su, Ching-Yuan; Lee, Tai-Chou; Dong, Quan-Feng; Chang, Jeng-Kuei
2017-09-22
Various types of electrolyte cations as well as binary cations are used to optimize the capacitive performance of activated carbon (AC) with different pore structures. The high-rate capability of micropore-rich AC, governed by the mobility of desolvated cations, can outperform that of mesopore-rich AC, which essentially depends on the electrolyte conductivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics.
Zhu, Hongli; Fang, Zhiqiang; Wang, Zhu; Dai, Jiaqi; Yao, Yonggang; Shen, Fei; Preston, Colin; Wu, Wenxin; Peng, Peng; Jang, Nathaniel; Yu, Qingkai; Yu, Zongfu; Hu, Liangbing
2016-01-26
Wood fibers possess natural unique hierarchical and mesoporous structures that enable a variety of new applications beyond their traditional use. We dramatically modulate the propagation of light through random network of wood fibers. A highly transparent and clear paper with transmittance >90% and haze <1.0% applicable for high-definition displays is achieved. By altering the morphology of the same wood fibers that form the paper, highly transparent and hazy paper targeted for other applications such as solar cell and antiglare coating with transmittance >90% and haze >90% is also achieved. A thorough investigation of the relation between the mesoporous structure and the optical properties in transparent paper was conducted, including full-spectrum optical simulations. We demonstrate commercially competitive multitouch touch screen with clear paper as a replacement for plastic substrates, which shows excellent process compatibility and comparable device performance for commercial applications. Transparent cellulose paper with tunable optical properties is an emerging photonic material that will realize a range of much improved flexible electronics, photonics, and optoelectronics.
Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.
Xu, Shoufang; Lu, Hongzhi
2016-11-15
A facile strategy was developed to prepare mesoporous structured molecularly imprinted polymers capped carbon dots (M-MIPs@CDs) fluorescence sensor for highly sensitive and selective determination of TNT. The strategy using amino-CDs directly as "functional monomer" for imprinting simplify the imprinting process and provide well recognition sites accessibility. The as-prepared M-MIPs@CDs sensor, using periodic mesoporous silica as imprinting matrix, and amino-CDs directly as "functional monomer", exhibited excellent selectivity and sensitivity toward TNT with detection limit of 17nM. The recycling process was sustainable for 10 times without obvious efficiency decrease. The feasibility of the developed method in real samples was successfully evaluated through the analysis of TNT in soil and water samples with satisfactory recoveries of 88.6-95.7%. The method proposed in this work was proved to be a convenient and practical way to prepare high sensitive and selective fluorescence MIPs@CDs sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
Jiang, Xiangfen; Bastakoti, Bishnu Prasad; Weng, Wu; Higuchi, Tetsuya; Oveisi, Hamid; Suzuki, Norihiro; Chen, Wei-Jung; Huang, Yu-Tzu; Yamauchi, Yusuke
2013-08-12
Ordered mesoporous alumina-doped titania thin films with anatase crystalline structure were prepared by using triblock copolymer Pluronic P123 as structure-directing agent. Uniform Al doping was realized by using aluminum isopropoxide as a dopant source which can be hydrolyzed together with titanium tetraisopropoxide. Aluminum doping into the titania framework can prevent rapid crystallization to the anatase phase, thereby drastically increasing thermal stability. With increasing Al content, the crystallization temperatures tend to increase gradually. Even when the Al content doped into the framework was increased to 15 mol %, a well-ordered mesoporous structure was obtained, and the mesostructural ordering was still maintained after calcination at 550 °C. During the calcination process, large uniaxial shrinkage occurred along the direction perpendicular to the substrate with retention of the horizontal mesoscale periodicity, whereby vertically oriented nanopillars were formed in the film. The resulting vertical porosity was successfully exploited to fabricate a high-speed and high-quality passive-matrix electrochromic display by using a leuco dye. The vertical nanospace in the films can effectively prevent drifting of the leuco dye. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kang, Danmiao; Liu, Qinglei; Gu, Jiajun; Su, Yishi; Zhang, Wang; Zhang, Di
2015-11-24
Here we report a method to fabricate porous carbon with small mesopores around 2-4 nm by simple activation of charcoals derived from carbonization of seaweed consisting of microcrystalline domains formed by the "egg-box" model. The existence of mesopores in charcoals leads to a high specific surface area up to 3270 m(2) g(-1), with 95% surface area provided by small mesopores. This special pore structure shows high adaptability when used as electrode materials for an electric double layer capacitor, especially at high charge-discharge rate. The gravimetric capacitance values of the porous carbon are 425 and 210 F g(-1) and volumetric capacitance values are 242 and 120 F cm(-3) in 1 M H2SO4 and 1 M TEA BF4/AN, respectively. The capacitances even remain at 280 F g(-1) (160 F cm(-3)) at 100 A g(-1) and 156 F g(-1) (90 F cm(-3)) at 50 A g(-1) in the aqueous and organic electrolytes, demonstrating excellent high-rate capacitive performance.
Synthesis and characterization of mesoporous materials
NASA Astrophysics Data System (ADS)
Cheng, Wei
Mesoporous materials are highly porous solids with pore sizes in the range of 20 to 500 A and a narrow pore size distribution. Creating a mesoporous morphology in transition metal oxides is expected to increase the kinetics of electrochemical photoelectrochemical processes due to the improved accessibility of electrolyte to electrode. The objective of the dissertation research is to prepare functional mesoporous materials based on transition metal oxides and to determine the effects of the mesoporous structure on the resulting charge transfer, electrochromism, and optical properties. In this dissertation, mesoporous tungsten oxide and niobium oxide were synthesized by incorporating tri-block copolymer surfactant templates into the sol-gel synthesis procedure. Both mesoporous materials have surface areas in the range of 130 m2/g with a narrow pore size distribution centered at ˜45A. Their electrochromic properties were characterized and found to be strongly influenced by the mesoporous morphology. Both mesoporous systems exhibit better electrochemical and optical reversibilities than the analogous sol-gel materials (without using surfactant) and the kinetics of bleaching is substantially faster. Coloration efficiencies for the mesoporous tungsten oxide and niobium oxide films are in the range of 16--37 cm 2/C and 12--16 cm2/C, respectively. Dye sensitized solar cells (DSSC) were fabricated using mesoporous niobium oxide as electrodes. Due to the higher surface area, the mesoporous electrodes have greater dye adsorption and electrolyte penetration compared to sol-gel electrodes, which leads to better electron injection, faster dye regeneration and thus, better cell performance. The mesoporous DSSC exhibits photocurrents of 2.9 mA and fill factors of 0.61. Open circuit voltages of the mesoporous DSSC are in the range of 0.6--0.83V.
NASA Astrophysics Data System (ADS)
Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong
2016-01-01
The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes.
Supported mesoporous carbon ultrafiltration membrane and process for making the same
Strano, Michael; Foley, Henry C.; Agarwal, Hans
2004-04-13
A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.
Yang, Cheng; Lan, Jin-Le; Liu, Wen-Xiao; Liu, Yuan; Yu, Yun-Hua; Yang, Xiao-Ping
2017-06-07
A novel Li-ion capacitor based on an activated carbon cathode and a well-dispersed ultrafine TiO 2 nanoparticles embedded in mesoporous carbon nanofibers (TiO 2 @PCNFs) anode was reported. A series of TiO 2 @PCNFs anode materials were prepared via a scalable electrospinning method followed by carbonization and a postetching method. The size of TiO 2 nanoparticles and the mesoporous structure of the TiO 2 @PCNFs were tuned by varying amounts of tetraethyl orthosilicate (TEOS) to increase the energy density and power density of the LIC significantly. Such a subtle designed LIC displayed a high energy density of 67.4 Wh kg -1 at a power density of 75 W kg -1 . Meanwhile, even when the power density was increased to 5 kW kg -1 , the energy density can still maintain 27.5 Wh kg -1 . Moreover, the LIC displayed a high capacitance retention of 80.5% after 10000 cycles at 10 A g -1 . The outstanding electrochemical performance can be contributed to the synergistic effect of the well-dispersed ultrafine TiO 2 nanoparticles, the abundant mesoporous structure, and the conductive carbon networks.
Zhang, Zhengping; Sun, Junting; Dou, Meiling; Ji, Jing; Wang, Feng
2017-05-17
To replace high-cost platinum group metal (PGM) electrocatalysts for oxygen reduction reaction (ORR) that is the crucial cathode reaction in fuel cell technology and metal-air battery, the development of low-cost and high-efficiency non-PGM catalysts for ORR has attracted much attention during the past decades. As one of the promising candidates, N-doped carbon is highly desirable for its strong designability and outstanding catalytic activity and stability. In this work, a facile and rational strategy is demonstrated for preparation of N,P-codoped mesoporous carbon (N,P-MC) for ORR by the direct pyrolysis treatment of polypyrrole with phytic acid as P-dopant and polystyrene sphere as template. The resultant N,P-MC exhibits a mesoporous structure with the optimized ORR active sites originating from the N,P-codoping. Owing to these features, N,P-MC exhibits excellent ORR activity, remarkable electrochemical stability, and superior methanol tolerance, comparable or even better than that of commercial Pt/C catalyst. The origin of enhanced ORR performance can be attributed to both the increased active sites and the mesoporous structure, which is expected to guide the future preparation of more capable carbon-based electrocatalysts for oxygen reduction and other electrocatalytic application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Aiguo, E-mail: agkong@chem.ecnu.edu.cn; Fan, Xiaohong; Chen, Aoling
An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2′-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg{sup 2+} and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance. - Graphicalmore » abstract: Mesoporous nitrogen-doped carbon microfibers with efficient oxygen electroreduction activity were prepared by thermal conversion of new Mg-biquinoline-based coordination compound microfibers.« less
Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials
NASA Astrophysics Data System (ADS)
Parsons-Moss, Tashi
Ordered mesoporous materials are porous solids with a regular, patterned structure composed of pores between 2 and 50 nm wide. Such materials have attracted much attention in the past twenty years because the chemistry of their synthesis allows control of their unique physicochemical properties, which can be tuned for a variety of applications. Generally, ordered mesoporous materials have very high specific surface areas and pore volumes, and offer unique structures that are neither crystalline nor amorphous. The large tunable interface provided by ordered mesoporous solids may be advantageous in applications involving sequestration, separation, or detection of actinides and lanthanides in solution. However, the fundamental chemical interactions of actinides and lanthanides must be understood before applications can be implemented. This dissertation focuses primarily on the fundamental interactions of plutonium with organically modified mesoporous silica, as well as several different porous carbon materials, both untreated and chemically oxidized. A method for functionalizing mesoporous silica by self assembly and molecular grafting of functional organosilane ligands was optimized for the 2D-hexagonal ordered mesoporous silica known as SBA-15 (Santa Barbara amorphous silica). Four different organically-modified silica materials were synthesized and characterized with several techniques. To confirm that covalent bonds were formed between the silane anchor of the ligand and the silica substrate, functionalized silica samples were analyzed with 29Si nuclear magnetic resonance spectroscopy. Infrared spectroscopy was used in combination with 13C and 31P nuclear magnetic resonance spectroscopy to verify the molecular structures of the ligands after they were synthesized and grafted to the silica. The densities of the functional silane ligands on the silica surface were estimated using thermogravimetric analysis. Batch sorption experiments were conducted with solutions of Pu(IV), Pu(VI), Eu(III), Ce(III), and Zr(IV). The acetamide phosphonate functionalized silica called Ac-Phos-SBA-15 required more extensive synthesis than the other three functionalized silica materials. Development of functionalized mesoporous silica extractants for actinides is contingent on their synthesis and hydrolytic stability, and these two aspects of the Ac-Phos-SBA-15 material are discussed. This material showed the highest binding affinity for all of the target ions, and the sorption and desorption of Pu(VI) to Ac-Phos-SBA-15 was extensively investigated. Ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes, and could be suitable substrates for the development of actinide sensors based on their electrochemical properties. Three different mesoporous carbon materials were synthesized by collaborators to test their application as radionuclide sorbent materials. The first is called CMK (carbons mesostructured by Korea Advanced Institute of Science and Technology), and was synthesized using a hard silica template with 3D-bicontinuous ordered mesostructure. Highly ordered body-centered cubic mesoporous carbon was synthesized by self-assembly of a phenol resin around a soft polymer template, and this material is known as FDU-16 (Fudan University). Etching of the silica portion of mesoporous carbon-silica composites created the 2D-hexagonal mesoporous carbon called C-CS (carbon from carbon-silica nanocomposites) with a bimodal pore size distribution. The as-synthesized nanocast mesoporous carbon in this work is called UN CMK, and the same material after oxidation treatment with nitric acid is called OX CMK. A portion of both FDU-16-type and C-CS-type ordered mesoporous carbons were oxidized with acidic ammonium persulfate, which created the oxidized carbon materials called FDU-16-COOH and C-CS-COOH, respectively. The mesoporous carbons were characterized by scanning electron microscopy to view their particle sizes and morphologies. Their porosities and structures on the meso-scale were analyzed using transmission electron microscopy, nitrogen adsorption isotherms, and small-angle X-ray scattering. The identity and density of functional groups on the different carbon surfaces were investigated using infrared spectroscopy, elemental analysis, thermogravimetric analysis, and determination of the point-of-zero-charge with the powder addition technique. The porous carbon materials studied present a wide range of particle morphologies, mesostructures, surface areas, pore volumes, and surface chemistries. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Shang, Tao; Lu, Qingshan; Chao, Luomeng; Qin, Yanli; Yun, Yuehou; Yun, Guohong
2018-03-01
Low-density ordered mesoporous CoFe2O4 (Osbnd CFO) and CoLa0.12Fe1.88O4 (Osbnd CLFO) are prepared by nanocasting method using mesoporous silica SBA-15 as a hard-template. The crystal structure, surface chemical state, magnetic properties and electromagnetic parameters are characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurement, X-ray photoelectron spectroscopy, physical property measurement system and vector network analyzer. The results show that all the samples formed a single phase with cubic spinel structure. Meanwhile Osbnd CFO and Osbnd CLFO possess a highly ordered mesostructure. Comparing with particle CoFe2O4 (P-CFO), Osbnd CFO with high specific surface area exhibits lower magnetic saturation (Ms), higher imaginary part of complex permittivity (ε‧‧) and imaginary part of the complex permeability (μ‧‧). The minimum reflection loss (RL) of Osbnd CFO reaches -27.36 dB with a matching thickness of 3.0 mm. The enhancement of the microwave absorbing performances of Osbnd CFO can be mainly attributed to the good impedance matching, high electromagnetic wave attenuation and multiple reflections of electromagnetic wave originated from the ordered mesoporous structure. The Ms of Osbnd CLFO decreases after La3+ doping, while the specific surface area, coercivity value, ε‧‧ and μ‧‧ of Osbnd CLFO increase. The minimum RL of Osbnd CLFO reaches -46.47 dB with a thickness of 3.0 mm, and the effective absorption frequency bandwidth reaches 4.9 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Shenjie; Sun, Jihong, E-mail: jhsun@bjut.edu.cn; Li, Yuzhen
2011-08-15
Highlights: {yields} Functionalized bimodal mesoporous silica with MTMSPIm{sup +}Cl{sup -}. {yields} Mesoporous catalyst immobilized with OsO{sub 4}-(QN){sub 2}PHAL. {yields} Catalysts for asymmetric dihydroxylation reaction with high yield and enatioselectivity. {yields} Recyclable catalysts. -- Abstract: A novel synthesis of the functionalized bimodal mesoporous silica with ionic liquid (FBMMs) was performed. After grafting 1-methyl-3-(trimethoxysilyl)propylimidazolium chloride onto the surface of bimodal mesoporous silicas, 1,4-bis(9-O-quininyl)phthalazine ((QN){sub 2}-PHAL) and K{sub 2}Os(OH){sub 4}.2H{sub 2}O were immobilized onto the modified FBMMs by adsorption or ionic exchange methods, and then, the asymmetric dihydroxylation reaction was carried out by using solid catalysts. Techniques such as X-ray diffraction, Fourier Transformmore » Infrared spectroscopy, N{sub 2} adsorption and desorption were employed to characterize their structure and properties. The results showed that the mesoporous ordering degree of bimodal mesoporous silica decreased after functionalization and immobilization of OsO{sub 4}-(QN){sub 2}PHAL. Being very effective in asymmetric dihydroxylation with high yield and enantioselectivity, the prepared heterogeneous solid catalyst could be recycled for five times with little loss of enantioselectivity, with comparison of those results obtained in homophase system. Moreover, the effect of Osmium catalyst on asymmetric dihydroxylation was investigated.« less
Preparation of Mesoporous Ceramics from Polymer Nanotubes
NASA Astrophysics Data System (ADS)
Chen, Dian; Park, Soojin; Chen, Jiun-Tai; Redston, Emily; Russell, Thomas
2009-03-01
Poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) nanotubes were prepared by placing polymer solution into the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. The PS-b-P4VP nanotubes within the AAO membranes were exposed to tetrahydrofuran vapor to produce uniform spherical micelles along the tube. The tubes were removed from the membranes, then suspended in ethylene glycol, a preferential solvent for P4VP. At 95^ oC, near the glass transition temperature (Tg) of PS, nanotubes with uniform nanopores were obtained by a reconstruction of the nanotubes. As the temperature was increased, mesoporous polymer structures were obtained. Tetraethyl orthosilicate or titanium tetraethoxide, ceramic precursors, were introduced into the 4VP microdomains. After exposure to an oxygen plasma or high temperature, the copolymer was removed and the precursor converted to a mesoporous ceramic. This process offers a simple route for the fabrication of tunable mesoporous ceramic or metallic structures by changing molecular weight of copolymers.
Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng
2013-04-01
We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae
2015-01-01
Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800
Zuin, Vânia G; Budarin, Vitaliy L; De Bruyn, Mario; Shuttleworth, Peter S; Hunt, Andrew J; Pluciennik, Camille; Borisova, Aleksandra; Dodson, Jennifer; Parker, Helen L; Clark, James H
2017-09-21
The recovery and separation of high value and low volume extractives are a considerable challenge for the commercial realisation of zero-waste biorefineries. Using solid-phase extractions (SPE) based on sustainable sorbents is a promising method to enable efficient, green and selective separation of these complex extractive mixtures. Mesoporous carbonaceous solids derived from renewable polysaccharides are ideal stationary phases due to their tuneable functionality and surface structure. In this study, the structure-separation relationships of thirteen polysaccharide-derived mesoporous materials and two modified types as sorbents for ten naturally-occurring bioactive phenolic compounds were investigated. For the first time, a comprehensive statistical analysis of the key molecular and surface properties influencing the recovery of these species was carried out. The obtained results show the possibility of developing tailored materials for purification, separation or extraction, depending on the molecular composition of the analyte. The wide versatility and application span of these polysaccharide-derived mesoporous materials offer new sustainable and inexpensive alternatives to traditional silica-based stationary phases.
Mesoporous Aluminosilicates as a Host and Reactor for Preparation of Ordered Metal Nanowires
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Napolskii, K. S.; Kolesnik, I. V.; Kolenko, Yu. V.; Lukashin, A. V.; Gornert, P.; Tretyakov, Yu. D.
The creation of functional nanomaterials with the controlled properties is emerging as a new area of great technological and scientific interest, in particular, it is a key technology for developing novel high-density data storage devices. Today, no other technology can compete with magnetic carriers in information storage density and access rate. However, usually very small (10-1000 nm3) magnetic nanoparticles shows para- or superparamagnetic properties, with very low blocking temperatures and no coercitivity at normal conditions. One possible solution of this problem is preparation of highly anisotropic nanostructures. From the other hand, the use of purely nanocrystalline systems is limited because of their low stability and tendency to form aggregates. These problems could be solved by encapsulation of nanoparticles to a chemically inert matrix. One of the promising matrices for preparation of highly anisotropic magnetic nanoparticles is mesoporous silica or mesoporous aluminosilicates. Mesoporous silica is an amorphous SiO2 with a highly ordered uniform pore structure (the pore diameter can be controllably varied from 2 to 50 nm). This pore system is a perfect reactor for synthesis of nanocomposites due to the limitation of reaction zone by the pore walls. One could expect that size and shape of nanoparticles incorporated into mesoporous silica to be consistent with the dimensions of the porous framework.
Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere
NASA Astrophysics Data System (ADS)
Chen, Changwei; Yu, Yanke; He, Chi; Wang, Li; Huang, Huang; Albilali, Reem; Cheng, Jie; Hao, Zhengping
2018-05-01
Four kinds of carbon-based adsorbents (micro-mesoporous hybrid carbon nanosphere and N-doped hollow carbon sphere with single-, double- or ruga-shell morphology) with different structural and textural properties were prepared and systematically studied in CO2 capture. All synthesized samples possess high specific surface area (828-910 m2 g-1), large pore volume (0.71-1.81 cm3 g-1), and different micropore contents varied from 2.1% to 46.4%. Amongst, the ordered micro-mesoporous carbon nanosphere (OM-CNS) exhibits the best adsorption performance with CO2 uptake as high as 3.01 mmol g-1 under conditions of 298 K and 1.0 bar, better than most of the reported CO2 adsorbents. The excellent CO2 adsorption capacity of OM-CNS can be reasonably attributed to the synergistic effect of ordered mesopore channels and abundant structural micropores which are beneficial for the diffusion and trapping of CO2 adsorbate. Moreover, the OM-CNS shows excellent CO2 trapping selectivity and superior stability and recyclability, which endow the OM-CNS as a promising and environmental-friendly adsorbent for CO2 capture and separation under practical conditions.
Wang, Haitao; Wang, Wei; Asif, Muhammad; Yu, Yang; Wang, Zhengyun; Wang, Junlei; Liu, Hongfang; Xiao, Junwu
2017-10-19
The design and synthesis of a promising porous carbon-based electrocatalyst with an ordered and uninterrupted porous structure for oxygen reduction reaction (ORR) is still a significant challenge. Herein, an efficient catalyst based on cobalt-embedded nitrogen-doped ordered mesoporous carbon nanosheets (Co/N-OMCNS) is successfully prepared through a two-step procedure (cobalt ion-coordinated self-assembly and carbonization process) using 3-aminophenol as a nitrogen source, cobalt acetate as a cobalt source and Pluronic F127 as a mesoporous template. This work indicates that the formation of a two dimensional nanosheet structure is directly related to the extent of the cobalt ion coordination interaction. Moreover, the critical roles of pyrolysis temperature in nitrogen doping and ORR catalytic activity are also investigated. Benefiting from the high surface area and graphitic degree, high contents of graphitic N and pyridinic N, ordered interconnected mesoporous carbon framework, as well as synergetic interaction between the cobalt nanoparticles and protective nitrogen doped graphitic carbon layer, the resultant optimal catalyst Co/N-OMCNS-800 (pyrolyzed at 800 °C) exhibits comparable ORR catalytic activity to Pt/C, superior tolerance to methanol crossover and stability.
Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin
2013-06-28
Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.
NASA Astrophysics Data System (ADS)
Min, Sa Hoon; Bae, Joonwon; Jang, Jyongsik; Lee, Kyung Jin
2013-06-01
Mesoporous nanofibers (MSNFs) can be fabricated in the pores of anodic aluminum oxide (AAO) membrane using diverse methods. Among them vapor phase synthesis (VPS) provides several advantages over sol-gel or evaporation-induced self-assembly (EISA) based methods. One powerful advantage is that we can employ multiple surfactants as structural directing agents (SDAs) simultaneously. By adopting diverse pairs of SDAs, we can control the mesopore structures, i.e. pore size, surface area, and even the morphology of mesostructures. Here, we used F127 as a main SDA, which is relatively robust (thus, difficult to change the mesopore structures), and added a series of cationic co-surfactants to observe the systematical changes in their mesostructure with respect to the chain length of the co-surfactant.
Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors.
Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen
2013-07-21
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xinbo; Wang, Danjun; College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000
2014-09-15
Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalystmore » is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonda, Surendar; Kumar, Santosh; Shanker, Vishnu, E-mail: vishnu@nitw.ac.in
Highlights: • The Au/mp-g-C{sub 3}N{sub 4} was synthesized via a template-free and green in situ strategy. • Au/mp-g-C{sub 3}N{sub 4} nanosheets possesses high surface area and porous structure. • Au/mp-g-C{sub 3}N{sub 4} showed dramatic photocurrent response and photocatalytic activity. • The high performance is due to SPR of Au and mesoporous structure. • Au/mp-g-C{sub 3}N{sub 4} nanosheets exhibited high photostability. - Abstract: In recent years, surface plasmon-induced photocatalytic materials with tunable mesoporous framework have attracted considerable attention in energy conversion and environmental remediation. Herein we report a novel Au nanoparticles decorated mesoporous graphitic carbon nitride (Au/mp-g-C{sub 3}N{sub 4}) nanosheets viamore » a template-free and green in situ photo-reduction method. The synthesized Au/mp-g-C{sub 3}N{sub 4} nanosheets exhibit a strong absorption edge in visible and near-IR region owing to the surface plasmon resonance effect of Au nanoparticles. More attractively, Au/mp-g-C{sub 3}N{sub 4} exhibited much higher photocatalytic activity than that of pure mesoporous and bulk g-C{sub 3}N{sub 4} for the degradation of rhodamine B under sunlight irradiation. Furthermore, the photocurrent and photoluminescence studies demonstrated that the deposition of Au nanoparticles on the surface of mesoporous g-C{sub 3}N{sub 4} could effectively inhibit the recombination of photogenerated charge carriers leading to the enhanced photocatalytic activity. More importantly, the synthesized Au/mp-g-C{sub 3}N{sub 4} nanosheets possess high reusability. Hence, Au/mp-g-C{sub 3}N{sub 4} could be promising photoactive material for energy and environmental applications.« less
Zhang, Yu; Yue, Qin; Yu, Lei; Yang, Xuanyu; Hou, Xiu-Feng; Zhao, Dongyuan; Cheng, Xiaowei; Deng, Yonghui
2018-05-11
Core-shell magnetic porous microspheres have wide applications in drug delivery, catalysis and bioseparation, and so on. However, it is great challenge to controllably synthesize magnetic porous microspheres with uniform well-aligned accessible large mesopores (>10 nm) which are highly desired for applications involving immobilization or adsorption of large guest molecules or nanoobjects. In this study, a facile and general amphiphilic block copolymer directed interfacial coassembly strategy is developed to synthesize core-shell magnetic mesoporous microspheres with a monolayer of mesoporous shell of different composition, such as core-shell magnetic mesoporous aluminosilicate (CS-MMAS), silica (CS-MMS), and zirconia-silica (CS-MMZS), open and large pores by employing polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP) as an interface structure directing agent and aluminum acetylacetonate (Al(acac) 3 ), zirconium acetylacetonate, and tetraethyl orthosilicate as shell precursors. The obtained CS-MMAS microspheres possess magnetic core, perpendicular mesopores (20-32 nm) in the shell, high surface area (244.7 m 2 g -1 ), and abundant acid sites (0.44 mmol g -1 ), and as a result, they exhibit superior performance in removal of organophosphorus pesticides (fenthion) with a fast adsorption dynamics and high adsorption capacity. CS-MMAS microspheres loaded with Au nanoparticles (≈3.5 nm) behavior as a highly active heterogeneous nanocatalyst for N-alkylation reaction for producing N-phenylbenzylamine with a selectivity and yields of over 90% and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Bao; Wang, Zhouhua; Quan, Guilan; Peng, Xinsheng; Pan, Xin; Wang, Rongchang; Xu, Yuehong; Li, Ge; Wu, Chuanbin
2012-01-01
Background A liquisolid technique has been reported to be a new approach to improve the release of poorly water-soluble drugs for oral administration. However, an apparent limitation of this technique is the formulation of a high dose because a large amount of liquid vehicle is needed, which finally results in a low-dose liquisolid formulation. Silica as an absorbent has been used extensively in liquisolid formulations. Although nanoparticle silica can be prepared and used to improve liquid adsorption capacity, loading a high dose of drug into a liquisolid is still a challenge. With the aim of improving adsorption capacity and accordingly achieving high drug loading, ordered mesoporous silica with a high surface area and narrow pore size distribution was synthesized and used in a liquisolid formulation. Methods Ordered mesoporous silica was synthesized and its particle size and morphology were tailored by controlling the concentration of cetyltrimethyl ammonium bromide. The ordered mesoporous silica synthesized was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, small-angle x-ray diffraction, wide angle x-ray diffraction, and nitrogen adsorption-desorption measurements. The liquid adsorption capacity of ordered mesoporous silica was subsequently compared with that of conventional silica materials using PEG400 as the model liquid. Carbamazepine was chosen as a model drug to prepare the liquisolid formulation, with ordered mesoporous silica as the adsorbent material. The preparation was evaluated and compared with commercially available fast-release carbamazepine tablets in vitro and in vivo. Results Characterization of the ordered mesoporous silica synthesized in this study indicated a huge Brunauer–Emmett–Teller surface area (1030 m2/g), an ordered mesoporous structure with a pore size of 2.8 nm, and high adsorption capacity for liquid compared with conventional silica. Compared with fast-release commercial carbamazepine tablets, drug release from the liquisolid capsules was greatly improved, and the bioavailability of the liquisolid preparation was enhanced by 182.7%. Conclusion Ordered mesoporous silica is a potentially attractive adsorbent which may lead to a new approach for development of liquisolid products. PMID:22275835
NASA Astrophysics Data System (ADS)
Dombrovskis, Johanna K.; Palmqvist, Anders E. C.
2017-07-01
Development of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells with high activity and durability and with optimal water management properties is of outmost technological importance and highly challenging. Here we study the possibilities offered through judicious selection of small molecular precursors used for the formation of ordered mesoporous carbon-based non-precious metal ORR catalysts. By combining two complementary precursors, we present a one-pot synthesis that leads to a composite material consisting of transition metal ion-chelating ordered mesoporous carbon and multi-walled carbon nanotubes (TM-OMC/CNT). The resulting composite materials show high specific surface areas and a carbon structure that exhibits graphitic signatures. The synthesis procedure allows for tuning of the carbon structure, the surface area, the pore volume and the ratio of the two components of the composite. The TM-OMC/CNT composites were processed into membrane electrode assemblies and evaluated in single cell fuel cell measurements where they showed a combination of good ORR activity and very high durability.
Highly improved sensibility and selectivity ethanol sensor of mesoporous Fe-doped NiO nanowires
NASA Astrophysics Data System (ADS)
Li, X. Q.; Wei, J. Q.; Xu, J. C.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Hong, B.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, Xinqing
2017-12-01
In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.
Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei
2011-08-01
In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.
Mesoporous silica as the enzyme carrier for organophosphate detection and/or detoxification
NASA Astrophysics Data System (ADS)
Frančič, Nina; Nedeljko, Polonca; Lobnik, Aleksandra
2013-05-01
In the past decade, interest in mesoporous materials has developed dramatically since they can be useful in a number of applications, including adsorption and sensor technology. Mesoporous materials are a class of nanostrustures with well-defined mesoscale (2-50 nm) pores, surface areas up to 1000 m2/g and large pore volumes (~1.0 mL/g). In general, ordered mesoporous materials are formed from solution by co-assembly and cross-linking of network-forming inorganic species (typically oxides) in the presence of structure-directing agents (SDAs) [1]. The SDAs are typically surfactants or blockcopolymers that self-organize into mesoscale (2-50 nm) structures, according to the solution composition and processing conditions used [2]. Owing to their structural properties and regular morphology, mesoporous silicas (MPS) are promising materials for applications in the immobilization processes or as supports for bulky bio-molecules, such as enzymes. We report on the synthesis of mesoporous silica (MPS) particles and their potential use for immobilization of the enzyme hexahistidine tagged OPH (His6-OPH). Particle characterization points out a strong influence of the synthesis parameters (addition of ethyl acetate). BET results show a high specific surface area (300-450 m2/g) and an appropriate pore size distribution ranging from 10 to 40 nm. Immobilization of the enzyme His6-OPH, with the size of 72 kDa and isoelectric point (pI) of 8.5, was carried out in MPS particles of spherical morphology. Preliminary results indicate significant potential in use of encapsulated enzyme His6-OPH for the purpose of bio-sensing or in the detoxification processes of organophosphates.
NASA Astrophysics Data System (ADS)
Kim, Myeongjin; Oh, Ilgeun; Kim, Jooheon
2015-05-01
Three-dimensional hierarchical micro and mesoporous silicon carbide spheres (MMPSiC) are prepared by the template method and carbonization reaction via the aerosol spray drying method. The mesopores are generated by the self-assembly of the structure-directing agents, whereas the micropores are derived from the partial evaporation of Si atoms during carbonization. To investigate the effect of mesopore size on electrochemical performance, three types of MMPSiC with different mesopore size were fabricated by using three different structure directing agents (cetyltriethylammonium bromide (CTAB), Polyethylene glycol hexadecyl ether (Brij56), and Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123)). The MMPSiC electrode prepared with Brij56 exhibits the highest charge storage capacity with a specific capacitance of 253.7 F g-1 at a scan rate of 5 mV s-1 and 87.9% rate performance from 5 to 500 mV s-1 in 1 M Na2SO4 aqueous electrolyte. The outstanding electrochemical performance might be because of the ideal mesopore size, which effectively reduces the resistant pathways for ion diffusion in the pores and provides a large accessible surface area for ion transport/charge storage. These encouraging results demonstrate that the MMPSiC prepared with Brij56 is a promising candidate for high performance electrode materials for supercapacitors.
Sun, Yubing; Chen, Changlun; Tan, Xiaoli; Shao, Dadong; Li, Jiaxing; Zhao, Guixia; Yang, Shubin; Wang, Qi; Wang, Xiangke
2012-11-21
Mesoporous Al(2)O(3) was intercalated into an expanded graphite (EG) interlayer to prepare mesoporous Al(2)O(3)/EG composites. The basal spacing of mesoporous Al(2)O(3)/EG composites was enlarged as compared to raw graphite from the X-ray diffraction analysis. The massive surface functional groups and wedge-shaped pores were observed in terms of potentiometric acid-base titration analysis and scanning electron microscope, respectively. The pH-dependent adsorption of Eu(III) on mesoporous Al(2)O(3)/EG composites was evidently independent of ionic strength. The maximum adsorption capacity of Eu(III) on mesoporous Al(2)O(3)/EG composites at pH 6.0 and T = 293 K was calculated to be 5.14 mg g(-1). Desorption kinetics and cyclic operation results showed that mesoporous Al(2)O(3)/EG composites presented high hydrothermal stability in aqueous solution. The thermodynamic parameters suggested that Eu(III) adsorption on mesoporous Al(2)O(3)/EG composites is an endothermic and a spontaneous process. The decrease of Eu-O bond distance with the increasing pH demonstrated that the adsorption mechanism between Eu(III) and mesoporous Al(2)O(3)/EG composites would shift from outer-sphere surface complexation to inner-sphere surface complexation in terms of extended X-ray absorption fine structure spectroscopy analysis.
Cubic mesoporous Ag@CN: a high performance humidity sensor.
Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan
2016-12-01
The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.
Chen, Qin; Pu, Wenhong; Hou, Huijie; Hu, Jingping; Liu, Bingchuan; Li, Jianfeng; Cheng, Kai; Huang, Long; Yuan, Xiqing; Yang, Changzhu; Yang, Jiakuan
2018-02-01
Microbial fuel cells (MFCs) are promising biotechnologies tool to harvest electricity by decomposing organic matter in waste water, and the anode material is a critical factor in determining the performance of MFCs. In this study, chestnut shell is proposed as a novel anode material with mesoporous and microporous structure prepared via a simple carbonization procedure followed by an activation process. The chemical activation process successfully modified the macroporous structure, created more mesoporous and microporous structure and decreased the O-content and pyridinic/pyrrolic N groups on the biomass anode, which were beneficial for improving charge transfer efficiency between the anode surface and microbial biofilm. The MFC with activated biomass anode achieved a maximum power density (23.6 W m -3 ) 2.3 times higher than carbon cloth anode (10.4 W m -3 ). This study introduces a promising and feasible strategy for the fabrication of high performance anodes for MFCs derived from cost-effective, sustainable natural materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-performance TiO(2) from Baker's yeast.
He, Wen; Cui, Jingjie; Yue, Yuanzheng; Zhang, Xudong; Xia, Xi; Liu, Hong; Lui, Suwen
2011-02-01
Based on the biomineralization assembly concept, a biomimetic approach has been developed to synthesize high-performance mesoporous TiO(2). The key step of this approach is to apply Baker's yeast cells as biotemplates for deriving the hierarchically ordered mesoporous anatase structure. The mechanism of formation of the yeast-TiO(2) is revealed by characterizing its morphology, microstructure, and chemical composition. The yeast-TiO(2) exhibits outstanding photocatalytic performance. Under visible-light irradiation, the removal efficiency of chemical oxygen demand (COD) and color of the paper industry wastewater has reached 80.3% and nearly 100%, respectively. The approach may open new vistas for fabricating advanced mesoporous materials under ambient condition. Copyright © 2010 Elsevier Inc. All rights reserved.
Mesoporous activated carbon from corn stalk core for lithium ion batteries
NASA Astrophysics Data System (ADS)
Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce
2018-04-01
A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.
Yang, Haifeng; Shi, Qihui; Liu, Xiaoying; Xie, Songhai; Jiang, Decheng; Zhang, Fuqiang; Yu, Chengzhong; Tu, Bo; Zhao, Dongyuan
2002-12-07
Large-diameter-sized mesoporous carbon monoliths with bicontinuous cubic structure of Ia3d symmetry have been synthesized by using mesoporous silica monoliths as hard templates; such carbon monoliths show potential application of advanced electrodes and electrochemical double layer capacitors.
Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.
Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan
2012-03-07
Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.
Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution.
Tang, Jianting; Liu, Jian; Yang, Jie; Feng, Zhaochi; Fan, Fengtao; Yang, Qihua
2009-07-15
Mesoporous titanosilicates with high titanium content were synthesized under mild acidic conditions (pH=4.4, HAc-NaAc buffer solution) by co-condensation of acetylacetone-modified titanium isopropoxide (Ti(OBu(n))(3) (acac)) and mixture of sodium silicate with tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) or tetrakis(2-hydroxyethyl)orthosilicate (EGMS), using block copolymer Pluronic P123 as template. The combined results of XRD, N(2) sorption and TEM show that the highly regular structure of the mesoporous titanosilicates can still be obtained when Ti/Si molar ratio in the final product is as high as 0.059. The results of UV-vis diffuse reflectance spectra and UV resonance Raman spectra show that the framework titanium species are predominant in the mesoporous titanosilicates when Ti/Si molar ratio in the final product is less than 0.042. The mixture of sodium silicate and EGMS was proved to be the best silicon source for the synthesis of titanosilicates with ordered mesostructure and high titanium content. The efficiency of this synthetic method may be attributed to the mild acidic medium as well as the modified hydrolysis-condensation rate and hydrophility of the precursors.
Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry
Zhan, Wangcheng; Yang, Shize; Zhang, Pengfei; ...
2017-08-15
Ceria-based materials possessing mesoporous structures afford higher activity than the corresponding bulk materials in CO oxidation and other catalytic applications, because of the wide pore channel and high surface area. The development of a direct, template-free, and scalable technology for directing porosity inside ceriabased materials is highly welcome. Here in this paper, a family of mesoporous transition-metaldoped ceria catalysts with specific surface areas up to 122 m 2 g -1 is constructed by mechanochemical grinding. No templates, additives, or solvents are needed in this process, while the mechanochemistry-mediated restructuring and the decomposing of the organic group led to plentiful mesopores.more » Interestingly, the copper species are evenly dispersed in the ceria matrix at the atomic scale, as observed in high resolution scanning transmission electron microscopy in high angle annular dark field. The copper-doped ceria materials show good activity in the CO oxidation.« less
NASA Astrophysics Data System (ADS)
El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.
2018-01-01
Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.
Pair distribution function (PDF) analysis of mesoporous α-Fe2O3 and Cr2O3.
Hill, Adrian H; Allieta, Mattia
2013-06-14
We have measured atomic pair distribution functions of novel mesoporous metal oxides, α-Fe2O3 and Cr2O3. These have an ordered pore mosaic as well as crystalline structure within the pore walls, making them an interesting class of materials to characterise. Comparison of "bulk" and mesoporous data sets has allowed an estimate of long range structural coherence to be derived; ≈125 Å and ≈290 Å for α-Fe2O3 and Cr2O3 respectively. Further "box-car" analysis has shown that above ≈40 Å both mesoporous samples deviate greatly from their bulk counterparts. This is attributed to the pores of the mesoporous structure creating voids in the pair-correlations, disrupting long range order.
NASA Astrophysics Data System (ADS)
Cui, Hangjun; Li, Yueming; Liu, Shimin
2018-03-01
In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…
Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery.
Zhang, Chengzhao; Dai, Chong; Zhang, Huaqin; Peng, Shitao; Wei, Xin; Hu, Yandi
2017-09-15
Silica aerogel, with mesoporous structure and high hydrophobicity, is a promising adsorbent for oil spill clean-up. To make it economic and environmental-friendly, hydrocarbon desorption and silica aerogel regeneration were investigated. After hydrocarbon desorption at 80°C, silica aerogel maintained its hydrophobicity. After toluene, petrol, and diesel desorption, shrinkage of mesopores (from 19.9 to 16.8, 13.5, and 13.4nm) of silica aerogels occurred, causing decreased adsorption capacities (from 12.4, 11.2, and 13.6 to 12.0, 6.5, and 2.3g/g). Low surface tension of petrol caused high stress on mesopores during its desorption, resulting in significant pore shrinkage. For diesel, its incomplete desorption and oxidation further hindered the regeneration. Therefore, diesel desorption was also conducted at 200°C. Severe diesel oxidation occurred under aerobic condition and destroyed the mesopores. Under anaerobic condition, no diesel oxidation occurred and the decreases in pore size (to 13.2nm) and adsorption efficiency (to 10.0g/g) of regenerated silica aerogels were much less, compared with under aerobic condition. This study provided new insights on silica aerogel regeneration for oil spill clean-up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui
2016-06-22
A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.
Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure
Sachtler, W.M.H.; Huang, Y.Y.
1998-07-28
Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.
Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure
Sachtler, Wolfgang M. H.; Huang, Yin-Yan
1998-01-01
Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.
Ultralight mesoporous magnetic frameworks by interfacial assembly of Prussian blue nanocubes.
Kong, Biao; Tang, Jing; Wu, Zhangxiong; Wei, Jing; Wu, Hao; Wang, Yongcheng; Zheng, Gengfeng; Zhao, Dongyuan
2014-03-10
A facile approach for the synthesis of ultralight iron oxide hierarchical structures with tailorable macro- and mesoporosity is reported. This method entails the growth of porous Prussian blue (PB) single crystals on the surface of a polyurethane sponge, followed by in situ thermal conversion of PB crystals into three-dimensional mesoporous iron oxide (3DMI) architectures. Compared to previously reported ultralight materials, the 3DMI architectures possess hierarchical macro- and mesoporous frameworks with multiple advantageous features, including high surface area (ca. 117 m(2) g(-1)) and ultralow density (6-11 mg cm(-3)). Furthermore, they can be synthesized on a kilogram scale. More importantly, these 3DMI structures exhibit superparamagnetism and tunable hydrophilicity/hydrophobicity, thus allowing for efficient multiphase interfacial adsorption and fast multiphase catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mesoporous Transition Metal Oxides for Supercapacitors.
Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei
2015-10-14
Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.
Mesoporous Transition Metal Oxides for Supercapacitors
Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei
2015-01-01
Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T
2012-01-01
Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contentsmore » were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.« less
ERIC Educational Resources Information Center
Hu, Jun; Yin, Jinxiang; Lin, Tianshu; Li, Guangtao
2012-01-01
A new solvent-free microwave experiment to synthesize the ionic liquid 1-hexadecyl-3-methylimidazolium bromide (HDMIm-Br) in high yield is presented. The structure is confirmed by IR and [superscript 1]H NMR spectra. HDMIm-Br is then used to prepare an organic-inorganic mesoporous material MCM-41. The microscopic arrangements of mesoporous…
Grüning, Wolfram R; Rossini, Aaron J; Zagdoun, Alexandre; Gajan, David; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe
2013-08-28
We present the molecular level characterization of a phenylpyridine-based periodic mesoporous organosilicate and its post-functionalized organometallic derivatives through the fast acquisition of high quality natural isotopic abundance 1D (13)C, (15)N, and (29)Si and 2D (1)H-(13)C and (1)H-(29)Si solid-state NMR spectra enhanced with dynamic nuclear polarization.
Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian
2016-01-01
A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li+ diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe3+ to Fe2+ and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li+ intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method. PMID:27181195
Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian
2016-05-16
A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li(+) diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe(3+) to Fe(2+) and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li(+) intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method.
Dai, Peng; Yan, Tao-Tao; Yu, Xin-Xin; Bai, Zhi-Man; Wu, Ming-Zai
2016-12-01
Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.
NASA Astrophysics Data System (ADS)
Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-04-01
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan
2014-02-01
A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.
NASA Astrophysics Data System (ADS)
Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin
2014-11-01
Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04729j
NASA Astrophysics Data System (ADS)
Han, Lu; Gao, Chuanbo; Wu, Xiaowei; Chen, Qianru; Shu, Peng; Ding, Zhiguang; Che, Shunai
2011-04-01
Silica hollow spheres with different shell porosity were simply synthesized with micelle and emulsion dual templating route. Various anionic surfactants, such as palmitic acid (C 16AA), N-acyl- L-phenylalanine (C 18Phe), N-palmitoyl- L-alanine (C 16AlaA) and oleic acid (OA) have been used as templates, and 3-aminopropyl-triethoxysilane (APES) and tetraethyl orthosilicate (TEOS) have been used as co-structure directing agent (CSDA) and silica source, respectively. The circle lamellar layer structure and mesopores vertical to the silica hollow spheres surface are believed to originate from the initial formation of amphiphilic carboxylic acid oil drop, which afterwards self-assemble to form the shell of hollow spheres and its mesostructure upon addition of CSDA and silica source. The mesoporous silica hollow spheres with high porosity could be achieved by adding a moderate amount of ethanol in the OA synthesis system, depending on the co-surfactant effect of ethanol that changes the curvature of micelles. The particle diameter and the hollow structure have been controlled by choosing different templates and by manipulating synthesis gel composition. The average particle diameter of the mesoporous silica hollow spheres were controlled in the range of 80-220 nm with constant shell thickness of ˜20 nm and constant mesopore size of ˜4 nm. Besides, the formation of the silica hollow spheres has been investigated in detail with reaction time. These mesoporous silica hollow spheres would have potential applications on catalysis, bimolecular encapsulation, adsorption, drug release, etc.
NASA Astrophysics Data System (ADS)
Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying
2013-12-01
Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable. Electronic supplementary information (ESI) available: Preparation process scheme; X-ray mapping images and EDX analysis for the surface of PMC/S-40; X-ray mapping images for the cross-section of PMC/S-40; thermogravimetric analysis (TGA) of PMC/S samples; T-plot results for PMC sample; and electrochemical measurements of lithium-sulfur batteries using PMC/S as cathode materials. See DOI: 10.1039/c3nr04532c
Li, Gao-Ren; Feng, Zhan-Ping; Ou, Yan-Nan; Wu, Dingcai; Fu, Ruowen; Tong, Ye-Xiang
2010-02-16
MnO(2) as one of the most promising candidates for electrochemical supercapacitors has attracted much attention because of its superior electrochemical performance, low cost, and environmentally benign nature. In this Letter, we explored a novel route to prepare mesoporous MnO(2)/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. The products were characterized by energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The MnO(2) deposits are found to have high purity and have a mesoporous structure that will optimize the electronic and ionic conductivity to minimize the total resistance of the system and thereby maximize the performance characteristics of this material for use in supercapacitor electrodes. The results of nitrogen adsorption-desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO(2)/carbon aerogel composites had a large specific surface area (120 m(2)/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials.
Xing, Zipeng; Zhou, Wei; Du, Fan; Qu, Yang; Tian, Guohui; Pan, Kai; Tian, Chungui; Fu, Honggang
2014-01-14
A macro/mesoporous anatase TiO2 ceramic floating photocatalyst has been successfully synthesized using highly thermally stable mesoporous TiO2 powder as a precursor, followed by a camphene-based freeze-casting process and high-temperature calcinations. The ceramics are characterized in detail by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption isotherms. The results indicate that the TiO2 ceramics present hierarchical macro/mesoporous structures, which maintain high porosity and high compressive strength at the optimal sintering temperature of 800 °C. The ordered mesoporous TiO2 network still possesses high thermal stability and inhibits the anatase-to-rutile phase transformation during calcinations. The obtained ceramics exhibit good adsorptive and photocatalytic activity for the degradation of octane and rhodamine B, and the total organic carbon removal ratio is up to 98.8% and 98.6% after photodegradation for 3 h, respectively. The roles of active species in the photocatalytic process are compared using different types of active species scavengers, and the degradation mechanism is also proposed. Furthermore, the ceramics are recyclable, and no clear changes are observed after ten cycles. In addition, the ceramics are also active in the photodegradation of phenol, thiobencarb, and atrazine. Therefore, these novel floating photocatalysts will have wide applications, including the removal of floating organic pollutants from the wastewater surfaces or the removal of soluble organic pollutants from wastewater.
Synthesis of attrition-resistant heterogeneous catalysts using templated mesoporous silica
Pham, Hien N.; Datye, Abhaya K.
2003-04-15
The present invention relates to catalysts in mesoporous structures. In a preferred embodiment, the invention comprises a method for encapsulating a dispersed insoluble compound in a mesoporous structure comprising combining a soluble oxide precursor, a solvent, and a surfactant to form a mixture; dispersing an insoluble compound in the mixture; spray-drying the mixture to produce dry powder; and calcining the powder to yield a porous structure comprising the dispersed insoluble compound.
NASA Astrophysics Data System (ADS)
Lv, Zhuo; Luo, Ruiping; Xi, Lijuan; Chen, Yang; Wang, Hongsu
2017-11-01
This work describes the synthesis of three-dimensional hollow hierarchical mesoporous bioactive glass (HMBG) microspheres based on Herba leonuri pollen grains via a hydrothermal method. The HMBG microspheres perfectly copied the hierarchical porous structure and inner hollow structure constituting the double-layer surface of the natural Herba leonuri pollen grains. This structural mimicry of the pollen grains resulted in a higher degree of adsorption of acetylcholinesterase (AChE) on HMBG microspheres in comparison with mesoporous bioactive glass. Subsequently, an amperometric biosensor for the detection of Malathion was fabricated by immobilizing AChE onto an HMBG microspheres-modified carbon paste electrode. The biosensor response exhibited two good linear ranges during an incubation time of 10 min in the malathion concentration ranges of 0.02-50 ppb and 50-600 ppb, with a detection limit of 0.0135 ppb ( S/ N = 3). Overall, the prepared enzymatic biosensor showed high sensitivity in the rapid detection of Malathion and could be applied to detect pesticide residues in vegetable matter.
Shah, Asma Tufail; Li, Baoshan; Abdalla, Zaki Eldin Ali
2009-08-15
A novel Ti-containing SBA-16-type mesoporous material (with various Ti loadings of 5, 10, and 15 wt%) was synthesized by an evaporation-induced self-assembly method using F127 copolymer as template. The materials were characterized by XRD, FTIR, TG-DTA, N(2) adsorption, SEM, HRTEM, and XPS. The characterization results show that the material possesses high thermal stability, thick pore walls (10.43-10.68 nm), and high surface area (642.26-691.5 m(2)/g) with a mesoporous worm-like structure, and titanium was successfully incorporated into the silica matrix with a tetrahedral environment. The material showed high activity in the oxidative desulfurization of DBT and its activity was not reduced even after three times recycling; further reuse resulted in a gradual decrease in its activity.
NASA Astrophysics Data System (ADS)
Javed, Mohsin; Abbas, Syed Mustansar; Siddiq, Mohammad; Han, Dongxue; Niu, Li
2018-02-01
A high charge-carrier transport is an important aim in the synthesis of nanostructures for an effective supercapacitor. This article describes a methodology to prepare mesoporous silica nanoparticles (MSNs) wrapped with graphene oxide (GO) together with conducting polyaniline (PANI) wires. The morphology and chemical structure of the prepared samples have been tested by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray diffraction (XRD), whereas the stability and electrostatic interaction of the structures have been verified by thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The supercapacitive behaviour of these nanocomposites has been analysed by cyclic voltammetry (CV), charge-discharge tests, and electrochemical impedance spectroscopy (EIS). Compared with pristine MSNs and PANI, the 20%-GO@MSNs/PANI nanocomposite had the highest specific capacitance, reaching 412 F g-1. The nanocomposite structure maximizes the synergy between mesoporous metal oxide, conducting PANI, and GO, yielding a significantly enhanced specific capacitance, rapid charge-discharge rates, and good cycling stability of the resulting device. The wrapping with GO prevents the structural breakdown and acts as a highly conductive pathway by bridging the individual particles, whereas the MSNs nanoparticles greatly enlarge the specific surface area to facilitate ion transport and charge transfer throughout the cycling performance of supercapacitor. The approach adopted in this article can be applied for preparing similar novel functional materials in future for electrochemical applications.
Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids.
Lee, Je Seung; Wang, Xiqing; Luo, Huimin; Baker, Gary A; Dai, Sheng
2009-04-08
An expedient, template-free, high-yield, and solventless route to nitrogen-rich micro- and mesoporous carbons is reported based on direct, atmospheric-pressure carbonization of task-specific ionic liquids bearing one or more nitrile side chains. The resulting textural properties (pore regime, surface area) are highly dependent upon the structural motifs of the ions comprising the corresponding parent ionic liquid, and uniform carbon films are routinely deposited with this novel methodology, highlighting excited new opportunities in the development of advanced functional carbon composites.
Mesoporous mixed metal oxides derived from P123-templated Mg-Al layered double hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun, E-mail: zhqw1888@sohu.co; College of Chemical Engineering, Harbin Institute of Technology, Harbin 150001; Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, 150001
2010-11-15
We report the preparation of mesoporous mixed metal oxides (MMOs) through a soft template method. Different amounts of P123 were used as structure directing agent to synthesize P123-templated Mg-Al layered double hydroxides (LDHs). After calcination of as-synthesized LDHs at 500 {sup o}C, the ordered mesopores were obtained by removal of P123. The mesoporous Mg-Al MMOs fabricated by using 2 wt% P123 exhibited a high specific surface area of 108.1 m{sup 2}/g, and wide distribution of pore size (2-18 nm). An investigation of the 'memory effect' of the mesoporous MMOs revealed that they were successfully reconstructed to ibuprofen intercalated LDHs havingmore » different gallery heights, which indicated different intercalation capacities. Due to their mesoporosity these unique MMOs have particular potential as drug or catalyst carriers. - Graphical abstract: Ordered mesoporous Mg-Al MMOs can be obtained through the calcination of P123-templated Mg-Al-CO{sub 3} LDHs. The pore diameter is 2.2 nm. At the presence of ibuprofen, the Mg-Al MMOs can recover to Mg-Al-IBU LDHs, based on its 'remember effect'. Display Omitted« less
Ma, Yuan; Ma, Chang; Sheng, Jie; Zhang, Haixia; Wang, Ranran; Xie, Zhenyu; Shi, Jingli
2016-01-01
A nitrogen-doped hierarchical porous carbon has been prepared through one-step KOH activation of pitch oxide/graphene oxide composite. At a low weight ratio of KOH/composite (1:1), the as-prepared carbon possesses high specific surface area, rich nitrogen and oxygen, appropriate mesopore/micropore ratio and considerable small-sized mesopores. The addition of graphene oxide plays a key role in forming 4 nm mesopores. The sample PO-GO-16 presents the characteristics of large surface area (2196 m(2) g(-1)), high mesoporosity (47.6%), as well as rich nitrogen (1.52 at.%) and oxygen (6.9 at.%). As a result, PO-GO-16 electrode shows an outstanding capacitive behavior: high capacitance (296 F g(-1)) and ultrahigh-rate performance (192 F g(-1) at 10 A g(-1)) in 6 M KOH aqueous electrolyte. The balanced structure characteristic, low-cost and high performance, make the porous carbon a promising electrode material for supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Yu; Chen, Hang-Rong; Shi, Jian-Lin
2014-01-21
Colloidal hollow mesoporous silica nanoparticles (HMSNs) are aspecial type of silica-based nanomaterials with penetrating mesopore channels on their shells. HMSNs exhibit unique structural characteristics useful for diverse applications: Firstly, the hollow interiors can function as reservoirs for enhanced loading of guest molecules, or as nanoreactors for the growth of nanocrystals or for catalysis in confined spaces. Secondly, the mesoporous silica shell enables the free diffusion of guest molecules through the intact shell. Thirdly, the outer silica surface is ready for chemical modifications, typically via its abundant Si-OH bonds. As early as 2003, researchers developed a soft-templating methodto prepare hollow aluminosilicate spheres with penetrating mesopores in a cubic symmetry pattern on the shells. However, adapting this method for applications on the nanoscale, especially for biomedicine, has proved difficult because the soft templating micelles are very sensitive to liquid environments, making it difficult to tune key parameters such as dispersity, morphology and structure. In this Account, we present the most recent developments in the tailored construction of highly dispersive and monosized HMSNs using simple silica-etching chemistry, and we discuss these particles' excellent performance in diverse applications. We first introduce general principles of silica-etching chemistry for controlling the chemical composition and the structural parameters (particle size, pore size, etching modalities, yolk-shell nanostructures, etc.) of HMSNs. Secondly, we include recent progress in constructing heterogeneous, multifunctional, hollow mesoporous silica nanorattles via several methods for diverse applications. These elaborately designed HMSNs could be topologically transformed to prepare hollow mesoporous carbon nanoparticles or functionalized to produce HMSN-based composite nanomaterials. Especially in biomedicine, HMSNs are excellent as carriers to deliver either hydrophilic or hydrophobic anti-cancer drugs, to tumor cells, offering enhanced chemotherapeutic efficacy and diminished toxic side effects. Most recently, research has shown that loading one or more anticancer drugs into HMSNs can inhibit metastasis or reverse multidrug resistance of cancer cells. HMSNs could also deliver hydrophobic perfluorohexane (PFH) molecules to improve high intensity focused ultrasound (HIFU) cancer surgery by changing the tissue acoustic environment; and HMSNs could act as nanoreactors for enhanced catalytic activity and/or durability. The versatility of silica-etching chemistry, a simple but scalable synthetic methodology, offers great potential for the creation of new types of HMSN-based nanostructures in a range of applications.
Sterczyńska, Angelina; Deryło-Marczewska, Anna; Zienkiewicz-Strzałka, Małgorzata; Śliwińska-Bartkowiak, Małgorzata; Domin, Kamila
2017-10-24
We report an experimental investigation of structural and adhesive properties for Al-containing mesoporous MCM-41 and MCM-41 surfaces. In this work, highly ordered hexagonal mesoporous structures of aluminosilica with two different Si/Al molar ratios equal to 50 and 80 and silica samples were studied; Al was incorporated into the MCM-41 structures using the direct synthesis method, with CTAB as a surfactant. The incorporation of aluminum was evidenced simultaneously without any change in the hexagonal arrangement of cylindrical mesopores. The porous materials were examined by techniques such as low-temperature nitrogen sorption, energy-dispersive spectroscopy, and scanning and transmission electron microscopy. Surface properties were determined through X-ray photoelectron spectroscopy, potentiometric titration, and static contact angle measurements. It was shown that an increase in surface acidity leads to an increase in the wetting energy of the surface. To investigate the influence of acidity on the confinement effects, the melting behavior of water in Al-MCM-41 and MCM-41 with the same pore size was determined by using dielectric relaxation spectroscopy and differential scanning calorimetry methods. We found that the melting-point depression of water in pores is larger in the functionalized pores than in pure silica pores of the same pore diameter.
Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices.
Feng, Dan; Lv, Yingying; Wu, Zhangxiong; Dou, Yuqian; Han, Lu; Sun, Zhenkun; Xia, Yongyao; Zheng, Gengfeng; Zhao, Dongyuan
2011-09-28
We report for the first time the synthesis of free-standing mesoporous carbon films with highly ordered pore architecture by a simple coating-etching approach, which have an intact morphology with variable sizes as large as several square centimeters and a controllable thickness of 90 nm to ∼3 μm. The mesoporous carbon films were first synthesized by coating a resol precursors/Pluronic copolymer solution on a preoxidized silicon wafer and forming highly ordered polymeric mesostructures based on organic-organic self-assembly, followed by carbonizing at 600 °C and finally etching of the native oxide layer between the carbon film and the silicon substrate. The mesostructure of this free-standing carbon film is confirmed to be an ordered face-centered orthorhombic Fmmm structure, distorted from the (110) oriented body-centered cubic Im3̅m symmetry. The mesoporosity of the carbon films has been evaluated by nitrogen sorption, which shows a high specific BET surface area of 700 m(2)/g and large uniform mesopores of ∼4.3 nm. Both mesostructures and pore sizes can be tuned by changing the block copolymer templates or the ratio of resol to template. These free-standing mesoporous carbon films with cracking-free uniform morphology can be transferred or bent on different surfaces, especially with the aid of the soft polymer layer transfer technique, thus allowing for a variety of potential applications in electrochemistry and biomolecule separation. As a proof of concept, an electrochemical supercapacitor device directly made by the mesoporous carbon thin films shows a capacitance of 136 F/g at 0.5 A/g. Moreover, a nanofilter based on the carbon films has shown an excellent size-selective filtration of cytochrome c and bovine serum albumin.
Wan, Li; Song, Hongyuan; Chen, Xiao; Zhang, Yu; Yue, Qin; Pan, Panpan; Su, Jiacan; Elzatahry, Ahmed A; Deng, Yonghui
2018-06-01
1D core-shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe 3 O 4 @nSiO 2 @mSiO 2 nanochain, Magn-MSNCs named as FDUcs-17C) are facilely synthesized via a novel magnetic-field-guided interface coassembly approach in two steps. Fe 3 O 4 particles are coated with nonporous silica in a magnetic field to form 1D Fe 3 O 4 @nSiO 2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n-hexane biliquid system leads to 1D Magn-MSNCs with core-shell-shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m 2 g -1 ), and high magnetization (34.9 emu g -1 ). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe 3 O 4 @nSiO 2 @mSiO 2 -Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4-nitrophenol with high catalytic performance and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Small-angle X-ray scattering (SAXS) studies of the structure of mesoporous silicas
NASA Astrophysics Data System (ADS)
Zienkiewicz-Strzałka, M.; Skibińska, M.; Pikus, S.
2017-11-01
Mesoporous ordered silica nanostructures show strong interaction with X-ray radiation in the range of small-angles. Small-angle X-ray scattering (SAXS) measurements based on the elastically scattered X-rays are important in analysis of condensed matter. In the case of mesoporous silica materials SAXS technique provides information on the distribution of electron density in the mesoporous material, in particular describing their structure and size of the unit cell as well as type of ordered structure and finally their parameters. The characterization of nanopowder materials, nanocomposites and porous materials by Small-Angle X-ray Scattering seems to be valuable and useful. In presented work, the SAXS investigation of structures from the group of mesoporous ordered silicates was performed. This work has an objective to prepare functional materials modified by noble metal ions and nanoparticles and using the small-angle X-ray scattering to illustrate their properties. We report the new procedure for describing mesoporous materials belonging to SBA-15 and MCM-41 family modified by platinum, palladium and silver nanoparticles, based on detailed analysis of characteristic peaks in the small-angle range of X-ray scattering. This procedure allows to obtained the most useful parameters for mesoporous materials characterization and their successfully compare with experimental measurements reducing the time and material consumption with good precision for particles and pores with a size below 10 nm.
Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying
2014-01-21
Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g(-1) and capacity retention at 70.7% (904 mA h g(-1)) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.
Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko
2017-06-07
A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.
The enrichment of chlorogenic acid from Eucommia ulmoides leaves extract by mesoporous carbons.
Qin, Guotong; Ma, Jing; Wei, Wei; Li, Jaja; Yue, Fangqing
2018-06-15
Herein, we report an efficient separation and enrichment method for chlorogenic acid from crude extracts of Eucommia ulmoides leaves using carbon adsorbents. The effects of the pore structure of the carbon adsorbents on the adsorption capacity were studied. Of the four adsorbents investigated, mesoporous carbon (MC3) showed the highest adsorption capacity (294 mg/g of carbon) for chlorogenic acid due to its high mesopore volume. The static adsorption of CGA on carbon can be accurately described using the Freundlich equation. The kinetics of adsorption follow a pseudo-second-order process. External mass transfer was the controlling step of the adsorption process. Dynamic adsorption on MC3 demonstrated that chlorogenic acid began to break through after 28 bed volumes of extract was loaded. This mesoporous carbon-treatment procedure is safe, economic and has the potential to be scaled up for commercial application. Copyright © 2018 Elsevier B.V. All rights reserved.
High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53(Al).
Dou, Rongni; Zhang, Junya; Chen, Yuancai; Feng, Siyuan
2017-03-01
In order to expand the potential applications of metal-organic frameworks (MOFs), structure directing agents modified mesoporous MIL-53(Al) (MIL-53(Al)-1) was investigated to adsorb triclosan (TCS) with two different initial concentrations. MIL-53(Al)-1 with high mesoporosity and total pore volume exhibited higher adsorption capacity and 4.4 times faster adsorption of TCS at low concentration (1 mg L -1 ) than that of microporous MIL-53(Al). Also, mesoporous as well as microporous MIL-53(Al) showed significant higher adsorption capacity and two orders of magnitude greater fast uptake of TCS than two kinds of mesoporous-activated carbon. The adsorption of TCS onto MIL-53(Al)-1 released more energy and had higher disorderliness than TCS on MIL-53(Al). The superior adsorption characteristics of MIL-53(Al)-1 were preserved over a wide pH range (4-9), at high concentration of ionic strengths, and in the presence of coexisting compounds (anions, cations, phenol, aniline, and humic acid). The selectivity adsorption and Fourier transform infrared (FT-IR) spectra revealed that TCS adsorption on MIL-53(Al)s was mainly driven by hydrophobicity interaction assisted with hydrogen bonding on MIL-53(Al)s. MIL-53(Al)s can be effectively regenerated several times by washing with 90% methanol-water (pH 11). All of the above results demonstrated MIL-53(Al)s are promising adsorbents for water purification. Graphical abstract.
In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.
Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian
2017-06-07
Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.
Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries
NASA Astrophysics Data System (ADS)
Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo
2013-05-01
This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp2-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.
Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi
2011-01-25
A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.
Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.
Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei
2015-04-09
The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.
Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries.
Ye, Youngjin; Jo, Changshin; Jeong, Inyoung; Lee, Jinwoo
2013-06-07
This feature article presents recent progress made in the synthesis of functional ordered mesoporous materials and their application as high performance electrodes in dye-sensitized solar cells (DSCs) and quantum dot-sensitized solar cells (QDSCs), fuel cells, and Li-ion batteries. Ordered mesoporous materials have been mainly synthesized using two representative synthetic methods: the soft template and hard template methods. To overcome the limitations of these two methods, a new method called CASH was suggested. The CASH method combines the advantages of the soft and hard template methods by employing a diblock copolymer, PI-b-PEO, which contains a hydrophilic block and an sp(2)-hybridized-carbon-containing hydrophobic block as a structure-directing agent. After discussing general techniques used in the synthesis of mesoporous materials, this article presents recent applications of mesoporous materials as electrodes in DSCs and QDSCs, fuel cells, and Li-ion batteries. The role of material properties and mesostructures in device performance is discussed in each case. The developed soft and hard template methods, along with the CASH method, allow control of the pore size, wall composition, and pore structure, providing insight into material design and optimization for better electrode performances in these types of energy conversion devices. This paper concludes with an outlook on future research directions to enable breakthroughs and overcome current limitations in this field.
Tang, Qin; Bairi, Partha; Shrestha, Rekha Goswami; Hill, Jonathan P; Ariga, Katsuhiko; Zeng, Haibo; Ji, Qingmin; Shrestha, Lok Kumar
2017-12-27
Fullerene C 60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C 60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g -1 (at 5 mV s -1 ) and 290 F g -1 (at 1 A g -1 ) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g -1 . The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C 60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.
NASA Astrophysics Data System (ADS)
Xu, Xuena; Niu, Feier; Zhang, Dapeng; Chu, Chenxiao; Wang, Chunsheng; Yang, Jian; Qian, Yitai
2018-04-01
Lithium-ion capacitors, as a hybrid electrochemical energy storage device, realize high specific energy and power density within one device, thus attracting extensive attention. Here, hierarchically porous Li3VO4/C nanocomposite is prepared by a solvo-thermal reaction, followed with a post-annealing process. This composite has macropores at the center and mesopores in the wall, thus effectively promoting electrolyte penetration and structure stability upon cycling simultaneously. Compared to mesoporous Li3VO4, the enhanced rate capability and specific capacity of hierarchically porous Li3VO4/C indicate the synergistic effect of mesopores and macropores. Inspired by these results, this composite is coupled with mesoporous carbon (CMK-3) for lithium-ion capacitors, generating a specific energy density of 105 Wh kg-1 at a power density of 188 W kg-1. Even if the power density increases to 9.3 kW kg-1, the energy density still remains 62 Wh kg-1. All these results demonstrate the promising potential of hierarchically porous Li3VO4 in lithium ion capacitors.
Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2
NASA Astrophysics Data System (ADS)
Nguyen, Dongthanh; Wang, Wei; Long, Haibo; Ru, Hongqiang
2016-03-01
Mesoporous titania (meso-TiO2) has received extensive attention owing to its versatile potential applications. This paper reports a low-temperature templating approach for the fabrication of meso-TiO2 using the peroxo titanic acid (PTA) sol as precursor and Pluronic P123 as nonionic template. The TGA, XRD, N2 sorption, FE-SEM and HRTEM were used to characterize the obtained samples. The results showed that meso-TiO2 with high surface area up to 163 m2·g-1 and large pore volume of 0.65 cm3·g-1 can be obtained. The mesopore sizes can be varied between 13 and 20 nm via this synthesis approach. The amount of P123 and the calcination conditions were found to have great influence on the mesoporous and crystalline structures of meso-TiO2. The photocatalytic activity testing clearly shows that the high surface area and bi-crystallinity phases of meso-TiO2 play important roles in enhancing photocatalytic properties of meso-TiO2 in photo-decomposing Rhodamine B in water.
Leroy, Celine Marie; Cardinal, Thierry; Jubera, Veronique; Treguer-Delapierre, Mona; Majimel, Jerome; Manaud, Jean Pierre; Backov, Renal; Boissière, Cedric; Grosso, David; Sanchez, Clement; Viana, Bruno; Pellé, Fabienne
2008-10-06
Herein, Eu(III)-doped 3D mesoscopically ordered arrays of mesoporous and nanocrystalline titania are prepared and studied. The rare-earth-doped titania thin films-synthesized via evaporation-induced self-assembly (EISA)-are characterized by using environmental ellipsoporosimetry, electronic microscopy (i.e. high-resolution scanning electron microscopy, HR-SEM, and transmission electron microscopy, HR-TEM), X-ray diffraction, and luminescence spectroscopy. Structural characterizations show that high europium-ion loadings can be incorporated into the titanium-dioxide walls without destroying the mesoporous arrangement. The luminescence properties of Eu(III) are investigated by using steady-state and time-resolved spectroscopy via excitation of the Eu(III) ions through the titania host. Using Eu(III) luminescence as a probe, the europium-ion sites can be addressed with at least two different environments within the mesoporous framework, namely, a nanocrystalline environment and a glasslike one. Emission fluctuations ((5)D(0)-->(7)F(2)) are observed upon continuous UV excitation in the host matrix. These fluctuations are attributed to charge trapping and appear to be strongly dependent on the amount of europium and the level of crystallinity.
Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation
Markoulaki, Vassiliki Ι.; Papadas, Ioannis T.; Kornarakis, Ioannis; Armatas, Gerasimos S.
2015-01-01
Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER). In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II) oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1) with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1) and pure mesoporous CeO2 (~1 µmol·h−1). PMID:28347106
Nanowire Ice of Phase VI and Distorted VII in Mesoporous Silica Nanotorus Superlattice
NASA Astrophysics Data System (ADS)
Zhu, Jinlong; Zhang, Jianzhong; Zhao, Yusheng
2014-03-01
The motivation of nano H2O realization and characterization is the highly polarized nature of H2O molecules and the spatial hydrogen bonded networks both in liquid and solid form. The hydrogen bonding character of water molecules results in a remarkably rich phase diagram in the pressure-temperature space. Water/Ice confined in nanochannels showed novel structures and properties as results of hydrophobic and hydrophilic interactions and hydrogen bonding interaction between water molecule and the surface of nanochannel. Studies on nano H2O can provide potential pathway to understand the complicated structure evolutions of ice in the P- T space, because the interplay between nano-confinement and strong intermolecular hydrogen interactions can lead to even richer ice structures which were not found in the none-confined bulk form. The high pressure experiment indicated that the pressure of nanowire ice VI and VII shifted up to 1.7 GPa and 2.5 GPa, and about ~ 0.65 GPa and 0.4 GPa higher than that of normal ice. The nano size effect and the strength of mesoporous silica nanotorus are responsible for the pressure shifts of ice phase regions. More pronounced, the cubic ice VII changed into a tetragonal distorted ``psuedocubic'' structure of the nanowire ice when confined in the mesoporous tubes. The degree of tetragonality increased with increasing pressure, which is resulted from the uniaxial pressure nanowire ice felt, and the anisotropic hydrogen bonding interactions including the H2O-H2O hydrogen bonds in the bulk of the ice and the H2O-silica -OH hydrogen bonds between the interface of nanowire ice and mesoporous silica. The experimental work has benefited from the use of CHESS at Cornell University, which is supported by the NSF award DMR-0936384.
Bayatsarmadi, Bita; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang
2015-07-01
The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of nitrogen-doped mesoporous carbon spheres (NMCs) was synthesized via a facile dual soft-templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro)chemical properties of the NMCs have been comprehensively investigated to pave the way for a feasible design of nitrogen-containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by a high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity, and high nitrogen content, which make it a highly efficient ORR metal-free catalyst in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hu, Wen; Hirota, Yuichiro; Zhu, Yexin; Yoshida, Nao; Miyamoto, Manabu; Zheng, Tao; Nishiyama, Norikazu
2017-09-22
A macro-/mesoporous Co-N-C-decorated separator is proposed to confine and reutilize migrating polysulfides. Endowed with a desirable structure and synchronous lithio- and sulfiphilic chemistry, the macro-/mesoporous Co-N-C interface manipulates large polysulfide adsorption uptake, enabling good polysulfide adsorption kinetics, reversible electrocatalysis toward redox of anchored polysulfides, and facile charge transport. It significantly boosts the performance of a simple 70 wt % S/MWCNTs (MWCNTs=multi-walled carbon nanotubes) cathode, achieving high initial capacities (e.g., 1406 mAh g -1 at 0.2C, 1203 mAh g -1 at 1C), nearly 100 % Coulombic efficiencies, and high reversible capacities after cycle tests (e.g., 828.4 mAh g -1 at 1C after 100 cycles) at both low and high current rates. These results demonstrate that decorating separator with macro-/mesoporous Co-N-C paves a feasible way for developing advanced Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sandwich-like graphene-mesoporous carbon as sulfur host for enhanced lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Tian, Ting; Li, Bin; Zhu, Mengqi; Liu, Jianhua; Li, Songmei
2017-10-01
Graphene-mesoporous carbon/sulfur composites (G-MPC/S) were constructed by melt-infiltration of sulfur into graphene-mesoporous carbon which was synthesized by soft template method. The SEM and BET results of the graphene-mesoporous carbon show that the as-prepared sandwich-like G-MPC composites with a unique microporous-mesoporous structure had a high specific surface area of 554.164 m2 · g-1 and an average pore size of about 13 nm. The XRD analysis presents the existence of orthorhombic sulfur in the G-MPC/S composite, which indicates the complete infiltration of sulfur into the pores of the G-MPC. When the graphene-mesoporous carbon/surfur composites (G-MPC/S) with 53.9 wt.% sulfur loading were used as the cathode for lithium-sulfur (Li-S) batteries, it exhibited an outstanding electrochemical performance including excellent initial discharge specific capacity of 1393 mAh · g-1 at 0.1 °C, high cycle stability (731 mAh · g-1 at 200 cycles) and good rate performance (1038 mAh · g-1, 770 mAh · g-1, 518 mAh · g-1 and 377 mAh · g-1 at 0.1 °C, 0.2 °C, 0.5 °C and 1 °C, respectively), which suggested the important role of the G-MPC composite in providing more electrons and ions channels, in addition, the shuttle effect caused by the dissolved polysulfide was also suppressed.
Meng, Yuying; Zou, Xiaoxin; Huang, Xiaoxi; Goswami, Anandarup; Liu, Zhongwu; Asefa, Tewodros
2014-10-08
We demonstrate that polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons can serve as efficient, metal-free electrocatalysts for hydrazine oxidation reaction, with low overpotential and high current density. The materials' structures and the nature and type of their included dopants, which can be controlled by varying the synthetic conditions, can affect the electrocatalytic properties of the materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate
NASA Technical Reports Server (NTRS)
Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy
2005-01-01
Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.
NASA Astrophysics Data System (ADS)
Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Xiqing; Wang, Chongmin; Dai, Sheng; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe
We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 °C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H 2PtCl 6) in ethylene glycol. Pt nanoparticles of ∼3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of ∼2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials.
Sheng, Guoqing; Chen, Jiahui; Ye, Huangqing; Hu, Zhixiong; Fu, Xian-Zhu; Sun, Rong; Huang, Weixin; Wong, Ching-Ping
2018-07-15
Monodisperse hollow mesoporous PdCo alloy nanospheres are prepared via a simple galvanic replacement reaction. The as-prepared PdCo hollow nanospheres have small diameter, such as Pd 78 Co 22 nanospheres of diameter about 25 nm and mesoporous shells about 4-5 nm. The Pd 78 Co 22 hollow mesoporous nanospheres possess the largest electrochemical active surface areas (ECSA, 53.91 m 2 g -1 ), mass activity (1488 mA mg -1 ) and specific activity (2.76 mA cm -2 ) towards to methanol oxidation relative to the Pd 68 Co 32 , Pd 92 Co 8 hollow mesoporous nanospheres and commercial Pd/C catalysts. Moreover, the activity of Pd 78 Co 22 after long-term stability tests is still the best and even better than those of fresh Pd 68 Co 32 and commercial Pd/C catalysts. The PdCo catalysts not only effectively reduce the Pd usage by forming hollow structure, but also fully realize the Pd-Co alloying effects for enhancing the methanol oxidation catalytic performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Hong, Zhensheng; Kang, Meiling; Chen, Xiaohui; Zhou, Kaiqiang; Huang, Zhigao; Wei, Mingdeng
2017-09-20
TiO 2 is a most promising anode candidate for rechargeable Na-ion batteries (NIBs) because of its appropriate working voltage, low cost, and superior structural stability during chage/discharge process. Nevertheless, it suffers from intrinsically low electrical conductivity. Herein, we report an in situ synthesis of Co 2+ -doped TiO 2 through the thermal treatment of metal organic frameworks precursors of MIL-125(Ti)-Co as a superior anode material for NIBs. The Co 2+ -doped TiO 2 possesses uniform nanodisk morphology, a large surface area and mesoporous structure with narrow pore distribution. The reversible capacity, Coulombic efficiency (CE) and rate capability can be improved by Co 2+ doping in mesoporous TiO 2 anode. Co 2+ -doped mesoporous TiO 2 nanodisks exhibited a high reversible capacity of 232 mAhg -1 at 0.1 Ag 1- , good rate capability and cycling stability with a stable capacity of about 140 mAhg -1 at 0.5 Ag 1- after 500 cycles. The enhanced Na-ion storage performance could be due to the increased electrical conductivity revealed by Kelvin probe force microscopy measurements.
She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue
2015-05-01
Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.
Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules
NASA Astrophysics Data System (ADS)
El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won
2012-11-01
Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31775c
NASA Astrophysics Data System (ADS)
Qin, Jian; Zhu, Shan; Feng, Chao; Zhao, Naiqin; Shi, Chunsheng; Liu, En-Zuo; He, Fang; Ma, Liying; Li, Jiajun; He, Chunnian
2018-03-01
A one-step strategy for preparing 3D mesoporous graphene networks (3DMGNs) based on the concepts of space-confined effect, catalytic effect and chemical activation is reported in this work. The soluble salts act as the in-situ templates to confine the thickness of 3D graphene layers. Meanwhile, the Fe-catalysts greatly improve the graphitization of the graphene matrix, which are easy to be removed by acid treatment. In addition, the KOH activation introduces abundant mesopores into the graphene networks, which facilities the electrolyte permeation. Thus, when using as electrode materials for supercapacitor, the as-obtained 3DMGNs with high electron conductivity, large surface area and hierarchical porous structure exhibit excellent capacitive properties, including high specific capacitance (215 F g-1 at 0.5 A g-1) and superior rate performance (168 F g-1 at 50 A g-1).
Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives
NASA Astrophysics Data System (ADS)
Li, Dongdong; Yu, Xiang
2016-07-01
Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×106 M-1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection.
NASA Astrophysics Data System (ADS)
Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu
2014-12-01
Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr05931j
Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge
2006-05-09
A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated.
Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores
NASA Astrophysics Data System (ADS)
Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.
2008-08-01
Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.
Deng, Xiaohui; Öztürk, Secil; Weidenthaler, Claudia; Tüysüz, Harun
2017-06-28
Herein, ordered mesoporous nickel cobalt oxides prepared by the nanocasting route are reported as highly active oxygen evolution reaction (OER) catalysts. By using the ordered mesoporous structure as a model system and afterward elevating the optimal catalysts composition, it is shown that, with a simple electrochemical activation step, the performance of nickel cobalt oxide can be significantly enhanced. The electrochemical impedance spectroscopy results indicated that charge transfer resistance increases for Co 3 O 4 spinel after an activation process, while this value drops for NiO and especially for CoNi mixed oxide significantly, which confirms the improvement of oxygen evolution kinetics. The catalyst with the optimal composition (Co/Ni 4/1) reaches a current density of 10 mA/cm 2 with an overpotential of a mere 336 mV and a Tafel slope of 36 mV/dec, outperforming benchmarked and other reported Ni/Co-based OER electrocatalysts. The catalyst also demonstrates outstanding durability for 14 h and maintained the ordered mesoporous structure. The cyclic voltammograms along with the electrochemical measurements in Fe-free KOH electrolyte suggest that the activity boost is attributed to the generation of surface Ni(OH) 2 species that incorporate Fe impurities from the electrolyte. The incorporation of Fe into the structure is also confirmed by inductively coupled plasma optical emission spectrometry.
The development of chiral nematic mesoporous materials.
Kelly, Joel A; Giese, Michael; Shopsowitz, Kevin E; Hamad, Wadood Y; MacLachlan, Mark J
2014-04-15
Cellulose nanocrystals (CNCs) are obtained from the sulfuric acid-catalyzed hydrolysis of bulk cellulose. The nanocrystals have diameters of ~5-15 nm and lengths of ~100-300 nm (depending on the cellulose source and hydrolysis conditions). This lightweight material has mostly been investigated to reinforce composites and polymers because it has remarkable strength that rivals carbon nanotubes. But CNCs have an additional, less explored property: they organize into a chiral nematic (historically referred to as cholesteric) liquid crystal in water. When dried into a thin solid film, the CNCs retain the helicoidal chiral nematic order and assemble into a layered structure where the CNCs have aligned orientation within each layer, and their orientation rotates through the stack with a characteristic pitch (repeating distance). The cholesteric ordering can act as a 1-D photonic structure, selectively reflecting circularly polarized light that has a wavelength nearly matching the pitch. During CNC self-assembly, it is possible to add sol-gel precursors, such as Si(OMe)4, that undergo hydrolysis and condensation as the solvent evaporates, leading to a chiral nematic silica/CNC composite material. Calcination of the material in air destroys the cellulose template, leaving a high surface area mesoporous silica film that has pore diameters of ~3-10 nm. Importantly, the silica is brilliantly iridescent because the pores in its interior replicate the chiral nematic structure. These films may be useful as optical filters, reflectors, and membranes. In this Account, we describe our recent research into mesoporous films with chiral nematic order. Taking advantage of the chiral nematic order and nanoscale of the CNC templates, new functional materials can be prepared. For example, heating the silica/CNC composites under an inert atmosphere followed by removal of the silica leaves highly ordered, mesoporous carbon films that can be used as supercapacitor electrodes. The composition of the mesoporous films can be varied by using assorted organosilica precursors. After removal of the cellulose by acid-catalyzed hydrolysis, highly porous, iridescent organosilica films are obtained. These materials are flexible and offer the ability to tune the chemical and mechanical properties through variation of the organic spacer. Chiral nematic mesoporous silica and organosilica materials, obtainable as centimeter-scale freestanding films, are interesting hosts for nanomaterials. When noble metal nanoparticles are incorporated into the pores, they show strong circular dichroism signals associated with their surface plasmon resonances that arise from dipolar coupling of the particles within the chiral nematic host. Fluorescent conjugated polymers show induced circular dichroism spectra when encapsulated in the chiral nematic host. The porosity, film structure, and optical properties of these materials could enable their use in sensors. We describe the development of chiral nematic mesoporous silica and organosilica, demonstrate different avenues of host-guest chemistry, and identify future directions that exploit the unique combination of properties present in these materials. The examples covered in this Account demonstrate that there is a rich diversity of composite materials accessible using CNC templating.
Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik
2013-11-01
Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yosep; Choi, Junhyun; Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn
2014-04-01
Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despitemore » the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.« less
Wu, Chengtie; Chang, Jiang
2012-01-01
The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models. PMID:23741607
Structural and morphological properties of mesoporous carbon coated molybdenum oxide films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayal, Saurabh, E-mail: saurabhdayal153@gmail.com; Kumar, C. Sasi, E-mail: csasimv@gmail.com
2016-05-06
In the present study, we report the structural and morphological properties of mesoporous carbon coated molybdenum oxide films. The deposition of films was carried out in a two-step process, the first step involves deposition of molybdenum and carbon bilayer thin films using DC magnetron sputtering. In the second step the sample was ex-situ annealed in a muffle furnace at different temperatures (400°C to 600°C) and air cooled in the ambient atmosphere. The formation of the meso-porous carbon clusters on molybdenum oxide during the cooling step was investigated using FESEM and AFM techniques. The structural details were explored using XRD. Themore » meso-porous carbon were found growing over molybdenum oxide layer as a result of segregation phenomena.« less
Nitrogen-doped mesoporous carbons for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Wu, Kai; Liu, Qiming
2016-08-01
The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.
Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.
Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the poremore » surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.« less
Yin, Peng; Sun, Nianrong; Deng, Chunhui; Li, Yan; Zhang, Xiangmin; Yang, Pengyuan
2013-08-01
In this work, magnetic graphene double-sided mesoporous nanocomposites (mag-graphene@mSiO₂) were synthesized by coating a layer of mesoporous silica materials on each side of magnetic grapheme. The surfactant (CTAB) mediated sol-gel coating was performed using tetraethyl orthosilicate as the silica source. The as-made magnetic graphene double-sided mesoporous silica composites were treated with high-temperature calcination to remove the hydroxyl on the surface. The novel double-sided materials possess high surface area (167.8 cm²/g) and large pore volume (0.2 cm³/g). The highly open pore structure presents uniform pore size (3.2 nm) and structural stability. The hydrophobic interior pore walls could ensure an efficient adsorption of target molecules through hydrophobic-hydrophobic interaction. At the same time, the magnetic Fe₃O₄ particles on both sides of the materials could simplify the process of enrichment, which plays an important role in the treatment of complex biological samples. The magnetic graphene double-sided nanocomposites were successfully applied to size-selective and specific enrichment of peptides in standard peptide mixtures, protein digest solutions, and human urine samples. Finally, the novel material was applied to selective enrichment of endogenous peptides in mouse brain tissue. The enriched endogenous peptides were then analyzed by LC-MS/MS, and 409 endogenous peptides were detected and identified. The results demonstrate that the as-made mag-graphene@mSiO₂ have powerful potential for peptidome research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chen, Xiaolang; Zhang, Huiqiang; Zhang, Dieqing; Miao, Yingchun; Li, Guisheng
2018-03-01
The successful application of hierarchically porous structure in environmental treatment has provided new insights for solving environmental problems. Hierarchically structured semiconductor materials were considered as promising photocatalysts for NO oxidation in gas phase. Multi-shelled ZnO microspheres (MMSZ) were controllably shaped with hierarchically porous structures via a facile hydrothermal route using amino acid (N-Acetyl-D-Proline) as template and post-calcination treatment. Symmetric Ostwald ripening was used to explain the morphological evolution of hierarchical nanostructure. MMSZ was proved highly efficient for oxidizing NO (400 ppb) in gas phase under UV light irradiation with a much higher photocatalytic removal rate (77.3%) than that of the as-obtained ZnO crystals with other hierachically porous structures, owing to its higher photocurrent intensity. Such greatly enhanced photocatalytic activity can be assigned to the enhanced crystallinity of ZnO, mesopores and unique multi-shelled structure. Enhanced crystallinity promotes photogenerated charges under light irradiation. Mesoporous porosity can ensure enough light scattering between the shells. Multi-shelled structure endows ZnO with higher specific surface area and high frequency of multiple light reflection, resulting in more exposed active sites, higher light utilization efficiency, and fast separation efficiency of photogenerated charge carriers. The experimental results demonstrated that the photogenerated holes (h+) are the main active species. Hierarchically structured ZnO is not only contributed to directly use solar energy to solving various problems caused by atmospheric pollution, but also has potential applications in energy converse and storage including solar cells, lithium batteries, water-splitting, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling
2014-11-15
Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride asmore » precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.« less
Wawrzyńczak, Agata; Półrolniczak, Paulina; Sobuś, Jan; Schroeder, Grzegorz; Jurga, Stefan; Selli, Elena
2016-01-01
A series of 14 mesoporous titania materials has been synthesized using the simple alcothermal template-free method and various alcohols, such as methanol, propanols and butanols, as solvents. All materials were characterized by both wide and small angle XRD, which exhibited the anatase phase with short-range ordered mesoporous structure that is still forming during post synthetic temperature treatment in most of the investigated materials. Nitrogen adsorption–desorption isotherms confirmed the mesoporous structure with surface area ranging from 241 to 383 m2g- 1 and pore volumes from 0.162 to 0.473 m3g-1, UV-Vis diffuse reflectance showed the redshift of the absorption edge and the bandgap decrease after post synthetic calcination of the materials presented. The TEM, FT-IR, DTA and TG measurements have been made to well characterize the materials synthesized. The mesoporous samples obtained were applied as anode materials for dye-sensitized solar cells and showed good activity in photon-to-current conversion process with efficiency values ranging from 0.54% to 4.6% and fill factors in the 52% to 67% range. The photovoltaic performances were not as high as those obtained for the materials synthesized by us earlier employing ethanol as a solvent. The differences in the electron lifetime, calculated from electrochemical impedance spectroscopy results and varying between 4.3 to 17.5 ms, were found as a main factor determining the efficiency of the investigated photovoltaic cells. PMID:27741313
NASA Astrophysics Data System (ADS)
Kado, Yuya; Soneda, Yasushi; Yoshizawa, Noriko
2015-02-01
MgO-templated mesoporous carbons were fabricated by annealing trimagnesium dicitrate nonahydrate at various temperatures from 700 to 1000 °C with subsequent acid leaching of MgO. The obtained carbons contained a large amount of mesopores. Performances of electric double-layer capacitors using these carbons were examined for propylene carbonate electrolyte containing 1 M tetraethylammonium tetrafluoroborate. The mesoporous carbons synthesized at higher temperatures showed better rate capabilities. AC impedance measurements indicated that high-temperature annealing of the carbon precursors and the presence of mesopores were important for high rate performance. In addition, the contribution of mesopores to capacitance was more significant at higher current densities of 30 A g-1.
Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad
2014-10-21
Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.
2015-01-01
Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494
Mascolo, Maria Cristina; Pei, Yongbing; Ring, Terry A
2013-11-28
Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C₂H₅)₄NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms) value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.
Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung
2009-03-07
Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.
Boccardi, Elena; Philippart, Anahí; Juhasz-Bortuzzo, Judith A.; Beltrán, Ana M.; Novajra, Giorgia; Vitale-Brovarone, Chiara; Spiecker, Erdmann; Boccaccini, Aldo R.
2015-01-01
The design and characterization of a new family of multifunctional scaffolds based on bioactive glass (BG) of 45S5 composition for bone tissue engineering and drug delivery applications are presented. These BG-based scaffolds are developed via a replication method of polyurethane packaging foam. In order to increase the therapeutic functionality, the scaffolds were coated with mesoporous silica particles (MCM-41), which act as an in situ drug delivery system. These sub-micron spheres are characterized by large surface area and pore volume with a narrow pore diameter distribution. The solution used for the synthesis of the silica mesoporous particles was designed to obtain a high-ordered mesoporous structure and spherical shape – both are key factors for achieving the desired controlled drug release. The MCM-41 particles were synthesized directly inside the BG-based scaffolds, and the drug-release capability of this combined system was evaluated. Moreover, the effect of MCM-41 particle coating on the bioactivity of the BG-based scaffolds was assessed. The results indicate that it is possible to obtain a multifunctional scaffold system characterized by high and interconnected porosity, high bioactivity, and sustained drug delivery capability. PMID:26594642
Controllable self-assembly of mesoporous hydroxyapatite.
Chen, Jingdi; Wang, Zihao; Wen, Zhenliang; Yang, Shen; Wang, Jianhua; Zhang, Qiqing
2015-03-01
In this paper, mesoporous hydroxyapatite (HAp) of controllable pore size was tailored with the template of a biodegradable mono-alkyl phosphate (MAP) via a simple route by hydrothermal treatment. A serial study of the various experimental parameters on pore size of HAp was investigated. The additive amount of MAP and hydrothermal temperature were important factors for the pore structure and pore size. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption (BET, BJH) were used to characterize the structure and composition of the HAp samples. Both XRD and BJH results indicated that regular mesoporous HAp nanoparticles (with a mean pore size of 3.5nm) were successfully produced. As shown in transmission electron microscopy (TEM), orderly uniform pore structure appeared in the HAp particles. Because of the special structure of the MAP and the interaction between ionized MAP and other ions in solution, the product presents uniform mesoporous structure with well-defined pore size. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.
Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed
2018-01-15
The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.
Sarmah, Bhaskar; Satpati, Biswarup; Srivastava, Rajendra
2017-05-01
Crystalline mesoporous ZSM-5 zeolite was prepared in the presence of 1,4-diazabicyclo[2.2.2]octane derived multi-cationic structure directing agent. The calcined form of the mesoprous zeolite was treated with NH 4 OH to obtain basic mesoporous ZSM-5. Catalyst was characterized by the complementary combination of X-ray diffraction, N 2 -adsorption, electron microscopes, and temperature programme desorption techniques. Catalytic activity of the basic mesoporous ZSM-5 was systematically assessed using Knoevenagel condensation reaction for the synthesis a wide range of substituted styrene. Applications of the catalyst were investigated in the benzamide hydroxylation for the synthesis of carbinolamides and one-pot, multi-component condensation reaction for the synthesis of naphthopyrans. Finally, the catalyst was evaluated in the cycloaddition of CO 2 to epoxide for the synthesis of cyclic carbonates. Recycling study shows that no significant decrease in the catalytic activity was observed after five recycles. Copyright © 2017. Published by Elsevier Inc.
Mesoporous metal oxides and processes for preparation thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suib, Steven L.; Poyraz, Altug Suleyman
A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier,more » a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.« less
Zhang, Qiuyun; Li, Hu; Yang, Song
2018-05-01
Mesoporous Ti-Mo bi-metal oxides with various titanium-molybdenum ratios were successfully fabricated via a facile approach by using stearic acid as a low-cost template agent. thermal gravity (TG) /differential scanning calorimetry (DSC) analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, nitrogen adsorption-desorption isotherm, NH 3 temperature-programmed desorption (NH 3 -TPD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements indicated these materials possessing mesoporous structure, sufficient pore size and high acid intensity. The catalytic performance of prepared catalysts was evaluated by esterification of free fatty acids in Jatropha curcas crude oil (JCCO) with methanol. The effects of various parameters on FFA conversion were investigated. The esterification conversion of 87.8% was achieved under the condition of 180°C, 2 h, methanol to JCCO molar ratio of 20:1 and 3.0 wt.% catalyst (relative to the weight of JCCO). The mesoporous catalysts were found to exhibit high activities toward the simultaneous esterification and transesterification of JCCO. Furthermore, the catalyst could be recovered with a good reusability.
Rapid removal of bisphenol A on highly ordered mesoporous carbon.
Sui, Qian; Huang, Jun; Liu, Yousong; Chang, Xiaofeng; Ji, Guangbin; Deng, Shubo; Xie, Tao; Yu, Gang
2011-01-01
Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg x min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40 degrees C. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13.
NASA Astrophysics Data System (ADS)
Tian, Baozhu; Shao, Zhimang; Ma, Yunfei; Zhang, Jinlong; Chen, Feng
2011-11-01
B-doped together with Ag-loaded mesoporous TiO2 (Ag/B-TiO2) was prepared by a two-step hydrothermal method in the presence of boric acid, triblock copolymer surfactant, and silver nitrate, followed by heat treatment. The obtained samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. It was revealed that all samples consist of highly crystalline anatase with mesoporous structure. For Ag/B-TiO2, B was doped into TiO2 matrix in the form of both interstitial B and substitutional B while Ag was deposited on the surface of B-TiO2 in the form of metallic silver. Compared with the single B-doped or Ag-loaded TiO2 one, mesoporous Ag/B-TiO2 exhibits much higher visible light photocatalytic activity for the degradation of Rhodamine 6G, which can be ascribed to the synergistic effects of B doping and Ag loading by narrowing the band gap of the photocatalyst and preventing the fast recombination of the photogenerated charge carriers, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Dandan, E-mail: liudandan_upc@126.com; Dai, Fangna, E-mail: fndai@upc.edu.cn; Collage of Science, China University of Petroleum
2015-05-15
Highlights: • We use Al-MOFs as precursor in the fabrication process of mesoporous alumina by thermal treatment. • The obtained mesoporous alumina has dual pore system and five-fold aluminum. • The aluminum building units in the precursor show structure-directed effect on the formation of alumina. - Abstract: In this work, the block-shaped Al-based metal–organic frameworks (Al-MOFs) MIL-53 have been synthesized by hydrothermal method. To detect the correlation between the structure of Al-MOFs and the formation of alumina, the ligands are eliminated by thermal treatment. MIL-53 and the calcination products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR),more » scanning electron microscope (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption and solid-state {sup 27}Al nuclear magnetic resonance ({sup 27}Al NMR). It was found that after calcination, the block-shaped Al-MOFs precursor turns into high-crystallinity mesoporous alumina nanosheets, and the thermal treatment product γ-alumina possesses a dual pore system and a large surface area (146 m{sup 2}/g), with five-fold aluminum. During the thermal treatment process, the structure of MIL-53 and its secondary building units have structure-directed effect in the formation of alumina.« less
NASA Astrophysics Data System (ADS)
Barczak, Mariusz
2018-02-01
A series of pyridine-functionalized mesoporous silicas have been prepared for the first time via direct co-condensation of tetraethoxysilane (TEOS) and 2-(2-pyridyl)ethyltrimethoxysilane (PETS) using the block copolymer Pluronic P123 as a structure-directing agent. The obtained materials were fully characterized by a wide range of instrumental techniques and employed as adsorbents for the removal of a diclofenac which is considered a priority hazardous drug. The synthesized materials exhibit a high adsorption capacities and rapid adsorption rates. The structural and adsorption properties depend largely on the relative amount of PETS/TEOS ratio: the gradual degradation of ordered structure and porosity was observed with the increasing amount of PETS. However due to the highest loading of pyridine units the most structurally degraded material had the highest adsorption uptake (631 mg g-1) indicating that the surface chemistry plays - along with porosity - an important role in governing the adsorption process. The experimental adsorption data were modelled using the Langmuir, Freundlich and Langmuir-Freundlich isotherms - among them the Langmuir-Freundlich model turned out to be the most suitable for describing adsorption behaviour of diclofenac onto the materials. The collected data show that the pyridine-functionalized mesoporous silicas can be a promising absorbent of pharmaceuticals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotov, V. V.; Knyazev, E. V.; Ponomareva, I. V.
The oxidation of mesoporous silicon in a double-layer “macroporous silicon–mesoporous silicon” structure is studied. The morphology and dielectric properties of the buried insulating layer are investigated using electron microscopy, ellipsometry, and electrical measurements. Specific defects (so-called spikes) are revealed between the oxidized macropore walls in macroporous silicon and the oxidation crossing fronts in mesoporous silicon. It is found that, at an initial porosity of mesoporous silicon of 60%, three-stage thermal oxidation leads to the formation of buried silicon-dioxide layers with an electric-field breakdown strength of E{sub br} ~ 10{sup 4}–10{sup 5} V/cm. Multilayered “porous silicon-on-insulator” structures are shown to bemore » promising for integrated chemical micro- and nanosensors.« less
NASA Astrophysics Data System (ADS)
Xiong, Kun; Gao, Yuan; Zhou, Lin; Zhang, Xianming
2016-09-01
Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica-carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI-MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N2 adsorption and desorption. The results show that nZVI-MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI-MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI-MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Zhao, Yuan; Zhong, Lvling; Wang, Yang; Chai, Shouning; Yang, Tao; Han, Xuanli
2017-11-01
A Schiff base compound was used to prepare a Cu2S-Cu-TiO2 mesoporous carbon composite photocatalyst (Cu2S-Cu-TiO2/MC) by a simple precipitation-carbonization method with a carbonization temperature of 750 °C. X-ray diffraction and x-ray photoelectron spectroscopy studies show that Cu2S, Cu, and TiO2 exist in Cu2S-Cu-TiO2/MC in the form of nanometer-sized particles. Scanning electron microscope and transmission electron microscope images show that the composites form a spherical carbon structure inlaid with Cu2S and Cu and coated TiO2. The Brunauer-Emmett-Teller test shows that the material has a large specific surface area (76.14 m2/g) and mesoporous structure. UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy indicate that the recombination of photo-generated electrons and holes in the samples were inhibited. The composites show good degradation performance in a high concentration (300 mg/L) of methyl orange (MO) solution under visible light. The composites exhibit great potential in the treatment of dyes for wastewater treatment.
NASA Astrophysics Data System (ADS)
Zhu, Feng-Xia; Zhao, Pu-Su; Sun, Xiao-Jun; An, Li-Tao; Deng, Yong; Wu, Jia-Min
2017-11-01
Bridged diamino-functionalized periodic mesoporous organosilicas [BD-PMO(Et), Et = ethyl] materials were synthesized directly by co-condensation of 2-bis (triethoxysilyl)ethane (BTEE) and 1,4-bis[3-(tirmethoxysilyl)-propyl]ethylenediamino (BTMSEN) under acidic conditions with pluronic triblock copolymer P123 as a template. The nitrogen content in BD-PMO(Et) could be adjusted up to 40% without disturbing the ordered mesoporous structure. These materials were proved to be effective heterogeneous catalysts for the liquid-phase reactions such as Knoevenagel and Henry condensations as well as in the intermolecular cross-double-Michael addition reaction between α-methyl-β-nitrostyrene and α, β-unsaturated ketone. They exhibited comparable catalytic activities with homogeneous catalyst piperazine and can be reused for several times without any negative environmental impact.
Karimi, Babak; Elhamifar, Dawood; Yari, Omolbanin; Khorasani, Mojtaba; Vali, Hojatollah; Clark, James H; Hunt, Andrew J
2012-10-15
The preparation and characterization of a set of periodic mesoporous organosilicas (PMOs) that contain different fractions of 1,3-bis(3-trimethoxysilylpropyl)imidazolium chloride (BTMSPI) groups uniformly distributed in the silica mesoporous framework is described. The mesoporous structure of the materials was characterized by powder X-ray diffraction, transmission electron microscopy, and N(2) adsorption-desorption analysis. The presence of propyl imidazolium groups in the silica framework of the materials was also characterized by solid-state NMR spectroscopy and diffuse-reflectance Fourier-transform infrared spectroscopy. The effect of the BTMSPI concentration in the initial solutions on the structural properties (including morphology) of the final materials was also examined. The total organic content of the PMOs was measured by elemental analysis, whereas their thermal stability was determined by thermogravimetric analysis. Among the described materials, it was found that PMO with 10% imidazolium content is an effective host for the immobilization of perruthenate through an ion-exchange protocol. The resulting Ru@PI-10 was then employed as a recyclable catalyst in the highly efficient aerobic oxidation of various types of alcohols. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite.
Etim, U J; Xu, B; Ullah, Rooh; Yan, Z
2016-02-01
Y-zeolites are the main component of fluid catalytic cracking (FCC) catalyst for conversion of crude petroleum to products of high demand including transportation fuel. We investigated effects of vanadium which is present as one of the impurities in FCC feedstock on the framework and micropore structure of ultra-stable (US) Y-zeolite. The zeolite samples were prepared and characterized using standard techniques including: (1) X-ray diffraction, (2) N2 adsorption employing non local density functional theory method, NLDFT, (3) Transmittance and Pyridine FTIR, (4) Transmittance electron microscopy (TEM), and (5) (27)Al and (29)Si MAS-NMR. Results revealed that in the presence of steam, vanadium caused excessive evolution of non inter-crystalline mesopores and structural damage. The evolved mesopore size averaged about 25.0nm at 0.5wt.% vanadium loading, far larger than mesopore size in zeolitic materials with improved hydrothermal stability and performance for FCC catalyst. A mechanism of mesopore formation based on accelerated dealumination has been proposed and discussed. Vanadium immobilization experiments conducted to mitigate vanadium migration into the framework clearly showed vanadium is mobile at reaction conditions. From the results, interaction of vanadium with the passivator limits and decreases mobility and activity of vanadium into inner cavities of the zeolite capable of causing huge structure breakdown and acid sites destruction. This study therefore deepens insight into the causes of alteration in activity and selectivity of vanadium contaminated catalyst and hints on a possible mechanism of passivation in vanadium passivated FCC catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Tae Jae; Jung, Gyu Il; Kim, Euk Hyun; Koo, Sang Man
2017-06-01
Development of mesoporous structures of composite silica particles with various organic functional groups was investigated by using a two-step process, consisting of one-pot sol-gel process in the presence and absence of ammonium hydroxide and a selective dissolution process with an ethanol-water mixture. Five different organosilanes, including methyltrimethoxysilane (MTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), and 3-aminopropyltrimethoxysilane (APTMS) were employed. The mesoporous (organically modified silica) ORMOSIL particles were obtained even in the absence of ammonium hydroxide when the reaction mixture contained APTMS. The morphology of the particles, however, were different from those prepared with ammonia catalyst and the same organosilane mixtures, probably because the overall hydrolysis/condensation rates became slower. Co-existence of APTMS and VTMS was essential to prepare mesoporous particles from ternary organosilane mixtures. The work presented here demonstrates that organosilica particles with desired functionality and desired mesoporous structures can be obtained by selecting proper types of organosilane monomers and performing a facile and mild process either with or without ammonium hydroxide.
Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties
Variola, Fabio; Zalzal, Sylvia Francis; Leduc, Annie; Barbeau, Jean; Nanci, Antonio
2014-01-01
Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting. PMID:24872694
Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts
NASA Astrophysics Data System (ADS)
Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.
2012-11-01
The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.
2017-01-01
The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively. PMID:28547995
Balzer, Christian; Waag, Anna M; Gehret, Stefan; Reichenauer, Gudrun; Putz, Florian; Hüsing, Nicola; Paris, Oskar; Bernstein, Noam; Gor, Gennady Y; Neimark, Alexander V
2017-06-06
The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N 2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.
Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr).
Demessence, Aude; Horcajada, Patricia; Serre, Christian; Boissière, Cédric; Grosso, David; Sanchez, Clément; Férey, Gérard
2009-12-14
Stable nanoparticles dispersions of the porous hybrid MIL-101(Cr) allow dip-coating of high quality optical thin films with dual hierarchical porous structure. Moreover, for the first time, mechanical and sorption properties of mesoporous MOFs based thin films are evaluated.
NASA Astrophysics Data System (ADS)
Okhlopkova, Lyudmila B.; Kerzhentsev, Michail A.; Tuzikov, Fedor V.; Larichev, Yurii V.; Ismagilov, Zinfer R.
2012-09-01
Nanoparticle-doped mesoporous titania coating was synthesized by incorporation of PdZn nanoparticles into TiO2 sol followed by dip coating of the sol on inner surface of fused silica capillary. Monodispersed PdZn bimetallic colloidal particles with average particle diameters of approximately 2 nm have been prepared by an ethylene glycol reduction of ZnCl2 and Pd(CH3COO)2 in the presence of polyvinylpyrrolidone. The textural properties, surface structure, chemical composition, and morphology of the samples were investigated by means of N2 sorption measurements, TEM, and X-ray diffraction. PdZn/TiO2 coating has been further analyzed by quantitative analysis of the SAXS data in combination with the density contrast method, providing direct structural-dispersion information about the active component and support. Calcination conditions suitable for surfactant removal have been optimized to obtain PdZn/TiO2 coatings with required metal particle size and composition. The high dispersion and chemical composition of the nanoparticles embedded in mesoporous titania coating have been retained with no modification after thermal treatment in vacuum at 300 °C. Results suggest how porous structure of the PdZn coating may be fine-tuned to improve the accessibility of the pores to reactants. The control of the pore size in the range of 4.9-6.8 nm of the mesoporous titania was achieved by adding co-surfactants, such as n-butanol.
NASA Astrophysics Data System (ADS)
Kowsari, Elaheh; Abdpour, Soheil
2017-12-01
A novel mesoporous structure of zinc oxide was synthesized in hydrothermal autocalve in the presence of a functional ionic liquid (FIL) {[CH2CH2] O2 (mm)2}. This FIL with ether groups was used simultaneously as a designer templating agent and a source of the hydroxyl radical. The presence of this ionic liquid led to producing ethylene glycol in the reaction media, which adsorb on the surface of mesoporous hexagonal ZnO plates. These mesoporous structures can adsorb pollutant gases and increase photocatalytic oxidation of pollutant gases in compare with commercial ZnO nanoparticles and agglomerated nanoparticles synthesized in this work. XPS data confirmed ethylene glycol production by the ionic liquid, which could prove a role for ionic liquids as designers. The estimated BET surface area values of ZnO hexagonal mesoporous plates and agglomerated particles were 84 m2/g and 12 m2/g respectively. Optical properties of the mesoporous structures were analyzed by photoluminescence spectroscopy and diffuse reflectance UV-visible spectroscopy. The performance of these structures as efficient photocatalysts was further demonstrated by their removal of NOx, SO2, and CO under UV irradiation. The removal of NOx, SO2, and CO under UV irradiation was 56%, 81%, and 35% respectively, after 40 min of irradiation time. Reusability of the photocatalyst was determined; the results show no significant decrease of activity of photocatalyst. after five cycles.
Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello; van der Made, Alexander; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Feng-Shou
2014-02-12
Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.
Serwicka, Ewa M; Bahranowski, Krzysztof; Sitarz, Maciej; Zimowska, Małgorzata; Michalik-Zym, Alicja
2016-09-27
Retraction of 'Vibrational evidence for the "missing link" in structural kinship between kanemite and FSM-16 mesoporous silica' by Ewa M. Serwicka, et al., Dalton Trans., 2016, DOI: 10.1039/C6DT01600F.
Chen, Zhonghui; Tan, Yue; Xu, Kefeng; Zhang, Lan; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan
2016-01-15
Mesoporous silica nanoparticles (MSN) based controlled release system had been coupled with diverse detection technologies to establish biosensors for different targets. Chemiluminescence (CL) system of luminol/H2O2 owns the characters of simplicity, low cost and high sensitivity, but the targets of which are mostly focused on some oxidants or which can participate in a chemical reaction that yields a product with a role in the CL reaction. In this study, chemiluminescent detection technique had been coupled with mesoporous silica-based controlled released system for the first time to develop a sensitive biosensor for the target which does not cause effect to the CL system itself. Cocaine had been chosen a model target, the MSN support was firstly loaded with glucose, then the positively charged MSN interacted with negatively charged oligonucleotides (the aptamer cocaine) to close the mesopores of MSN. At the present of target, cocaine binds with its aptamer with high affinity; the flexible linear aptamer structured will become stems structured through currently well-defined non-Waston-Crick interactions and causes the releasing of entrapped glucose into the solution. With the assistant of glucose oxidase (GOx), the released glucose can react with the dissolved oxgen to produce gluconic acid and H2O2, the latter can enhance the CL of luminol in the NaOH solution. The enhanced CL intensity has a relationship with the cocaine concentration in the range of 5.0-60μM with the detection limit of 1.43μM. The proposed method had been successfully applied to detect cocaine in serum samples with high selectivity. The same strategy can be applied to develop biosensors for different targets. Copyright © 2015 Elsevier B.V. All rights reserved.
Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in
2014-07-01
We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dyemore » loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.« less
NASA Astrophysics Data System (ADS)
Talbi, Abderazek; Kaya-Boussougou, Sostaine; Sauldubois, Audrey; Stolz, Arnaud; Boulmer-Leborgne, Chantal; Semmar, Nadjib
2017-07-01
This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.
Li, Li; Yan, Zi F; Lu, Gao Q; Zhu, Zhong H
2006-01-12
Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)3.9H2O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mnasri, Najib; Materials, Environment and Energy Laboratory; Charnay, Clarence
Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM andmore » TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hong Li; Zhang, Kun; Wang, Yi Meng, E-mail: ymwang@chem.ecnu.edu.cn
2012-07-15
Highlights: ► Mesoporous Ti-containing silica with thicker pore walls was synthesized. ► Ion-exchange and steam-assisted crystallization led to MCM-41/MFI composite. ► The introduction of Ti inhibited the formation of separated MFI particles. ► Lower temperature favored retaining mesoporous characteristics and morphology. -- Abstract: Hierarchical MCM-41/MFI composites were synthesized through ion-exchange of as-made MCM-41 type mesoporous materials with tetrapropylammonium bromide and subsequent steam-assisted recrystallization. The obtained samples were characterized by powder X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis, FT-IR, {sup 1}H–{sup 13}C CP/MAS and nitrogen adsorption–desorption. The XRD patterns show thatmore » the MCM-41/MFI composite possesses both ordered MCM-41 phase and zeolite MFI phase. SEM and TEM images indicate that the recrystallized materials retained the mesoporous characteristics and the morphology of as-made mesoporous materials without the formation of bulky zeolite, quite different from the mechanical mixture of MCM-41 and MFI structured zeolite. Among others, lower recrystallization temperature and the introduction of the titanium to the parent materials are beneficial to preserve the mesoporous structure during the recrystallization process.« less
Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium
NASA Astrophysics Data System (ADS)
Putz, Ana-Maria; Wang, Kunzhou; Len, Adél; Plocek, Jiri; Bezdicka, Petr; Kopitsa, Gennady P.; Khamova, Tamara V.; Ianăşi, Cătălin; Săcărescu, Liviu; Mitróová, Zuzana; Savii, Cecilia; Yan, Minhao; Almásy, László
2017-12-01
Mesoporous silica particles have been synthesized by sol-gel method from tetraethoxysilane (tetraethylorthosilicate, TEOS) and methyltriethoxysilane (MTES), in ethanol and water mixture, at different ratios of the of the silica precursors. Ammonia was used as catalyst at room temperature and hexadecyltrimethylammonium bromide (cetyltrimethylammonium bromide, CTAB) as the structure directing agent. Nitrogen sorption, X-ray diffraction and small-angle neutron scattering gave information on the evolution of the gel structure and pore morphologies in the function of MTES/TEOS molar ratio. Thermogravimetric and differential thermal analysis showed that with addition of MTES the exothermic peak indicating the oxidation of the low molecular weight organic fragments shift to higher temperature. A room-temperature, one-pot synthesis of MCM-41 type materials is presented, in which the variation of the MTES concentration allows to change the hydrophobicity, preserving the specific properties materials, like the ordered pore structure, large specific surface area and high porosity. Specifically, the obtained materials had cylindrical pores, specific surface areas up to 1101 m2/g and total pore volumes up to 0.473 cm3/g. The obtained mesoporous materials are susceptible for further functionalization to improve their selective uptake of guest species in drug delivery applications.
Bakhtiari, L; Rezaie, H R; Javadpour, J; Erfan, M; Shokrgozar, M A
2015-08-01
Mesoporous hydroxyapatite with different pore diameters and pore volumes were synthesized by the self-assembly method using Cetyltrimethylammonium bromide (CTAB) as the cationic surfactant and 1-dodecanethiol as the pore expander at different micellization pHs, solvent types and surfactant concentrations. Results of field emission scanning electron microscopy (FESEM) showed a decrease in length/diameter ratio of rod-like particles by an increase in micellization pH and also a sphere to rod transition in morphology by an increase in CTAB concentration. Brunauer-Emmett-Teller (BET) surface area and Low angle X-ray diffraction analysis revealed that the optimized mesoporous hydroxyapatite with controlled pore structure can be obtained under basic micellization pH (about 12, pH of complete ionization of 1-dodecanethiol) by using water as the solvent and a high content of cationic surfactant. The results also show that micellization pH has a strong effect on pore structure and changing the pH can shift the mesostructure to a macroporous structure with morphological changes. Copyright © 2015 Elsevier B.V. All rights reserved.
Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.
2013-11-15
Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Mariappan, C. R.
2018-05-01
The Ni doped ZnCo2O4 mesoporous rods were synthesized via a simple hydrothermal approach. Structural properties of the sample were characterized by means of powder X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA), scanning electron microscope and high-resolution transmission electron microscopy. The surface area of mesoporous rods Zn0.8Ni0.2Co2O4 (MPR=0.2) found to be ˜56 m2g-1 and with pore size of ˜10 nm from N2 absorption isotherm data. The crystal structure with lattice parameter of (MPR=0.2) is found to be 8.138 Å. The average crystallite size is found to be 12 nm from XRD data. TGA study reveals the phase formation temperature of sample is 450 °C. Electron microscopic studies reveal that the mesoporous rods are constituted by a plenty of nanosized crystalline particles. The electrochemical properties of the sample was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurement in three-electrode configuration with 6M KOH as the electrolyte. The specific capacitance (Cs) of (MPR=0.2) used as a working electrode found to be 2021 Fg-1 at a scan rate of 2 mVs-1. Furthermore electrochemical cycling stability of mesoporous rods is examined by GCD with different current densities. It shows maximum Cs of 628.75 Fg-1 at 2.5 Ag-1 and retention is found to be ˜96% of its initial value even after 1000 cycles.
Solar hydrogen and solar electricity using mesoporous materials
NASA Astrophysics Data System (ADS)
Mahoney, Luther
The development of cost-effective materials for effective utilization of solar energy is a major challenge for solving the energy problems that face the world. This thesis work relates to the development of mesoporous materials for solar energy applications in the areas of photocatalytic water splitting and the generation of electricity. Mesoporous materials were employed throughout the studies because of their favorable physico-chemical properties such as high surface areas and large porosities. The first project was related to the use of a cubic periodic mesoporous material, MCM-48. The studies showed that chromium loading directly affected the phase of mesoporous silica formed. Furthermore, within the cubic MCM-48 structure, the loading of polychromate species determined the concentration of solar hydrogen produced. In an effort to determine the potential of mesoporous materials, titanium dioxide was prepared using the Evaporation-Induced Self-Assembly (EISA) synthetic method. The aging period directly determined the amount of various phases of titanium dioxide. This method was extended for the preparation of cobalt doped titanium dioxide for solar simulated hydrogen evolution. In another study, metal doped systems were synthesized using the EISA procedure and rhodamine B (RhB) dye sensitized and metal doped titania mesoporous materials were evaluated for visible light hydrogen evolution. The final study employed various mesoporous titanium dioxide materials for N719 dye sensitized solar cell (DSSC) materials for photovoltaic applications. The materials were extensively characterized using powder X-ray diffraction (XRD), nitrogen physisorption, diffuse reflectance spectroscopy (DRS), UV-Vis spectroscopy, Fourier-Transform-Infrared Spectroscopy (FT-IR), Raman spectroscopy, chemisorption, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). In addition, photoelectrochemical measurements were completed using current-voltage (I-V) curves, external quantum efficiency (EQE) curves, electrochemical impedance spectroscopy (EIS), and transient spectroscopy. The thesis work presented provides a better understanding of the role of mesoporous materials for solar hydrogen and solar electricity production.
Mondal, Anjon Kumar; Su, Dawei; Chen, Shuangqiang; Ung, Alison; Kim, Hyun-Soo; Wang, Guoxiu
2015-01-19
A mesoporous flake-like manganese-cobalt composite oxide (MnCo2O4) is synthesized successfully through the hydrothermal method. The crystalline phase and morphology of the materials are characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller methods. The flake-like MnCo2O4 is evaluated as the anode material for lithium-ion batteries. Owing to its mesoporous nature, it exhibits a high reversible capacity of 1066 mA h g(-1), good rate capability, and superior cycling stability. As an electrode material for supercapacitors, the flake-like MnCo2O4 also demonstrates a high supercapacitance of 1487 F g(-1) at a current density of 1 A g(-1), and an exceptional cycling performance over 2000 charge/discharge cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.
Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi
2017-09-04
About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2 g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A review on chemical methodologies for preparation of mesoporous silica and alumina based materials.
Naik, Bhanudas; Ghosh, Narendra Nath
2009-01-01
The discovery of novel family of molecular sieves called M41S aroused a worldwide resurgence in the field of porous materials. According to IUPAC definition inorganic solids that contain pores with diameter in the size range of 20-500 A are considered mesoporous materials. Mesoporous silica and alumina based materials find applications in catalysis, adsorption, host- guest encapsulation etc. This article reviews the current state of art and outline the recent patents in mesoporous materials research in three general areas: Synthesis, various mechanisms involved for porous structure formation and applications of silica and alumina based mesoporous materials.
Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery
NASA Astrophysics Data System (ADS)
Gao, Lin; Sun, Jihong; Li, Yuzhen
2011-08-01
The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.
Tian, Hao; Zhu, Shuyan; Xu, Fugui; Mao, Wenting; Wei, Hao; Mai, Yiyong; Feng, Xinliang
2017-12-20
The development of versatile strategies toward two-dimensional (2D) porous nanocomposites with tunable pore structures draws immense scientific attention in view of their attractive physiochemical properties and a wide range of promising applications. This paper describes a self-assembly approach for the directed growth of mesoporous polyaniline (PANi) with tunable pore structures and sizes on ultrathin freestanding MoS 2 nanosheets in solution, which produces 2D mesoporous PANi/MoS 2 nanocomposites. The strategy employs spherical and cylindrical micelles, which are formed by the controlled solution self-assembly of block copolymers, as the soft templates for the construction of well-defined spherical and cylindrical mesopores in the 2D PANi/MoS 2 nanocomposites, respectively. With potential applications as supercapacitor electrode materials, the resultant 2D composites show excellent capacitive performance with a maximum capacitance of 500 F g -1 at a current density of 0.5 A g -1 , good rate performance, as well as outstanding stability for charge-discharge cycling. Moreover, the 2D mesoporous nanocomposites offer an opportunity for the study on the influence of different pore structures on their capacitive performance, which helps to understand the pore structure-property relationship of 2D porous electrode materials and to achieve their electrochemical performance control.
Zhang, Jinfeng; Zhang, Jun; Li, Wenyue; Chen, Rui; Zhang, Zhenyu; Zhang, Wenjun; Tang, Yongbing; Chen, Xiaoyuan; Liu, Gang; Lee, Chun-Sing
2017-01-01
The development of nanoscaled theranostic agents for cancer combination therapies has received intensive attention in recent years. In this report, a degradable hollow mesoporous PEG-Si/C-DOX NP is designed and fabricated for pH-responsive, photoacoustic imaging-guided highly effective chemo-thermal combination therapy. The intrinsic hollow mesoporous structure endows the as-synthesized nanoparticles (NPs) with a high drug loading capacity (31.1%). Under NIR (808 nm) irradiation, the photothermal conversion efficiency of the Si/C NPs is as high as 40.7%. Preferential accumulation of the PEG-Si/C-DOX NPs around tumor tissue was demonstrated with photoacoustic images. Cellular internalization of the NPs and release of the DOX in nuclei are shown with fluorescent images. With efficient NIR photothermal conversion and high DOX loading capacity, the PEG-Si/C-DOX NPs are demonstrated to have remarkable cancer-cell-killing ability and to achieve complete in vivo tumor elimination via combinational chemo-thermal therapy. Last but not least, the NPs show good biodegradability and biosafety, making them a promising candidate for multifunctional drug delivery and cancer theranostic. PMID:28839460
Mesoporous ZrO2 fibers with enhanced surface area and the application as recyclable absorbent
NASA Astrophysics Data System (ADS)
Yu, Zhichao; Liu, Benxue; Zhou, Haifeng; Feng, Cong; Wang, Xinqiang; Yuan, Kangkang; Gan, Xinzhu; Zhu, Luyi; Zhang, Guanghui; Xu, Dong
2017-03-01
Highly crystalline mesoporous zirconia fibers with high surface area have been prepared by the use of electrospinning combined with precursors method. The obtained precursor fibers were treated in water steam and directly in air at different temperature respectively. Compared with the direct calcination in air, the water steam cannot only promote the crystallization of ZrO2 but also effectively remove off the organics and prevent the pore structure collapse. Moreover, through adding hydrochloric acid to modify the solution pH value, the obtained t-ZrO2 fibers treated in water steam at 300 °C have high surface area and large pore volume of 232.70 m2 g-1 and 0.36 cm3 g-1. The formation mechanism of the mesostucture was studied and the schematic was represented. Compared with the previous reports of mesoporous ZrO2 fibers, the as-synthesized materials exhibited the high crystallinity, large surface area and the long-range order mesostructure.The adsorption of Congo red indicates that the samples have a high adsorption capacity of 103.46 mg g-1 and long-periodic repeated availability.
NASA Astrophysics Data System (ADS)
Liou, Tzong-Horng
2012-07-01
The electronics industry is one of the world's fastest growing manufacturing industries. However, e-waste has become a serious pollution problem. This study reports the recovery of e-waste for preparing valuable MCM-48 and ordered mesoporous carbon for the first time. Specifically, this study adopts an alkali-extracted method to obtain sodium silicate precursors from electronic packaging resin ash. The influence of synthesis variables such as gelation pH, neutral/cationic surfactant ratio, hydrothermal treatment temperature, and calcination temperature on the mesophase of MCM-48 materials is investigated. Experimental results confirm that well-ordered cubic MCM-48 materials were synthesized in strongly acidic and strongly basic media. The resulting mesoporous silica had a high surface area of 1,317 m2/g, mean pore size of about 3.0 nm, and a high purity of 99.87 wt%. Ordered mesoporous carbon with high surface area (1,715 m2/g) and uniform pore size of CMK-1 type was successfully prepared by impregnating MCM-48 template using the resin waste. The carbon structure was sensitive to the sulfuric acid concentration and carbonization temperature. Converting e-waste into MCM-48 materials not only eliminates the disposal problem of e-waste, but also transforms industrial waste into a useful nanomaterial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com
Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction andmore » increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.« less
Co-synthesis and drug delivery properties of mesoporous hydroxyapatite-silica composites.
Zhao, Y F; Loo, S C J; Ma, J
2009-06-01
In this work, mesoporous hydroxyapatite-silica (HA-silica) composite materials with four different Si:Ca:P ratios were sol-gel derived through self-assembly using triblock copolymer Pluronics P123 as template. The composition and mesoporous structure formed were characterized by X-ray diffraction and electron microscopy. The XRD patterns indicated that the intensity of the HA phase becomes stronger as the Ca/Si ratio of the composite increases. From nitrogen gas analysis at 77 K, type IV isotherm plots for typical mesoporous materials were observed for all of the samples. However, the mesoporous structure of HA-silica tends to becomes less ordered as the Ca/Si ratio increases. Promising consistency between the pore sizes from the Barrett, Joyner and Halenda (BJH) method, Transmission Electron Microscopy (TEM) and Small Angle X-ray diffraction (SAXRD) was also observed. The formation mechanism of mesoporous HA-silica composites was proposed, where the interaction between the crystallization of HA and the surfactant liquid crystal determines the regularity of the meso-structure. In vitro drug loading and release studies showed that drug loading capacity is dependent on the pore volume of the sample, and the mesoporosity of the samples were responsible for the sustained release of drugs. In vitro cell culture of the samples showed promising biocompatibility where osteosarcoma cells were observed to grow favourably on the synthesized composites.
Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongdong, E-mail: lidongdong@jlu.edu.cn; Yu, Xiang
Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N{sub 2} adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×10{sup 6} M{sup −1} and 0.3 ppm in water solution. More importantly, the materials can be recycled for manymore » times by simply washed with ethanol, showing potential applications in explosives detection. - Graphical abstract: Electron-rich of anthracene functionalized mesoporous aluminium organophosphonates can serve as sensitive and recycled chemosensors for nitroderivatives with the quenching constant up to 1.5×10{sup 6} M{sup −1} in water solution. Display Omitted - Highlights: • Anthracene functionalized mesoporous aluminium organophosphonates were synthesized. • The materials serve as sensitive chemosensors for nitroderivatives. • The materials can be recycled for many times by simply washed with ethanol. • The materials show potential applications in explosives detection.« less
Structure of water in mesoporous organosilica by calorimetry and inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Levy, Esthy; Kolesnikov, Alexander I.; Li, Jichen; Mastai, Yitzhak
2009-01-01
In this paper, we describe the preparation of mesoporous organosilica samples with hydrophilic or hydrophobic organic functionality inside the silica channel. We synthesized mesoporous organosilica of identical pore sizes based on two different organic surface functionality namely hydrophobic (based on octyltriethoxysilane OTES) and hydrophilic (3-aminopropyltriethoxysilane ATES) and MCM-41 was used as a reference system. The structure of water/ice in those porous silica samples have been investigated over a range temperatures by differential scanning calorimetry (DSC) and inelastic neutron scattering (INS). INS study revealed that water confined in hydrophobic mesoporous organosilica shows vibrational behavior strongly different than bulk water. It consists of two states: water with strong and weak hydrogen bonds (with ratio 1:2.65, respectively), compared to ice-Ih. The corresponding O-O distances in these water states are 2.67 and 2.87 Ǻ, which strongly differ compared to ice-Ih (2.76 Ǻ). INS spectra for water in hydrophilic mesoporous organosilica ATES show behavior similar to bulk water, but with greater degree of disorder.
Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts
NASA Astrophysics Data System (ADS)
Milina, Maria; Mitchell, Sharon; Crivelli, Paolo; Cooke, David; Pérez-Ramírez, Javier
2014-05-01
Deactivation due to coking limits the lifetime of zeolite catalysts in the production of chemicals and fuels. Superior performance can be achieved through hierarchically structuring the zeolite porosity, yet no relation has been established between the mesopore architecture and the catalyst lifetime. Here we introduce a top-down demetallation strategy to locate mesopores in different regions of MFI-type crystals with identical bulk porous and acidic properties. In contrast, well-established bottom-up strategies as carbon templating and seed silanization fail to yield materials with matching characteristics. Advanced characterization tools capable of accurately discriminating the mesopore size, distribution and connectivity are applied to corroborate the concept of mesopore quality. Positron annihilation lifetime spectroscopy proves powerful to quantify the global connectivity of the intracrystalline pore network, which, as demonstrated in the conversions of methanol or of propanal to hydrocarbons, is closely linked to the lifetime of zeolite catalysts. The findings emphasize the need to aptly tailor hierarchical materials for maximal catalytic advantage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryxell, Glen E.; Mattigod, Shas V.; Lin, Yuehe
2007-07-01
Water, and water quality, are issues of critical importance to the future of humankind. The Earth’s water supplies have been contaminated by a wide variety of industrial, military and natural sources. The need exists for an efficient separation technology to remove heavy metal and radionuclide contamination from water. Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to build high efficiency environmental sorbents. These nanoporous ceramics condense a huge amount of surface area into a very small volume. These mesoporous architectures can be subsequently functionalized through molecular self-assembly. These functional mesoporous materials offer significant capabilities in termsmore » of removal of heavy metals and radionuclides from a variety of liquid media, including groundwater, contaminated oils and contaminated chemical weapons. They are highly efficient sorbents, whose rigid, open pore structure allows for rapid, efficient sorption kinetics. Their interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. This manuscript provides a review of the design, synthesis and performance of the sorbent materials. The role that ligand posture plays in the chemistry of these interfacial ligand fields is discussed.« less
Alcohols react with MCM-41 at room temperature and chemically modify mesoporous silica.
Björklund, Sebastian; Kocherbitov, Vitaly
2017-08-30
Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.
Multifunctional materials such as MCM-41÷Fe3O4÷folic acid as drug delivery system.
Popescu, Simona; Ardelean, Ioana Lavinia; Gudovan, Dragoş; Rădulescu, Marius; Ficai, Denisa; Ficai, Anton; Vasile, Bogdan Ştefan; Andronescu, Ecaterina
2016-01-01
In this study, MCM-41 mesoporous silica nanoparticles (NPs) and MCM-41÷Fe3O4 mesoporous silica NPs were prepared by sol-gel method using CTAB (cetyltrimethylammonium bromide) as template and TEOS (tetraethyl orthosilicate) as silica precursor in order to use these materials as drug delivery system (DDS) for different biologically active agents. The MCM-41 and MCM-41÷Fe3O4 mesoporous silica NPs were characterized using specific physico-chemical methods [transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption and desorption studies - BET (Brunauer-Emmett-Teller) method, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy], while the release studies were done by a high-performance liquid chromatography (HPLC)-modified method. The pH dependence of the delivery of folic acid from the mesoporous structures was analyzed and found that the release is pH sensitive. The lower delivery at strongly acid pH comparing with neutral/slightly alkaline pH could be beneficial because in stomach the folic acid can be destroyed.
NASA Astrophysics Data System (ADS)
Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev
2015-04-01
Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.
Peinetti, Ana S; Mizrahi, Martín; Requejo, Félix G; Buceta, David; López-Quintela, M Arturo; González, Graciela A; Battaglini, Fernando
2018-04-15
Non-noble metal nanoclusters synthesis is receiving increased attention due to their unique catalytic properties and lower cost. Herein, the synthesis of ligand-free Ni nanoclusters with an average diameter of 0.7 nm corresponding to a structure of 13 atoms is presented; they exhibit a zero-valence state and a high stability toward oxidation and thermal treatment. The nanoclusters formation method consists in the electroreduction of nickel ions inside an ordered mesoporous alumina; also, by increasing the current density, other structures can be obtained reaching to nanowires of 10 nm diameter. A seed-mediated mechanism is proposed to explain the growth to nanowires inside these mesoporous cavities. The size dependence on the catalytic behavior of these entities is illustrated by studying the reduction of methylene blue where the nanoclusters show an outstanding performance. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Jun; Xiao, Dejian; Chen, Chang Li; Luo, Qiaomei; Yu, Yue; Zhou, Junhao; Guo, Changding; Li, Kai; Ma, Jie; Zheng, Lirong; Zuo, Xia
2018-02-01
In this work, a category of Fe3C-containing Fe/N/C mesoporous material has been fabricated by carbonizing the mixture of uric acid, Iron (Ⅲ) chloride anhydrous and carbon support (XC-72) under different pyrolysis temperature. Of all these samples, pyrolysis temperature (800 °C) becomes the most crucial factor in forming Fe3C active sites which synergizes with high content of graphitic N to catalyze oxygen reduction reaction (ORR). X-ray absorption fine structure spectroscopy (XAFS) is used to exhibit that the space structure around Fe atoms in the catalyst. This kind of catalyst possesses comparable ORR properties with commercial 20% Pt/C (onset potential is 0 V vs. Ag/AgCl in 0.1 M KOH), the average transfer electron number is 3.84 reflecting the 4-electron process. Moreover, superior stability and methanol tolerance deserve to be mentioned.
Chen, Yu; Shi, Jianlin
2016-05-01
Organic-inorganic hybrid materials aiming to combine the individual advantages of organic and inorganic components while overcoming their intrinsic drawbacks have shown great potential for future applications in broad fields. In particular, the integration of functional organic fragments into the framework of mesoporous silica to fabricate mesoporous organosilica materials has attracted great attention in the scientific community for decades. The development of such mesoporous organosilica materials has shifted from bulk materials to nanosized mesoporous organosilica nanoparticles (designated as MONs, in comparison with traditional mesoporous silica nanoparticles (MSNs)) and corresponding applications in nanoscience and nanotechnology. In this comprehensive review, the state-of-art progress of this important hybrid nanomaterial family is summarized, focusing on the structure/composition-performance relationship of MONs of well-defined morphology, nanostructure, and nanoparticulate dimension. The synthetic strategies and the corresponding mechanisms for the design and construction of MONs with varied morphologies, compositions, nanostructures, and functionalities are overviewed initially. Then, the following part specifically concentrates on their broad spectrum of applications in nanotechnology, mainly in nanomedicine, nanocatalysis, and nanofabrication. Finally, some critical issues, presenting challenges and the future development of MONs regarding the rational synthesis and applications in nanotechnology are summarized and discussed. It is highly expected that such a unique molecularly organic-inorganic nanohybrid family will find practical applications in nanotechnology, and promote the advances of this discipline regarding hybrid chemistry and materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scalable synthesis of mesoporous titania microspheres via spray-drying method.
Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan
2016-10-01
Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications. Copyright © 2016. Published by Elsevier Inc.
Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang
2009-01-01
Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai
2018-01-01
For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.
Functional mesoporous silica nanoparticles for bio-imaging applications.
Cha, Bong Geun; Kim, Jaeyun
2018-03-22
Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
Naboulsi, Issam; Lebeau, Bénédicte; Michelin, Laure; Carteret, Cédric; Vidal, Loic; Bonne, Magali; Blin, Jean-Luc
2017-01-25
The one pot synthesis of dual mesoporous titania (2.3 and 7.7 nm) has been achieved from a mixture of fluorinated and Pluronic surfactants. The small and large mesopore networks are templated, respectively, by a fluorinated-rich liquid crystal and a Pluronic-rich liquid crystal, which are in equilibrium. After calcination at 350 °C, the amorphous walls are transformed into semicrystalline anatase preserving the mesoporous structure. Results concerning the photodegradation of methyl orange using the calcined photocatalysts highlight that the kinetic rate constant (k) determined for the dual mesoporous titania is 2.6 times higher than the k value obtained for the monomodal ones.
Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng
2015-12-01
Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu
2014-12-01
Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.
Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu
2014-12-19
Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications.
Huang, Xiaodan; Zhao, Yufei; Ao, Zhimin; Wang, Guoxiu
2014-01-01
Synthesis of mesoporous graphene materials by soft-template methods remains a great challenge, owing to the poor self-assembly capability of precursors and the severe agglomeration of graphene nanosheets. Herein, a micelle-template strategy to prepare porous graphene materials with controllable mesopores, high specific surface areas and large pore volumes is reported. By fine-tuning the synthesis parameters, the pore sizes of mesoporous graphene can be rationally controlled. Nitrogen heteroatom doping is found to remarkably render electrocatalytic properties towards hydrogen evolution reactions as a highly efficient metal-free catalyst. The synthesis strategy and the demonstration of highly efficient catalytic effect provide benchmarks for preparing well-defined mesoporous graphene materials for energy production applications. PMID:25523276
Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Tringe, Joseph; Castro, Ricardo H R; Faller, Roland; Stroeve, Pieter
2016-11-08
Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 ± 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N 2 , Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.
High-pressure synthesis of mesoporous stishovite: potential applications in mineral physics
NASA Astrophysics Data System (ADS)
Stagno, Vincenzo; Mandal, Manik; Landskron, Kai; Fei, Yingwei
2015-06-01
Recently, we have described a successful synthesis route to obtain mesoporous quartz and its high-pressure polymorph coesite by nanocasting at high pressure using periodic mesostructured precursors, such as SBA-16 and FDU-12/carbon composite as starting materials. Periodic mesoporous high-pressure silica polymorphs are of particular interest as they combine transport properties and physical properties such as hardness that potentially enable the industrial use of these materials. In addition, synthesis of mesoporous crystalline silica phases can allow more detailed geology-related studies such as water/mineral interaction, dissolution/crystallization rate and the surface contribution to the associated thermodynamic stability (free energy and enthalpy) of the various polymorphs and their crossover. Here, we present results of synthesis of mesoporous stishovite from cubic large-pore periodic mesoporous silica LP-FDU-12/C composite as precursor with an fcc lattice. We describe the synthesis procedure using multi-anvil apparatus at 9 GPa (about 90,000 atm) and temperature of 500 °C. The synthetic mesoporous stishovite is, then, characterized by wide and small-angle X-ray diffraction, scanning/transmission electron microscopy and gas adsorption. Results show that this new material is characterized by accessible mesopores with wide pore size distribution, surface area of ~45 m2/g and volume of pores of ~0.15 cm3/g. Results from gas adsorption indicate that both porosity and permeability are retained at the high pressures of synthesis but with weak periodic order of the pores.
Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides
2015-01-01
Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534
Fabrication of mesoporous silica for ultra-low-k interlayer dielectrics
NASA Astrophysics Data System (ADS)
Fujii, Nobutoshi; Kohmura, Kazuo; Nakayama, Takahiro; Tanaka, Hirofumi; Hata, Nobuhiro; Seino, Yutaka; Kikkawa, Takamaro
2005-11-01
We have developed sol-gel self-assembly techniques to control the pore structure and diameter of ultra-low-k interlayer dielectric (ILD) films. Porous silica films have been fabricated using cationic and nonionic surfactants as templates, resulting in 2D-hexagonal and disordered pore structures, respectively. The disordered mesoporous silica film has a worm-hole like network of pore channels having a uniform diameter. Precursors of the mesoporous silica films were synthesized by use of tetraethyl-orthosilicate (TEOS), inorganic acid, water, ethanol and various surfactants. The surfactants used were cationic alkyltrimethyl-ammonium (ATMA) chloride surfactants for 2D-hexagonal pores and nonionic tri-block copolymer for disordered structures. Dimethyldiethoxysilane (DMDEOS) was added for forming the disordered mesoporous silica. The disordered cylindrical pore structure with a uniform pore size was fabricated by controlling the static electrical interaction between the surfactant and the silica oligomer with methyl group of DMDEOS. Tetramethylcycrotetrasiloxane (TMCTS) vapor treatment was developed, which improved the mechanical strength of mesoporous silica films. The TMCTS polymer covered the pore wall surface and cross-linked to passivate the mechanical defects in the silica wall. Significant enhancement of mechanical strength was demonstrated by TMCTS vapor treatment. The porous silica film modified with a catalyst and a plasma treatment achieved higher mechanical strength and lower dielectric constant than conventional porous silica films because the TMCTS vapor treatment was more effective for mechanical reinforcement and hydrophobicity.
Ji, Guipeng; Yang, Zhenzhen; Zhang, Hongye; Zhao, Yanfei; Yu, Bo; Ma, Zhishuang; Liu, Zhimin
2016-08-08
The synthesis of hierarchically mesoporous polymers with multiple functionalities is challenging. Herein we reported a template-free strategy for synthesis of phenolic azo-polymers with hierarchical porous structures based on diazo-coupling reaction in aqueous solution under mild conditions. The resultant polymers have surface areas up to 593 m(2) g(-1) with the mesopore ratio of >80 %, and a good ability to complex with metal ions, such as Cu(2+) , Zn(2+) ,Ni(2+) , achieving a metal loading up to 26.24 wt %. Moreover, the polymers complexed with Zn showed excellent performance for catalyzing the reaction of CO2 with epoxide, affording a TOF of 2570 h(-1) in the presence of tetrabutyl ammonium bromide (7.2 mol %). The polymer complexed with Cu could catalyze the oxidation of alcohol with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wet powder processing of sol-gel derived mesoporous silica-hydroxyapatite hybrid powders.
Andersson, Jenny; Johannessen, Espen; Areva, Sami; Järn, Mikael; Lindén, Mika
2006-08-01
This paper describes a method by which a porous silica coating layer can be obtained on different apatite particles through a simple sol-gel synthesis route. Sol-gel derived powders of hydroxyapatite (HAP) and beta tricalciumphosphate (beta-TCP) were coated with a mesoporous silica using C16TAB (hexadecyltrimethylammonium bromide) as a template in order to induce mesophase formation. Further calcination of the material removes the template from the mesophase and leaves a highly ordered hexagonal arranged mesoporous silica structure with a core of HAP/beta-TCP. The phase purity of the SiO2/apatite composites has been thoroughly investigated by the means of FT-IR, XRD, and solid state 31P MAS NMR. The phase purity of these materials is shown to be dependent on the solubility properties of the used apatites. The hybrid materials are suitable as a multifunctional biomaterial where osteoconductive properties can be combined with drug delivery.
Wang, Xinwei; Tian, Hongwei; Cui, Xiaoqiang; Zheng, Weitao; Liu, Yichun
2014-09-14
We successfully synthesized mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide (Z(x)CSG) hybrid materials as photocatalysts using a facile one-pot hydrothermal reaction, in which graphene oxide (GO) was easily reduced (RGO), and simultaneously Zn(x)Cd(1-x)S (Z(x)CS) nanoparticles (NPs) with a mesoporous structure were uniformly dispersed on the RGO sheets. By well tuning the band gap from 3.42 to 2.21 eV by changing the molar ratio of Zn/Cd (or Zn content), Z(x)CSG with an optimal zinc content has been found to have a significant absorption in the visible light (VL) region. In addition, under VL irradiation (λ > 420 nm), Z(x)CSG also showed zinc content-dependent photocatalytic efficiencies for the degradation of methylene blue (MB). Our findings are that, among Z(x)CSG, Z(0.4)CSG displayed not only a superior photodegradation efficiency of MB (98%), but also good removal efficiency of total organic carbon (TOC) (67%). Furthermore, Z(0.4)CSG had a high photocatalytic stability, and could be used repeatedly. The enhanced photocatalytic activity for Z(0.4)CSG could be attributed to a synergistic effect between mesoporous Z(x)CS NPs and RGO, including the optimal band gap and the moderate conduction band position for ZxCS (compared to CdS), efficient separation and transfer ability of photogenerated electron/hole pairs in the presence of RGO sheets, and relatively high surface area for both mesoporous Z(x)CS NPs and RGO.
Novel organic-inorganic hybrid mesoporous materials and nanocomposites
NASA Astrophysics Data System (ADS)
Feng, Qiuwei
Organic-inorganic hybrid mesoporous materials have been prepared successfully via the nonsurfactant templated sol-gel pathway using dibenzoyl-L-tartaric acid (DBTA) as the templating compound. Styrene and methyl methacrylate polymers have been incorporated into the mesoporous silica matrix on the molecular level. The synthetic conditions have been systematically studied and optimized. Titania based mesoporous materials have also been made using nonionic polyethylene glycol surfactant as the pore forming or structure-directing agent. In all of the above mesoporous materials, pore structures have been studied in detail by Transmission Electron Microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) characterizations. The relationship between the template concentration and the pore parameters has been established. This nonsurfactant templated pathway possesses many advantages over the known surfactant approaches such as low cost, environment friendly and biocompatability. To overcome the drawback of nonsurfactant templated mesoporous materials that lack a well ordered pore structure, a flow induced synthesis has been attempted to orientate the sol-gel solution in order to obtain aligned pore structures. The versatility of this nonsurfactant templated pathway can even be extended to the making of organic-inorganic hybrid nanocomposite materials. On the basis of this approach, polymer-silica nanocomposite materials have been prepared using a polymerizable template. It is shown that the organic monomer such as hydroxyethyl methacrylate can act as a template in making nanoporous silica materials and then be further polymerized through a post synthesis technique. The properties and morphology of this new material have been studied by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Infrared Absorption Spectroscopy (FTIR). Electroactive organic-inorganic hybrid materials have also been synthesized via the sol-gel process. A coupling agent was used to covalently bond the organic and inorganic species. The morphology and conductivity of the products have been investigated.
Helal-Neto, Edward; Cabezas, Santiago Sánchez; Sancenón, Félix; Martínez-Máñez, Ramón; Santos-Oliveira, Ralph
2018-05-10
The use of monoclonal antibodies (Mab) in the current medicine is increasing. Antibody-drug conjugates (ADCs) represents an increasingly and important modality for treating several types of cancer. In this area, the use of Mab associated with nanoparticles is a valuable strategy. However, the methodology used to calculate the Mab entrapment, efficiency and content is extremely expensive. In this study we developed and tested a novel very simple one-step methodology to calculate monoclonal antibody entrapment in mesoporous silica (with magnetic core) nanoparticles using the radiolabeling process as primary methodology. The magnetic core mesoporous silica were successfully developed and characterised. The PXRD analysis at high angles confirmed the presence of magnetic cores in the structures and transmission electron microscopy allowed to determine structures size (58.9 ± 8.1 nm). From the isotherm curve, a specific surface area of 872 m 2 /g was estimated along with a pore volume of 0.85 cm 3 /g and an average pore diameter of 3.15 nm. The radiolabeling process to proceed the indirect determination were well-done. Trastuzumab were successfully labeled (>97%) with Tc-99m generating a clear suspension. Besides, almost all the Tc-99m used (labeling the trastuzumab) remained trapped in the surface of the mesoporous silica for a period as long as 8 h. The indirect methodology demonstrated a high entrapment in magnetic core mesoporous silica surface of Tc-99m-traztuzumab. The results confirmed the potential use from the indirect entrapment efficiency methodology using the radiolabeling process, as a one-step, easy and cheap methodology. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Haoxuan; Deng, Kaimo; Zhu, Yayun; Liao, Min; Xiong, Jie; Li, Yanrong; Li, Liang
2018-05-22
Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron-transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony-doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two-step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer-scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high-quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high-efficiency PSCs from the aspect of carrier transport and recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Po-Wen
The dissertation begins with Chapter 1, which is a general introduction of the fundamental synthesis of mesoporous silica materials, the selective functionlization of mesoporous silica materials, and the synthesis of nanostructured porous materials via nanocasting. In Chapter 2, the thermo-responsive polymer coated mesoporous silica nanoparticles (MSN) was synthesized via surface-initated polymerization and exhibited unique partition activities in a biphasic solution with the thermally induced change. In Chapter 3, the monodispersed spherical MSN with different mesoporous structure (MCM-48) was developed and employed as a template for the synthesis of mesoporous carbon nanoparticles (MCN) via nanocasting. MCN was demonstrated for the deliverymore » of membrane impermeable chemical agents inside the cells. The cellular uptake efficiency and biocompabtibility of MCN with human cervical cancer cells were also investigated. In addition to the biocompabtibility of MCN, MCN was demonstrated to support Rh-Mn nanoparticles for catalytic reaction in Chapter 4. Owing to the unique mesoporosity, Rh-Mn nanoparticles can be well distributed inside the mesoporous structure and exhibited interesting catalytic performance on CO hydrogenation. In Chapter 5, the synthesis route of the aforementioned MCM-48 MSN was discussed and investigated in details and other metal oxide nanoparticles were also developed via nanocasting by using MCM-48 MSN as a template. At last, there is a general conclusion summarized in Chapter 6.« less
Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa
2013-11-01
Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases
Lee, Jong Suk; Koros, William J.; Bhuwania, Nitesh; Hillesheim, Patrick C.; Dai, Sheng
2016-01-12
A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure. In particular embodiments thereof, cooling water is passed through the refractory hollow fibers containing the IL-functionalized sorbent particles in order to facilitate capture of the gaseous electrophilic species, and then steam is passed through the refractory hollow fibers to facilitate release of the gaseous electrophilic species such that the composite structure can be re-used to capture additional gas.
Synthesis and characterization of mesoporous zirconia and aluminated mesoporous zirconia
NASA Astrophysics Data System (ADS)
Zhao, Elizabeth Sun
Synthesis of mesoporous zirconia has been performed by slowly hydrolyzing zirconium propoxide in the presence of anionic surfactants: namely, dodecyl phosphate or sulfate (P12 and Sf12) and hexadecyl sulfonate (So16) The zirconia. outgassed at 140--150°C has T-plot surface areas higher than 400 M2/g. This outgassing does not remove the surfactant. After calcination in air at 500°C and combustion of the surfactant, the mesoporous volume is reduced by a factor of about 2, whereas the pore wall material crystallizes in the tetragonal phase. The high-resolution electron microscopic study reveals the presence of a disorganized network of polygonal pores structure. It is suggested that the chemistry of the hydrolysis solution is instrumental in determining the pore structure. A schematic model in which the surfactant is a scaffold component is suggested in order to explain these results and the fixation of PO4, or SO4 in the walls may help to preserve the porous structure. It is very different from the templating mechanism. From the density obtained from phase transition temperature, and from the mesoporous volume (N2 adsorption), the thickness of the wall can be calculated as well as the pseudo-length of the pores. From the thickness, the T-plot area can be recalculated and agrees well with the measured T-plot surface area for the sample calcined at 500°C. Around 900°C, the walls become thicker and crystallizes into monoclinic zirconia without pore structure. In order to try to modify, the acidity of the mesoporous sulfated and oxo-phosphated zirconia, they were doped with aluminum. The sulfated zirconia only has a coating layer of amorphous alumina, while the phosphated zirconia has aluminum in the lattice and the alumina coat. A maximum ratio of Al/Zr ˜ 0.04 can be reached in the lattice. The introduction of aluminum into the lattice prevents the crystallization of the oxo-phosphate at 900°C, and helps to preserve the surface area and porosity of the sulfated zirconia above 500°C. However the acidity was not modified by doping. The comparison of the effects of adsorbing water or ammonia on the infrared bands between 1400 and 1000 cm-1 suggests that, besides structural Lewis sites on the surface of ZrO2, the strong Lewis sites are made from chemisorbed SO3. Upon adsorption of water, SO3 is converted, probably, into HSO4 which may act as strong Bronsted sites. At moderate surface hydration, both SO 3 and HSO4, may coexist. The catalytic activity in the isomerization of isobutane is a function of the overall nominal surface density of SO 4. The acid sites on the surface of phosphated mesoporous zirconia are attributable to surface P-OH groups working, as weak Bronsted sites.
Bai, Hua; Li, Xinshi; Hu, Chao; Zhang, Xuan; Li, Junfang; Yan, Yan; Xi, Guangcheng
2013-01-01
Mesoporous nanostructures represent a unique class of photocatalysts with many applications, including splitting of water, degradation of organic contaminants, and reduction of carbon dioxide. In this work, we report a general Lewis acid catalytic template route for the high–yield producing single– and multi–component large–scale three–dimensional (3D) mesoporous metal oxide networks. The large-scale 3D mesoporous metal oxide networks possess large macroscopic scale (millimeter–sized) and mesoporous nanostructure with huge pore volume and large surface exposure area. This method also can be used for the synthesis of large–scale 3D macro/mesoporous hierarchical porous materials and noble metal nanoparticles loaded 3D mesoporous networks. Photocatalytic degradation of Azo dyes demonstrated that the large–scale 3D mesoporous metal oxide networks enable high photocatalytic activity. The present synthetic method can serve as the new design concept for functional 3D mesoporous nanomaterials. PMID:23857595
Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.
Shadjou, Nasrin; Hasanzadeh, Mohammad
2015-10-01
Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Park, Seok-Hwan; Lee, Wan-Jin
2015-01-01
Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615
NASA Astrophysics Data System (ADS)
Jiang, Tingshun; Huang, Qiuyan; Li, Yingying; Fang, Minglan; Zhao, Qian
2018-02-01
Mesoporous molecular sieve (SBA-15) was modified using the trimethylchlorosilane as functional agent and the silylation SBA-15 mesoporous material was prepared in this work. The alcohol solution of perfluorinated sulfonic acid dissolved from the waste perfluorinated sulfonic acid ion exchange membrane (PFSIEM) was loaded onto the resulting mesoporous material by the impregnation method and their physicochemical properties were characterized by FT-IR, N2-physisorption, XRD, TG-DSC and TEM. The catalytic activities of these synthesized solid acid catalysts were evaluated by alkylation of phenol with tert-butyl alcohol. The influence of reaction temperature, weight hour space velocity (WHSV) and reaction time on the phenol conversion and product selectivity were assessed by means of a series of experiments. The results showed that with the increase of the active component of the catalyst, these catalysts still remained good mesoporous structure, but the mesoporous ordering decreased to some extent. These catalysts exhibited good catalytic performance for the alkylation of phenol with tert-butanol. The maximum phenol conversion of 89.3% with 70.9% selectivity to 4-t-butyl phenol (4-TBP) was achieved at 120 °C and the WHSV is 4 h-1. The methyl group was loaded on the surface of the catalyst by trimethylchlorosilane. This is beneficial to retard the deactivation of the catalyst. In this work, the alkylation of phenol with tert-butyl alcohol were carried out using the methyl modified SBA-15 mesoporous materials loaded perfluorinated sulfonic acid as catalysts. The results show that the resulting catalyst exhibited high catalytic activity.
NASA Astrophysics Data System (ADS)
Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen
2016-07-01
As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.
Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu
2018-05-23
Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.
Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan
2016-01-07
Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.
Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki
2012-03-21
Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.
Rational design of mesoporous metals and related nanomaterials by a soft-template approach.
Yamauchi, Yusuke; Kuroda, Kazuyuki
2008-04-07
We review recent developments in the preparation of mesoporous metals and related metal-based nanomaterials. Among the many types of mesoporous materials, mesoporous metals hold promise for a wide range of potential applications, such as in electronic devices, magnetic recording media, and metal catalysts, owing to their metallic frameworks. Mesoporous metals with highly ordered networks and narrow pore-size distributions have traditionally been produced by using mesoporous silica as a hard template. This method involves the formation of an original template followed by deposition of metals within the mesopores and subsequent removal of the template. Another synthetic method is the direct-template approach from lyotropic liquid crystals (LLCs) made of nonionic surfactants at high concentrations. Direct-template synthesis creates a novel avenue for the production of mesoporous metals as well as related metal-based nanomaterials. Many mesoporous metals have been prepared by the chemical or electrochemical reduction of metal salts dissolved in aqueous LLC domains. As a soft template, LLCs are more versatile and therefore more advantageous than hard templates. It is possible to produce various nanostructures (e.g., lamellar, 2D hexagonal (p6mm), and 3D cubic (Ia\\3d)), nanoparticles, and nanotubes simply by controlling the composition of the reaction bath.
Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles.
Zhang, Jixi; Li, Xu; Rosenholm, Jessica M; Gu, Hong-chen
2011-09-01
Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure. On the other hand, when a proper amount of decane was jointly incorporated with limited amounts of TMB, effective pore expansion of M-MSNs similar to that of analogous mesoporous silica nanoparticles was realized. The resultant M-MSN materials possessed smaller particle size (about 40-70 nm in diameter), tunable pore sizes (3.8-6.1 nm), high surface areas (700-1100 m(2)/g), and large pore volumes (0.44-1.54 cm(3)/g). We also demonstrate their high potential in conventional DNA loading. Maximum loading capacity of salmon sperm DNA (375 mg/g) was obtained by the use of the M-MSN sample with the largest pore size of 6.1 nm. Copyright © 2011 Elsevier Inc. All rights reserved.
2013-01-01
Acidic interfacial growth can provide a number of industrially important mesoporous silica morphologies including fibers, spheres, and other rich shapes. Studying the reaction chemistry under quiescent (no mixing) conditions is important for understanding and for the production of the desired shapes. The focus of this work is to understand the effect of a number of previously untested conditions: acid type (HCl, HNO3, and H2SO4), acid content, silica precursor type (TBOS and TEOS), and surfactant type (CTAB, Tween 20, and Tween 80) on the shape and structure of products formed under quiescent two-phase interfacial configuration. Results show that the quiescent growth is typically slow due to the absence of mixing. The whole process of product formation and pore structuring becomes limited by the slow interfacial diffusion of silica source. TBOS-CTAB-HCl was the typical combination to produce fibers with high order in the interfacial region. The use of other acids (HNO3 and H2SO4), a less hydrophobic silica source (TEOS), and/or a neutral surfactant (Tweens) facilitate diffusion and homogenous supply of silica source into the bulk phase and give spheres and gyroids with low mesoporous order. The results suggest two distinct regions for silica growth (interfacial region and bulk region) in which the rate of solvent evaporation and local concentration affect the speed and dimension of growth. A combined mechanism for the interfacial bulk growth of mesoporous silica under quiescent conditions is proposed. PMID:24237719
El-Sheikh, Said M; Zhang, Geshan; El-Hosainy, Hamza M; Ismail, Adel A; O'Shea, Kevin E; Falaras, Polycarpos; Kontos, Athanassios G; Dionysiou, Dionysios D
2014-09-15
Carbon, nitrogen and sulfur (C, N and S) doped mesoporous anatase-brookite nano-heterojunction titania photocatalysts have been synthesized through a simple sol-gel method in the presence of triblock copolymer Pluronic P123. XRD and Raman spectra revealed the formation of anatase and brookite mixed phases. XPS spectra indicated the presence of C, N and S dopants. The TEM images demonstrated the formation of almost monodisperse titania nanoparticles with particle sizes of approximately 10nm. N2 isotherm measurements confirmed that both doped and undoped titania anatase-brookite materials have mesoporous structure. The photocatalytic degradation of the cyanotoxin microcystin-LR (MC-LR) has been investigated using these novel nanomaterials under visible light illumination. The photocatalytic efficiency of the mesoporous titania anatase-brookite photocatalyst dramatically increased with the addition of the C, N and S non-metal, achieving complete degradation (∼ 100 %) of MC-LR. The results demonstrate the advantages of the synthetic approach and the great potential of the visible light activated C, N, and S doped titania photocatalysts for the treatment of organic micropollutants in contaminated waters under visible light. Copyright © 2014 Elsevier B.V. All rights reserved.
3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity
NASA Astrophysics Data System (ADS)
Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou
2015-12-01
3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.
Alqahtani, Moteb M; Ali, Atif M; Harraz, Farid A; Faisal, M; Ismail, Adel A; Sayed, Mahmoud A; Al-Assiri, M S
2018-05-21
Mesoporous α-Fe 2 O 3 has been synthesized via a simple sol-gel procedure in the presence of Pluronic (F-127) triblock copolymer as structure directing agent. Silver (Ag) nanoparticles were deposited onto α-Fe 2 O 3 matrix by the photochemical reduction approach. Morphological analysis revealed the formation of Ag nanoparticles with small sizes < 20 nm onto the mesoporous structure of α-Fe 2 O 3 possessing < 50 nm semi-spherical shape. The XRD, FTIR, Raman, UV-vis, PL, and N 2 sorption isotherm studies confirmed the high crystallinity, mesoporosity, and optical characteristics of the synthesized product. The electrochemical sensing toward liquid ethanol has been performed using the current devolved Ag/α-Fe 2 O 3 -modified glassy carbon electrode (GCE) by cyclic voltammetry (CV) and current potential (I-V) techniques, and the obtained results were compared with bare GCE or pure α-Fe 2 O 3 . Mesoporous Ag/α-Fe 2 O 3 was found to largely enhance the sensor sensitivity and it exhibited excellent sensing characteristics during the precision detection of low concentrations of ethanol. High and reproducible sensitivity of 41.27 μAmM - 1 cm - 2 at lower ethanol concentration region (0.05 to 0.8 mM) and 2.93 μAmM - 1 cm - 2 at higher concentration zone (0.8 to 15 mM), with a limit of detection (LOD) of 15.4 μM have been achieved. Investigation on reaction kinetics revealed a characteristic behavior of mixed surface and diffusion-controlled processes. Detailed sensing studies revealed also that the sensitivity toward ethanol was higher than that of methanol or isopropanol. With further effort in developing the synthesis and fabrication approaches, a proper utility for the current proposed protocol for fabricating a better sensor device performance is possible.
NASA Astrophysics Data System (ADS)
Alqahtani, Moteb M.; Ali, Atif M.; Harraz, Farid A.; Faisal, M.; Ismail, Adel A.; Sayed, Mahmoud A.; Al-Assiri, M. S.
2018-05-01
Mesoporous α-Fe2O3 has been synthesized via a simple sol-gel procedure in the presence of Pluronic (F-127) triblock copolymer as structure directing agent. Silver (Ag) nanoparticles were deposited onto α-Fe2O3 matrix by the photochemical reduction approach. Morphological analysis revealed the formation of Ag nanoparticles with small sizes < 20 nm onto the mesoporous structure of α-Fe2O3 possessing < 50 nm semi-spherical shape. The XRD, FTIR, Raman, UV-vis, PL, and N2 sorption isotherm studies confirmed the high crystallinity, mesoporosity, and optical characteristics of the synthesized product. The electrochemical sensing toward liquid ethanol has been performed using the current devolved Ag/α-Fe2O3-modified glassy carbon electrode (GCE) by cyclic voltammetry ( CV) and current potential ( I-V) techniques, and the obtained results were compared with bare GCE or pure α-Fe2O3. Mesoporous Ag/α-Fe2O3 was found to largely enhance the sensor sensitivity and it exhibited excellent sensing characteristics during the precision detection of low concentrations of ethanol. High and reproducible sensitivity of 41.27 μAmM- 1 cm- 2 at lower ethanol concentration region (0.05 to 0.8 mM) and 2.93 μAmM- 1 cm- 2 at higher concentration zone (0.8 to 15 mM), with a limit of detection (LOD) of 15.4 μM have been achieved. Investigation on reaction kinetics revealed a characteristic behavior of mixed surface and diffusion-controlled processes. Detailed sensing studies revealed also that the sensitivity toward ethanol was higher than that of methanol or isopropanol. With further effort in developing the synthesis and fabrication approaches, a proper utility for the current proposed protocol for fabricating a better sensor device performance is possible.
Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery
NASA Astrophysics Data System (ADS)
Chi, Hao-Hsin
This project focused on using mesoporous silica as a solid support to encapsulate enzymes for operating a highly economic, and recyclable biomass processing system. The main objective is to turn non-food biomass sources into food products. Enzymes are macromolecules with the structural backbone of proteins or ribonucleic acid sequences (RNAs) which work as catalysts in living organisms. Enzymes have the advantage of being the least contaminating catalyst due to normal catalyst might generate toxic by-product, and preferable to organic and inorganic catalysts, especially when used for product related to human used, which require biocompatibility of final product. However, there are several disadvantages in enzyme utilization. Their fabrication is time-consuming and requires elaborated molecular biology processes. Most of the enzymes need well-defined reaction conditions to be functional and operate at high yield. Unfortunately, although they are reusable as normal catalysts, it proves difficult to extract or reuse the enzymes from a reaction. Also, enzyme molecules are easily degradable and demand proper storage. To overcome some of the disadvantages, especially regarding stability to degradation, recovery, and reusability, immobilization of enzyme on solid support has become a thriving methodology. In recent years, mesoporous silica nanomaterials(MSN) have been at the forefront of enzyme immobilization given their extensive surface area, which provides capability to increase enzyme loading and for their demonstrate ability to protect enzyme from degradation, thus enabling high recyclability. Mesoporous silica is biocompatible and has already been used for several applications included. Catalysis, drug delivery, and Bio-imaging. Previously published research utilized mesoporous silica to deliver drugs, DNAs, RNAs or encapsulate single enzyme. The objective of this research is completed to develop a new porous silica platform that is unique in its porosity structure and develop it into a dual-enzyme platform with the scope of demonstrating a multi-reaction bio nanocatalyst. In regard to the further applications, the stellate MSN can be used as drug delivery or become a package of the biomacromolecule delivery system kit.
Tang, Haolin; Pan, Mu; Jiang, San Ping
2011-05-21
A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H(3)PW(12)O(40), abbreviated as HPW or PWA)-silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively charged silica precursor and negatively charged PW(12)O(40)(3-) species. The self-assembled HPW-silica nanocomposites were characterized by small-angle XRD, TEM, nitrogen adsorption-desorption isotherms, ion exchange capacity, proton conductivity and solid-state (31)P NMR. The results show that highly ordered and uniform nanoarrays with long-range order are formed when the HPW content in the nanocomposites is equal to or lower than 25 wt%. The mesoporous structures/textures were clearly presented, with nanochannels of 3.2-3.5 nm in diameter. The (31)P NMR results indicates that there are (≡SiOH(2)(+))(H(2)PW(12)O(40)(-)) species in the HPW-silica nanocomposites. A HPW-silica (25/75 w/o) nanocomposite gave an activation energy of 13.0 kJ mol(-1) and proton conductivity of 0.076 S cm(-1) at 100 °C and 100 RH%, and an activation energy of 26.1 kJ mol(-1) and proton conductivity of 0.05 S cm(-1) at 200 °C with no external humidification. A fuel cell based on a 165 μm thick HPW-silica nanocomposite membrane achieved a maximum power output of 128.5 and 112.0 mW cm(-2) for methanol and ethanol fuels, respectively, at 200 °C. The high proton conductivity and good performance demonstrate the excellent water retention capability and great potential of the highly ordered HPW-silica mesoporous nanocomposites as high-temperature proton exchange membranes for direct alcohol fuel cells (DAFCs).
Deng, Shao-Xin; Xu, Xue-Yan; He, Wen-Chao; Wang, Jin-Gui; Chen, Tie-Hong
2014-08-01
Mesoporous silica with three-dimensional (3D) bicontinuous cubic Ia-3d structure and fascinating caterpillar-like morphology was synthesized by using anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as the template and 3-amionpropyltrimethoxysilane (APS) as the co-structure-directing agent (CSDA) with the aid of acetate. A phase transformation from high interfacial curvature 2D hexagonal to low interfacial curvature 3D cubic Ia-3d occurred in the presence of a proper amount of acetate. Other species of salts (excluding acetate) had the ability to induce the caterpillar-like morphology, but failed to induce the cubic Ia-3d mesostructure. Furthermore, [3-(2-aminoethyl)-aminopropyl]trimethoxysilane (DAPS) was also used as the CSDA to synthesize Ia-3d mesostructured silica under the aid of sodium acetate. After extraction of the anionic surfactants, amino and di-amine functionalized 3D bicontinuous cubic Ia-3d mesoporous silicas were obtained and used as supports to immobilize Pd nanoparticles for supported catalysts. The catalytic activity of the catalysts was tested by catalytic hydrogenation of allyl alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.
Zeng, Lingxing; Huang, Xiaoxia; Chen, Xi; Zheng, Cheng; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng
2016-01-13
Germanium-based nanostructures are receiving intense interest in lithium-ion batteries because they have ultrahigh lithium ion storage ability. However, the Germanium-based anodes undergo the considerably large volume change during the charge/discharge processes, leading to a fast capacity fade. In the present work, a Ge/GeO2-ordered mesoporous carbon (Ge/GeO2-OMC) nanocomposite was successfully fabricated via a facile nanocasting route by using mesoporous carbon as a nanoreactor, and was then used as an anode for lithium-ion batteries. Benefited from its unique three-dimensional "meso-nano" structure, the Ge/GeO2-OMC nanocomposite exhibited large reversible capacity, excellent long-time cycling stability and high rate performance. For instance, a large reversible capacity of 1018 mA h g(-1) was obtained after 100 cycles at a current density of 0.1 A g(-1), which might be attributed to the unique structure of the Ge/GeO2-OMC nanocomposite. In addition, a reversible capacity of 492 mA h g(-1) can be retained when cycled to 500 cycles at a current density of 1 A g(-1).
Biosynthesis of highly porous bacterial cellulose nanofibers
NASA Astrophysics Data System (ADS)
Hosseini, Hadi; Kokabi, Mehrdad; Mousavi, Seyyed Mohammad
2018-01-01
Bacterial cellulose nanofibers (BCNFs) as a sustainable and biodegradable polymer has drawn tremendous research attention in tissue engineering, bacterial sensors and drug delivery due to its extraordinary properties such as high purity, high crystallinity, high water absorption capacity and excellent mechanical strength in the wet state. This awesome properties, is attributed to BCNFs structure, therefore its characterization is important. In this work, the bacterial strain, Gluconacetobacter xylinus (PTCC 1734, obtained from Iranian Research Organization for Science and Technology (IROST)), was used to produce BCNFs hydrogel using bacterial fermentation under static condition at 29 °C for 10 days in the incubator. Then, the biosynthesized BCNFs wet gel, were dried at ambient temperature and pressure and characterized using Brunauer-Emmett-Teller (BET) and Field emission scanning electron microscopy (FE-SEM) analysis. FESEM image displayed highly interconnected and porous structure composed of web-like continuous, nanofibers with an average diameter of 48.5±2.1 nm. BET result analysis depicted BCNFs dried at ambient conditions had IV isotherm type, according to the IUPAC classification, indicating that BCNFs dried at ambient condition is essentially mesoporous. On the other hand, BET results depicted, mesoporous structure is around 85%. In addition, Specific surface area (SBET) obtained 81.45 m2/g. These results are in accordance with the FESEM observation.
Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu
2013-05-21
Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moosakhani, S.; Color and Polymer Research Center; Sabbagh Alvani, A.A., E-mail: sabbagh_alvani@aut.ac.ir
Highlights: • We have demonstrated AgI sensitized solar cell for the first time. • Obtained mesoporous titania powders possessed small crystallite size, high purity and surface area, and developed mesopores with a narrow pore size distribution. • Photovoltaic measurements revealed the electron injection from AgI to TiO{sub 2}. • The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% under one sun illumination. • AgI may be a suitable candidate material for use as a non-toxic sensitizer in QDSSC. - Abstract: The present study reports the performance of a new photosensitizer -AgI quantum dots (QDs)- and mesoporous titaniamore » (TiO{sub 2}) nanocrystals synthesized by sol–gel (SG) method for solar cells. Furthermore, the effects of n-heptane on the textural properties of TiO{sub 2} nanocrystals were comprehensively investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N{sub 2} adsorption–desorption measurements, and UV–vis spectroscopy. TiO{sub 2} powders exhibited an anatase-type mesoporous structure with a high surface area of 89.7 m{sup 2}/g. Afterwards, the QDs were grown on mesoporous TiO{sub 2} surface to fabricate a TiO{sub 2}/AgI electrode by a successive ionic layer adsorption and reaction (SILAR) deposition route. Current–voltage characteristics and electrochemical impedance spectroscopy (EIS) data demonstrated that the injection of photoexcited electrons from AgI QDs into the TiO{sub 2} matrix produces photocurrents. The assembled AgI-QD solar cells yielded a power conversion efficiency of 0.64% and a short-circuit current of 2.13 mA/cm{sup 2} under one sun illumination.« less
Nanosize Fe x O y @SBA-3: A Comparative Study Between Conventional and Microwave Assisted Synthesis.
Barik, Sunita; Badamali, Sushanta K; Sahoo, Sagarika; Behera, Nandakishor; Dapurkar, Sudhir E
2018-01-01
The present study is focussed on development of highly dispersed nanosize iron oxide (FexOy) particles within the uniform mesopore channels of SBA-3. Herein we report a comparative study between conventional incipient wetness and microwave assisted synthesis routes adopted to devise nanoparticles. The developed materials are characterised by following X-ray diffraction, high resolution transmission electron microscopy, proton induced X-ray emission, diffuse reflectance UV-visible spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. Mesoporous siliceous SBA-3 was prepared at room temperature to obtain samples with good crystallinity and ordered pore structure. Pore channels of SBA-3 were used as nanoreactor for developing iron oxide nanoparticles. Iron oxide nanoparticles developed under microwave activation showed uniform distribution within the SBA-3 structure along with retaining the orderness of the pore architecture. On the contrary, iron oxides developed under incipient wetness method followed by conventional heating resulted in agglomeration of nanoparticles along with significant loss in SBA-3 pore structure. Proton induced X-ray emission studies revealed the extremely high purity of the samples and almost thrice higher amount of iron oxide particles are encapsulated within the host by microwave assisted preparation as compared to incipient/conventional heating method.
NASA Astrophysics Data System (ADS)
Hou, Xiang-Yang; Yan, Xiao-Li; Wang, Xiao; Zhai, Quan-Guo
2018-07-01
NiO has an unusually high theoretical specific capacitance and possess relatively high electrical conductivity compared to other metal oxides. However, the reported specific capacitance of the NiO-based electrodes is far below the theoretical value up to now. In this paper, three porous NiO materials with different specific surface area were synthesized simply by calcining iso-structural Ni-based MOFs templates. The formation mechanism of NiO was discussed by taking into account the thermal behavior and intrinsic structural features of the Ni-MOFs. Taking advantages of the Ni-MOFs precursors, all prepared NiO compounds are mesoporous and their porosity can be tuned by the structure of MOFs. Specially, due to the high porosity, three NiO exhibited an improved electrochemical performance and the specific discharge capacitances are of 102, 105, and 116 F g-1 at the current density of 1 A g-1, respectively. The specific capacitance of 1-NiO-450 is approximately 93.2% of its maximum value after 3000 cycles, which obviously superior to most of the previously reported NiO electrode materials and suggests their promising applications in supercapacitors.
Design, fabrication, and testing of nanostructured carbons and composites
NASA Astrophysics Data System (ADS)
Wang, Zhiyong
Many applications, such as catalysis, sensing, separation and energy storage and conversion, will benefit from the miniaturization of materials to nanometer length scales. This dissertation details my study of nanocomposites based on three-dimensionally ordered macroporous (3DOM) carbons and zirconia, and three-dimensionally ordered macroporous/mesoporous (3DOM/m) carbons. The macropores of these materials were produced using colloidal crystal templates while the mesopores were generated using surfactant templates. These solids are composed of close-packed and three-dimensionally interconnected spherical macropores surrounded by nanoscale solid or mesoporous wall skeletons. This unique architecture offers large surface areas, pore volumes, and good access into the bulk via a macroporous network. 3DOM carbons have been demonstrated as promising electrode materials for lithium ion batteries and sensors, but their electrochemical performance still needs to be improved. As a model system for the modification of the electrode, 3DOM C/TiO2 was synthesized by fabricating a conformal coating of TiO2 nanoparticles on the macropore walls of 3DOM C. My research further extended the micro-structural design of monolithic carbon from 3DOM to 3DOM/m. 3DOM/m C monoliths with high surface areas, controllable mesopore sizes, and mesopore ordering, were synthesized by three methods. One of the methods is simpler and more environment benign than previously reported methods. The mesopores in 3DOM/m C-based electrode provide room to accommodate secondary phases, such as graphitic carbon, SnO2 and Si which can improve the conductivity or lithium capacity of the electrode. Owing to this advantage, 3DOM/m C/C and 3DOM/m C/SnO2 exhibited significantly improved rate performance, lithium capacity and cycleability, compared with 3DOM C. To meet the demands of nano-sized functional materials in applications such as nano-device fabrication and drug delivery, mesoporous carbon nanoparticles with cubic, spherical and tetrapod shapes were also synthesized. In addition, new methods were developed to assemble nanocomposites of bifunctional catalyst components. These materials were designed for the potential direct conversion of synthesis gas to clean liquid fuels. Coatings of zeolite and cobalt nanoparticles were fabricated on 3DOM promoted zirconia. The 3DOM zirconia-based nanocomposites were characterized by a wide variety of techniques to illustrate their morphologies, internal structures, chemical compositions, porosity, and crystallographic phases.
Structural control in the synthesis of inorganic porous materials
NASA Astrophysics Data System (ADS)
Holland, Brian Thomas
Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals, porous electrodes, electrochemical capacitors, etc. One of the more interesting macroporous materials takes advantage of having silicalite as the framework. This bimodal pore material may find use as an acid catalyst as aluminum is doped into the framework.
NASA Astrophysics Data System (ADS)
Lu, Lun; Gao, Yan-Li; Yang, Zhi-Zheng; Wang, Cheng; Wang, Jin-Guo; Wang, Hui-Yuan; Jiang, Qi-Chuan
2018-04-01
Mesoporous nanoring-like Zn-Co mixed oxides are synthesized via a simple template-free solvothermal method with a subsequent annealing process. The ring-like nanostructures with hollow interiors are formed under the complexing effects of potassium sodium tartrate. Numerous mesopores are generated after the precursor is annealed at 500 °C. When applied as anode materials, the mesoporous nanoring-like Zn-Co mixed oxides can deliver a high discharge capacity of 1102 mAh g-1 after 200 cycles at 500 mA g-1. Even when the current density is increased to 2 A g-1, the mixed oxides can still retain a reversible capacity of 761 mAh g-1. Such high cycling stability and rate capability are mainly derived from the unique mesoporous ring-like nanostructures and the synergistic effects between Zn and Co based oxides.
Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts.
Yu, Feng-wen; Ji, Deng-xiang; Nie, Yong; Luo, Yao; Huang, Cheng-jie; Ji, Jian-bing
2012-09-01
Mesoporous materials possess a hexagonal array of uniform mesopores, high surface areas, and moderate acidity. They are one of the important catalysts in the field of catalytic pyrolysis. In this paper, mesoporous materials of Al-MCM-41, La-Al-MCM-41, and Ce-Al-MCM-41 were synthesized, characterized, and tested as catalysts in the cellulose catalytic pyrolysis process using a fixed bed pyrolysis reactor. The results showed that mesoporous materials exhibited a strong influence on the pyrolytic behavior of cellulose. The presence of these mesoporous molecular sieve catalysts could vary the yield of products, which was that they could decrease the yield of liquid and char and increase the yield of gas product, and could promote high-carbon chain compounds to break into low-carbon chain compounds. Mesoporous molecular sieve catalysts were benefit to the reaction of dehydrogenation and deoxidation and the breakdown of carbon chain. Further, La-Al-MCM-41 and Ce-Al-MCM-41 catalysts can produce more toluene and 2-methoxy-phenol, as compared to the non-catalytic runs.
Vera-Robles, L Irais; González-Gracida, Jaqueline; Hernández-Gordillo, Armin; Campero, Antonio
2015-08-25
By taking advantage of the physical and chemical properties of the M13 bacteriophage, we have used this virus to synthesize mesoporous silica structures. Major coat protein p8 was chemically modified by attaching thiol groups. As we show, the resulting thiolated phage can be used as a biotemplate able to direct the formation of mesoporous silica materials. Simultaneously, this thiol functionality acts as an anchor for binding metal ions, such as Au(3+) and Pt(4+), forming reactive M13-metal ionic complexes which evolve into metal nanoparticles (NPs) trapped in the mesoporous network. Interestingly, Au(3+) ions are reduced to Au(0) NPs by the protein residues without requiring an external reducing agent. Likewise, silica mesostructures decorated with Au and Pt NPs are prepared in a one-pot synthesis and characterized using different techniques. The obtained results allow us to propose a mechanism of formation. In addition, gold-containing mesoporous structures are tested for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB) in the presence of NaBH4. Although all of the gold-containing catalysts exhibit catalytic activity, those obtained with thiolated phages present a better performance than that obtained with M13 alone. This behavior is ascribed to the position of the Au NPs, which are partially embedded in the wall of the final mesostructures.
2017-01-01
The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles’ rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (∼60–160 nm), tubular length (∼6–70 nm), and outer diameter (∼6–10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core–shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications. PMID:28852697
Luo, Zuyuan; Deng, Yi; Zhang, Ranran; Wang, Mengke; Bai, Yanjie; Zhao, Qiang; Lyu, Yalin; Wei, Jie; Wei, Shicheng
2015-07-01
Combination of mesoporous silica materials and bioactive factors is a promising niche-mimetic solution as a hybrid bone substitution for bone tissue engineering. In this work, we have synthesized biocompatible silica-based nanoparticles with abundant mesoporous structure, and incorporated bone-forming peptide (BFP) derived from bone morphogenetic protein-7 (BMP-7) into the mesoporous silica nanoparticles (MSNs) to obtain a slow-release system for osteogenic factor delivery. The chemical characterization demonstrates that the small osteogenic peptide is encapsulated in the mesoporous successfully, and the nitrogen adsorption-desorption isotherms suggest that the peptide encapsulation has no influence on mesoporous structure of MSNs. In the cell experiment, the peptide-laden MSNs (p-MSNs) show higher MG-63 cell proliferation, spreading and alkaline phosphatase (ALP) activity than the bare MSNs, indicating good in vitro cytocompatibility. Simultaneously, the osteogenesis-related proteins expression and calcium mineral deposition disclose enhanced osteo-differentiation of human mesenchymal stem cells (hMSCs) under the stimulation of the p-MSNs, confirming that BFP released from MSNs could significantly promote the osteogenic differentiation of hMSCs, especially at 500μg/mL of p-MSNs concentration. The peptide-modified MSNs with better bioactivity and osteogenic differentiation make it a potential candidate as bioactive material for bone repairing, bone regeneration, and bio-implant coating applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.
Li, Xiaojia; Zou, Mingming; Wang, Yang
2017-11-10
Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.
Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua
2017-01-01
Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100–300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration. PMID:28392688
Wang, Beibei; Zhang, Xing; Liu, Xiaojie; Wang, Gang; Wang, Hui; Bai, Jintao
2018-05-24
In the current research project, we have prepared a novel Fe 3 O 4 @mesoporous carbon nanorod (denoted as Fe 3 O 4 @C) anode with yolk-shell structure for Li/Na-ion batteries via one-pot and surfactant-free synthesis strategy. The yolk-shell structure consists of Fe 3 O 4 nanorod yolk completely protected by a well-conductive mesoporous carbon shell. The substantial void space in the Fe 3 O 4 @C yolk-shell nanorod can not only accommodate the full volume expansion of inner Fe 3 O 4 nanorod, but also preserve the structural integrity of the Fe 3 O 4 @C anode and develop a stable SEI film on the outside mesoporous carbon shell during the repeated Li + /Na + insertion/extraction processes. As for lithium storage, the Fe 3 O 4 @C electrode exhibits a high specific capacity (1247 mAh g -1 ), stable cycling performance (a specific capacity of 954 mAh g -1 after 200 cycles at a current density of 0.5 A g -1 ) and excellent rate capability (specific capabilities of 1122, 958, 783, 577, and 374 mAh g -1 at 0.5, 1, 2, 4, and 8 A g -1 , respectively). As for sodium storage, the Fe 3 O 4 @C yolk-shell nanorods also maintain a reversible capacity of approximate 424 mAh g -1 at 0.1 A g -1 after 100 cycles. Copyright © 2018. Published by Elsevier Inc.
Yu, Weilin; Sun, Tuan-Wei; Qi, Chao; Ding, Zhenyu; Zhao, Huakun; Zhao, Shichang; Shi, Zhongmin; Zhu, Ying-Jie; Chen, Daoyun; He, Yaohua
2017-01-01
Biomaterials with high osteogenic activity are desirable for sufficient healing of bone defects resulting from trauma, tumor, infection, and congenital abnormalities. Synthetic materials mimicking the structure and composition of human trabecular bone are of considerable potential in bone augmentation. In the present study, a zinc (Zn)-doped mesoporous hydroxyapatite microspheres (Zn-MHMs)/collagen scaffold (Zn-MHMs/Coll) was developed through a lyophilization fabrication process and designed to mimic the trabecular bone. The Zn-MHMs were synthesized through a microwave-hydrothermal method by using creatine phosphate as an organic phosphorus source. Zn-MHMs that consist of hydroxyapatite nanosheets showed relatively uniform spherical morphology, mesoporous hollow structure, high specific surface area, and homogeneous Zn distribution. They were additionally investigated as a drug nanocarrier, which was efficient in drug delivery and presented a pH-responsive drug release behavior. Furthermore, they were incorporated into the collagen matrix to construct a biomimetic scaffold optimized for bone tissue regeneration. The Zn-MHMs/Coll scaffolds showed an interconnected pore structure in the range of 100-300 μm and a sustained release of Zn ions. More importantly, the Zn-MHMs/Coll scaffolds could enhance the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Finally, the bone defect repair results of critical-sized femoral condyle defect rat model demonstrated that the Zn-MHMs/Coll scaffolds could enhance bone regeneration compared with the Coll or MHMs/Coll scaffolds. The results suggest that the biomimetic Zn-MHMs/Coll scaffolds may be of enormous potential in bone repair and regeneration.
A Feasible One-Step Synthesis of Hierarchical Zeolite Beta with Uniform Nanocrystals via CTAB
Zhang, Weimin; Hu, Sufang; Qin, Bo; Li, Ruifeng
2018-01-01
A hierarchical zeolite Beta has been prepared by a feasible one-pot and one-step method, which is suitable for application in industrial production. The synthesis is a simple hydrothermal process with low-cost raw materials, without adding alcohol or adding seeds, and without aging, recrystallization, and other complex steps. The hierarchical zeolite Beta is a uniform nanocrystal (20–50 nm) aggregation with high external surface area (300 m2/g) and mesoporous volume (0.50 cm3/g), with the mesoporous structure composed of intercrystal and intracrystal pores. As an acid catalyst in benzylation of naphthalene with benzyl chloride, the hierarchical zeolite Beta has shown high activity in the bulky molecule reaction due to its introduction of mesostructure. PMID:29695044
Gondal, M A; Dastageer, M A; Oloore, L E; Baig, U; Rashid, S G
2017-07-03
Ordered mesoporous indium oxide nanocrystal (m-In 2 O 3 ) was synthesized by nanocasting technique, in which highly ordered mesoporous silca (SBA-15) was used as structural matrix. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halanda (BJH) studies were carried out on m-In 2 O 3 and the results revealed that this material has a highly ordered mesoporous surface with reduced grain size, increased surface area and surface volume compared to the non porous indium oxide. The diffuse reluctance spectrum exhibited substantially improved light absorption efficiency in m-In 2 O 3 compared to normal indium oxide, however, no considerable change in the band gap energies of these materials was observed. When m-In 2 O 3 was used as a photo-catalyst in the photo-catalytic process of converting carbon dioxide (CO 2 ) into methanol under the pulsed laser radiation of 266-nm wavelengths, an enhanced photo-catalytic activity with the quantum efficiency of 4.5% and conversion efficiency of 46.3% were observed. It was found that the methanol production yield in this chemical process is as high as 485 µlg -1 h -1 after 150 min of irradiation, which is substantially higher than the yields reported in the literature. It is quite clear from the results that the introduction of mesoporosity in indium oxide, and the consequent enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically weak indium oxide into an effective photo-catalyst for the conversion of CO 2 into methanol.
NASA Astrophysics Data System (ADS)
Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki
2015-11-01
Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04465k
Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing
2014-06-17
Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.
Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming
2013-12-01
Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei
2014-12-01
Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m(2) g(-1) with optimized pore volume of 1.21 cm(3) g(-1) (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g(-1) and 100 A g(-1) i.e., 265 F g(-1) and 182 F g(-1) in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg(-1) (550 W L(-1)) and energy density 70 W h kg(-1) (32 W h L(-1)) are achieved on the base of active material loading (~10 mg cm(2)) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices.
NASA Astrophysics Data System (ADS)
Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei
2014-12-01
Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m2 g-1 with optimized pore volume of 1.21 cm3 g-1 (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g-1 and 100 A g-1 i.e., 265 F g-1 and 182 F g-1 in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg-1 (550 W L-1) and energy density 70 W h kg-1 (32 W h L-1) are achieved on the base of active material loading (~10 mg cm2) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices.
Hou, Jianhua; Cao, Chuanbao; Ma, Xilan; Idrees, Faryal; Xu, Bin; Hao, Xin; Lin, Wei
2014-01-01
Controlled micro/mesopores interconnected structures of three-dimensional (3D) carbon with high specific surface areas (SSA) are successfully prepared by carbonization and activation of biomass (raw rice brans) through KOH. The highest SSA of 2475 m2 g−1 with optimized pore volume of 1.21 cm3 g−1 (40% for mesopores) is achieved for KOH/RBC = 4 mass ratio, than others. The as-prepared 3D porous carbon-based electrode materials for supercapacitors exhibit high specific capacitance specifically at large current densities of 10 A g−1 and 100 A g−1 i.e., 265 F g−1 and 182 F g−1 in 6 M KOH electrolyte, respectively. Moreover, a high power density ca. 1223 W kg−1 (550 W L−1) and energy density 70 W h kg−1 (32 W h L−1) are achieved on the base of active material loading (~10 mg cm2) in the ionic liquid. The findings can open a new avenue to use abundant agricultural by-products as ideal materials with promising applications in high-performance energy-storage devices. PMID:25434348
Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping
2017-09-20
As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.
Dashnyam, Khandmaa; Jin, Guang-Zhen; Kim, Joong-Hyun; Perez, Roman; Jang, Jun-Hyeog; Kim, Hae-Won
2017-02-01
Angiogenic capacity of biomaterials is a key asset to drive vascular ingrowth during tissue repair and regeneration. Here we design a unique angiogenic microcarrier based on sol-gel derived mesoporous silica. The microspheres offer a potential angiogenic stimulator, Si ion, 'intrinsically' within the chemical structure. Furthermore, the highly mesoporous nature allows the loading and release of angiogenic growth factor 'extrinsically'. The Si ion is released from the microcarriers at therapeutic ranges (over a few ppm per day), which indeed up-regulates the expression of hypoxia inducing factor 1α (HIF1α) and stabilizes it by blocking HIF-prolyl hydroxylase 2 (PHD2) in HUVECs. This in turn activates the expression of a series of proangiogenic molecules, including bFGF, VEGF, and eNOS. VEGF is incorporated effectively within the mesopores of microcarriers and is then released continuously over a couple of weeks. The Si ion and VEGF released from the microcarriers synergistically stimulate endothelial cell functions, such as cell migration, chemotactic homing, and tubular networking. Furthermore, in vivo neo-blood vessel sprouting in chicken chorioallantoic membrane model is significantly promoted by the Si/VEGF releasing microcarriers. The current study demonstrates the synergized effects of Si ion and angiogenic growth factor through a biocompatible mesoporous microsphere delivery platform, and the concept provided here may open the door to a new co-delivery system of utilizing ions with growth factors for tissue repair and regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fu, Junwei; Cao, Shaowen; Yu, Jiaguo; Low, Jingxiang; Lei, Yongpeng
2014-06-28
Photocatalytic reduction of CO2 into renewable hydrocarbon fuels using semiconductor photocatalysts is considered as a potential solution to the energy deficiency and greenhouse effect. In this work, mesoporous TiO2 nanofibers with high specific surface areas and abundant surface hydroxyl groups are prepared using an electrospinning strategy combined with a subsequent calcination process, followed by a solvothermal treatment. The solvothermally treated mesoporous TiO2 nanofibers exhibit excellent photocatalytic performance on CO2 reduction into hydrocarbon fuels. The significantly improved photocatalytic activity can be attributed to the enhanced CO2 adsorption capacity and the improved charge separation after solvothermal treatment. The highest activity is achieved for the sample with a 2-h solvothermal treatment, showing 6- and 25-fold higher CH4 production rate than those of TiO2 nanofibers without solvothermal treatment and P25, respectively. This work may also provide a prototype for studying the effect of solvothermal treatment on the structure and photocatalytic activity of semiconductor photocatalysts.
Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury.
Ravi, S; Selvaraj, M
2014-04-14
A novel incessant formation of chain like mesoporous silica (ICMS) has been easily materialized using a mixed surfactant (Pluronic P123 and FC-4) as a structuring reagent in conjunction with a thiol precursor (3-MPS) through a one-pot synthetic method. A particular thiol concentration facilitated the interaction of the micelle head groups to form long-chain micelles, where FC-4 enhanced further growth. The rapid interactions of the micelles and the condensation of silicic acid and its oligomeric derivatives by coordinating 3-MPS through hydrogen bonding interactions leads to form ICMS. The characterization results for the ICMS illustrated that it has an ordered hexagonal pore geometry. The capability of the ICMS for Hg(2+) adsorption was extensively studied under different optimal parameters and the adsorption isothermal values clearly fit with the Langmuir and Freundlich isothermal plots. This novel material exhibited an unprecedentedly high binding affinity toward even microgram levels of mercury ions in wastewater, compared to other thiol-based mesoporous silica.
NASA Astrophysics Data System (ADS)
Su, Yonghua; Qiao, Shizhang; Yang, Huagui; Yang, Chen; Jin, Yonggang; Stahr, Frances; Sheng, Jiayu; Cheng, Lina; Ling, Changquan; Qing Lu, Gao
2010-02-01
1D hierarchical composite mesostructures of titanate and silica were synthesized via an interfacial surfactant templating approach. Such mesostructures have complex core-shell architectures consisting of single-crystalline H2Ti3O7 nanobelts inside the ordered mesoporous SiO2 shell, which are nontoxic and highly biocompatible. The overall diameter of as-prepared 1D hierarchical composite mesostructures is only approx. 34.2 nm with a length over 500 nm on average. A model to explain the formation mechanism of these mesostructures has been proposed; the negatively charged surface of H2Ti3O7 nanobelts controls the formation of the octadecyltrimethylammonium bromide (C18TAB) bilayer, which in turn regulates the cooperative self-assembly of silica and C18TAB complex micelles on the interface to produce a mesoporous silica shell. More importantly, the application of synthesized mesostructured nanocables as anticancer drug reservoirs has also been explored, which indicates that the membranes containing these mesoporous nanocables have a great potential to be used as transdermal drug delivery systems.
NASA Astrophysics Data System (ADS)
Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu
2013-05-01
Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future. Electronic supplementary information (ESI) available: Details of cell internalization of fmSiO4@SPIONs compared with SHU555A, immunofluorescence image of the immature phenotype of labeled C17.2. See DOI: 10.1039/c3nr00119a
Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping
2018-05-03
Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.
Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells.
Meng, Lei; You, Jingbi; Guo, Tzung-Fang; Yang, Yang
2016-01-19
Inorganic-organic hybrid perovskite solar cells research could be traced back to 2009, and initially showed 3.8% efficiency. After 6 years of efforts, the efficiency has been pushed to 20.1%. The pace of development was much faster than that of any type of solar cell technology. In addition to high efficiency, the device fabrication is a low-cost solution process. Due to these advantages, a large number of scientists have been immersed into this promising area. In the past 6 years, much of the research on perovskite solar cells has been focused on planar and mesoporous device structures employing an n-type TiO2 layer as the bottom electron transport layer. These architectures have achieved champion device efficiencies. However, they still possess unwanted features. Mesoporous structures require a high temperature (>450 °C) sintering process for the TiO2 scaffold, which will increase the cost and also not be compatible with flexible substrates. While the planar structures based on TiO2 (regular structure) usually suffer from a large degree of J-V hysteresis. Recently, another emerging structure, referred to as an "inverted" planar device structure (i.e., p-i-n), uses p-type and n-type materials as bottom and top charge transport layers, respectively. This structure derived from organic solar cells, and the charge transport layers used in organic photovoltaics were successfully transferred into perovskite solar cells. The p-i-n structure of perovskite solar cells has shown efficiencies as high as 18%, lower temperature processing, flexibility, and, furthermore, negligible J-V hysteresis effects. In this Account, we will provide a comprehensive comparison of the mesoporous and planar structures, and also the regular and inverted of planar structures. Later, we will focus the discussion on the development of the inverted planar structure of perovskite solar cells, including film growth, band alignment, stability, and hysteresis. In the film growth part, several methods for obtaining high quality perovskite films are reviewed. In the interface engineering parts, the effect of hole transport layer on subsequent perovskite film growth and their interface band alignment, and also the effect of electron transport layers on charge transport and interface contact will be discussed. As concerns stability, the role of charge transport layers especially the top electron transport layer in the devices stability will be concluded. In the hysteresis part, possible reasons for hysteresis free in inverted planar structure are provided. At the end of this Account, future development and possible solutions to the remaining challenges facing the commercialization of perovskite solar cells are discussed.
Keppeler, Miriam; Holzbock, Jürgen; Akbarzadeh, Johanna; Peterlik, Herwig
2011-01-01
Summary Hybrid, hierarchically organized, monolithic silica gels, comprising periodically arranged mesopores and a cellular macroscopic network, have been prepared through a co-condensation reaction of tetrakis(2-hydroxyethyl)orthosilicate with chloromethyl-trimethoxysilane or 3-(chloropropyl)-triethoxysilane. Subsequent conversion of the chloro groups into azido groups, by nucleophilic substitution with NaN3 in N,N-dimethylformamide, was conducted upon preservation of the monolithic structure. However, treatment with NaN3 had a strong influence on the structure in the mesoporous regime, with changes such as an increase of mesopore diameter, pore volume and lattice constants, as well as a concomitant decrease of the pore wall thickness, as confirmed by small angle X-ray scattering, transmission electron microscopy, and nitrogen sorption analysis. Similar effects were observed for unmodified silica gels by simple ageing in azide-containing media, whether a relatively small or a sterically demanding counter ion (Na+ or (H3C)4N+) was used. The structural modification did not seem to depend greatly on whether an organic aprotic solvent (N,N-dimethylformamide, 1,1,3,3-tetramethylurea, 1,3-dimethyl-2-imidazolidinone) or a protic solvent that can form hydrogen bonds, such as water, was used. PMID:22003454
Park, Jung Tae; Ahn, Sung Hoon; Roh, Dong Kyu; Lee, Chang Soo; Kim, Jong Hak
2014-07-01
The synthesis of organized mesoporous SnO2 films with high porosity, larger pores, and good interconnectivity, obtained by sol-gel templating with an amphiphilic graft copolymer, poly(vinyl chloride)-graft-poly(oxyethylene methacrylate), is reported. An improved performance of dye-sensitized solar cells (DSSCs) is demonstrated by the introduction of a 400 nm thick organized mesoporous SnO2 interfacial (om-SnO2 IF) layer between nanocrystalline TiO2 (nc-TiO2 ) and a fluorine-doped tin oxide substrate. To elucidate the improved efficiency, the structural, optical, and electrochemical properties of the devices were characterized by SEM, UV/Vis spectroscopy, noncontact 3D surface profilometry, intensity-modulated photocurrent/voltage spectroscopy, incident photon-to-electron conversion efficiency, and electrochemical impedance spectroscopy measurements. The energy-conversion efficiency of the solid polymerized ionic liquid based DSSC fabricated with the om-SnO2 IF/nc-TiO2 photoanode reached 5.9% at 100 mW cm(-2) ; this is higher than those of neat nc-TiO2 (3.5%) and organized mesoporous TiO2 interfacial/nc-TiO2 layer (5.4%) photoanodes. The improved efficiency is attributed to the antireflective property, cascadal energy band gap, good interconnectivity, and high electrical conductivity of the om-SnO2 IF layer, which results in enhanced light harvesting, increased electron transport, reduced charge recombination, and decreased interfacial/internal resistance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui
2017-09-01
Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).
Porous Aluminum Oxide and Magnesium Oxide Films Using Organic Hydrogels as Structure Matrices
Chen, Zimei
2018-01-01
We describe the synthesis of mesoporous Al2O3 and MgO layers on silicon wafer substrates by using poly(dimethylacrylamide) hydrogels as porogenic matrices. Hydrogel films are prepared by spreading the polymer through spin-coating, followed by photo-cross-linking and anchoring to the substrate surface. The metal oxides are obtained by swelling the hydrogels in the respective metal nitrate solutions and subsequent thermal conversion. Combustion of the hydrogel results in mesoporous metal oxide layers with thicknesses in the μm range and high specific surface areas up to 558 m2∙g−1. Materials are characterized by SEM, FIB ablation, EDX, and Kr physisorption porosimetry. PMID:29565802
Environmental and Biomedical Applications of Iron Oxide/Mesoporous Silica Core-Shell Nanocomposites
NASA Astrophysics Data System (ADS)
Egodawatte, Shani Nirasha
Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous silica as well as a judicious choice of pH. Modified magnetic mesoporous silica material was also found to have high adsorption capacity for high and low pH aqueous solutions of Uranium (VI). Tuning the loading and release of a small drug molecule (5-FU) onto these iron oxide/ mesoporous silica core-shell materials was also investigated. The polarity of the solvent used to load 5-FU onto the host had an impact not only on the loading but also on the release percentage of 5-FU. The synthesis of a novel core-shell material with a hematite nanofiber core and a SBA type mesoporous silica shell was also explored.
NASA Astrophysics Data System (ADS)
Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun
2017-02-01
A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.
He, Youling; He, Jiangling; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu
2017-06-15
Owning to the hydrogen-band interactions, blue-light-emitting luminescent carbon dots (CDs) synthesized by one-pot hydrothermal treatment were successfully assembled into Eu 3+ doped mesoporous aluminas (MAs). Interesting, dual-emissive CDs/MAs co-doped materials with higher quantum yield (QY), long-term stability, mesoporous structure, high thermal stability, and large surface areas were obtained. Furthermore, the obtained CDs/MAs co-doped materials possessed tunable color, and excellent temperature sensitivity due to the existing of energy transfer between CDs and Eu 3+ ion. The energy transfer efficiency (η) and energy transfer probability (P) for CDs/Eu 3+ co-doped materials possessed a monotonous tendency with the change of Eu 3+ content. More importantly, the dual-emissive colors can be regularly adjusted through regulating their excitation wavelength or relative mass ratio. In addition, the emission intensity of the CDs/MAs co-doped materials gradually decreased with increasing temperature showing the clear temperature dependence, this dual-emissive thermometer was with high sensitivity, owning a great fitted curve in the range from 100 to 360K under a single wavelength excitation. Copyright © 2017 Elsevier Inc. All rights reserved.
Chevallier, Laure; Bauer, Alexander; Cavaliere, Sara; Hui, Rob; Rozière, Jacques; Jones, Deborah J
2012-03-01
Crystalline microspheres of Nb-doped TiO(2) with a high specific surface area were synthesized using a templating method exploiting ionic interactions between nascent inorganic components and an ionomer template. The microspheres exhibit a porosity gradient, with a meso-macroporous kernel, and a mesoporous shell. The material has been investigated as cathode electrocatalyst support for polymer electrolyte membrane (PEM) fuel cells. A uniform dispersion of Pt particles on the Nb-doped TiO(2) support was obtained using a microwave method, and the electrochemical properties assessed by cyclic voltammetry. Nb-TiO(2) supported Pt demonstrated very high stability, as after 1000 voltammetric cycles, 85% of the electroactive Pt area remained compared to 47% in the case of commercial Pt on carbon. For the oxygen reduction reaction (ORR), which takes place at the cathode, the highest stability was again obtained with the Nb-doped titania-based material even though the mass activity calculated at 0.9 V vs RHE was slightly lower. The microspherical structured and mesoporous Nb-doped TiO(2) is an alternative support to carbon for PEM fuel cells. © 2012 American Chemical Society
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yao; Ma, Kai; Kao, Teresa
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
Sun, Yao; Ma, Kai; Kao, Teresa; ...
2017-08-15
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili
2016-01-01
Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm−2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies. PMID:27243374
NASA Astrophysics Data System (ADS)
Zhang, Xialan; Lin, Qilang; Luo, Shiyuan; Ruan, Kezhao; Peng, Kaiping
2018-06-01
An oxidized mesoporous carbon (OMC) with fluffy structure was fabricated from the mixture of petroleum asphalt and aluminum isopropoxide, and its structures were characterized by FESEM, TEM, BET, TG, XPS and FT-IR. In addition, bath absorption experiments for malachite green (MG) and lead ion (Pb2+) were carried out to explore the effects of pH, initial concentration, contact time and temperature on its absorption process. Results show that the OMC prepared has a fluffy ultrathin-wall structure with narrow pore size distribution and rich oxygen-containing groups. It exhibits excellent absorption performance for the removal of MG as well as Pb2+, as indicated by that its maximum adsorption capacity is 963.1 mg g-1 for MG and 198.6 mg g-1 for Pb2+. The absorption experimental data are all fitted well with pseudo-second-order model and Frendlich isotherm, respectively. More importantly, the OMC still maintains relatively high adsorption capacity after five cycles.
A general soft-enveloping strategy in the templating synthesis of mesoporous metal nanostructures.
Fang, Jixiang; Zhang, Lingling; Li, Jiang; Lu, Lu; Ma, Chuansheng; Cheng, Shaodong; Li, Zhiyuan; Xiong, Qihua; You, Hongjun
2018-02-06
Metal species have a relatively high mobility inside mesoporous silica; thus, it is difficult to introduce the metal precursors into silica mesopores and suppress the migration of metal species during a reduction process. Therefore, until now, the controlled growth of metal nanocrystals in a confined space, i.e., mesoporous channels, has been very challenging. Here, by using a soft-enveloping reaction at the interfaces of the solid, liquid, and solution phases, we successfully control the growth of metallic nanocrystals inside a mesoporous silica template. Diverse monodispersed nanostructures with well-defined sizes and shapes, including Ag nanowires, 3D mesoporous Au, AuAg alloys, Pt networks, and Au nanoparticle superlattices are successfully obtained. The 3D mesoporous AuAg networks exhibit enhanced catalytic activities in an electrochemical methanol oxidation reaction. The current soft-enveloping synthetic strategy offers a robust approach to synthesize diverse mesoporous metal nanostructures that can be utilized in catalysis, optics, and biomedicine applications.
[Study on absorbing volatile oil with mesoporous carbon].
Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan
2014-11-01
Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.
New strategy for surface functionalization of periodic mesoporous silica based on meso-HSiO1.5.
Xie, Zhuoying; Bai, Ling; Huang, Suwen; Zhu, Cun; Zhao, Yuanjin; Gu, Zhong-Ze
2014-01-29
Organic functionalization of periodic mesoporous silicas (PMSs) offers a way to improve their excellent properties and wide applications owing to their structural superiority. In this study, a new strategy for organic functionalization of PMSs is demonstrated by hydrosilylation of the recently discovered "impossible" periodic mesoporous hydridosilica, meso-HSiO1.5. This method overcomes the disadvantages of present pathways for organic functionalization of PMSs with organosilica. Moreover, compared to the traditional functionalization on the surface of porous silicon by hydrosilylation, the template-synthesized meso-HSiO1.5 is more flexible to access functional-groups-loaded PMSs with adjustable microstructures. The new method and materials will have wider applications based on both the structure and surface superiorities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F.; Brown, Suree S.; Adcock, Jamie
Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 °C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol–formaldehyde as a carbon precursor in the presence of triblock ethylene oxide–propylene oxide–ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from ~0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m² g⁻¹ after fluorination as calculated from nitrogen adsorption isotherms at -196 °C. Furthermore, the materialsmore » exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CF x batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F; Dai, Sheng; Guo, Bingkun
Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol formaldehyde as a carbon precursor in the presence of triblock ethylene oxide propylene oxide ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from 0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g 1 after fluorination as calculated from nitrogen adsorption isotherms at 196more » C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.« less
Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications.
Li, Yongsheng; Shi, Jianlin
2014-05-28
Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monodisperse mesoporous silica nanoparticles of distinct topology.
Luo, Leilei; Liang, Yucang; Erichsen, Egil Sev; Anwander, Reiner
2017-06-01
Monodisperse and uniform high-quality MCM(Mobil Composition of Matter)-48-type CMSNs (Cubic Mesoporous Silica Nanoparticles) are readily prepared by simply optimizing the molar ratio of ethanol and surfactant in the system TEOS-CTAB-NaOH-H 2 O-EtOH (TEOS=tetraethyl orthosilicate, CTAB=cetyltrimethylammonium bromide, EtOH=ethanol). In the absence of ethanol only hexagonal mesoporous silica with ellipsoidal and spherical morphology are obtained. The presence of ethanol drives a mesophase transformation from hexagonal to mixed hexagonal/cubic, further to purely cubic, and finally to a mixed cubic/lamellar. This is accompanied by a morphology evolution involving a mixture of ellipses/spheres, regular rods, uniform spheres, and finally a mixture of spheres/flakes. Preserving the three-dimensional (3D) cubic MCM-48 structure, use of a small amount of ethanol is beneficial to the improvement of the monodispersity of the CMSNs. Moreover, the quality of the CMSNs can also be controlled by changing the surfactant concentration or adjusting the stirring rate. All MSNs were characterized using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and N 2 physisorption, indicating highly long-range ordered pore arrays, high specific surface areas (max. 1173 m 2 g -1 ) as well as high pore volumes (max. 1.14 cm 3 g -1 ). The monodispersity of the CMSNs was verified by statistical particle size distribution from SEM (scanning electron microscopy)/TEM (transmission electron microscopy) images and DLS (dynamic light scattering). The mesophase transformation can be rationalized on the basis of an ethanol-driven change of the surfactant packing structure and charge matching at the surfactant/silicate interface. The corresponding morphology evolution can be elucidated by an ethanol-controlled hydrolysis rate of TEOS and degree of condensation of oligomeric silicate species via a nucleation and growth process. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Ji-Chun; Yin, Xue-Bo
2017-01-01
In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334
NASA Astrophysics Data System (ADS)
Yang, Ji-Chun; Yin, Xue-Bo
2017-01-01
In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L-1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g-1 for As(V) and 143.6 mg g-1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy.
Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu
2015-03-01
A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g-1 at a current load of 0.1 A g-1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.
Thermally stable silica-coated hydrophobic gold nanoparticles.
Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu
2009-01-01
We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.
Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang
2013-04-01
A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Structure and positron annihilation spectra of tin incorporated in mesoporous molecular sieves
NASA Astrophysics Data System (ADS)
Zhang, H. Y.; He, Y. J.; Chen, Y. B.; Wang, H. Y.
2002-12-01
Mesoporous molecular sieves (MCM-41) consist of an ordered array of silica tubules comprised of pores with uniform controllable diameters in the nanometer range. Tin was successfully incorporated into MCM-41 using wet chemical techniques. Detailed structural analysis via x-ray diffraction and high resolution transmission electron microscopy confirm this, and indicate that, after sintering samples in air, SnO2 crystal nanoclusters formed in the channels. These conclusions are further supported by a study of the positron annihilation spectrum. In particular, the insensitivity, after incorporation of tin, of the long-lived component of the positron annihilation spectrum to whether an air or a vacuum annealing atmosphere is used indicates that tin in the MCM-41 channels hinders the entry of quenching oxygen from the air. Furthermore, after sintering, the complete loss of this long-lived component indicates that SnO2 nanoclusters fill the channels.
Zu, Lei; Cui, Xiuguo; Jiang, Yanhua; Hu, Zhongkai; Lian, Huiqin; Liu, Yang; Jin, Yushun; Li, Yan; Wang, Xiaodong
2015-01-01
Mesoporous polyaniline-silica nanocomposites with a full interpenetrating structure for pseudocapacitors were synthesized via the vapor phase approach. The morphology and structure of the nanocomposites were deeply investigated by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis and nitrogen adsorption-desorption tests. The results present that the mesoporous nanocomposites possess a uniform particle morphology and full interpenetrating structure, leading to a continuous conductive polyaniline network with a large specific surface area. The electrochemical performances of the nanocomposites were tested in a mixed solution of sulfuric acid and potassium iodide. With the merits of a large specific surface area and suitable pore size distribution, the nanocomposite showed a large specific capacitance (1702.68 farad (F)/g) due to its higher utilization of the active material. This amazing value is almost three-times larger than that of bulk polyaniline when the same mass of active material was used. PMID:28788006
Electrorheological behavior of copper phthalocyanine-doped mesoporous TiO2 suspensions.
Di, Kai; Zhu, Yihua; Yang, Xiaoling; Li, Chunzhong
2006-02-15
A type of anhydrous electrorheological (ER) material of copper phthalocyanine (CuPC)-doped mesoporous TiO2 was synthesized by in situ micelle-assisted incorporation CuPC during mesoporous TiO2 synthesis. TEM, XRD and the nitrogen adsorption-desorption isotherms demonstrated that the material had mesoporous structure and an anatase framework. The ER behavior of the suspensions of CuPC-doped mesoporous TiO2 in silicone oil with the different volume fractions was investigated under an applied electric field. It is found that the suspensions showed visible electrorheological behavior which were compared with that of pure TiO2. The dopants of CuPC molecules within the mesochannel of TiO2 mesoporous sieve improved the conductivity of the particles and produced a proper conductivity of approximately 10(-7) S m(-1). Dielectric spectra of the ER fluid were measured to examine the peak of epsilon'' should appear in the frequency range of 10(2)-10(5) Hz and have a large Deltaepsilon' in this frequency range. Therefore, the both properties may make a conjunct effect on electrorheological behavior.
Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl
2014-12-15
Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule withmore » experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Benjume, M.L.; Espitia-Cabrera, M.I.; Contreras-Garcia, M.E., E-mail: eucontre@zeus.umich.mx
2009-12-15
Macro-mesoporous powders of titania, alumina, and mixed titania-20%alumina systems were obtained by hydrothermal synthesis employing surfactant Tween-20 as structural directing agent in order to promote the textural properties of titania. The effect of the alumina in the titania phase and on textural properties was analyzed. The obtained powders presented a macroporous channel structure that was characterized by X-ray diffractometry, scanning and transmission electron microscopy, N{sub 2} adsorption-desorption analysis, pore size distribution, Fourier transform infrared spectrometry, and thermogravimetric analysis. It was found that alumina content retarded the anatase phase crystallization and increased the Brunauer-Emmet-Teller surface area from 136 to 210 m{supmore » 2}/g. The powders calcined at 400 deg. C are thermally stable and possess an interconnected macro-mesoporous hierarchical structure; the results indicate that this synthesis can be employed to prepare mixed titania-alumina with good textural properties.« less
Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.
Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C
2015-02-03
This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.
Prasad, Kumaresa P S; Dhawale, Dattatray S; Sivakumar, Thiripuranthagan; Aldeyab, Salem S; Zaidi, Javaid S M; Ariga, Katsuhiko; Vinu, Ajayan
2011-08-01
We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g -1 at a 20 mV s -1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.
NASA Astrophysics Data System (ADS)
Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan
2011-08-01
We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.
Prasad, Kumaresa P S; Dhawale, Dattatray S; Sivakumar, Thiripuranthagan; Aldeyab, Salem S; Zaidi, Javaid S M; Ariga, Katsuhiko; Vinu, Ajayan
2011-01-01
We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles. PMID:27877410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin
2014-05-01
Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} andmore » a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.« less
Li, Daohao; Lv, Chunxiao; Liu, Long; Xia, Yanzhi; She, Xilin; Guo, Shaojun; Yang, Dongjiang
2015-08-26
Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10-40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g(-1) at 1 A g(-1), good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g(-1) at 1 A g(-1) and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage.
2015-01-01
Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10–40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g–1 at 1 A g–1, good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g–1 at 1 A g–1 and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage. PMID:27162980
NASA Astrophysics Data System (ADS)
Melnyk, Inna V.; Nazarchuk, Galyna I.; Václavíková, Miroslava; Zub, Yuriy L.
2018-04-01
Mesoporous structure of silica is determined by the type of template, but the introduction of functional groups during the synthesis has additional influence. The structure of SBA-15 may be violated by the introduction of long functions, such as ≡Si(CH2)3NHC(=S)NHC2H5. These ethylthiocarbamidepropyl groups can form complexes with metal ions in thiol or thione tautomeric forms. We determined that the 2D hexagonal p6 mm structure is preserved for SBA-15 with thiourea groups at maximal TEOS:trifunctional silane ratio (mol) = 10:2, which was confirmed by TEM and by the presence of an intense reflex in the small-angle region of diffractograms of the final product. It was shown that the obtained sorbents possess high kinetic characteristics. The experimental data fit pseudo-second-order kinetic equation, but the rate constants depend on the content of functional groups in the surface layer. Template Pluronic P-123 defines the porosity of functional mesoporous silica materials even at increasing content of trifunctional silane in the initial solution. Infrared spectroscopy analysis showed that thione form of thiourea ligand is prevalent on the surface of pores of mesoporous samples. However, during the sorption of silver(I) ions, there are both thione and thiol forms on the surface. Thione form is transformed into thiol with increasing concentration of mercury(II) ions in the sorption solution. Adsorption experiments showed that the SBA-15 silicas functionalized with ethylthiocarbamidepropyl groups had high selectivity for silver(I) ions and could concentrate Ag(I) ions from metal ions mixture at pH 2.
Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution
Miao, Ran; Dutta, Biswanath; Sahoo, Sanjubala; ...
2017-09-05
Here, we report a facile synthetic protocol to pre-pare mesoporous FeS 2 without the aid of hard template as an electrocatalyst for the hydrogen evolution reaction (HER). The mesoporous FeS 2 materials with high surface area were successfully prepared by a sol-gel method follow-ing a sulfurization treatment in an H 2S atmosphere. A re-markable HER catalytic performance was achieved with a low overpotential of 96 mV at a current density of 10 mA·cm 2 and a Tafel slope of 78 mV per decade under alka-line conditions (pH 13). These theoretical calculations indicate that the excellent catalytic activity of mesoporous FeSmore » 2 is attributed to the exposed (210) facets. The mesoporous FeS 2 material might be a promising alternative to the Pt-based electrocatalysts for water splitting.« less
Hypercrosslinked phenolic polymers with well developed mesoporous frameworks
Zhang, Jinshui; Qiao, Zhenan -An; Mahurin, Shannon Mark; ...
2015-02-12
A soft chemistry synthetic strategy based on a Friedel Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Furthermore, this soft chemistry synthetic protocol can be further extended to nanotexture other aromatic-based polymers with robust frameworks.
Near-infrared emission from mesoporous crystalline germanium
NASA Astrophysics Data System (ADS)
Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard
2014-10-01
Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.
NASA Astrophysics Data System (ADS)
Ziegler, Christopher R.
Hierarchically structured inorganic materials are everywhere in nature. From unicellular aquatic algae such as diatoms to the bones and/or cartilage that comprise the skeletal systems of vertebrates. Complex mechanisms involving site-specific chemistries and precision kinetics are responsible for the formation of such structures. In the synthetic realm, reproduction of even the most basic hierarchical structure effortlessly produced in nature is difficult. However, through the utilization of self-assembling structures or "templates", such as polymers or amphiphilic surfactants, combined with some favorable interaction between a chosen inorganic, the potential exists to imprint an inorganic material with a morphology dictated via synthetic molecular self-assembly. In doing so, a very basic hierarchical structure is formed on the angstrom and nanometer scales. The work presented herein utilizes the self-assembly of either surfactants or block copolymers with the desired inorganic or inorganic precursor to form templated inorganic structures. Specifically, mesoporous silica spheres and copolymer directed calcium phosphate-polymer composites were formed through the co-assembly of an organic template and a precursor to form the desired mesostructured inorganic. For the case of the mesoporous silica spheres, a silica precursor was mixed with cetyltrimethylammonium bromide and cysteamine, a highly effective biomimetic catalyst for the conversion of alkoxysilanes to silica. Through charge-based interactions between anionic silica species and the micelle-forming cationic surfactant, ordered silica structures resulted. The incorporation of a novel, effective catalyst was found to form highly condensed silica spheres for potential application as catalyst supports or an encapsulation media. Ordered calcium phosphate-polymer composites were formed using two routes. Both routes take advantage of hydrogen bonding and ionic interactions between the calcium and phosphate precursors and the self-assembling copolymer template. Some evidence suggests that the copolymer morphology remained in the composite despite the known tendency for calcium phosphates to form highly elongated crystalline structures with time, as is commonly the case for synthetic hydroxyapatites. Such materials have obvious application as bone grafts and bone coatings due, in part, to the osteoconductive nature of calcium phosphate as well as to the mesoporosity generated through the cooperative assembly of the block copolymer and the inorganic. Future work, including potential experiments to determine osteoconductivity of as-prepared composites, is also presented herein.
Lozano-Sanchez, Pablo; Elliott, Joanne M
2008-02-01
Using the technique of liquid crystal templating a rotating disc electrode (RDE) was modified with a high surface area mesoporous platinum film. The surface area of the electrode was characterised by acid voltammetry, and found to be very high (ca. 86 cm(2)). Acid characterisation of the electrode produced distorted voltammograms was interpreted as being due to the extremely large surface area which produced a combination of effects such as localised pH change within the pore environment and also ohmic drop effects. Acid voltammetry in the presence of two different types of surfactant, namely Tween 20 and Triton X-100, suggested antifouling properties associated with the mesoporous deposit. Further analysis of the modified electrode using a redox couple in solution showed typical RDE behaviour although extra capacitive currents were observed due to the large surface area of the electrode. The phenomenon of underpotential deposition was exploited for the purpose of anodic stripping voltammetry and results were compared with data collected for microelectrodes. Underpotential deposition of metal ions at the mesoporous RDE was found to be similar to that at conventional platinum electrodes and mesoporous microelectrodes although the rate of surface coverage was found to be slower at a mesoporous RDE. It was found that a mesoporous RDE forms a suitable system for quantification of silver ions in solution.
Solid state microwave synthesis of highly crystalline ordered mesoporous hausmannite Mn 3 O 4 films
Xia, Yanfeng; Qiang, Zhe; Lee, Byeongdu; ...
2017-06-23
Microwave calcination of ordered micelle templated manganese carbonate films leads to highly crystalline, ordered mesoporous manganese oxide, while similar temperatures in a furnace lead to disordered, amorphous manganese oxide.
Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties.
Khan, Mostofa K; Hamad, Wadood Y; Maclachlan, Mark J
2014-04-16
Chiral nematic structures with different helical pitch from layer to layer are embedded into phenol-formaldehyde bilayer resin composite films using cellulose nanocrystals (CNCs) as templates. Selective removal of CNCs results in mesoporous resins with different pore size and helical pitch between the layers. Consequently, these materials exhibit photonic properties by selectively reflecting lights of two different wavelengths and concomitant actuation properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Luyi, E-mail: zhuly@sdu.edu.cn; Liu, Benxue; Qin, Weiwei, E-mail: jiuyuan.1001@163.com
Graphical abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface area under higher temperatures were prepared by a simple EISA process. - Highlights: • The ZrO{sub 2}/TiO{sub 2} fibers were prepared by EISA process combined with steam heat-treatment. • The mesoporous ZrO{sub 2}/TiO{sub 2} fibers have well-organized linear and spring structure. • The fibers were composed of oval rod nanocrystals of ZrTiO{sub 4}. - Abstract: The ultra-stable order mesoporous ZrO{sub 2}/TiO{sub 2} fibers with well-organized linear and spring structure and large surface areas under higher temperatures were prepared by a (simplemore » evaporation-induced assembly) EISA process. The preparation, microstructures and formation processes were characterized by Fourier transformation infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N{sub 2} adsorption–absorption measurements. The fibers take on pinstripe configuration which is very orderly along or perpendicular to the axial direction of the fibers. The diameters of the pinstripe are in the region of 200–400 nm and arranges regularly, which are composed of oval rod nanocrystals of ZrTiO{sub 4}.« less
Xiang, Xinran; Suo, Hongbo; Xu, Chao; Hu, Yi
2018-05-01
Chitosan-mesoporous silica SBA-15 hybrid nanomaterials (CTS-SBA-15) were synthesized by means of carboxyl functionalized ionic liquids as the coupling agent. The as-prepared CTS-SBA-15 support was characterized by TEM, FTIR, TG and nitrogen adsorption-desorption techniques. Porcine pancreas lipase (PPL) was then bound to the hybrid nanomaterials by using the cross-linking reagent glutaraldehyde (GA). Further, the parameters like cross-linking concentration, time and ratio of supports to enzyme were optimized. The property of immobilized lipase were tested in detail by enzyme activity assays. The results indicated that the hybrid nanomaterials could form three-dimensional (3D) structure with homogeneous mesoporous structures and immobilized PPL revealed excellent enzymatic performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Synthesis of High Valence Silver-Loaded Mesoporous Silica with Strong Antibacterial Properties
Chen, Chun-Chi; Wu, Hsin-Hsien; Huang, Hsin-Yi; Liu, Chen-Wei; Chen, Yi-Ning
2016-01-01
A simple chemical method was developed for preparing high valence silver (Ag)-loaded mesoporous silica (Ag-ethylenediaminetetraacetic acid (EDTA)-SBA-15), which showed strong antibacterial activity. Ag-EDTA-SBA-15 exhibited stronger and more effective antibacterial activity than commercial Ag nanoparticles did, and it offered high stability of high valence silver in the porous matrix and long-lasting antibacterial activity. The synthesized materials were characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) analysis, and transmission electron microscopy (TEM). Ag existed in both surface complexation and Ag particles. EDTA anchored within a porous structure chelated Ag ions in higher oxidation states and prevented their agglomeration and oxidation reduction. The XRD results showed that most Ag in the Ag-EDTA-SBA-15 existed in higher oxidation states such as Ag(II) and Ag(III). However, the XPS and TEM results showed that Ag easily reduced in lower oxidation states and agglomerated as Ag particles on the exterior layer of the SBA-15. PMID:26742050
NASA Astrophysics Data System (ADS)
Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng
2018-03-01
A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.
Hou, Ya-Nan; Zhao, Zongbin; Yu, Zhengfa; Zhang, Su; Li, Shaofeng; Yang, Juan; Zhang, Han; Liu, Chang; Wang, Zhiyu; Qiu, Jieshan
2018-02-21
Nitrogen-doped mesoporous carbon nanosheets (NMCS) have been fabricated from zinc-based microporous metal-organic frameworks (ZIF-8) by pyrolysis in a molten salt medium. The as-prepared NMCS exhibit significantly improved specific capacitance (NMCS-8: 232 F g -1 at 0.5 A g -1 ) and capacitance retention ratio (75.9 % at 50 A g -1 ) compared with the micropore-dominant nitrogen-doped porous carbon polyhedrons (NPCP-5: 178 F g -1 at 0.5 A g -1 , 15.9 % at 20 A g -1 ) obtained by direct pyrolysis of nanocrystalline ZIF-8. The excellent capacitive performance and high rate performance of the NMCS can be attributed to their unique combination of structure and composition, that is, the two-dimensional and hierarchically porous structure provides a short ion-transport pathway and facilitates the supply of electrolyte ions, and the nitrogen-doped polar surface improves the interface wettability when used as an electrode. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective Catalytic Reduction of NO with NH3 Over V-MCM-41 Catalyst.
Kwon, Woo Hyun; Park, Sung Hoon; Kim, Ji Man; Park, Su Bin; Jung, Sang-Chul; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon
2016-02-01
V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.
Umeyama, Tomokazu; Imahori, Hiroshi
2017-11-21
Over the past several years, organometal halide perovskite solar cells (PSCs) have attracted considerable interest from the scientific research community because of their potential as promising photovoltaic devices for use in renewable energy production. To date, high power conversion efficiencies (PCEs) of more than 20% have been primarily achieved with mesoscopic-structured PSCs, where a mesoporous TiO 2 (mTiO 2 ) layer is incorporated as an electron-transporting mesoporous scaffold into the perovskite crystal, in addition to a compact TiO 2 (cTiO 2 ) as an electron-transporting layer (ETL). In this Perspective, we first summarize recent research on the preparation strategies of the mTiO 2 layer with a high electron transport capability by facile sol-gel methods instead of the conventional nanoparticle approach. The importance of the control of the pore size and grain boundaries of the mTiO 2 in achieving high PCEs for PSCs is discussed. In addition, an alternative method to improve the electron transport in the mTiO 2 layer via the incorporation of highly conductive nanocarbon materials, such as two-dimensional (2D) graphene and one-dimensional (1D) carbon nanotubes, is also summarized. Finally, we highlight the utilization of zero-dimensional (0D) nanocarbon, i.e., fullerenes, as an n-type semiconducting material in mesostructure-free planar PSCs, which avoids high-temperature sintering during the fabrication of an ETL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ping; Wang, Jin; Yu, Huogen, E-mail: yuhuogen@whut.edu.cn
2016-02-15
Highlights: • A new hierarchically macro–mesoporous TiO{sub 2} film is fabricated via TiF{sub 4} hydrolysis. • TiF{sub 4} hydrolysis is accompanied with self-assembled process of TiO{sub 2} nanoparticles. • The hierarchically porous TiO{sub 2} films show higher performance than nonporous film. - Abstract: The hierarchically porous structure of TiO{sub 2} film plays an important role on improved photoelectric conversion efficiency in dye-sensitized solar cells (DSSCs). It is highly required to develop a facile strategy to prepare the hierarchical porous photoelectrode. In this study, a novel hierarchically macro–mesoporous TiO{sub 2} film as photoelectrode of DSSCs is fabricated by a self-assembled processmore » of TiO{sub 2} nanoparticles via TiF{sub 4} hydrolysis. The hydrolysis of TiF{sub 4} is accompanied with self-assembled process of TiO{sub 2} nanoparticles on the surface of electrophoretic-deposited titanate nanotube film which provides effective active sites for the deposition of TiO{sub 2} nanoparticles owing to a large amount of hydroxyl groups, resulting in the formation of hierarchically porous structures. The hierarchically porous TiO{sub 2} film is mainly composed of mesopores with a size of 2–50 nm and macropores with a wide range of 0.5–5 μm, which contribute to an obviously higher conversion performance (6.70%) than nonporous P25-TiO{sub 2} film (4.01%). The main reasons for enhanced conversion efficiency of hierarchically porous TiO{sub 2} film can be attributed to adsorption of more dye molecules, rapid diffusion and efficient transport of electrolyte, and longer electron lifetime. This work may provide new insights into preparing porous structure of TiO{sub 2} films in DSSCs for modification of photoelectric conversion efficiency.« less
Sodium citrate functionalized reusable Fe3O4@TiO2 photocatalyst for water purification
NASA Astrophysics Data System (ADS)
Li, Wenyu; Wu, Haoyi
2017-10-01
Easy-recycle photocatalysts are new materials for water treatment technologies. In order to improve the recyclable ability, we employed Fe3O4 particles, which were functionalized by sodium citrate, to serve as a substrate core to attract the deposition of a shell of TiO2 particles. When compared to the calcining process for preparing the composite, the TiO2 distributed homogeneously on the sodium citrate treated Fe3O4, forming a mesoporous shell layer. Due to the mesoporous structure, this Fe3O4@TiO2 exhibited high photocatalytic degradation activity to Rhodamine B, and it was easily recycled using a magnetic field to recover the catalyst from solution.
Shang, Fanpeng; Sun, Jianrui; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin
2011-03-01
A series of efficient acid-base bifunctionalized hexagonal mesoporous silica (HMS) catalysts contained aminopropyl and propanesulfonic acid have been synthesized through a simple co-condensation by protection of amino group. The results of small-angle XRD, TEM, and N(2) adsorption-desorption measurements show that the resultant materials have mesoscopic structures. X-ray photoelectron spectroscopies, elemental analysis (EA), back titration, (29)Si NMR and (13)C NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The resultant catalysts exhibit excellent acid-basic properties, which make them possess high activity for one-pot deacetalization-Knoevenagel and deacetalization-nitroaldol (Henry) reactions. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Murai, K.; Nonoyama, T.; Ando, F.; Kato, K.
2011-10-01
Mesoporous silica (MPS) materials were synthesized using cetyltrimethylammonium bromide or amphiphilic pluronic polymer P123 (EO20PO70EO20) as structure-directing agent. MPS samples were characterized by FE-SEM and N2 adsorption-desorption isotherms, respectively. Subtilisin from Bacillus licheiformis (4.1 × 7.8 × 3.7 nm) was easily immobilized by a direct one-step immobilization process onto MPS with different organo-functinalized surfaces. However, enzyme immobilized on MPS modified with 3-mercaptopropyl group strongly reduced its enantioselectivity. Denaturation temperature of immobilized subtilisin shifted to a high temperature compared to free-enzyme. These biocatalysts on MPS particles retained about 30% of original activity even after 5 cycles of recycle use.
Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.
Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T
2013-08-06
The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.
Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications
NASA Astrophysics Data System (ADS)
Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.
2015-03-01
The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI) available: IR spectra and TG profiles of as-made BiFeO3 NPs and MBFA samples, TEM images of 3-APA-capped BiFeO3 NPs, EDS spectrum of MBFAs, N2 adsorption-desorption isotherms of randomly aggregated BiFeO3 NPs and catalytic data for 4-NP reduction by MBFAs and other nanostructured catalysts. See DOI: 10.1039/c5nr00185d
NASA Astrophysics Data System (ADS)
Hou, Jianhua; Jiang, Kun; Tahir, Muhammad; Wu, Xiaoge; Idrees, Faryal; Shen, Ming; Cao, Chuanbao
2017-12-01
The development of green and clean synthetic techniques to overcome energy requirements have motivated the researchers for the utilization of sustainable biomass. Driven by this desire we choose rice as starting materials source. After the explosion effect, the precursor is converted into puffed rice with a honeycomb-like structures composed of thin sheets. These honeycomb-like macrostructures, effectively prevent the cross-linking tendency towards the adjacent nanosheets during activation process. Furthermore, tuneable micro/mesoporous structures with ultrahigh specific surface areas (SBET) are successfully designed by KOH activation. The highest SBET of 3326 m2 g-1 with optimized proportion of small-mesopores is achieved at 850 °C. The rice-derived porous N-doped carbon nanosheets (NCS-850) are used as the active electrode materials for supercapacitors. It exhibites high specific capacitance specifically of 218 F g-1 at 80 A g-1 in 6 M KOH and a high-energy density of 104 Wh kg-1 (53 Wh L-1) in the ionic liquid electrolytes. These are the highest values among the reported biomass-derived carbon materials for the best of our knowledge. The present work demonstrates that the combination of "puffing effect" and common chemical activation can turn natural products such as rice into functional products with prospective applications in high-performance energy storage devices.
NASA Astrophysics Data System (ADS)
Qasim, M.; Singh, Braj R.; Naqvi, A. H.; Paik, P.; Das, D.
2015-07-01
Candida albicans is a diploid fungus that causes common infections such as denture stomatitis, thrush, urinary tract infections, etc. Immunocompromised patients can become severely infected by this fungus. Development of an effective anticandidal agent against this pathogenic fungus, therefore, will be very useful for practical application. In this work, Ag-embedded mesoporous silica nanoparticles (mSiO2@AgNPs) have successfully been synthesized and their anticandidal activities against C. albicans have been studied. The mSiO2@AgNPs nanoparticles (d ˜ 400 nm) were designed using pre-synthesized Ag nanoparticles and tetraethyl orthosilicate (TEOS) as a precursor for SiO2 in the presence of cetyltrimethyl ammonium bromide (CTAB) as an easily removable soft template. A simple, cost-effective, and environmentally friendly approach has been adopted to synthesize silver (Ag) nanoparticles using silver nitrate and leaf extract of Azadirachta indica. The mesopores, with size-equivalent diameter of the micelles (d = 4-6 nm), were generated on the SiO2 surface by calcination after removal of the CTAB template. The morphology and surface structure of mSiO2@AgNPs were characterized through x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), particle size analysis (PSA), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) and high-resolution transmission electron microscopy (HRTEM). The HRTEM micrograph reveals the well-ordered mesoporous structure of the SiO2 sphere. The antifungal activities of mSiO2@AgNPs on the C. albicans cell have been studied through microscopy and are seen to increase with increasing dose of mSiO2@AgNPs, suggesting mSiO2@AgNPs to be a potential antifungal agent for C. albicans 077.
Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.
Li, Dong-Feng; Huang, Wei-Qing; Zou, Lan-Rong; Pan, Anlian; Huang, Gui-Fang
2018-08-01
Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.
Kim, Seung-Soo; Heo, Hyeon Su; Kim, Sang Guk; Ryoo, Ryong; Kim, Jeongnam; Jeon, Jong-Ki; Park, Sung Hoon; Park, Young-Kwon
2011-07-01
Oil fractions, separated from food waste leachate, can be used as an energy source. Especially, high quality oil can be obtained by catalytic cracking. In this study, nanoporous catalysts such as Al-MCM-41 and mesoporous MFI type zeolite were applied to the catalytic cracking of oil fractions using the pyrolysis gas chromatography/mass spectrometry. Mesoporous MFI type zeolite showed better textural porosity than Al-MCM-41. In addition, mesoporous MFI type zeolite had strong Brönsted acidity while Al-MCM-41 had weak acidity. Significant amount of acid components in the food waste oil fractions were converted to mainly oxygenates and aromatics. As a result of its well-defined nanopores and strong acidity, the use of a mesoporous MFI type zeolite produced large amounts of gaseous and aromatic compounds. High yields of hydrocarbons within the gasoline range were also obtained in the case of mesoporous MFI type zeolite, whereas the use of Al-MCM-41, which exhibits relatively weak acidity, resulted in high yields of oxygenates and diesel range hydrocarbons.
100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO 2 Films
Li, Ke; Liu, Jie; Sheng, Xia; ...
2017-12-04
Mesoporous semiconductor films are of considerable interest for applications in photoelectrochemical devices, however, despite intensive research till now, their charge transport properties remain significantly lower than their single-crystal counterparts. Herein, we report a novel low-temperature template-free technique for growing high surface area mesoporous anatase TiO2 films with a preferred [001] crystalline-orientation on FTO-coated glass substrate. Compared to mesoporous films that comprised of randomly oriented crystallites, the uniaxial orientation enables a 100-fold increase in the rate of electron transport. The uniaxially oriented mesoporous anatase TiO2 films exhibit should greatly facilitate the development and application of photoelectrochemical and electrochemical devices.
Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; ...
2017-08-21
Exploiting specific interactions with titania (TiO 2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO 2 has many potential advantages over bulk and mesoporous TiO 2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO 2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO 2 content (up to 636 mg TiO2/g). The adsorption isotherms of twomore » polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO 2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO 2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO 2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, M. Arif; Wallace, William T.; Islam, Syed Z.
Exploiting specific interactions with titania (TiO 2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO 2 has many potential advantages over bulk and mesoporous TiO 2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO 2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO 2 content (up to 636 mg TiO2/g). The adsorption isotherms of twomore » polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO 2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO 2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO 2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.« less
Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Lin; Sun Jihong, E-mail: jhsun@bjut.edu.cn; Li Yuzhen
The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing andmore » therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.« less
Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Dai, Pengcheng; Yamauchi, Yusuke
2015-12-01
Large-sized (ca. 40 nm) mesoporous Er2O3 thin films are synthesized by using a triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) as a pore directing agent. Each block makes different contributions and the molar ratio of PVP/Er(3+) is crucial to guide the resultant mesoporous structure. An easy and general method is proposed and used to prepare a series of mesoporous rare-earth oxide (Sm2O3, Dy2O3, Tb2O3, Ho2O3, Yb2O3, and Lu2O3) thin films with potential uses in electronics and optical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.
Wu, Baoshan; Zhang, Hongzhang; Zhou, Wei; Wang, Meiri; Li, Xianfeng; Zhang, Huamin
2015-10-21
Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries.
NASA Astrophysics Data System (ADS)
Park, Chang-Sun; Hong, Min-Hee; Cho, Hyung Hee; Park, Hyung-Ho
2017-07-01
The porosity of mesoporous SrTi0.8Nb0.2O3 (STNO) was controlled by changing the surfactant concentration to investigate the porosity effect on the thermoelectric properties. Mesoporous structure typically induces a large decrease in the carrier mobility and a small increase in the carrier concentration owing to carrier scattering and oxygen vacancies. These changes in the carrier mobility and concentration induce a change in the thermoelectric properties by enhancing the Seebeck coefficient owing to an increase in the electrical resistivity and carrier filtering effect. Brij-S10 surfactant induces a carrier filtering effect in STNO, and so the Seebeck coefficient could be enhanced even with increasing carrier concentration. Because the Seebeck coefficient affects the power factor more strongly than the electrical resistivity does, incorporation of Brij-S10 surfactant into STNO films increases the power factor. The maximum value of the power factor, approximately 2.2 × 10-4 W/mK2 at 200 °C, was obtained at a Brij-S10 molar ratio of 0.075. From this result, we can expect the application of STNO as a thermoelectric material with an enhanced power factor through successful adoption of mesoporous structure.
NASA Astrophysics Data System (ADS)
Dang, Lingyan; Tian, Chen; Zhao, Shifeng; Lu, Qingshan
2018-06-01
Barium and manganese-doped zinc silicates was prepared under hydrothermal treatment by mesoporous template route employing mesoporous silica as an active template. The sample displays a rod-like morphology with a mean diameter of ∼40 nm and a mean length of ∼450 nm, which inherits the characteristics of mesoporous silica. The individual rods show single crystalline and assemble into bundle-like hierarchical structure along the channels of the mesoporous silica. When barium ions together with manganese ions are co-doped in zinc silicate, the green emission corresponding to manganese ions display a significant enhancement, especially for the sample with the barium doping concentration of 0.08, which indicates that an energy transfer from barium to manganese ions takes place. With further increasing barium concentration from 0.08 to 0.10, the recombination between the defects related to barium and the excitation states of the manganese dominates accompanying non-radiative transitions which can reduce the emission efficiency.
A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.
Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y
2018-08-01
Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.
The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.
Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy
2014-08-05
Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less
Zhang, Wei; Si, Xiaowei; Liu, Bin; Bian, Guomin; Qi, Yonglin; Yang, Xinlin; Li, Chenxi
2015-10-15
One-dimensional (1D) magnetic Fe3O4/P(MBAAm-co-MAA) nanochains were prepared by distillation-precipitation polymerization of MBAAm and MAA in the presence of Fe3O4 nanoparticles as building blocks under a magnetic heating stirrer, which played two critical roles: serving as magnetic field to induce the self-assembly of Fe3O4 nanoparticles into 1D nanochains and providing thermal energy to induce the polymerization of MAA and MBAAm on the surface of the Fe3O4 nanoparticles. The thickness of the P(MBAAm-co-MAA) layer can be easily tuned by adjusting the successive polymerization steps. The polymer layer that contained carboxyl groups was used as stabilizers for loading Ag nanoparticles and the reaction locus for deposition of outer silica layer via a sol-gel method in presence of C18TMS as the pore directing agent for tri-layer nanochains. The corresponding hollow mesoporous silica nanochains with movable maghemite cores (γ-Fe2O3@mSiO2) were produced after removal of the polymer mid-layer and the alkyl groups of the pore directing agent via calcination of the tri-layer nanochains at high temperature. The Fe3O4/P(MBAAm-co-MAA)/Ag nanochains exhibited a highly catalytic efficiency and well reusable property toward the reduction of nitrophenol. Furthermore, the γ-Fe2O3@mSiO2 nanochains possessed hollow mesoporous structure and high specific surface area (197.2 m(2) g(-1)) were used as a drug carrier, which displayed a controlled release property. Copyright © 2015 Elsevier Inc. All rights reserved.
Development of TRPN dendrimer-modified disordered mesoporous silica for CO{sub 2} capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoyun; Zhang, Sisi; Qin, Hongyan
2014-08-15
Highlights: • A novel series of TRPN dendrimers are synthesized. • Structurally disordered mesoporous silica was used to develop the CO{sub 2} adsorbent. • The CO{sub 2} adsorption capacity is relatively high. • The sorbent exhibits a high stability after 12 cycling runs. • The sorbent achieves complete desorption at low temperature (60 °C). - Abstract: A novel series of tri(3-aminopropyl) amine (TRPN) dendrimers were synthesized and impregnated on structurally disordered mesoporous silica (DMS) to generate CO{sub 2} adsorbents (TS). The physicochemical and adsorption properties of the adsorbents before and after dendrimer modification were characterized by X-ray diffraction (XRD), thermogravimetricmore » analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and N{sub 2} adsorption–desorption (N{sub 2}-BET) techniques. CO{sub 2} adsorption–desorption tests indicated that the sorbent demonstrates high CO{sub 2} adsorption capacity (138.1 mg g{sup −1} for G1 sample TS-G1-3CN-50 and 91.7 mg g{sup −1} for G2 sample TS-G2-6CN-50), and can completely desorb CO{sub 2} under vacuum at 60 °C. Its CO{sub 2} adsorption capacity at 25 °C increases with the amine loading, achieving the highest adsorption capacity (140.6 mg g{sup −1} for TS-G1-3CN) at 60%. The developed TS materials exhibited excellent cycling stability. After 12 consecutive adsorption–desorption runs, TS-G1-3CN-50 shows an adsorption capacity of 136.0 mg g{sup −1}, retaining 98.5% of its original value.« less
Mesoporous TiO2 implants for loading high dosage of antibacterial agent
NASA Astrophysics Data System (ADS)
Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun
2014-06-01
We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.
Liu, Song; An, Cuihua; Zang, Lei; Chang, Xiaoya; Guo, Huinan; Jiao, Lifang; Wang, Yijing
2018-04-16
A 3D flower-like mesoporous Ni@C composite material has been synthesized by using a facile and economical one-pot hydrothermal method. This unique 3D flower-like Ni@C composite, which exhibited a high surface area (522.4 m 2 g -1 ), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g -1 at 2 A g -1 ) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg -1 at a power density of 750 W kg -1 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A
2017-03-27
Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.
Liew, Rock Keey; Azwar, Elfina; Yek, Peter Nai Yuh; Lim, Xin Yi; Cheng, Chin Kui; Ng, Jo-Han; Jusoh, Ahmad; Lam, Wei Haur; Ibrahim, Mohd Danial; Ma, Nyuk Ling; Lam, Su Shiung
2018-06-19
A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m 2 /g) and pore volume (≤0.80 cm 3 /g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Weinberger, Christian; Roggenbuck, Jan; Hanss, Jan; Tiemann, Michael
2015-01-01
A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce. PMID:28347073
NASA Astrophysics Data System (ADS)
Balaish, Moran; Ein-Eli, Yair
2018-03-01
Adding immiscible perfluorocarbons (PFCs), possessing superior oxygen solubility and diffusivity, to a free-standing (metal-free and binder-free) CNTs air-electrode tissues with a meso-pore structure, fully maximized the advantages of PFCs as oxygenated-species' channels-providers. The discharge behavior of hybrid PFCs-CNT Li-O2 systems demonstrated a drastic increase in cell capacity at high current density (0.2 mA cm-2), where oxygen transport limitations are best illustrated. The results of this research revealed several key factors affecting PFCs-Li-O2 systems. The incorporation of PFCs with higher superoxide solubility and oxygen diffusivity, but more importantly higher PFCs/electrolyte miscibility, in a meso-pore air-electrode enabled better exploitation of PFCs potential. Consequently, the utilization of the air-electrode' surface area was enhanced via the formation of artificial three phase reaction zones with additional oxygen transportation routes, leading to uniform and intimate Li2O2 deposit at areas further away from the oxygen reservoir. Associated mechanisms are discussed along with insights into an improved Li-O2 battery system.
Liu, Aifeng; Che, Hongwei; Liu, Chuanzhi; Fu, Quanrong; Jiang, Ruijiao; Wang, Cheng; Wang, Liang
2014-06-01
Ordered hexagonal mesoporous aluminosilicates with lower Si/Al ratio below 5 have been successfully synthesized via the co-assembly of preformed aluminosilicate precursors with Gemini surfactant [C12H25N+(CH3)2(CH2)6N+(CH3)2C12H25] x 2Br(-) as the template. Powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N2 adsorption-desorption isotherm measurements, Fourier transform infrared spectroscopy, 27Al nuclear magnetic resonance, thermogravimetric analysis, and temperature-programmed desorption of cyclohexylamine are employed to characterize the resulting samples. The phenol alkylation reaction is carried out to evaluate their catalytic performances. These studies indicate that the sample with a low Si/Al ratio of 3 still retains a highly ordered hexagonal mesoporous structure. And it also possesses the highest acidity of 0.96 mmol among the samples with lower Si/Al ratios below 5 due to its higher specific surface area together with more content of tetrahedrally coordinated Al in the framework. The catalytic tests confirm that the acidity of the samples plays a key role in determining their catalytic performances.
Nanostructured poly(benzimidazole): from mesoporous networks to nanofibers.
Weber, Jens
2010-02-22
Poly(benzimidazole)s (PBIs) are a class of high-performance polymers which have been receiving increasing interest during the last years due to their high potential as constituents of membrane materials in proton-exchange membrane fuel cells (PEMFCs). In addition to the importance of PBI in fuel-cell technology, there are a number of other applications (e.g., catalysis) that make use of the special properties of this material. The scope of this Minireview is to first give a short overview about the use of nanostructured, mesoporous PBI as a proton conductor. Secondly, the use of spirobifluorene derivatives as new monomers, which allow the synthesis of hierarchically structured PBI, is presented. Limitations of traditional synthetic methods will be discussed, and an ionothermal scheme towards PBI will be presented as a versatile tool for the synthesis of plain and spirobifluorene-based PBIs. Finally, the use of electrospinning as a powerful processing technique for PBI will be presented briefly.
Zhang, Genqiang; Lou, Xiong Wen David
2013-02-20
Mesoporous NiCo(2) O(4) nanosheets can be directly grown on various conductive substrates, such as Ni foam, Ti foil, stainless-steel foil and flexible graphite paper, through a general template-free solution method combined with a simple post annealing treatment. As a highly integrated binder- and conductive-agent-free electrode for supercapacitors, the mesoporous NiCo(2) O(4) nanosheets supported on Ni foam deliver ultrahigh capacitance and excellent high-rate cycling stability. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing
2018-06-15
Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV-vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni 0.962 Sn 0.038 O 1.038 , and then decreased to 12.24 for Ni 0.946 Sn 0.054 O 1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.
Electrochemical studies of mesoporous and copper-modified mesoporous TiO2 -anode material
NASA Astrophysics Data System (ADS)
Ajay Kumar, R.; Venkateswara Rao, A.; Rajesh, Ch.
2018-05-01
Herein, we developed a method to synthesize highly ordered mesoporous TiO2 (MT) and copper-modified M- TiO2 (CMT) with a high surface area by the hydrothermal method using Pluronic P-123 as a surfactant at 150 ° C. CMT with different copper concentrations (0.1, 0.2 and 0.3%) was synthesized. The structural characterization studies revealed that MT and CMT particles are in anatase phase. The average particle size was found to be 24± 0.8 nm for MT and that of CMT was 25± 0.6 , 27± 0.4 and 28± 0.3 nm, respectively. The presence of ordered spherical MT and CMT particles with uniform size distribution was confirmed by performing morphological studies using FE-SEM. Optical absorption studies indicate the presence of copper because of the red shift in the band gap and also a broad peak around 800nm when compared with MT. EIS studies point out an increase in conductivity from MT through 0.3% CMT by a decrease in the charge transfer resistance. Further, charge-discharge studies were carried on this material at room temperature for lithium-ion battery applications. CMT with 0.3% copper showed high initial discharge capacity and better cyclability. The results indicate that this material can act as a promising negative electrode.
Wang, Bo; Li, Songmei; Wu, Xiaoyu; Li, Bin; Liu, Jianhua; Yu, Mei
2015-09-07
A novel and facile two-step strategy is successfully developed for the large-scale fabrication of hierarchical mesoporous CoFe2O4 nanowire arrays (NWAs) on flexible carbon fabric as integrated anodes for highly efficient and reversible lithium storage. The synthesis involves the co-deposition of uniform bimetallic (Co, Fe) carbonate hydroxide hydrate precursor NWAs on carbon fabric and subsequent thermal transformation to spinel CoFe2O4 without damaging the morphology. The as-prepared CoFe2O4 nanowires have unique mesoporous structures, which are constructed by many interconnected nanocrystals with sizes of about 15-20 nm. The typical size of the nanowires is in the range of 70-100 nm in width and up to several micrometers in length. Such a hybrid nanostructure electrode presented here not only simplifies electrode processing, but also promises fast electron transport/collection and ion diffusion, and withstands volume variation upon prolonged charge/discharge cycling. As a result, the binder-free CoFe2O4/carbon fabric composite exhibits a high reversible capacity of 1185.75 mA h g(-1) at a current density of 200 mA g(-1), and a superior rate capability. More importantly, a reversible capacity as high as ∼950 mA h g(-1) can be retained and there is no obvious decay after 150 cycles.
NASA Astrophysics Data System (ADS)
Wei, Junqi; Li, Xiaoqing; Han, Yanbing; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Jing; Yang, Yanting; Ge, Hongliang; Wang, Xinqing
2018-06-01
Mesoporous nickel oxides (NiO) and stannum(Sn)-doped NiO nanowires (NWs) were synthesized by using SBA-15 templates with the nanocasting method. X-ray diffraction, transmission electron microscope, energy dispersive spectrometry, nitrogen adsorption/desorption isotherm and UV–vis spectrum were used to characterize the phase structure, components and microstructure of the as-prepared samples. The gas-sensing analysis indicated that the Sn-doping could greatly improve the ethanol sensitivity for mesoporous NiO NWs. With the increasing Sn content, the ethanol sensitivity increased from 2.16 for NiO NWs up to the maximum of 15.60 for Ni0.962Sn0.038O1.038, and then decreased to 12.24 for Ni0.946Sn0.054O1.054 to 100 ppm ethanol gas at 340 °C. The high surface area from the Sn-doping improved the adsorption of oxygen on the surface of NiO NWs, resulting in the smaller surface resistance in air. Furthermore, owing to the recombination of the holes in hole-accumulation lay with the electrons from the donor impurity level and the increasing the body defects for Sn-doping, the total resistance in ethanol gas enhanced greatly. It was concluded that the sensitivity of Sn-doped NiO NWs based sensor could be greatly improved by the higher surface area and high-valence donor substitution from Sn-doping.
Kang, Eunae; Jeon, Gumhye; Kim, Jin Kon
2013-07-21
The mesoporous carbon nanofiber arrays that stand on carbon-gold double-layer current collectors are synthesized by self-assembly of a PS-b-PEO copolymer and resol in AAO templates for a high-power micro-supercapacitor at high current densities.
Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes.
Kim, Nahyeon; Park, Hyejeong; Yoon, Naeun; Lee, Jung Kyoo
2018-04-24
For the practical use of high-capacity silicon anodes in high-energy lithium-based batteries, key issues arising from the large volume change of silicon during cycling must be addressed by the facile structural design of silicon. Herein, we discuss the zeolite-templated magnesiothermic reduction synthesis of mesoporous silicon (mpSi) (mpSi-Y, -B, and -Z derived from commercial zeolite Y, Beta, and ZSM-5, respectively) microparticles having large pore volume (0.4-0.5 cm 3 /g), wide open pore size (19-31 nm), and small primary silicon particles (20-35 nm). With these appealing mpSi particle structural features, a series of mpSi/C composites exhibit outstanding performance including excellent cycling stabilities for 500 cycles, high specific and volumetric capacities (1100-1700 mAh g -1 and 640-1000 mAh cm -3 at 100 mA g -1 ), high Coulombic efficiencies (approximately 100%), and remarkable rate capabilities, whereas conventional silicon nanoparticles (SiNP)/C demonstrate limited cycle life. These enhanced electrochemical responses of mpSi/C composites are further manifested by low impedance build-up, high Li ion diffusion rate, and small electrode thickness changes after cycling compared with those of SiNP/C composite. In addition to the outstanding electrochemical properties, the low-cost materials and high-yield processing make the mpSi/C composites attractive candidates for high-performance and high-energy Li-ion battery anodes.
Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods
Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.; ...
2017-08-08
Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less
Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Sungyeon; Kim, Jongwook; Ong, Gary K.
Low-temperature processed mesoporous nanocrystal thin films are platforms for fabricating functional composite thin films on flexible substrates. Using a random arrangement of anisotropic nanocrystals can be a facile solution to generate pores without templates. However, the tendency for anisotropic particles to spontaneously assemble into a compact structure must be overcome. Here in this paper, we present a method to achieve random networking of nanorods during solution phase deposition by switching their ligand-stabilized colloidal nature into a charge-stabilized nature by a ligand-stripping chemistry. Ligand-stripped tungsten suboxide (WO 2.72) nanorods result in uniform mesoporous thin films owing to repulsive electrostatic forces preventingmore » nanorods from densely packing. Porosity and pore size distribution of thin films are controlled by changing the aspect ratio of the nanorods. This template-free mesoporous structure, achieved without annealing, provides a framework for introducing guest components, therefore enabling our fabrication of inorganic nanocomposite electrochromic films on flexible substrates. Following infilling of niobium polyoxometalate clusters into pores and successive chemical condensation, a WO x–NbO x composite film is produced that selectively controls visible and near-infrared light transmittance without any annealing required. The composite shows rapid switching kinetics and can be stably cycled between optical states over 2000 times. This simple strategy of using anisotropic nanocrystals gives insight into mesoporous thin film fabrication with broader applications for flexible devices.« less
Shi, Jiafu; Zhang, Wenyan; Wang, Xiaoli; Jiang, Zhongyi; Zhang, Shaohua; Zhang, Xiaoman; Zhang, Chunhong; Song, Xiaokai; Ai, Qinghong
2013-06-12
A facile approach to preparing mesoporous hybrid microcapsules is developed by exploring the segregating and mineralization-inducing capacities of cationic hydrophilic polymer. The preparation process contains four steps: segregation of cationic hydrophilic polymer during template formation, cross-linking of the segregated polymer, biomimetic mineralization within cross-linked polymer network, and removal of template to simultaneously generate capsule lumen and mesopores on the capsule wall. Poly(allylamine hydrochloride) (PAH) is chosen as the model polymer, its hydrophilicity renders the segregating capacity and spontaneous enrichment in the near-surface region of CaCO3 microspheres; its biopolyamine-mimic structure renders the mineralization-inducing capacity to produce titania from the water-soluble titanium(IV) precursor. Meanwhile, CaCO3 microspheres serve the dual templating functions in the formation of hollow lumen and mesoporous wall. The thickness of capsule wall can be controlled by changing the polymer segregating and cross-linking conditions, while the pore size on the capsule wall can be tuned by changing the template synthesizing conditions. The robust hybrid microcapsules exhibit desirable efficiency in enzymatic catalysis, wastewater treatment and drug delivery. This approach may open facile, generic, and efficient pathway to designing and preparing a variety of hybrid microcapsules with high and tunable permeability, good stability and multiple functionalities for a broad range of applications.
Jiang, Yanhua; Cui, Xiuguo; Zu, Lei; Hu, Zhongkai; Gan, Jing; Lian, Huiqin; Liu, Yang; Xing, Guangjian
2015-10-13
In recent years, manganese dioxide has become a research hotspot as an electrode material because of its low price. However, it has also become an obstacle to industrialization due to its low ratio of capacitance and the low rate performance which is caused by the poor electrical conductivity. In this study, a KI solution with electrochemical activity was innovatively applied to the electrolyte, and we systematically investigated the rate performance of the mesoporous manganese dioxide and the composite electrode with silver nanowires in supercapacitors. The results showed that when mesoporous manganese dioxide and mesoporous manganese dioxide/silver nanowires composite were used as electrodes, the strength of the current was amplified five times (from 0.1 to 0.5 A/g), the remaining rates of specific capacitance were 95% (from 205.5 down to 197.1 F/g) and 92% (from 208.1 down to 191.7 F/g) in the KI electrolyte, and the rate performance was much higher than which in an Na₂SO₄ electrolyte with a remaining rate of 25% (from 200.3 down to 49.1 F/g) and 60% (from 187.2 down to 113.1 F/g). The morphology and detail structure were investigated by Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry and Nitrogen adsorption-desorption isotherms. The electrochemical performance was assessed by cyclic voltammograms, galvanostatic charge/discharge and electrochemical impedance spectroscopy.
NASA Astrophysics Data System (ADS)
Beltrán-Osuna, Ángela A.; Gómez Ribelles, José L.; Perilla, Jairo E.
2017-12-01
All variables affecting the morphology of mesoporous silica nanoparticles (MSN) should be carefully analyzed in order to truly tailored design their mesoporous structure according to their final use. Although complete control on MCM-41 synthesis has been already claimed, reproducibility and repeatability of results remain a big issue due to the lack of information reported in literature. Stirring rate, reaction volume, and system configuration (i.e., opened or closed reactor) are three variables that are usually omitted, making the comparison of product characteristics difficult. Specifically, the rate of solvent evaporation is seldom disclosed, and its influence has not been previously analyzed. These variables were systematically studied in this work, and they were proven to have a fundamental impact on final particle morphology. Hence, a high degree of circularity ( C = 0.97) and monodispersed particle size distributions were only achieved when a stirring speed of 500 rpm and a reaction scale of 500 mL were used in a partially opened system, for a 2 h reaction at 80 °C. Well-shaped spherical mesoporous silica nanoparticles with a diameter of 95 nm, a pore size of 2.8 nm, and a total surface area of 954 m2 g-1 were obtained. Final characteristics made this product suitable to be used in biomedicine and nanopharmaceutics, especially for the design of drug delivery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Z.; Yang, L.; Kabisatpathy, S.
2009-03-24
A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica,more » was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.« less
Zhao, Yunlong; Xu, Lin; Mai, Liqiang; Han, Chunhua; An, Qinyou; Xu, Xu; Liu, Xue; Zhang, Qingjie
2012-01-01
Lithium-air batteries have captured worldwide attention due to their highest energy density among the chemical batteries. To provide continuous oxygen channels, here, we synthesized hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 (LSCO) nanowires. We tested the intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity in both aqueous electrolytes and nonaqueous electrolytes via rotating disk electrode (RDE) measurements and demonstrated that the hierarchical mesoporous LSCO nanowires are high-performance catalysts for the ORR with low peak-up potential and high limiting diffusion current. Furthermore, we fabricated Li-air batteries on the basis of hierarchical mesoporous LSCO nanowires and nonaqueous electrolytes, which exhibited ultrahigh capacity, ca. over 11,000 mAh⋅g –1, one order of magnitude higher than that of LSCO nanoparticles. Besides, the possible reaction mechanism is proposed to explain the catalytic activity of the LSCO mesoporous nanowire. PMID:23150570
Eun Woo Shin; James S. Han; Min Jang; Soo-Hong Min; Jae Kwang Park; Roger M. Rowell
2004-01-01
Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface...
Porous silica nanoparticles as carrier for curcumin delivery
NASA Astrophysics Data System (ADS)
Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby
2018-04-01
Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.
Ahn, Ji Young; Moon, Kook Joo; Kim, Ji Hoon; Lee, Sang Hyun; Kang, Jae Wook; Lee, Hyung Woo; Kim, Soo Hyung
2014-01-22
We fabricated solid and mesoporous TiO2 nanoparticles (NPs) with relatively large primary sizes of approximately 200 nm via inorganic templates for aero-sol-gel and subsequent aqueous-washing processes. The amount of dye molecules adsorbed by the internal pores in the mesoporous TiO2 NPs was increased by creating the nanopores within the solid TiO2 NPs. Simultaneously, the light-scattering effect of the mesoporous TiO2 NPs fabricated by this approach was secured by maintaining their spherical shape and relatively large average size. By precisely accumulating the fabricated solid or mesoporous 200 nm diameter TiO2 NPs on top of a conventional 25 nm diameter TiO2 NP-based underlayer, we could systematically examine the effect of the solid and mesoporous TiO2 NPs on the photovoltaic performance of dye-sensitized solar cells (DSSCs). Consequently, the stacking architecture of the mesoporous TiO2 NP-based overlayer, which functioned as both a light-scattering and dye-supporting medium, on top of a conventional solid TiO2 NP-based underlayer in a DSSC photoelectrode (i.e., double-layer structures) was found to be very promising for significantly improving the photovoltaic properties of conventional solid TiO2 NP single-layer-based DSSCs.
NASA Astrophysics Data System (ADS)
Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad
2018-02-01
Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.
Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili
2015-12-09
Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.
NASA Astrophysics Data System (ADS)
Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.
2016-06-01
Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.
NASA Astrophysics Data System (ADS)
Shinde, Pragati A.; Lokhande, Vaibhav C.; Patil, Amar M.; Ji, Taeksoo; Lokhande, Chandrakant D.
2017-12-01
To enhance the energy density and power performance of supercapacitors, the rational design and synthesis of active electrode materials with hierarchical mesoporous structure is highly desired. In the present work, fabrication of high-performance hierarchical mesoporous WO3-MnO2 composite nanostructures on carbon cloth substrate via a facile hydrothermal method is reported. By varying the content of MnO2 in the composite, different WO3-MnO2 composite thin films are obtained. The formation of composite is confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The Brunauer-Emmett-Teller (BET) analysis reveals maximum specific surface area of 153 m2 g-1. The optimized WO3-MnO2 composite electrode demonstrates remarkable electrochemical performance with high specific capacitance of 657 F g-1 at a scan rate of 5 mV s-1 and superior longterm cycling stability (92% capacity retention over 2000 CV cycles). Furthermore, symmetric flexible solid-state supercapacitor based on WO3-MnO2 electrodes has been fabricated. The device exhibits good electrochemical performance with maximum specific capacitance of 78 F g-1 at a scan rate of 5 mV s-1 and specific energy of 10.8 Wh kg-1 at a specific power of 0.65 kW kg-1. The improved electrochemical performance could be ascribed to the unique combination of multivalence WO3 and MnO2 nanostructures and synergistic effect between them
Effects of a mesoporous bioactive glass on osteoblasts, osteoclasts and macrophages.
Gómez-Cerezo, N; Casarrubios, L; Morales, I; Feito, M J; Vallet-Regí, M; Arcos, D; Portolés, M T
2018-05-29
A mesoporous bioactive glass (MBG) of molar composition 75SiO 2 -20CaO-5P 2 O 5 (MBG-75S) has been synthetized as a potential bioceramic for bone regeneration purposes. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption studies and transmission electron microscopy (TEM) demonstrated that MBG-75S possess a highly ordered mesoporous structure with high surface area and porosity, which would explain the high ionic exchange rate (mainly calcium and silicon soluble species) with the surrounded media. MBG-75S showed high biocompatibility in contact with Saos-2 osteoblast-like cells. Concentrations up to 1 mg/ml did not lead to significant alterations on either morphology or cell cycle. Regarding the effects on osteoclasts, MBG-75S allowed the differentiation of RAW-264.7 macrophages into osteoclast-like cells but exhibiting a decreased resorptive activity. These results point out that MBG-75S does not inhibit osteoclastogenesis but reduces the osteoclast bone-resorbing capability. Finally, in vitro studies focused on the innate immune response, evidenced that MBG-75S allows the proliferation of macrophages without inducing their polarization towards the M1 pro-inflammatory phenotype. This in vitro behavior is indicative that MBG-75S would just induce the required innate immune response without further inflammatory complications under in vivo conditions. The overall behavior respect to osteoblasts, osteoclasts and macrophages, makes this MBG a very interesting candidate for bone grafting applications in osteoporotic patients. Copyright © 2018. Published by Elsevier Inc.
Zhao, Jing; Zhu, Ying-Jie; Wu, Jin; Zheng, Jian-Qiang; Zhao, Xin-Yu; Lu, Bing-Qiang; Chen, Feng
2014-03-15
Chitosan-coated calcium silicate hydrate (CSH/chitosan) mesoporous microspheres formed by self-assembly of nanosheets have been synthesized in aqueous solution under ambient conditions without using any toxic surfactant or organic solvent. The method reported herein has advantages of simplicity, low cost and being environmentally friendly. The BET specific surface area of CSH/chitosan mesoporous microspheres is measured to be as high as ~356 m(2) g(-1), which is considerably high among calcium silicate materials. The as-prepared CSH/chitosan mesoporous microspheres are promising adsorbent and exhibit a quick and highly efficient adsorption behavior toward heavy metal ions of Ni(2+), Zn(2+), Cr(3+), Pb(2+) Cu(2+) and Cd(2+) in aqueous solution. The adsorption kinetics can be well fitted by the pseudo second-order model. The maximum adsorption amounts of Ni(2+), Zn(2+), Pb(2+), Cu(2+) and Cd(2+) on CSH/chitosan mesoporous microspheres are extremely high, which are 406.6, 400, 796, 425 and 578 mg/g, respectively. The CSH/chitosan adsorbent exhibits the highest affinity for Pb(2+) ions among five heavy metal ions. The adsorption capacities of the CSH/chitosan adsorbent toward heavy metal ions are relatively high compared with those reported in the literature. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Nagesh; Kumar, Amit; Huang, Guan-Min; Wu, Wen-Wei; Tseng, Tseung Yuen
2018-03-01
Morphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m2g-1) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 F g-1 at 1 A g-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmetric pseudocapacitor has been designed using NiFe2O4/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg-1 at power density of 872 W kg-1. These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices.
Li, Zhaoqiang; Yin, Longwei
2015-02-25
Nitrogen-doped carbon (NDC) spheres with abundant 22 nm mesopores and 0.5 nm micropores are obtained by directly carbonization of nitrogen-contained metal organic framework (MOF) nanocrystals. Large S8 and small S2-4 molecules are successfully infiltrated into 22 nm mesopores and 0.5 nm micropores, respectively. We successfully investigate the effect of sulfur immobilization in mesopores and micropores on the electrochemical performance of lithium-sulfur (Li-S) battery based on NDC-sulfur hybrid cathodes. The large S8 molecules in 22 nm mesopores can be removed by a prolonged heat treatment, with only small molecules of S2-4 immobilized in micropores of NDC matrices. The NDC/S2-4 hybrid exhibits excellent cycling performance, high Coulombic efficiency, and good rate capability as cathode for Li-S batteries. The confinement of smaller S2-4 molecules in the micropores of NDS efficiently avoids the loss of active sulfur and formation of soluble high-order Li polysulfides. The porous carbon can buffer the volume expansion and contraction changes, promising a stable structure for cathode. Furthermore, N doping in MOF-derived carbon not only facilitates the fast charge transfer but also is helpful in building a stronger interaction between carbon and sulfur, strengthening immobilization ability of S2-4 in micropores. The NDS-sulfur hybrid cathode exhibits a reversible capacity of 936.5 mAh g(-1) at 100th cycle with a Coulombic efficiency of 100% under a current density of 335 mA g(-1). It displays a superior rate capability performance, delivering a capacity of 632 mAh g(-1) at a high rate of 5 A g(-1). This uniquely porous NDC derived from MOF nanocrystals could be applied in related high-energy storage devices.
Huang, Danni; Wang, Xianying; Deng, Chunhui; Song, Guoxin; Cheng, Hefa; Zhang, Xiangmin
2014-01-17
In this study, novel raisin-bread sandwich-structured magnetic graphene/mesoporous silica composites with C18-modified interior pore-walls (mag-graphene@mSiO2-C18) were synthesized by coating mesoporous silica layers onto each side of magnetic graphene through a surfactant-mediated co-condensation sol-gel process. The prepared functionalized nanocomposites possessed marvelous properties of extended plate-like morphology, fine water dispersibility, high magnetic response, large surface area (315.4cm(2)g(-1)), uniform pore size (3.3nm) and C18-modified interior pore-walls. Several kinds of phthalates were selected as model analytes to systematically evaluate the performance of adsorbents in extracting hydrophobic molecules followed by gas chromatography-mass spectrometry analyses. Various extraction parameters, including pH value of sample solution, amounts of adsorbents, adsorption time, species and volume of eluting solvent, and desorption time were optimized. The anti-interference ability to macromolecular proteins was also investigated. Method validations such as linearity, recovery, reproducibility, and limit of detection were also studied. Finally, mag-graphene@mSiO2-C18 composites were successfully applied to analyzing phthalates in environmental water samples. The results indicated that this novel approach offered an attractive alternative for rapid, convenient, efficient and selective magnetic solid-phase extraction for targeted hydrophobic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
Understanding Diffusion in Hierarchical Zeolites with House-of-Cards Nanosheets.
Bai, Peng; Haldoupis, Emmanuel; Dauenhauer, Paul J; Tsapatsis, Michael; Siepmann, J Ilja
2016-08-23
Introducing mesoporosity to conventional microporous sorbents or catalysts is often proposed as a solution to enhance their mass transport rates. Here, we show that diffusion in these hierarchical materials is more complex and exhibits non-monotonic dependence on sorbate loading. Our atomistic simulations of n-hexane in a model system containing microporous nanosheets and mesopore channels indicate that diffusivity can be smaller than in a conventional zeolite with the same micropore structure, and this observation holds true even if we confine the analysis to molecules completely inside the microporous nanosheets. Only at high sorbate loadings or elevated temperatures, when the mesopores begin to be sufficiently populated, does the overall diffusion in the hierarchical material exceed that in conventional microporous zeolites. Our model system is free of structural defects, such as pore blocking or surface disorder, that are typically invoked to explain slower-than-expected diffusion phenomena in experimental measurements. Examination of free energy profiles and visualization of molecular diffusion pathways demonstrates that the large free energy cost (mostly enthalpic in origin) for escaping from the microporous region into the mesopores leads to more tortuous diffusion paths and causes this unusual transport behavior in hierarchical nanoporous materials. This knowledge allows us to re-examine zero-length-column chromatography data and show that these experimental measurements are consistent with the simulation data when the crystallite size instead of the nanosheet thickness is used for the nominal diffusional length.
NASA Astrophysics Data System (ADS)
Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.
2017-06-01
Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.
Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin
2015-01-01
Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133
Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin
2015-02-04
Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.
Shi, Jiao Yi; Wang, Chang An; Li, Zhi Jun; Wang, Qiong; Zhang, Yuan; Wang, Wei
2011-05-23
We report a new method for the synthesis of hollow-structured phenylene-bridged periodic mesoporous organosilica (PMO) spheres with a uniform particle size of 100-200 nm using α-Fe(2)O(3) as a hard template. Based on this method, the hollow-structured phenylene PMO could be easily functionalized with MacMillan catalyst (H-PhPMO-Mac) by a co-condensation process and a "click chemistry" post-modification. The synthesized H-PhPMO-Mac catalyst has been found to exhibit high catalytic activity (98% yield, 81% enantiomeric excess (ee) for endo and 81% ee for exo) in asymmetric Diels-Alder reactions with water as solvent. The catalyst could be reused for at least seven runs without a significant loss of catalytic activity. Our results have also indicated that hollow-structured PMO spheres exhibit higher catalytic efficiency than solid (non-hollow) PMO spheres, and that catalysts prepared by the co-condensation process and "click chemistry" post-modification exhibit higher catalytic efficiency than those prepared by a grafting method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cellular membrane trafficking of mesoporous silica nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, I-Ju
This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulfmore » some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.« less
NASA Astrophysics Data System (ADS)
Zhang, Lifeng; He, Wenjie; Shen, Kechao; Liu, Yi; Guo, Shouwu
2018-04-01
Self-standing hierarchical mesoporous MgMoO4 nanosheet-arrays and nano-flowers have been built via the self-assembly of ultrathin mesoporous nanosheets. The arrays and flower nanostructures can be facilely controlled by tuning the surfactant dosage. The formation mechanism of such special nanostructures has also been proposed. The flower structure has larger surface area than the arrays, owing to the more mesoporous nature of the former. Additionally, the as-prepared MgMoO4 nanomaterials not doped by any other ion have important optical properties, that enable the generation of strong red light with excitation wavelengths of 369 and 534 nm and emission of bright green light under irradiation by blue light (423 and 451 nm), demonstrating their potential applications in blue phototherapy and fluorescence labeling.
Dai, Sheng; Burleigh, Mark C.; Shin, Yongsoon
2001-01-01
The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.
Mesoporous block-copolymer nanospheres prepared by selective swelling.
Mei, Shilin; Jin, Zhaoxia
2013-01-28
Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.
2017-09-01
Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Brown, J. William; Ramesh, P. S.; Geetha, D.
2018-02-01
We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.
Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.
Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng
2014-03-17
The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.
Li-Hong, Wang; Xin, Che; Hui, Xu; Li-Li, Zhou; Jing, Han; Mei-Juan, Zou; Jie, Liu; Yi, Liu; Jin-Wen, Liu; Wei, Zhang; Gang, Cheng
2013-09-15
The organic solvent solution immersion method was often used to achieve the loading of the drugs into mesoporous silica, but the drugs that have loaded into the pores of the mesoporous silica would inevitable migrate from the inside to the external surface or near the outside surface during the process of drying. Hence, it often leads to the pores of mesoporous materials not be fully utilized, and results in a low drug loading efficiency and a fast releasing rate. The purpose of this study was to develop a novel drug loading strategy to avoid soluble component migration during the process of drying, then, to prepare poorly water-soluble drug mesoporous silica microparticles with higher drug loading efficiency and longer sustained-release time. Ibuprofen was used as model drug. The microparticles were prepared by a novel method based on mesoporous silica and supercritical fluid (SCF) technique. The drug-loaded mesoporous silica microparticles prepared by SCF technique were analyzed by thermogravimetric analysis (TGA), N2 adsorption/desorption, scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). In vitro releasing study was used to evaluate the sustained-release effect of the drug-loaded microparticles. By virtue of the high diffusibility and the high dissolving capacity of the supercritical carbon dioxide (SCF-CO2), the poorly water-soluble drugs, ibuprofen, entered the pores of the mesoporous silica. The amount and the depth of ibuprofen entered the pores of the mesoporous silica by SCF technique were both larger than those by the solution immersion method. It was found that ibuprofen loaded into the mesoporous silica by SCF technique was amorphous and the largest amount of the ibuprofen loaded into the mesoporous silica by SCF technique could reach 386 mg/g (w/w, ibuprofen/SiO2), it was more than that by the solution immersion method. In vitro releasing study showed that the sustained-release effect of ibuprofen in the samples prepared by SCF technique was 50% in 15 min and 90% in 60 min. It was longer than that prepared by the solution immersion method. Present study showed that sustained-release poorly water-soluble drug mesoporous silica microparticle based on SCF technique has twofold advantages. One is the larger drug loading amount in internal pores of the mesoporous silica, the other is the longer drug releasing time. Copyright © 2013 Elsevier B.V. All rights reserved.
Su, Dawei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu
2012-06-25
Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction and subsequent annealing at 400 °C. The porous one-dimensional nanostructures were analysed by field-emission SEM, high-resolution TEM and N(2) adsorption/desorption isotherm measurements. When applied as the anode material in lithium-ion batteries, the as-prepared mesoporous nickel oxide nanowires demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability and an excellent rate capacity. They also exhibited a high specific capacitance of 348 F g(-1) as electrodes in supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.
Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan
2014-09-01
Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.
Amine-functionalized mesoporous ZSM-5 zeolite adsorbents for carbon dioxide capture
NASA Astrophysics Data System (ADS)
Wang, Yisong; Du, Tao; Song, Yanli; Che, Shuai; Fang, Xin; Zhou, Lifeng
2017-11-01
ZSM-5 type zeolite with mesoporous structure was prepared and then amine-functionalized with tetraethylenepentamine (TEPA) by wet impregnation method to form a series of CO2 adsorbents (ZTx). The structural properties of ZSM-5 and ZTx were characterized by XRD, FTIR, TGA/DTG, nitrogen adsorption/desorption, SEM and EDX techniques. The adsorption capacity of the adsorbents with different amine loading was measured at a temperature from 40 to 100 °C and the adsorption capacity of ZT7 was 1.80 mmol/g at 100 °C. The adsorption process and mechanism were studied by fitting the experimental data used the three adsorption kinetic models, and a complex physical and chemical mixing process was produced as the amine entered the surface and pore size of the zeolite. The high adsorption selectivity at 10% CO2 concentration and the stability of the five adsorption desorption cycles indicated that ZT7 is a suitable and promising CO2 adsorbent for the purification of industrial flue gas.
NASA Astrophysics Data System (ADS)
Li, Zhong; Haidry, Azhar Ali; Wang, Tao; Yao, Zheng Jun
2017-07-01
The development of cost-effective gas sensors with improved sensing properties and minimum power consumption for room temperature hydrogen leakage monitoring is in increasing demand. In this context, this report focus on the facile fabrication of ordered mesoporous TiO2 via evaporation-induced self-assembly route. With the controlled doping threshold (3%Co-TiO2), the output resistance change to 1000 ppm H2 is ˜4.1 × 103 with the response time of 66 s. The sensor response exhibits power law dependence with an increase in the hydrogen concentration, where the power law coefficient was found not only specific to the kind of target gas but also related to temperature. Further, the effect of structure integrity with doping level and humidity on sensing characteristics is interpreted in terms of variation in surface potential eVS and depletion region w caused by the adsorption of molecular oxygen O2-.
Li, Zhao-Qian; Chen, Wang-Chao; Guo, Fu-Ling; Mo, Li-E; Hu, Lin-Hua; Dai, Song-Yuan
2015-01-01
Yolk-shell TiO2 microspheres were synthesized via a one-pot template-free solvothermal method building on the aldol condensation reaction of acetylacetone. This unique structure shows superior light scattering ability resulting in power conversion efficiency as high as 11%. This work provided a new synthesis system for TiO2 microspheres from solid to hollow and a novel material platform for high performance solar cells. PMID:26384004
Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R
2011-03-01
A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.
Mesoporous aluminosilicate glasses: Potential materials for dye removal from wastewater effluents
NASA Astrophysics Data System (ADS)
Almeida, Flavio P.; Botelho, Moema B. S.; Doerenkamp, Carsten; Kessler, Elizaveta; Ferrari, Cynthia R.; Eckert, Hellmut; de Camargo, Andrea S. S.
2017-09-01
Mesoporous amorphous sodium-aluminosilicate host matrices of composition Si1-xAlxNaxO2, 0.1 ≤ x ≤ 0.33, obtained by sol-gel methodology, have been used as sequestrating agents for the cationic dye Rhodamine 6 G (Rh6G) in solution. Favorable adsorption kinetics and a wide pH working range (4-10) as well as high sorption capacities for Rh6G render these materials potentially useful reagents for effective dye removal from wastewaters. While the experimentally realized sorption capacities fall significantly below the theoretical limits, used materials can be thermally re-cycled by pyrolizing the sequestrated dye molecules. Solid state NMR and BET measurements show that this process occurs under preservation of the materials' structural integrity, allowing it to be re-used multiple times.
NASA Astrophysics Data System (ADS)
Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis
2017-04-01
The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.
Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.
Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi
2015-11-05
Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kusumawati, Yuly; Pauporté, Thierry; Viana, Bruno; Zouzelka, Radek; Remzova, Monika; Rathousky, Jiri
2017-03-01
Graphene/oxide composite structures are attracting increasing attention for many advanced applications. In the present work, mesoporous layers composed of TiO2 nanoparticles and graphene at various concentrations have been coated on conductive glass substrates. They have been tested for the photocatalytic degradation of 4-chlorophenol used as a model compound of an eco-persistent pollutant dilute in water. The formation of intermediate degradation products, namely, hydroquinone and benzoquinone, has been followed. The results show the high photocatalytic activity of the layers and a beneficial effect of graphene for an optimum concentration of 1.2 wt. %. The decrease in the activity observed at higher graphene content is assigned to the light absorption by this component. The key parameters for the enhancement of the photocatalytic performance are discussed.
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Jiang, Bin; Guo, Jinxue; Xie, Yaping; Tang, Lin
2014-12-01
The major challenge to promote the commercialization of SnO2 anode materials is to construct unique structures and/or composites that could alleviate the volume effect and extend the lifespan. This study develops an efficient synthetic solution for the preparation of mesoporous SnO2 nanosheets, which involves an evaporation-induced selfassembly process and the following thermal treatment. Surfactant F127 is used as the soft template to form abundant cores. The as-prepared sample intrinsically inherits flexible sheet-like structure and porous features, as characterized with XRD, SEM, TEM and BET techniques. Based on these combining structural benefits, the sample is utilized as anode materials for lithium-ion batteries and exhibits excellent Li+ storage performance such as large and stable reversible capacity, good rate capability, and especially the outstanding durable cycling life of over 1000 cycles, which meets the demands of practical applications. The structural changes of SnO2 nanosheets are observed from the decomposed electrodes after different electrochemical cycles. Moreover, this synthesis strategy may offer an alternative and universal approach for synthesis of other transitional metal oxides or their binary composites as high-performance anode materials for lithium-ion batteries.
Highly dispersed buckybowls as model carbocatalysts for C–H bond activation
Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; ...
2015-03-19
Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.
Khalil, Kamal M S
2007-03-01
Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.
Wang, Dewei; Wang, Qihua; Wang, Tingmei
2011-07-18
In this work, one-dimensional and layered parallel folding of cobalt oxalate nanostructures have been selectively prepared by a one-step, template-free, water-controlled precipitation approach by simply altering the solvents used at ambient temperature and pressure. Encouragingly, the feeding order of solutions played an extraordinary role in the synthesis of nanorods and nanowires. After calcination in air, the as-prepared cobalt oxalate nanostructures were converted to mesoporous Co(3)O(4) nanostructures while their original frame structures were well maintained. The phase composition, morphology, and structure of the as-obtained products were studied in detail. Electrochemical properties of the Co(3)O(4) electrodes were carried out using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements by a three-electrode system. The electrochemical experiments revealed that the layered parallel folding structure of mesoporous Co(3)O(4) exhibited higher capacitance compared to that of the nanorods and nanowires. A maximum specific capacitance of 202.5 F g (-1) has been obtained in 2 M KOH aqueous electrolyte at a current density of 1 A g(-1) with a voltage window from 0 to 0.40 V. Furthermore, the specific capacitance decay after 1000 continuous charge-discharge cycles was negligible, revealing the excellent stability of the electrode. These characteristics indicate that the mesoporous Co(3)O(4) nanostructures are promising electrode materials for supercapacitors.
NASA Astrophysics Data System (ADS)
Pham, Trang T. T.; Mathews, Nripan; Lam, Yeng-Ming; Mhaisalkar, Subodh
2017-06-01
Improved light harvesting efficiency can be achieved by enhancing the optical properties of the titanium dioxide (TiO2) photoanode in dye-sensitized solar cells (DSSCs), leading to higher power conversion efficiency. By incorporating submicrometer cavities in TiO2 mesoporous film, using zinc oxide (ZnO) particles as a template, a bimodal pore size structure has been created, called a mesoporous-macroporous nanostructure. This photoanode structure consists of 20-nm TiO2 nanoparticles with two kinds of pores with size of 20 nm (mesopores) and 500 nm (macropores). Energy-dispersive x-ray spectroscopy and x-ray diffraction studies showed no trace of ZnO in the TiO2 after removal by TiCl4 treatment. Higher diffuse transmittance of this film compared with the standard transparent photoanode provides evidence of improved light scattering. When employed in a device, the incident-photon-to-current efficiency of ZnO-assisted devices showed enhancement at longer wavelengths, corresponding to the Mie light scattering effect with the macropores as scattering centers. This resulted in overall higher power conversion efficiency of the DSSC. In this work, a nonvolatile gel ionic liquid was used as the electrolyte to also demonstrate the benefit of this structure in combination with a viscous electrolyte and its promising application to prolong the stability of DSSCs.
Luo, Leilei; Liang, Yucang; Erichsen, Egil Severin; Anwander, Reiner
2018-05-17
A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot, two-step strategy allows rational control over the core/shell chemical composition, topology, and pore/particle size, simply by adjusting the reaction conditions in the presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent under basic conditions. The spherical, ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm3‾ n) depending on the organosilica precursor. The hexagonal MS shell was obtained by n-hexane-induced controlled hydrolysis of TEOS followed by directional co-assembly/condensation of silicate/CTAB composites at the PMO cores. The HSMSCSNs feature a hierarchical pore structure with pore diameters of about 2.7 and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the ranges of 90-275 and 15-50 nm, respectively, and the surface areas (max. 1300 m 2 g -1 ) and pore volumes (max. 1.83 cm 3 g -1 ) are among the highest reported for core-shell nanoparticles. The adsorption and controlled release of the fungicide propiconazole by the HSMSCSNs showed a three-stage release profile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiu, Yang; Huo, Jiajie; Jia, Fan; ...
2015-11-06
Nitrogen and sulfur were simultaneously doped into the framework of mesoporous CMK-3 as metal-free catalysts for direct biorenewable alcohol fuel cells. Glucose, NH 3, and thiophene were used as carbon, nitrogen and sulfur precursors, respectively, to prepare mesoporous N-S-CMK-3 with uniform mesopores and extra macropores, resulting in good O 2 diffusion both in half cell and alcohol fuel cell investigations. Among all investigated CMK-3 based catalysts, N-S-CMK-3 prepared at 800 °C exhibited the highest ORR activity with the onset potential of 0.92 V vs. RHE, Tafel slope of 68 mV dec -1, and 3.96 electron transfer number per oxygen moleculemore » in 0.1 M KOH. In addition, the alkaline membrane-based direct alcohol fuel cell (DAFC) with N-S-CMK-3 cathode displayed 88.2 mW cm -2 peak power density without obvious O 2 diffusion issue, reaching 84% initial performance of that with a Pt/C cathode. The high catalyst durability and fuel-crossover tolerance led to stable performance of the N-S-CMK-3 cathode DAFC with 90.6 mW cm -2 peak power density after 2 h operation, while the Pt/C cathode-based DAFC lost 36.9% of its peak power density. In conclusion, the high ORR activity of N-S-CMK-3 can be attributed to the synergistic effect between graphitic-N and S (C–S–C structure), suggesting great potential to use N-S-CMK-3 as an alternative to noble metal catalysts in the fuel cell cathode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Yang; Huo, Jiajie; Jia, Fan
Nitrogen and sulfur were simultaneously doped into the framework of mesoporous CMK-3 as metal-free catalysts for direct biorenewable alcohol fuel cells. Glucose, NH 3, and thiophene were used as carbon, nitrogen and sulfur precursors, respectively, to prepare mesoporous N-S-CMK-3 with uniform mesopores and extra macropores, resulting in good O 2 diffusion both in half cell and alcohol fuel cell investigations. Among all investigated CMK-3 based catalysts, N-S-CMK-3 prepared at 800 °C exhibited the highest ORR activity with the onset potential of 0.92 V vs. RHE, Tafel slope of 68 mV dec -1, and 3.96 electron transfer number per oxygen moleculemore » in 0.1 M KOH. In addition, the alkaline membrane-based direct alcohol fuel cell (DAFC) with N-S-CMK-3 cathode displayed 88.2 mW cm -2 peak power density without obvious O 2 diffusion issue, reaching 84% initial performance of that with a Pt/C cathode. The high catalyst durability and fuel-crossover tolerance led to stable performance of the N-S-CMK-3 cathode DAFC with 90.6 mW cm -2 peak power density after 2 h operation, while the Pt/C cathode-based DAFC lost 36.9% of its peak power density. In conclusion, the high ORR activity of N-S-CMK-3 can be attributed to the synergistic effect between graphitic-N and S (C–S–C structure), suggesting great potential to use N-S-CMK-3 as an alternative to noble metal catalysts in the fuel cell cathode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chen; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng
2014-12-15
Graphical abstract: We investigate the influence of mesoporous titania content upon the visible-light driven photocatalytic performance of MPT/MWCNTs in phenol degradation. - Highlights: • MPT/MWCNTs were fabricated by liquid-crystal template in supercritical CO{sub 2}. • MPT/MWCNTs show high visible-light driven photoactivity for phenol degradation. • MPT/MWCNTs also show high reusable photoactivity under visible irradiation. • MPT content can control visible-light driven photoactivity of MPT/MWCNTs. • MPT is not easily broken away from from MPT/MWCNT composites. - Abstract: Mesoporous titania (MPT) was deposited onto multiwalled carbon nanotubes (MWCNTs) by deposition of titanium sol containing liquid-crystal template with assistant of supercritical CO{submore » 2}. The products were characterized with various analytical techniques to determine their structural, morphological, optical absorption and photocatalytic properties. The results indicate that in photocatalytic degradation of phenol under visible light, the mixtures or composites of MPT and MWCNT show the high efficiency because of synergies between absorbing visible light, releasing electrons and facilitating transfer of charge carriers of MWCNTs and providing activated centers of MPT. Because of the mutual constraint between MPT and MWCNTs on the photocatalytic efficiency, the optimal loading of MPT in MPT/MWCNT-3 for phenol degradation is 48%. Because the intimate contact between MWCNTs and MPT is more beneficial to electron transformation, photoactivity of mixture is lower than that of composites with high reusable performance. The optimum conditions of phenol degradation were obtained.« less
Unidirectional self-assembly of soft templated mesoporous carbons by zone annealing
NASA Astrophysics Data System (ADS)
Xue, Jiachen; Singh, Gurpreet; Qiang, Zhe; Karim, Alamgir; Vogt, Bryan D.
2013-08-01
Surfactant or block copolymer-templated mesoporous films have been extensively explored, but achieving mesostructure coherence and unidirectional orientation over macroscopic dimensions has remained quite challenging for these self-assembled systems. Here, we extend the concepts associated with zone refinement of crystalline materials to soft templated mesoporous carbon films based on the cooperative assembly of commercial non-ionic surfactants (block copolymers) and phenolic resin oligomers (resol) to provide macroscopic alignment of both cubic (FDU-16) and hexagonal (FDU-15) mesostructures. The average orientation of these mesophases is determined from rotation grazing incidence small angle X-ray scattering (GISAXS) measurements. For FDU-15 templated by Pluronic P123, the orientation factor for the zone-annealed film is 0.98 based on the average of the second Legendre polynomial, but this orientation deteriorates significantly during carbonization. Notably, a thermal stabilization step following zone annealing preserves the orientation of the mesostructure during carbonization. The orientation factor for an isotropic cubic structure (FDU-16 templated by Pluronic F127) is only 0.48 (based on the 111 reflection with incident angle 0.15°) for the same zone annealing protocol, but this illustrates the versatility of zone annealing to different mesostructures. Unexpectedly, zone annealing of FDU-15 templated by Pluronic F127 leads to stabilization of the mesostructure through carbonization, whereas this structure collapses fully during carbonization even after extended oven annealing; despite no clear macroscopic orientation of the cylindrical mesostructure from zone annealing. Thermal zone annealing provides a simple methodology to produce highly ordered and macroscopically oriented stable mesoporous carbon films, but the efficacy is strongly tied to the mobility of the template during the zone annealing.Surfactant or block copolymer-templated mesoporous films have been extensively explored, but achieving mesostructure coherence and unidirectional orientation over macroscopic dimensions has remained quite challenging for these self-assembled systems. Here, we extend the concepts associated with zone refinement of crystalline materials to soft templated mesoporous carbon films based on the cooperative assembly of commercial non-ionic surfactants (block copolymers) and phenolic resin oligomers (resol) to provide macroscopic alignment of both cubic (FDU-16) and hexagonal (FDU-15) mesostructures. The average orientation of these mesophases is determined from rotation grazing incidence small angle X-ray scattering (GISAXS) measurements. For FDU-15 templated by Pluronic P123, the orientation factor for the zone-annealed film is 0.98 based on the average of the second Legendre polynomial, but this orientation deteriorates significantly during carbonization. Notably, a thermal stabilization step following zone annealing preserves the orientation of the mesostructure during carbonization. The orientation factor for an isotropic cubic structure (FDU-16 templated by Pluronic F127) is only 0.48 (based on the 111 reflection with incident angle 0.15°) for the same zone annealing protocol, but this illustrates the versatility of zone annealing to different mesostructures. Unexpectedly, zone annealing of FDU-15 templated by Pluronic F127 leads to stabilization of the mesostructure through carbonization, whereas this structure collapses fully during carbonization even after extended oven annealing; despite no clear macroscopic orientation of the cylindrical mesostructure from zone annealing. Thermal zone annealing provides a simple methodology to produce highly ordered and macroscopically oriented stable mesoporous carbon films, but the efficacy is strongly tied to the mobility of the template during the zone annealing. Electronic supplementary information (ESI) available: GISAXS profiles for the FDU-15-F127 at φ = 0° and φ = 90° is included along with 2D GISAXS data for all azimuthal data associated with FDU-15-P123 to illustrate the azimuthal dependence on the diffraction patterns. See DOI: 10.1039/c3nr02821f