Sample records for mesoscale periodic array

  1. Design of intelligent mesoscale periodic array structures utilizing smart hydrogel

    NASA Technical Reports Server (NTRS)

    Sunkara, H. B.; Penn, B. G.; Frazier, D. O.; Weissman, J. M.; Asher, S. A.

    1996-01-01

    Mesoscale Periodic Array Structures (MPAS, also known as crystalline colloidal arrays), composed of aqueous or nonaqueous dispersions of self-assembled submicron colloidal spheres are emerging toward the development of advanced optical devices for technological applications. This is because of their unique optical diffraction properties and the ease with which these intriguing properties can be modulated experimentally. Moreover our recent advancements in this area which include 'locking' the liquid MPAS into solid or semisolid polymer matrices for greater stability with longer life span, and incorporation of CdS quantum dots and laser dyes into colloidal spheres to obtain nonlinear optical (NLO) responses further corroborate the use of MPAS in optical technology. Our long term goal is fabrication of all-optical and electro-optical devices such as spatial light modulators for optical signal processing and flat panel display devices by utilizing intelligent nonlinear periodic array structural materials. Here we show further progress in the design of novel linear MPAS which have the ability to sense and respond to an external source such as temperature. This is achieved by combining the self-assembly properties of polymer colloidal spheres and thermoshrinking properties of smart polymer gels. At selected temperatures the periodic array efficiently Bragg diffracts light and transmits most of the light at other temperatures. Hence these intelligent systems are of potential use as fixed notch filters optical switches or limiters to protect delicate optical sensors from high intensity laser radiation.

  2. Fabrication of vertically aligned ferroelectric polyvinylidene fluoride mesoscale rod arrays

    DOE PAGES

    Kim, Dongjin; Hong, Seungbum; Hong, Jongin; ...

    2013-05-14

    Here, we have fabricated vertically aligned ferroelectric PVDF mesoscale rod arrays comprising and phases using a 200 nm diameter anodized aluminum oxide (AAO) as the porous template. We could synthesize the ferroelectric phase in mesoscale rod forms by combining the well-established recipe for crystallizing the phase using dimethyl sulfoxide (DMSO) at low temperature and template-guided infiltration processing for the rods using AAO. We also measured the dimensions of the PVDF rods by scanning electron microscopy and identified the polymorph phases by X-ray diffraction and Fourier transform infrared spectroscopy. The length of the rods varied from 3.82 m to 1.09 mmore » and the diameter from 232 nm to 287 nm when the volume ratio between DMSO and acetone changed from 5 : 5 to 10 : 0. We obtained well-defined piezoresponse hysteresis loops for all rods with remnant piezoresponse ranging from 2.12 pm/V to 5.04 pm/V and coercive voltage ranging from 2.29 V to 2.71 V using piezoresponse force microscopy. These results serve as a processing platform for flexible electronic devices that need high capacitance and piezoelectric functionalities such as flexible memory devices or body energy harvesting devices for intelligent systems. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3842-3848, 2013« less

  3. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    PubMed

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  4. The Santa Barbara Channel - Santa Maria Basin Study: Wind Measurements and Modeling Resolving Coastal Mesoscale Meteorology

    NASA Astrophysics Data System (ADS)

    Dorman, C. E.; Koracin, D.

    2002-12-01

    The importance of winds in driving the coastal ocean has long been recognized. Pre-World War II literature links wind stress and wind stress curl to coastal ocean responses. Nevertheless, direct measurements plausibly representative of a coastal area are few. Multiple observations on the scale of the simplest mesoscale atmospheric structure, such as the cross-coast variation along a linear coast, are even less frequent. The only wind measurements that we are aware of in a complicated coastal area backed by higher topography are in the MMS sponsored, Santa Barbara Channel/Santa Marina basin study. Taking place from 1994 to present, this study had an unheard of dense surface automated meteorological station array of up to 5 meteorological buoys, 4 oil platforms, 2 island stations, and 11 coastal stations within 1 km of the beach. Most of the land stations are maintained by other projects. Only a large, a well funded project with backed by an agency with the long-view could dedicate the resources and effort into filling the mesoscale "holes" and maintaining long-term, remotely located stations. The result of the MMS funded project is a sufficiently dense surface station array to resolve the along-coast and cross-coast atmospheric mesoscale wind structure. Great temporal and spatial variation is found in the wind, wind stress and the wind stress curl, during the extended summer season. The MM5 atmospheric mesoscale model with appropriate boundary layer physics and high-resolution horizontal and vertical grid structure successfully simulates the measured wind field from large scale down to the lower end of the mesoscale. Atmospheric models without appropriate resolution and boundary layer physics fail to capture significant mesoscale wind features. Satellite microwave wind measurements generally capture the offshore synoptic scale temporal and spatial scale in twice-a-day snap shots but fail in the crucial, innermost coastal waters and the diurnal scale.

  5. Active micromachines: Microfluidics powered by mesoscale turbulence

    PubMed Central

    Thampi, Sumesh P.; Doostmohammadi, Amin; Shendruk, Tyler N.; Golestanian, Ramin; Yeomans, Julia M.

    2016-01-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence. PMID:27419229

  6. Circulation in the eastern North Pacific: results from a current meter array along 152°W

    NASA Astrophysics Data System (ADS)

    Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.

    1997-07-01

    Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period (< 200 days) and long period ( > 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.

  7. An investigation of relationships between meso- and synoptic-scale phenomena

    NASA Technical Reports Server (NTRS)

    Scoggins, J. R.; Wood, J. E.; Fuelberg, H. E.; Read, W. L.

    1972-01-01

    Methods based on the vorticity equation, the adiabatic method, the curvature of the vertical wind profile, and the structure of synoptic waves are used to determine areas of positive vertical motion in the mid-troposphere for a period in each season. Parameters indicative of low-level moisture and conditional instability are areas in which mesoscale systems may be present. The best association between mesoscale and synoptic-scale phenomena was found for a period during December when synoptic-scale systems were well developed. A good association between meso- and synoptic-scale events also was found for a period during March, while the poorest association was found for a June period. Daytime surface heating apparently is an important factor in the formation of mesoscale systems during the summer. It is concluded that the formation of mesoscale phenomena may be determined essentially from synoptic-scale conditions during winter, late fall, and early spring.

  8. Structural Characteristics of Nocturnal Mesoscale Convective Systems in the U.S. Great Plains as Observed During the PECAN Field Campaign

    NASA Astrophysics Data System (ADS)

    Bodine, D. J.; Dougherty, E.; Rasmussen, K. L.; Torres, A. D.

    2015-12-01

    During the summer in the U.S. Great Plains, some of the heaviest precipitation falls from large thunderstorm complexes known as Mesoscale Convective Systems (MCSs). These frequently occurring MCSs are often nocturnal in nature, so the dynamics associated with these systems are more elusive than those in the daytime. The Plains Elevated Convection at Night (PECAN) field campaign was launched over a 7-week period as an endeavor to better understand nocturnal MCSs occurring in the Great Plains. PECAN featured a dense array of ground-based and airborne instruments to observe nocturnal MCS, including dual-polarization radars at multiple frequencies, mobile mesonets, and sounding units. Our role in PECAN involved deploying Ott Parsivel disdrometers to gain information on drop size distributions (DSDs) and fall speeds. Analysis of disdrometer data in conjunction with radar data presented using Contour Frequency by Altitude Diagrams (CFADs) and high-resolution radiosonde data allows for a structural comparison of PECAN MCS cases to previously identified MCS archetypes. Novel insights into the structural evolution of nocturnal MCSs in relation to their synoptic, mesoscale, and thermodynamic environments are presented, using data collected from dense and numerous observation platforms. Understanding the environmental conditions that result in different nocturnal MCS configurations is useful for gaining insight into precipitation distributions and potential severe weather and flooding hazards in the Great Plains.

  9. Shallow convection on day 261 of GATE - Mesoscale arcs

    NASA Technical Reports Server (NTRS)

    Warner, C.; Simpson, J.; Martin, D. W.; Suchman, D.; Mosher, F. R.; Reinking, R. F.

    1979-01-01

    Cloudy convection in the moist layer of a cloud cluster growing in the GATE ship array is examined. Analyses suggest that the moist layer was dominated by features of horizontal dimension roughly 40 km and lifetime roughly 2 h, with arc patterns triggered by dense downdraft air accompanying rainfall, and composed of many small cumulus clouds. Aircraft recorded data on thermodynamic quantities and winds, indicating that the arcs persisted as mesoscale circulations driven by the release of latent heat in the clouds, rather than being driven by the original density current at the surface. It is also suggested that the mesoscale cloud patterns of the moist layer play a primary role in heat transfer upward within this layer, and contribute to the forcing of showering midtropospheric clouds.

  10. A Self-Powered Fast-Sampling Profiling Float in support of a Mesoscale Ocean Observing System in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.

    2012-12-01

    This talk will describe a new self-powered profiling float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean observing system in the Western North Pacific. The current state-of-the-art profiling floats can provide several hundreds profiles for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's profiling float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of profiling floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the vertical temperature differentials has the potential to power profiling floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered profiling float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling profiling floats in the Western North Pacific will be discussed.

  11. Antarctic mesocyclone regimes from satellite and conventional data

    NASA Astrophysics Data System (ADS)

    Fitch, Mark; Carleton, Andrew M.

    1992-03-01

    Mesoscale vortices in the Antarctic, poleward of 50°S, are examined in the synoptic context for the Ross Sea sector (100°E eastward to 80°W) for transition and winter months of 1988, using DMSP (Defense Meteorological Satellite Program) thermal infrared (TIR) images. Mesoscale vortices are classified and tracked and the dominant characteristics, such as life span, speed of movement and preferred geographical locations of formation, are defined and discussed. A "superposed epoch" (compositing) method utilizing 1000 and 500mb height data identifies the dominant synoptic regimes in which mesoscale vortices tend to develop. This analysis indicates that during active or outbreak periods, a negative thickness anomaly ("cold pool") is located northeast of the Ross Sea, and mesoscale vortices tend to occur on the poleward side of that anomaly. In addition, an enhanced trough-ridge pattern is evident for the Ross Sea sector compared with the composite pattern for inactive, or dearth, periods. The active periods of mesoscale vortices appear to originate from Antarctica, possibly via the persistent katabatic outflows from the ice sheet, rather than from teleconnections to lower latitudes. Analysis of Automatic Weather Station (AWS) data for the Ross Sea region supports this notion, at least for individual cases. Confirmation of these findings for the corresponding months of additional years is continuing.

  12. On the mesoscale monitoring capability of Argo floats in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Antonio; Ruiz, Simón; Pascual, Ananda; Mourre, Baptiste; Guinehut, Stéphanie

    2017-03-01

    In this work a simplified observing system simulation experiment (OSSE) approach is used to investigate which Argo design sampling in the Mediterranean Sea would be necessary to properly capture the mesoscale dynamics in this basin. The monitoring of the mesoscale features is not an initial objective of the Argo network. However, it is an interesting question from the perspective of future network extensions in order to improve the ocean state estimates. The true field used to conduct the OSSEs is provided by a specific altimetry-gridded merged product for the Mediterranean Sea. Synthetic observations were obtained by sub-sampling this Nature Run according to different configurations of the ARGO network. The observation errors required to perform the OSSEs were obtained through the comparison of sea level anomalies (SLAs) from altimetry and dynamic height anomalies (DHAs) computed from the real in situ Argo network. This analysis also contributes to validate satellite SLAs with an increased confidence. The simulation experiments show that a configuration similar to the current Argo array in the Mediterranean (with a spatial resolution of 2° × 2°) is only able to recover the large-scale signals of the basin. Increasing the spatial resolution to nearly 75 km × 75 km, allows the capture of most of the mesoscale signal in the basin and to retrieve the SLA field with a RMSE of 3 cm for spatial scales larger than 150 km, similar to those presently captured by the altimetry. This would represent a theoretical reduction of 40 % of the actual RMSE. Such a high-resolution Argo array composed of around 450 floats, cycling every 10 days, is expected to increase the actual network cost by approximately a factor of 6.

  13. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    DOE PAGES

    Tian, Ye; Wang, Tong; Liu, Wenyan; ...

    2015-05-25

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling 3D nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA framemore » and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled that have designed particle arrangements.« less

  14. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Wang, Tong; Liu, Wenyan; Xin, Huolin L.; Li, Huilin; Ke, Yonggang; Shih, William M.; Gang, Oleg

    2015-07-01

    Three-dimensional mesoscale clusters that are formed from nanoparticles spatially arranged in pre-determined positions can be thought of as mesoscale analogues of molecules. These nanoparticle architectures could offer tailored properties due to collective effects, but developing a general platform for fabricating such clusters is a significant challenge. Here, we report a strategy for assembling three-dimensional nanoparticle clusters that uses a molecular frame designed with encoded vertices for particle placement. The frame is a DNA origami octahedron and can be used to fabricate clusters with various symmetries and particle compositions. Cryo-electron microscopy is used to uncover the structure of the DNA frame and to reveal that the nanoparticles are spatially coordinated in the prescribed manner. We show that the DNA frame and one set of nanoparticles can be used to create nanoclusters with different chiroptical activities. We also show that the octahedra can serve as programmable interparticle linkers, allowing one- and two-dimensional arrays to be assembled with designed particle arrangements.

  15. The Contribution of Mesoscale Convective Weather Systems to the Warm-Season Precipitation in the United States.

    NASA Astrophysics Data System (ADS)

    Fritsch, J. M.; Kane, R. J.; Chelius, C. R.

    1986-10-01

    The contribution of precipitation from mesoscale convective weather systems to the warm-season (April-September) rainfall in the United States is evaluated. Both Mesoscale Convective Complexes (MCC's) and other large, long-lived mesoscale convective systems that do not quite meet Maddox's criteria for being termed an MCC are included in the evaluation. The distribution and geographical limits of the precipitation from the convective weather systems are constructed for the warm seasons of 1982, a `normal' year, and 1983, a drought year. Precipitation characteristics of the systems are compared for the 2 years to determine how large-scale drought patterns affect their precipitation production.The frequency, precipitation characteristics and hydrologic ramifications of multiple occurrences, or series, of convective weather systems are presented and discussed. The temporal and spatial characteristics of the accumulated precipitation from a series of convective complexes is investigated and compared to that of Hurricane Alicia.It is found that mesoscale convective weather systems account for approximately 30% to 70% of the warm-season (April-September) precipitation over much of the region between the Rocky Mountains and the Mississippi River. During the June through August period, their contribution is even larger. Moreover, series of convective weather systems are very likely the most prolific precipitation producer in the United States, rivaling and even exceeding that of hurricanes.Changes in the large-scale circulation patterns affected the seasonal precipitation from mesoscale convective weather systems by altering the precipitation characteristics of individual systems. In particular, for the drought period of 1983, the frequency of the convective systems remained nearly the same as in the `normal' year (1982); however, the average precipitation area and the average volumetric production significantly decreased. Nevertheless, the rainfall that was produced by mesoscale convective weather systems in the drought year accounted for most of the precipitation received during the critical crop growth period.It is concluded that mesoscale convective weather systems may be a crucial precipitation-producing deterrent to drought and an important mechanism for enhancing midsummer crop growth throughout the midwestern United States. Furthermore, because mesoscale convective weather systems account for such a large fraction of the warm-season precipitation, significant improvements in prediction of such systems would likely translate into significant improvements in quantitative precipitation forecast skill and corresponding improvements in hydrologic forecasts of runoff.

  16. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  17. Evaluation of large-eddy simulations forced with mesoscale model output for a multi-week period during a measurement campaign

    NASA Astrophysics Data System (ADS)

    Heinze, Rieke; Moseley, Christopher; Böske, Lennart Nils; Muppa, Shravan Kumar; Maurer, Vera; Raasch, Siegfried; Stevens, Bjorn

    2017-06-01

    Large-eddy simulations (LESs) of a multi-week period during the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE) conducted in Germany are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two LES models are used in a semi-idealized setup through forcing with mesoscale model output to account for the synoptic-scale conditions. Evaluation is performed based on the HOPE observations. The mean boundary layer characteristics like the boundary layer depth are in a principal agreement with observations. Simulating shallow-cumulus layers in agreement with the measurements poses a challenge for both LES models. Variance profiles agree satisfactorily with lidar measurements. The results depend on how the forcing data stemming from mesoscale model output are constructed. The mean boundary layer characteristics become less sensitive if the averaging domain for the forcing is large enough to filter out mesoscale fluctuations.

  18. A daily global mesoscale ocean eddy dataset from satellite altimetry.

    PubMed

    Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin

    2015-01-01

    Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.

  19. A daily global mesoscale ocean eddy dataset from satellite altimetry

    PubMed Central

    Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin

    2015-01-01

    Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744

  20. Formation of periodic mesoscale structures arranged in a circular symmetry at the silicon surface exposed to radiation of a single femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Romashevskiy, S. A.; Ashitkov, S. I.; Ovchinnikov, A. V.; Kondratenko, P. S.; Agranat, M. B.

    2016-06-01

    The periodic mesoscale structures arranged in a circular symmetry were found at the silicon surface exposed to radiation of the single femtosecond laser pulse with a Gaussian intensity profile in the ambient air conditions. These peculiar structures have the appearance of the protrusions of ∼10 nm height and of ∼600 nm width (at a FWHM) separately located inside the ablated region with a period of the incident laser wavelength. It was found that their position at the surface corresponds to the specified laser intensity slightly above the ablation threshold. The number of the formed periodic structures varies with the fluence of the incident laser pulse and in our experiments it was found to have changed from one to eleven. We suppose that formation of these mesoscale structures is caused by heating of a microscale volume to the strongly defined temperature. The theoretical model was proposed to explain the obtained data. It assumes that the interference of incident laser radiation with laser-induced surface electromagnetic waves results in generation of periodic distribution of electron temperature. Thus formation of the periodic structures at the specified laser intensity is attributed to periodically modulated absorption of laser energy at a focal laser spot.

  1. An analysis of the AVE-SESAME I period using statistical structure and correlation functions. [Atmospheric Variability Experiment-Severe Environmental Storm and Mesoscale Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Meyer, P. J.

    1984-01-01

    Structure and correlation functions are used to describe atmospheric variability during the 10-11 April day of AVE-SESAME 1979 that coincided with the Red River Valley tornado outbreak. The special mesoscale rawinsonde data are employed in calculations involving temperature, geopotential height, horizontal wind speed and mixing ratio. Functional analyses are performed in both the lower and upper troposphere for the composite 24 h experiment period and at individual 3 h observation times. Results show that mesoscale features are prominent during the composite period. Fields of mixing ratio and horizontal wind speed exhibit the greatest amounts of small-scale variance, whereas temperature and geopotential height contain the least. Results for the nine individual times show that small-scale variance is greatest during the convective outbreak. The functions also are used to estimate random errors in the rawinsonde data. Finally, sensitivity analyses are presented to quantify confidence limits of the structure functions.

  2. Soil temperature extrema recovery rates after precipitation cooling

    NASA Technical Reports Server (NTRS)

    Welker, J. E.

    1984-01-01

    From a one dimensional view of temperature alone variations at the Earth's surface manifest themselves in two cyclic patterns of diurnal and annual periods, due principally to the effects of diurnal and seasonal changes in solar heating as well as gains and losses of available moisture. Beside these two well known cyclic patterns, a third cycle has been identified which occurs in values of diurnal maxima and minima soil temperature extrema at 10 cm depth usually over a mesoscale period of roughly 3 to 14 days. This mesoscale period cycle starts with precipitation cooling of soil and is followed by a power curve temperature recovery. The temperature recovery clearly depends on solar heating of the soil with an increased soil moisture content from precipitation combined with evaporation cooling at soil temperatures lowered by precipitation cooling, but is quite regular and universal for vastly different geographical locations, and soil types and structures. The regularity of the power curve recovery allows a predictive model approach over the recovery period. Multivariable linear regression models alloy predictions of both the power of the temperature recovery curve as well as the total temperature recovery amplitude of the mesoscale temperature recovery, from data available one day after the temperature recovery begins.

  3. Meteorological determinants of air quality

    NASA Astrophysics Data System (ADS)

    Turoldo, F.; Del Frate, S.; Gallai, I.; Giaiotti, D. B.; Montanari, F.; Stel, F.; Goi, D.

    2010-09-01

    Air quality is the result of complex phenomena, among which the major role is played by human emissions of pollutants. Atmospheric processes act as determinants, e.g., modulating, dumping or amplifying the effects of emissions as an orchestra's director does with musical instruments. In this work, a series of small-scale and meso-scale meteorological determinants of air-quality are presented as they are observed in an area characterized by complex orography (Friuli Venezia Giulia, in the north-eastern side of Italy). In particular, attention is devoted to: i) meso-scale flows favouring the persistence of high concentrations of particulate matter; ii) meso-scale periodic flows (breezes) favouring high values of particulate matter; iii) local-scale thermodynamic behaviour favouring high atmospheric values of nitrogen oxides. The effects of these different classes of determinants are shown through comparisons between anthropic emissions (mainly traffic) and ground-based measurements. The relevance of complex orography (relatively steep relieves near to the sea) is shown for the meso-scale flows and, in particular, for local-scale periodic flows, which favour the increase of high pollutants concentrations mainly in summer, when the breezes regime is particularly relevant. Part of these results have been achieved through the ETS - Alpine Space EU project iMONITRAF!

  4. Atmospheric circulation types and daily mortality in Athens, Greece.

    PubMed Central

    Kassomenos, P; Gryparis, A; Samoli, E; Katsouyanni, K; Lykoudis, S; Flocas, H A

    2001-01-01

    We investigated the short-term effects of synoptic and mesoscale atmospheric circulation types on mortality in Athens, Greece. The synoptic patterns in the lower troposphere were classified in 8 a priori defined categories. The mesoscale weather types were classified into 11 categories, using meteorologic parameters from the Athens area surface monitoring network; the daily number of deaths was available for 1987-1991. We applied generalized additive models (GAM), extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns. We adjusted for long-term trends, day of the week, ambient particle concentrations, and additional temperature effects. Both classifications, synoptic and mesoscale, explain the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southeasterly flow [increase 10%; 95% confidence interval (CI), 6.1-13.9% compared to the high-low pressure system), followed by zonal flow (5.8%; 95% CI, 1.8-10%). The high-low pressure system and the northwesterly flow are associated with the lowest mortality. The seasonal patterns are consistent with the annual pattern. For mesoscale categories, in the cold period the highest mortality is observed during days characterized by the easterly flow category (increase 9.4%; 95% CI, 1.0-18.5% compared to flow without the main component). In the warm period, the highest mortality occurs during the strong southerly flow category (8.5% increase; 95% CI, 2.0-15.4% compared again to flow without the main component). Adjusting for ambient particle levels leaves the estimated associations unchanged for the synoptic categories and slightly increases the effects of mesoscale categories. In conclusion, synoptic and mesoscale weather classification is a useful tool for studying the weather-health associations in a warm Mediterranean climate situation. PMID:11445513

  5. Mobile Disdrometer Observations of Nocturnal Mesoscale Convective Systems During PECAN

    NASA Astrophysics Data System (ADS)

    Bodine, D. J.; Rasmussen, K. L.

    2015-12-01

    Understanding microphysical processes in nocturnal mesoscale convective systems (MCSs) is an important objective of the Plains Elevated Convection At Night (PECAN) experiment, which occurred from 1 June - 15 July 2015 in the central Great Plains region of the United States. Observations of MCSs were collected using a large array of mobile and fixed instrumentation, including ground-based radars, soundings, PECAN Integrated Sounding Arrays (PISAs), and aircraft. In addition to these observations, three mobile Parsivel disdrometers were deployed to obtain drop-size distribution (DSD) measurements to further explore microphysical processes in convective and stratiform regions of nocturnal MCSs. Disdrometers were deployed within close range of a multiple frequency network of mobile and fixed dual-polarization radars (5 - 30 km range), and near mobile sounding units and PISAs. Using mobile disdrometer and multiple-wavelength, dual-polarization radar data, microphysical properties of convective and stratiform regions of MCSs are investigated. The analysis will also examine coordinated Range-Height Indicator (RHI) scans over the disdrometers to elucidate vertical DSD structure. Analysis of dense observations obtained during PECAN in combination with mobile disdrometer DSD measurements contributes to a greater understanding of the structural characteristics and evolution of nocturnal MCSs.

  6. The measurement of the synoptic scale wind over the ocean

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.

    1982-01-01

    Mesoscale and microscale features of the turbulent winds over the ocean are related to the synoptic scale winds in terms of published spectral forms for the microscale, a mesoscale valley and published values of U*, VAR u', VAR v' and z/L, as defined in the text and as obtained for moderate to gale force winds. The frequencies involved correspond to periods longer than 1 hour and extend to the microscale, which starts at a period near 2 minutes, or so, and continues to the Kolmogorov inertial range. Nondimensional spectra that span both the mesoscale and the microscale are derived as a function of u, f(= n z/u) and z/L, where z is 10 meters, L is the Monin Obukov stability length and u is evaluated at 10 meters. For the same u, different values of z/L produce a range of values of u which in turn result in variations of the eddy structure of the mesoscale and microscale spectra. Both conventional anemometer averages and remotely sensed winds contain a random component of the mesoscale wind in their values. These components are differnces and not errors when winds are compared, and quantitative values for these differences are given. Ways to improve the measurement of the synoptic scale wind by transient ships, data buoys and scatterometers on future spacecraft are described. These ways are loner averaging times for ships and data buoys, depending on the synoptic conditions, and pooling spacecraft to form super observations. Design considerations for future remote sensing systems are given.

  7. Process Study of Oceanic Responses to Typhoons Using Arrays of EM-APEX Floats and Moorings

    DTIC Science & Technology

    2012-09-30

    maximum potential intensity, structure , energy, trajectory, and dynamic evolution. The most energetic oceanic responses to tropical cyclone forcing are...during tropical cyclone passage will aid understanding of storm dynamics and structure . The ocean’s recovery after tropical cyclone passage depends...days). The wake was advected hundreds of kilometers from the storm track by a pre- existing mesoscale eddy. Its thermal structure could not be

  8. Observation and numerical simulation of a convective initiation during COHMEX

    NASA Technical Reports Server (NTRS)

    Song, J. Aaron; Kaplan, Michael L.

    1991-01-01

    Under a synoptically undisturbed condition, a dual-peak convective lifecycle was observed with the COoperative Huntsville Meteorological EXperiment (COHMEX) observational network over a 24-hour period. The lifecycle included a multicell storm, which lasted about 6 hours, produced a peak rainrate exceeding 100 mm/hr, and initiated a downstream mesoscale convective system. The 24-hour accumulated rainfall of this event was the largest during the entire COHMEX. The downstream mesoscale convective system, unfortunately, was difficult to investigate quantitatively due to the lack of mesoscale observations. The dataset collected near the time of the multicell storm evolution, including its initiation, was one of the best datasets of COHMEX. In this study, the initiation of this multicell storm is chosen as the target of the numerical simulations.

  9. High-velocity, multistage, nozzled, ion driven wind generator and method of operation of the same adaptable to mesoscale realization

    NASA Technical Reports Server (NTRS)

    Rickard, Matthew J. A. (Inventor); Dunn-Rankin, Derek (Inventor)

    2011-01-01

    Gas flows of modest velocities are generated when an organized ion flux in an electric field initiates an ion-driven wind of neutral molecules. When a needle in ambient air is electrically charged to a potential sufficient to produce a corona discharge near its tip, such a gas flow can be utilized downstream of a ring-shaped or other permeable earthed electrode. In view of the potential practical applications of such devices, as they represent blowers with no moving parts, a methodology for increasing their flow velocities includes exploitation of the divergence of electric field lines, avoidance of regions of high curvature on the second electrode, control of atmospheric humidity, and the use of linear arrays of stages, terminating in a converging nozzle. The design becomes particularly advantageous when implemented in mesoscale domains.

  10. Large charge moment change lightning on 31 May to 1 June 2013, including the El Reno tornadic storm

    NASA Astrophysics Data System (ADS)

    Lang, Timothy J.; Cummer, Steven A.; Petersen, Danyal; Flores-Rivera, Lizxandra; Lyons, Walter A.; MacGorman, Donald; Beasley, William

    2015-04-01

    On 31 May 2013, a line of severe tornadic thunderstorms (the El Reno event) developed during the local afternoon in central Oklahoma, USA. Within range of the Oklahoma Lightning Mapping Array, the evolution of the event can be separated into three distinct periods: an Early period (before 02:00 UTC on 1 June) when the storm consisted of discrete supercells, a Middle period (02:00-05:00 UTC) when the convection began merging into a linear feature and stratiform precipitation developed, and a Late period (after 05:00 UTC) featuring a mature mesoscale convective system (MCS). Each of these periods demonstrated distinct patterns in the large (>100 C km) charge moment change (CMC) lightning that was produced. During the Early period, large-CMC positive cloud-to-ground (+CG) lightning was produced in the convective cores of supercells. These flashes were small in area (typically <500 km2) and were commonly associated with a sloping midlevel positive charge region in the echo overhang on the storm's forward flank. The Middle period featured a population of larger +CMCs (>500 km2, >300 C km) in the developing stratiform, similar to typical sprite-parent lightning in MCSs. During the Late period, convective large CMC +CGs ceased and instead large-CMC negative CGs were produced in and near the MCS convection. These flashes neutralized charge both in convection as well as in adjacent stratiform and anvil precipitation. The results suggest that the CMC metric has potential applications for studying tropospheric weather.

  11. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    Gravity waves in satellite data from CRISTA and MLS are studied in depth this quarter. Results this quarter are somewhat limited due to the PI'S heavy involvement throughout this reporting period in on-site forecasting of mountain wave-induced turbulence for the NASA's ER-2 research aircraft at Kiruna, Sweden during the SAGE Ill Ozone Loss and Validation Experiment (SOLVE). Results reported concentrate on further mesoscale modeling studies of mountain waves over the southern Andes, evident in CRISTA and MLS data. Two-dimensional mesoscale model simulations are extended through generalization of model equations to include both rotation and a first-order turbulence closure scheme. Results of three experiments are analyzed in depth and submitted for publication. We also commence simulations with a three-dimensional mesoscale model (MM5) and present preliminary results for the CRISTA 1 period near southern South America. Combination of ground-based temperature data at 87 km from two sites with global HRDl data was continued this quarter, showing stationary planetary wave structures. This work was also submitted for publication.

  12. Acute Exposure Guideline Levels (AEGLs) for Time Varying Toxic Plumes

    DTIC Science & Technology

    2014-09-12

    Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway...into the EAGLE system based on a single EPA table given as a 5 x 3 array of real density values (units mg/m3). These routines share the required...and Y. Jin, (2011), Development and testing of a Coupled Ocean-Atmosphere Mesoscale ensemble Prediction System COAMPS- OS). Ocean Dynamics, 61, 1937

  13. Coordination of Mesoscale Meteorological Research between ASL and European Group

    DTIC Science & Technology

    1993-12-01

    have been influenced by the Panel’s advice. Attention is drawn to the role of the Panel in involving the wider mesomet modelling community in ASL’s...during the contract period It is difficult to measure precisely the influence which the Panel has brought to bear on ASL’s policy-making and activities...the Arm-y"s Mesoscale Model Comparison Project. Their use has led to considerably increased insight into the behaviour of the models tested and

  14. Wind profiler data in a mesoscale experiment from a meteorological perspective

    NASA Technical Reports Server (NTRS)

    Zipser, E. J.; Augustine, J.; Cunning, J.

    1986-01-01

    During May and June of 1985, the Oklahoma-Kansas Preliminary Regional Experiment of STORM-Central (OK PRE-STORM) was carried out, with the major objectives of learning more about mesoscale convective systems (MCSs) and gaining experience in the use of new sensing systems and measurement strategies that will improve the design of STORM-Central. Three 50-MHz wind profilers were employed in a triangular array with sides about 275 km. It is far too soon to report any results of this effort, for it has barely begun. The purpose here is to show some examples of the data, some of the surrounding conventional data, and to discuss some of the issues important to meteorologists in evaluating the contribution of the profiler data. The case of 10 to 11 June 1985, featuring a major squall line system which crossed the dense observing network from northwest to southeast, passing the Liberal site about 2230 GMT/10 June, the McPherson site about 0100 GMT/11 June, and Wichita about 0300 GMT/11 June is discussed. Radar and satellite data show that the system was growing rapidly when it passed Liberal, and was large and mature when it passed through McPherson and Wichita. The radar depiction of the system during this stage is given, with the McPherson site in the intense convective echoes near the leading edge at 01 GMT and in the stratiform precipitation at 03 GMT. The profiler wind data for a 9-hour period encompassing the squall line passage at each site are given.

  15. Solvent-vapor-assisted dewetting of prepatterned thin polymer films: control of morphology, order, and pattern miniaturization.

    PubMed

    Bhandaru, Nandini; Goohpattader, Partho Sarathi; Faruqui, Danish; Mukherjee, Rabibrata; Sharma, Ashutosh

    2015-03-17

    Ultrathin (<100 nm) unstable polymer films exposed to a solvent vapor dewet by the growth of surface instability, the wavelength (λ) of which depends on the film thickness (h(f)). While the dewetting of a flat polymer thin film results in random structures, we show that the dewetting of a prepatterned film results in myriad ordered mesoscale morphologies under specific conditions. Such a film undergoes rupture over the thinnest parts when the initial local thickness of these zones (h(rm)) is lower than a limiting thickness h(lim) ≈ 10 nm. Additionally, the width of the pattern grooves (l(s)) must be wider than λ(s) corresponding to a flat film having a thickness of h(rm) for pattern-directed dewetting to take place over surface-tension-induced flattening. We first present an experimentally obtained morphology phase diagram that captures the conditions where a transition from surface-tension-induced flattening to pattern-directed-rupture takes place. Subsequently, we show the versatility of this technique in achieving a variety of aligned mesopatterns starting from a prepatterned film with simple grating geometry. The morphology of the evolving patterns depends on several parameters such as the initial film thickness (h(f)), prepattern amplitude (h(st)), duration of solvent vapor exposure (SVE), and wettability of the stamp used for patterning. Periodic rupture of the film at regular intervals imposes directionality on the evolving patterns, resulting in isolated long threads/cylindrical ridges of polymers, which subsequently disintegrate into an aligned array of droplets due to Rayleigh-Plateau instability under specific conditions. Other patterns such as a double periodic array of droplets and an array of holes are also possible to obtain. The evolution can be interrupted at any intermediate stage by terminating the solvent vapor annealing, allowing the creation of pattern morphology on demand. The created patterns are significantly miniaturized in size as compared to features obtained from dewetting a flat film with the same hf.

  16. GMS-based"Future Time" Rainfall Data Assimilation for Mesoscale Weather Prediction over Korean Peninsula and Future Prospects with GPM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Ou, Mi-Lim

    2004-01-01

    This study examines the use of satellite-derived nowcasted (short-term forecasted) rainfall over 3-hour time periods to gain an equivalent time increment in initializing a nonhydrostatic mesoscale model used for predicting convective rainfall events over the Korean peninsula. Infrared (IR) window measurements from the Japanese Geostationary Meteorological Satellite (GMS) are used to specify latent heating for a spinup period of the model - but in future time -- thus initializing in advance of actual time in the framework of a prediction scenario. The main scientific objective of the study is to investigate the strengths and weaknesses of this approach insofar as data assimilation, in which the nowcasted assimilation data are derived independently of the prognostic model itself. Although there have been various recent improvements in formulating the dynamics, thermodynamics, and microphysics of mesoscale models, as well as computer advances which allow the use of high resolution cloud-resolving grids and explicit latent heating over regional domains, spinup remains at the forefront of unresolved mesoscale modeling problems. In general, non-realistic spinup limits the skill in predicting the spatial-temporal distribution of convection and precipitation, primarily in the early hours of a. forecast, stemming from standard prognostic variables not representing the initial diabatic heating field produced by the ambient convection and cloud fields. The long-term goal of this research is to improve short-range (12-hour) quantitative precipitation forecasting (QPF) over the Korean peninsula through the use of innovative data assimilation methods based on geosynchronous satellite measurements. As a step in ths direction, a non-standard data assimilation experiment in conjunction with GMS-retrieved nowcasted rainfall information introduced to the mesoscale model is conducted. The 3-hourly precipitation forecast information is assimilated through nudging the associated diabatic heating during the early stages of a forecast period. This procedure is expected to enhance details in the moisture field during model integration, and thus improve spinup performance, assuming the errors in the future time latent heating data ate less than intrinsic model background errors.

  17. Nested mesoscale-to-LES modeling of the atmospheric boundary layer in the presence of under-resolved convective structures

    DOE PAGES

    Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.; ...

    2017-07-06

    Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less

  18. Nested mesoscale-to-LES modeling of the atmospheric boundary layer in the presence of under-resolved convective structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzaro, Laura J.; Munoz-Esparza, Domingo; Lundquist, Julie K.

    Multiscale atmospheric simulations can be computationally prohibitive, as they require large domains and fine spatiotemporal resolutions. Grid-nesting can alleviate this by bridging mesoscales and microscales, but one turbulence scheme must run at resolutions within a range of scales known as the terra incognita (TI). TI grid-cell sizes can violate both mesoscale and microscale subgrid-scale parametrization assumptions, resulting in unrealistic flow structures. Herein we assess the impact of unrealistic lateral boundary conditions from parent mesoscale simulations at TI resolutions on nested large eddy simulations (LES), to determine whether parent domains bias the nested LES. We present a series of idealized nestedmore » mesoscale-to-LES runs of a dry convective boundary layer (CBL) with different parent resolutions in the TI. We compare the nested LES with a stand-alone LES with periodic boundary conditions. The nested LES domains develop ~20% smaller convective structures, while potential temperature profiles are nearly identical for both the mesoscales and LES simulations. The horizontal wind speed and surface wind shear in the nested simulations closely resemble the reference LES. Heat fluxes are overestimated by up to ~0.01 K m s –1 in the top half of the PBL for all nested simulations. Overestimates of turbulent kinetic energy (TKE) and Reynolds stress in the nested domains are proportional to the parent domain's grid-cell size, and are almost eliminated for the simulation with the finest parent grid-cell size. Furthermore, based on these results, we recommend that LES of the CBL be forced by mesoscale simulations with the finest practical resolution.« less

  19. How does mesoscale impact deep convection? Answers from ensemble Northwestern Mediterranean Sea simulations.

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre

    2017-04-01

    Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.

  20. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less

  1. A preliminary look at AVE-SESAME 4 conducted on 9-10 May 1979

    NASA Technical Reports Server (NTRS)

    July, M.; Turner, R. E.

    1980-01-01

    This report contains information on data collected, symptotic conditions, and severe and unusual weather reported during the Atmospheric Variability Experiment Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME) 4 period. The information provides researchers a look at conditions during the period.

  2. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  3. Effect of mixing, concentration and temperature on the formation of mesostructured solutions and their role in the nucleation of DL-valine crystals.

    PubMed

    Jawor-Baczynska, Anna; Moore, Barry D; Sefcik, Jan

    2015-01-01

    We report investigations on the formation of mesostructured solutions in DL-valine-water-2-propanol mixtures, and the crystallization of DL-valine from these solutions. Mesostructured liquid phases, similar to those previously observed in aqueous solutions of glycine and DL-alanine, were observed using Dynamic Light Scattering and Brownian microscopy, in both undersaturated and supersaturated solutions below a certain transition temperature. Careful experimentation was used to demonstrate that the optically clear mesostructured liquid phase, comprising colloidal mesoscale clusters dispersed within bulk solution, is thermodynamically stable and present in equilibrium with the solid phase at saturation conditions. Solutions prepared by slow cooling contained mesoscale clusters with a narrow size distribution and a mean hydrodynamic diameter of around 200 nm. Solutions of identical composition prepared by rapid isothermal mixing of valine aqueous solutions with 2-propanol contained mesoscale clusters which were significantly larger than those observed in slowly cooled solutions. The presence of larger mesoscale clusters was found to correspond to faster nucleation. Observed induction times were strongly dependent on the rapid initial mixing step, although solutions were left undisturbed afterwards and the induction times observed were up to two orders of magnitude longer than the initial mixing period. We propose that mesoscale clusters above a certain critical size are likely to be the location of productive nucleation events.

  4. Mesoscale convective system surface pressure anomalies responsible for meteotsunamis along the U.S. East Coast on June 13th, 2013

    PubMed Central

    Wertman, Christina A.; Yablonsky, Richard M.; Shen, Yang; Merrill, John; Kincaid, Christopher R.; Pockalny, Robert A.

    2014-01-01

    Two destructive high-frequency sea level oscillation events occurred on June 13th, 2013 along the U.S. East Coast. Seafloor processes can be dismissed as the sources, as no concurrent offshore earthquakes or landslides were detected. Here, we present evidence that these tsunami-like events were generated by atmospheric mesoscale convective systems (MCSs) propagating from inland to offshore. The USArray Transportable Array inland and NOAA tide gauges along the coast recorded the pressure anomalies associated with the MCSs. Once offshore, the pressure anomalies generated shallow water waves, which were amplified by the resonance between the water column and atmospheric forcing. Analysis of the tidal data reveals that these waves reflected off the continental shelf break and reached the coast, where bathymetry and coastal geometry contributed to their hazard potential. This study demonstrates that monitoring MCS pressure anomalies in the interior of the U.S. provides important observations for early warnings of MCS-generated tsunamis. PMID:25420958

  5. 2D mesoscale colloidal crystal patterns on polymer substrates

    NASA Astrophysics Data System (ADS)

    Bredikhin, Vladimir; Bityurin, Nikita

    2018-05-01

    The development of nanosphere lithography relies on the ability of depositing 2D colloidal crystals comprising micro- and nano-size elements on substrates of different materials. One of the most difficult problems here is deposition of coatings on hydrophobic substrates, e.g. polymers, from aqueous colloidal solutions. We use UV photooxidation for substrate hydrophilization. We demonstrate a new method of producing a two-dimensional ordered array of polymer microparticles (polystyrene microspheres ∼1 μm in diameter) on a polymer substrate (PMMA). We show that implementation of the new deposition technique for directed self-assembly of microspheres on an UV irradiated surface provides an opportunity to obtain coatings on a hydrophilized PMMA surface of large area (∼5 cm2). UV irradiation of the surface through masks allows creating 2D patterns consisting of mesoscale elements formed by the deposited self-assembled microparticles owing to the fact that the colloidal particles are deposited only on the irradiated area leaving the non-irradiated sections intact.

  6. Ordered alternating binary polymer nanodroplet array by sequential spin dewetting.

    PubMed

    Bhandaru, Nandini; Das, Anuja; Salunke, Namrata; Mukherjee, Rabibrata

    2014-12-10

    We report a facile technique for fabricating an ordered array of nearly equal-sized mesoscale polymer droplets of two constituent polymers (polystyrene, PS and poly(methyl methacrylate), PMMA) arranged in an alternating manner on a topographically patterned substrate. The self-organized array of binary polymers is realized by sequential spin dewetting. First, a dilute solution of PMMA is spin-dewetted on a patterned substrate, resulting in an array of isolated PMMA droplets arranged along the substrate grooves due to self-organization during spin coating itself. The sample is then silanized with octadecyltrichlorosilane (OTS), and subsequently, a dilute solution of PS is spin-coated on to it, which also undergoes spin dewetting. The spin-dewetted PS drops having a size nearly equal to the pre-existing PMMA droplets position themselves between two adjacent PMMA drops under appropriate conditions, forming an alternating binary polymer droplet array. The alternating array formation takes place for a narrow range of solution concentration for both the polymers and depends on the geometry of the substrate. The size of the droplets depends on the extent of confinement, and droplets as small as 100 nm can be obtained by this method, on a suitable template. The findings open up the possibility of creating novel surfaces having ordered multimaterial domains with a potential multifunctional capability.

  7. Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Cummer, Steven; Petersen, Danyal; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald; Beasley, William

    2014-01-01

    On 31 May 2013, a line of severe thunderstorms developed during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) lightning strokes that featured large (> 100 C km) impulse charge moment changes (iCMCs; charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large-CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large-CMC +CGs had switched to occurring mainly within the broad stratiform region that had developed during the intervening period. The evolution of the large-CMC lightning in this case will be examined using a mix of national mosaics of radar reflectivity, the Oklahoma Lightning Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National Lightning Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC lightning. It is anticipated that this will lead to further insight into how and why storms produce the powerful lightning that commonly causes sprites in the upper atmosphere.

  8. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Huei; Jan, Sen; Mensah, Vigan; Andres, Magdalena; Rainville, Luc; Yang, Yiing Jang; Cheng, Yu-Hsin

    2018-01-01

    Variability of the Kuroshio east of Taiwan was observed at a cross-stream transect 50 km south of the PCM-1 line with an array of three moored ADCPs measuring for 23 months, supplemented with eleven repeated shipboard surveys. Observations of the Kuroshio's velocity structure reveal the absence of an obvious regular seasonal signal, but significant variability at 70-200 day period for both maximum velocity axis migration and transport due to interactions with mesoscale eddies. Empirical orthogonal function (EOF) analysis shows the migration and transport modes explain 46% and 29% of the total variance, respectively, which is in contrast to the findings at the PCM-1 line where the transport mode explained more variance than did the migration mode. The Kuroshio transport in the upper 500 m across a 150 km section is 17.2 Sv with a standard deviation of 5 Sv. The estimated Kuroshio transport is 4.3 Sv lower than that reported for the PCM-1 line, likely due to the interannual variations related to abundance of mesoscale eddies in the Subtropical Counter Current (STCC) region. Transport variability east of Taiwan is mostly caused by Kuroshio-eddy interactions. When single anticyclonic (cyclonic) eddies encounter the Kuroshio, they enhance (reduce) poleward transport, presumably by increasing (decreasing) the sea level anomaly (SLA) along the eastern flank of the Kuroshio (correlation = 0.82). When a pair of eddies impinges on the Kuroshio, the upstream confluence and diffluence caused by the dipole eddies increases and decreases the Kuroshio transport, respectively. Furthermore, the eastward (westward) currents that result from either the single eddy or the dipole eddy produce flow divergence (convergence) adjacent to the Kuroshio's eastern edge, favoring the offshore (onshore) migration of the Kuroshio axis.

  9. Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System

    NASA Technical Reports Server (NTRS)

    Lang, Timothy J.; Cummer, Steven; Beasley, William; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald

    2014-01-01

    On 31 May 2013, a line of severe thunderstorms developed during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) lightning strokes that featured large (> 75 C km) impulse charge moment changes (iCMCs - charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large- CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large- CMC +CGs had switched to occurring mainly within the broad stratiform region that had developed during the intervening period. The evolution of the large-CMC lightning in this case will be examined using a mix of polarimetric data from individual radars, national mosaics of radar reflectivity, the Oklahoma Lightning Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National Lightning Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC lightning. It is anticipated that this will lead to further insight into how and why storms produce the powerful lightning that commonly causes sprites in the upper atmosphere.

  10. Evaluating and Understanding Parameterized Convective Processes and their Role in the Development of Mesoscale Precipitation Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, J. Michael; Kain, John S.

    1997-01-01

    Research efforts during the second year have centered on improving the manner in which convective stabilization is achieved in the Penn State/NCAR mesoscale model MM5. Ways of improving this stabilization have been investigated by (1) refining the partitioning between the Kain-Fritsch convective parameterization scheme and the grid scale by introducing a form of moist convective adjustment; (2) using radar data to define locations of subgrid-scale convection during a dynamic initialization period; and (3) parameterizing deep-convective feedbacks as subgrid-scale sources and sinks of mass. These investigations were conducted by simulating a long-lived convectively-generated mesoscale vortex that occurred during 14-18 Jul. 1982 and the 10-11 Jun. 1985 squall line that occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. The long-lived vortex tracked across the central Plains states and was responsible for multiple convective outbreaks during its lifetime.

  11. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  12. Mesoscale and Synoptic Summertime Circulations and Their Impact on Visibility in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Eleuterio, D. P.; Walker, A. L.

    2005-12-01

    Although frequently characterized as a region of relatively persistent northwesterly winds, often referred to as the 40-day shamal, several researchers have recognized significant temporal and spatial variability in the summer low level winds in the Arabian Gulf. In addition to the synoptically driven gradient between the subtropical high to the north and the monsoon trough across the Gulf of Oman and Northern Arabian Sea, there are complex interactions between the Saudi Arabian and Pakistani heat lows, land-sea breeze circulations, and coastal terrain influence due to the proximity of the Zagros Mountains. These interactions frequently result in several distinct wind regimes within the Arabian Gulf, to include weak thermally and dynamically forced southerlies in the southern Gulf, a diurnally varying region of convergence/ divergence across the central Gulf, and northwesterly shamal type flow in the northern Gulf. The relative orientation and strength of these wind regimes and the strength of the subsidence inversion at the top of the marine boundary layer greatly impact the aerosol loading over water and resulting visibility due to wind-blown sand, dust, and smoke. Several case studies are examined to explore the interaction between mesoscale and synoptic forcing and the resulting spatial and temporal variability in visibility and aerosol optical depth. Conditions range from two to three day periods of rapid and persistent regional clearing with freshening northwesterly winds, to persistent periods of moderate to poor visibility in marine haze under light winds, to large scale events that create a distinct wind and dust front, severely reducing visibility through much of Iraq, Kuwait, and Saudi Arabia, and extending well into the Arabian Gulf. These strong, widespread events may be correlated with synoptically forced conditions farther north. Alternatively, smaller scale regional plumes of mobilized dust are often created by mesoscale events which, in conjunction with oil smoke and industrial pollution, can rapidly reduce visibility in localized regions for periods of 1-2 days and are relatively difficult to forecast because of their mesoscale nature.

  13. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations

    DOE PAGES

    Chien, Szu-Chia; Pérez-Sánchez, Germán; Gomes, José R. B.; ...

    2017-02-17

    Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant–water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems—in the concentration range where pure surfactant solutions yieldmore » a liquid crystal phase—the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phase-separated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.« less

  14. Measuring the accelerating effect of the planetary-scale waves on Venus observed with UVI/AKATSUKI and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Imai, M.; Kouyama, T.; Takahashi, Y.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Nakamura, M.; Satoh, T.; Imamura, T.; Nakaoka, T.; Kawabata, M.; Yamanaka, M.; Kawabata, K. S.

    2017-12-01

    Venus has a global cloud layer, and the atmosphere rotates with the speed over 100 m/s. The scattering of solar radiance and absorber in clouds cause the strong dark and bright contrast in 365 nm unknown absorption bands. The Japanese Venus orbiter AKATSUKI and the onboard instrument UVI capture 100 km mesoscale cloud features over the entire visible dayside area. In contrast, planetary-scale features are observed when the orbiter is at the moderate distance from Venus and when the Sun-Venus-orbiter phase angle is smaller than 45 deg. Cloud top wind velocity was measured with the mesoscale cloud tracking technique, however, observations of the propagation velocity and its variation of the planetary-scale feature are not well conducted because of the limitation of the observable area. The purpose of the study is measuring the effect of wind acceleration by planetary-scale waves. Each cloud motion can be represented as the wind and phase velocity of the planetary-scale waves, respectively. We conducted simultaneous observations of the zonal motion of both mesoscale and planetary-scale feature using UVI/AKATSUKI and ground-based Pirka and Kanata telescopes in Japan. Our previous ground-based observation revealed the periodicity change of planetary-scale waves with a time scale of a couple of months. For the initial analysis of UVI images, we used the time-consecutive images taken in the orbit #32. During this orbit (from Nov. 13 to 20, 2016), 7 images were obtained with 2 hr time-interval in a day whose spatial resolution ranged from 10-35 km. To investigate the typical mesoscale cloud motion, the Gaussian-filters with sigma = 3 deg. were used to smooth geometrically mapped images with 0.25 deg. resolution. Then the amount of zonal shift for each 5 deg. latitudinal bands between the pairs of two time-consecutive images were estimated by searching the 2D cross-correlation maximum. The final wind velocity (or rotation period) for mesoscale features were determined with a small error about +/- 0.1-day period in equatorial region (Figure 2). The same method will be applied for planetary-scale features captured by UVI, and ground-based observations compensate the discontinuity in UVI data. At the presentation, the variability in winds and wave propagation velocity with the time scale of a couple of months will be shown.

  15. The US DOE A2e Mesoscale to Microscale Coupling Project: Nonstationary Modeling Techniques and Assessment

    NASA Astrophysics Data System (ADS)

    Haupt, Sue Ellen; Kosovic, Branko; Shaw, William

    2017-04-01

    The purpose of the US DOE's Mesoscale-Microscale Coupling (MMC) Project is to develop, verify, and validate physical models and modeling techniques that bridge the most important atmospheric scales that determine wind plant performance and reliability. As part of DOE's Atmosphere to Electrons (A2e) program, the MMC project seeks to create a new predictive numerical simulation capability that is able to represent the full range of atmospheric flow conditions impacting wind plant performance. The recent focus of MMC has been on nonstationary conditions over flat terrain. These nonstationary cases are critical for wind energy and represent a primary need for mesoscale meteorological forcing of the microscale models. The MMC team modeled two types of non-stationary cases: 1) diurnal cycles in which the daytime convective boundary layer collapses with the setting of the sun when the surface heat flux changes from positive to negative, passing through a brief period of neutral stability before becoming stable, with smaller scale turbulence and the potential for low level jet (LLJ) formation; and 2) frontal passage as an example of a synoptic weather event that may cause relatively rapid changes in wind speed and direction. The team compared and contrasted two primary techniques for non-stationary forcing of the microscale by the mesoscale model. The first is to use the tendencies from the mesoscale model to directly force the microscale mode. The second method is to couple not only the microscale domain's internal forcing parameters, but also its lateral boundaries, to a mesoscale simulation. While the boundary coupled approach provides the greatest generality, since the mesoscale flow information providing the lateral boundary information for the microscale domain contains no explicit turbulence information, the approach requires methods to accelerate turbulence production at the microscale domain's inflow boundaries. Forefront assessment strategies, including comparing spectra and cospectra, were used to assess the techniques. Testing methods to initialize turbulence at the microscale was also accomplished.

  16. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  17. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919-2014.

    PubMed

    Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu

    2016-04-26

    In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919-2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks.

  18. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014

    PubMed Central

    Zeng, Lili; Wang, Dongxiao; Chen, Ju; Wang, Weiqiang; Chen, Rongyu

    2016-01-01

    In addition to the oceanographic data available for the South China Sea (SCS) from the World Ocean Database (WOD) and Array for Real-time Geostrophic Oceanography (Argo) floats, a suite of observations has been made by the South China Sea Institute of Oceanology (SCSIO) starting from the 1970s. Here, we assemble a SCS Physical Oceanographic Dataset (SCSPOD14) based on 51,392 validated temperature and salinity profiles collected from these three datasets for the period 1919–2014. A gridded dataset of climatological monthly mean temperature, salinity, and mixed and isothermal layer depth derived from an objective analysis of profiles is also presented. Comparisons with the World Ocean Atlas (WOA) and IFREMER/LOS Mixed Layer Depth Climatology confirm the reliability of the new dataset. This unique dataset offers an invaluable baseline perspective on the thermodynamic processes, spatial and temporal variability of water masses, and basin-scale and mesoscale oceanic structures in the SCS. We anticipate improvements and regular updates to this product as more observations become available from existing and future in situ networks. PMID:27116565

  19. The Challenge of Time-Dependent Control of Both Processing and Performance of Materials at the Mesoscale, and the MaRIE Project

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.

    DOE and NNSA are recognizing a mission need for flexible and reduced-cost product-based solutions to materials through accelerated qualification, certification, and assessment. The science challenge lies between the nanoscale of materials and the integral device scale, at the middle or ''mesoscale'' where interfaces, defects, and microstructure determine the performance of the materials over the lifecycle of the intended use. Time-dependent control of the processing, structure and properties of materials at this scale lies at the heart of qualifying and certifying additive manufactured parts; experimental data of high fidelity and high resolution are necessary to discover the right physical mechanisms to model and to validate and calibrate those reduced-order models in codes on Exascale computers. The scientific requirements to do this are aided by a revolution in coherent imaging of non-periodic features that can be combined with scattering off periodic structures. This drives the need to require a coherent x-ray source, brilliant and high repetition rate, of sufficiently high energy to see into and through the mesoscale. The Matter-Radiation Interactions in Extremes (MaRIE) Project is a proposal to build such a very-high-energy X-ray Free Electron Laser.

  20. A case study of A mesoscale gravity wave in the MLT region using simultaneous multi-instruments in Beijing

    NASA Astrophysics Data System (ADS)

    Jia, Mingjiao; Xue, Xianghui; Dou, Xiankang; Tang, Yihuan; Yu, Chao; Wu, Jianfei; Xu, Jiyao; Yang, Guotao; Ning, Baiqi; Hoffmann, Lars

    2016-03-01

    In this work, we used observational data from an all-sky airglow imager at Xinglong (40.2 °N, 117.4 °E), a sodium lidar at Yanqing (40.4 °N, 116.0 °E) and a meteor radar at Shisanling (40.3 °N, 116.2 °E) to study the propagation of a mesoscale gravity wave. During the night of March 1, 2011, the imager identified a mesoscale gravity wave structure in the OH airglow that had a wave period of 2 hours, propagated along an azimuthal direction (clockwise) with an angle of 163°, a phase speed of 73 m/s, and a horizontal wavelength of 566 km. Simultaneous measurements provided by the sodium lidar also showed a perturbation in the sodium layer with a 2-hour period. Based on the SABER/TIMED and radar data, we estimated that the momentum flux and the energy flux of the gravity wave were approximately 0.59 m2/s2 and 0.22 mW/m2, respectively. Ray-tracing analysis showed that the gravity wave was likely generated in the center of Lake Baikal owing to the existence of a jet- front system in the upper troposphere at that time.

  1. Characteristics of mesoscale vortices over China in 2015

    NASA Astrophysics Data System (ADS)

    Shu, Yu; Sun, Jisong; Pan, Yinong

    2017-12-01

    Mesoscale vortices, which appear at middle and lower levels of rainstorms, are cyclonic circulations with a size ranging from tens of kilometers to several hundred kilometers. Mesoscale vortices often have close relationships with convective activities. The ERA-Interim dataset and an automatic vortex-searching method were used to identify the mesoscale vortices occurring over China in 2015 and their basic characteristics were analyzed. The mesoscale vortices are divided into three categories: mesoscale convective vortices, mesoscale stratiform vortices, and mesoscale dry vortices. The mesoscale convective vortices have the largest intensity, size, and duration, whereas the mesoscale dry vortices have the smallest. Mesoscale convective vortices are able to form in any direction of the parent mesoscale convective system, although the secondary convection tends to appear to the southeast of the parent vortices. The mesoscale vortices tend to generate in the transition area between high and low altitudes. The leeward side of the Tibetan Plateau is the main source region of mesoscale vortices in China. Most of vortices are generated at midday and midnight. The activities of mesoscale convective vortices and mesoscale stratiform vortices peak in summer, whereas those of the mesoscale dry vortices peak in winter.

  2. Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the Meteorological Research Institute for the WWRP Beijing 2008 Olympics Research and Development Project (B08RDP)

    NASA Astrophysics Data System (ADS)

    Saito, Kazuo; Hara, Masahiro; Kunii, Masaru; Seko, Hiromu; Yamaguchi, Munehiko

    2011-05-01

    Different initial perturbation methods for the mesoscale ensemble prediction were compared by the Meteorological Research Institute (MRI) as a part of the intercomparison of mesoscale ensemble prediction systems (EPSs) of the World Weather Research Programme (WWRP) Beijing 2008 Olympics Research and Development Project (B08RDP). Five initial perturbation methods for mesoscale ensemble prediction were developed for B08RDP and compared at MRI: (1) a downscaling method of the Japan Meteorological Agency (JMA)'s operational one-week EPS (WEP), (2) a targeted global model singular vector (GSV) method, (3) a mesoscale model singular vector (MSV) method based on the adjoint model of the JMA non-hydrostatic model (NHM), (4) a mesoscale breeding growing mode (MBD) method based on the NHM forecast and (5) a local ensemble transform (LET) method based on the local ensemble transform Kalman filter (LETKF) using NHM. These perturbation methods were applied to the preliminary experiments of the B08RDP Tier-1 mesoscale ensemble prediction with a horizontal resolution of 15 km. To make the comparison easier, the same horizontal resolution (40 km) was employed for the three mesoscale model-based initial perturbation methods (MSV, MBD and LET). The GSV method completely outperformed the WEP method, confirming the advantage of targeting in mesoscale EPS. The GSV method generally performed well with regard to root mean square errors of the ensemble mean, large growth rates of ensemble spreads throughout the 36-h forecast period, and high detection rates and high Brier skill scores (BSSs) for weak rains. On the other hand, the mesoscale model-based initial perturbation methods showed good detection rates and BSSs for intense rains. The MSV method showed a rapid growth in the ensemble spread of precipitation up to a forecast time of 6 h, which suggests suitability of the mesoscale SV for short-range EPSs, but the initial large growth of the perturbation did not last long. The performance of the MBD method was good for ensemble prediction of intense rain with a relatively small computing cost. The LET method showed similar characteristics to the MBD method, but the spread and growth rate were slightly smaller and the relative operating characteristic area skill score and BSS did not surpass those of MBD. These characteristic features of the five methods were confirmed by checking the evolution of the total energy norms and their growth rates. Characteristics of the initial perturbations obtained by four methods (GSV, MSV, MBD and LET) were examined for the case of a synoptic low-pressure system passing over eastern China. With GSV and MSV, the regions of large spread were near the low-pressure system, but with MSV, the distribution was more concentrated on the mesoscale disturbance. On the other hand, large-spread areas were observed southwest of the disturbance in MBD and LET. The horizontal pattern of LET perturbation was similar to that of MBD, but the amplitude of the LET perturbation reflected the observation density.

  3. Simulating effects of a wind-turbine array using LES and RANS: Simulating turbines using LES and RANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderwende, Brian J.; Kosović, Branko; Lundquist, Julie K.

    2016-08-27

    Growth in wind power production has motivated investigation of wind-farm impacts on in situ flow fields and downstream interactions with agriculture and other wind farms. These impacts can be simulated with both large-eddy simulations (LES) and mesoscale wind-farm parameterizations (WFP). The Weather Research and Forecasting (WRF) model offers both approaches. We used the validated generalized actuator disk (GAD) parameterization in WRF-LES to assess WFP performance. A 12-turbine array was simulated using the GAD model and the WFP in WRF. We examined the performance of each scheme in both convective and stable conditions. The GAD model and WFP produced qualitatively similarmore » wind speed deficits and turbulent kinetic energy (TKE) production across the array in both stability regimes, though the magnitudes of velocity deficits and TKE production levels were underestimated and overestimated, respectively. While wake growth slowed in the latter half of the WFP array as expected, wakes did not approach steady state by the end of the array as simulated by the GAD model. A sensitivity test involving the deactivation of explicit TKE production by the WFP resulted in turbulence levels within the array well that were below those produced by the GAD in both stable and unstable conditions. Finally, the WFP overestimated downwind power production deficits in stable conditions because of the lack of wake stabilization in the latter half of the array.« less

  4. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    NASA Astrophysics Data System (ADS)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  5. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    NASA Astrophysics Data System (ADS)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  6. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles.

    PubMed

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60°C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from ß-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35°C. The presence of Mg²(+) ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component b-casein constructs.

  7. Reproductive cycle of Ensis magnus in the Ría de Pontevedra (NW Spain): Spatial variability and fisheries management implications

    NASA Astrophysics Data System (ADS)

    Hernández-Otero, A.; Martínez-Castro, C.; Vázquez, E.; Macho, G.

    2014-08-01

    Mesoscale differences in the reproductive cycle of the commercial sword razor clam Ensis magnus (Schumacher, 1817) were studied in six shellfish beds in the Ría de Pontevedra (NW Spain) between March 2008 and July 2010. The GCI accurately described the reproductive cycle as indicated by the histological analysis. Both methods showed that the reproductive cycle was similar at different sites and was characterized by a resting stage during summer and early autumn, initiation of gametogenesis in autumn and a period of successive spawning interspersed with gonad recovery during winter and spring. However, a 15-day to one month delay in advanced stages of gametogenesis and maturation was observed between the inner and the outermost site of the ria, as well as an extended spawning period in the outermost area. Lower bottom seawater temperatures at the outermost sites appeared to delay maturation and to prolong the spawning periods, whereas salinity fluctuations at the innermost sites appeared to reduce the length of the cycle. This study provides the first estimation of the size at which E. magnus reaches sexual maturity in the Iberian Peninsula, determined in 79 mm, and it is also the first work in determining the mesoscale variation in gonadal development of any species of the superfamily Solenoidea. The results highlight the importance of carrying out mesoscale studies of the reproductive biology in coastal fisheries resources. Some of the findings of the present study have already been applied in the rotation scheme of the fishery harvesting plan.

  8. Long-term variation of mesopelagic biogenic flux in the central South China Sea: Impact of monsoonal seasonality and mesoscale eddy

    NASA Astrophysics Data System (ADS)

    Li, Hongliang; Wiesner, Martin G.; Chen, Jianfang; Ling, Zheng; Zhang, Jingjing; Ran, Lihua

    2017-08-01

    The East Asian Monsoon and mesoscale eddies are known to regulate primary production in South China Sea (SCS), the largest tropical marginal sea; however, their contributions to the deep biogenic flux are yet to be quantified. Based on 7-year time series sediment trap observations at the depth of 1200 m in the central SCS, we used the monthly average sinking biogenic fluxes to evaluate the impact of the monsoon and mesoscale cyclonic eddies on biogenic fluxes in combination with remote sensing physical parameters. The monthly average particulate organic carbon (POC) and opal fluxes, ranging from 3.0 to 5.2 and 14.8-34.9 mg m-2 d-1, respectively, were higher during the northeastern monsoon period. This corresponded to the deeper mixed layer depth and higher net primary production in this area, due to nutrient replenishment from the subsurface induced by monsoon transition and surface cooling. In contrast, lower POC and opal fluxes occurred during well-stratified inter-monsoon periods. In addition, CaCO3 flux (23.6-37.0 mg m-2 d-1) exhibited less seasonality and was assumed to originate from foraminifera. In terms of the long-term record, the combined effect of cyclonic eddies and mixing in the upper ocean could effectively regulate the temporal variation in the biogenic flux. In particular, the opal and POC fluxes in cyclonic eddies were 116% and 41% higher on average, respectively, than those during the non-cyclonic eddy period. Since the cyclonic eddies mainly occurred during the northeastern monsoon period, their contributions to biogenic flux via diatom blooms might overlap the regular winter flux peak, which could make the biological carbon pump more efficient at CO2 sequestration during this period thus amplifying the impact of seasonal transition.

  9. Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Michael I.; Zounes, Zackery; Addison Alford, A.; Carrie, Gordon D.; Pilkey, John T.; Uman, Martin A.; Jordan, Douglas M.

    2017-08-01

    A series of vertical cross sections taken through a small mesoscale convective system observed over Florida by the dual-polarimetric SMART radar were combined with VHF radiation source locations from a lightning mapping array (LMA) to examine the lightning channel propagation paths relative to the radar-observed ice alignment signatures associated with regions of negative specific differential phase (KDP). Additionally, charge layers inferred from analysis of LMA sources were related to the ice alignment signature. It was found that intracloud flashes initiated near the upper zero-KDP boundary surrounding the negative KDP region. The zero-KDP boundary also delineated the propagation path of the lightning channel with the negative leaders following the upper boundary and positive leaders following the lower boundary. Very few LMA sources were found in the negative KDP region. We conclude that rapid dual-polarimetric radar observations can diagnose strong electric fields and may help identify surrounding regions of charge.

  10. Hydrodynamic characteristics in the Levantine Basin in autumn 2016 - The CINEL experiment (CIrculation and water mass properties in the North-Eastern Levantine)

    NASA Astrophysics Data System (ADS)

    Mauri, Elena; Poulain, Pierre-Marie; Gerin, Riccardo; Hayes, Dan; Gildor, Hezi; Kokkini, Zoi

    2017-04-01

    During the CINEL experiment, currents and thermohaline properties of the water masses in the eastern areas of the Levantine Basin (Mediterranean Sea) were monitored with mobile autonomous systems in October-December 2016. Two gliders were operated together with satellite-tracked drifters and Argo floats to study the complex circulation features governing the dynamics near the coast and in the open sea. Strong mesoscale and sub-basin scale eddies were detected and were crossed several times by the gliders during the experiment. The physical and biogeochemical parameters were sampled, showing peculiar characteristics in some of the mesoscale features and a probable interaction with a persistent coastal current off Israel. The in-situ observations were interpreted in concert with the distribution of tracers (sea surface temperature, chlorophyll) and altimetry data obtained from satellites. Numerical simulations with a high resolution model in which deep profiles of temperature and salinity from gliders were assimilated, were used in near-real time to fine tune the observational array and to help with the interpretation of the local dynamics.

  11. Characteristics of Mesoscale Organization in WRF Simulations of Convection during TWP-ICE

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Wu, Jingbo; Chen, Yonghua

    2013-01-01

    Compared to satellite-derived heating profiles, the Goddard Institute for Space Studies general circulation model (GCM) convective heating is too deep and its stratiform upper-level heating is too weak. This deficiency highlights the need for GCMs to parameterize the mesoscale organization of convection. Cloud-resolving model simulations of convection near Darwin, Australia, in weak wind shear environments of different humidities are used to characterize mesoscale organization processes and to provide parameterization guidance. Downdraft cold pools appear to stimulate further deep convection both through their effect on eddy size and vertical velocity. Anomalously humid air surrounds updrafts, reducing the efficacy of entrainment. Recovery of cold pool properties to ambient conditions over 5-6 h proceeds differently over land and ocean. Over ocean increased surface fluxes restore the cold pool to prestorm conditions. Over land surface fluxes are suppressed in the cold pool region; temperature decreases and humidity increases, and both then remain nearly constant, while the undisturbed environment cools diurnally. The upper-troposphere stratiform rain region area lags convection by 5-6 h under humid active monsoon conditions but by only 1-2 h during drier break periods, suggesting that mesoscale organization is more readily sustained in a humid environment. Stratiform region hydrometeor mixing ratio lags convection by 0-2 h, suggesting that it is strongly influenced by detrainment from convective updrafts. Small stratiform region temperature anomalies suggest that a mesoscale updraft parameterization initialized with properties of buoyant detrained air and evolving to a balance between diabatic heating and adiabatic cooling might be a plausible approach for GCMs.

  12. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.; Ju, W.; Govind, A.

    2008-06-01

    Carbon dynamics in peatlands are controlled, in large part, by their wetness as defined by water table depth and volumetric liquid soil moisture content. A common type of peatland is raised bogs that typically have a multiple-layer canopy of vascular plants over a Sphagnum moss ground cover. Their convex form restricts water supply to precipitation and water is shed toward the margins, usually by lateral subsurface flow. The hydraulic gradient for lateral subsurface flow is governed by the peat surface topography at the mesoscale (˜200 m to 5 km). To investigate the influence of mesoscale topography on wetness, evapotranspiration (ET), and gross primary productivity (GPP) in a bog during the snow-free period, we compare the outputs of a further developed version of the daily Boreal Ecosystem Productivity Simulator (BEPS) with observations made at the Mer Bleue peatland, located near Ottawa, Canada. Explicitly considering mesoscale topography, simulated total ET and GPP correlate well with measured ET (r = 0.91) and derived gross ecosystem productivity (GEP; r = 0.92). Both measured ET and derived GEP are simulated similarly well when mesoscale topography is neglected, but daily simulated values are systematically underestimated by about 10% and 12% on average, respectively, due to greater wetness resulting from the lack of lateral subsurface flow. Owing to the differences in moss surface conductances of water vapor and carbon dioxide with increasing moss water content, the differences in the spatial patterns of simulated total ET and GPP are controlled by the mesotopographic position of the moss ground cover.

  13. Coastal Jets, Oceanic Upwelling, Mesoscale Eddies, and Clouds in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Hong, X.; Wang, S.; Jiang, Q.; O'Neill, L. W.; Hodur, R.; Chen, S.; Martin, P.; Cummings, J. A.

    2009-12-01

    Coastal jets, oceanic upwelling, mesoscale eddies, and clouds in the Southeast Pacific (SEP) are studied using the two-way-coupled COAMPS/NCOM system with the NCODA for the ocean data assimilation. The coupled system was run for the period of the VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS) field campaign from 20 October to 30 November, 2008. The investigation of the feedback between the atmosphere and the ocean is focused on the periods of the strong and the weak coastal jets. During the strong coastal jet period, colder and drier air along the coast results in larger surface heat fluxes and increased boundary layer height. More extensive and organized clouds are generated in the strongly unstable conditions in the atmospheric boundary layer. The oceanic upwelling is stronger and the upwelled cold water extends further offshore. During the weak coastal jet period, the cyclonic and anti-cyclonic oceanic eddies propagate westward more significantly. The inertial oscillations induced by the variations of the wind stress also increase in strength with stronger phase shifts between the oscillations in the upper and the lower layers of the ocean. In addition, the model results from the coupled system were evaluated with available observations from the VOCALS field campaign.

  14. Improving weather modeling in South America through IDD-Brasil

    NASA Astrophysics Data System (ADS)

    Chagas, G. O.

    2007-05-01

    The IDD-Brasil constitutes of an international collaboration among Universidade Federal do Rio de Janeiro (LPM/UFRJ), Centro de Previsão de Tempo e Estudos Climáticos (CPTEC/INPE) and the Unidata Program Center (Unidata/UCAR), which connects several universities and research centers across the Americas in a network to share real-time hydro meteorological data. Using this network as a new path to deliver and acquire observational data, IDD-Brazil participants are capable of receiving observational data from GTS (Global Telecommunication System), locally ingested data from several automatic weather stations networks (mesonets) from INPE, the entire array of METAR and SYNOP observations, and several model outputs and satellite imagery. During recent years Numerical Models have been used constantly, especially in mesoscale research, but the lack of a dense observational network in South America leads to several constraints during the data assimilation and model validation. Since the IDD-Brasil offers an improved and simple method to have new datasets readily accessible, it has been used continuously as a new manner to distribute surface observations that are not currently available in GTS, such as several mesonets in Brazil that account for an increase in data density. Through the usage of data ingested in IDD-Brasil as guess fields it is possible to study how the assimilation in several global models frequently used as initial conditions for mesoscale simulations can be affected, since in certain areas in Brazil the density of data nearly doubles if compared to GTS. Therefore it is also possible to better validate the results generated in mesoscale simulations, in view of the fact that the network has an improved spatial distribution. It is expected that the increase of locally held numerical model output from South American institutions in IDD- Brasil leads to an increased awareness of the need to constantly validate these results with observational data, thus improving mesoscale research.

  15. Results of the US contribution to the joint US/USSR Bering Sea experiment. [atmospheric circulation and sea ice cover

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Chang, T. C.; Fowler, M. G.; Gloersen, P.; Kuhn, P. M.; Ramseier, R. O.; Ross, D. B.; Stambach, G.; Webster, W. J., Jr.; Wilheit, T. T.

    1974-01-01

    The atmospheric circulation which occurred during the Bering Sea Experiment, 15 February to 10 March 1973, in and around the experiment area is analyzed and related to the macroscale morphology and dynamics of the sea ice cover. The ice cover was very complex in structure, being made up of five ice types, and underwent strong dynamic activity. Synoptic analyses show that an optimum variety of weather situations occurred during the experiment: an initial strong anticyclonic period (6 days), followed by a period of strong cyclonic activity (6 days), followed by weak anticyclonic activity (3 days), and finally a period of weak cyclonic activity (4 days). The data of the mesoscale test areas observed on the four sea ice option flights, and ship weather, and drift data give a detailed description of mesoscale ice dynamics which correlates well with the macroscale view: anticyclonic activity advects the ice southward with strong ice divergence and a regular lead and polynya pattern; cyclonic activity advects the ice northward with ice convergence, or slight divergence, and a random lead and polynya pattern.

  16. Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    Muñoz-Esparza, Domingo; Kosović, Branko; Mirocha, Jeff; van Beeck, Jeroen

    2014-12-01

    With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.

  17. A numerical investigation of surface-induced mesocyclogenesis near the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Cione, Joseph J.; Raman, Sethu

    1995-10-01

    A series of numerical experiments designed to simulate the initial development stages of low-level coastal mesocyclogenesis near the Gulf Stream was recently conducted. Under initially quiescent conditions, surface cyclogenesis in the control simulation occurs along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) are maximized. A low-level mesovortex on the order of 140km forms approximately 12 h into the simulation and continues to intensify through 42h. During the 24 48 h time period, a mesoscale frontal feature develops in direct response to strong diabatic forcing associated with sustained surface latent and sensible heating near the Gulf Stream frontal zone south of the main circulation center. Due to the non-linear advection of the frontal feature during this time period, the previously quasi-stationary circulation center drifts eastward (and away) from the thermal forcing associated with the large SST gradients found to the west. This eastward frontal propagation acts to decrease the magnitude of the low level horizontal air temperature gradient near the center of circulation throughout the 24 42 h development period. During the 42 48-h period, the relatively quick moving frontal feature acts to severely shear the nearly stationary center of circulation in the east west direction. As a result, the mesoscale system begins to fill during the final 6 h of integration. In addition to the control simulation, additional sensitivity experiments were conducted. These experiments were specifically designed to: (1) investigate how the magnitude of the Gulf Stream SST gradients affect the timing and degree of cyclonic development; (2) address the impact surface moisture fluxes and moist convection each have on the simulated low level mesocyclogenesis; (3) isolate the role surface sensible heating plays in the overall development of the simulated mesocyclone. Results from the SST gradient experiment indicate that a moderate enhancement of the SST distribution significantly affects the timing of the initial cyclogenesis and the maximum intensity of the simulated frontal circulation. For the "no turbulent heat flux" experiment, it appears that the elimination of surface sensible heating does not radically alter the overall structure of the simulated mesocyclone. However, the rate of development during the early stage of cyclogenesis, the absolute peak intensity of the system as well as the vertical depth of the simulated mesoscale frontal feature were all noticeably reduced when compared with the control simulation. The initial development of a closed low level circulation was delayed by nearly 18 h in the absence surface latent heat fluxes. Once formed, the system intensified throughout the 48-h period of integration, but unlike the control experiment, a mesoscale frontal feature south of the main circulation center was not simulated. Results from the "no surface moisture flux/no moist convection" simulation illustrate that moist convective processes play a dominant role in the overall development of the mesoscale cyclone. For this particular case, a weak and extremely shallow circulation was simulated after 24h. This circulation quickly eroded however, and was virtually non-existent for integration times greater than 39h.

  18. Celebrating 10 Years of Delivering EarthScope USArray Transportable Array Data from the Array Network Facility (ANF)

    NASA Astrophysics Data System (ADS)

    Eakins, J. A.; Vernon, F.; Astiz, L.; Davis, G. A.; Reyes, J. C.; Martynov, V. G.; Tytell, J.; Cox, T. A.; Meyer, J.

    2013-12-01

    Since 2004, the Array Network Facility (ANF) has been responsible for generation and delivery of the metadata as well as collection and initial quality control and the transmission of the seismic, and more recently infrasound and meteorological data, for the Earthscope USArray Transportable Array. As of August 2013, we have managed data from over 1600 stations. Personnel at the ANF provide immediate eyes on the data to improve quality control as well as interact with the individual stations via calibrations, mass recentering, baler data retrieval and event analysis. Web-based tools have been developed, and rewritten over the years, to serve the needs of both station engineers and the public. Many lessons on the needs for scalability have been learned. Analysts continue to review all seismic events recorded on 7 or more TA stations making associations against externally available bulletins and/or generating ANF authored locations which are available at both the ANF and IRIS-DMC. The US Array pressure data have several unique characteristics that are allowing us to conduct a rigorous analysis of the spatio-temporal variations in the pressure field on time scales of less than an hour across the eastern United States. With the installation of the infrasound and atmospheric pressure sensors, starting in 2010, observations of gust fronts, near misses of tornados at individual stations, and of the mesoscale gravity waves showing the value and utility of the US Array pressure data will be presented.

  19. Optically Defined Multifunctional Patterning of Photosensitive Thin-Film Silica Mesophases

    NASA Astrophysics Data System (ADS)

    Doshi, Dhaval A.; Huesing, Nicola K.; Lu, Mengcheng; Fan, Hongyou; Lu, Yunfeng; Simmons-Potter, Kelly; Potter, B. G.; Hurd, Alan J.; Brinker, C. Jeffrey

    2000-10-01

    Photosensitive films incorporating molecular photoacid generators compartmentalized within a silica-surfactant mesophase were prepared by an evaporation-induced self-assembly process. Ultraviolet exposure promoted localized acid-catalyzed siloxane condensation, which can be used for selective etching of unexposed regions; for ``gray-scale'' patterning of refractive index, pore size, surface area, and wetting behavior; and for optically defining a mesophase transformation (from hexagonal to tetragonal) within the film. The ability to optically define and continuously control both structure and function on the macro- and mesoscales is of interest for sensor arrays, nanoreactors, photonic and fluidic devices, and low-dielectric-constant films.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majda, Andrew J.; Xing, Yulong; Mohammadian, Majid

    Determining the finite-amplitude preconditioned states in the hurricane embryo, which lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the embryo there is competition between different preconditioning mechanisms involving hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here systematic asymptotic methods from applied mathematics are utilized to develop new simplified moist multi-scale models starting from the moist anelastic equations. Three interesting multi-scale models emerge in the analysis. The balanced mesoscale vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics involve simplified balanced equations without gravity waves for vertical vorticity amplification due to moist heatmore » sources and incorporate nonlinear advective fluxes across scales. The BMV model is the central one for tropical cyclogenesis in the embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat sources from moisture and eddy flux divergences. A simplified cloud physics model for deep convection is introduced here and used to study moist axisymmetric plumes in the BHT model. A simple application in periodic geometry involving the effects of mesoscale vertical shear and moist microscale hot towers on vortex amplification is developed here to illustrate features of the coupled multi-scale models. These results illustrate the use of these models in isolating key mechanisms in the embryo in a simplified content.« less

  1. Airflows and turbulent flux measurements in mountainous terrain: Part 2: Mesoscale effects

    USGS Publications Warehouse

    Turnipseed, A.A.; Anderson, D.E.; Burns, S.; Blanken, P.D.; Monson, Russell K.

    2004-01-01

    The location of the Niwot Ridge Ameriflux site within the rocky mountains subjects it to airflows which are common in mountainous terrain. In this study, we examine the effects of some of these mesoscale features on local turbulent flux measurements; most notably, the formation of valley/mountain flows and mountain lee-side waves. The valley/mountain flows created local non-stationarities in the wind flow caused by the passage of a lee-side convergence zone (LCZ) in which upslope and downslope flows met in the vicinity of the measurement tower. During June-August, 2001, possible lee-side convergences were flagged for ???26% of all half-hour daytime flux measurement periods. However, there was no apparent loss of flux during these periods. On some relatively stable, summer nights, turbulence (designated via ??w), and scalar fluctuations (temperature and CO2, for example) exhibited periodicities that appeared congruent with passage of low frequency gravity waves (?? ??? 20 min). Spectral peaks at 0.0008 Hz (20 min) in both vertical velocity and scalar spectra were observed and indicated that 25-50% of the total scalar covariances were accounted for by the low frequency waves. During some periods of strong westerly winds (predominantly in winter), large mountain gravity waves were observed to form. Typically, the flux tower resided within a region of downslope "shooting flow", which created high turbulence, but had no detrimental effect on local flux measurements based on valid turbulence statistics and nearly complete energy budget closure. Periodically, we found evidence for re-circulating, rotor winds in the simultaneous time series of wind data from the Ameriflux tower site and a second meteorological site situated 8 km upslope and to the West. Only 14% of the half-hour time periods that we examined for a 4 month period in the winter of 2000-2001 indicated the possible existence of rotor winds. On average, energy budget closure was ???20% less during periods with rotor occurrence compared to those without. Results from this study demonstrate that the potential exists for relatively rare, yet significant influences of mesoscale wind flow patterns on the local half-hour flux measurements at this site. Occurrence of these events could be detected through examination of normal turbulence statistical parameters. ?? 2004 Elsevier B.V. All rights reserved.

  2. Mesoscale Ionospheric Prediction

    DTIC Science & Technology

    2006-09-30

    Mesoscale Ionospheric Prediction Gary S. Bust 10000 Burnet Austin Texas, 78758 phone: (512) 835-3623 fax: (512) 835-3808 email: gbust...time-evolving non-linear numerical model of the mesoscale ionosphere , second to couple the mesoscale model to a mesoscale data assimilative analysis...third to use the new data-assimilative mesoscale model to investigate ionospheric structure and plasma instabilities, and fourth to apply the data

  3. Runoff measurements and hydrological modelling for the estimation of rainfall volumes in an Alpine basin

    NASA Astrophysics Data System (ADS)

    Ranzi, R.; Bacchi, B.; Grossi, G.

    2003-01-01

    Streamflow data and water levels in reservoirs have been collected at 30 recording sites in the Toce river basin and its surroundings, upstream of Lago Maggiore, one of the target areas of the Mesoscale Alpine Programme (MAP) experiment. These data have been used for two purposes: firstly, the verification of a hydrological model, forced by rain-gauge data and the output of a mesoscale meteorological model, for flood simulation and forecasting; secondly, to solve an inverse problem--to estimate rainfall volumes from the runoff data in mountain areas where the influence of orography and the limits of actual monitoring systems prevent accurate measurement of precipitation. The methods are illustrated for 19-20 September 1999, MAP Intensive Observing Period 2b, an event with a 4-year return period for the Toce river basin. Uncertainties in the estimates of the areal rainfall volumes based on rain-gauge data and via the inverse solution are assessed.

  4. Micro- and meso-scale simulations of magnetospheric processes related to the aurora and substorm morphology

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1991-01-01

    The primary methodology during the grant period has been the use of micro or meso-scale simulations to address specific questions concerning magnetospheric processes related to the aurora and substorm morphology. This approach, while useful in providing some answers, has its limitations. Many of the problems relating to the magnetosphere are inherently global and kinetic. Effort during the last year of the grant period has increasingly focused on development of a global-scale hybrid code to model the entire, coupled magnetosheath - magnetosphere - ionosphere system. In particular, numerical procedures for curvilinear coordinate generation and exactly conservative differencing schemes for hybrid codes in curvilinear coordinates have been developed. The new computer algorithms and the massively parallel computer architectures now make this global code a feasible proposition. Support provided by this project has played an important role in laying the groundwork for the eventual development or a global-scale code to model and forecast magnetospheric weather.

  5. EMC: Mission Statement

    Science.gov Websites

    EMC: Mission Statement Mesoscale Modeling Branch Mission Statement The Mesoscale Modeling Branch , advanced numerical techniques applied to mesoscale modeling problems, parameterization of mesoscale new observing systems. The Mesoscale Modeling Branch publishes research results in various media for

  6. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    This quarter was largely devoted to a detailed study of temperature data acquired by the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS. Our analysis used the same sequence of methods that have been developed, tested and refined on a more limited subset of temperature data acquired by the CRISTA instrument. We focused on a limited subset of our reasoning that geographical and vertical trends in the small-scale temperature variability could be compared with similar trends observed in November 1994 by the CRISTA-SPAS satellite. Results, backed up with hindcasts from the Mountain Wave Forecast Model (MWFM), reveal strong evidence of mountain waves, most persuasively in the Himalayas on 16-17 November, 1992. These CLAES results are coherent over the 30-50 km range and compare well with MWFM hindcasts for the same period. This constitutes, we believe, the first clear evidence that CLAES explicitly resolved long wavelength gravity waves in its CO2 temperature channel. A series of other tasks, related to mesoscale modeling of mountain waves in CRISTA data and fitting of ground-based and HRDI data on global scales, were seen through to publication stage in peer-reviewed journals.

  7. Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Guo, Mingxian; Chai, Fei; Xiu, Peng; Li, Shiyu; Rao, Shivanesh

    2015-09-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) were investigated. The study was based on a coupled physical-biogeochemical Pacific Ocean model (Regional Ocean Model System-Carbon, Silicate, and Nitrogen Ecosystem, ROMS-CoSiNE) simulation for the period from 1991 to 2008. A total of 568 mesoscale eddies with lifetime longer than 30 days were used in the analysis. Composite analysis revealed that the cyclonic eddies were associated with abundance of nutrients, phytoplankton, and zooplankton while the anticyclonic eddies depressed biogeochemical cycles, which are generally controlled by the eddy pumping mechanism. In addition, diatoms were dominant in phytoplankton species due to the abundance of silicate. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies were revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures were not linearly coupled at the eddy core where plankton grew, and composition of the community depended not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship.

  8. Characterization of mesoscale convective systems over the eastern Pacific during boreal summer

    NASA Astrophysics Data System (ADS)

    Berthet, Sarah; Rouquié, Bastien; Roca, Rémy

    2015-04-01

    The eastern Pacific Ocean is one of the most active tropical disturbances formation regions on earth. This preliminary study is part of a broader project that aims to investigate how mesoscale convective systems (MCS) may be related to these synoptic disturbances with emphasis on local initiation of tropical depressions. As a first step, the main characteristics of the MCS over the eastern Pacific are documented with the help of the recently developed TOOCAN tracking algorithm (Fiolleau and Roca, 2013) applied to the infrared satellite imagery data from GOES-W and -E for the period JJAS 2012-2014. More specifically, the spatial distribution of the MCS population, the statistics of their spatial extensions and durations, as well as their trajectories and propagation speeds are summarized. In addition the environment of the MCS will be investigated using various Global Precipitation Mission datasets and the Megha-Tropiques/SAPHIR humidity microwave sounder derived products. Reference: Fiolleau T. and R. Roca, (2013), An Algorithm For The Detection And Tracking Of Tropical Mesoscale Convective Systems Using Infrared Images From Geostationary Satellite, Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2012.2227762.

  9. Spatial Statistics of atmospheric particulate matter in China

    NASA Astrophysics Data System (ADS)

    Huang, Yongxiang; Wang, Yangjun; Liu, Yulu

    2017-04-01

    In this work, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. The hourly concentrations of particulate matter were released by the Chinese government (http://www.cnemc.cn). We first processed these data into daily average concentrations. Totally, there are 305 monitor stations with an observations period of 425 days. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamics of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.

  10. Mesoscale crystallization of calcium phosphate nanostructures in protein (casein) micelles

    NASA Astrophysics Data System (ADS)

    Thachepan, Surachai; Li, Mei; Mann, Stephen

    2010-11-01

    Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs.Aqueous micelles of the multi-protein calcium phosphate complex, casein, were treated at 60 °C and pH 7 over several months. Although partial dissociation of the micelles into 12 nm sized amorphous calcium phosphate (ACP)/protein nanoparticles occurred within a period of 14 days, crystallization of the ACP nanoclusters into bundles of hydroxyapatite (HAP) nanofilaments was not observed until after 12 weeks. The HAP nanofilaments were formed specifically within the partially disrupted protein micelles suggesting a micelle-mediated pathway of mesoscale crystallization. Similar experiments using ACP-containing synthetic micelles prepared from β-casein protein alone indicated that co-aligned bundles of HAP nanofilaments were produced within the protein micelle interior after 24 hours at temperatures as low as 35 °C. The presence of Mg2+ ions in the casein micelles, as well as a possible synergistic effect associated with the multi-protein nature of the native aggregates, could account for the marked inhibition in mesoscale crystallization observed in the casein micelles compared with the single-component β-casein constructs. Electronic supplementary information (ESI) available: Particle size histograms, TEM, EDX and electron diffraction data. See DOI: 10.1039/c0nr00158a

  11. Does mesoscale matters in decadal changes observed in the northern Canary upwelling system?

    NASA Astrophysics Data System (ADS)

    Relvas, P.; Luís, J.; Santos, A. M. P.

    2009-04-01

    The Western Iberia constitutes the northern limb of the Canary Current Upwelling System, one of the four Eastern Boundary Upwelling Systems of the world ocean. The strong dynamic link between the atmosphere and the ocean makes these systems highly sensitive to global change, ideal to monitor and investigate its effects. In order to investigate decadal changes of the mesoscale patterns in the Northern Canary upwelling system (off Western Iberia), the field of the satellite-derived sea surface temperature (SST) trends was built at the pixel scale (4x4 km) for the period 1985-2007, based on the monthly mean data from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA series satellites, provided by the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory. The time series were limited to the nighttime passes to avoid the solar heating effect and a suite of procedures were followed to guarantee that the temperature trends were not biased towards the seasonally more abundant summer data, when the sky is considerably clear. A robust linear fit was applied to each individual pixel, crossing along the time the same pixel in all the processed monthly mean AVHRR SST images from 1985 until 2007. The field of the SST trends was created upon the slopes of the linear fits applied to each pixel. Monthly mean SST time series from the one degree enhanced International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and from near-shore measurements collected on a daily basis by the Portuguese Meteorological Office (IM) are also used to compare the results and extend the analysis back until 1960. A generalized warming trend is detected in the coastal waters off Western Iberia during the last decades, no matter which data set we analyse. However, significant spatial differences in the warming rates are observed in the satellite-derived SST trends. Remarkably, off the southern part of the Western Iberia the known upwelling pattern is clearly reflected in the warming field. There, the coastal upwelled waters show a weak warming trend when compared with the offshore waters. If we assume that the SST contrast between coastal and offshore waters is a proxy for the upwelling intensity, then this fact suggests the enhancement of the upwelling regime off SW Iberia since 1985. Although the seasonal nature of the upwelling in the region, the strengthening must be significant since it leaves a coherent imprint in the annual warming field. An analysis done on a monthly basis reveals that the central months of the classical upwelling season (July to September) are the responsible for this coherent mesoscale structure observed in the warming field off SW Iberia. The same conclusions are not clear for the mesoscale structure further north, where no significant differences are observed between the coastal and offshore warming rates. To investigate if our results, obtained for the period with satellite coverage (1985-2007), could be extended or not until 1960, we computed an upwelling index as the SST difference between coastal and offshore ICOADS SST. The analysis revealed that the trends are different whether we consider the whole time series or only the period investigated with the satellite imagery. We can suppose a relatively unchanged upwelling regime if we consider the period 1960-2005, but a rapid increase of intensity if we consider the period from 1985 onwards, particularly in the most southern regions, in agreement with the satellite imagery analysis. Our present results point out that mesoscale activity can account for larger changes in local SST than global average trends. In Eastern Boundary Upwelling Systems, where mesoscale structures play a major role in the description of the upwelling regime, to rely on sparse spatial observations to hypothesize about the decadal behaviour of the upwelling intensity at the basin scale may be questionable.

  12. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    NASA Technical Reports Server (NTRS)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.

  13. New insights into chromatin folding and dynamics from multi-scale modeling

    NASA Astrophysics Data System (ADS)

    Olson, Wilma

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of roughly 150 DNA base pairs and eight histone proteins-found on chromatin fibers. We have developed a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs with 3-25 evenly spaced nucleosomes. The correspondence between the predicted and observed effects of nucleosome composition, spacing, and numbers on long-range communication between regulatory proteins bound to the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We have extracted effective nucleosome-nucleosome potentials from the mesoscale simulations and introduced the potentials in a larger scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable influence of nucleosome spacing on chromatin flexibility. Small changes in the length of the DNA fragments linking successive nucleosomes introduce marked changes in the local interactions of the nucleosomes and in the spatial configurations of the fiber as a whole. The changes in nucleosome positioning influence the statistical properties of longer chromatin constructs with 100-10,000 nucleosomes. We are investigating the extent to which the `local' interactions of regularly spaced nucleosomes contribute to the corresponding interactions in chains with mixed spacings as a step toward the treatment of fibers with nucleosomes positioned at the sites mapped at base-pair resolution on genomic sequences. Support of the work by USPHS R01 GM 34809 is gratefully acknowledged.

  14. How the Structure of Mesoscale Precipitation Systems Affects their Production of Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Lyons, W.; Rutledge, S. A.; Cummer, S. A.; MacGorman, D. R.

    2011-12-01

    Recently, Lang et al. (2010) analyzed the parent lightning of transient luminous events (TLEs) in the context of the structure and evolution of two mesoscale convective systems (MCSs). These two MCSs were very different - one a giant symmetric leading-line/trailing stratiform storm, and one a small asymmetric MCS that contained a mesoscale convective vortex. These structural differences were associated with substantially different TLE-parent lightning structure as well as TLE production. The results suggested that TLE (especially sprite) production, and TLE-parent positive charge altitude, depend on MCS morphology. Current work is focused on analyzing the structure, evolution, lightning behavior, and TLE production of additional MCSs over various regions of the United States. Several additional TLE-producing MCS cases already have been identified for the years 2008-2010, featuring a variety of organizational modes (symmetric, asymmetric, and other more exotic varieties) in different meteorological regimes (including some cold-season cases). More cases will be incorporated as they occur and are observed. Data sources include geostationary satellite imagery, Doppler radar, three-dimensional lightning mapping networks, ground-strike detection networks, charge moment change measurements, and low-light video observations. The ultimate goal is to further test the hypothesis that MCS structure affects TLE production, and if so to quantify its impact. Research on two Oklahoma case studies, a multicellular system that occurred on 24 March 2009 and a classic bow-echo MCS that occurred on 19 August 2009, is ongoing. Over a 2.5-h period, the March case produced 23 observed TLEs (all sprites) whose parent flashes occurred within 175 km of the Oklahoma Lightning Mapping Array (OKLMA). The median altitude of LMA sources during the TLEs was 5.9 km above Mean Sea Level (MSL), or -19.2 °C. The August storm produced, in 2.5 hours, 34 TLEs (all sprites) with 32 of those having parent flashes within 175 km of the OKLMA. The median altitude for those flashes was higher, 7.1 km MSL, though at a warmer temperature of -14.7 °C due to the time of season. Based on analysis of the radar structures and the lightning data, the two storms support the hypothesized effects of organizational mode on sprite production. In particular, sprite production by the August MCS appeared to benefit from its leading-line/trailing-stratiform structure, which likely led to a higher altitude for the dominant stratiform positive charge layer. This would increase charge moment change, a key metric for the production of sprites.

  15. Investigating the Potential Impact of the Surface Water and Ocean Topography (SWOT) Altimeter on Ocean Mesoscale Prediction

    NASA Astrophysics Data System (ADS)

    Carrier, M.; Ngodock, H.; Smith, S. R.; Souopgui, I.

    2016-02-01

    NASA's Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide sea surface height anomaly (SSHA) observations with a wider swath width and higher spatial resolution than current satellite altimeters. It is expected that this will help to further constrain ocean models in terms of the mesoscale circulation. In this work, this expectation is investigated by way of twin data assimilation experiments using the Navy Coastal Ocean Model Four Dimensional Variational (NCOM-4DVAR) data assimilation system using a weak constraint formulation. Here, a nature run is created from which SWOT observations are sampled, as well as along-track SSHA observations from simulated Jason-2 tracks. The simulated SWOT data has appropriate spatial coverage, resolution, and noise characteristics based on an observation-simulator program provided by the SWOT science team. The experiment is run for a three-month period during which the analysis is updated every 24 hours and each analysis is used to initialize a 96 hour forecast. The forecasts in each experiment are compared to the available nature run to determine the impact of the assimilated data. It is demonstrated here that the SWOT observations help to constrain the model mesoscale in a more consistent manner than traditional altimeter observations. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model analysis and forecast of mesoscale features and surface ocean transport.

  16. Optical 3D printing: bridging the gaps in the mesoscale

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2018-05-01

    Over the last decade, optical 3D printing has proved itself to be a flexible and capable approach in fabricating an increasing variety of functional structures. One of the main reasons why this technology has become so prominent is the fact that it allows the creation of objects in the mesoscale, where structure dimensions range from nanometers to centimeters. At this scale, the size and spatial configuration of produced single features start to influence the characteristics of the whole object, enabling an array of new, exotic and otherwise unachievable properties and structures (i.e. metamaterials). Here, we present the advantages of this technology in creating mesoscale structures in comparison to subtractive manufacturing techniques and to other branches of 3D printing. Differences between stereolithography, sintering, laser-induced forward transfer and femtosecond laser 3D multi-photon polymerization are highlighted. Attention is given to the discussion of applicable light sources, as well as to an ongoing analysis of the light–matter interaction mechanisms, as they determine the processable materials, required technological steps and the fidelity of feature sizes in fabricated patterns and workpieces. Optical 3D printing-enabled functional structures in micromechanics, medicine, microfluidics, micro-optics and photonics are discussed, with an emphasis on how this particular technology benefits advances in those fields. 4D printing, achieved by varying both the architecture and spatial material composition of the 3D structure, feature-size reduction via stimulated emission depletion-inspired nanolithography or thermal post-treatment, as well as plasmonic nanoparticle-polymer nanocomposites, are presented among examples of the newest trends in the development of this technology. Finally, an outlook is given, examining further scientific frontiers in the field as well as possibilities and challenges in transferring laboratory-level know-how to industrial-scale production.

  17. Aerosol radiative effects on mesoscale cloud-precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign

    NASA Astrophysics Data System (ADS)

    Park, Shin-Young; Lee, Hyo-Jung; Kang, Jeong-Eon; Lee, Taehyoung; Kim, Cheol-Hee

    2018-01-01

    The online model, Weather Research and Forecasting Model with Chemistry (WRF-Chem) is employed to interpret the effects of aerosol-cloud-precipitation interaction on mesoscale meteorological fields over Northeast Asia during the Megacity Air Pollution Study-Seoul (MAPS-Seoul) 2015 campaign. The MAPS-Seoul campaign is a pre-campaign of the Korea-United States Air Quality (KORUS-AQ) campaign conducted over the Korean Peninsula. We validated the WRF-Chem simulations during the campaign period, and analyzed aerosol-warm cloud interactions by diagnosing both aerosol direct, indirect, and total effects. The results demonstrated that aerosol directly decreased downward shortwave radiation up to -44% (-282 W m-2) for this period and subsequently increased downward longwave radiation up to +15% (∼52 W m-2) in the presence of low-level clouds along the thematic area. Aerosol increased cloud fraction indirectly up to ∼24% with the increases of both liquid water path and the droplet number mixing ratio. Precipitation properties were altered both directly and indirectly. Direct effects simply changed cloud-precipitation quantities via simple updraft process associated with perturbed radiation and temperature, while indirect effects mainly suppressed precipitation, but sometimes increased precipitation in the higher relative humidity atmosphere or near vapor-saturated condition. The total aerosol effects caused a time lag of the precipitation rate with the delayed onset time of up to 9 h. This implies the importance of aerosol effects in improving mesoscale precipitation rate prediction in the online approach in the presence of non-linear warm cloud.

  18. Coastal heavy rainband formed along Sumatera Island, Indonesia, observed with X-band Doppler radars during HARIMAU2011 campaign

    NASA Astrophysics Data System (ADS)

    Mori, Shuichi; Jun-Ichi, Hamada; Hattori, Miki; Kamimera, Hideyuki; Wu, Peiming; Arbain, Ardhi A.; Lestari, Sopia; Syamsudin, Fadli; Yamanaka, Manabu D.

    2013-04-01

    Coastal heavy rainbands (CHeRs) are widely identified over Asian monsoon region (e.g., Western Ghats, Bay of Bengal, Gulf of Thailand, and western Philippines) by satellite observations. Some of them are explained by synoptic wind-terrain interaction (Xie et al., 2006 JC) because they are anchored along mountain ranges face to southwest direction and predominant during boreal summer southwesterly monsoon season. Most Asian megacities are located in coastal regions, thus they have much chance to be suffered from torrential rainfall embedded in CHeRs which may cause flash floods in downtown cities and landslides in mountainous regions. Moreover, rainfall amount over the coastal land varies quite largely if those CHeRs change their lateral location a little, therefore water resource management for social community is seriously sensitive to their variability. Satellite observations show that CHeRs are modified by various kinds of environmental variations, e.g., diurnal, intraseasonal, monsoonal, ENSO, and IOD. However, climatology, structure, and mechanism of CHeRs have not been examined in detail from mesoscale points of view because there are quite few studies based on ground based radar observations. Previous studies (e.g., Mori et al. 2004 MWR; Yamanaka et al. 2008 JDR; Wu et al. 2007 SOLA) showed most CHeRs in Indonesia are identified along coastlines where convective diurnal variation is predominant, and coastal heavy rain are brought mainly in the nighttime observed with a radar-profiler network deployed by Hydrometeorological ARray for Intraseasonal variation (ISV) - Monsoon AUtomonitoring (HARIMAU) project. In addition, they are confirmed even in the seasons when the wind-terrain interaction cannot explain them well. These results suggest that CHeRs are formed by not only the synoptic wind-terrain effect but also mesoscale convections which developed nocturnally everyday along coastlines. We carried out the HARIMAU2011 campaign observation over Sumatera Island, Indonesia, during 01-31 December 2011 in collaboration with CINDY and DYNAMO to study the CHeR formed along the southwestern coastline of Sumatera Island by using X-band Doppler and dual polarimetric (DP) radars, intensive soundings at two stations, disdrometers, and surface observation network. Two MJOs (MJO-2 and -3) were identified which passed over Sumatera Island during the campaign period. We divided the period into four phases: MJO-2 active (phase-I), MJO inactive (phase-II), MJO-3 active (phase-III), and MJO inactive (phase IV). CHeRs organized by a lot of mesoscale convections were observed throughout the period, however, those convections developed mainly over the coastal sea, coastal land, and both coastal sea and land, during phase-I, -II, and -III, respectively. Diurnal cycle of convections was not clear during the phase-I and -II. Whereas, that during the phase-III was clearly observed and a lot of convections were identified which migrated from the coastal land to sea during the night. Radar observations showed CHeRs were formed by both convections, a) generated originally over the coastal land in the evening and developed in the night after migrated into the sea, b) generated over the coastal sea in the night and developed independently. Environmental conditions including MJO activity and local circulations were also examined in terms of CHeR formation process.

  19. Research Needs for Wind Resource Characterization

    NASA Astrophysics Data System (ADS)

    Schreck, S. J.; Lundquist, J. K.; Shaw, W. J.

    2008-12-01

    Currently, wind energy provides about 1 percent of U.S. electricity generation. A recent analysis by DOE, NREL, and AWEA showed the feasibility of expanding U.S. wind energy capacity to 20 percent, comprising approximately 300 gigawatts. Though not a prediction of the future, this represents a plausible scenario for U.S. wind energy. To exploit these opportunities, a workshop on Research Needs for Wind Resource Characterization was held during January 2008. This event was organized on behalf of two DOE organizations; the Office of Biological and Environmental Research and the Office of Energy Efficiency and Renewable Energy. Over 120 atmospheric science and wind energy researchers attended the workshop from industry, academia, and federal laboratories in North America and Europe. Attendees identified problems that could impede achieving the 20 percent wind scenario and formulated research recommendations to attack these problems. Findings were structured into four focus areas: 1) Turbine Dynamics, 2) Micrositing and Array Effects, 3) Mesoscale Processes, and 4) Climate Effects. In the Turbine Dynamics area, detailed characterizations of inflows and turbine flow fields were deemed crucial to attaining accuracy levels in aerodynamics loads required for future designs. To address the complexities inherent in this area, an incremental approach involving hierarchical computational modeling and detailed measurements was recommended. Also recommended was work to model extreme and anomalous atmospheric inflow events and aerostructural responses of turbines to these events. The Micrositing and Array Effects area considered improved wake models important for large, multiple row wind plants. Planetary boundary layer research was deemed necessary to accurately determine inflow characteristics in the presence of atmospheric stability effects and complex surface characteristics. Finally, a need was identified to acquire and exploit large wind inflow data sets, covering heights to 200 meters and encompassing spatial and temporal resolution ranges unique to wind energy. The Mesoscale Processes area deemed improved understanding of mesoscale and local flows crucial to providing enhanced model outputs for wind energy production forecasts and wind plant siting. Modeling approaches need to be developed to resolve spatial scales in the 100 to 1000 meter range, a notable gap in current capabilities. Validation of these models will require new instruments and observational strategies, including augmented analyses of existing measurements. In the Climate Effects area, research was recommended to understand historical trends in wind resource variability. This was considered a prerequisite for improved predictions of future wind climate and resources, which would enable reliable wind resource estimation for future planning. Participants also considered it important to characterize interactions between wind plants and climates through modeling and observations that suitably emphasize atmospheric boundary layer dynamics. High-penetration wind energy deployment represents a crucial and attainable U.S. strategic objective. Achieving the 20 percent wind scenario will require an unprecedented ability for characterizing large wind turbines arrayed in gigawatt wind plants and extracting elevated energy levels from the atmosphere. DOE national laboratories, with industry and academia, represents a formidable capability for attaining these objectives.

  20. Ultrasound therapy transducers with space-filling non-periodic arrays.

    PubMed

    Raju, Balasundar I; Hall, Christopher S; Seip, Ralf

    2011-05-01

    Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.

  1. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    NASA Astrophysics Data System (ADS)

    Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.

    1996-09-01

    The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.

  2. Pattern-Directed Ordering of Spin-Dewetted Liquid Crystal Micro- or Nanodroplets as Pixelated Light Reflectors and Locomotives.

    PubMed

    Ravi, Bolleddu; Chakraborty, Snigdha; Bhattacharjee, Mitradip; Mitra, Shirsendu; Ghosh, Abir; Gooh Pattader, Partho Sarathi; Bandyopadhyay, Dipankar

    2017-01-11

    Chemical pattern directed spin-dewetting of a macroscopic droplet composed of a dilute organic solution of liquid crystal (LC) formed an ordered array of micro- and nanoscale LC droplets. Controlled evaporation of the spin-dewetted droplets through vacuum drying could further miniaturize the size to the level of ∼90 nm. The size, periodicity, and spacing of these mesoscale droplets could be tuned with the variations in the initial loading of LC in the organic solution, the strength of the centripetal force on the droplet, and the duration of the evaporation. A simple theoretical model was developed to predict the spacing between the spin-dewetted droplets. The patterned LC droplets showed a reversible phase transition from nematic to isotropic and vice versa with the periodic exposure of a solvent vapor and its removal. A similar phase transition behavior was also observed with the periodic increase or reduction of temperature, suggesting their usefulness as vapor or temperature sensors. Interestingly, when the spin-dewetted droplets were confined between a pair of electrodes and an external electric field was applied, the droplets situated at the hydrophobic patches showed light-reflecting properties under the polarization microscopy highlighting their importance in the development of micro- or nanoscale LC displays. The digitized LC droplets, which were stationary otherwise, showed dielectrophoretic locomotion under the guidance of the external electric field beyond a threshold intensity of the field. Remarkably, the motion of these droplets could be restricted to the hydrophilic zones, which were confined between the hydrophobic patches of the chemically patterned surface. The findings could significantly contribute in the development of futuristic vapor or temperature sensors, light reflectors, and self-propellers using the micro- or nanoscale digitized LC droplets.

  3. Validation of mesoscale models

    NASA Technical Reports Server (NTRS)

    Kuo, Bill; Warner, Tom; Benjamin, Stan; Koch, Steve; Staniforth, Andrew

    1993-01-01

    The topics discussed include the following: verification of cloud prediction from the PSU/NCAR mesoscale model; results form MAPS/NGM verification comparisons and MAPS observation sensitivity tests to ACARS and profiler data; systematic errors and mesoscale verification for a mesoscale model; and the COMPARE Project and the CME.

  4. Examples of mesoscale structures and short-term wind variations detected by VHF Doppler radar

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1986-01-01

    The first of three wind profilers planned for operation in central and western Pennsylvania began full-time, high-quality operation during July 1985. It is located about 20 km south-southeast of University Park and operates at 50 MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the next few months, to complete a mesoscale triangle with sides of 120 to 160 km. During the period since early July, a number of weather systems have passed over the wind profiler. Those accompanied by thunderstorms caused data losses either because the Department computer system lost power or because power went out at the profiler site. A backup power supply and an automatic re-start program will be added to the profiler system to minimize such future losses. Data have normally been averaged over a one-hour period, although there have been some investigations of shorter-period averaging. In each case, preliminary examinations reveal that the profiler winds are indicative of meteorological phenomena. The only occasions of bad or missing data are obtained when airplane noise is occasionally experienced and when the returned power is nearly at the noise level, at the upper few gates, where a consensus wind cannot be determined. Jets streams, clouds, and diurnal variations of winds are discussed.

  5. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    DOEpatents

    McAdams, Harley; AlQuraishi, Mohammed

    2015-04-21

    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  6. The impact of land-surface wetness heterogeneity on mesoscale heat fluxes

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Avissar, Roni

    1994-01-01

    Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.

  7. Genesis of Typhoon Nari (2001) from a mesoscale convective system

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Lin; Tian, Liqing; Yang, Ming-Jen

    2011-12-01

    In this study, the origin and genesis of Typhoon Nari (2001) as well as its erratic looping track, are examined using large-scale analysis, satellite observations, and a 4 day nested, cloud-resolving simulation with the finest grid size of 1.33 km. Observational analysis reveals that Nari could be traced 5 days back to a diurnally varying mesoscale convective system with growing cyclonic vorticity and relative humidity in the lower troposphere and that it evolved from a mesoscale convective vortex (MCV) as moving over a warm ocean under the influence of a subtropical high, a weak westerly baroclinic disturbance, an approaching-and-departing Typhoon Danas to the east, and the Kuroshio Current. Results show that the model reproduces the genesis, final intensity, looping track, and the general convective activity of Nari during the 4 day period. It also captures two deep subvortices at the eye-eyewall interface that are similar to those previously observed, a few spiral rainbands, and a midget storm size associated with Nari's relatively dry and stable environment. We find that (1) continuous convective overturning within the MCV stretches the low-level vorticity and moistens a deep mesoscale column that are both favorable for genesis; (2) Nari's genesis does not occur until after the passage of the baroclinic disturbance; (3) convective asymmetry induces a smaller-sized vortex circulation from the preexisting MCV; (4) the vortex-vortex interaction with Danas leads to Nari's looping track and temporal weakening; and (5) midlevel convergence associated with the subtropical high and Danas accounts for the generation of a nearly upright eyewall.

  8. Hybrid discrete-continuum modeling for transport, biofilm development and solid restructuring including electrostatic effects

    NASA Astrophysics Data System (ADS)

    Prechtel, Alexander; Ray, Nadja; Rupp, Andreas

    2017-04-01

    We want to present an approach for the mathematical, mechanistic modeling and numerical treatment of processes leading to the formation, stability, and turnover of soil micro-aggregates. This aims at deterministic aggregation models including detailed mechanistic pore-scale descriptions to account for the interplay of geochemistry and microbiology, and the link to soil functions as, e.g., the porosity. We therefore consider processes at the pore scale and the mesoscale (laboratory scale). At the pore scale transport by diffusion, advection, and drift emerging from electric forces can be taken into account, in addition to homogeneous and heterogeneous reactions of species. In the context of soil micro-aggregates the growth of biofilms or other glueing substances as EPS (extracellular polymeric substances) is important and affects the structure of the pore space in space and time. This model is upscaled mathematically in the framework of (periodic) homogenization to transfer it to the mesoscale resulting in effective coefficients/parameters there. This micro-macro model thus couples macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) with averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time and space dependent and its geometry inherits information from the transport equation's solutions. The microscale problems rely on versatile combinations of cellular automata and discontiuous Galerkin methods while on the mesoscale mixed finite elements are used. The numerical simulations allow to study the interplay between these processes.

  9. Variation of stream temperature among mesoscale habitats within stream reaches: southern Appalachians

    Treesearch

    S. Lynsey Long; C. Rhett. Jackson

    2014-01-01

    Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River,...

  10. Wave-induced boundary-layer separation: A case study comparing airborne observations and results from a mesoscale model

    NASA Astrophysics Data System (ADS)

    Strauss, L.; Serafin, S.; Grubišić, V.

    2012-04-01

    Wave-induced boundary-layer separation (BLS) results from the adverse-pressure gradient forces that are exerted on the atmospheric boundary-layer by internal gravity waves in flow over orography. BLS has received significant attention in recent years, particularly so, because it is a key ingredient in the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors originate from the interaction between internal gravity waves and the atmospheric boundary-layer. Our study focuses on the first observationally documented case of wave-induced BLS, which occurred on 26 Jan 2006 in the lee of the Medicine Bow Mountains in SE Wyoming (USA). Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the Wyoming Cloud Radar (WCR), reveal strong wave activity, downslope winds in excess of 30 m/s, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) exhibits fine-scale vortical structures ("subrotors") which are embedded within the main rotor zone. Our case study intends to complete the characterisation of the observed boundary-layer separation event. Modelling of the event with the mesoscale Weather Research and Forecast Model (WRF) provides insight into the mesoscale triggers of wave-induced BLS and turbulence generation. Indeed, the mesoscale model underpins the expected concurrence of the essential processes (gravity waves, wave breaking, downslope windstorms, etc.) leading to BLS. To exploit the recorded in situ and radar data to their full extent, a quantitative evaluation of the structure and intensity of turbulence is conducted by means of a power spectral analysis of the vertical wind component, measured along the flight track. An intercomparison of observational and modelling results serves the purpose of model verification and can shed some more light onto the limits of validity of airborne observations and mesoscale modelling. For example, the exact timing, magnitude, and evolution of the internal gravity waves present in the mesoscale model are carefully analysed. As for the observations, measures of turbulence gained from in situ and radar data, collected over complex topography within a limited period of time, must be interpreted with caution. Approaches to tackling these challenges are a matter of ongoing research and will be discussed in concluding.

  11. Mesoscale structure of microplankton and mesoplankton assemblages under contrasting oceanographic conditions in the Catalan Sea (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Villate, Fernando; Uriarte, Ibon; Olivar, M. Pilar; Maynou, Francesc; Emelianov, Mikhail; Ameztoy, Iban

    2014-11-01

    The abundance, composition and mesoscale variability of the microplankton (53-200 μm) and the mesoplankton (0.2-2 mm) fractions in relation to oceanographic factors and phytoplankton biomass were compared off the Catalan coast (NW Mediterranean) during the summer stratification (June) and autumn mixing (November) periods in 2005. This work aims to determine whether the two plankton fractions that more contribute to fish larval diet respond to a common variable environment, and this study constitutes the first attempt to analyse, in parallel, the spatial structure of both fractions in this area. From June to November microplankton abundance increased mainly by the increase of dinoflagellates, tintinnids and radiolarians, and mesoplankton decreased due mainly to the decrease of long-horned dinoflagellates, cladocerans, doliolids and appendicularians. Plankton mesoscale variability in relation to environmental variables showed higher complexity in June, where environmental horizontal and vertical gradients were more marked than in November. In June, the major mode of variability of the microplankton was mainly accounted by the patchy distribution of several tintinnid species dominated by Rhabdonella spiralis associated to the subsurface phytoplankton biomass. The main mode of variability of the mesoplankton was related to the intrusion of the Ebro river plume and the related aggregation of doliolids and cladocerans, dominated by Evadne spinifera. In November, the major variability pattern in both fractions was a combination of inshore-offshore and eastern-western gradients in taxa distributions shaped mainly by the course of the Catalan Current along the shelf-break. Spatial differences in planktonic food pathways in each period are discussed on the basis of literature on plankton feeding habits and types, and on the diet of fish larvae of the main species from the same surveys.

  12. New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale Eddy off Bermuda

    NASA Technical Reports Server (NTRS)

    McNeil, J. D.; Jannasch, H. W.; Dickey, T.; McGillicuddy, D.; Brzekinski, M.; Sakamoto, C. M.

    1999-01-01

    A mesoscale eddy advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphoric layer due to the doming of isotherms associated with the eddy. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and warm anomaly at depth. Although mesoscale eddies are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 microns at 80 m and chlorophyll alpha values of 1.4 mg/cu m at 71 m were observed, as well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the eddy across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the eddy. The chlorophyll alpha values associated with the eddy appear to be the largest recorded during the 8 years of the ongoing U.S. JGOFS Bermuda Atlantic Time Series Study (BATS) program.

  13. Temporal and spatial changes in plankton respiration and biomass in the Canary Islands region: the effect of mesoscale variability

    NASA Astrophysics Data System (ADS)

    Arístegui, Javier; Montero, María F.

    2005-02-01

    The temporal and spatial variabilities in the abundance and respiratory activity of plankton communities (<200 μm) were studied during three seasonal cruises around Gran Canaria Island (Canary Islands), a region of high mesoscale variability. Marked seasonal changes in respiratory activity, plankton community structure, and the ratio of heterotrophic to autotrophic biomass can be largely explained by hydrographic changes at the mesoscale level. Wind/current shearing at the flanks of the island enhances plankton respiration, presumably as the consequence of an increase in turbulence. Counter-paired cyclonic and anticyclonic eddies generated downstream of the island act as a two-way biological pump, increasing plankton production by nutrient pumping into the euphotic zone and accelerating the transport of organic matter into the aphotic zone, respectively. Coastal upwelling waters invading the Canary region in the form of filaments can transport either water with low plankton respiration and large phytoplankton cells or water with high respiratory rates associated with small cells. Plankton respiration was closely related to the abundance of Synechococcus type cyanobacteria and heterotrophic nanoflagellates during the three periods, but was only correlated with chlorophyll during the most fertile season, suggesting that respiration was mainly linked to microbial food web processes. Size-fractionated studies showed that 51-67% of the respiratory activity was due to picoplankton cells (<2 μm). Respiration rates (average values: 113±18 to 187±87 mmol C m -2 d -1) matched primary production rates during the fertile period, but were up to one order of magnitude higher during the rest of the year. Substantial inputs of organic matter from the coastal upwelling would be necessary to balance the large annual heterotrophic deficit in the region of study.

  14. New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale Eddy Off Bermuda

    NASA Technical Reports Server (NTRS)

    McNeil, J. D.; Jannasch, H. W.; Dickey, T.; McGillicuddy, Dennis J., Jr.; Brzezinski, M.; Sakamoto, C. M.

    1999-01-01

    A mesoscale eddy advected across the Bermuda Testbed Mooring site over a 30-day period centered on July 14, 1995. Temperature and current measurements along with biogeochemical measurements were used to characterize the biological response of the upper ocean associated with the introduction of nitrate into the euphotic layer due to the doming of isotherms associated with the eddy. Complementary shipboard data showed an anomalous water mass, which extended from a depth of approximately 50 to 1000 m, manifesting as a cold surface expression and warm anomaly at depth. Although mesoscale eddies are frequently observed in the Sargasso Sea, the present observations are particularly unique because of the high-temporal-resolution measurements of the new instrumentation deployed on the mooring. Analyzers that measure nitrate plus nitrite were placed at depths of 80 and 200 m and bio-optical sensors were located at depths of 20, 35, 45, 71, and 86 m. Peak nitrate values of nearly 3.0 micro-M at 80 m and chlorophyll a values of 1.4 mg/cubic m at 71 m were observed, a well as a 25- to 30-meter shoaling of the 1% light level depth. A Doppler shift from the inertial period (22.8 hours) to 25.2 hours was observed in several time series records due to the movement of the eddy across the mooring. Inertial pumping brought cold, nutrient-rich waters farther into the euphotic zone than would occur solely by isothermal lifting. Silicic acid was depleted to undetectable levels owing to the growth of diatoms within the eddy. The chlorophyll a values associated with the eddy appear to be the largest recorded during the eight years of the ongoing US JGOFS Bermuda Atlantic Time Series Study program.

  15. Chemistry on the mesoscale: Modeling and measurement issues

    NASA Technical Reports Server (NTRS)

    Thompson, Anne; Pleim, John; Walcek, Christopher; Ching, Jason; Binkowski, Frank; Tao, Wei-Kuo; Dickerson, Russell; Pickering, Kenneth

    1993-01-01

    The topics covered include the following: Regional Acid Deposition Model (RADM) -- a coupled chemistry/mesoscale model; convection in RADM; unresolved issues for mesoscale modeling with chemistry -- nonprecipitating clouds; unresolved issues for mesoscale modeling with chemistry -- aerosols; tracer studies with Goddard Cumulus Ensemble Model (GCEM); field observations of trace gas transport in convection; and photochemical consequences of convection.

  16. Regional Carbon Dioxide and Water Vapor Exchange Over Heterogeneous Terrain

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry J.

    2005-01-01

    In spite of setbacks due to forest fires, eviction after a change of landowners and unanticipated need to upgrade and replace much of the instrumentation, substantial progress has been made during the past three years, resulting in major new findings. Although most of the results are in manuscript form, three papers have been published and a fourth was recently submitted. The data has been subjected to extensive quality control. Extra attention has been devoted to the influence of tilt rotation and flux-calculation method, particularly with respect to nocturnal fluxes. Previous/standard methods for calculating nocturnal fluxes with moderate and strong stability are inadequate and lead to large random fluxes errors for individual records, due partly to inadvertent inclusion of mesoscale motions that strongly contaminant the estimation of fluxes by weak turbulence. Such large errors are serious for process studies requiring carbon dioxide fluxes for individual records, but are substantially reduced when averaging fluxes over longer periods as in calculation of annual NEE budgets. We have employed a superior method for estimating fluxes in stable conditions with a variable averaging width . Mesoscale fluxes are generally unimportant except for events and are generally not systematic or predictable. Mesoscale or regional models of our region are not able to reproduce important aspects of the diurnally varying wind field

  17. Multiscale Modeling of Carbon Fiber Reinforced Polymer (CFRP) for Integrated Computational Materials Engineering Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jiaying; Liang, Biao; Zhang, Weizhao

    In this work, a multiscale modeling framework for CFRP is introduced to study hierarchical structure of CFRP. Four distinct scales are defined: nanoscale, microscale, mesoscale, and macroscale. Information at lower scales can be passed to higher scale, which is beneficial for studying effect of constituents on macroscale part’s mechanical property. This bottom-up modeling approach enables better understanding of CFRP from finest details. Current study focuses on microscale and mesoscale. Representative volume element is used at microscale and mesoscale to model material’s properties. At microscale, unidirection CFRP (UD) RVE is used to study properties of UD. The UD RVE can bemore » modeled with different volumetric fraction to encounter non-uniform fiber distribution in CFRP part. Such consideration is important in modeling uncertainties at microscale level. Currently, we identified volumetric fraction as the only uncertainty parameters in UD RVE. To measure effective material properties of UD RVE, periodic boundary conditions (PBC) are applied to UD RVE to ensure convergence of obtained properties. Properties of UD is directly used at mesoscale woven RVE modeling, where each yarn is assumed to have same properties as UD. Within woven RVE, there can be many potential uncertainties parameters to consider for a physical modeling of CFRP. Currently, we will consider fiber misalignment within yarn and angle between wrap and weft yarns. PBC is applied to woven RVE to calculate its effective material properties. The effect of uncertainties are investigated quantitatively by Gaussian process. Preliminary results of UD and Woven study are analyzed for efficacy of the RVE modeling. This work is considered as the foundation for future multiscale modeling framework development for ICME project.« less

  18. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations: Long-Lived Mesoscale Convective Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Houze, Robert A.; Leung, L. Ruby

    Continental-scale convection-permitting simulations of the warm seasons of 2011 and 2012 reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of mesoscale convective systems (MCSs) over the central United States. Analysis is performed to determine the environmental conditions conducive to generating the longest-lived MCSs and their subsequent interactions. The simulations show that MCSs systematically form over the Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for themore » longest times. Systems reaching 9 h or more in lifetime exhibit feedback to the environment conditions through diabatic heating in the MCS stratiform regions. As a result, the parent synoptic-scale wave is strengthened as a divergent perturbation develops over the MCS at high levels, while a cyclonic circulation perturbation develops in the midlevels of the trough, where the vertical gradient of heating in the MCS region is maximized. The quasi-balanced mesoscale vortex helps to maintain the MCS over a long period of time by feeding dry, cool air into the environment at the rear of the MCS region, so that the MCS can draw in air that increases the evaporative cooling that helps maintain the MCS. At lower levels the south-southeasterly jet of warm moist air from the Gulf is enhanced in the presence of the synoptic-scale wave. That moisture supply is essential to the continued redevelopment of the MCS.« less

  19. Severe wind and fire regimes in northern forests: historical variability at the regional scale

    Treesearch

    Lisa A. Schulte; David J. Mladenoff

    2005-01-01

    Within the northern Great Lakes region, mesoscale (10s to 100s of km2) forest patterning is driven by disturbance dynamics. Using original Public Land Survey (PLS) records in northern Wisconsin, USA, we study spatial patterns of wind and fire disturbances during the pre-Euroamerican settlement period (ca. 1850). Our goals were: (1) to...

  20. Marine Boundary Layer Cloud Properties From AMF Point Reyes Satellite Observations

    NASA Technical Reports Server (NTRS)

    Jensen, Michael; Vogelmann, Andrew M.; Luke, Edward; Minnis, Patrick; Miller, Mark A.; Khaiyer, Mandana; Nguyen, Louis; Palikonda, Rabindra

    2007-01-01

    Cloud Diameter, C(sub D), offers a simple measure of Marine Boundary Layer (MBL) cloud organization. The diurnal cycle of cloud-physical properties and C(sub D) at Pt Reyes are consistent with previous work. The time series of C(sub D) can be used to identify distinct mesoscale organization regimes within the Pt. Reyes observation period.

  1. Dynamical Interpolation of Mesoscale Flows in the TOPEX/Poseidon Diamond Surrounding the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time-Series Study Site

    NASA Technical Reports Server (NTRS)

    McGillicuddy, Dennis J., Jr.; Kosnyrev, V. K.

    2001-01-01

    An open boundary ocean model is configured in a domain bounded by the four TOPEX/Poseidon (T/P) ground tracks surrounding the US Joint Global Ocean Flux Study Bermuda Atlantic Time-Series Study (BATS) site. This implementation facilitates prescription of model boundary conditions directly from altimetric measurements (both TIP and ERS-2). The expected error characteristics for a domain of this size with periodically updated boundary conditions are established with idealized numerical experiments using simulated data. A hindcast simulation is then constructed using actual altimetric observations during the period October 1992 through September 1998. Quantitative evaluation of the simulation suggests significant skill. The correlation coefficient between predicted sea level anomaly and ERS observations in the model interior is 0.89; that for predicted versus observed dynamic height anomaly based on hydrography at the BATS site is 0.73. Comparison with the idealized experiments suggests that the main source of error in the hindcast is temporal undersampling of the boundary conditions. The hindcast simulation described herein provides a basis for retrospective analysis of BATS observations in the context of the mesoscale eddy field.

  2. Dynamical Interpolation of Mesoscale Flows in the TOPEX/ Poseidon Diamond Surrounding the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time-Series Study Site

    NASA Technical Reports Server (NTRS)

    McGillicuddy, D. J.; Kosnyrev, V. K.

    2001-01-01

    An open boundary ocean model is configured in a domain bounded by the four TOPEX/Poseidon (TIP) ground tracks surrounding the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time-series Study (BATS) site. This implementation facilitates prescription of model boundary conditions directly from altimetric measurements (both TIP and ERS-2). The expected error characteristics for a domain of this size with periodically updated boundary conditions are established with idealized numerical experiments using simulated data. A hindcast simulation is then constructed using actual altimetric observations during the period October 1992 through September 1998. Quantitative evaluation of the simulation suggests significant skill. The correlation coefficient between predicted sea level anomaly and ERS observations in the model interior is 0.89; that for predicted versus observed dynamic height anomaly based on hydrography at the BATS site is 0.73. Comparison with the idealized experiments suggests that the main source of error in the hindcast is temporal undersampling of the boundary conditions. The hindcast simulation described herein provides a basis for retrospective analysis of BATS observations in the context of the mesoscale eddy field.

  3. Kinematics and thermodynamics of a midlatitude, continental mesoscale convective system and its mesoscale vortex

    NASA Astrophysics Data System (ADS)

    Knievel, Jason Clark

    The author examines a mesoscale convective system (MCS) and the mesoscale convective vortex (MCV) it generated. The MCS, which comprised a leading convective line and trailing stratiform region, traversed Kansas and Oklahoma on 1 August 1996, passing through the NOAA Wind Profiler Network, as well as four sites from which soundings were being taken every three hours during a field project. The unusually rich data set permitted study of the MCS and MCV over nine hours on scales between those of operational rawinsondes and Doppler radars. The author used a spatial bandpass filter to divide observed wind into synoptic and mesoscale components. The environment-relative, mesoscale wind contained an up- and downdraft and divergent outflows in the lower and upper troposphere. The mesoscale wind was asymmetric about the MCS, consistent with studies of gravity waves generated by heating typical of that in many MCSs. According to a scale-discriminating vorticity budget, both the synoptic and mesoscale winds contributed to the prominent resolved sources of vorticity in the MCV: tilting and convergence. Unresolved sources were also large. The author speculates that an abrupt change in the main source of vorticity in an MCV may appear as an abrupt change in its altitude of maximum vorticity. Distributions of temperature and humidity in the MCS were consistent with its mesoscale circulations. In the terminus of the mesoscale downdraft, advection of drier, potentially warmer air exceeded humidifying and cooling from rain, so profiles of temperature and dew point exhibit onion and double-onion patterns. The mesoscale updraft was approximately saturated with a moist adiabatic lapse rate. Mesoscale drafts and convective drafts vertically mixed the troposphere, partially homogenizing equivalent potential temperature. The MCV contained a column of high potential vorticity in the middle troposphere, with a cold core below the freezing level and a warm core above---a pattern characteristic of profiles of heating by stratiform regions. The cold core was 2 km too shallow to be in pure gradient balance with wind in the MCV. On-going forcing during the observed lifetime of the MCV may have prevented it from achieving balance, even if that was its tendency.

  4. Climatological aspects of mesoscale cyclogenesis over the Ross Sea and Ross Ice shelf regions of Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, J.F.; Bromwich, D.H.

    1994-11-01

    A one-year (1988) statistical study of mesoscale cyclogenesis near Terra Nova Bay and Byrd Glacier, Antarctica, was conducted using high-resolution digital satellite imagery and automatic weather station data. Results indicate that on average two (one) mesoscale cyclones form near Terra Nova Bay (Byrd Glacier) each week, confirming these two locations as mesoscale cyclogeneis areas. The maximum (minimum) weekly frequency of mesoscale cyclones occurred during the summer (winter). The satellite survey of mesoscale vortices was extended over the Ross Sea and Ross Ice Shelf. Results suggest southern Marie Byrd Land as another area of mesoscale cyclone formation. Also, frequent mesoscale cyclonicmore » activity was noted over the Ross Sea and Ross Ice Shelf, where, on average, six and three mesoscale vortices were observed each week, respectively, with maximum (minimum) frequency during summer (winter) in both regions. The majority (70-80%) of the vortices were of comma-cloud type and were shallow. Only around 10% of the vortices near Terra Nova Bay and Byrd Glacier were classified as deep vortices, while over the Ross Sea and Ross Ice Shelf around 20% were found to be deep. The average large-scale pattern associated with cyclogenesis days near Terra Nova Bay suggests a slight decrease in the sea level pressure and 500-hPa geopotential height to the northwest of this area with respect to the annual average. This may be an indication of the average position of synoptic-scale cyclones entering the Ross Sea region. Comparison with a similar study but for 1984-85 shows that the overall mesoscale cyclogenesis activity was similar during the three years, but 1985 was found to be the year with greater occurrence of {open_quotes}significant{close_quotes} mesoscales cyclones. The large-scale pattern indicates that this greater activity is related to a deeper circumpolar trough and 500-hPa polar vortex for 1985 in comparison to 1984 and 1988. 64 refs., 13 figs., 5 tabs.« less

  5. The synoptic setting and possible energy sources for mesoscale wave disturbances

    NASA Technical Reports Server (NTRS)

    Uccellini, Louis W.; Koch, Steven E.

    1987-01-01

    Published data on 13 cases of mesoscale wave disturbances and their environment were examined to isolate common features for these cases and to determine possible energy sources for the waves. These events are characterized by either a singular wave of depression or wave packets with periods of 1-4 h, horizontal wavelengths of 50-500 km, and surface-pressure perturbation amplitudes of 0.2-7.0 mb. These wave events are shown to be associated with a distinct synoptic pattern (including the existence of a strong inversion in the lower troposphere and the propagation of a jet streak toward a ridge axis in the upper troposphere) while displaying little correlation with the presence of convective storm cells. The observed development of the waves is consistent with the hypothesis that the energy source needed to initiate and sustain the wave disturbances may be related to a geostrophic adjustment process associated with upper-tropospheric jet streaks.

  6. Generation of Plasma Density Irregularities in the Midlatitude/Subauroral F Region

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.

    2017-12-01

    A concise review is given of the current state of the theoretical understanding of the creation of small- and meso-scale plasma density irregularities in the midlatitude/subauroral F region during quiet and disturbed periods. The former are discussed in terms of the temperature gradient instability (TGI) in the vicinity of the ionospheric projection of the plasmapause and the Perkins instability. During active conditions some part of the midlatitude ionosphere becomes the subauroral region dominated by enhanced westward flows (SAPS and SAID) driven by poleward electric fields. Their irregular, often nonlinear wave structure leads to the formation of plasma density irregularities in the plasmasphere and conjugate ionosphere. Here, meso-scale irregularities are due to the positive feedback magnetosphere-ionosphere coupling instability, while small scales resulted from the gradient drift instability (GDI), temperature GDI, and the ion frictional heating instability. The theoretical predictions are compared with satellite observations in the perturbed subauroral geospace.

  7. A long-lived mesoscale convective complex. II - Evolution and structure of the mature complex

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.; Cotton, W. R.; Mcanelly, R. L.

    1983-01-01

    The present investigation is concerned with an eight-day episode, during which a series of mesoscale convective complexes (MCC) developed and moved across the country, producing heavy rain and some flooding over an extensive region. An overview of the considered period from August 3 to August 10, 1977 is presented, and the evolution of the August 4 storm is examined. The structure of the mature MCC is discussed, taking into account the August 4-5 storm, a comparative case involving the August 3-4 storm, and an evaluation of the observed phenomena. It is concluded that MCCs are basically tropical in nature and that their dynamics are dominated by buoyant accelerations. It was found that the MCCs developed a warm-core, divergent anticyclonic flow pattern in the upper troposphere which was not present prior to the development of convection. A similar structure is observed in tropical cloud clusters.

  8. Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.

    1987-01-01

    The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.

  9. The Evolution of a Long-Lived Mesoscale Convective System Observed by GLM

    NASA Astrophysics Data System (ADS)

    Peterson, M. J.; Rudlosky, S. D.; Antunes, L.

    2017-12-01

    Continuous Geostationary Lightning Mapper (GLM) observations are used to document total lightning activity over the life cycle of a long-lived Mesoscale Convective System (MCS). MCS's may be few in number, but they are important for the Global Electric Circuit (GEC) because they sustain high lightning flash rates and quasi steady state conduction currents (Wilson currents) over longer time periods than ordinary isolated convection. The optical characteristics of the flashes produced by MCS's change over time, providing additional insights into the precipitation structure, convective mode, and evolution of the storm system. These insights are particularly useful in areas void of radar observations. Intercalibrated passive microwave radiometer data from the Global Precipitation Measurement (GPM) constellation also are used to estimate changes in Wilson current generation as the system evolves. These results highlight the role of MCS's in the GEC, and showcase how optical flash descriptors relate to thunderstorm organization, maturity, and structure.

  10. Impact of the Mesoscale Dynamics on Ocean Deep Convection: The 2012-2013 Case Study in the Northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jerome; Giordani, Herve; Sevault, Florence; Testor, Pierre

    2017-11-01

    Winter 2012-2013 was a particularly intense and well-observed Dense Water Formation (DWF) event in the Northwestern Mediterranean Sea. In this study, we investigate the impact of the mesoscale dynamics on DWF. We perform two perturbed initial state simulation ensembles from summer 2012 to 2013, respectively, mesoscale-permitting and mesoscale-resolving, with the AGRIF refinement tool in the Mediterranean configuration NEMOMED12. The mean impact of the mesoscale on DWF occurs mainly through the high-resolution physics and not the high-resolution bathymetry. This impact is shown to be modest: the mesoscale does not modify the chronology of the deep convective winter nor the volume of dense waters formed. It however impacts the location of the mixed patch by reducing its extent to the west of the North Balearic Front and by increasing it along the Northern Current, in better agreement with observations. The maximum mixed patch volume is significantly reduced from 5.7 ± 0.2 to 4.2 ± 0.6 × 1013 m3. Finally, the spring restratification volume is more realistic and enhanced from 1.4 ± 0.2 to 1.8 ± 0.2 × 1013 m3 by the mesoscale. We also address the mesoscale impact on the ocean intrinsic variability by performing perturbed initial state ensemble simulations. The mesoscale enhances the intrinsic variability of the deep convection geography, with most of the mixed patch area impacted by intrinsic variability. The DWF volume has a low intrinsic variability but it is increased by 2-3 times with the mesoscale. We relate it to a dramatic increase of the Gulf of Lions eddy kinetic energy from 5.0 ± 0.6 to 17.3 ± 1.5 cm2/s2, in remarkable agreement with observations.

  11. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOEpatents

    Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  12. Mesoscale martensitic transformation in single crystals of topological defects

    PubMed Central

    Martínez-González, José A.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-01-01

    Liquid-crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of double-twisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by the existence of grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with precision by relying on chemically nanopatterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of mesocrystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local reorganization of the crystalline array, without diffusion of the double-twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the submicron regime, is found to be martensitic in nature when one considers the collective behavior of the double-twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal nucleation and the controlled growth of soft matter. PMID:28874557

  13. From mesoscale eddies to small-scale turbulence in the Antarctic Circumpolar Current

    NASA Astrophysics Data System (ADS)

    Naveira Garabato, A.; Brearley, J. A.; Sheen, K. L.; Waterman, S. N.

    2012-12-01

    A foremost question in physical oceanography is that of how the oceanic mesoscale dissipates. The Antarctic Circumpolar Current (ACC), in the Southern Ocean, is forced strongly by the wind and hosts a vigorous mesoscale eddy field. It has been recently suggested that substantial dampening of mesoscale flows in the region may occur through interactions with topography, on the basis of a number of indirect approaches. Here, we present the first direct evidence of a transfer of energy between mesoscale eddies and small-scale turbulence in the ACC, via the radiation, instability and breaking of internal waves generated as mesoscale flows impinge on rough topography. The evidence is provided by analysis of two data sets gathered by the DIMES (Diapycnal and Isopycnal Experiment in the Southern Ocean) experiment: (1) the observations of a mooring cluster, specifically designed to measure dynamical exchanges between the mesoscale eddy and internal wave fields in Drake Passage over a 2-year deployment; and (2) an extensive fine- and microstructure survey of the region. The physical mechanisms implicated in the cascade of energy across scales will be discussed.

  14. The Weddell-Scotia Confluence in midwinter

    NASA Astrophysics Data System (ADS)

    Muench, Robin D.; Gunn, John T.; Husby, David M.

    1990-10-01

    The southern central Scotia Sea, site of the Weddell-Scotia Confluence where outflowing Weddell Sea waters converge with the eastward flowing waters of the Scotia Sea, was sampled during June-August (austral winter) 1988 with respect to temperature and salinity. Both drogued and ice-mounted drifters, tracked by Argos, were deployed in the region and yielded Lagrangian drift tracks of ice and water motion. The data substantiate past accounts of the region, based upon summer field research, as dominated by eastward flow upon which a complex array of mesoscale features is superimposed. Weddell-Scotia Confluence Water, documented by past summer work in the region and characterized by decreased static stability, was not detected, and the Scotia Front was not well defined. The region was one of intense mixing activity and primarily anticyclonic mesoscale features. Two such features, one an eddy and the other either an eddy or a meander in the Scotia Front, dominated the mesoscale field. With warm cores and containing Polar Front Water, they may have been advected eastward from Drake Passage or may have formed as detached eddies from a sharp northward bend in the Polar Front which typically lies just west of the study region. Several smaller eddies, primarily anticyclonic and some having warm cores, were also detected. There was no evidence of the deep convective mixing which has been hypothesized, on the basis of past summer data, to occur in winter, and vigorous vertical mixing was limited to a 100-m-thick upper mixed layer. Vertical stability in the upper layers was enhanced by low-salinity water derived from melting ice. Temperature-salinity analyses show that winter water in the study region can be derived through isopycnal mixing between waters from the Scotia Sea and waters from the northwestern Weddell Sea. This is in apparent contrast with summer conditions, wherein conditioning of water either through vertical mixing or via lateral mixing on continental margins has been invoked to arrive at the water mass characteristics which typify the Weddell-Scotia Confluence.

  15. Nonlinear plasmonic behavior of nanohole arrays in thin gold films for imaging lipids

    NASA Astrophysics Data System (ADS)

    Subramaniyam, Nagarajan; Shah, Ali; Dreser, Christoph; Isomäki, Antti; Fleischer, Monika; Sopanen, Markku

    2018-06-01

    We demonstrate linear and nonlinear plasmonic behaviors of periodic nanohole arrays in thin gold (Au) films with varying periodicities. As expected, the linear optical transmission spectra of the nanohole arrays show a red-shift of the resonance wavelength and Wood's anomaly with increasing hole spacing. The optical transmission and electric near-field intensity distribution of the nanohole arrays are simulated using the finite element method. The nonlinear plasmonic behavior of the nanohole arrays is studied by using picosecond pulsed excitation at near-infrared wavelengths. The characteristic nonlinear signals indicating two-photon excited luminescence (TPEL), sum frequency generation, second harmonic generation, and four-wave mixing (FWM) are observed. A maximum FWM/TPEL signal intensity ratio is achieved for nanohole arrays with a periodicity of 500 nm. Furthermore, the significant FWM signal intensity and contrast compared to the background were harnessed to demonstrate the ability of surface-enhanced coherent anti-Stokes Raman scattering to visualize low concentrations of lipids deposited on the nanohole array with a periodicity of 500 nm.

  16. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  17. Initialization of a mesoscale model for April 10, 1979, using alternative data sources

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1984-01-01

    A 35 km grid limited area mesoscale model was initialized with high density SESAME radiosonde data and high density TIROS-N satellite temperature profiles for April 10, 1979. These data sources were used individually and with low level wind fields constructed from surface wind observations. The primary objective was to examine the use of satellite temperature data for initializing a mesoscale model by comparing the forecast results with similar experiments employing radiosonde data. The impact of observed low level winds on the model forecasts was also investigated with experiments varying the method of insertion. All forecasts were compared with each other and with mesoscale observations for precipitation, mass and wind structure. Several forecasts produced convective precipitation systems with characteristics satisfying criteria for a mesoscale convective complex. High density satellite temperature data and balanced winds can be used in a mesoscale model to produce forecasts which verify favorably with observations.

  18. Onset of meso-scale turbulence in active nematics

    NASA Astrophysics Data System (ADS)

    Doostmohammadi, Amin; Shendruk, Tyler N.; Thijssen, Kristian; Yeomans, Julia M.

    2017-05-01

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the collective behaviour in prominent biological processes, including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in such physiological processes, understanding meso-scale turbulence and any relation to classical inertial turbulence remains obscure. Here we show how the motion of active matter along a micro-channel transitions to meso-scale turbulence through the evolution of locally disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate that the stationary critical exponents of this transition to meso-scale turbulence in a channel coincide with the directed percolation universality class. This finding bridges our understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional scale-invariant turbulence in confinement.

  19. Impact of the initial specification of moisture and vertical motion on precipitation forecasts with a mesoscale model Implications for a satellite mesoscale data base

    NASA Technical Reports Server (NTRS)

    Mlynczak, Pamela E.; Houghton, David D.; Diak, George R.

    1986-01-01

    Using a numerical mesoscale model, four simulations were performed to determine the effects of suppressing the initial mesoscale information in the moisture and wind fields on the precipitation forecasts. The simulations included a control forecast 12-h simulation that began at 1200 GMT March 1982 and three experiment simulations with modifications to the moisture and vertical motion fields incorporated at 1800 GMT. The forecasts from 1800 GMT were compared to the second half of the control forecast. It was found that, compared to the control forecast, suppression of the moisture and/or wind initial field(s) produces a drier forecast. However, the characteristics of the precipitation forecasts of the experiments were not different enough to conclude that either mesoscale moisture or mesoscale vertical velocity at the initial time are more important for producing a forecast closer to that of the control.

  20. Analysis of mesoscale factors at the onset of deep convection on hailstorm days in Southern France and their relation to the synoptic patterns

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose Luis; Wu, Xueke; Gascón, Estibaliz; López, Laura; Melcón, Pablo; García-Ortega, Eduardo; Berthet, Claude; Dessens, Jean; Merino, Andrés

    2013-04-01

    Storms and the weather phenomena associated to intense precipitation, lightning, strong winds or hail, are among the most common and dangerous weather risks in many European countries. To get a reliable forecast of their occurrence is remaining an open problem. The question is: how is possible to improve the reliability of forecast? Southwestern France is frequently affected by hailstorms, producing severe damages on crops and properties. Considerable efforts were made to improve the forecast of hailfall in this area. First of all, if we want to improve this type of forecast, it is necessary to have a good "ground truth" of the hail days and zones affected by hailfall. Fortunately, ANELFA has deployed thousands of hailpad stations in Southern France. The ANELFA processed the point hailfall data recorded during each hail season at these stations. The focus of this paper presents a methodology to improve the forecast of the occurrence of hailfall according to the synoptic environment and mesoscale factors in the study area. One hundred of hail days were selected, following spatial and severity criteria, occurred in the period 2000-2010. The mesoscale model WRF was applied for all cases to study the synoptic environment of mean geopotential and temperature fields at 500 hPa. Three nested domains have been defined following a two-way nesting strategy, with a horizontal spatial resolution of 36, 12 and 4 km, and 30 vertical terrains— following σ-levels. Then, using the Principal Component Analysis in T-Mode, 4 mesoscale configurations were defined for the fields of convective instability (CI), water vapor flux divergence and wind flow and humidity at low layer (850hPa), and several clusters were classified followed by using the K-means Clustering. Finally, we calculated several characteristic values of four hail forecast parameters: Convective Available Potential Energy (CAPE), Storm Relative Helicity between 0 and 3 km (SRH0-3), Energy-Helicity Index (EHI) and Showalter Index (SI) provided by WRF simulations for each hail grid point, which is very conducive to predicting the occurrence of hail in each one of the mesoscale configurations. This mesoscale analysis and its relation to the synoptic anomalies is discussed and the contribution to improve the numerical model applied to the forecast of hailfall in this area. Acknowledgments: This study was supported by the Plan Nacional de I+D of Spain, through the grants CGL2010-15930, Micrometeo IPT-310000-2010-022 and the Junta de Castilla y León through the grant LE220A11-2

  1. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    NASA Astrophysics Data System (ADS)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  2. Modeling mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Dubovikov, M. S.

    Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale diffusivity κM and for the mesoscale kinetic energy K in terms of the large-scale fields. The predicted κM( z) agrees with that of heuristic models. The complete mesoscale model in isopycnal coordinates is presented in Appendix D and can be used in coarse resolution ocean global circulation models.

  3. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerovecki, Ivana; McClean, Julie; Koracin, Darko

    2014-11-14

    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employedmore » in e.g. the Community Climate System Model (CCSM).« less

  4. Parameterization of Mixed Layer and Deep-Ocean Mesoscales Including Nonlinearity

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Cheng, Y.; Dubovikov, M. S.; Howard, A. M.; Leboissetier, A.

    2018-01-01

    In 2011, Chelton et al. carried out a comprehensive census of mesoscales using altimetry data and reached the following conclusions: "essentially all of the observed mesoscale features are nonlinear" and "mesoscales do not move with the mean velocity but with their own drift velocity," which is "the most germane of all the nonlinear metrics."� Accounting for these results in a mesoscale parameterization presents conceptual and practical challenges since linear analysis is no longer usable and one needs a model of nonlinearity. A mesoscale parameterization is presented that has the following features: 1) it is based on the solutions of the nonlinear mesoscale dynamical equations, 2) it describes arbitrary tracers, 3) it includes adiabatic (A) and diabatic (D) regimes, 4) the eddy-induced velocity is the sum of a Gent and McWilliams (GM) term plus a new term representing the difference between drift and mean velocities, 5) the new term lowers the transfer of mean potential energy to mesoscales, 6) the isopycnal slopes are not as flat as in the GM case, 7) deep-ocean stratification is enhanced compared to previous parameterizations where being more weakly stratified allowed a large heat uptake that is not observed, 8) the strength of the Deacon cell is reduced. The numerical results are from a stand-alone ocean code with Coordinated Ocean-Ice Reference Experiment I (CORE-I) normal-year forcing.

  5. Complementary periodic diffracting metallic nanohole and nanodipole arrays in the mid-infrared range

    NASA Astrophysics Data System (ADS)

    Ye, Yong-Hong; Zhang, Jia-Yu; Feng Ma, Hui; Yao, Jie; Wang, Xudong

    2012-10-01

    Metallic nanohole arrays and metallic nanodipole arrays are fabricated and experimentally characterized. A complementary response is observed in both transmission and reflection. For the metallic nanohole arrays, a peak (dip) in transmission (reflection) is observed at resonance whereas the metallic nanodipole arrays display a dip (peak) in transmission (reflection). The resonant frequency of both the metallic nanohole arrays and the nanodipole arrays depends on the dipole arm length, the incident angle, and the period. The resonant position of the nanohole arrays matches that of its complement, which means that Babinet's principle nearly holds for these structures in the mid-infrared region.

  6. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive potential temperature anomalies are induced in the lower troposphere, suppressing convection in a moist environment. This simple model also reproduces convective momentum transport and CCKWs in agreement with results from a recent cloud resolving simulation.

  7. Effects of Mesoscale Eddies in the Active Mixed Layer: Test of the Parametrisation in Eddy Resolving Simulations

    NASA Technical Reports Server (NTRS)

    Luneva, M. V.; Clayson, C. A.; Dubovikov, Mikhail

    2015-01-01

    In eddy resolving simulations, we test a mixed layer mesoscale parametrisation, developed recently by Canuto and Dubovikov [Ocean Model., 2011, 39, 200-207]. With no adjustable parameters, the parametrisation yields the horizontal and vertical mesoscale fluxes in terms of coarse-resolution fields and eddy kinetic energy (EKE). We compare terms of the parametrisation diagnosed from coarse-grained fields with the eddy mesoscale fluxes diagnosed directly from the high resolution model. An expression for the EKE in terms of mean fields has also been found to get a closed parametrisation in terms of the mean fields only. In 40 numerical experiments we simulated two types of flows: idealised flows driven by baroclinic instabilities only, and more realistic flows, driven by wind and surface fluxes as well as by inflow-outflow. The diagnosed quasi-instantaneous horizontal and vertical mesoscale buoyancy fluxes (averaged over 1-2 degrees and 10 days) demonstrate a strong scatter typical for turbulent flows, however, the fluxes are positively correlated with the parametrisation with higher (0.5-0.74) correlations at the experiments with larger baroclinic radius Rossby. After being averaged over 3-4 months, diffusivities diagnosed from the eddy resolving simulations are consistent with the parametrisation for a broad range of parameters. Diagnosed vertical mesoscale fluxes restratify mixed layer and are in a good agreement with the parametrisation unless vertical turbulent mixing in the upper layer becomes strong enough in comparison with mesoscale advection. In the latter case, numerical simulations demonstrate that the deviation of the fluxes from the parametrisation is controlled by dimensionless parameter estimating the ratio of vertical turbulent mixing term to mesoscale advection. An analysis using a modified omega-equation reveals that the effects of the vertical mixing of vorticity is responsible for the two-three fold amplification of vertical mesoscale flux. Possible physical mechanisms, responsible for the amplification of vertical mesoscale flux are discussed.

  8. Interannual evolutions of (sub)mesoscale dynamics in the Bay of Biscay and the English Channel

    NASA Astrophysics Data System (ADS)

    Charria, G.; Vandermeirsch, F.; Theetten, S.; Yelekçi, Ö.; Assassi, C.; Audiffren, N. J.

    2016-02-01

    In a context of global change, ocean regions as the Bay of the Biscay and the English Channel represent key domains to estimate the local impact on the coasts of interannual evolutions. Indeed, the coastal (considering in this project regions above the continental shelf) and regional (including the continental slope and the abyssal plain) environments are sensitive to the long-term fluctuations driven by the open ocean, the atmosphere and the watersheds. These evolutions can have impacts on the whole ecosystem. To understand and, by extension, forecast evolutions of these ecosystems, we need to go further in the description and the analysis of the past interannual variability over decadal to pluri-decadal periods. This variability can be described at different spatial scales from small (< 1 km) to basin scales (> 100 km). With a focus on smaller scales, the modelled dynamics, using a Coastal Circulation Model on national computing resources (GENCI/CINES), is discussed from interannual simulations (10 to 53 years) with different spatial (4 km to 1 km) and vertical (40 to 100 sigma levels) resolutions compared with available in situ observations. Exploring vorticity and kinetic energy based diagnostics; dynamical patterns are described including the vertical distribution of the mesoscale activity. Despite the lack of deep and spatially distributed observations, present numerical experiments draw a first picture of the 3D mesoscale distribution and its evolution at interannual time scales.

  9. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  10. Unifying Inference of Meso-Scale Structures in Networks.

    PubMed

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  11. Influence of Kuroshio Oceanic Eddies on North Pacific Weather Patterns

    NASA Astrophysics Data System (ADS)

    Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J. S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z.

    2016-02-01

    High-resolution satellite observations reveal energetic meso-scale ocean eddy activity and positive correlation between meso-scale sea surface temperature (SST) and surface wind along oceanic frontal zones, such as the Kuroshio and Gulf Stream, suggesting a potential role of meso-scale oceanic eddies in forcing the atmosphere. Using a 27 km horizontal resolution Weather Research Forecasting (WRF) model forced with observed daily SST at 0.09° spatial resolution during boreal winter season, two ensembles of 10 WRF simulations, in one of which meso-scale SST variability induced by ocean eddies was suppressed, were conducted in the North Pacific to study the local and remote influence of meso-scale oceanic eddies in the Kuroshio Extention Region (KER) on the atmosphere. Suppression of meso-scale oceanic eddies results in a deep tropospheric response along and downstream of the KER, including a significant decrease (increase) in winter season mean rainfall along the KER (west coast of US), a reduction of storm genesis in the KER, and a southward shift of the jet stream and North Pacific storm track in the eastern North Pacific. The simulated local and remote rainfall response to meso-scale oceanic eddies in the KER is also supported by observational analysis. A mechanism invoking moist baroclinic instability is proposed as a plausible explanation for the linkage between meso-scale oceanic eddies in the KER and large-scale atmospheric response in the North Pacific. It is argued that meso-scale oceanic eddies can have a rectified effect on planetary boundary layer moisture, the stability of the lower atmosphere and latent heat release, which in turn affect cyclogenesis. The accumulated effect of the altered storm development downstream further contributes to the equivalent barotropic mean flow change in the eastern North Pacific basin.

  12. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean

    PubMed Central

    Byrne, D.; Münnich, M.; Frenger, I.; Gruber, N.

    2016-01-01

    Although it is well established that the large-scale wind drives much of the world's ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature anomalies affecting the wind field above them, the oceanic eddies in the presence of a large-scale wind gradient provide a mesoscale conduit for the transfer of energy into the ocean. Our simulations show that this pathway is responsible for up to 10% of the kinetic energy of the oceanic mesoscale eddy field in the South Atlantic. The conditions for this pathway to inject energy directly into the mesoscale prevail over much of the Southern Ocean north of the Polar Front. PMID:27292447

  13. Mesoscale imaging with cryo-light and X-rays: Larger than molecular machines, smaller than a cell: Mesoscale imaging with cryo-light and X-rays

    DOE PAGES

    Ekman, Axel A.; Chen, Jian-Hua; Guo, Jessica; ...

    2016-11-14

    In the context of cell biology, the term mesoscale describes length scales ranging from that of an individual cell, down to the size of the molecular machines. In this spatial regime, small building blocks self-organise to form large, functional structures. A comprehensive set of rules governing mesoscale self-organisation has not been established, making the prediction of many cell behaviours difficult, if not impossible. Our knowledge of mesoscale biology comes from experimental data, in particular, imaging. Here, we explore the application of soft X-ray tomography (SXT) to imaging the mesoscale, and describe the structural insights this technology can generate. We alsomore » discuss how SXT imaging is complemented by the addition of correlative fluorescence data measured from the same cell. This combination of two discrete imaging modalities produces a 3D view of the cell that blends high-resolution structural information with precise molecular localisation data.« less

  14. Towards water vapor assimilation into mesoscale models for improved precipitation forecast

    NASA Astrophysics Data System (ADS)

    Demoz, B.; Whiteman, D.; Venable, D.; Joseph, E.

    2006-05-01

    Atmospheric water vapor plays a primary role in the life cycle of clouds, precipitation and is crucial in understanding many aspects of the water cycle. It is very important to short-range mesoscale and storm-scale weather prediction. Specifically, accurate characterization of water vapor at low levels is a necessary condition for quantitative precipitation forecast (QPF), the initiation of convection and various thermodynamic and microphysical processes in mesoscale severe weather systems. However, quantification of its variability (both temporal and spatial) and integration of high quality and high frequency water vapor profiles into mesoscale models have been challenging. We report on a conceptual proposal that attempts to 1) define approporiate lidar-based data and instrumentation required for mesoscale data assimilation and 2) a possible federated network of ground-based lidars that may be capable of acquiring such high resolution water vapor data sets and 3) a possible frame work of assimilation of the data into a mesoscale model.

  15. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING NOAA

  16. Assessing the value of increased model resolution in forecasting fire danger

    Treesearch

    Jeanne Hoadley; Miriam Rorig; Ken Westrick; Larry Bradshaw; Sue Ferguson; Scott Goodrick; Paul Werth

    2003-01-01

    The fire season of 2000 was used as a case study to assess the value of increasing mesoscale model resolution for fire weather and fire danger forecasting. With a domain centered on Western Montana and Northern Idaho, MM5 simulations were run at 36, 12, and 4-km resolutions for a 30 day period at the height of the fire season. Verification analyses for meteorological...

  17. Bio-optical properties of coastal waters in the Eastern English Channel

    NASA Astrophysics Data System (ADS)

    Vantrepotte, Vincent; Brunet, Christophe; Mériaux, Xavier; Lécuyer, Eric; Vellucci, Vincenzo; Santer, Richard

    2007-03-01

    Strong tidal currents, shallow water and numerous freshwater inputs characterize the coastal waters of the eastern English Channel. These case 2 waters were investigated through an intensive sampling effort in 2000 aiming to study the distribution and variability of the Chromophoric Dissolved Organic Matter (CDOM), Non-Algal Particles (NAP) and phytoplankton absorption at the mesoscale. Four cruises were carried out in February, March, May and July and more than 80 stations each cruise were sampled for hydrographical, chemical and bio-optical analyses. Results showed two distinct situations, the winter period characterized by the strong dominance of CDOM absorption over the particulate matter, and the spring-summer period when phytoplankton and CDOM represented the same contribution. Meteorology was the main factor driving the bio-optical properties of the water column in winter whereas in spring-summer the biological activity seemed to be the more active driving force. The algal community composition in term of dominant cell size and, therefore pigment packaging, is the main factor driving the phytoplankton specific absorption in the water column. Photoprotective pigments did not significantly influence algal absorption, due to turbid and highly mixed water masses. This feature also explained the bio-optical homogeneity found along the water column. On the mesoscale, distinct bio-optical provinces were defined in relation with the observed bio-hydrographical variability.

  18. New Metamaterials with Combined Subnano - and Mesoscale Topology for High-efficiency Catalytic Combustion Chambers of Innovative Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Knysh, Yu A.; Xanthopoulou, G. G.

    2018-01-01

    The object of the study is a catalytic combustion chamber that provides a highly efficient combustion process through the use of effects: heat recovery from combustion, microvortex heat transfer, catalytic reaction and acoustic resonance. High efficiency is provided by a complex of related technologies: technologies for combustion products heat transfer (recuperation) to initial mixture, catalytic processes technology, technology for calculating effective combustion processes based on microvortex matrices, technology for designing metamaterials structures and technology for obtaining the required topology product by laser fusion of metal powder compositions. The mesoscale level structure provides combustion process with the use of a microvortex effect with a high intensity of heat and mass transfer. High surface area (extremely high area-to-volume ratio) created due to nanoscale periodic structure and ensures catalytic reactions efficiency. Produced metamaterial is the first multiscale product of new concept which due to combination of different scale level periodic topologies provides qualitatively new set of product properties. This research is aimed at solving simultaneously two global problems of the present: ensure environmental safety of transport systems and power industry, as well as the economy and rational use of energy resources, providing humanity with energy now and in the foreseeable future.

  19. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > IMPLEMENTATION INFO Home Mission Models R & D ; Extratropical Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING

  20. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING JUMP TO

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > MODELS Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING SREF

  2. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > CALENDAR Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING CALENDAR

  3. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > R & D Home Mission Models R & D Collaborators Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING Air

  4. Waves and mesoscale features in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.

    1993-01-01

    Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.

  5. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, C.; Churchfield, M.; Mirocha, J.

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  6. Multifunctional Mesoscale Observing Networks.

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Schlatter, Thomas W.; Carr, Frederick H.; Friday, Elbert W. Joe; Jorgensen, David; Koch, Steven; Pirone, Maria; Ralph, F. Martin; Sun, Juanzhen; Welsh, Patrick; Wilson, James W.; Zou, Xiaolei

    2005-07-01

    More than 120 scientists, engineers, administrators, and users met on 8 10 December 2003 in a workshop format to discuss the needs for enhanced three-dimensional mesoscale observing networks. Improved networks are seen as being critical to advancing numerical and empirical modeling for a variety of mesoscale applications, including severe weather warnings and forecasts, hydrology, air-quality forecasting, chemical emergency response, transportation safety, energy management, and others. The participants shared a clear and common vision for the observing requirements: existing two-dimensional mesoscale measurement networks do not provide observations of the type, frequency, and density that are required to optimize mesoscale prediction and nowcasts. To be viable, mesoscale observing networks must serve multiple applications, and the public, private, and academic sectors must all actively participate in their design and implementation, as well as in the creation and delivery of value-added products. The mesoscale measurement challenge can best be met by an integrated approach that considers all elements of an end-to-end solution—identifying end users and their needs, designing an optimal mix of observations, defining the balance between static and dynamic (targeted or adaptive) sampling strategies, establishing long-term test beds, and developing effective implementation strategies. Detailed recommendations are provided pertaining to nowcasting, numerical prediction and data assimilation, test beds, and implementation strategies.


  7. Analysis of mesoscale convective systems in Catalonia using meteorological radar for the period 1996 2000

    NASA Astrophysics Data System (ADS)

    Rigo, Tomeu; Llasat, Maria-Carmen

    2007-02-01

    The aim of this paper is to show a climatology of Mesoscale Convective Systems (MCS) in the NE of the Iberian Peninsula, on the basis of meteorological radar observations. Special attention was paid to those cases that have produced heavy rainfalls during the period 1996-2000. Identification of the MCS was undertaken using two procedures. Firstly, the precipitation structures at the lowest level were recognised by means of a 2D algorithm that distinguishes between convective and non-convective contribution. Secondly, the convective cells were identified using a 3D procedure quite similar to the SCIT (Storm Cell Identification and Tracking) algorithm that looks for the reflectivity cores in each radar volume. Finally, the convective cells (3D) were associated with the 2D structures (convective rainfall areas), in order to characterize the complete MCS. Once this methodology was presented the paper offers a proposal for classifying the precipitation systems, and particularly the MCS. 57 MCS structures were classified: 49% of them were identified as linearly well-organised systems, called TS (39%), LS (18%) and NS (43%). In addition to the classification, the following items were analysed for each MCS found: duration, season, time of day, area affected and direction of movement, and main radar parameters related with convection. The average features of those MCS show an area of about 25000 km 2, Zmax values of 47 dBz, an echotop of 12 km, the maximum frequency at 12 UTC and early afternoon and a displacement towards E-NE. The study was completed by analysing the field at surface, the presence of a mesoscale low near the system and the quasi-stationary features of three cases related with heavy rainfalls. Maximum rainfall (more then 200 mm in 6 h) was related with the presence of a cyclone in combination with the production of a convective train effect.

  8. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest

    USGS Publications Warehouse

    Swetnam, T.W.; Betancourt, J.L.

    1998-01-01

    Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ice core, and coral isotope reconstructions. Episodic dry and wet episodes have altered age structures and species composition of woodland and conifer forests. The scarcity of old, living conifers established before circa 1600 suggests that the extreme drought of 1575-95 had pervasive effects on tree populations. The most extreme drought of the past 400 years occurred in the mid-twentieth century (1942-57). This drought resulted in broadscale plant dieoffs in shrublands, woodlands, and forests and accelerated shrub invasion of grasslands. Drought conditions were broken by the post-1976 shift to the negative SO phase and wetter cool seasons in the Southwest. The post-1976 period shows up as an unprecedented surge in tree-ring growth within millennia-length chronologies. This unusual episode may have produced a pulse in tree recruitment and improved rangeland conditions (e.g., higher grass production), though additional study is needed to disentangle the interacting roles of land use and climate. The 1950s drought and the post-1976 wet period and their aftermaths offer natural experiments to study long-term ecosystem response to interdecadal climate variability.Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ic

  9. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (<2 mm) composed of ordered arrays of uniform, close-packed silica spheres 300 ± 10 nm in size. Concentric layered spheres composed of 40 nm-sized subparticles provide evidence that, at least in the final stage, particle aggregation was the major sphere growth mechanism. Silica sphere arrays in periodically changing orientations perfectly replicate polysynthetic twinning planes of calcite. FIB-SEM tomography shows that cubic closed-packed sphere arrangements preserve the twin lamellae, while the twin plane consists of a submicrometer layer of randomly ordered spheres and vacancies. To transfer crystallographic information from parent to product, the advancement of synchronized dissolution and precipitation fronts along lattice planes is essential. We assume that the volume-preserving replacement process proceeds via a face-specific dissolution-precipitation mechanism with intermediate subparticle aggregation and subsequent layer-by-layer deposition of spheres along a planar surface. Porosity created during the replacement reaction allows permanent fluid access to the propagating reaction interface. Fluid pH and ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  10. Mesoscale Effects on Carbon Export: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.

    2018-04-01

    Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (<2%) however, the impact on local export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.

  11. Genesis of Hurricane Sandy (2012) Simulated with a Global Mesoscale Model

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; DeMaria, Mark; Li, J.-L. F.; Cheung, S.

    2013-01-01

    In this study, we investigate the formation predictability of Hurricane Sandy (2012) with a global mesoscale model. We first present five track and intensity forecasts of Sandy initialized at 00Z 22-26 October 2012, realistically producing its movement with a northwestward turn prior to its landfall. We then show that three experiments initialized at 00Z 16-18 October captured the genesis of Sandy with a lead time of up to 6 days and simulated reasonable evolution of Sandy's track and intensity in the next 2 day period of 18Z 21-23 October. Results suggest that the extended lead time of formation prediction is achieved by realistic simulations of multiscale processes, including (1) the interaction between an easterly wave and a low-level westerly wind belt (WWB) and (2) the appearance of the upper-level trough at 200 hPa to Sandy's northwest. The low-level WWB and upper-level trough are likely associated with a Madden-Julian Oscillation.

  12. Mesoscale Eddies Control the Timing of Spring Phytoplankton Blooms: A Case Study in the Japan Sea

    NASA Astrophysics Data System (ADS)

    Maúre, E. R.; Ishizaka, J.; Sukigara, C.; Mino, Y.; Aiki, H.; Matsuno, T.; Tomita, H.; Goes, J. I.; Gomes, H. R.

    2017-11-01

    Satellite Chlorophyll a (CHL) data were used to investigate the influence of mesoscale anticyclonic eddies (AEs) and cyclonic eddies (CEs) on the timing of spring phytoplankton bloom initiation around the Yamato Basin (133-139°E and 35-39.5°N) in the Japan Sea, for the period 2002-2011. The results showed significant differences between AEs and CEs in the timing and initiation mechanism of the spring phytoplankton bloom. Blooms were initiated earlier in CEs which were characterized by shallow mixed-layer depths (< 100 m). The early blooming preceded the end of winter cooling (i.e., while net heat flux (Q0) is still negative) and is initiated by the increased average light within the shallow mixed-layer depth. Conversely, blooms appeared in the AEs despite deeper mixed-layer depth (> 100 m) but close to the commencement of positive Q0. This suggests that the relaxation of turbulent mixing is crucial for the bloom initiation in AEs.

  13. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  14. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    NASA Astrophysics Data System (ADS)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.

  15. The interactive role of subsynoptic scale jet sreak and planetary boundary layer adjustments in organizing an apparently isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.

    1982-01-01

    A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.

  16. A review of major progresses in mesoscale dynamic research in China since 1999

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoping; Lu, Hancheng; Ni, Yunqi; Tan, Zhemin

    2004-06-01

    Mesoscale research conducted by Chinese meteorologists during the past four years is reviewed. Advances in theoretical studies include (a) mesoscale quasi-balanced and semi-balanced dynamics, derived through scale analysis and the perturbation method which are suitable for describing mesoscale vortices; (b) subcritical instability and vortex-sheet instability; (c) frontal adjustment mechanism and the effect of topography on frontgenesis; and (d) slantwise vorticity development theories, the slantwise vortex equation, and moist potential vorticity (MPV) anomalies with precipitation-related heat and mass sinks and MPV impermeability theorem. From the MPV conservation viewpoint, the transformation mechanism between different scale weather systems is analyzed. Based on the data analysis, a new dew-point front near the periphery of the West Pacific subtropical high is identified. In the light of MPV theory and Q-vector theory, some events associated with torrential rain systems and severe storms are analyzed and diagnosed. Progress in mesoscale numerical simulation has been made in the development of meso-α, meso-β vortices, meso-γ-scale downbursts and precipitation produced by deep convective systems with MM5 and other mesoscale models.

  17. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  18. Mesoscale disturbances in the tropical stratosphere excited by convection - Observations and effects on the stratospheric momentum budget

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Scott, Stanley; Loewenstein, Max; Bowen, Stuart; Legg, Marion

    1993-01-01

    Aircraft temperature and pressure measurements as well as satellite imagery are used to establish the amplitudes and the space and time scale of potential temperature disturbances over convective systems. A conceptual model is proposed for the generation of mesoscale gravity waves by convection. The momentum forcing that a reasonable distribution of convection might exert on the tropical stratosphere through convectively excited mesoscale gravity waves of the observed amplitudes is estimated. Aircraft measurements show that presence of mesoscale disturbances in the lower stratospheric temperature, disturbances that appear to be associated with underlying convection. If the disturbances are convectively excited mesoscale gravity waves, their amplitude is sufficient that their breakdown in the upper stratosphere will exert a zonal force comparable to but probably smaller than the planetary-scale Kelvin waves.

  19. Insights into Lithium-ion battery degradation and safety mechanisms from mesoscale simulations using experimentally reconstructed mesostructures

    DOE PAGES

    Roberts, Scott A.; Mendoza, Hector; Brunini, Victor E.; ...

    2016-10-20

    Battery performance, while observed at the macroscale, is primarily governed by the bicontinuous mesoscale network of the active particles and a polymeric conductive binder in its electrodes. Manufacturing processes affect this mesostructure, and therefore battery performance, in ways that are not always clear outside of empirical relationships. Directly studying the role of the mesostructure is difficult due to the small particle sizes (a few microns) and large mesoscale structures. Mesoscale simulation, however, is an emerging technique that allows the investigation into how particle-scale phenomena affect electrode behavior. In this manuscript, we discuss our computational approach for modeling electrochemical, mechanical, andmore » thermal phenomena of lithium-ion batteries at the mesoscale. Here, we review our recent and ongoing simulation investigations and discuss a path forward for additional simulation insights.« less

  20. Evaluation of a Mesoscale Atmospheric Dispersion Modeling System with Observations from the 1980 Great Plains Mesoscale Tracer Field Experiment. Part I: Datasets and Meteorological Simulations.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.; Pielke, Roger A.

    1996-03-01

    The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations.

  1. Recent examples of mesoscale numerical forecasts of severe weather events along the east coast

    NASA Technical Reports Server (NTRS)

    Kocin, P. J.; Uccellini, L. W.; Zack, J. W.; Kaplan, M. L.

    1984-01-01

    Mesoscale numerical forecasts utilizing the Mesoscale Atmospheric Simulation System (MASS) are documented for two East Coast severe weather events. The two events are the thunderstorm and heavy snow bursts in the Washington, D.C. - Baltimore, MD region on 8 March 1984 and the devastating tornado outbreak across North and South Carolina on 28 March 1984. The forecasts are presented to demonstrate the ability of the model to simulate dynamical interactions and diabatic processes and to note some of the problems encountered when using mesoscale models for day-to-day forecasting.

  2. Mesoscale research activities with the LAMPS model

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1985-01-01

    Researchers achieved full implementation of the LAMPS mesoscale model on the Atmospheric Sciences Division computer and derived balanced and real wind initial states for three case studies: March 6, April 24, April 26, 1982. Numerical simulations were performed for three separate studies: (1) a satellite moisture data impact study using Vertical Atmospheric Sounder (VAS) precipitable water as a constraint on model initial state moisture analyses; (2) an evaluation of mesoscale model precipitation simulation accuracy with and without convective parameterization; and (3) the sensitivity of model precipitation to mesoscale detail of moisture and vertical motion in an initial state.

  3. Impacts of mesoscale eddies on biogeochemical cycles in the South China Sea

    NASA Astrophysics Data System (ADS)

    Xiu, P.; Chai, F.; Guo, M.

    2016-02-01

    Biogeochemical cycles associated with mesoscale eddies in the South China Sea (SCS) are investigated by using satellite surface chlorophyll concentration, altimeter data, satellite sea surface temperature, and a coupled physical-biogeochemical Pacific Ocean model (ROMS-CoSiNE) simulation for the period from 1991 to 2007. Considering the annual mean, composite analysis reveals that cyclonic eddies are associated with higher concentrations of nutrients, phytoplankton and zooplankton while the anticyclonic eddies are with lower concentrations compared with surrounding waters, which is generally controlled by the eddy pumping mechanism. Dipole structures of vertical fluxes with net upward motion in cyclonic eddies and net downward motion in anticyclonic eddies are also revealed. During the lifetime of an eddy, the evolutions of physical, biological, and chemical structures are not linearly coupled at the eddy core where plankton grow and composition of the community depend not only on the physical and chemical processes but also on the adjustments by the predator-prey relationship. Considering the seasonal variability, we find eddy pumping mechanisms are generally dominant in winter and eddy advection effects are dominant in summer. Over the space, variability of chlorophyll to the west of Luzon Strait and off northwest of Luzon Island are mainly controlled by eddy pumping mechanism. In regions off the Vietnam coast, chlorophyll distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures that can potentially disturb ocean biogeochemical cycling processes in the South China Sea.

  4. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Houze, Robert A.; Leung, L. Ruby; Feng, Zhe

    2017-12-01

    Continental-scale convection-permitting simulations of the warm seasons of 2011 and 2012 using the Weather Research and Forecasting model reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of mesoscale convective systems (MCSs) over the central United States. Analysis is performed to determine the environmental conditions conducive to generating long-lived MCSs. The simulations show that MCSs systematically form over the central Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level moist jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. MCSs reaching lifetimes of 9 h or more occur closer to the approaching trough than shorter-lived MCSs. These long-lived MCSs exhibit the strongest feedback to the environment through diabatic heating in the trailing regions of the MCSs. The feedback strengthens the synoptic-scale trough associated with the MCS by producing an anomaly circulation characterized by a divergent perturbation at high levels over the MCS and a midlevel cyclonic circulation perturbation near the trough line in association with the trailing portion of the MCS. The quasi-balanced mesoscale vortex may help to maintain the MCS over a long period of time by feeding dry, cool air into the environment at the rear of the MCS region that enhances evaporative cooling and helps maintain the MCS.

  5. High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Pan, Yinong; Wang, Shuyu; Xu, Jianjun; Tang, Jianping

    2017-10-01

    Globally, reanalysis data sets are widely used in assessing climate change, validating numerical models, and understanding the interactions between the components of a climate system. However, due to the relatively coarse resolution, most global reanalysis data sets are not suitable to apply at the local and regional scales directly with the inadequate descriptions of mesoscale systems and climatic extreme incidents such as mesoscale convective systems, squall lines, tropical cyclones, regional droughts, and heat waves. In this study, by using a data assimilation system of Gridpoint Statistical Interpolation, and a mesoscale atmospheric model of Weather Research and Forecast model, we build a regional reanalysis system. This is preliminary and the first experimental attempt to construct a high-resolution reanalysis for China main land. Four regional test bed data sets are generated for year 2013 via three widely used methods (classical dynamical downscaling, spectral nudging, and data assimilation) and a hybrid method with data assimilation coupled with spectral nudging. Temperature at 2 m, precipitation, and upper level atmospheric variables are evaluated by comparing against observations for one-year-long tests. It can be concluded that the regional reanalysis with assimilation and nudging methods can better produce the atmospheric variables from surface to upper levels, and regional extreme events such as heat waves, than the classical dynamical downscaling. Compared to the ERA-Interim global reanalysis, the hybrid nudging method performs slightly better in reproducing upper level temperature and low-level moisture over China, which improves regional reanalysis data quality.

  6. Experiments with the Mesoscale Atmospheric Simulation System (MASS) using the synthetic relative humidity

    NASA Technical Reports Server (NTRS)

    Chang, Chia-Bo

    1994-01-01

    This study is intended to examine the impact of the synthetic relative humidity on the model simulation of mesoscale convective storm environment. The synthetic relative humidity is derived from the National Weather Services surface observations, and non-conventional sources including aircraft, radar, and satellite observations. The latter sources provide the mesoscale data of very high spatial and temporal resolution. The synthetic humidity data is used to complement the National Weather Services rawinsonde observations. It is believed that a realistic representation of initial moisture field in a mesoscale model is critical for the model simulation of thunderstorm development, and the formation of non-convective clouds as well as their effects on the surface energy budget. The impact will be investigated based on a real-data case study using the mesoscale atmospheric simulation system developed by Mesoscale Environmental Simulations Operations, Inc. The mesoscale atmospheric simulation system consists of objective analysis and initialization codes, and the coarse-mesh and fine-mesh dynamic prediction models. Both models are a three dimensional, primitive equation model containing the essential moist physics for simulating and forecasting mesoscale convective processes in the atmosphere. The modeling system is currently implemented at the Applied Meteorology Unit, Kennedy Space Center. Two procedures involving the synthetic relative humidity to define the model initial moisture fields are considered. It is proposed to perform several short-range (approximately 6 hours) comparative coarse-mesh simulation experiments with and without the synthetic data. They are aimed at revealing the model sensitivities should allow us both to refine the specification of the observational requirements, and to develop more accurate and efficient objective analysis schemes. The goal is to advance the MASS (Mesoscal Atmospheric Simulation System) modeling expertise so that the model output can provide reliable guidance for thunderstorm forecasting.

  7. Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.

    2018-01-01

    Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

  8. Eddy energy sources and mesoscale eddies in the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Stepanov, Dmitry V.; Diansky, Nikolay A.; Fomin, Vladimir V.

    2018-05-01

    Based on eddy-permitting ocean circulation model outputs, the mesoscale variability is studied in the Sea of Okhotsk. We confirmed that the simulated circulation reproduces the main features of the general circulation in the Sea of Okhotsk. In particular, it reproduced a complex structure of the East-Sakhalin current and the pronounced seasonal variability of this current. We established that the maximum of mean kinetic energy was associated with the East-Sakhalin Current. In order to uncover causes and mechanisms of the mesoscale variability, we studied the budget of eddy kinetic energy (EKE) in the Sea of Okhotsk. Spatial distribution of the EKE showed that intensive mesoscale variability occurs along the western boundary of the Sea of Okhotsk, where the East-Sakhalin Current extends. We revealed a pronounced seasonal variability of EKE with its maximum intensity in winter and its minimum intensity in summer. Analysis of EKE sources and rates of energy conversion revealed a leading role of time-varying (turbulent) wind stress in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk in winter and spring. We established that a contribution of baroclinic instability predominates over that of barotropic instability in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk. To demonstrate the mechanism of baroclinic instability, the simulated circulation was considered along the western boundary of the Sea of Okhotsk from January to April 2005. In April, the mesoscale anticyclonic eddies are observed along the western boundary of the Sea of Okhotsk. The role of the sea ice cover in the intensification of the mesoscale variability in the Sea of Okhotsk was discussed.

  9. Solar array stepping to minimize array excitation

    NASA Technical Reports Server (NTRS)

    Bhat, Mahabaleshwar K. P. (Inventor); Liu, Tung Y. (Inventor); Plescia, Carl T. (Inventor)

    1989-01-01

    Mechanical oscillations of a mechanism containing a stepper motor, such as a solar-array powered spacecraft, are reduced and minimized by the execution of step movements in pairs of steps, the period between steps being equal to one-half of the period of torsional oscillation of the mechanism. Each pair of steps is repeated at needed intervals to maintain desired continuous movement of the portion of elements to be moved, such as the solar array of a spacecraft. In order to account for uncertainty as well as slow change in the period of torsional oscillation, a command unit may be provided for varying the interval between steps in a pair.

  10. Subduction and Restratification Along an Eddy Edge: The Role of Ekman Dynamics and Submesoscale Processes

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Sengupta, D.; D'Asaro, E. A.; Nash, J. D.; Shroyer, E.; Mahadevan, A.; Tandon, A.; MacKinnon, J. A.; Pinkel, R.

    2016-02-01

    The exchange of heat between the atmosphere and ocean depends sensitively on the structure and extent of the oceanic boundary layer. Heat fluxes into and out of the ocean in turn influence atmospheric processes, and, in the northern Indian Ocean, impact the dominant regional weather pattern (the southwest Monsoon). In late 2015, measurements of the physical structure of the oceanic boundary layer were collected from a pair of research vessels and an array of autonomous assets in the Bay of Bengal as part of an India-U.S. scientific collaboration. Repeated CTD casts by a specialized shipboard system to 200m with a repeat rate of <3 min and a lateral spacing of < 200m, as well as near-surface sampling acoustic current profilers, showed how on the edge of an oceanic mesoscale eddy, the interaction of the mesoscale strain field, Ekman dynamics, and nonlinear submesoscale processes acted to subduct relative saline water under a very thin layer of fresher water derived from riverine sources. Our detailed surveys of the front between the overriding thin, fresh layer, and subducting adjacent more saline water demonstrated the important of small-scale physical dynamics to frontal slumping and the resulting re-stratification processes. These processes were strongly 3-dimensional and time-dependent. Such dynamics ultimately influence air-sea interactions by creating strongly stratified and very thin oceanic boundary layers in the Bay of Bengal, and allow the development of strong, persistent subsurface temperature maxima.

  11. Evaluation of the synoptic and mesoscale predictive capabilities of a mesoscale atmospheric simulation system

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K.; Keyser, D. A.; Mccumber, M. C.

    1983-01-01

    The overall performance characteristics of a limited area, hydrostatic, fine (52 km) mesh, primitive equation, numerical weather prediction model are determined in anticipation of satellite data assimilations with the model. The synoptic and mesoscale predictive capabilities of version 2.0 of this model, the Mesoscale Atmospheric Simulation System (MASS 2.0), were evaluated. The two part study is based on a sample of approximately thirty 12h and 24h forecasts of atmospheric flow patterns during spring and early summer. The synoptic scale evaluation results benchmark the performance of MASS 2.0 against that of an operational, synoptic scale weather prediction model, the Limited area Fine Mesh (LFM). The large sample allows for the calculation of statistically significant measures of forecast accuracy and the determination of systematic model errors. The synoptic scale benchmark is required before unsmoothed mesoscale forecast fields can be seriously considered.

  12. Use of observational and model-derived fields and regime model output statistics in mesoscale forecasting

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.; Pielke, R. A.

    1985-01-01

    Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.

  13. On the Interactions Between Planetary and Mesoscale Dynamics in the Oceans

    NASA Astrophysics Data System (ADS)

    Grooms, I.; Julien, K. A.; Fox-Kemper, B.

    2011-12-01

    Multiple-scales asymptotic methods are used to investigate the interaction of planetary and mesoscale dynamics in the oceans. We find three regimes. In the first, the slow, large-scale planetary flow sets up a baroclinically unstable background which leads to vigorous mesoscale eddy generation, but the eddy dynamics do not affect the planetary dynamics. In the second, the planetary flow feels the effects of the eddies, but appears to be unable to generate them. The first two regimes rely on horizontally isotropic large-scale dynamics. In the third regime, large-scale anisotropy, as exists for example in the Antarctic Circumpolar Current and in western boundary currents, allows the large-scale dynamics to both generate and respond to mesoscale eddies. We also discuss how the investigation may be brought to bear on the problem of parameterization of unresolved mesoscale dynamics in ocean general circulation models.

  14. Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model.

    PubMed

    Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I

    2002-10-17

    Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.

  15. Periodically Aligned Si Nanopillar Arrays as Efficient Antireflection Layers for Solar Cell Applications

    PubMed Central

    2010-01-01

    Periodically aligned Si nanopillar (PASiNP) arrays were fabricated on Si substrate via a silver-catalyzed chemical etching process using the diameter-reduced polystyrene spheres as mask. The typical sub-wavelength structure of PASiNP arrays had excellent antireflection property with a low reflection loss of 2.84% for incident light within the wavelength range of 200–1,000 nm. The solar cell incorporated with the PASiNP arrays exhibited a power conversion efficiency (PCE) of ~9.24% with a short circuit current density (JSC) of ~29.5 mA/cm2 without using any extra surface passivation technique. The high PCE of PASiNP array-based solar cell was attributed to the excellent antireflection property of the special periodical Si nanostructure. PMID:21124636

  16. Apparatus and method for maximizing power delivered by a photovoltaic array

    DOEpatents

    Muljadi, Eduard; Taylor, Roger W.

    1998-01-01

    A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load.

  17. Apparatus and method for maximizing power delivered by a photovoltaic array

    DOEpatents

    Muljadi, E.; Taylor, R.W.

    1998-05-05

    A method and apparatus for maximizing the electric power output of a photovoltaic array connected to a battery where the voltage across the photovoltaic array is adjusted through a range of voltages to find the voltage across the photovoltaic array that maximizes the electric power generated by the photovoltaic array and then is held constant for a period of time. After the period of time has elapsed, the electric voltage across the photovoltaic array is again adjusted through a range of voltages and the process is repeated. The electric energy and the electric power generated by the photovoltaic array is delivered to the battery which stores the electric energy and the electric power for later delivery to a load. 20 figs.

  18. Mesoscale Simulation Data for Initializing Fast-Time Wake Transport and Decay Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Vanvalkenburg, Randal L.; Pruis, Mathew J.; LimonDuparcmeur, Fanny M.

    2012-01-01

    The fast-time wake transport and decay models require vertical profiles of crosswinds, potential temperature and the eddy dissipation rate as initial conditions. These inputs are normally obtained from various field sensors. In case of data-denied scenarios or operational use, these initial conditions can be provided by mesoscale model simulations. In this study, the vertical profiles of potential temperature from a mesoscale model were used as initial conditions for the fast-time wake models. The mesoscale model simulations were compared against available observations and the wake model predictions were compared with the Lidar measurements from three wake vortex field experiments.

  19. Mesoscale brain explorer, a flexible python-based image analysis and visualization tool.

    PubMed

    Haupt, Dirk; Vanni, Matthieu P; Bolanos, Federico; Mitelut, Catalin; LeDue, Jeffrey M; Murphy, Tim H

    2017-07-01

    Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.

  20. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2011-09-12

    We design a partially aperiodic, vertically-aligned silicon nanowire array that maximizes photovoltaic absorption. The optimal structure is obtained using a random walk algorithm with transfer matrix method based electromagnetic forward solver. The optimal, aperiodic structure exhibits a 2.35 times enhancement in ultimate efficiency compared to its periodic counterpart. The spectral behavior mimics that of a periodic array with larger lattice constant. For our system, we find that randomly-selected, aperiodic structures invariably outperform the periodic array.

  1. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  2. Mesoscale thermospheric wind in response to nightside auroral brightening

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Zou, Y.; Gabrielse, C.; Lyons, L. R.; Varney, R. H.; Conde, M.; Hampton, D. L.; Mende, S. B.

    2017-12-01

    Although high-latitude ionospheric flows and thermospheric winds in the F-region are overall characterized by two-cell patterns over a global scale ( 1000 km), intense energy input from the magnetosphere often occurs in a mesoscale ( 100 km) and transient manner ( 10 min). Intense mesoscale energy input would drive enhanced mesoscale winds, whose properties are closely associated with auroral arcs and associated ionospheric flows. However, how thermospheric winds respond to and distribute around mesoscale magnetospheric input has not been characterized systematically. This presentation addresses how mesoscale winds distribute around quasi-steady arcs, evolve and distribute around transient arcs, and vary with geomagnetic and solar activity. We use Scanning Doppler Imagers (SDIs), all-sky imagers and PFISR over Alaska. A channel of azimuthal neutral wind is often found associated with localized flow channels adjacent to quasi-steady discrete aurora. The wind speed dynamically changes after a short time lag (a few tens of minutes) from auroral brightenings, including auroral streamers and intensifications on preexisting auroral arcs. This is in contrast to a much longer time lag ( 1 hour) reported previously. During a storm main phase, a coherent equatorward motion of the Harang discontinuity was seen in plasma flow, aurora and neutral wind, with a few degrees of equatorward displacement of the neutral wind Harang, which is probably due to the inertia. These results suggest that a tight M-I-T connection exists under the energy input of assorted auroral arcs and that mesoscale coupling processes are important in M-I-T energy transfer.

  3. The dynamics of a slider-crank mechanism with a Fourier-series based axially periodic array non-homogeneous coupler

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ming; Chen, Chung-Hsien

    2012-10-01

    In industry, many applications of planar mechanisms such as slider-crank mechanisms have been found in thousands of devices. Typically due to the effect of inertia, these elastic links are subject to axial and transverse periodic forces. Vibrations of these mechanisms are the main source of noise and fatigue that lead to short useful life and failure. Hence, avoiding the occurrence of large amplitude vibration of such systems is of great importance. Recently, the use of specified materials, which are periodically embedded into structures, to satisfy designing requirement has been the subject of many interests. Therefore, the objective of this paper is to present analytical and numerical methodologies to study the dynamics of a slider-crank mechanism with an axially periodic array non-homogeneous coupler; the proposed passive system is introduced to reduce the region of parametric resonance of the mechanism. The Fourier-series based approach and Newtonian mechanics are employed in the analysis. An attention is given to the influence produced by the in-homogeneity of materials of the periodic array to the primary region of dynamic instability of the system. Result of present study indicates that under the same operational condition, the commensurability between the natural frequency of the mechanism and the excitation frequency can be weakened by varying the material properties of the periodic array. The in-homogeneity of materials of the periodic array can be treated as a tuning parameter of the natural frequency of the slider-crank mechanism. With proper choice of the material properties and thickness of the embedded laminas of the periodic array, the occurrence of parametric resonance can be suppressed such that the growth of small amplitude vibration into large motion regime is attenuated.

  4. A Mesoscale Model Analysis of Sea Fog Formation and Dissipation Near Kunsan Air Base

    DTIC Science & Technology

    2012-03-01

    vapor YS Yellow Sea Z Zulu time xvii ACKNOWLEDGMENTS This process has been the most enjoyable, and at times, the...most daunting; however, I have a few people to thank for making it more of the former rather than the latter. Without this person I would not have...coordinated universal time (UTC) or Zulu time (Z), which is minus nine hours to Korean Standard Time (KST). For the period of interest to this

  5. Performance of the image statistics decoder in conjunction with the Goldstone-VLA array

    NASA Technical Reports Server (NTRS)

    Wang, H. C.; Pitt, G. H., III

    1989-01-01

    During Voyager's Neptune encounter, the National Radio Astronomy Observatory's Very Large Array (VLA) will be arrayed with Goldstone antennas to receive the transmitted telemetry data from the spacecraft. The telemetry signal from the VLA will drop out periodically, resulting in a periodic drop in the received signal-to-noise ratio (SNR). The Image Statistics Decoder (ISD), which assumes a correlation between pixels, can improve the bit error rate (BER) for images during these dropout periods. Simulation results have shown that the ISD, in conjunction with the Goldstone-VLA array can provide a 3-dB gain for uncompressed images at a BER of 5.0 x 10(exp -3).

  6. Three models intercomparison for Quantitative Precipitation Forecast over Calabria

    NASA Astrophysics Data System (ADS)

    Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Lavagnini, A.; Accadia, C.; Mariani, S.; Casaioli, M.

    2004-11-01

    In the framework of the National Project “Sviluppo di distretti industriali per le Osservazioni della Terra” (Development of Industrial Districts for Earth Observations) funded by MIUR (Ministero dell'Università e della Ricerca Scientifica --Italian Ministry of the University and Scientific Research) two operational mesoscale models were set-up for Calabria, the southernmost tip of the Italian peninsula. Models are RAMS (Regional Atmospheric Modeling System) and MM5 (Mesoscale Modeling 5) that are run every day at Crati scrl to produce weather forecast over Calabria (http://www.crati.it). This paper reports model intercomparison for Quantitative Precipitation Forecast evaluated for a 20 month period from 1th October 2000 to 31th May 2002. In addition to RAMS and MM5 outputs, QBOLAM rainfall fields are available for the period selected and included in the comparison. This model runs operationally at “Agenzia per la Protezione dell'Ambiente e per i Servizi Tecnici”. Forecasts are verified comparing models outputs with raingauge data recorded by the regional meteorological network, which has 75 raingauges. Large-scale forcing is the same for all models considered and differences are due to physical/numerical parameterizations and horizontal resolutions. QPFs show differences between models. Largest differences are for BIA compared to the other considered scores. Performances decrease with increasing forecast time for RAMS and MM5, whilst QBOLAM scores better for second day forecast.

  7. Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Ge, Cui; Wang, Jun; Welton, Ellsworth J.; Bucholtz, Anthony; Hyer, Edward J.; Reid, Elizabeth A.; Chew, Boon Ning; Liew, Soo-Chin; Salinas, Santo V.; hide

    2015-01-01

    This work describes some of the most extensive ground-based observations of the aerosol profile collected in Southeast Asia to date, highlighting the challenges in simulating these observations with a mesoscale perspective. An 84-h WRF Model coupled with chemistry (WRF-Chem) mesoscale simulation of smoke particle transport at Kuching, Malaysia, in the southern Maritime Continent of Southeast Asia is evaluated relative to a unique collection of continuous ground-based lidar, sun photometer, and 4-h radiosonde profiling. The period was marked by relatively dry conditions, allowing smoke layers transported to the site unperturbed by wet deposition to be common regionally. The model depiction is reasonable overall. Core thermodynamics, including landsea-breeze structure, are well resolved. Total model smoke extinction and, by proxy, mass concentration are low relative to observation. Smoke emissions source products are likely low because of undersampling of fires in infrared sun-synchronous satellite products, which is exacerbated regionally by endemic low-level cloud cover. Differences are identified between the model mass profile and the lidar profile, particularly during periods of afternoon convective mixing. A static smoke mass injection height parameterized for this study potentially influences this result. The model does not resolve the convective mixing of aerosol particles into the lower free troposphere or the enhancement of near-surface extinction from nighttime cooling and hygroscopic effects.

  8. High Resolution Mesoscale Weather Data Improvement to Spatial Effects for Dose-Rate Contour Plot Predictions

    DTIC Science & Technology

    2007-03-01

    time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT

  9. Meso-scale Computational Investigation of Polyurea Microstructure and Its Role in Shockwave Attenuation/dispersion

    DTIC Science & Technology

    2015-07-01

    grained simulations of the formation of meso-segregated microstructure and its interaction with the shockwave is analyzed in the present work. It is...help identify these phenomena and processes, meso-scale coarse-grained simulations of the formation of meso-segregated microstructure and its...of shockwave-induced hard-domain densification. Keywords: Polyurea; Meso-scale; Coarse-grained simulations ; Shockwave attenuation; shockwave

  10. Emergence of reconfigurable wires and spinners via dynamic self-assembly

    DOE PAGES

    Kokot, Gasper; Piet, David; Whitesides, George M.; ...

    2015-03-26

    Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregationmore » of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.« less

  11. Business grants

    NASA Astrophysics Data System (ADS)

    Twelve small businesses who are developing equipment and computer programs for geophysics have won Small Business Innovative Research (SBIR) grants from the National Science Foundation for their 1989 proposals. The SBIR program was set up to encourage the private sector to undertake costly, advanced experimental work that has potential for great benefit.The geophysical research projects are a long-path intracavity laser spectrometer for measuring atmospheric trace gases, optimizing a local weather forecast model, a new platform for high-altitude atmospheric science, an advanced density logging tool, a deep-Earth sampling system, superconducting seismometers, a phased-array Doppler current profiler, monitoring mesoscale surface features of the ocean through automated analysis, krypton-81 dating in polar ice samples, discrete stochastic modeling of thunderstorm winds, a layered soil-synthetic liner base system to isolate buildings from earthquakes, and a low-cost continuous on-line organic-content monitor for water-quality determination.

  12. Wind Power predictability a risk factor in the design, construction and operation of Wind Generation Turbines

    NASA Astrophysics Data System (ADS)

    Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.

    2010-09-01

    Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models are using a number of weather parameters like wind speed in different heights, friction velocity and DTHV. The 25 wind sites are scattered around in Europe and contains 4 offshore parks and 21 onshore parks in various terrain complexity. The "day a head" forecasts are compared with production data and predictability for the period February 2010-April 2010 are given in Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE). The power predictability results are mapped for each turbine giving a clear picture of the predictability in Europe. . Finally a economic analysis are shown for each wind parks in different regimes of predictability will be compared with regard to the balance costs that result from errors in the wind power prediction. Analysis shows that it may very well be profitable to place wind parks in regions of lower, but more predictable wind ressource. Authors: Ivan Ristic, CTO Weather2Umberlla D.O.O Tomislav Maric, Meteorologist at Global Flow Solutions Vestas Wind Technology R&D Line Gulstad, Manager Global Flow Solutions Vestas Wind Technology R&D Jesper Thiesen, CEO ConWx ApS

  13. Studies of MGS TES and MPF MET Data

    NASA Technical Reports Server (NTRS)

    Barnes, Jeff R.

    2003-01-01

    The work supported by this grant was divided into two broad areas: (1) mesoscale modeling of atmospheric circulations and analyses of Pathfinder, Viking, and other Mars data, and (2) analyses of MGS TES temperature data. The mesoscale modeling began with the development of a suitable Mars mesoscale model based upon the terrestrial MM5 model, which was then applied to the simulation of the meteorological observations at the Pathfinder and Viking Lander 1 sites during northern summer. This extended study served a dual purpose: to validate the new mesoscale model with the best of the available in-situ data, and to use the model to aid in the interpretation of the surface meteorological data.

  14. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  15. van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects.

    PubMed

    Dryden, Daniel M; Hopkins, Jaime C; Denoyer, Lin K; Poudel, Lokendra; Steinmetz, Nicole F; Ching, Wai-Yim; Podgornik, Rudolf; Parsegian, Adrian; French, Roger H

    2015-09-22

    The self-assembly of heterogeneous mesoscale systems is mediated by long-range interactions, including van der Waals forces. Diverse mesoscale architectures, built of optically and morphologically anisotropic elements such as DNA, collagen, single-walled carbon nanotubes, and inorganic materials, require a tool to calculate the forces, torques, interaction energies, and Hamaker coefficients that govern assembly in such systems. The mesoscale Lifshitz theory of van der Waals interactions can accurately describe solvent and temperature effects, retardation, and optically and morphologically anisotropic materials for cylindrical and planar interaction geometries. The Gecko Hamaker open-science software implementation of this theory enables new and sophisticated insights into the properties of important organic/inorganic systems: interactions show an extended range of magnitudes and retardation rates, DNA interactions show an imprint of base pair composition, certain SWCNT interactions display retardation-dependent nonmonotonicity, and interactions are mapped across a range of material systems in order to facilitate rational mesoscale design.

  16. Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites

    PubMed Central

    Zhang, Jun

    2016-01-01

    This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill–Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale. PMID:27274689

  17. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in windmore » plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.« less

  18. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  19. Communication: Microphase equilibrium and assembly dynamics.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2017-09-07

    Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.

  20. Scaling Characteristics of Mesoscale Wind Fields in the Lower Atmospheric Boundary Layer: Implications for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kiliyanpilakkil, Velayudhan Praju

    Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta t within 10 minutes to 6 hours range). The ESS framework based study is extended further to enquire its validity over complex terrain. This study, based on multiyear wind observations, demonstrate that the ESS holds for the lower ABL wind speed over the complex terrain as well. Another important inference from this study is that the ESS relative scaling exponents corresponding to the mesoscale wind speed closely matches the scaling characteristics of the inertial range turbulence, albeit not exactly identical. The current study proposes benchmark using ESS-based quasi-universal wind speed scaling characteristics in the ABL for the mesoscale modeling community. Using a state-of-the-art atmospheric mesoscale model in conjunction with different planetary boundary layer (PBL) parameterization schemes, multiple wind speed simulations have been conducted. This study reveals that the ESS scaling characteristics of the model simulated wind speed time series in the lower ABL vary significantly from their observational counterparts. The study demonstrate that the model simulated wind speed time series for the time intervals Delta t < 2 hours do not capture the ESS-based scaling characteristics. The detailed analysis of model simulations using different PBL schemes lead to the conclusion that there is a need for significant improvements in the turbulent closure parameterizations adapted in the new-generation atmospheric models. This study is unique as the ESS framework has never been reported or examined for the validation of PBL parameterizations.

  1. Multisensor satellite observations of meso- and submesoscale surface circulation in the Liguro-Provençal Basin

    NASA Astrophysics Data System (ADS)

    Karimova, Svetlana; Alvera-Azcarate, Aida

    2017-04-01

    Despite great efforts being paid to studying circulation of the Western Mediterranean Basin and the factors triggering bioproductivity of its marine ecosystem, the evidence provided by satellite imagery has not been fully analysed yet. In the present paper, we concentrate our attention on mesoscale and submesoscale circulation features of the Liguro-Provençal Basin captured by satellite radiometer, spectroradiometer, and radar images. Using such a dataset makes it possible to observe the circulation features from a wide spatial range, from the basin scale through mesoscale to the scales of a few kilometers. Mesoscale features in this study are being mostly observed with thermal infrared imagery retrieved by AVHRR and AATSR sensors. Special attention in the work was paid to an analysis of the data coming from a geostationary satellite, namely ones provided by SEVIRI. Due to their uniquely high temporal resolution, such imagery allows observing circulation features in their evolution. During the winter blooming events, surface circulation at meso- to submesoscales in the region of interest was additionally highlighted by images obtained in the visible range. Full spatial resolution images provided by Envisat MERIS, Sentinel-2 MSI, and Landsat TM/ETM+/OLI made the greatest contribution to this part. The smallest scales (namely submesoscale) are being observed with synthetic aperture radar (SAR) imagery provided by Envisat ASAR and Sentinel-1 SAR. During an analysis of SAR images, it was noted that there was strikingly great amount of biogenic surfactants on the water surface in the region of interest. Apparently, low biological productivity typical for the Western Mediterranean ecosystem is not a limiting factor for the formation of surfactant films seen in SAR imagery. This finding though requires further consideration in some other researches, and hereafter we just benefited from the presence of surfactants, because they behave as good tracers of surface currents. Even though the region of interest belongs to the areas with low mean eddy kinetic energy, analysis of the images listed above revealed that the Liguro-Provençal Basin was showing a surprisingly high eddy activity among submesoscale and mesoscale features. However, the typical size of eddies in this area was smaller than that in the southern part of the Western Mediterranean. The general impression retrieved from the observations performed is that the main contributors to generation of observed mesoscale vortical structures are (i) the instability of the main currents in the region of interest and especially frontal instability at the Liguro-Provençal front and (ii) instabilities caused by the coastline inhomogeneity, especially in the eastern part of the Basin. Submesoscale eddy activity seems to be developed to its full extent during the periods when the mesoscale activity in the region of interest is not so prominent. This study is supported by the University of Liege and the EU in the context of the FP7-PEOPLE-COFUND-BeIPD project. Satellite imagery is provided by the European Space Agency.

  2. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  3. Summer circulation in the Mexican tropical Pacific

    NASA Astrophysics Data System (ADS)

    Trasviña, A.; Barton, E. D.

    2008-05-01

    The main components of large-scale circulation of the eastern tropical Pacific were identified in the mid 20th century, but the details of the circulation at length scales of 10 2 km or less, the mesoscale field, are less well known particularly during summer. The winter circulation is characterized by large mesoscale eddies generated by intense cross-shore wind pulses. These eddies propagate offshore to provide an important source of mesoscale variability for the eastern tropical Pacific. The summer circulation has not commanded similar attention, the main reason being that the frequent generation of hurricanes in the area renders in situ observations difficult. Before the experiment presented here, the large-scale summer circulation of the Gulf of Tehuantepec was thought to be dominated by a poleward flow along the coast. A drifter-deployment experiment carried out in June 2000, supported by satellite altimetry and wind data, was designed to characterize this hypothesized Costa Rica Coastal Current. We present a detailed comparison between altimetry-estimated geostrophic and in situ currents estimated from drifters. Contrary to expectation, no evidence of a coherent poleward coastal flow across the gulf was found. During the 10-week period of observations, we documented a recurrent pattern of circulation within 500 km of shore, forced by a combination of local winds and the regional-scale flow. Instead of the Costa Rica Coastal Current, we found a summer eddy field capable of influencing large areas of the eastern tropical Pacific. Even in summer, the cross-isthmus wind jet is capable of inducing eddy formation.

  4. Influence of Soil Heterogeneity on Mesoscale Land Surface Fluxes During Washita '92

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Jin, Hao

    1998-01-01

    The influence of soil heterogeneity on the partitioning of mesoscale land surface energy fluxes at diurnal time scales is investigated over a 10(exp 6) sq km domain centered on the Little Washita Basin, Oklahoma, for the period June 10 - 18, 1992. The sensitivity study is carried out using MM5/PLACE, the Penn State/NCAR MM5 model enhanced with the Parameterization for Land-Atmosphere-Cloud Exchange or PLACE. PLACE is a one-dimensional land surface model possessing detailed plant and soil water physics algorithms, multiple soil layers, and the capacity to model subgrid heterogeneity. A series of 12-hour simulations were conducted with identical atmospheric initialization and land surface characterization but with different initial soil moisture and texture. A comparison then was made of the simulated land surface energy flux fields, the partitioning of net radiation into latent and sensible heat, and the soil moisture fields. Results indicate that heterogeneity in both soil moisture and texture affects the spatial distribution and partitioning of mesoscale energy balance. Spatial averaging results in an overprediction of latent heat flux, and an underestimation of sensible heat flux. In addition to the primary focus on the partitioning of the land surface energy, the modeling effort provided an opportunity to examine the issue of initializing the soil moisture fields for coupled three-dimensional models. For the present case, the initial soil moisture and temperature were determined from off-line modeling using PLACE at each grid box, driven with a combination of observed and assimilated data fields.

  5. A new Method for the Estimation of Initial Condition Uncertainty Structures in Mesoscale Models

    NASA Astrophysics Data System (ADS)

    Keller, J. D.; Bach, L.; Hense, A.

    2012-12-01

    The estimation of fast growing error modes of a system is a key interest of ensemble data assimilation when assessing uncertainty in initial conditions. Over the last two decades three methods (and variations of these methods) have evolved for global numerical weather prediction models: ensemble Kalman filter, singular vectors and breeding of growing modes (or now ensemble transform). While the former incorporates a priori model error information and observation error estimates to determine ensemble initial conditions, the latter two techniques directly address the error structures associated with Lyapunov vectors. However, in global models these structures are mainly associated with transient global wave patterns. When assessing initial condition uncertainty in mesoscale limited area models, several problems regarding the aforementioned techniques arise: (a) additional sources of uncertainty on the smaller scales contribute to the error and (b) error structures from the global scale may quickly move through the model domain (depending on the size of the domain). To address the latter problem, perturbation structures from global models are often included in the mesoscale predictions as perturbed boundary conditions. However, the initial perturbations (when used) are often generated with a variant of an ensemble Kalman filter which does not necessarily focus on the large scale error patterns. In the framework of the European regional reanalysis project of the Hans-Ertel-Center for Weather Research we use a mesoscale model with an implemented nudging data assimilation scheme which does not support ensemble data assimilation at all. In preparation of an ensemble-based regional reanalysis and for the estimation of three-dimensional atmospheric covariance structures, we implemented a new method for the assessment of fast growing error modes for mesoscale limited area models. The so-called self-breeding is development based on the breeding of growing modes technique. Initial perturbations are integrated forward for a short time period and then rescaled and added to the initial state again. Iterating this rapid breeding cycle provides estimates for the initial uncertainty structure (or local Lyapunov vectors) given a specific norm. To avoid that all ensemble perturbations converge towards the leading local Lyapunov vector we apply an ensemble transform variant to orthogonalize the perturbations in the sub-space spanned by the ensemble. By choosing different kind of norms to measure perturbation growth, this technique allows for estimating uncertainty patterns targeted at specific sources of errors (e.g. convection, turbulence). With case study experiments we show applications of the self-breeding method for different sources of uncertainty and different horizontal scales.

  6. Investigation of mesoscale meteorological phenomena as observed by geostationary satellite

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1982-01-01

    Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.

  7. Mesoscale modeling of solute precipitation and radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin

    2015-09-01

    This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulationmore » and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.« less

  8. NASA's participation in the AVE-SESAME '79 program

    NASA Technical Reports Server (NTRS)

    Hill, K.; Turner, R. E.; Wilson, G. S.

    1979-01-01

    NASA's Marshall Space Flight Center participated with its AVE (Atmospheric Variability Experiment) in a large interagency mesoscale and severe storms experiment identified herein as AVE-SESAME '79 (Atmospheric Variability Experiment-Severe Environmental Storms and Mesoscale Experiment 1979). A primary objective of NASA was to support an effort to acquire carefully edited sets of rawinsonde data during selected severe weather events for use in correlative and diagnostic studies with satellite and radar data obtained at approximately the same times. Data were acquired during six individual 24-h experiments on both the regional and storm scales over a network in the central United States that utilized approximately 20 supplemental rawinsonde sites meshed among 23 standard National Weather Service sites. Included among the six experiments are data obtained between 1200 GMT on April 10 and 1200 GMT on April 11, encompassing the formation and development period for the tornado-producing systems that devastated Wichita Falls, Texas, and other sections of Oklahoma and Texas. The other dates for which data sets are available are April 19-20 and 25-26, May 9-10 and 20-21, and June 7-8, 1979.

  9. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  10. Transitions to improved confinement regimes induced by changes in heating in zero-dimensional models for tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H.; Chapman, S. C.; Max Planck Institute for the Physics of Complex Systems, Dresden

    2014-06-15

    It is shown that rapid substantial changes in heating rate can induce transitions to improved energy confinement regimes in zero-dimensional models for tokamak plasma phenomenology. We examine for the first time the effect of step changes in heating rate in the models of Kim and Diamond [Phys. Rev. Lett. 90, 185006 (2003)] and Malkov and Diamond [Phys. Plasmas 16, 012504 (2009)], which nonlinearly couple the evolving temperature gradient, micro-turbulence, and a mesoscale flow; and in the extension of Zhu et al. [Phys. Plasmas 20, 042302 (2013)], which couples to a second mesoscale flow component. The temperature gradient rises, as doesmore » the confinement time defined by analogy with the fusion context, while micro-turbulence is suppressed. This outcome is robust against variation of heating rise time and against introduction of an additional variable into the model. It is also demonstrated that oscillating changes in heating rate can drive the level of micro-turbulence through a period-doubling path to chaos, where the amplitude of the oscillatory component of the heating rate is the control parameter.« less

  11. Mesoscale surface equivalent temperature (T E) for East Central USA

    NASA Astrophysics Data System (ADS)

    Younger, Keri; Mahmood, Rezaul; Goodrich, Gregory; Pielke, Roger A.; Durkee, Joshua

    2018-04-01

    The purpose of this research is to investigate near surface mesoscale equivalent temperatures (T E) in Kentucky (located in east central USA) and potential land cover influences. T E is a measure of the moist enthalpy composed of the dry bulb temperature, T, and absolute humidity. Kentucky presents a unique opportunity to perform a study of this kind because of the observational infrastructure provided by the Kentucky Mesonet (www.kymesonet.org). This network maintains 69 research-grade, in-situ weather and climate observing stations across the Commonwealth. Equivalent temperatures were calculated utilizing high-quality observations from 33 of these stations. In addition, the Kentucky Mesonet offers higher spatial and temporal resolution than previous research on this topic. As expected, the differences (T E - T) were greatest in the summer (smallest in the winter), with an average of 35 °C (5 °C). In general, the differences were found to be the largest in the western climate division. This is attributed to agricultural land use and poorly drained land. These differences are smaller during periods of drought, signifying less influence of moisture.

  12. A concurrent multiscale micromorphic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less

  13. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1982-01-01

    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.

  14. Optical super-resolution and periodical focusing effects by dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash

    Optical microscopy is one of the oldest and most important imaging techniques; however, its far-field resolution is diffraction-limited. In this dissertation, we proposed and developed a novel method of optical microscopy with super-resolution by using high-index dielectric microspheres immersed in liquid and placed on the surface of the structures under study. We used barium titanate glass microspheres with diameters of D~2-220 mum and refractive indices n˜1.9-2.1 to discern minimal feature sizes ˜lambda/4 (down to ˜lambda/7) of various photonic and plasmonic nanostructures, where lambda is the illumination wavelength. We studied the magnification, field of view, and resolving power, in detail, as a function of sphere sizes. We studied optical coupling, transport, focusing, and polarization properties of linear arrays of dielectric spheres. We showed that in arrays of spheres with refractive index n=3, a special type of rays with transverse magnetic (TM) polarization incident on the spheres under the Brewster's angle form periodically focused modes with radial polarization and 2D period, where D is the diameter of the spheres. We showed that the formation of periodically focused modes in arrays of dielectric spheres gives a physical explanation for beam focusing and extraordinarily small attenuation of light in such chains. We showed that the light propagation in such arrays is strongly polarization-dependent, indicating that such arrays can be used as filters of beams with radial polarization. The effect of forming progressively smaller focused beams was experimentally observed in chains of sapphire spheres in agreement with the theory. We studied optical coupling,transport, focusing, and polarization properties of linear arrays of dielectric spheres. We showed that in arrays of spheres with refractive index n=a3, a special type of rays with transverse magnetic (TM) polarization incident on the spheres under the Brewster's angle form periodically focused modes with radial polarization and 2D period, where D is the diameter of the spheres. We showed that the formation of periodically focused modes in arrays of dielectric spheres gives a physical explanation for beam focusing and extraordinarily small attenuation of light in such chains. We showed that the light propagation in such arrays is strongly polarization-dependent, indicating that such arrays can be used as filters of beams with radial polarization. The effect of forming progressively smaller focused beams was experimentally observed in chains of sapphire spheres in agreement with the theory.

  15. Seismicity of Central Asia as Observed on Three IMS Stations

    DTIC Science & Technology

    2008-09-01

    and BVAR are all high-quality seismic arrays . Noise levels at the stations are generally acceptable for the period reviewed, except during the...following conditions: (1) a 4.5-Hz intermittent noise source at MKAR, (2) periodic high-frequency bursts on portions of the SONM array , and (3) a...seismic events (including single station events) observable on three central Asian IMS seismic array stations: Makanchi, Kazakhstan (MKAR); Songino

  16. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    NASA Astrophysics Data System (ADS)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure gradient and Coriolis forces accelerated the meridional outflow toward the baroclinically cool side, transporting zonal momentum horizontally. The vertical (horizontal) momentum transport occurred on a convective (inertial) time scale. Taken together, the sloping convective updraft/cool side outflow represents the release of the CSI in the convectively unstable atmosphere. Further diagnostics showed that mass transports in the horizontal outflow branch ventilated the upper levels of the system, with enhanced mesoscale lifting in the core and on the leading edge of the MCS, which assisted in convective redevelopments on mesoscale time scales. Geostrophic adjustment acted to balance the convectively generated zonal momentum anomalies, thereby limiting the strength of the meridional outflow predicted by CSI theory. Circulation tendency diagnostics showed that the mesoscale circulation developed in response to thermal wind imbalances generated by the deep convection.Comparison of the BCF and BTNF simulations showed that baroclinicity enhanced mesoscale circulation growth. The BTNF circulation was more transient on mesoscale time and space scales. Overall, the BCF system produced more rainfall than the BTNF.Based on the present and past work in CSI theory, a new definition for the term `slantwise convection' is proposed.

  17. Short-Range prediction of a Mediterranean Severe weather event using EnKF: Configuration tests

    NASA Astrophysics Data System (ADS)

    Carrio Carrio, Diego Saul; Homar Santaner, Víctor

    2014-05-01

    The afternoon of 4th October 2007, severe damaging winds and torrential rainfall affected the Island of Mallorca. This storm produced F2-F3 tornadoes in the vicinity of Palma, with one person killed and estimated damages to property exceeding 10 M€. Several studies have analysed the meteorological context in which this episode unfolded, describing the formation of a train of multiple thunderstorms along a warm front and the evolution of a squall line organized from convective activity initiated offshore Murcia during that morning. Couhet et al. (2011) attributed the correct simulation of the convective system and particularly its organization as a squall line to the correct representation of a convergence line at low-levels over the Alboran Sea during the first hours of the day. The numerical prediction of mesoscale phenomena which initiates, organizes and evolves over the sea is an extremely demanding challenge of great importance for coastal regions. In this study, we investigate the skill of a mesoscale ensemble data assimilation system to predict the severe phenomena occurred on 4th October 2007. We use an Ensemble Kalman Filter which assimilates conventional (surface, radiosonde and AMDAR) data using the DART implementation from (NCAR). On the one hand, we analyse the potential of the assimilation cycle to advect critical observational data towards decisive data-void areas over the sea. Furthermore, we assess the sensitivity of the ensemble products to the ensemble size, grid resolution, assimilation period and physics diversity in the mesoscale model. In particular, we focus on the effect of these numerical configurations on the representation of the convective activity and the precipitation field, as valuable predictands of high impact weather. Results show that the 6-h EnKF assimilation period produces initial fields that successfully represent the environment in which initiation occurred and thus the derived numerical predictions render improved evolutions of the squall line. Synthetic maps of severe convective risk reveals the improved predictability of the event using the EnKF as opposed to deterministic or downscaled configurations. Discussion on further improvements to the forecasting systems is provided.

  18. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding

    NASA Astrophysics Data System (ADS)

    Zeng, Tingting; Chang, Chenliang; Chen, Zhaozhong; Wang, Hui-Tian; Ding, Jianping

    2018-06-01

    Multifocal arrays have been attracting considerable attention recently owing to their potential applications in parallel optical tweezers, parallel single-molecule orientation determination, parallel recording and multifocal multiphoton microscopy. However, the generation of vectorial multifocal arrays with a tailorable structure and polarization state remains a great challenge, and reports on multifocal arrays have hitherto been restricted either to scalar focal spots without polarization versatility or to regular arrays with fixed spacing. In this work, we propose a specific pseudo-period encoding technique to create three-dimensional (3D) vectorial multifocal arrays with the ability to manipulate the position, polarization state and intensity of each focal spot. We experimentally validated the flexibility of our approach in the generation of 3D vectorial multiple spots with polarization multiplicity and position tunability.

  19. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1992-01-01

    Work performed during the report period is summarized. The first numerical experiment which was performed on the North Carolina Supercomputer Center's CRAY-YMP machine during the second half of FY92 involved a 36 hour simulation of the CCOPE case study. This first coarse-mesh simulation employed the GMASS model with a 178 x 108 x 32 matrix of grid points spaced approximately 24 km apart. The initial data was comprised of the global 2.5 x 2.5 degree analyses as well as all available North American rawinsonde data valid at 0000 UTC 11 July 1981. Highly-smoothed LFM-derived terrain data were utilized so as to determine the mesoscale response of the three-dimensional atmosphere to weak terrain forcing prior to including the observed highly complex terrain of the northern Rocky Mountain region. It was felt that the model should be run with a spectrum of terrain geometries, ranging from observed complex terrain to no terrain at all, to determine how crucial the terrain was in forcing the mesoscale phenomena. Both convection and stratiform (stable) precipitation were not allowed in this simulation so that their relative importance could be determined by inclusion in forth-coming simulations. A full suite of planetary boundary layer forcing was allowed in the simulation, including surface sensible and latent heat fluxes employing the Blakadar PBL formulation. The details of this simulation, which in many ways could be considered the control simulation, including the important synoptic-scale, meso-alpha scale, and meso-beta scale circulations is described. These results are compared to the observations diagnosed by Koch and his colleagues as well as hypotheses set forth in the project proposal for terrain-influences upon the jet stream and their role in the generation of mesoscale wave phenomenon. The fundamental goal of the analyses being the discrimination among background geostrophic adjustment, terrain influences, and shearing instability in the initiation and maintainance of mesoscale internal wave phenomena. Based upon these findings, FY93 plans are discussed. A review of linear theory and theoretical modeling of a geostrophic zonal wind anomaly is included.

  20. Ocean eddies and climate predictability

    NASA Astrophysics Data System (ADS)

    Kirtman, Ben P.; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  1. Ocean eddies and climate predictability.

    PubMed

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  2. A summary of research on mesoscale energetics of severe storm environments

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1985-01-01

    The goals of this research were to better understand interactions between areas of intense convection and their surrounding mesoscale environments by using diagnostic budgets of kinetic (KE) and available potential energy (APE). Three cases of intense convection were examined in detail. 1) Atmospheric Variability Experiments (AVE) carried out on 24 to 25 April 1975 were studied. Synoptic scale data at 3 to 6 hour intervals, contained two mesoscale convective complexes (MCCs). Analyses included total KE budgets and budgets of divergent and rotational components of KE. 2) AVE-Severe Environmental Storms and Mesoscale Experiments (SESAME)-4 carried out on 10 to 11 April 1979 were studied. Synotpic and meso alpha-scale data (250 km spacing, 3 hour intervals), contained the Red River Valley tornado outbreak. Analyses included total KE budgets (separate synoptic and mesoscale version), budgets for the divergent and rotational components, and the generation of APE by diabatic processes. 3) AVE-SESAME 5 studies were carried out on 20 to 31 May 1979. Synoptic and meso beta-scale data (75 km spacing, 1 1/2 to 3 hour intervals), contained a small MCC. Analyses include separate KE budgets for the synotic and meso beta-scales and a water vapor budget. Major findings of these investigations are: (1) The synoptic scale storm environment contains energy conversions and transports that are comparable to those of mature midlatitude cyclones. (2) Energetic in the mesoscale storm environment are often an order of magnitude larger than those in an undisturbed region. (3) Mesoscale wind maxima form in the upper troposphere on the poleward sides of convective areas, whereas speeds decrease south of storm regions.

  3. An operational mesoscale ensemble data assimilation and prediction system: E-RTFDDA

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hopson, T.; Roux, G.; Hacker, J.; Xu, M.; Warner, T.; Swerdlin, S.

    2009-04-01

    Mesoscale (2-2000 km) meteorological processes differ from synoptic circulations in that mesoscale weather changes rapidly in space and time, and physics processes that are parameterized in NWP models play a great role. Complex interactions of synoptic circulations, regional and local terrain, land-surface heterogeneity, and associated physical properties, and the physical processes of radiative transfer, cloud and precipitation and boundary layer mixing, are crucial in shaping regional weather and climate. Mesoscale ensemble analysis and prediction should sample the uncertainties of mesoscale modeling systems in representing these factors. An innovative mesoscale Ensemble Real-Time Four Dimensional Data Assimilation (E-RTFDDA) and forecasting system has been developed at NCAR. E-RTFDDA contains diverse ensemble perturbation approaches that consider uncertainties in all major system components to produce multi-scale continuously-cycling probabilistic data assimilation and forecasting. A 30-member E-RTFDDA system with three nested domains with grid sizes of 30, 10 and 3.33 km has been running on a Department of Defense high-performance computing platform since September 2007. It has been applied at two very different US geographical locations; one in the western inter-mountain area and the other in the northeastern states, producing 6 hour analyses and 48 hour forecasts, with 4 forecast cycles a day. The operational model outputs are analyzed to a) assess overall ensemble performance and properties, b) study terrain effect on mesoscale predictability, c) quantify the contribution of different ensemble perturbation approaches to the overall forecast skill, and d) assess the additional contributed skill from an ensemble calibration process based on a quantile-regression algorithm. The system and the results will be reported at the meeting.

  4. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    PubMed Central

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  5. Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy

    NASA Astrophysics Data System (ADS)

    Haza, A. C.; Özgökmen, T. M.; Hogan, P.

    2016-11-01

    Understanding material distribution at the ocean's surface is important for a number of applications, in particular for buoyant pollutants such as oil spills. The main tools to estimate surface flows are satellite altimeters, as well as data-assimilative ocean general circulation models (OGCMs). Current-generation altimeter products rely on the geostrophic approximation to derive surface currents. Recent modeling and experimental work revealed existence of ageostrophic submesoscale motions within the upper ocean boundary layer. The next frontier is how submesoscales influence transport pathways in the upper ocean, which is a multi-scale problem involving the interaction of submesoscale and mesoscale coherent structures. Here we focus on a mesoscale eddy that exhibits submesoscale fluctuations along its rim. The high-resolution OCGM fields are then treated with two filters. A Lanczos filter is applied to velocity fields to remove the kinetic energy over the submesoscales. Then a Gaussian filter is used for the modeled sea surface height to simulate a geostrophic velocity field that would be available from gridded satellite altimeter data. Lagrangian Coherent Structures (LCS) are then generated from full-resolution and filtered fields to compare Lagrangian characteristics corresponding to different realizations of the surface velocity fields. It is found that while mesoscale currents exert a general control over the pathways of the tracer initially launched in the mesoscale eddy, there is a leak across the mesoscale transport barriers, induced by submesoscale motions. This leak is quantified as 20% of the tracer when using the submesoscale filter over one month of advection, while it increases to 50% using the geostrophic velocity field. We conclude that LCS computed from mesoscale surface velocity fields can be considered as a good first-order proxy, but the leakage of material across them in the presence of submesoscales can be significant.

  6. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.

    2015-01-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614

  7. Optical design of GaN nanowire arrays for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Winnerl, Julia; Hudeczek, Richard; Stutzmann, Martin

    2018-05-01

    GaN nanowire (NW) arrays are interesting candidates for photocatalytic applications due to their high surface-to-volume ratio and their waveguide character. The integration of GaN NW arrays on GaN-based light emitting diodes (LEDs), serving as a platform for electrically driven NW-based photocatalytic devices, enables an efficient coupling of the light from the planar LED to the GaN NWs. Here, we present a numerical study of the influence of the NW geometries, i.e., the NW diameter, length, and period, and the illumination wavelength on the transmission of GaN NW arrays on transparent substrates. A detailed numerical analysis reveals that the transmission characteristics for large periods are determined by the waveguide character of the single NW, whereas for dense GaN NW arrays inter-wire coupling and diffraction effects originating from the periodic arrangement of the GaN NWs dominate the transmission. The numerically simulated results are confirmed by experimental transmission measurements. We also investigate the influence of a dielectric NW shell and of the surrounding medium on the transmission characteristics of a GaN NW array.

  8. Case study modeling of turbulent and mesoscale fluxes over the BOREAS region

    USGS Publications Warehouse

    Vidale, P.L.; Pielke, R.A.; Steyaert, L.T.; Barr, A.

    1997-01-01

    Results from aircraft and surface observations provided evidence for the existence of mesoscale circulations over the Boreal Ecosystem-Atmosphere Study (BOREAS) domain. Using an integrated approach that included the use of analytical modeling, numerical modeling, and data analysis, we have found that there are substantial contributions to the total budgets of heat over the BOREAS domain generated by mesoscale circulations. This effect is largest when the synoptic flow is relatively weak, yet it is present under less favorable conditions, as shown by the case study presented here. While further analysis is warranted to document this effect, the existence of mesoscale flow is not surprising, since it is related to the presence of landscape patches, including lakes, which are of a size on the order of the local Rossby radius and which have spatial differences in maximum sensible heat flux of about 300 W m-2. We have also analyzed the vertical temperature profile simulated in our case study as well as high-resolution soundings and we have found vertical profiles of temperature change above the boundary layer height, which we attribute in part to mesoscale contributions. Our conclusion is that in regions with organized landscapes, such as BOREAS, even with relatively strong synoptic winds, dynamical scaling criteria should be used to assess whether mesoscale effects should be parameterized or explicitly resolved in numerical models of the atmosphere.

  9. A Parameterization for the Triggering of Landscape Generated Moist Convection

    NASA Technical Reports Server (NTRS)

    Lynn, Barry H.; Tao, Wei-Kuo; Abramopoulos, Frank

    1998-01-01

    A set of relatively high resolution three-dimensional (3D) simulations were produced to investigate the triggering of moist convection by landscape generated mesoscale circulations. The local accumulated rainfall varied monotonically (linearly) with the size of individual landscape patches, demonstrating the need to develop a trigger function that is sensitive to the size of individual patches. A new triggering function that includes the effect of landscapes generated mesoscale circulations over patches of different sizes consists of a parcel's perturbation in vertical velocity (nu(sub 0)), temperature (theta(sub 0)), and moisture (q(sub 0)). Each variable in the triggering function was also sensitive to soil moisture gradients, atmospheric initial conditions, and moist processes. The parcel's vertical velocity, temperature, and moisture perturbation were partitioned into mesoscale and turbulent components. Budget equations were derived for theta(sub 0) and q(sub 0). Of the many terms in this set of budget equations, the turbulent, vertical flux of the mesoscale temperature and moisture contributed most to the triggering of moist convection through the impact of these fluxes on the parcel's temperature and moisture profile. These fluxes needed to be parameterized to obtain theta(sub 0) and q(sub 0). The mesoscale vertical velocity also affected the profile of nu(sub 0). We used similarity theory to parameterize these fluxes as well as the parcel's mesoscale vertical velocity.

  10. Self-assembled three-dimensional nanocrown array.

    PubMed

    Hong, Soongweon; Kang, Taewook; Choi, Dukhyun; Choi, Yeonho; Lee, Luke P

    2012-07-24

    Although an ordered nanoplasmonic probe array will have a huge impact on light harvesting, selective frequency response (i.e., nanoantenna), and quantitative molecular/cellular imaging, the realization of such an array is still limited by conventional techniques due to the serial processing or resolution limit by light diffraction. Here, we demonstrate a thermodynamically driven, self-assembled three-dimensional nanocrown array that consists of a core and six satellite gold nanoparticles (GNPs). Our ordered nanoprobe array is fabricated over a large area by thermal dewetting of thin gold film on hexagonally ordered porous anodic alumina (PAA). During thermal dewetting, the structural order of the PAA template dictates the periodic arrangement of gold nanoparticles, rendering the array of gold nanocrown. Because of its tunable size (i.e., 50 nm core and 20 nm satellite GNPs), arrangement, and periodicity, the nanocrown array shows multiple optical resonance frequencies at visible wavelengths as well as angle-dependent optical properties.

  11. DIFFRACTION FROM MODEL CRYSTALS

    USDA-ARS?s Scientific Manuscript database

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  12. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    NASA Technical Reports Server (NTRS)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  13. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.

    2008-03-01

    Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.

  14. The Impact of TRMM on Mesoscale Model Simulation of Super Typhoon Paka

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Jia, Y.; Halverson, J.; Hou, A.; Olson, W.; Rodgers, E.; Simpson, J.

    1999-01-01

    Tropical cyclone Paka formed during the first week of December 1997 and underwent three periods of rapid intensification over the following two weeks. During one of these periods, which initiated early on December 10, Paka's Dvorak-measured windspeed increased from 23 to 60 m/s over a 48-hr period. On December 18, during the last rapid deepening episode, Paka became a supertyphoon with a maximum wind speed of about 80 m/s. In this study, the Penn State/NCAR Mesoscale Model (MM5) with improved physics (i.e., cloud microphysics, radiation, land-soil-vegetation-surface processes, and TOGA COARE flux scheme) and a multiple level nesting technique (135, 45 and 15 km horizontal resolution) will be used to simulate supertyphoon Paka. We performed two runs initialized with Goddard Earth Observing System (GEOS) data sets. The first GEOS data set does not incorporate either TRMM (tropical rainfall measuring mission satellite) or SSM/I (sensor microwave imager) observed rainfall fields into the GEOS's assimilation system while the second one does. Preliminary results show that the MM5 simulated surface pressure deepened by more than 25 mb (45 km resolution domain) in the run initialized with the GEOS data set incorporating TRMM and SSM/I derived rainfall, compared to the one initialized without. However, the track and precipitation patterns are quite similar between the runs. In our presentation, we will show the impact of TRMM rainfall upon the MM5 simulation of Paka at various horizontal resolutions. We will also examine the physical processes associated with initial explosive development by comparing MM5 simulated rainfall and latent heat release. In addition, budget (vorticity, PV, momentum and heat) calculations and sensitivity tests will be performed to examine the upper-tropospheric and SST mechanisms responsible for the explosive development of Paka.

  15. Regional analysis of convective systems during the West African monsoon

    NASA Astrophysics Data System (ADS)

    Guy, Bradley Nicholas

    The West African monsoon (WAM) occurs during the boreal summer and is responsible for a majority of precipitation in the northern portion of West Africa. A distinct shift of precipitation, often driven by large propagating mesoscale convective systems, is indicated from satellite observations. Excepting the coarser satellite observations, sparse data across the continent has prevented understanding of mesoscale variability of these important systems. The interaction between synoptic and mesoscale features appears to be an important part of the WAM system. Without an understanding of the mesoscale properties of precipitating systems, improved understanding of the feedback mechanism between spatial scales cannot be attained. Convective and microphysical characteristics of West African convective systems are explored using various observational data sets. Focus is directed toward meso -alpha and -beta scale convective systems to improve our understanding of characteristics at this spatial scale and contextualize their interaction with the larger-scale. Ground-based radar observations at three distinct geographical locations in West Africa along a common latitudinal band (Niamey, Niger [continental], Kawsara, Senegal [coastal], and Praia, Republic of Cape Verde [maritime]) are analyzed to determine convective system characteristics in each domain during a 29 day period in 2006. Ancillary datasets provided by the African Monsoon Multidisciplinary Analyses (AMMA) and NASA-AMMA (NAMMA) field campaigns are also used to place the radar observations in context. Results show that the total precipitation is dominated by propagating mesoscale convective systems. Convective characteristics vary according to environmental properties, such as vertical shear, CAPE, and the degree of synoptic forcing. Data are bifurcated based on the presence or absence of African easterly waves. In general, African easterly waves appear to enhance mesoscale convective system strength characteristics (e.g. total precipitation and vertical reflectivity profiles) at the inland and maritime sites. The wave regime also resulted in an increased population of the largest observed mesoscale convective systems observed near the coast, which led to an increase in stratiform precipitation. Despite this increase, differentiation of convective strength characteristics was less obvious between wave and no-wave regimes at the coast. Due to the propagating nature of these advecting mesoscale convective systems, interaction with the regional thermodynamic and dynamic environment appears to result in more variability than enhancements due to the wave regime, independent of location. A 13-year (1998-2010) climatology of mesoscale convective characteristics associated with the West African monsoon are also investigated using precipitation radar and passive microwave data from the NASA Tropical Rainfall Measuring Mission satellite. Seven regions defined as continental northeast and northwest, southeast and southwest, coastal, and maritime north and south are compared to analyze zonal and meridional differences. Data are categorized according to identified African easterly wave (AEW) phase and when no wave is present. While some enhancements are observed in association with AEW regimes, regional differences were generally more apparent than wave vs. no-wave differences. Convective intensity metrics confirm that land-based systems exhibit stronger characteristics, such as higher storm top and maximum 30-dBZ heights and significant 85-GHz brightness temperature depressions. Continental systems also contain a lower fraction of points identified as stratiform. Results suggest that precipitation processes also varied depending upon region and AEW regime, with warm-rain processes more apparent over the ocean and the southwest continental region and ice-based microphysics more dominant over land, including mixed-phase processes. AEW regimes did show variability in stratiform fraction and ice and liquid water content, suggesting modulation of mesoscale characteristics possibly through feedback with the synoptic environment. Two mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses (AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. One of the MCSs, the 8 September 2006 system, is associated with the passage of an African easterly wave trough while the other, the 14 July 2006 case, is not. Simulations are performed using 1 km horizontal grid spacing, a lower limit on current embedded cloud resolving models within a multi-scale modeling framework. Simulated system structure is compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Results indicate general agreement in the temporal distribution of hydrometeors. Vertical distributions show that ice hydrometeors are often underestimated at mid- and upper-levels, partially due to the inability of the model to produce adequate system heights. Abundance of high reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles indicate larger reflectivities aloft compared to simulated values. Despite these differences and biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model is able to capture gross observed differences between the two MCSs.

  16. Three-dimensional Mesoscale Simulations of Detonation Initiation in Energetic Materials with Density-based Kinetics

    NASA Astrophysics Data System (ADS)

    Jackson, Thomas; Jost, A. M.; Zhang, Ju; Sridharan, P.; Amadio, G.

    2017-06-01

    In this work we present three-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using a density-based kinetics scheme, adapted from standard Ignition and Growth models. The deposition term is based on previous results of simulations of pore collapse at the microscale, modelled at the mesoscale as hot-spots. We carry out three-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that the transition between no-detonation and detonation depends on the number density of the hot-spots, the initial radius of the hot-spot, the post-shock pressure of an imposed shock, and the amplitude of the power deposition term. The trends of transition at lower pressure of the imposed shock for larger number density of pore observed in experiments is reproduced. Initial attempts to improve the agreement between the simulation and experiments through calibration of various parameters will also be made.

  17. Low-level wind response to mesoscale pressure systems

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Physick, W. L.

    1983-09-01

    Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.

  18. Results from a limited area mesoscale numerical simulation for 10 April 1979

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.

    1985-01-01

    Results are presented from a nine-hour limited area fine mesh (35-km) mesoscale model simulation initialized with SESAME-AVE I radiosonde data for Apr. 10, 1979 at 2100 GMT. Emphasis is on the diagnosis of mesoscale structure in the mass and precipitation fields. Along the Texas/Oklahoma border, independent of the short wave, convective precipitation formed several hours into the simulation and was organized into a narrow band suggestive of the observed April 10 squall line.

  19. Numerical simulation of cloud and precipitation structure during GALE IOP-2

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Perkey, D. J.; Seablom, M. S.

    1988-01-01

    A regional scale model, LAMPS (Limited Area Mesoscale Prediction System), is used to investigate cloud and precipitation structure that accompanied a short wave system during a portion of GALE IOP-2. A comparison of satellite imagery and model fields indicates that much of the large mesoscale organization of condensation has been captured by the simulation. In addition to reproducing a realistic phasing of two baroclinic zones associated with a split cold front, a reasonable simulation of the gross mesoscale cloud distribution has been achieved.

  20. Electric and kinematic structure of the Oklahoma mesoscale convective system of 7 June 1989

    NASA Technical Reports Server (NTRS)

    Hunter, Steven M.; Schur, Terry J.; Marshall, Thomas C.; Rust, W. D.

    1992-01-01

    Balloon soundings of electric field in Oklahoma mesoscale convective systems (MCS) were obtained by the National Severe Storms Laboratory in the spring of 1989. This study focuses on a sounding made in the rearward edge of an MCS stratiform rain area on 7 June 1989. Data from Doppler radars, a lightning ground-strike location system, satellite, and other sources is used to relate the mesoscale attributes of the MCS to the observed electric-field profile.

  1. Simulating wind energy resources with mesoscale models: Intercomparison of state-of-the-art models over Northern Europe

    NASA Astrophysics Data System (ADS)

    Hahmann, A. N.

    2015-12-01

    Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are useful because they give information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Various mesoscale models and families of mesoscale models are being used, with thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. We have carried out a blind benchmarking study to evaluate the capabilities of mesoscale models used in wind energy to estimate site wind conditions: to highlight common issues on mesoscale modeling of wind conditions on sites with different characteristics, and to identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. Three experimental sites with tall mast measurements were selected: FINO3 (offshore), Høvsøre (coastal), and Cabauw (land-based). The participants were asked to provide hourly time series of wind speed and direction, temperature, etc., at various heights for 2011. The methods used were left to the choice of the participants, but they were asked for a detailed description of their model and many other parameters (e.g., horizontal and vertical resolution, model parameterizations, surface roughness length) that could be used to group the models and interpret the results of the intercomparison. The analysis of the time series includes comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, and the temporal spectra. The statistics were grouped by the models, their spatial resolution, forcing data, various integration methods, etc. The results show high fidelity of the various entries in simulating the wind climate at the offshore and coastal site. Over land and the statistics of other derived fields (e.g. wind shear distributions) show much less similarities among the models and with the observations. Cloud computing now allows the use of mesoscale models by non-experts for site assessment. This tool is very useful and powerful, but users must be aware of the different issues that might be encountered in working with different setups.

  2. Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago

    USGS Publications Warehouse

    Hostetler, S.W.; Bartlein, P.J.; Clark, P.U.; Small, E.E.; Solomon, A.M.

    2000-01-01

    Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold even.

  3. The disclosure of mesoscale behaviour of a 3d-SMM monolayer on Au(111) through a multilevel approach.

    PubMed

    Fernandez Garcia, Guglielmo; Lunghi, Alessandro; Totti, Federico; Sessoli, Roberta

    2018-02-22

    Here we present a computational study of a full- and a half-monolayer of a Fe 4 single molecule magnet ([Fe 4 (L) 2 (dpm) 6 ], where H 3 L = 2-hydroxymethyl-2-phenylpropane-1,3-diol and Hdpm = dipivaloylmethane, Fe 4 Ph) on an unreconstructed surface of Au(111). This has been possible through the application of an integrated approach, which allows the explicit inclusion of the packing effects in the classical dynamics to be used in a second step in periodic and non-periodic high level DFT calculations. In this way we can obtain access to mesoscale geometrical data and verify how they can influence the magnetic properties of interest of the single Fe 4 molecule. The proposed approach allows to overcome the ab initio state-of-the-art approaches used to study Single Molecule Magnets (SMMs), which are based on the study of one single adsorbed molecule and cannot represent effects on the scale of a monolayer. Indeed, we show here that it is possible to go beyond the computational limitations inherent to the use, for such complex systems, of accurate calculation techniques (e.g. ab initio molecular dynamics) without losing the level of accuracy necessary to gain new detailed insights, hardly reachable at the experimental level. Indeed, long-range and edge effects on the Fe 4 structures and their easy axis of magnetization orientations have been evidenced as their different contributions to the overall macroscopic behavior.

  4. Universal optical transmission features in periodic and quasiperiodic hole arrays.

    PubMed

    Pacifici, Domenico; Lezec, Henri J; Sweatlock, Luke A; Walters, Robert J; Atwater, Harry A

    2008-06-09

    We investigate the influence of array order in the optical transmission properties of subwavelength hole arrays, by comparing the experimental spectral transmittance of periodic and quasiperiodic hole arrays as a function of frequency. We find that periodicity and long-range order are not necessary requirements for obtaining enhanced and suppressed optical transmission, provided short-range order is maintained. Transmission maxima and minima are shown to result, respectively, from constructive and destructive interference at each hole, between the light incident upon and exiting from a given hole, and surface plasmon polaritons (SPPs) arriving from individual neighboring holes. These SPPs are launched along both illuminated and exit surfaces, by diffraction of the incident and emerging light at the neighboring individual subwavelength holes. By characterizing the optical transmission of a pair of subwavelength holes as a function of hole-hole distance, we demonstrate that a subwavelength hole can launch SPPs with an efficiency up to 35%, and with an experimentally determined launch phase phi = pi /2, for both input-side and exit-side SPPs. This characteristic phase has a crucial influence on the shape of the transmission spectra, determining transmission minima in periodic arrays at those frequencies where grating coupling arguments would instead predict maxima.

  5. Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat

    2001-03-01

    We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001

  6. ALASKAN RTMA GRAPHICS

    Science.gov Websites

    Alaskan RTMA Graphics This page displays Alaskan Real-Time Mesoscale Analyses and compares them to DISCLAIMER: The Alaskan Real-Time Mesoscale Analysis tool is in its developmental stage, and there is much

  7. Molecular Origins of Mesoscale Ordering in a Metalloamphiphile Phase

    PubMed Central

    2015-01-01

    Controlling the assembly of soft and deformable molecular aggregates into mesoscale structures is essential for understanding and developing a broad range of processes including rare earth extraction and cleaning of water, as well as for developing materials with unique properties. By combined synchrotron small- and wide-angle X-ray scattering with large-scale atomistic molecular dynamics simulations we analyze here a metalloamphiphile–oil solution that organizes on multiple length scales. The molecules associate into aggregates, and aggregates flocculate into meso-ordered phases. Our study demonstrates that dipolar interactions, centered on the amphiphile headgroup, bridge ionic aggregate cores and drive aggregate flocculation. By identifying specific intermolecular interactions that drive mesoscale ordering in solution, we bridge two different length scales that are classically addressed separately. Our results highlight the importance of individual intermolecular interactions in driving mesoscale ordering. PMID:27163014

  8. An intense, quasi-steady thunderstorm over mountainous terrain. I - Evolution of the storm-initiating mesoscale circulation

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; George, R. L.; Knupp, K. R.

    1982-01-01

    The evolution of mesoscale systems that eventually lead to the formation of large quasi-steady storm systems is investigated. The morphological and turbulent structure of the quasi-steady storm is described. Data obtained during the South Park Area Cumulus Experiment from surface meteorological stations, rawinsondes and tethered balloons, conventional and Doppler radars, powered aircraft, and satellites, indicate that on July 19, 1977, a north-south oriented line of intense convective cells formed and remained within South Park. Elevated surface heating created a region of low-level convergence, importing Pacific moisture from west of the Rockies. The mesoscale thunderstorm line formed over this convergence zone, and a single large convective cell was observed to grow on the southern end of the mesoscale line, exhibiting supercell characteristics and substantial modifications of the environmental flow.

  9. Mesoscale resolution capability of altimetry: Present and future

    NASA Astrophysics Data System (ADS)

    Dufau, Claire; Orsztynowicz, Marion; Dibarboure, Gérald; Morrow, Rosemary; Le Traon, Pierre-Yves

    2016-07-01

    Wavenumber spectra of along-track Sea Surface Height from the most recent satellite radar altimetry missions [Jason-2, Cryosat-2, and SARAL/Altika) are used to determine the size of ocean dynamical features observable with the present altimetry constellation. A global analysis of the along-track 1-D mesoscale resolution capability of the present-day altimeter missions is proposed, based on a joint analysis of the spectral slopes in the mesoscale band and the error levels observed for horizontal wavelengths lower than 20km. The global sea level spectral slope distribution provided by Xu and Fu with Jason-1 data is revisited with more recent altimeter missions, and maps of altimeter error levels are provided and discussed for each mission. Seasonal variations of both spectral slopes and altimeter error levels are also analyzed for Jason-2. SARAL/Altika, with its lower error levels, is shown to detect smaller structures everywhere. All missions show substantial geographical and temporal variations in their mesoscale resolution capabilities, with variations depending mostly on the error level change but also on slight regional changes in the spectral slopes. In western boundary currents where the signal to noise ratio is favorable, the along-track mesoscale resolution is approximately 40 km for SARAL/AltiKa, 45 km for Cryosat-2, and 50 km for Jason-2. Finally, a prediction of the future 2-D mesoscale sea level resolution capability of the Surface Water and Ocean Topography (SWOT) mission is given using a simulated error level.

  10. Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.

    2017-06-01

    Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.

  11. Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Gallardo-Lacourt, B.; Zou, Y.; Nishimura, Y.; Anderson, P. C.; Angelopoulos, V.; Ruohoniemi, J. M.; Mitchell, E. J.; Paxton, L. J.; Nishitani, N.

    2017-12-01

    Recent studies have shown that mesoscale flows are common within the polar cap ionosphere. They often cross the magnetic separatrix, and become are critical to the driving of geomagnetic activity. They lead, for example, to plasma sheet flow bursts, auroral poleward boundary intensifications, auroral streamers, substorms, auroral omega bands, and poleward motion of the polar cap boundary from reconnection. We have found large enhancements of these meso-scale ionospheric polar cap flows heading towards the nightside separatrix. These enhancements are common immediately after the impact of CME shocks under southward IMF, but can also occur in other situations, including without substantial change in the solar wind or IMF. These meso-scale flow enhancements, which must extent outward along magnetospheric field lines from the ionosphere, are seen to drive an almost immediate strong auroral, ionospheric and field-aligned current, and reconnection activity. The resulting activity is particularly dramatic during the initiation of CME storms, but may reflect a more generally occurring phenomenon of mesoscale flow enhancements leading to similar oval responses without a shock impact, including during and following the expansion phase some substorms. If this phenomenon is indeed common, it could lead to possibly fundamental questions, such as when do polar cap convection enhancements lead to a substorm growth phase versus leading directly to strong poleward expansion of, and strong activity within, the auroral oval field line region? Another critical question would be what leads to and causes the enhancements in meso-scale polar cap flows?

  12. Mesoscale Predictability and Error Growth in Short Range Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Gingrich, Mark

    Although it was originally suggested that small-scale, unresolved errors corrupt forecasts at all scales through an inverse error cascade, some authors have proposed that those mesoscale circulations resulting from stationary forcing on the larger scale may inherit the predictability of the large-scale motions. Further, the relative contributions of large- and small-scale uncertainties in producing error growth in the mesoscales remain largely unknown. Here, 100 member ensemble forecasts are initialized from an ensemble Kalman filter (EnKF) to simulate two winter storms impacting the East Coast of the United States in 2010. Four verification metrics are considered: the local snow water equivalence, total liquid water, and 850 hPa temperatures representing mesoscale features; and the sea level pressure field representing a synoptic feature. It is found that while the predictability of the mesoscale features can be tied to the synoptic forecast, significant uncertainty existed on the synoptic scale at lead times as short as 18 hours. Therefore, mesoscale details remained uncertain in both storms due to uncertainties at the large scale. Additionally, the ensemble perturbation kinetic energy did not show an appreciable upscale propagation of error for either case. Instead, the initial condition perturbations from the cycling EnKF were maximized at large scales and immediately amplified at all scales without requiring initial upscale propagation. This suggests that relatively small errors in the synoptic-scale initialization may have more importance in limiting predictability than errors in the unresolved, small-scale initial conditions.

  13. Study of different atmospheric environments associated to storms development in the Madeira Island

    NASA Astrophysics Data System (ADS)

    Couto, Flavio Tiago do

    The study aims to improve the understanding about different atmospheric environments leading to the development of storms associated with heavy precipitation in Madeira Island. For this purpose, four main goals have been considered: 1) To document the synoptic and mesoscale environments associated with heavy precipitation. 2) To characterize surface precipitation patterns that affected the island during some periods of significant accumulated precipitation using numerical modelling. 3) To study the relationship between surface precipitation patterns and mesoscale environments. 4) To highlight how the PhD findings obtained in the first three goals can be translated into an operational forecast context. Concerning the large scale environment, precipitation over the island was favoured by weather systems (e.g, mesoscale convective systems and low pressure systems), as well as by the meridional transport of high amount of moisture from a structure denominated as “Atmospheric River”. The tropical origin of this moisture is underscored, however, their impact on the precipitation in Madeira was not so high during the 10 winter seasons [2002 - 2012] studied. The main factor triggering heavy precipitation events over the island is related to the local orography. The steep terrain favours orographically-induced stationary precipitation over the highlands, although maximum of precipitation at coastal region may be produced by localized blocking effect. These orographic precipitating systems presented different structures, associated with shallow and deep convection. Essentially, the study shows that the combination of airflow dynamics, moist content, and orography is the major mechanism that produces precipitation over the island. These factors together with the event duration act to define the regions of excessive precipitation. Finally, the study highlights two useful points for the operational sector, regarding the meridional water vapour transport and local effects causing significant precipitation over the Island.

  14. Air Pollutant Distribution and Mesoscale Circulation Systems During Escompte

    NASA Astrophysics Data System (ADS)

    Kottmeier, Ch.; Kalthoff, N.; Corsmeier, U.; Robin, D.; Thürauf, J.; Hofherr, T.; Hasel, M.

    The distribution of pollutants observed with an Dornier 128 instrumented aircraft and from AIRMARAIX ground stations during one day of the Escompte experiment (June 25, 2001) is analysed in relation to the mesoscale wind systems and vertical mixing from aircraft and radiosonde data. The ESCOMPTE-experiment (http://medias.obs- mip.fr/escompte) was carried out in June and July 2001 in the urban area of Marseille and its rural surroundings to investigate periods with photosmog conditions. The over- all aim is to produce an appropriate high quality 3-D data set which includes emission, meteorological, and chemical data. The data is used for the validation of mesoscale models and for chemical and meteorological process studies. The evolution of pho- tosmog episodes with high ozone concentrations depends on both chemical transfor- mation processes and meteorological conditions. As Marseille is situated between the Mediterranean Sea in the south and mountainous sites in the north, under weak large- scale flow the meteorological conditions are dominated by thermally driven circula- tion systems which strongly influence the horizontal transport of air pollutants. Ad- ditionally, vertically exchange processes like mountain venting and slope winds may contribute in the temporal evolution of the trace gas concentration of the city plume in the atmospheric boundary layer and are particularly studied by the Dornier flight measurements. Therefore the experiment was designed to measure both, the chemi- cal species and meteorological parameters with high resolution in space and time by surface stations, aircraft and vertical profiling systems like radiosondes, sodars and lidars. Results are shown (a) on the evolution of the wind field and the ozone concen- trations during June 25, when an ozone maximum develops about 60 km in the lee site of Marseille and (b) the vertical transport of air pollutants between the boundary layer and the free troposphere.

  15. Modeling the Large-scale Environments of Long-lived Mesoscale Convective Systems Conducive to Heavy Precipitation in the Central United States

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Houze, R.; Feng, Z.; Yang, Q.

    2017-12-01

    Mesoscale convective systems (MCSs) are important precipitation producers that account for 30-70% of warm season rainfall between the Rocky Mountains and Mississippi River and some 50-60% of tropical rainfall. Besides the tendency to produce floods, MCSs also carry with them a variety of attendant severe weather phenomena. Our recent analysis found that observed increases in springtime total and extreme rainfall in the central United States in the past 35 years are dominated by increased frequency and intensity of long-lasting MCSs. Understanding the environmental conditions producing long-lived MCSs is therefore a priority in determining how heavy precipitation events might change in character and location in a changing climate. Continental-scale convection-permitting simulations of the warm seasons using the WRF model reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of MCSs over the central United States. The simulations show that MCSs systematically form over the central Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level moist jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. MCSs reaching lifetimes of 9 h or more occur closer to the approaching trough than shorter-lived MCSs. These long-lived MCSs exhibit the strongest feedback to the environment through diabatic heating in the trailing regions of the MCSs that helps to maintain them over a long period of time. The identified large-scale and mesoscale ingredients provide a framework for understanding and modeling the potential changes in MCSs and associated hydrometeorological extremes in the future.

  16. Physical and biological response of mesoscale eddies to wintertime forcing in the north central Red Sea (22˚N-25.5˚N)

    NASA Astrophysics Data System (ADS)

    Zarokanellos, N.; Jones, B. H.

    2016-02-01

    Red Sea is one of the saltiest and warmer seas in the world and acts as inverted estuary. Until recently, the Red Sea has been relatively underexplored. The limited observations that exist and results from various modeling exercises for the Red Sea have indicated that the sea has a complex mesoscale circulation often dominated by eddies. These mesoscale eddies are often visible in satellite imagery of sea surface height, temperature or chlorophyll, but only the surface expression of them. Because of previously limited in situ observations, the processes that drive the physical dynamics and the coupled biological responses have been poorly understood. To resolve and understand the role of these eddies in the dynamics of the north-central Red Sea during the wintertime, we used a combination of approaches that include remote sensing and autonomous underwater gliders equipped with physical, chemical, and bio-optical sensors. Remote sensing analyses of these eddies has shown that these eddies not only affect the physical circulation, but modify and disperse the phytoplankton populations and enhance exchange between the open sea and coastal coral reef ecosystems. During winter 2015, we observed deeper mixing driven by surface cooling and strong winds. As of result of the deeper mixing, phytoplankton populations became well mixed such that the ocean color imagery now reflected the integrated vertical processes. Localized diel fluctuations in phytoplankton are clearly evident during these well mixed periods. The mixing likely contributes to enhanced nutrient fluxes as well. Through sustained AUV observations, we have better understand the development, evolution, and dissipation of eddies. We also now have a better understanding of the mixing of source water from both the northern and southern Red Sea in this region of the north central Red Sea.

  17. Simulation of Atmospheric Dispersion of Elevated Releases from Point Sources in Mississippi Gulf Coast with Different Meteorological Data

    PubMed Central

    Yerramilli, Anjaneyulu; Srinivas, Challa Venkata; Dasari, Hari Prasad; Tuluri, Francis; White, Loren D.; Baham, Julius M.; Young, John H.; Hughes, Robert; Patrick, Chuck; Hardy, Mark G.; Swanier, Shelton J.

    2009-01-01

    Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1–3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented. PMID:19440433

  18. A coordinated study of 1 h mesoscale gravity waves propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature mapper

    NASA Astrophysics Data System (ADS)

    Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.

    2015-10-01

    We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.

  19. The circulation dynamics associated with a northern Benguela upwelling filament during October 2010

    NASA Astrophysics Data System (ADS)

    Muller, Annethea A.; Mohrholz, Volker; Schmidt, Martin

    2013-07-01

    Upwelling filaments, a common feature in all the major upwelling systems, are also regularly observed in the Benguela upwelling system and are thought to provide an effective mechanism for the exchange of matter between the shelf and the open ocean. The mesoscale dynamics of a northern Benguela upwelling filament located at approximately 18.5°S were examined and the associated transport was quantified. The development of the filament was tracked using optimal interpolated SST satellite data and two transects were consequently sampled across the feature using a towed undulating CTD (ScanFish). Additional hydrographic, nutrient and biological parameters were investigated at several stations along each transect. Following 7 days of strong upwelling favorable winds, sampling coincided with a period of relative wind relaxation and the filament was presumably in a decaying state. The basic mesoscale structure of the investigated filament corresponded well to what had previously been described for filaments from other eastern boundary current systems. The cross-shore transport associated with the filament was found to be significantly greater than the integrated Ekman transport in the region. With the combination of the high resolution dataset and a MOM-4 ecosystem model the complex mesoscale flow field associated with the feature could be observed and the counterbalancing onshore transport, associated with subsurface dipole eddies, was revealed within the filament. The results further suggest that an interaction between the offshore bending of flow at the Angola-Benguela Front (ABF), the detachment of the strong poleward flow from the coast as the thermal front meanders and the observed dipole eddies may be driving filament occurrence in the region off Cape Frio.

  20. Observation of severe weather activities by Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Hung, R. J.

    1975-01-01

    A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.

  1. The Modulation of Biological Production by Oceanic Mesoscale Turbulence

    NASA Astrophysics Data System (ADS)

    Lévy, Marina

    This chapter reviews the current state of knowledge on bio-physical interactions at mesoscale and at sub-mesoscale. It is focused on the mid-latitudes open ocean. From examples taken from my own studies or selected in the literature, I show how high-resolution process-oriented model studies have helped to improve our understanding. I follow a process oriented approach; I first discuss the role of mesoscale eddies in moderating the nutrient flux into the well-lit euphotic zone. Then I address the impact on biogeochemistry of transport occurring on a horizontal scale smaller than the scale of an eddy. I show that submesoscale processes modulate biogeochemical budgets in a number of ways, through intense upwelling of nutrients, subduction of phytoplankton, and horizontal stirring. Finally, I emphasize that mesoscale and submesoscale dynamics have a strong impact on productivity through their influence on the stratification of the surface of the ocean. These processes have in common that they concern the short-term, local effect of oceanic turbulence on biogeochemistry. Efforts are still needed before we can get a complete picture, which would also include the far-field long-term effect of the eddies.

  2. Density-based kinetics for mesoscale simulations of detonation initiation in energetic materials

    NASA Astrophysics Data System (ADS)

    Jackson, Thomas Luther; Zhang, Ju

    2017-07-01

    In this work we present one- and two-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using a density-based kinetics scheme, adapted from standard 'Ignition and Growth' models. The deposition term is based on previous results of simulations of void collapse at the microscale, modelled at the mesoscale as hot spots. For an isolated hot spot in a homogeneous medium, it is found that a critical size of the hot spots exists. If the hot spots exceed the critical size, initiation of detonation can be achieved. For sub-critical hot-spot sizes, we show that it takes a collection of hot spots to achieve detonation. We also carry out two-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that the transition between no detonation and detonation depends on the number density of the hot spots, the initial radius of the hot spot, the post-shock pressure of an imposed shock, and the amplitude of the power deposition term.

  3. Shock-induced mechanochemistry in heterogeneous reactive powder mixtures

    NASA Astrophysics Data System (ADS)

    Gonzales, Manny; Gurumurthy, Ashok; Kennedy, Gregory; Neel, Christopher; Gokhale, Arun; Thadhani, Naresh

    The bulk response of compacted powder mixtures subjected to high-strain-rate loading conditions in various configurations is manifested from behavior at the meso-scale. Simulations at the meso-scale can provide an additional confirmation of the possible origins of the observed response. This work investigates the bulk dynamic response of Ti +B +Al reactive powder mixtures under two extreme loading configurations - uniaxial stress and strain loading - leveraging highly-resolved in-situ measurements and meso-scale simulations. Modified rod-on-anvil impact tests on a reactive pellet demonstrate an optimized stoichiometry promoting reaction in Ti +B +Al. Encapsulated powders subjected to shock compression via flyer plate tests provide possible evidence of a shock-induced reaction at high pressures. Meso-scale simulations of the direct experimental configurations employing highly-resolved microstructural features of the Ti +B compacted mixture show complex inhomogeneous deformation responses and reveal the importance of meso-scale features such as particle size and morphology and their effects on the measured response. Funding is generously provided by DTRA through Grant No. HDTRA1-10-1-0038 (Dr. Su Peiris - Program Manager) and by the SMART (AFRL Wright Patterson AFB) and NDSEG fellowships (High Performance Computing and Modernization Office).

  4. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    NASA Astrophysics Data System (ADS)

    Namin, Frank Farhad A.

    Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.

  5. A four-dimensional primitive equation model for coupled coastal-deep ocean studies

    NASA Technical Reports Server (NTRS)

    Haidvogel, D. B.

    1981-01-01

    A prototype four dimensional continental shelf/deep ocean model is described. In its present form, the model incorporates the effects of finite amplitude topography, advective nonlinearities, and variable stratification and rotation. The model can be forced either directly by imposed atmospheric windstress and surface pressure distributions, and energetic mean currents imposed by the exterior oceanic circulation; or indirectly by initial distributions of shoreward propagation mesoscale waves and eddies. To avoid concerns over the appropriate specification of 'open' boundary conditions on the cross-shelf and seaward model boundaries, a periodic channel geometry (oriented along-coast) is used. The model employs a traditional finite difference expansion in the cross-shelf direction, and a Fourier (periodic) representation in the long-shelf coordinate.

  6. Sub-100-nm ordered silicon hole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    Sub-100-nm silicon nanohole arrays were fabricated by a combination of the site-selective electroless deposition of noble metals through anodic porous alumina and the subsequent metal-assisted chemical etching. Under optimum conditions, the formation of deep straight holes with an ordered periodicity (e.g., 100 nm interval, 40 nm diameter, and high aspect ratio of 50) was successfully achieved. By using the present method, the fabrication of silicon nanohole arrays with 60-nm periodicity was also achieved. PMID:24090268

  7. Jammed-array wideband sawtooth filter.

    PubMed

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram

    2011-11-21

    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America

  8. Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles.

    PubMed

    Reinhardt, Hendrik M; Bücker, Kerstin; Hampp, Norbert A

    2015-05-04

    Laser-induced reorganization and simultaneous fusion of nanoparticles is introduced as a versatile concept for pattern formation on surfaces. The process takes advantage of a phenomenon called laser-induced periodic surface structures (LIPSS) which originates from periodically alternating photonic fringe patterns in the near-field of solids. Associated photonic fringe patterns are shown to reorganize randomly distributed gold nanoparticles on a silicon wafer into periodic gold nanostructures. Concomitant melting due to optical heating facilitates the formation of continuous structures such as periodic gold nanowire arrays. Generated patterns can be converted into secondary structures using directed assembly or self-organization. This includes for example the rotation of gold nanowire arrays by arbitrary angles or their fragmentation into arrays of aligned gold nanoparticles.

  9. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1992-01-01

    This interim report summarizes the research accomplished during the initial 6-month period of the grant. Activities associated with antenna configurations, the channelizing downconverter, the fast Fourier transform array, the DSP (digital signal processing) array, and the backend and UNIX workstation are discussed. Publications submitted during the reporting period are listed.

  10. Nearshore Coastal Dynamics on a Sea-Breeze Dominated Micro-Tidal Beach (NCSAL)

    NASA Astrophysics Data System (ADS)

    Torres-Freyermuth, A.; Puleo, J. A.; Ruiz de Alegría-Arzaburu, A.; Figlus, J.; Mendoza, T.; Pintado-Patino, J. C.; Pieterse, A.; Chardon-Maldonado, P.; DiCosmo, N. R.; Wellman, N.; Garcia-Nava, H.; Palemón-Arcos, L.; Roberts, T.; López-González, J.; Bravo, M.; Ojeda, E.; Medellín, G.; Appendini, C. M.; Figueroa, B.; González-Leija, M.; Enriquez, C.; Pedrozo-Acuña, A.; Salles, P.

    2014-12-01

    A comprehensive field experiment devoted to the study of coastal processes on a micro-tidal beach was conducted from March 30th to April 12th 2014 in Sisal, Yucatán México. Wave conditions in the study area are controlled by local (i.e., sea-breezes) and meso-scale (i.e., Nortes) meteorological events. Simultaneous measurements of waves, tides, winds, currents, sediment transport, runup, and beach morphology were obtained in this experiment. Very dense nearshore instrumentation arrays allow us the study of the cross-/along- shore variability of surf/swash zone dynamics during different forcing conditions. Strong sea-breeze wind events produced a diurnal cycle with a maximum wind speed of 14 m/s. The persistent sea-breeze system forces small-amplitude (Hs<1 m) short-period (Tp<4 s) NE waves approaching with a high incidence wave angle. These wave conditions drive westward alongshore currents of up to 0.6 m/s in the inner surf zone and hence produce an active sediment transport in the swash zone. On the other hand, the more energetic (Hs>1 m) Norte event, lasting 48 hours, reached the coast on April 8th generating a long-period swell (Tp>10 s) arriving from the NNW. This event induced an eastward net sediment transport across a wide surf zone. However, long-term observations of sand impoundment at a groin located near the study area suggests that the net sediment transport in the northern Yucatan peninsula is controlled by sea-breeze events and hence swash zone dynamics play an important role in the net sediment budget of this region. A comparative study of surf and swash zone dynamics during both sea-breeze and Norte events will be presented. The Institute of Engineering of UNAM, throughout an International Collaborative Project with the University of Delaware, and CONACYT (CB-167692) provided financial support. The first author acknowledges ONR Global for providing financial support throughout the Visiting Scientist Program.

  11. Phased Array Theory and Technology

    DTIC Science & Technology

    1981-07-01

    Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays

  12. Pixel electronic noise as a function of position in an active matrix flat panel imaging array

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Mohammad Y.; Wu, Dali; Karim, Karim S.

    2010-04-01

    We present an analysis of output referred pixel electronic noise as a function of position in the active matrix array for both active and passive pixel architectures. Three different noise sources for Active Pixel Sensor (APS) arrays are considered: readout period noise, reset period noise and leakage current noise of the reset TFT during readout. For the state-of-the-art Passive Pixel Sensor (PPS) array, the readout noise of the TFT switch is considered. Measured noise results are obtained by modeling the array connections with RC ladders on a small in-house fabricated prototype. The results indicate that the pixels in the rows located in the middle part of the array have less random electronic noise at the output of the off-panel charge amplifier compared to the ones in rows at the two edges of the array. These results can help optimize for clearer images as well as help define the region-of-interest with the best signal-to-noise ratio in an active matrix digital flat panel imaging array.

  13. Gravity waves and instabilities in the lower and middle atmosphere

    NASA Technical Reports Server (NTRS)

    Klostermeyer, Juergen

    1989-01-01

    Some basic aspects of mesoscale and small-scale gravity waves and instability mechanisms are discussed. Internal gravity waves with wavelengths between ten and less than one kilometer and periods between several hours and several minutes appear to play a central role in atmospheric wavenumber and frequency spectra. Therefore, the author discusses the propagation of gravity waves in simplified atmospheric models. Their interaction with the wind as well as their mutual interaction and stability mechanisms based on these processes are discussed. Mesosphere stratosphere troposphere radar observations showing the relevant hydrodynamic processes are stressed.

  14. Mesoscale spiral vortex embedded within a Lake Michigan snow squall band - High resolution satellite observations and numerical model simulations

    NASA Technical Reports Server (NTRS)

    Lyons, Walter A.; Keen, Cecil S.; Hjelmfelt, Mark; Pease, Steven R.

    1988-01-01

    It is known that Great Lakes snow squall convection occurs in a variety of different modes depending on various factors such as air-water temperature contrast, boundary-layer wind shear, and geostrophic wind direction. An exceptional and often neglected source of data for mesoscale cloud studies is the ultrahigh resolution multispectral data produced by Landsat satellites. On October 19, 1972, a clearly defined spiral vortex was noted in a Landsat-1 image near the southern end of Lake Michigan during an exceptionally early cold air outbreak over a still very warm lake. In a numerical simulation using a three-dimensional Eulerian hydrostatic primitive equation mesoscale model with an initially uniform wind field, a definite analog to the observed vortex was generated. This suggests that intense surface heating can be a principal cause in the development of a low-level mesoscale vortex.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekman, Axel A.; Chen, Jian-Hua; Guo, Jessica

    In the context of cell biology, the term mesoscale describes length scales ranging from that of an individual cell, down to the size of the molecular machines. In this spatial regime, small building blocks self-organise to form large, functional structures. A comprehensive set of rules governing mesoscale self-organisation has not been established, making the prediction of many cell behaviours difficult, if not impossible. Our knowledge of mesoscale biology comes from experimental data, in particular, imaging. Here, we explore the application of soft X-ray tomography (SXT) to imaging the mesoscale, and describe the structural insights this technology can generate. We alsomore » discuss how SXT imaging is complemented by the addition of correlative fluorescence data measured from the same cell. This combination of two discrete imaging modalities produces a 3D view of the cell that blends high-resolution structural information with precise molecular localisation data.« less

  16. Retrieving Mesoscale Vertical Velocities along the Antarctic Circumpolar Current from a Combination of Satellite and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Buongiorno Nardelli, B.; Iudicone, D.; Cotroneo, Y.; Zambianchi, E.; Rio, M. H.

    2016-02-01

    In the framework of the Italian National Program on Antarctic Research (PNRA), an analysis of the mesoscale dynamics along the Antarctic Circumpolar Current has been carried out starting from a combination of satellite and in situ observations. More specifically, state-of-the-art statistical techniques have been used to combine remotely-sensed sea surface temperature, salinity and absolute dynamical topography with in situ Argo data, providing mesoscale-resolving 3D tracers and geostrophic velocity fields. The 3D reconstruction has been validated with independent data collected during PNRA surveys. These data are then used to diagnose the vertical exchanges in the Southern Ocean through a generalized version of the Omega equation. Intense vertical motion (O(100 m/day)) is found along the ACC, upstream/downstream of its meanders, and within mesoscale eddies, where multipolar vertical velocity patterns are generally observed.

  17. Interactive information processing for NASA's mesoscale analysis and space sensor program

    NASA Technical Reports Server (NTRS)

    Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.

    1985-01-01

    The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.

  18. An analog of photon-assisted tunneling in a periodically modulated waveguide array

    PubMed Central

    Li, Liping; Luo, Xiaobing; Yang, Xiaoxue; Wang, Mei; Lü, Xinyou; Wu, Ying

    2016-01-01

    We theoretically report an analog of photon-assisted tunneling (PAT) originated from dark Floquet state in a periodically driven lattice array without a static biased potential by studying a three-channel waveguide system in a non-high-frequency regime. This analog of PAT can be achieved by only periodically modulating the top waveguide and adjusting the distance between the bottom and its adjacent waveguide. It is numerically shown that the PAT resonances also exist in the five-channel waveguide system and probably exist in the waveguide arrays with other odd numbers of waveguides, but they will become weak as the number of waveguides increases. With origin different from traditional PAT, this type of PAT found in our work is closely linked to the existence of the zero-energy (dark) Floquet states. It is readily observable under currently accessible experimental conditions and may be useful for controlling light propagation in waveguide arrays. PMID:27767189

  19. Noise Attenuation Performance of a Helmholtz Resonator Array Consist of Several Periodic Parts

    PubMed Central

    Wu, Dizi; Zhang, Nan; Mak, Cheuk Ming; Cai, Chenzhi

    2017-01-01

    The acoustic performance of the ducted Helmholtz resonator (HR) system is analyzed theoretically and numerically. The periodic HR array could provide a wider noise attenuation band due to the coupling of the Bragg reflection and the HR’s resonance. However, the transmission loss achieved by a periodic HR array is mainly dependent on the number of HRs, which restricted by the available space in the longitudinal direction of the duct. The full distance along the longitudinal direction of the duct for HR’s installation is sometimes unavailable in practical applications. Only several pieces of the duct may be available for the installation. It is therefore that this paper concentrates on the acoustic performance of a HR array consisting of several periodic parts. The transfer matrix method and the Bragg theory are used to investigate wave propagation in the duct. The theoretical prediction results show good agreement with the Finite Element Method (FEM) simulation results. The present study provides a practical way in noise control application of ventilation ductwork system by utilizing the advantage of periodicity with the limitation of available completed installation length for HRs. PMID:28471383

  20. Color filter array design based on a human visual model

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Reeves, Stanley J.

    2004-05-01

    To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.

  1. A Fourier Method for Sidelobe Reduction in Equally Spaced Linear Arrays

    NASA Astrophysics Data System (ADS)

    Safaai-Jazi, Ahmad; Stutzman, Warren L.

    2018-04-01

    Uniformly excited, equally spaced linear arrays have a sidelobe level larger than -13.3 dB, which is too high for many applications. This limitation can be remedied by nonuniform excitation of array elements. We present an efficient method for sidelobe reduction in equally spaced linear arrays with low penalty on the directivity. The method involves the following steps: construction of a periodic function containing only the sidelobes of the uniformly excited array, calculation of the Fourier series of this periodic function, subtracting the series from the array factor of the original uniformly excited array after it is truncated, and finally mitigating the truncation effects which yields significant increase in sidelobe level reduction. A sidelobe reduction factor is incorporated into element currents that makes much larger sidelobe reductions possible and also allows varying the sidelobe level incrementally. It is shown that such newly formed arrays can provide sidelobe levels that are at least 22.7 dB below those of the uniformly excited arrays with the same size and number of elements. Analytical expressions for element currents are presented. Radiation characteristics of the sidelobe-reduced arrays introduced here are examined, and numerical results for directivity, sidelobe level, and half-power beam width are presented for example cases. Performance improvements over popular conventional array synthesis methods, such as Chebyshev and linear current tapered arrays, are obtained with the new method.

  2. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    NASA Astrophysics Data System (ADS)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that can be used to influence the properties of mesoscale single crystal superlattices, such that they exhibit either plasmonic absorption or photonic scattering. This concept is generalized through simulation, which demonstrates that the crystal habit (size, shape, and morphology) is a powerful design parameter for optical properties in mesoscale nanoparticle assemblies. Finally, chapter 7 summarizes these data and their impact, and puts them in context regarding future opportunities. This work presents a comprehensive demonstration that the optical properties of nanoparticle-based architectures can be precisely controlled and deliberately designed a priori using the unique programmability of DNA and the use of several levels of predictive electromagnetic theory.

  3. Cyberinfrastructure to support Real-time, End-to-End, High Resolution, Localized Forecasting

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.; Lindholm, D.; Baltzer, T.; Domenico, B.

    2004-12-01

    From natural disasters such as flooding and forest fires to man-made disasters such as toxic gas releases, the impact of weather-influenced severe events on society can be profound. Understanding, predicting, and mitigating such local, mesoscale events calls for a cyberinfrastructure to integrate multidisciplinary data, tools, and services as well as the capability to generate and use high resolution data (such as wind and precipitation) from localized models. The need for such end to end systems -- including data collection, distribution, integration, assimilation, regionalized mesoscale modeling, analysis, and visualization -- has been realized to some extent in many academic and quasi-operational environments, especially for atmospheric sciences data. However, many challenges still remain in the integration and synthesis of data from multiple sources and the development of interoperable data systems and services across those disciplines. Over the years, the Unidata Program Center has developed several tools that have either directly or indirectly facilitated these local modeling activities. For example, the community is using Unidata technologies such as the Internet Data Distribution (IDD) system, Local Data Manger (LDM), decoders, netCDF libraries, Thematic Realtime Environmental Distributed Data Services (THREDDS), and the Integrated Data Viewer (IDV) in their real-time prediction efforts. In essence, these technologies for data reception and processing, local and remote access, cataloging, and analysis and visualization coupled with technologies from others in the community are becoming the foundation of a cyberinfrastructure to support an end-to-end regional forecasting system. To build on these capabilities, the Unidata Program Center is pleased to be a significant contributor to the Linked Environments for Atmospheric Discovery (LEAD) project, a NSF-funded multi-institutional large Information Technology Research effort. The goal of LEAD is to create an integrated and scalable framework for identifying, accessing, preparing, assimilating, predicting, managing, analyzing, mining, and visualizing a broad array of meteorological data and model output, independent of format and physical location. To that end, LEAD will create a series of interconnected, heterogeneous Grid environments to provide a complete framework for mesoscale research, including a set of integrated Grid and Web Services. This talk will focus on the transition from today's end-to-end systems into the types of systems that the LEAD project envisions and the multidisciplinary research problems they will enable.

  4. Wind-driven Ocean Circulation and the Spatial-temporal Variability of Dissolved Inorganic Carbon in the Gulf of Tehuantepec, North Eastern Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Chapa, C.; Beier, E.; Durazo, R.; Martin Hernandez-Ayon, J. M.; Alin, S. R.; Lopez-Perez, A.

    2016-12-01

    The relationship between the surface enrichment of dissolved inorganic carbon (DIC) and wind variability and circulation in the Gulf of Tehuantepec (GT) was examined from satellite images and in situ data from three cruises (June 2010; April and November 2013). Monthly mean wind climatologies (and derived variables), sea surface temperature and sea surface height anomaly fields were analyzed in the GT and part of the NETP. Signal decomposition according to circulation scales (seasonal, inter-annual, mesoscale) was performed using harmonic analysis for the seasonal components, and empirical orthogonal functions for the residuals, applied to satellite sea-level anomaly data. The results show that wind is the main driving force of the variability in the GT. Mesoscale is the variable with the highest percent of local variance (25-75%), due mainly to mesoscale eddies, followed by seasonality (20-55%), and finally the inter-annual signal (10-30%), dominated by ENSO. Mesoscale and seasonality prevailed during the samplings. The changes in circulation led to variations in the concentration of surface DIC ranging between 100 and 300 µmol kg-1 (436 µatm) due to Ekman pumping. The largest enrichment occurred in November 2013 after a strong northerly wind event. However, the predominance of mesoscale events suggests that changes in dissolved inorganic carbon resulting from mesoscale- derived Ekman pumping may become important in the long term and with a larger spatial and temporal coverage. The results suggest that the seasonal cycle of dissolved inorganic carbon may be linked to wind seasonality.

  5. Mars-GRAM Applications for Mars Science Laboratory Mission Site Selection Processes

    NASA Technical Reports Server (NTRS)

    Justh, Hilary; Justus, C. G.

    2007-01-01

    An overview is presented of the Mars-Global Reference Atmospheric Model (Mars-GRAM 2005) and its new features. One important new feature is the "auxiliary profile" option, whereby a simple input file is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Results are presented using auxiliary profiles produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) for three candidate Mars Science Laboratory (MSL) landing sites (Terby Crater, Melas Chasma, and Gale Crater). A global Thermal Emission Spectrometer (TES) database has also been generated for purposes of making 'Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude bins and 15 degree L(sub S) bins, for each of three Mars years of TES nadir data. Comparisons show reasonably good consistency between Mars-GRAM with low dust optical depth and both TES observed and mesoscale model simulated density at the three study sites. Mean winds differ by a more significant degree. Comparisons of mesoscale and TES standard deviations' with conventional Mars-GRAM values, show that Mars-GRAM density perturbations are somewhat conservative (larger than observed variability), while mesoscale-modeled wind variations are larger than Mars-GRAM model estimates. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  6. Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine

    2017-04-01

    Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.

  7. Infrasound Propagation Modeling for Explosive Yield Estimation

    NASA Astrophysics Data System (ADS)

    Howard, J. E.; Golden, P.; Negraru, P.

    2013-12-01

    This study focuses on developing methods of estimating the size or yield of HE surface explosions from local and regional infrasound measurements in the southwestern United States. A munitions disposal facility near Mina, Nevada provides a repeating ground-truth source for this study, with charge weights ranging from 870 - 3800 lbs. Detonation logs and GPS synchronized videos were obtained for a sample of shots representing the full range of weights. These are used to calibrate a relationship between charge weight and spectral level from seismic waveforms recorded at the Nevada Seismic Array (NVAR) at a distance of 36 km. Origin times and yields for the remaining shots are inferred from the seismic recordings at NVAR. Infrasound arrivals from the detonations have been continuously recorded on three four-element, small aperture infrasound arrays since late 2009. NVIAR is collocated with NVAR at a range of approximately 36 km to the northeast. FALN and DNIAR are located at ranges of 154 km to the north, and 293 km to the southeast respectively. Travel times and amplitudes for stratospheric arrivals at DNIAR show strong seasonal variability with the largest amplitudes and celerities occurring during the winter months when the stratospheric winds are favorable. Stratospheric celerities for FNIAR to the north are more consistent as they are not strongly affected by the predominantly meridional stratospheric winds. Tropospheric arrivals at all three arrays show considerable variability that does not appear to be a seasonal effect. Naval Research Laboratory Ground to Space (NRL-G2S) Mesoscale models are used to specify the atmosphere along the propagation path for each detonation. Ray-tracing is performed for each source/receiver pair to identify events for which the models closely match the travel-time observations. This subset of events is used to establish preliminary wind correction formulas using wind values from the G2S profile for the entire propagation path. These results are then compared with results for the entire data set to analyze the performance of the formulas. Full-wave hydrodynamic calculations are carried out to investigate the effects of finite-amplitude propagation, attenuation, and wind velocity on the amplitude and spectral content of the observed signals. Relationships are explored between the yields of the explosions and the period and wind corrected amplitudes of the signals recorded at various distances. The atmospheric specifications combined with propagation modeling techniques may allow propagation path effects to be better removed so that source characteristics can be extracted from the signals.

  8. Rapidly convergent quasi-periodic Green functions for scattering by arrays of cylinders—including Wood anomalies

    PubMed Central

    Fernandez-Lado, Agustin G.

    2017-01-01

    This paper presents a full-spectrum Green-function methodology (which is valid, in particular, at and around Wood-anomaly frequencies) for evaluation of scattering by periodic arrays of cylinders of arbitrary cross section—with application to wire gratings, particle arrays and reflectarrays and, indeed, general arrays of conducting or dielectric bounded obstacles under both transverse electric and transverse magnetic polarized illumination. The proposed method, which, for definiteness, is demonstrated here for arrays of perfectly conducting particles under transverse electric polarization, is based on the use of the shifted Green-function method introduced in a recent contribution (Bruno & Delourme 2014 J. Computat. Phys. 262, 262–290 (doi:10.1016/j.jcp.2013.12.047)). A certain infinite term arises at Wood anomalies for the cylinder-array problems considered here that is not present in the previous rough-surface case. As shown in this paper, these infinite terms can be treated via an application of ideas related to the Woodbury–Sherman–Morrison formulae. The resulting approach, which is applicable to general arrays of obstacles even at and around Wood-anomaly frequencies, exhibits fast convergence and high accuracies. For example, a few hundreds of milliseconds suffice for the proposed approach to evaluate solutions throughout the resonance region (wavelengths comparable to the period and cylinder sizes) with full single-precision accuracy. PMID:28413346

  9. Rapidly convergent quasi-periodic Green functions for scattering by arrays of cylinders-including Wood anomalies.

    PubMed

    Bruno, Oscar P; Fernandez-Lado, Agustin G

    2017-03-01

    This paper presents a full-spectrum Green-function methodology (which is valid, in particular, at and around Wood-anomaly frequencies) for evaluation of scattering by periodic arrays of cylinders of arbitrary cross section-with application to wire gratings, particle arrays and reflectarrays and, indeed, general arrays of conducting or dielectric bounded obstacles under both transverse electric and transverse magnetic polarized illumination. The proposed method, which, for definiteness, is demonstrated here for arrays of perfectly conducting particles under transverse electric polarization, is based on the use of the shifted Green-function method introduced in a recent contribution (Bruno & Delourme 2014 J. Computat. Phys. 262 , 262-290 (doi:10.1016/j.jcp.2013.12.047)). A certain infinite term arises at Wood anomalies for the cylinder-array problems considered here that is not present in the previous rough-surface case. As shown in this paper, these infinite terms can be treated via an application of ideas related to the Woodbury-Sherman-Morrison formulae. The resulting approach, which is applicable to general arrays of obstacles even at and around Wood-anomaly frequencies, exhibits fast convergence and high accuracies. For example, a few hundreds of milliseconds suffice for the proposed approach to evaluate solutions throughout the resonance region (wavelengths comparable to the period and cylinder sizes) with full single-precision accuracy.

  10. Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region

    NASA Astrophysics Data System (ADS)

    Hong, X.; Wang, S.; Nachamkin, J. E.

    2017-12-01

    Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.

  11. Annual Report to the Bonneville Power Administration, Reporting Period: April 2008 - February 2009 [re: "Survival and Growth in the Columbia River Plume and north California Current"].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northwest Fisheries Science Center, NOAA Fisheries; Cooperative Institute for Marine Resources Studies, Oregon State University; OGI School of Science & Engineering, Oregon Health Sciences University.

    2009-07-17

    We have made substantial progress toward our objectives outlined in our BPA supported proposal entitled 'Columbia River Basin Juvenile Salmonids: Survival and Growth in the Columbia River Plume and northern California Current' which we report on herein. During 2008, we were able to successfully conduct 3 mesoscale cruises. We also were able to conduct 7 biweekly predator cruises, along with substantial shore-based visual observations of seabirds. Detailed results of the mesoscale cruises are available in the Cruise Reports and summarized in the next section. We have taken a proactive approach to getting the results of our research to fisheries managersmore » and the general public. We have begun to make annual predictions based on ocean conditions of the relative survival of juvenile coho and Chinook salmon well before they return as adults. This is based on both biological and physical indicators that we measure during our surveys or collect from outside data sources. Examples of our predictions for 2009 and 2010 are available on the following web site: http://www.nwfsc.noaa.gov/research/divisions/fed/oeip/a-ecinhome.cfm.« less

  12. Quasi-planktonic behavior of foraging top marine predators

    NASA Astrophysics Data System (ADS)

    Della Penna, Alice; de Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; D'Ovidio, Francesco

    2015-12-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  13. Quasi-planktonic behavior of foraging top marine predators.

    PubMed

    Della Penna, Alice; De Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; d'Ovidio, Francesco

    2015-12-15

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1-100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels.

  14. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc

    2018-04-01

    In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

  15. Conformational Order in Aggregates of Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicholas E.; Kohlstedt, Kevin L.; Savoie, Brett M.

    With the abundant variety and increasing chemical complexity of conjugated poly-friers proliferating the field of organic semiconductors, it has become increasingly important to correlate the polymer molecular structure with its mesoscale conformational and morphological attributes. For instance, it is unknown which combinations of chemical moieties and periodicities predictably produce mesoscale ordering. Interestingly) not all ordered morphologies result in efficient devices. In this work we have parametrized accurate classical force-fields and used these to compute the conformational and aggregation characteristics of single strands of common conjugated polymers. Molecular dynamics trajectories are shown to reproduce experimentally observed polymeric ordering, concluding that efficientmore » organic photovoltaic devices span a range of polymer conformational classes, and suggesting that the solution-phase morphologies have far-reaching effects. Encouragingly, these simulations indicate that despite the wide-range of conformational classes present in successful devices, local molecular ordering, and not long-range crystallinity, appears to be the necessary requirement for efficient devices. Finally, we examine what makes a "good" solvent for conjugated polymers, concluding that dispersive pi-electron solvent-polymer interactions, and not the electrostatic potential of the backbone interacting with the solvent, are what primarily determine a polymer's solubility in a particular solvent, and consequently its morphological characteristics.« less

  16. The Mozambique Channel: From physics to upper trophic levels

    NASA Astrophysics Data System (ADS)

    Ternon, J. F.; Bach, P.; Barlow, R.; Huggett, J.; Jaquemet, S.; Marsac, F.; Ménard, F.; Penven, P.; Potier, M.; Roberts, M. J.

    2014-02-01

    A multidisciplinary programme, MESOBIO (Influence of mesoscale dynamics on biological productivity at multiple trophic levels in the Mozambique Channel) was undertaken in the Mozambique Channel within the framework of a scientific partnership between France and South Africa. MESOBIO focused on the signature of the highly energetic eddy dynamics in the Mozambique Channel. The Channel, which is known to be one of the most turbulent areas in the world ocean, has a great diversity of marine organisms and is the site of active pelagic fisheries. MESOBIO was mostly based on observations at sea during 12 multidisciplinary cruises between 2002 and 2010. Hydrographic measurements, sampling of biological organisms ranging from phytoplankton to top predators, and experiments on primary production and energy transfer through the food web, were conducted onboard various research vessels. The data were analysed in relation to eddy field characteristics for the periods of the cruises, including seasonal or inter-annual variability in mesoscale activity. A modelling approach was also developed within MESOBIO for both the circulation in the Channel and the biogeochemical response to eddy forcing. This paper introduces the suite of articles on the MESOBIO investigations by summarizing background knowledge for the different disciplines and the key issues that were addressed within the programme.

  17. Mesoscale Numerical Investigations of Air Traffic Emissions over the North Atlantic during SONEX Flight 8: A Case Study

    NASA Technical Reports Server (NTRS)

    Bieberbach, George, Jr.; Fuelberg, Henry E.; Thompson, Anne M.; Schmitt, Alf; Hannan, John R.; Gregory, G. L.; Kondo, Yutaka; Knabb, Richard D.; Sachse, G. W.; Talbot, R. W.

    1999-01-01

    Chemical data from flight 8 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) exhibited signatures consistent with aircraft emissions, stratospheric air, and surface-based pollution. These signatures are examined in detail, focussing on the broad aircraft emission signatures that are several hundred kilometers in length. A mesoscale meteorological model provides high resolution wind data that are used to calculate backward trajectories arriving at locations along the flight track. These trajectories are compared to aircraft locations in the North Atlantic Flight Corridor over a 27-33 hour period. Time series of flight level NO and the number of trajectory/aircraft encounters within the NAFC show excellent agreement. Trajectories arriving within the stratospheric and surface-based pollution regions are found to experience very few aircraft encounters. Conversely, there are many trajectory/aircraft encounters within the two chemical signatures corresponding to aircraft emissions. Even many detailed fluctuations of NO within the two aircraft signature regions correspond to similar fluctuations in aircraft encountered during the previous 27-33 hours. Results indicate that high resolution meteorological modeling, when coupled with detailed aircraft location data, is useful for understanding chemical signatures from aircraft emissions at scales of several hundred kilometers.

  18. Mapping turbidity patterns in the Po river prodelta using multi-temporal Landsat 8 imagery

    NASA Astrophysics Data System (ADS)

    Braga, Federica; Zaggia, Luca; Bellafiore, Debora; Bresciani, Mariano; Giardino, Claudia; Lorenzetti, Giuliano; Maicu, Francesco; Manzo, Ciro; Riminucci, Francesco; Ravaioli, Mariangela; Brando, Vittorio Ernesto

    2017-11-01

    Thirty-meters resolution turbidity maps derived from Landsat 8 (L8) images were used to investigate spatial and temporal variations of suspended matter patterns and distribution in the area of Po River prodelta (Italy) in the period from April 2013 to October 2015. The main focus of the work was the study of small and sub-mesoscale structures, linking them to the main forcings that control the fate of suspended sediments in the northern Adriatic Sea. A number of hydrologic and meteorological events of different extent and duration was captured by L8 data, quantifying how river discharge and meteo-marine conditions modulate the distribution of turbidity on- and off-shore. At sub-mesoscale, peculiar patterns and smaller structures, as multiple plumes and sand bars, were identified thanks to the unprecedented spatial and radiometric resolution of L8 sensor. The use of these satellite-derived products provides interesting information, particularly on turbidity distribution among the different delta distributaries in specific fluvial regimes that fills the knowledge gap of traditional studies based only on in situ data. A novel approach using satellite data within model implementation is then suggested.

  19. Use of Satellite Data Assimilation to Infer Land Surface Thermal Inertia

    NASA Technical Reports Server (NTRS)

    Lapenta, William; McNider, Richard T.; Biazar, Arastoo; Suggs, Ron; Jedlovec, Gary; Dembek, Scott

    2002-01-01

    There are two important but observationally uncertain parameters in the grid averaged surface energy budgets of mesoscale models - surface moisture availability and thermal heat capacity. A technique has been successfully developed for assimilating Geostationary Operational Environmental Satellite (GOES) skin temperature tendencies during the mid-morning time frame to improve specification of surface moisture. In a new application of the technique, the use of satellite skin temperature tendencies in early evening is explored to improve specification of the surface thermal heat capacity. Together, these two satellite assimilation constraints have been shown to significantly improve the characterization of the surface energy budget of a mesoscale model on fine spatial scales. The GOES assimilation without the adjusted heat capacity was run operationally during the International H2O Project on a 12-km grid. This paper presents the results obtained when using both the moisture availability and heat capacity retrievals in concert. Preliminary results indicate that retrieved moisture availability alone improved the verification statistics of 2-meter temperature and dew point forecasts. Results from the 1.5 month long study period using the bulk heat capacity will be presented at the meeting.

  20. Use of the 1991 ASCOT field study data in a mesoscale model employing a four-dimensional data assimilation technique

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Osteen, B. Lance

    In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the US Department of Energy's (DOE) 1991 Atmospheric Studies in COmplex Terrain (ASCOT) field study along the front range of the Rockies in Colorado. The main objective of this study is to determine the ability of the model to predict small-scale circulations influenced by terrain, such as drainage flows, and assess the impact of data assimilation on the numerical results. In contrast to previous studies in which the smallest horizontal grid spacing was 10 km and 8 km, data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km. The prognostic forecasts made by RAMS are evaluated by comparing simulations that employ static initial conditions, with simulations that incorporate continuous data assimilation, and data assimilation for a fixed period of time (dynamic initialization). This paper will also elaborate on the application and limitation of the Newtonian relaxation technique in limited-area mesoscale models with a relatively small grid spacing.

  1. An empirical relationship between mesoscale carbon monoxide concentrations and vehicular emission rates : final report.

    DOT National Transportation Integrated Search

    1979-01-01

    Presented is a relatively simple empirical equation that reasonably approximates the relationship between mesoscale carbon monoxide (CO) concentrations, areal vehicular CO emission rates, and the meteorological factors of wind speed and mixing height...

  2. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > Mesoscale Modeling > PEOPLE Home Mission Models R & D Collaborators Documentation Change Log People Calendar References Verification/Diagnostics Tropical & Extratropical Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING PEOPLE

  3. Scientific goals of the Cooperative Multiscale Experiment (CME)

    NASA Technical Reports Server (NTRS)

    Cotton, William

    1993-01-01

    Mesoscale Convective Systems (MCS) form the focus of CME. Recent developments in global climate models, the urgent need to improve the representation of the physics of convection, radiation, the boundary layer, and orography, and the surge of interest in coupling hydrologic, chemistry, and atmospheric models of various scales, have emphasized the need for a broad interdisciplinary and multi-scale approach to understanding and predicting MCS's and their interactions with processes at other scales. The role of mesoscale systems in the large-scale atmospheric circulation, the representation of organized convection and other mesoscale flux sources in terms of bulk properties, and the mutually consistent treatment of water vapor, clouds, radiation, and precipitation, are all key scientific issues concerning which CME will seek to increase understanding. The manner in which convective, mesoscale, and larger scale processes interact to produce and organize MCS's, the moisture cycling properties of MCS's, and the use of coupled cloud/mesoscale models to better understand these processes, are also major objectives of CME. Particular emphasis will be placed on the multi-scale role of MCS's in the hydrological cycle and in the production and transport of chemical trace constituents. The scientific goals of the CME consist of the following: understand how the large and small scales of motion influence the location, structure, intensity, and life cycles of MCS's; understand processes and conditions that determine the relative roles of balanced (slow manifold) and unbalanced (fast manifold) circulations in the dynamics of MCS's throughout their life cycles; assess the predictability of MCS's and improve the quantitative forecasting of precipitation and severe weather events; quantify the upscale feedback of MCS's to the large-scale environment and determine interrelationships between MCS occurrence and variations in the large-scale flow and surface forcing; provide a data base for initialization and verification of coupled regional, mesoscale/hydrologic, mesoscale/chemistry, and prototype mesoscale/cloud-resolving models for prediction of severe weather, ceilings, and visibility; provide a data base for initialization and validation of cloud-resolving models, and for assisting in the fabrication, calibration, and testing of cloud and MCS parameterization schemes; and provide a data base for validation of four dimensional data assimilation schemes and algorithms for retrieving cloud and state parameters from remote sensing instrumentation.

  4. Evaluation of space station solar array technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.

  5. Resonance spectra of diabolo optical antenna arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu; Simpkins, Blake

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlatedmore » to the shift of the resonance wavelength.« less

  6. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2015-12-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Dispersion and Cluster Scales in the Ocean

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D., Jr.; Chang, H.; Huntley, H.; Carlson, D. F.; Mensa, J. A.; Poje, A. C.; Fox-Kemper, B.

    2017-12-01

    Ocean flow space scales range from centimeters to thousands of kilometers. Because of their large Reynolds number these flows are considered turbulent. However, because of rotation and stratification constraints they do not conform to classical turbulence scaling theory. Mesoscale and large-scale motions are well described by geostrophic or "2D turbulence" theory, however extending this theory to submesoscales has proved to be problematic. One obvious reason is the difficulty in obtaining reliable data over many orders of magnitude of spatial scales in an ocean environment. The goal of this presentation is to provide a preliminary synopsis of two recent experiments that overcame these obstacles. The first experiment, the Grand LAgrangian Deployment (GLAD) was conducted during July 2012 in the eastern half of the Gulf of Mexico. Here approximately 300 GPS-tracked drifters were deployed with the primary goal to determine whether the relative dispersion of an initially densely clustered array was driven by processes acting at local pair separation scales or by straining imposed by mesoscale motions. The second experiment was a component of the LAgrangian Submesoscale Experiment (LASER) conducted during the winter of 2016. Here thousands of bamboo plates were tracked optically from an Aerostat. Together these two deployments provided an unprecedented data set on dispersion and clustering processes from 1 to 106 meter scales. Calculations of statistics such as two point separations, structure functions, and scale dependent relative diffusivities showed: inverse energy cascade as expected for scales above 10 km, a forward energy cascade at scales below 10 km with a possible energy input at Langmuir circulation scales. We also find evidence from structure function calculations for surface flow convergence at scales less than 10 km that account for material clustering at the ocean surface.

  8. DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL

    EPA Science Inventory

    Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...

  9. Mesoscale Waves in Jupiter Atmosphere

    NASA Image and Video Library

    1997-09-07

    These two images of Jupiter atmosphere were taken with the violet filter of the Solid State Imaging CCD system aboard NASA Galileo spacecraft. Mesoscale waves can be seen in the center of the upper image. The images were obtained on June 26, 1996.

  10. NASA/MSFC FY-85 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W. (Compiler); Porter, F. (Compiler)

    1985-01-01

    The two main areas of focus for the research program are global scale processes and mesoscale processes. Geophysical fluid processes, satellite doppler lidar, satellite data analysis, atmospheric electricity, doppler lidar wind research, and mesoscale modeling are among the topics covered.

  11. Space Technology 5 Multi-point Observations of Field-aligned Currents: Temporal Variability of Meso-Scale Structures

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  12. Mesoscale characterization of local property distributions in heterogeneous electrodes

    NASA Astrophysics Data System (ADS)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.

    2018-05-01

    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  13. Deviations from Equilibrium in Daytime Atmospheric Boundary Layer Turbulence arising from Nonstationary Mesoscale Forcing

    NASA Astrophysics Data System (ADS)

    Jayaraman, Balaji; Brasseur, James; Haupt, Sue; Lee, Jared

    2016-11-01

    LES of the "canonical" daytime atmospheric boundary layer (ABL) over flat topography is developed as an equilibrium ABL with steady surface heat flux, Q0 and steady unidirectional "geostrophic" wind vector Vg above a capping inversion. A strong inversion layer in daytime ABL acts as a "lid" that sharply separates 3D "microscale" ABL turbulence at the O(10) m scale from the quasi-2D "mesoscale" turbulent weather eddies (O(100) km scale). While "canonical" ABL is equilibrium, quasi-stationary and characterized statistically by the ratio of boundary layer depth (zi) to Obukhov length scale (- L) , the real mesoscale influences (Ug and Q0) that force a true daytime ABL are nonstationary at both diurnal and sub-diurnal time scales. We study the consequences of this non-stationarity on ABL dynamics by forcing ABL LES with realistic WRF simulations over flat Kansas terrain. Considering horizontal homogeneity, we relate the mesoscale and geostrophic winds, Ug and Vg, and systematically study the ABL turbulence response to non-steady variations in Q0 and Ug. We observe significant deviations from equilibrium, that manifest in many ways, such as the formation of "roll" eddies purely from changes in mesoscale wind direction that are normally associated with increased surface heat flux. Support from DOE. Compute resources from Penn State ICS.

  14. Talbot effect of quasi-periodic grating.

    PubMed

    Zhang, Chong; Zhang, Wei; Li, Furui; Wang, Junhong; Teng, Shuyun

    2013-07-20

    Theoretic and experimental studies of the Talbot effect of quasi-periodic gratings are performed in this paper. The diffractions of periodic and quasi-periodic square aperture arrays in Fresnel fields are analyzed according to the scalar diffraction theory. The expressions of the diffraction intensities of two types of quasi-periodic gratings are deduced. Talbot images of the quasi-periodic gratings are predicted to appear at multiple certain distances. The quasi-periodic square aperture arrays are produced with the aid of a liquid crystal light modulator, and the self-images of the quasi-periodic gratings are measured successfully in the experiment. This study indicates that even a structure in short-range disorder may take on the self-imaging effect in a Fresnel field.

  15. Encounter with mesoscale eddies enhances survival to settlement in larval coral reef fishes

    PubMed Central

    Shulzitski, Kathryn; Sponaugle, Su; Hauff, Martha; Walter, Kristen D.; Cowen, Robert K.

    2016-01-01

    Oceanographic features, such as eddies and fronts, enhance and concentrate productivity, generating high-quality patches that dispersive marine larvae may encounter in the plankton. Although broad-scale movement of larvae associated with these features can be captured in biophysical models, direct evidence of processes influencing survival within them, and subsequent effects on population replenishment, are unknown. We sequentially sampled cohorts of coral reef fishes in the plankton and nearshore juvenile habitats in the Straits of Florida and used otolith microstructure analysis to compare growth and size-at-age of larvae collected inside and outside of mesoscale eddies to those that survived to settlement. Larval habitat altered patterns of growth and selective mortality: Thalassoma bifasciatum and Cryptotomus roseus that encountered eddies in the plankton grew faster than larvae outside of eddies and likely experienced higher survival to settlement. During warm periods, T. bifasciatum residing outside of eddies in the oligotrophic Florida Current experienced high mortality and only the slowest growers survived early larval life. Such slow growth is advantageous in nutrient poor habitats when warm temperatures increase metabolic demands but is insufficient for survival beyond the larval stage because only fast-growing larvae successfully settled to reefs. Because larvae arriving to the Straits of Florida from distant sources must spend long periods of time outside of eddies, our results indicate that they have a survival disadvantage. High productivity features such as eddies not only enhance the survival of pelagic larvae, but also potentially increase the contribution of locally spawned larvae to reef populations. PMID:27274058

  16. Square and Rectangular Arrays from Directed Assembly of Sphere-forming Diblock Copolymers in Thin Films

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Nagpal, Umang; Liao, Wen; de Pablo, Juan; Nealey, Paul

    2010-03-01

    Patterns of square and rectangular arrays with nanoscale dimensions are scientifically and technologically important. Fabrication of square array patterns in thin films has been demonstrated by directed assembly of cylinder-forming diblock copolymers on chemically patterned substrates, supramolecular assembly of diblock copolymers, and self-assembly of triblock terpolymers. However, a macroscopic area of square array patterns with long-range order has not been achieved, and the fabrication of rectangular arrays has not been reported so far. Here we report a facile approach for fabricating patterns of square and rectangular arrays by directing the assembly of sphere-forming diblock copolymers on chemically patterned substrates. On stripe patterns, a square arrangement of half spheres, corresponding to the (100) plane of the body-centred cubic (BCC) lattice, formed on film surfaces. When the underlying pattern periods mismatched with the copolymer period, the square pattern could be stretched (up to ˜60%) or compressed (˜15%) to form rectangular arrays. Monte Carlo simulations have been further used to verify the experimental results and the 3-dimensional arrangements of spheres.

  17. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Angevine, W. M.; Ahmadov, R.; Kim, S.-W.; Evan, S.; McKeen, S. A.; Hsie, E.-Y.; Frost, G. J.; Neuman, J. A.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Holloway, J.; Brown, S. S.; Nowak, J. B.; Roberts, J. M.; Wofsy, S. C.; Santoni, G. W.; Oda, T.; Trainer, M.

    2013-04-01

    We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May-June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% in LA County and by 37% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% in LA County and by 27% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 Tg yr-1 in SoCAB. A flight during ITCT (Intercontinental Transport and Chemical Transformation) in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% in LA County but decreased by 4% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, a gridded CARB inventory and the posterior inventories derived in this study. The biases in WRF-Chem ozone were reduced and correlations were increased using the posterior from this study compared with simulations with the two bottom-up inventories, suggesting that improving the spatial distribution of ozone precursor surface emissions is also important in mesoscale chemistry simulations.

  18. URBAN MORPHOLOGICAL ANALYSIS FOR MESOSCALE METEOROLOGICAL AND DISPERSION MODELING APPLICATIONS: CURRENT ISSUES

    EPA Science Inventory

    Representing urban terrain characteristics in mesoscale meteorological and dispersion models is critical to produce accurate predictions of wind flow and temperature fields, air quality, and contaminant transport. A key component of the urban terrain representation is the charac...

  19. MESOSCALE AIR POLLUTION TRANSPORT IN SOUTHEAST WISCONSIN

    EPA Science Inventory

    This research program comprised a comprehensive study of mesoscale meteorological regimes on the western shore of Lake Michigan and their effect upon air pollution dispersion and transport. It is felt that the results are applicable in a generic way to other mid-latitude coastal ...

  20. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar The Mesoscale Modeling Branch conducts a program of research and development in support of the prediction. This research and development includes mesoscale four-dimensional data assimilation of domestic

  1. Fly's eye condenser based on chirped microlens arrays

    NASA Astrophysics Data System (ADS)

    Wippermann, Frank C.; Zeitner, Uwe-D.; Dannberg, Peter; Bräuer, Andreas; Sinzinger, Stefan

    2007-09-01

    Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.

  2. Towards a rigorous mesoscale modeling of reactive flow and transport in an evolving porous medium and its applications to soil science

    NASA Astrophysics Data System (ADS)

    Ray, Nadja; Rupp, Andreas; Knabner, Peter

    2016-04-01

    Soil is arguably the most prominent example of a natural porous medium that is composed of a porous matrix and a pore space. Within this framework and in terms of soil's heterogeneity, we first consider transport and fluid flow at the pore scale. From there, we develop a mechanistic model and upscale it mathematically to transfer our model from the small scale to that of the mesoscale (laboratory scale). The mathematical framework of (periodic) homogenization (in principal) rigorously facilitates such processes by exactly computing the effective coefficients/parameters by means of the pore geometry and processes. In our model, various small-scale soil processes may be taken into account: molecular diffusion, convection, drift emerging from electric forces, and homogeneous reactions of chemical species in a solvent. Additionally, our model may consider heterogeneous reactions at the porous matrix, thus altering both the porosity and the matrix. Moreover, our model may additionally address biophysical processes, such as the growth of biofilms and how this affects the shape of the pore space. Both of the latter processes result in an intrinsically variable soil structure in space and time. Upscaling such models under the assumption of a locally periodic setting must be performed meticulously to preserve information regarding the complex coupling of processes in the evolving heterogeneous medium. Generally, a micro-macro model emerges that is then comprised of several levels of couplings: Macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) include averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time- and space dependent and its geometry inherits information from the transport equation's solutions. Numerical computations using mixed finite elements and potentially random initial data, e.g. that of porosity, complement our theoretical results. Our investigations contribute to the theoretical understanding of the link between soil formation and soil functions. This general framework may be applied to various problems in soil science for a range of scales, such as the formation and turnover of microaggregates or soil remediation.

  3. Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing

    2018-04-01

    The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

  4. Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals.

    PubMed

    Li, Yunfeng; Prince, Elisabeth; Cho, Sangho; Salari, Alinaghi; Mosaddeghian Golestani, Youssef; Lavrentovich, Oleg D; Kumacheva, Eugenia

    2017-02-28

    An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.

  5. Field study of the air quality impact of Route I-195 at Richmond, Virginia.

    DOT National Transportation Integrated Search

    1982-01-01

    This investigation attempted to assess the mesoscale and microscale effects of the recently built Interstate Route I-195 in Richmond, Virginia. Measurement of the air quality before and after completion of the expressway showed that on the mesoscale,...

  6. Using a Network of Boundary Layer Profilers to Characterize the Atmosphere at a Major Spaceport

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Lambert, Winifred; Merceret, Francis; Ward, Jennifer

    2006-01-01

    Space launch, landing, and ground operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida are highly sensitive to mesoscale weather conditions throughout the year. Due to the complex land-water interfaces and the important role of mesoscale circulations, a high-resolution network of five 915-MHz Doppler Radar Wind Profilers (DRWP) and 44 wind towers was installed over the KSC/CCAFS area. By using quality-controlled 915-MHz DRAT data along with the near-surface tower observations, the Applied Meteorology Unit and KSC Weather Office have studied the development and evolution of various mesoscale phenomena across KSC/CCAFS such as sea and land breezes, low-level jets, and frontal passages. This paper will present some examples of mesoscale phenomena that can impact space operations at KSC/CCAFS, focusing on the utility of the 915-MHz DRWP network in identifying important characteristics of sea/land breezes and low-level jets.

  7. Sensitivity of a mesoscale model to initial specification of relative humidity, liquid water and vertical motion

    NASA Technical Reports Server (NTRS)

    Kalb, M. W.; Perkey, D. J.

    1985-01-01

    The influence of synoptic scale initial conditions on the accuracy of mesoscale precipitation modeling is investigated. Attention is focused on the relative importance of the water vapor, cloud water, rain water, and vertical motion, with the analysis carried out using the Limited Area Mesoscale Prediction System (LAMPS). The fully moist primitive equation model has 15 levels and a terrain-following sigma coordinate system. A K-theory approach was implemented to model the planetary boundary layer. A total of 15 sensitivity simulations were run to investigate the effects of the synoptic initial conditions of the four atmospheric variables. The absence of synoptic cloud and rain water amounts in the initialization caused a 2 hr delay in the onset of precipitation. The delay was increased if synoptic-scale vertical motion was used instead of mesoscale values. Both the delays and a choice of a smoothed moisture field resulted in underestimations of the total rainfall.

  8. On the dominant impact of vertical moisture gradient on mesoscale cloud cellular organization of stratocumulus

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ackerman, A. S.; Fridlind, A. M.; Kollias, P.

    2016-12-01

    Large-eddy simulations are performed to study the mechanisms of stratocumulus organization. Precipitation tends to increase horizontal cloud scales, but is not required for cloud mesoscale organization. A study of the terms in the prognostic equation for total water mixing ratio variance shows the critical impact of vertical moisture gradient on cloud scale. For precipitating clouds, the organization originates from the negative moisture gradient in the boundary layer resulting from evaporation of precipitation. This hypothesis is supported by simulations in which thermodynamics profiles are nudged to their initial well-mixed state, which reduces cloud scales. Cold pools effect are surprisingly found to respond to rather than determine the cloud mesoscale variability. For non-precipitating clouds, organization results from turbulent transport of moisture variance originating primarily from cloud top, where dry air is entrained into the boundary layer through convection driven by cloud top longwave (LW) cooling. Both LW cooling and a moisture gradient above cloud top are essential for the growth of mesoscale fluctuations.

  9. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  10. Morphological effects on sensitivity of heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Roy, Sidhartha; Rai, Nirmal; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    The mesoscale physical response under shock loading in heterogeneous energetics is inherently linked to the microstructural characteristics. The current work demonstrates the connection between the microstructural features of porous energetic material and its sensitivity. A unified levelset based framework is developed to characterize the microstructures of a given sample. Several morphological metrics describing the mesoscale geometry of the materials are extracted using the current tool including anisotropy, tortuosity, surface to volume, nearest neighbors, size and curvature distributions. The relevant metrics among the ones extracted are identified and correlated to the mesoscale response of the energetic materials under shock loading. Two classes of problems are considered here: (a) field of idealized voids embedded in the HMX material and (b) real samples of pressed HMX. The effects of stochasticity associated with void arrangements on the sensitivity of the energetic material samples are shown. In summary, this work demonstrates the relationship between the mesoscale morphology and shock response of heterogeneous energetic materials using a levelset based framework.

  11. Formation of periodic interfacial misfit dislocation array at the InSb/GaAs interface via surface anion exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai

    The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on samplemore » grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.« less

  12. An equivalent potential vorticity theory applied to the analysis and prediction of severe storm dynamics

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Kaplan, M. L.

    1976-01-01

    Potential vorticity theory is developed in a description of an equivalent potential temperature topography, and a new theory suited to the description of scale interaction is elaborated. Macroscale triggering of ageostrophic flow fields at the mesoscale, in turn leading to release of convective instability along narrow zones at the microscale, is examined. Correlation of appreciable decrease in potential vorticity with such phenomena as cumulonimbi, tornados, and duststorms is examined. The relevance of a multiscale energy-momentum cascade in numerical prediction of severe mesoscale and microscale phenomena from radiosonde data is reviewed. Hypotheses for mesoscale dynamics are constructed.

  13. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  14. Numerical Model Studies of the Martian Mesoscale Circulations

    NASA Technical Reports Server (NTRS)

    Segal, M.; Arritt, R. W.

    1996-01-01

    Studies concerning mesoscale topographical effects on Martian flows examined low-level jets in the near equatorial latitudes and the dynamical intensification of flow by steep terrain. Continuation of work from previous years included evaluating the dissipation of cold air mass outbreaks due to enhanced sensible heat flux, further sensitivity and scaling evaluations for generalization of the characteristics of Martian mesoscale circulation caused by horizontal sensible heat-flux gradients, and evaluations of the significance that non-uniform surface would have on enhancing the polar CO2 ice sublimation during the spring. The sensitivity of maximum and minimum atmospheric temperatures to changes in wind speed, surface albedo, and deep soil temperature was investigated.

  15. Computer Simulation of the Forces Acting on the Polystyrene Probe Submerged into the Succinonitrile Near Phase Transition

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. At mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. The model of cantilever oscillations is applicable to both non-contact and "tapping" AFM. This model can be farther enhanced to describe nanoparticle manipulation by cantilever. At microscopic level tip contamination and details of tip-surface interaction can be simulated using molecular dynamics approach. Integration of mesoscale model with molecular dynamic model is discussed.

  16. Variational assimilation of VAS data into the mass model

    NASA Technical Reports Server (NTRS)

    Cram, J. M.; Kaplan, M. L.

    1984-01-01

    Experiments are reported in which VAS data at 1200, 1500, and 1800 GMT 20 July 1981 were assimilated using both the adiabatic and full physics version of the Mesoscale Atmospheric Simulation System (MASS). A nonassimilation forecast is compared with forecasts assimilating temperature gradients only and forecasts assimilating both temperature and humidity gradients. The effects of successive vs single assimilations are also examined. It is noted that the greatest improvements to the forecast resulted when the VAS data resolved the mesoscale structure of the temperature and relative humidity fields. When this structure was assimilated into MASS, the ensuing simulations more clearly defined a mesoscale structure in the developing instabilities.

  17. A mesoscale analysis of the pre-storm environment on the 17 June 1986 COHMEX day. [Cooperative Huntsville Meteorological Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Schudalla, Ronald L.

    1989-01-01

    The study presented utilized special mesoscale Cooperative Huntsville Meteorological Experiment (COHMEX) data to understand the evolution of the preconvective environment on June 17, 1986. Using the special mesoscale COHMEX data, several mechanisms for triggering the convection are investigated. Afternoon heating probably was a major factor as observed noontime temperatures were near the sounding-derived convection temperatures. The special surface network revealed a quasi-stationary area of convergence not aligned with the front that may be associated with the orography of the area. This study demonstrates that rapid, small scale atmospheric variations preceded convective development on June 17, 1986.

  18. Teaching Mesoscale Meteorology in the Age of the Modernized National Weather Service: A Report on the Unidata/COMET Workshop.

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Mohan K.; Murphy, Charles; Moore, James; Wetzel, Melanie; Knight, David; Ruscher, Paul; Mullen, Steve; Desouza, Russel; Hawk, Denise S.; Fulker, David

    1995-12-01

    This report summarizes discussions that took place during a Unidata Cooperative Program for Operational Meteorology, Education, and Training (COMET) workshop on Mesoscale Meteorology Instruction in the Age of the Modernized Weather Service. The workshop was held 13-17 June 1994 in Boulder, Colorado, and it was organized by the Unidata Users Committee, with help from Unidata, COMET, and the National Center for Atmospheric Research staff. The principal objective of the workshop was to assess the need for and to initiate those changes at universities that will be required if students are to learn mesoscale and synoptic meteorology more effectively in this era of rapid technological advances. Seventy-one participants took part in the workshop, which included invited lectures, breakout roundtable discussions on focused topics, electronic poster sessions, and a forum for discussing recommendations and findings in a plenary session. Leading scientists and university faculty in the area of synoptic and mesoscale meteorology were invited to share their ideas for integrating data from new observing systems, research and operational weather prediction models, and interactive computer technologies into the classroom. As a result, many useful ideas for incorporating mesoscale datasets and analysis tools into the classroom emerged. Also, recommendations for future coordinated activities to create, catalog, and distribute case study datasets were made by the attendees.

  19. Interannual variability of Danube waters propagation in summer period of 1992-2015 and its influence on the Black Sea ecosystem

    NASA Astrophysics Data System (ADS)

    Kubryakov, A. A.; Stanichny, S. V.; Zatsepin, A. G.

    2018-03-01

    The propagation of the Danube River plume has strong interannual variability that impacts the local balance of nutrients and the thermohaline structure in the western Black Sea. In the present study, we use a particle-tracking model based on satellite altimetry measurements and wind reanalysis data, as well as satellite measurements (SeaWiFS, MODIS), to investigate the interannual variability in the Danube plume pathways during the summer from 1993 to 2015. The wind conditions largely define the variability in the Danube water propagation. Relatively low-frequency variability (on periods of a week to months) in the wind stress curl modulates the intensity of the geostrophic Rim Current and related mesoscale eddy dynamics. High-frequency offshore wind-drift currents transport the plume across isobaths and provide an important transport link between shelf and offshore circulation. Inherent plume dynamics play an additional role in the near-mouth transport of the plume and its connection with offshore circulation. During the years with prevailing northeast winds ( 30% of studied cases), which are usually accompanied by increased wind curl over the Black Sea and higher Danube discharge, an alongshore southward current at the NorthWestern Shelf (NWS) is formed near the western Black Sea coast. Advected southward, the Danube waters are entrained in the Rim Current jet, which transports them along the west coast of the basin. The strong Rim Current, fewer eddies and downwelling winds substantially decrease the cross-shelf exchange of nutrients. During the years with prevailing southeastern winds ( 40%), the Rim Current is less intense. Mesoscale eddies effectively trap the Danube waters, transporting them to the deep western part of the basin. The low- and high-frequency southeastern wind-drift currents contribute significantly to cross-isobath plume transport and its connection with offshore circulation. During several years ( 15%), the Danube waters moved eastward to the west coast of Crimea. They were transported on the north periphery of the mesoscale anticyclones due to prevailing eastward wind-drift currents. During the years with hot summers, a monsoon effect induced the formation of a strong anticyclonic wind cell over the NorthWestern Shelf (NWS), and the plume moved northward ( 15%). Anticyclonic wind circulation leads to the Ekman convergence of brackish surface waters in the centre of the shelf and the formation of a baroclinic geostrophic anticyclone north of the NWS. This anticyclone traps the Danube waters and forces them to remain on the shelf for a long period of time. The impact of the propagation of the plume on the variability in chlorophyll a chlorophyll a in the NWS and the western Black Sea is analysed in this study based on satellite data.

  20. Electrosynthesis of nanofibers and nano-composite films

    DOEpatents

    Lin, Yuehe; Liang, Liang; Liu, Jun

    2006-10-17

    A method for producing an array of oriented nanofibers that involves forming a solution that includes at least one electroactive species. An electrode substrate is brought into contact with the solution. A current density is applied to the electrode substrate that includes at least a first step of applying a first substantially constant current density for a first time period and a second step of applying a second substantially constant current density for a second time period. The first and second time periods are of sufficient duration to electrically deposit on the electrode substrate an array of oriented nanofibers produced from the electroactive species. Also disclosed are films that include arrays or networks of oriented nanofibers and a method for amperometrically detecting or measuring at least one analyte in a sample.

  1. Influence of coherent mesoscale structures on satellite-based Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.

    1985-01-01

    The influence of coherent mesoscale structures on satellite based Doppler lidar wind measurements was investigated. Range dependent weighting functions and the single shot SNR of scan angle are examined and a space shuttle lidar experiment which used a fixed beam and rotating shuttle is simulated.

  2. Sensitivities of Summertime Mesoscale Circulations in the Coastal Carolinas to Modifications of the Kain–Fritsch Cumulus Parameterization

    EPA Science Inventory

    Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal...

  3. Interfacing the NRL 1-D High Vertical Resolution Aerosol Model with COAMPS

    DTIC Science & Technology

    2006-09-30

    model integrated with mesoscale meterological data to study marine boundary layer aerosol dynamics, J. Geophys. Res., in press, 2006. Hoppel, W. A...W.A. Hoppel, J.J. Shi: A one-dimensional sectional aerosol model integrated with mesoscale meterological data to study marine boundary layer aerosol

  4. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes.

    PubMed

    Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli

    2017-11-10

    Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.

  5. Statistical characterization of high-to-medium frequency mesoscale gravity waves by lidar-measured vertical winds and temperatures in the MLT

    NASA Astrophysics Data System (ADS)

    Lu, Xian; Chu, Xinzhao; Li, Haoyu; Chen, Cao; Smith, John A.; Vadas, Sharon L.

    2017-09-01

    We present the first statistical study of gravity waves with periods of 0.3-2.5 h that are persistent and dominant in the vertical winds measured with the University of Colorado STAR Na Doppler lidar in Boulder, CO (40.1°N, 105.2°W). The probability density functions of the wave amplitudes in temperature and vertical wind, ratios of these two amplitudes, phase differences between them, and vertical wavelengths are derived directly from the observations. The intrinsic period and horizontal wavelength of each wave are inferred from its vertical wavelength, amplitude ratio, and a designated eddy viscosity by applying the gravity wave polarization and dispersion relations. The amplitude ratios are positively correlated with the ground-based periods with a coefficient of 0.76. The phase differences between the vertical winds and temperatures (φW -φT) follow a Gaussian distribution with 84.2±26.7°, which has a much larger standard deviation than that predicted for non-dissipative waves ( 3.3°). The deviations of the observed phase differences from their predicted values for non-dissipative waves may indicate wave dissipation. The shorter-vertical-wavelength waves tend to have larger phase difference deviations, implying that the dissipative effects are more significant for shorter waves. The majority of these waves have the vertical wavelengths ranging from 5 to 40 km with a mean and standard deviation of 18.6 and 7.2 km, respectively. For waves with similar periods, multiple peaks in the vertical wavelengths are identified frequently and the ones peaking in the vertical wind are statistically longer than those peaking in the temperature. The horizontal wavelengths range mostly from 50 to 500 km with a mean and median of 180 and 125 km, respectively. Therefore, these waves are mesoscale waves with high-to-medium frequencies. Since they have recently become resolvable in high-resolution general circulation models (GCMs), this statistical study provides an important and timely reference for them.

  6. The influence of oceanographic scenarios on the population dynamics of demersal resources in the western Mediterranean: Hypothesis for hake and red shrimp off Balearic Islands

    NASA Astrophysics Data System (ADS)

    Massutí, Enric; Monserrat, Sebastià; Oliver, Pere; Moranta, Joan; López-Jurado, José Luis; Marcos, Marta; Hidalgo, Manuel; Guijarro, Beatriz; Carbonell, Aina; Pereda, Pilar

    2008-06-01

    The aim of the present paper is to study the relationships between some climatic indices and parental stock, recruitment and accessibility to trawl fishery of hake ( Merluccius merluccius) and red shrimp ( Aristeus antennatus) off Balearic Islands (western Mediterranean). Available annual catch per unit effort, recruitment and spawning stock biomass have been used as biological data. As environmental data, the meso-scale IDEA index and the large-scale North Atlantic Oscillation (NAO) and Mediterranean Oscillation (MO) indices have been used. To analyze possible links between these indices with the population dynamics of demersal resources, two non-linear approaches have been applied: (i) stock-recruitment relationships from Ricker and Beverton-Holt models, by sequentially incorporating environment factors; (ii) generalized additive modelling, both classical general and threshold non-additive models were considered. The latter simulate an abrupt change in explicative variables across different phases (time periods or climatic index values). The results have shown that two oceanographic scenarios around the Balearic Islands, associated with macro and meso-scale climate regimes, can influence the population dynamics of hake and red shrimp. This is especially true for recruitment, which seems to be enhanced during low NAO and IDEA indices periods. During these periods, colder-than-normal winters generate high amounts of cold Western Mediterranean Intermediate Waters (WIW) in the Gulf of Lions, which flow southwards and reach the Balearic Islands channels in spring, increasing the productivity in the area. This oceanographic scenario could also be favourable to the distribution of hake on the fishing grounds where the trawl fleet targets this species, increasing its accessibility to the fishery. Both spawning stock and abundance of red shrimp seems to be also enhanced by high MO index periods, which could reflect the increased presence of the saline and warm Levantine Intermediate Waters (LIW) in the study area, extending over the fishing grounds of this species. The proposed interactions can be useful to assess and manage these important demersal resources.

  7. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  8. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE PAGES

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  9. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  10. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power.

    PubMed

    Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  11. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    PubMed Central

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-01-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067

  12. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    PubMed Central

    Ji, Ran

    2011-01-01

    Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445

  13. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Sun, Xiaohong; Ding, Mingjie; Peng, Gangding; Qi, Yongle; Wang, Yile; Ren, Jie

    2018-01-01

    An on-chip refractive index (RI) sensor, which is based on the localized surface plasmon resonance (LSPR) of periodic gold nanorings array, is presented. The structure parameters and performance of LSPR-based sensors are optimized by analyzing and comparing the LSPR extinction spectra. The mechanism of the enhancement of plasma resonance in a ring array is discussed by the simulation results. A feasible preparation scheme of the nanorings array is proposed and verified by coating a gold film and etching on the photonic crystals. Based on the optimum sensing structure, an RI sensor is constructed with a RI sensitivity of 577 nm/refractive index unit (RIU) and a figure of merit (FOM) of 6.1, which is approximately 2 times that of previous reports.

  14. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  15. A TRMM Rainfall Estimation Method Applicable to Land Areas

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R.; Weinman, J.; Dalu, G.

    1999-01-01

    Methods developed to estimate rain rate on a footprint scale over land with the satellite-borne multispectral dual-polarization Special Sensor Microwave Imager (SSM/1) radiometer have met with limited success. Variability of surface emissivity on land and beam filling are commonly cited as the weaknesses of these methods. On the contrary, we contend a more significant reason for this lack of success is that the information content of spectral and polarization measurements of the SSM/I is limited. because of significant redundancy. As a result, the complex nature and vertical distribution C, of frozen and melting ice particles of different densities, sizes, and shapes cannot resolved satisfactorily. Extinction in the microwave region due to these complex particles can mask the extinction due to rain drops. Because of these reasons, theoretical models that attempt to retrieve rain rate do not succeed on a footprint scale. To illustrate the weakness of these models, as an example we can consider the brightness temperature measurement made by the radiometer in the 85 GHz channel (T85). Models indicate that T85 should be inversely related to the rain rate, because of scattering. However, rain rate derived from 15-minute rain gauges on land indicate that this is not true in a majority of footprints. This is also supported by the ship-borne radar observations of rain in the Tropical Oceans and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) region over the ocean. Based on these observations. we infer that theoretical models that attempt to retrieve rain rate do not succeed on a footprint scale. We do not follow the above path of rain retrieval on a footprint scale. Instead, we depend on the limited ability of the microwave radiometer to detect the presence of rain. This capability is useful to determine the rain area in a mesoscale region. We find in a given rain event that this rain area is closely related to the mesoscale-average rain rate. Based on this observation, in this study we have developed a method to estimate the mesoscale-average rain rate over land utilizing microwave radiometer data. Because of the high degree of geographic and seasonal variability in the nature and intensity of rain, this method requires some tuning with 15-minute rain gauge data on land. After tuning the method, it can be applied to an independent set of rain events that are close in time and space. We find that the mesoscale rain rates retrieved over the period of a month on land with this method shows a correlation of about 0.85 with respect to the surface rain-gauge observations. This mesoscale-average rain rate estimation method can be useful to extend the spatial and temporal coverage of the rainfall data provided by the Precipitation Radar on board the Tropical Rainfall Measuring Mission (TRMM) satellite.

  16. Holistic view to integrated climate change assessment and extreme weather adaptation in the Lake Victoria Basin East Africa

    NASA Astrophysics Data System (ADS)

    Mutua, F.; Koike, T.

    2013-12-01

    Extreme weather events have been the leading cause of disasters and damage all over the world.The primary ingredient to these disasters especially floods is rainfall which over the years, despite advances in modeling, computing power and use of new data and technologies, has proven to be difficult to predict. Also, recent climate projections showed a pattern consistent with increase in the intensity and frequency of extreme events in the East African region.We propose a holistic integrated approach to climate change assessment and extreme event adaptation through coupling of analysis techniques, tools and data. The Lake Victoria Basin (LVB) in East Africa supports over three million livelihoods and is a valuable resource to five East African countries as a source of water and means of transport. However, with a Mesoscale weather regime driven by land and lake dynamics,extreme Mesoscale events have been prevalent and the region has been on the receiving end during anomalously wet years in the region. This has resulted in loss of lives, displacements, and food insecurity. In the LVB, the effects of climate change are increasingly being recognized as a significant contributor to poverty, by its linkage to agriculture, food security and water resources. Of particular importance are the likely impacts of climate change in frequency and intensity of extreme events. To tackle this aspect, this study adopted an integrated regional, mesoscale and basin scale approach to climate change assessment. We investigated the projected changes in mean climate over East Africa, diagnosed the signals of climate change in the atmosphere, and transferred this understanding to mesoscale and basin scale. Changes in rainfall were analyzed and similar to the IPCC AR4 report; the selected three General Circulation Models (GCMs) project a wetter East Africa with intermittent dry periods in June-August. Extreme events in the region are projected to increase; with the number of wet days exceeding the 90% percentile of 1981-2000 likely to increase by 20-40% in the whole region. We also focused on short-term weather forecasting as a step towards adapting to a changing climate. This involved dynamic downscaling of global weather forecasts to high resolution with a special focus on extreme events. By utilizing complex model dynamics, the system was able to reproduce the Mesoscale dynamics well, simulated the land/lake breeze and diurnal pattern but was inadequate in some aspects. The quantitative prediction of rainfall was inaccurate with overestimation and misplacement but with reasonable occurrence. To address these shortcomings we investigated the value added by assimilating Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperature during the event. By assimilating 23GHz (sensitive to water) and 89GHz (sensitive to cloud) frequency brightness temperature; the predictability of an extreme rain weather event was investigated. The assimilation through a Cloud Microphysics Data Assimilation (CMDAS) into the weather prediction model considerably improved the spatial distribution of this event.

  17. Response of Bighead Carp and Silver Carp to repeated water gun operation in an enclosed shallow pond

    USGS Publications Warehouse

    Romine, Jason G.; Jensen, Nathan; Parsley, Michael J.; Gaugush, Robert F.; Severson, Todd J.; Hatton, Tyson W.; Adams, Ryan F.; Gaikowski, Mark P.

    2015-01-01

    The Bighead Carp Hypophthalmichthys nobilis and Silver Carp H. molitrix are nonnative species that pose a threat to Great Lakes ecosystems should they advance into those areas. Thus, technologies to impede Asian carp movement into the Great Lakes are needed; one potential technology is the seismic water gun. We evaluated the efficacy of a water gun array as a behavioral deterrent to the movement of acoustic-tagged Bighead Carp and Silver Carp in an experimental pond. Behavioral responses were evaluated by using four metrics: (1) fish distance from the water guns (D); (2) spatial area of the fish's utilization distribution (UD); (3) persistence velocity (Vp); and (4) number of times a fish transited the water gun array. For both species, average D increased by 10 m during the firing period relative to the pre-firing period. During the firing period, the spatial area of use within the pond decreased. Carp were located throughout the pond during the pre-firing period but were concentrated in the north end of the pond during the firing period, thus reducing their UDs by roughly 50%. Overall, Vp decreased during the firing period relative to the pre-firing period, as fish movement became more tortuous and confined, suggesting that the firing of the guns elicited a change in carp behavior. The water gun array was partially successful at impeding carp movement, but some fish did transit the array. Bighead Carp moved past the guns a total of 78 times during the pre-firing period and 15 times during the firing period; Silver Carp moved past the guns 96 times during the pre-firing period and 13 times during the firing period. Although the water guns did alter carp behavior, causing the fish to move away from the guns, this method was not 100% effective as a passage deterrent.

  18. Distributing coil elements in three dimensions enhances parallel transmission multiband RF performance: A simulation study in the human brain at 7 Tesla.

    PubMed

    Wu, Xiaoping; Tian, Jinfeng; Schmitter, Sebastian; Vaughan, J Tommy; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2016-06-01

    We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Mesoscale mapping of available solar energy at the earth's surface by use of satellites

    NASA Technical Reports Server (NTRS)

    Hiser, H. W.; Senn, H. V.

    1980-01-01

    A method is presented for use of cloud images in the visual spectrum from the SMS/GOES geostationary satellites to determine the hourly distribution of sunshine on the mesoscale. Cloud coverage and density as a function of time of day and season are evaluated through the use of digital data processing techniques. Seasonal geographic distributions of cloud cover/sunshine are converted to joules of solar radiation received at the earth's surface through relationships developed from long-term measurements of these two parameters at six widely distributed stations. The technique can be used to generate maps showing the geographic distribution of total solar radiation on the mesoscale which is received at the earth's surface.

  20. Coupled land surface/hydrologic/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers

    1993-01-01

    The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.

  1. Scales of convective activity in the MJO (Invited)

    NASA Astrophysics Data System (ADS)

    Houze, R.

    2013-12-01

    One of the results of the Dynamics of the Madden-Julian Oscillation (MJO) field experiment (DYNAMO) is the realization that an active period of the MJO is not a continuous stretch of time in which convection and rainfall are occurring. Rather, an active MJO period, as determined by standard statistical treatments of the wind and satellite data such as that of Wheeler and Hendon (2004), has periods of highly suppressed conditions interspersed with bursts or episodes of deep convection and rainfall. At a given location, an MJO cycle is of the order of 30-60 days. The active half of a cycle is then about 2-4 weeks. DYNAMO data show that within this multi-week period rain falls in intermittent bursts of deep convection at intervals of 2-6 days, with each burst lasting 1-2 days. The time between bursts is highly suppressed, such that the convective cloud population consists of shallow non-precipitating cumulus. This intermediate burst timescale is neither the MJO timescale nor the timescale of an individual convective cloud. The modulation on the 2-6 day timescale was related to various types of higher frequency equatorial waves (especially, inertio-gravity waves and easterly waves). The largest individual convective cloud element in the MJO environment is the mesoscale convective system (MCS), which lasts about a half day, much shorter than the time period of the wave-modulated bursts. The intermediate scale bursts reflect an evolution of the cloud population. Numerous individual cloud systems undergo their lifecycles within the envelope of the wave-controlled time period of a few days. At a given site, such as the principal island site of Addu Atoll in DYNAMO, radar observations show that in an intermediate timescale episode the convective ensemble goes through a systematic series of stages characterized by differing proportions of elements of different sizes and intensities. The first stage is a population of shallow non-precipitating cumulus, followed by an ensemble of clouds containing some deeper convective elements. At the time of maximum rain during the episode, the population contains growing mesoscale systems. As the rain episode declines the population contains a substantial number of MCSs with broad stratiform regions. Thus, at least three scales are critical in the active periods of an MJO: the MJO scale, the equatorial wave scale of 2-6 days, and the scale of individual clouds, the largest of which are MCSs. This presentation will document the large-scale environment conditions on each of these scales, the population characteristics of the convection during the wave-modulated bursts, and of the individual cloud systems themselves.

  2. ULTIMA: Array of ground-based magnetometer arrays for monitoring magnetospheric and ionospheric perturbations on a global scale

    NASA Astrophysics Data System (ADS)

    Yumoto, K.; Chi, P. J.; Angelopoulos, V.; Connors, M. G.; Engebretson, M. J.; Fraser, B. J.; Mann, I. R.; Milling, D. K.; Moldwin, M. B.; Russell, C. T.; Stolle, C.; Tanskanen, E.; Vallante, M.; Yizengaw, E.; Zesta, E.

    2012-12-01

    ULTIMA (Ultra Large Terrestrial International Magnetic Array) is an international consortium that aims at promoting collaborative research on the magnetosphere, ionosphere, and upper atmosphere through the use of ground-based magnetic field observatories. ULTIMA is joined by individual magnetometer arrays in different countries/regions, and the current regular-member arrays are Australian, AUTUMN, CARISMA, DTU Space, Falcon, IGPP-LANL, IMAGE, MACCS, MAGDAS, McMAC, MEASURE, THEMIS, and SAMBA. The Chair of ULTIMA has been K. Yumoto (MAGDAS), and its Secretary has been P. Chi (McMAC, Falcon). In this paper we perform case studies in which we estimate the global patterns of (1) near-Earth currents and (2) magnetic pulsations; these phenomena are observed over wide areas on the ground, thus suitable for the aims of ULTIMA. We analyze these two phenomena during (a) quiet period and (b) magnetic storm period. We compare the differences between these two periods by drawing the global maps of the ionospheric equivalent currents (which include the effects of all the near-Earth currents) and pulsation amplitudes. For ionospheric Sq currents at low latitudes during quiet periods, MAGDAS data covering an entire solar cycle has yielded a detailed statistical model, and we can use it as a reference for the aforementioned comparison. We also estimate the azimuthal wave numbers of pulsations and compare the amplitude distribution of pulsations with the distribution of highly energetic (in MeV range) particles simultaneously observed at geosynchronous satellites.

  3. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  4. Quasi-planktonic behavior of foraging top marine predators

    PubMed Central

    Della Penna, Alice; De Monte, Silvia; Kestenare, Elodie; Guinet, Christophe; d’Ovidio, Francesco

    2015-01-01

    Monitoring marine top predators is fundamental for assessing the health and functioning of open ocean ecosystems. Although recently tracking observations have substantially increased, factors determining the horizontal exploration of the ocean by marine predators are still largely unknown, especially at the scale of behavioral switches (1–100 km, days-weeks). It is commonly assumed that the influence of water movement can be neglected for animals capable of swimming faster than the current. Here, we challenge this assumption by combining the use of biologging (GPS and accelerometry), satellite altimetry and in-situ oceanographic data (ADCP and drifting buoys) to investigate the effect of the mesoscale ocean dynamics on a marine predator, the southern elephant seal. A Lagrangian approach reveals that trajectories of elephant seals are characterized by quasi-planktonic bouts where the animals are horizontally drifting. These bouts correspond to periods of increased foraging effort, indicating that in the quasi-planktonic conditions energy is allocated to diving and chasing, rather than in horizontal search of favourable grounds. These results suggest that mesoscale features like eddies and fronts may act as a focal points for trophic interactions not only by bottom-up modulation of nutrient injection, but also by directly entraining horizontal displacements of the upper trophic levels. PMID:26666350

  5. Verification and intercomparison of mesoscale ensemble prediction systems in the Beijing 2008 Olympics Research and Development Project

    NASA Astrophysics Data System (ADS)

    Kunii, Masaru; Saito, Kazuo; Seko, Hiromu; Hara, Masahiro; Hara, Tabito; Yamaguchi, Munehiko; Gong, Jiandong; Charron, Martin; Du, Jun; Wang, Yong; Chen, Dehui

    2011-05-01

    During the period around the Beijing 2008 Olympic Games, the Beijing 2008 Olympics Research and Development Project (B08RDP) was conducted as part of the World Weather Research Program short-range weather forecasting research project. Mesoscale ensemble prediction (MEP) experiments were carried out by six organizations in near-real time, in order to share their experiences in the development of MEP systems. The purpose of this study is to objectively verify these experiments and to clarify the problems associated with the current MEP systems through the same experiences. Verification was performed using the MEP outputs interpolated into a common verification domain with a horizontal resolution of 15 km. For all systems, the ensemble spreads grew as the forecast time increased, and the ensemble mean improved the forecast errors compared with individual control forecasts in the verification against the analysis fields. However, each system exhibited individual characteristics according to the MEP method. Some participants used physical perturbation methods. The significance of these methods was confirmed by the verification. However, the mean error (ME) of the ensemble forecast in some systems was worse than that of the individual control forecast. This result suggests that it is necessary to pay careful attention to physical perturbations.

  6. A study of the Alboran sea mesoscale system by means of empirical orthogonal function decomposition of satellite data

    NASA Astrophysics Data System (ADS)

    Baldacci, A.; Corsini, G.; Grasso, R.; Manzella, G.; Allen, J. T.; Cipollini, P.; Guymer, T. H.; Snaith, H. M.

    2001-05-01

    This paper presents the results of a combined empirical orthogonal function (EOF) analysis of Advanced Very High Resolution Radiometer (AVHRR) sea surface temperature (SST) data and sea-viewing wide field-of-view sensor (SeaWiFS) chlorophyll concentration data over the Alboran Sea (Western Mediterranean), covering a period of 1 year (November 1997-October 1998). The aim of this study is to go beyond the limited temporal extent of available in situ measurements by inferring the temporal and spatial variability of the Alboran Gyre system from long temporal series of satellite observations, in order to gain insight on the interactions between the circulation and the biological activity in the system. In this context, EOF decomposition permits concise and synoptic representation of the effects of physical and biological phenomena traced by SST and chlorophyll concentration. Thus, it is possible to focus the analysis on the most significant phenomena and to understand better the complex interactions between physics and biology at the mesoscale. The results of the EOF analysis of AVHRR-SST and SeaWiFS-chlorophyll concentration data are presented and discussed in detail. These improve and complement the knowledge acquired during the in situ observational campaigns of the MAST-III Observations and Modelling of Eddy scale Geostrophic and Ageostrophic motion (OMEGA) Project.

  7. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas

    USGS Publications Warehouse

    Stohlgren, T.J.; Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, Jill S.

    1998-01-01

    We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.

  8. The formation processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Miyazawa, Yasumasa; Oey, Lie-Yauw; Kodaira, Tsubasa; Huang, Shihming

    2017-05-01

    In this study, we investigate the processes of phytoplankton growth and decline in mesoscale eddies in the western North Pacific Ocean based on the in situ chlorophyll data obtained from 52 cruises conducted by the Japan Meteorological Agency together with idealized numerical simulations. Both the observation and model results suggest that chlorophyll/phytoplankton concentrations are higher in cold than in warm eddies in near-surface water (z > -70 m). In the idealized simulation, the isopycnal movements associated with upwelling/downwelling transport phytoplankton and nutrients to different vertical depths during eddy formation (stage A). Phytoplankton and nutrients in cold eddies is transported toward shallower waters while those in warm eddies move toward deeper waters. In the period after the eddy has formed (stage B), sunlight and initially upwelled nutrients together promote the growth of phytoplankton in cold eddies. Phytoplankton in warm eddies decays due to insufficient sunlight in deeper waters. In stage B, upwelling and downwelling coexist in both warm and cold eddies, contributing nearly equally to vertical displacement. The upwelling/downwelling-induced nitrate flux accounts for a small percentage (˜3%) of the total nitrate flux in stage B. The vertical velocity caused by propagating eddies, therefore, is not the primary factor causing differences in phytoplankton concentrations between stage-B warm and cold eddies.

  9. EXPERIMENTAL AND MODEL-COMPUTED AREA AVERAGED VERTICAL PROFILES OF WIND SPEED FOR EVALUATION OF MESOSCALE URBAN CANOPY SCHEMES

    EPA Science Inventory

    Numerous urban canopy schemes have recently been developed for mesoscale models in order to approximate the drag and turbulent production effects of a city on the air flow. However, little data exists by which to evaluate the efficacy of the schemes since "area-averaged&quo...

  10. Mesoscale landscape model of gypsy moth phenology

    Treesearch

    Joseph M. Russo; John G. W. Kelley; Andrew M. Liebhold

    1991-01-01

    A recently-developed high resolution climatological temperature data base was input into a gypsy moth phenology model. The high resolution data were created from a coupling of 30-year averages of station observations and digital elevation data. The resultant maximum and minimum temperatures have about a 1 km resolution which represents meteorologically the mesoscale....

  11. On the potential use of radar-derived information in operational numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Mcpherson, R. D.

    1986-01-01

    Estimates of requirements likely to be levied on a new observing system for mesoscale meteonology are given. Potential observing systems for mesoscale numerical weather prediction are discussed. Thermodynamic profiler radiometers, infrared radiometer atmospheric sounders, Doppler radar wind profilers and surveillance radar, and moisture profilers are among the instruments described.

  12. A programmable nanoreplica molding for the fabrication of nanophotonic devices.

    PubMed

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-03-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.

  13. A programmable nanoreplica molding for the fabrication of nanophotonic devices

    PubMed Central

    Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng

    2016-01-01

    The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828

  14. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  15. Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank

    2017-07-01

    Two parameterizations for horizontal mixing of momentum and tracers by subgrid mesoscale eddies are implemented in a high-resolution global ocean model. These parameterizations follow on the techniques of large eddy simulation (LES). The theory underlying one parameterization (2D Leith due to Leith, 1996) is that of enstrophy cascades in two-dimensional turbulence, while the other (QG Leith) is designed for potential enstrophy cascades in quasi-geostrophic turbulence. Simulations using each of these parameterizations are compared with a control simulation using standard biharmonic horizontal mixing.Simulations using the 2D Leith and QG Leith parameterizations are more realistic than those using biharmonic mixing. In particular, the 2D Leith and QG Leith simulations have more energy in resolved mesoscale eddies, have a spectral slope more consistent with turbulence theory (an inertial enstrophy or potential enstrophy cascade), have bottom drag and vertical viscosity as the primary sinks of energy instead of lateral friction, and have isoneutral parameterized mesoscale tracer transport. The parameterization choice also affects mass transports, but the impact varies regionally in magnitude and sign.

  16. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlir, V.; Arregi, J. A.; Fullerton, E. E.

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less

  17. New science at the meso frontier: Dense nanostructure architectures for electrical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubloff, Gary W.; Lee, Sang Bok

    2015-08-01

    We examine the scientific challenges and opportunities presented at the mesoscale in the context of employing nanostructures for electrical energy storage. In order to capitalize on the power–energy and charge/discharge cycling stability that nanostructures offer, massive assemblies of nanostructures in networks must be organized into dense mesoscale architectures. With a fairly wide variety of architectures already demonstrated and more expected, the essential questions are whether regular or random 3-D arrangements are favorable, which embodiments should show best performance, and at what dimensional scaling? Dense packing raises challenging new questions about ion available and transport in highly confined electrolyte nanoenvironments, asmore » well as designs to balance ion transport in electrolyte and electron transport in electrodes over distances long compared to nanostructure characteristic dimensions. Architectures and dimensional scaling present important issues of defects, statistical outliers, and their dynamic evolution, which in turn control degradation and failure phenomena. These considerations promise a rich set of mesoscale scientific challenges crucial to exploiting storage nanostructures in mesoscale architectures for energy storage.« less

  18. Multiscale Microstructures and Microstructural Effects on the Reliability of Microbumps in Three-Dimensional Integration

    PubMed Central

    Huang, Zhiheng; Xiong, Hua; Wu, Zhiyong; Conway, Paul; Altmann, Frank

    2013-01-01

    The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps. PMID:28788356

  19. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

    DOE PAGES

    Uhlir, V.; Arregi, J. A.; Fullerton, E. E.

    2016-10-11

    Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRhmore » films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. Finally, the collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.« less

  20. Deriving mesoscale temperature and moisture fields from satellite radiance measurements over the United States

    NASA Technical Reports Server (NTRS)

    Hillger, D. W.; Vonder Haar, T. H.

    1977-01-01

    The ability to provide mesoscale temperature and moisture fields from operational satellite infrared sounding radiances over the United States is explored. High-resolution sounding information for mesoscale analysis and forecasting is shown to be obtainable in mostly clear areas. An iterative retrieval algorithm applied to NOAA-VTPR radiances uses a mean radiosonde sounding as a best initial-guess profile. Temperature soundings are then retrieved at a horizontal resolution of about 70 km, as is an indication of the precipitable water content of the vertical sounding columns. Derived temperature values may be biased in general by the initial-guess sounding or in certain areas by the cloud correction technique, but the resulting relative temperature changes across the field when not contaminated by clouds will be useful for mesoscale forecasting and models. The derived moisture, affected only by high clouds, proves to be reliable to within 0.5 cm of precipitable water and contains valuable horizontal information. Present-day applications from polar-orbiting satellites as well as possibilities from upcoming temperature and moisture sounders on geostationary satellites are noted.

  1. Investigating Deformation and Mesoscale Void Creation in HMX Based Composites using Tomography Based Grain Scale Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Walters, David J.; Luscher, Darby J.; Manner, Virginia; Yeager, John D.; Patterson, Brian M.

    2017-06-01

    The microstructure of plastic bonded explosives (PBXs) significantly affects their macroscale mechanical characteristics. Imaging and modeling of the mesoscale constituents allows for a detailed examination of the deformation of mechanically loaded PBXs. In this study, explosive composites, formulated with HMX crystals and various HTPB based polymer binders have been imaged using micro Computed Tomography (μCT). Cohesive parameters for simulation of the crystal/binder interface are determined by comparing numerical and experimental results of the delamination of a polymer bound bi-crystal system. Similarly, polycrystalline samples are discretized into a finite element mesh using the mesoscale geometry captured by in-situ μCT imaging. Experimentally, increasing the stiffness of the HTPB binder in the polycrystalline system resulted in a transition from ductile flow with little crystal/binder delamination to brittle behavior with increased void creation along the interfaces. Simulating the macroscale compression of these samples demonstrates the effects that the mesoscale geometry, cohesive properties, and binder stiffness have on the creation and distribution of interfacial voids. Understanding void nucleation is critical for modeling damage in these complex materials.

  2. Effect of HF Heating Array Directivity Pattern on the Frequency Response of Generated ELF/VLF.

    DTIC Science & Technology

    1983-01-01

    radiators ....... ............ 4 1-2 HF heating array ........ ................... 9 1-3 HF heating array element ...... ................ 9 1-4 View of top...elements looking down at pyramid ....... 9 1-5 Non-planar log-periodic antenna semi-structure dimensions ............ . ....... 10 l-6a Power gain vs...22 1-8 Orientation of 4- and 8-element arrays .. ......... .. 24 1- 9 Comparison of experimental and theoretical patterns. . . 27 1-10 Directive

  3. Re-examination of the I-5 dust storm

    NASA Astrophysics Data System (ADS)

    Kaplan, Michael L.; Vellore, Ramesh K.; Lewis, John M.; Underwood, S. Jeffrey; Pauley, Patricia M.; Martin, Jonathan E.; Krishnan, R.

    2013-01-01

    The infamous dust storm over the thanksgiving holiday of 1991 that led to loss of life from numerous automobile accidents on Interstate 5 (I-5) has been re-examined. Pauley et al. (1996) conducted an earlier investigation of this dust storm following the tenets of Danielsen's paradigm—a paradigm that links the tropopause fold phenomenon and a balanced thermally indirect circulation about the upper level jet stream. However, a cursory examination of mesoscale structures in the storm from the North American Regional Reanalysis (NARR) indicated evidence of a low-level unbalanced thermally direct circulation that demanded further investigation using a high-resolution Weather Research and Forecasting (WRF) model simulation. Principal results from the present study follow: (1) Although the model simulation showed evidence of a weak indirect circulation in the upper troposphere in support of the Danielsen's paradigm, the dynamic control of the storm stemmed from the lower tropospheric mesoscale response to geostrophic imbalance. (2) A lower tropospheric direct circulation led to mass/temperature adjustments that were confirmed by upper air observations at locations in proximity to the accident site, and (3) boundary layer deepening and destabilization due to these mesoscale processes pinpointed the timing and location of the dust storm. Although the present study does not underestimate the value of analyses that focus on the larger/synoptic scales of motion, it does bring to light the value of investigation that makes use of the mesoscale resources in order to clarify synoptic-mesoscale interactions.

  4. KCAT, Xradia, ALS and APS Performance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A; Martz, H; Brown, W

    2004-09-30

    At Lawrence Livermore National Laboratory (LLNL) particular emphasis is being placed on the nondestructive characterization (NDC) of components, subassemblies and assemblies of millimeter-size extent with micrometer-size features (mesoscale). These mesoscale objects include materials that vary widely in composition, density, geometry and embedded features. Characterizing these mesoscale objects is critical for corroborating the physics codes that underlie LLNL's Stockpile Stewardship mission. In this report we present results from our efforts to quantitatively characterize the performance of several x-ray systems in an effort to benchmark existing systems and to determine which systems may have the best potential for our mesoscale imaging needs.more » Several different x-ray digital radiography (DR) and computed tomography (CT) systems exist that may be applicable to our mesoscale object characterization requirements, including microfocus and synchrotron systems. The systems we have benchmarked include KCAT (LLNL developed) and Xradia {mu}XCT (Xradia, Inc., Concord, CA), both microfocus systems, and Beamline 1-ID at the Advance Photon Source (APS) and the Tomography Beamline at the Advanced Light Source (ALS), both synchrotron based systems. The ALS Tomography Beamline is a new installation, and the data presented and analyzed here is some of the first to be acquired at the facility. It is important to note that the ALS system had not yet been optimized at the time we acquired data. Results for each of these systems has been independently documented elsewhere. In this report we summarize and compare the characterization results for these systems.« less

  5. Development and validation of a regional coupled forecasting system for S2S forecasts

    NASA Astrophysics Data System (ADS)

    Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.

    2017-12-01

    Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.

  6. Mesoscale Modeling of LX-17 Under Isentropic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Willey, T M; Friedman, G

    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less

  7. Multi-dimensional mesoscale simulations of detonation initiation in energetic materials with density-based kinetics

    NASA Astrophysics Data System (ADS)

    Jackson, Thomas Luther; Jost, Antoine M. D.; Zhang, Ju; Sridharan, Prashanth; Amadio, Guilherme

    2018-03-01

    In this work we present multi-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using density-based kinetics, while the deposition term is based on simulations of void collapse at the microscale, modelled at the mesoscale as hot spots. We carry out two- and three-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that transition between no-detonation and detonation depends on the number density of the hot spots, the packing fraction, and the post-shock pressure of an imposed shock. In particular, we show that, for a fixed post-shock pressure, there exists a critical value of the number density of hot spots, such that when the number density is below this value a detonation wave will not develop. We highlight the importance of morphology to initiation by comparing with a homogeneous counterpart, and we compare relevant length scales by examining their corresponding power spectra. We also examine the effect of packing fraction and show that at low post-shock pressures there is significant variation in the initiation times, but that this variation disappears as the post-shock pressure is increased. Finally, we compare three-dimensional simulations with the experimental data, and show that the model is capable of qualitatively reproducing the trends shown in the data.

  8. Light management in perovskite solar cells and organic LEDs with microlens arrays

    DOE PAGES

    Peer, Akshit; Biswas, Rana; Park, Joong -Mok; ...

    2017-04-28

    Here, we demonstrate enhanced absorption in solar cells and enhanced light emission in OLEDs by light interaction with a periodically structured microlens array. We simulate n-i-p perovskite solar cells with a microlens at the air-glass interface, with rigorous scattering matrix simulations. The microlens focuses light in nanoscale regions within the absorber layer enhancing the solar cell. Optimal period of ~700 nm and microlens height of ~800-1000 nm, provides absorption (photocurrent) enhancement of 6% (6.3%). An external polymer microlens array on the air-glass side of the OLED generates experimental and theoretical enhancements >100%, by outcoupling trapped modes in the glass substrate.

  9. A three-dimensional ocean mesoscale simulation using data from the SEMAPHORE experiment: Mixed layer heat budget

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Planton, Serge

    1998-10-01

    A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.

  10. Dynamics of Clouds and Mesoscale Circulations over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Wang, S.; Xian, P.; Reid, J. S.; Nachamkin, J.

    2010-12-01

    In recent decades Southeast Asia (SEA) has seen rapid economic growth as well as increased biomass burning, resulting in high air pollution levels and reduced air qual-ity. At the same time clouds often prevent accurate air-quality monitoring and analysis using satellite observations. The Seven SouthEast Asian Studies (7SEAS) field campaign currently underway over SEA provides an unprecedented opportunity to study the com-plex interplay between aerosol and clouds. 7SEAS is a comprehensive interdisciplinary atmospheric sciences program through international partnership of NASA, NRL, ONR and seven local institutions including those from Indonesia, Malaysia, the Philippines, Singapore, Taiwan, Thailand, and Vietnam. While the original goal of 7SEAS is to iso-late the impacts of aerosol particles on weather and the environment, it is recognized that better understanding of SEA meteorological conditions, especially those associated with cloud formation and evolution, is critical to the success of the campaign. In this study we attempt to gain more insight into the dynamic and physical processes associated with low level clouds and atmospheric circulation at the regional scale over SEA, using the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS® ), a regional forecast model in operation at FNMOC since 1998. This effort comprises two main components. First, multiple-years of COAMPS operational forecasts over SEA are analyzed for basic climatology of atmospheric fea-tures. Second, mesoscale circulation and cloud properties are simulated at relatively higher resolution (15-km) for selected periods in the Gulf of Tonkin and adjacent coastal areas. Simulation results are compared to MODIS cloud observations and local sound-ings obtained during 7SEAS for model verifications. Atmospheric boundary layer proc-esses are examined in relation to spatial and temporal variations of cloud fields. The cur-rent work serves as an important step toward improving our understanding of the effects of aerosol particles on maritime clouds. The detailed analysis will be presented at the conference.

  11. Evaluation of an eddy resolving global model at the Bermuda Atlantic Time-series Study site

    NASA Astrophysics Data System (ADS)

    Hiron, L.; Goncalves Neto, A.; Bates, N. R.; Johnson, R. J.

    2016-02-01

    The Bermuda Atlantic Time-series Study (BATS) commenced monthly sampling in 1988 and thus provides an invaluable 27 years of ocean temperature and salinity profiles for inferring climate relevant processes. However, the passage of mesoscale eddies through this site complicates the local heat and salinity budgets due to inadequate spatial and temporal sampling of these eddy systems. Thus, application of high resolution operational numerical models potentially offers a framework for estimating the horizontal transport due to mesoscale processes. The goal of this research was to analyze the accuracy of the MERCATOR operational 1/12° global ocean model at the BATS site by comparing temperature, salinity and heat budgets for years 2008 - 2015. Overall agreement in the upper 540m for temperature and salinity is found to be very encouraging with significant (P< 0.01) correlations at all depths for both fields. The highest value of correlation coefficient for the temperature field is 0.98 at the surface which decreases to 0.66 at 150m and then reaches a minimum of 0.50 at 320 to 540m. Similarly, the highest correlation coefficient for salinity is found at the surface, with a value of 0.83 and then decreases to a minimum of 0.25 in the subtropical mode water though then increases to 0.5 at 540m. Mixing in the MERCATOR model is also very well captured with a mixed layer depth (MLD) correlation coefficient of 0.92 for the seven year period. Finally, the total heat budget (0-540m) from MERCATOR varies coherently with the BATS observations as shown by a high correlation coefficient of 0.84 (P < 0.01). According to these analyses, daily output from the MERCATOR model represents accurately the temperature, salinity, heat budget and MLD at the BATS site. We propose this model can be used in future research at the BATS site by providing information about mesoscale structure and importantly, advective fluxes at this site.

  12. The use of hydrogel as an electrode-skin interface for electrode array FES applications.

    PubMed

    Cooper, Glen; Barker, Anthony T; Heller, Ben W; Good, Tim; Kenney, Laurence P J; Howard, David

    2011-10-01

    Functional electrical stimulation is commonly used to restore function in post-stroke patients in upper and lower limb applications. Location of the electrodes can be a problem hence some research groups have begun to experiment with electrode arrays. Electrode arrays are interfaced with a thin continuous hydrogel sheet which is high resistivity to reduce transverse currents between electrodes in the array. Research using electrode arrays has all been conducted in a laboratory environment over short time periods but it is suspected that this approach will not be feasible over longer time periods due to changes in hydrogel resistivity. High resistivity hydrogel samples were tested by leaving them in contact with the skin over a seven day period. The samples became extremely conductive with resistivities reaching around 10-50 Ωm. The effect of these resistivity changes was studied using finite element analysis to solve for the stationary current quasi-static electric field gradient in the tissue. Electrical stimulation efficiency and focality were calculated for both a high and low resistivity electrode-skin interface layer at different tissue depths. The results showed that low resistivity hydrogel produced significant decreases in stimulation efficiency and focality compared to high resistivity hydrogel. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Misfit-guided self-organization of anticorrelated Ge quantum dot arrays on Si nanowires.

    PubMed

    Kwon, Soonshin; Chen, Zack C Y; Kim, Ji-Hun; Xiang, Jie

    2012-09-12

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.

  14. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    NASA Astrophysics Data System (ADS)

    Saïd, F.; Brut, A.; Campistron, B.; Cousin, F.

    2007-03-01

    This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  15. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China

    PubMed Central

    Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng

    2017-01-01

    The Hydrological Simulation Program–Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient (R2) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R2 was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses. PMID:29257117

  16. Feature analysis and primary causes of pre-flood season "cumulative effect" of torrential rain over South China

    NASA Astrophysics Data System (ADS)

    Chu, Qu-cheng; Wang, Qi-guang; Qiao, Shao-bo; Feng, Guo-lin

    2018-01-01

    When persistent rainfall occurs frequently over South China, meso-scale and micro-scale synoptic systems persist and expand in space and time and eventually form meso-scale and long-scale weather processes. The accumulation of multiple torrential rain processes is defined as a "cumulative effect" of torrential rain (CETR) event. In this paper, daily reanalysis datasets collected by the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) during 1979-2014 are used to study the anomalous features and causes of heavy CETR events over South China. The results show that there is a significant difference in the spatial distribution of the heavy CETR events. Based on the center position of the CETR, the middle region displayed middle-region-heavy CETR events while the western region displayed west-region-heavy CETR events. El Niño events in the previous period (December, January, February, March (DJFM)) are major extra-forcing factors of middle-region-heavy CETR events, which is beneficial for the continuous, anomalous Philippine Sea anticyclone and strengthens the West Pacific Subtropical High (WPSH), extending it more westward than normal. The primary water vapor source for precipitation in middle-region-heavy CETR events is the Tropical Western Pacific Ocean. The major extra-forcing factor of a west-region-heavy CETR is the negative anomaly in the southern Tropical Indian Ocean (TIO) during the previous period (DJFM). This factor is beneficial for strengthening the cross-equatorial flow and westerly winds from the Bay of Bengal to the South China Sea (SCS) and early SCS summer monsoon onset. The primary water vapor source of precipitation in the west-region-heavy CETR is the southern TIO.

  17. Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains

    NASA Astrophysics Data System (ADS)

    Wilhelm, Bruno; Vogel, Hendrik; Crouzet, Christian; Etienne, David; Anselmetti, Flavio S.

    2016-04-01

    The long-term response of the flood activity to both Atlantic and Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 event layers, 168 of which result from past flood events over the last millennium. The layer thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale, summer-to-autumn convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both Atlantic (local events) and Mediterranean (meso-scale events) climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA, AD 1300-1900). In contrast, high-intensity flood events are apparent during both, the cold LIA and the warm Medieval Climate Anomaly (MCA, AD 950-1250). However, there is a tendency towards higher frequencies of high-intensity flood events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in course of 20th century warming trend did not change significantly. Uncertainties in future evolution of flood intensity lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors between the two periods (greenhouse gases vs. solar/volcanic eruptions).

  18. Frequency and intensity of palaeofloods at the interface of Atlantic and Mediterranean climate domains

    NASA Astrophysics Data System (ADS)

    Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F. S.

    2016-02-01

    Mediterranean climatic influences was explored by studying a lake sequence (Lake Foréant) of the Western European Alps. High-resolution sedimentological and geochemical analysis revealed 171 event layers, 168 of which result from past flood events over the last millennium. The layer thickness was used as a proxy of intensity of past floods. Because the Foréant palaeoflood record is in agreement with the documented variability of historical floods resulting from local and mesoscale, summer-to-autumn convective events, it is assumed to highlight changes in flood frequency and intensity related to such events typical of both Atlantic (local events) and Mediterranean (mesoscale events) climatic influences. Comparing the Foréant record with other Atlantic-influenced and Mediterranean-influenced regional flood records highlights a common feature in all flood patterns that is a higher flood frequency during the cold period of the Little Ice Age (LIA, AD 1300-1900). In contrast, high-intensity flood events are apparent during both the cold LIA and the warm Medieval Climate Anomaly (MCA, AD 950-1250). However, there is a tendency towards higher frequencies of high-intensity flood events during the warm MCA. The MCA extremes could mean that under the global warming scenario, we might see an increase in intensity (not in frequency). However, the flood frequency and intensity in the course of the 20th century warming trend did not change significantly. Uncertainties in future evolution of flood intensity lie in the interpretation of the lack of 20th century extremes (transition or stable?) and the different climate forcing factors between the two periods (greenhouse gases vs. solar and/or volcanic eruptions).

  19. Collective Poisson process with periodic rates: applications in physics from micro-to nanodevices.

    PubMed

    da Silva, Roberto; Lamb, Luis C; Wirth, Gilson Inacio

    2011-01-28

    Continuous reductions in the dimensions of semiconductor devices have led to an increasing number of noise sources, including random telegraph signals (RTS) due to the capture and emission of electrons by traps at random positions between oxide and semiconductor. The models traditionally used for microscopic devices become of limited validity in nano- and mesoscale systems since, in such systems, distributed quantities such as electron and trap densities, and concepts like electron mobility, become inadequate to model electrical behaviour. In addition, current experimental works have shown that RTS in semiconductor devices based on carbon nanotubes lead to giant current fluctuations. Therefore, the physics of this phenomenon and techniques to decrease the amplitudes of RTS need to be better understood. This problem can be described as a collective Poisson process under different, but time-independent, rates, τ(c) and τ(e), that control the capture and emission of electrons by traps distributed over the oxide. Thus, models that consider calculations performed under time-dependent periodic capture and emission rates should be of interest in order to model more efficient devices. We show a complete theoretical description of a model that is capable of showing a noise reduction of current fluctuations in the time domain, and a reduction of the power spectral density in the frequency domain, in semiconductor devices as predicted by previous experimental work. We do so through numerical integrations and a novel Monte Carlo Markov chain (MCMC) algorithm based on microscopic discrete values. The proposed model also handles the ballistic regime, relevant in nano- and mesoscale devices. Finally, we show that the ballistic regime leads to nonlinearity in the electrical behaviour.

  20. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program-Fortran in a Mesoscale Monsoon Watershed, China.

    PubMed

    Li, Zhaofu; Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng

    2017-12-19

    The Hydrological Simulation Program-Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient ( R ²) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R ² was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses.

  1. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing

    NASA Astrophysics Data System (ADS)

    Pourjamal, Sara; Kataja, Mikko; Maccaferri, Nicolò; Vavassori, Paolo; van Dijken, Sebastiaan

    2018-05-01

    We introduce a novel magnetoplasmonic sensor concept for sensitive detection of refractive index changes. The sensor consists of a periodic array of Ni/SiO2/Au dimer nanodisks. Combined effects of near-field interactions between the Ni and Au disks within the individual dimers and far-field diffractive coupling between the dimers of the array produce narrow linewidth features in the magneto-optical Faraday spectrum. We associate these features with the excitation of surface lattice resonances and show that they exhibit a spectral shift when the refractive index of the surrounding environment is varied. Because the resonances are sharp, refractive index changes are accurately detected by tracking the wavelength where the Faraday signal crosses 0. Compared to random distributions of pure Ni nanodisks or Ni/SiO2/Au dimers or periodic arrays of Ni nanodisks, the sensing figure of merit of the hybrid magnetoplasmonic array is more than one order of magnitude larger.

  2. The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses

    NASA Astrophysics Data System (ADS)

    Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.

    2012-04-01

    We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these findings add further evidence that the shallow mesoscale spectrum is not generated by balanced two-dimensional turbulence.

  3. Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Chen, Hongbing; Mo, Y.-L.; Zhou, Tianmin

    2018-07-01

    Piezoelectric-lead-zirconate-titanate(PZT)-based interface debonding defects detection for concrete filled steel tubulars (CFSTs) has been proposed and validated through experiments, and numerical study on its mechanism has been carried out recently by assuming that concrete material is homogenous. However, concrete is composed of coarse and fine aggregates, mortar and interface transition zones (ITZs) and even initial defects and is a typical nonhomogeneous material and its mesoscale structure might affect the wave propagation in the concrete core of CFST members. Therefore, it is significantly important to further investigate the influence of mesoscale structure of concrete on the stress wave propagation and the response of embedded PZT sensor for the interface debonding detection. In this study, multi-physical numerical simulation on the wave propagation and embedded PZT sensor response of rectangular CFST members with numerical concrete core considering the randomness in circular aggregate distribution, and coupled with surface-mounted PZT actuator and embedded PZT sensor is carried out. The effect of randomness in the circular aggregates distribution and the existence of ITZs are discussed. Both a local stress wave propagation behavior including transmission, reflection, and diffraction at the interface between concrete core and steel tube under a pulse signal excitation and a global wave field in the cross-section of the rectangular CFST models without and with interface debonding defects under sweep frequency excitation are simulated. The sensitivity of an evaluation index based on wavelet packet analysis on the embedded PZT sensor response on the variation of mesoscale parameters of concrete core without and with different interface debonding defects under sweep frequency voltage signal is investigated in details. The results show that the effect of the interface debondings on the embedded PZT measurement is dominant when compared to the meso-scale structures of concrete core. This study verified the feasibility of the PZT based debonding detection for rectangular CFST members even the meso-scale structure of concrete core is considered.

  4. Heavy rain forecasts in mesoscale convective system in July 2016 in Belarus

    NASA Astrophysics Data System (ADS)

    Lapo, Palina; Barodka, Siarhei; Krasouski, Aliaksandr

    2017-04-01

    During the last decade, the frequency of severe weather phenomena, such as heavy precipitation, hail and squalls, over Europe is observed to increase, which is attributed to climate change in the region. Such hazardous weather events over the territory of Belarus every year, having significant economic and social effects. Of special interest for further studies are mesoscale convective systems, which can be described as long-lived cloud complexes including groups of cumulonimbus clouds and squall lines. Passage of such systems is accompanied with intense thunderstorms, showers and squally wind. In this study, we investigate a case of Mesoscale Convective System (MCS) passage over the territory of Belarus, which occurred 13 July 2016. During this Mesoscale Convective Complex passage, heavy precipitation (up to 43 mm), squally winds and intense thunderstorms have been observed. Another feature of this MCS was the hook-shaped weather radar signature known as a "hook echo", seen on the Doppler weather radar Minsk-2. Tornadoes and powerful mesocyclones are often characterized by the presence of a hook echo on radar. Also we have performed simulations of the convective complex passage with the WRF-ARW mesoscale atmospheric modelling system using 6 different microphysics parameterizations. Our main objectives are to study the conditions of this Mesoscale Convective Systems (MCSs) development, to consider the microphysical structure of clouds in the MCS, and to identify which microphysics package provides the best forecast of precipitation for this case of MCS in terms of its geographical distribution and precipitation amount in towns and cities where highest levels of precipitation have been observed. We present analysis of microphysical structure of this MCS along with evaluation of precipitation forecasts obtained with different microphysics parametrizations as compared to real observational data. In particular, we may note that results of almost all microphysics simulations indicate underestimation of precipitation areas in the region of interest.

  5. Potential utility of three-dimensional temperature and salinity fields estimated from satellite altimetry and Argo data for improving mesoscale reproducibility in regional ocean modeling

    NASA Astrophysics Data System (ADS)

    Kanki, R.; Uchiyama, Y.; Miyazaki, D.; Takano, A.; Miyazawa, Y.; Yamazaki, H.

    2014-12-01

    Mesoscale oceanic structure and variability are required to be reproduced as accurately as possible in realistic regional ocean modeling. Uchiyama et al. (2012) demonstrated with a submesoscale eddy-resolving JCOPE2-ROMS downscaling oceanic modeling system that the mesoscale reproducibility of the Kuroshio meandering along Japan is significantly improved by introducing a simple restoration to data which we call "TS nudging" (a.k.a. robust diagnosis) where the prognostic temperature and salinity fields are weakly nudged four-dimensionally towards the assimilative JCOPE2 reanalysis (Miyazawa et al., 2009). However, there is not always a reliable reanalysis for oceanic downscaling in an arbitrary region and at an arbitrary time, and therefore alternative dataset should be prepared. Takano et al. (2009) proposed an empirical method to estimate mesoscale 3-D thermal structure from the near real-time AVISO altimetry data along with the ARGO float data based on the two-layer model of Goni et al. (1996). In the present study, we consider the TS data derived from this method as a candidate. We thus conduct a synoptic forward modeling of the Kuroshio using the JCOPE2-ROMS downscaling system to explore potential utility of this empirical TS dataset (hereinafter TUM-TS) by carrying out two runs with the T-S nudging towards 1) the JCOPE2-TS and 2) TUM-TS fields. An example of the comparison between the two ROMS test runs is shown in the attached figure showing the annually averaged surface EKE. Both of TUM-TS and JCOPE2-TS are found to help reproducing the mesoscale variance of the Koroshio and its extension as well as its mean paths, surface KE and EKE reasonably well. Therefore, the AVISO-ARGO derived empirical 3-D TS estimation is potentially exploitable for the dataset to conduct the T-S nudging to reproduce mesoscale oceanic structure.

  6. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling

    PubMed Central

    Torigoe, Sharon E; Patel, Ashok; Khuong, Mai T; Bowman, Gregory D; Kadonaga, James T

    2013-01-01

    Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.00863.001 PMID:23986862

  7. Detection of mesoscale zones of atmospheric instabilities using remote sensing and weather forecasting model data

    NASA Astrophysics Data System (ADS)

    Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.

    2009-04-01

    The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal distributions and vertical profiles of meteorological parameters produced by the module. Verification of forecasts includes research of spatial and temporal correlations of structures generated by the model, e.g.: cloudiness, meteorological phenomena (fogs, precipitation, turbulence) and structures identified on current satellite images. The developed module determines meteorological parameters fields for vertical profiles of the atmosphere. Interpolation procedures run at user selected standard (pressure) or height levels of the model enable to determine weather conditions along any route of aircraft. Basic parameters of the procedures determining e.g. flight safety include: cloud base, visibility, cloud cover, turbulence coefficient, icing and precipitation intensity. Determining icing and turbulence characteristics is based on standard and new methods (from other mesoscale models). The research includes also investigating new generation mesoscale models, especially remote sensing data assimilation. This is required by necessity to develop and introduce objective methods of forecasting weather conditions. Current research in the Faculty of Civil Engineering and Geodesy concerns validation of the mesoscale module performance.

  8. Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.

    Within recent years, the field of plasmonics has exploded as researchers have demonstrated exciting applications related to chemical and optical sensing in combination with new nanofabrication techniques. A plasmon is a quantum of charge density oscillation that lends nanoscale metals such as gold and silver unique optical properties. In particular, gold and silver nanoparticles exhibit localized surface plasmon resonances—collective charge density oscillations on the surface of the nanoparticle—in the visible spectrum. Here, we focus on the fabrication of periodic arrays of anisotropic plasmonic nanostructures. These half-shell (or nanocup) structures can exhibit additional unique light-bending and polarization dependent optical properties thatmore » simple isotropic nanostructures cannot. Researchers are interested in the fabrication of periodic arrays of nanocups for a wide variety of applications such as low-cost optical devices, surface-enhanced Raman scattering, and tamper indication. We present a scalable technique based on colloidal lithography in which it is possible to easily fabricate large periodic arrays of nanocups using spin-coating and self-assembled commercially available polymeric nanospheres. Electron microscopy and optical spectroscopy from the visible to near-IR was performed to confirm successful nanocup fabrication. We conclude with a demonstration of the transfer of nanocups to a flexible, conformal adhesive film.« less

  9. A survey of the state of the art and focused research in range systems, task 2

    NASA Technical Reports Server (NTRS)

    Yao, K.

    1986-01-01

    Contract generated publications are compiled which describe the research activities for the reporting period. Study topics include: equivalent configurations of systolic arrays; least squares estimation algorithms with systolic array architectures; modeling and equilization of nonlinear bandlimited satellite channels; and least squares estimation and Kalman filtering by systolic arrays.

  10. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the diffusion constant caused damping of the unrealistic fluctuations, but did not completely solve the problem. Using two-way nesting also mitigated the unrealistic fluctuations significantly. It can be concluded that for real case LES modelling of wind farm circulations, care should be taken to ensure the consistency between the mesoscale weather forcing and LES models to avoid exciting spurious noise along the forcing boundary. The development of algorithms that adequately model the sub-grid-scale mixing that cannot be resolved by LES models is an important area for further research. References Liu, Y. Y._W. Liu, W. Y.Y. Cheng, W. Wu, T. T. Warner and K. Parks, 2009: Simulating intra-farm wind variations with the WRF-RTFDDA-LES modeling system. 10th WRF Users' Workshop, Boulder, C, USA. June 23 - 26, 2009. Skamarock, W., J. Dudhia, D.O. Gill, D.M. Barker, M.G.Duda, X-Y. Huang, W. Wang and J.G. Powers, A Description of the Advanced Research WRF version 3, NCAR Technical Note TN-475+STR, NCAR, Boulder, Colorado, 2008.

  11. Shockwave dynamics: a comparison between stochastic and periodic porous architectures

    NASA Astrophysics Data System (ADS)

    Branch, Brittany; Ionite, Axinte; Clements, Bradford; Montgomery, David; Schmalzer, Andrew; Patterson, Brian; Mueller, Alexander; Jensen, Brian; Dattelbaum, Dana

    Polymeric foams are used extensively as structural supports and load mitigating materials in which they are subjected to compressive loading at a range of strain rates, up to the high strain rates encountered in blast and shockwave loading. To date, there have been few insights into compaction phenomena in porous structures at the mesoscale, and the influence of structure on shockwave localization. Of particular interest is when the properties of the inherent mesoscopic, periodic structure begin to emerge, versus the discrete behavior of the individual cell. Here, we illustrate, for the first time, modulation of shockwave dynamics controlled at micron-length scales in additively manufactured periodic porous structures measured using in situ, time-resolved x-ray phase contrast imaging at the Advanced Photon Source. Further, we demonstrate how the shockwave dynamics in periodic structures differ from stochastic foams of similar density and we conclude that microstructural control in elastomer foams has a dramatic effect on shockwave dynamics and can be tailored towards a variety of applications. Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (project# 20160103DR) and DOE/NNSA Campaign 2.

  12. Characterizing Variability in Long Period Horizontal Tilt Noise Through Coherence Analysis

    NASA Astrophysics Data System (ADS)

    Rohde, M. D.; Ringler, A. T.; Hutt, C. R.; Wilson, D.; Holland, A. A.

    2016-12-01

    Tilt induced horizontal noise fundamentally limits a wide variety of seismological studies. This noise source is not well characterized or understood and the spatial variability has yet to be well constrained. Long-period (i.e., greater than 100 seconds period) horizontal seismic noise is generally known to be of greater magnitude than long-period vertical seismic noise due to tilt noise. As a result, many studies only make use of the vertical seismic wavefield as opposed to all three axes. The main source of long-period horizontal seismic noise is hypothesized to be tilt due to atmospheric pressure variation. Reducing horizontal tilt noise could lead to improved resolution of torsional earth modes and other long-period horizontal seismic signals that are often dominated by tilt noise, as well as better construction of seismic isolation systems for sensitive scientific experiments. We looked at a number of small aperture array configurations. For each array we installed eight Streckeisen STS-2 broadband seismometers in the Albuquerque Seismological Laboratory (ASL) underground vault. The data from these array configurations was used to characterize the long period horizontal tilt noise over a spatially small scale. Sensors were installed approximately 1 to 10 meters apart depending on the array configuration. Coherence as a function of frequency was calculated between sensors, of which we examine the frequency band between 10 and 500 seconds. We observed complexity in the pair-wise coherence with respect to frequency, seismometer axis, and time, even for spatially close sensors. We present some possible explanations for the large variability in our coherence observations and demonstrate how these results can be applied to find potentially low horizontal noise locations over small spatial scales, such as in stations with multiple co-located sensors within the Global Seismographic Network.

  13. Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays.

    PubMed

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-17

    We have investigated crosstalk in HgCdTe photovoltaic pixel arrays employing a photon trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. We have found that, compared to non-PT pixel arrays with similar geometry, the array employing the PT structure has a slightly higher optical crosstalk. However, when the total crosstalk is evaluated, the presence of the PT region drastically reduces the total crosstalk; making the use of the PT structure not only useful to obtain broadband operation, but also desirable for reducing crosstalk in small pitch detector arrays.

  14. 16-channel bow tie antenna transceiver array for cardiac MR at 7.0 tesla.

    PubMed

    Oezerdem, Celal; Winter, Lukas; Graessl, Andreas; Paul, Katharina; Els, Antje; Weinberger, Oliver; Rieger, Jan; Kuehne, Andre; Dieringer, Matthias; Hezel, Fabian; Voit, Dirk; Frahm, Jens; Niendorf, Thoralf

    2016-06-01

    To design, evaluate, and apply a bow tie antenna transceiver radiofrequency (RF) coil array tailored for cardiac MRI at 7.0 Tesla (T). The radiofrequency (RF) coil array comprises 16 building blocks each containing a bow tie shaped λ/2-dipole antenna. Numerical simulations were used for transmission field homogenization and RF safety validation. RF characteristics were examined in a phantom study. The array's suitability for high spatial resolution two-dimensional (2D) CINE imaging and for real time imaging of the heart was examined in a volunteer study. The arrays transmission fields and RF characteristics are suitable for cardiac MRI at 7.0T. The coil performance afforded a spatial resolution as good as (0.8 × 0.8 × 2.5) mm(3) for segmented 2D CINE MRI at 7.0T which is by a factor of 12 superior versus standardized protocols used in clinical practice at 1.5T. The proposed transceiver array supports 1D acceleration factors of up to R = 6 without impairing image quality significantly. The 16-channel bow tie antenna transceiver array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0 Tesla. Magn Reson Med 75:2553-2565, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    PubMed

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  16. NASA/MSFC FY-84 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W. (Compiler); Porter, F. (Compiler)

    1984-01-01

    The two main areas of focus for NASA/MSFC's atmospheric research program are: (1) global scale processes (geophysical fluid processes, satellite Doppler lidar wind profiler, and satellite data analyses) and (2) mesoscale processes (atmospheric electricity (lightning), ground/airborne Doppler lidar wind measurements, and mesoscale analyses and space sensors). Topics within these two general areas are addressed.

  17. Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingber, Marc; Vorobieff, Peter

    2014-03-14

    We have experimentally demonstrated how microscale phenomena affect suspended particle behavior on the mesoscale, and how particle group behavior on the mesoscale influences the macroscale suspension behavior. Semi-analytical and numerical methods to treat flows on different scales have been developed, and a framework to combine these scale-dependent treatment has been described.

  18. Design of Energetic Ionic Liquids (Preprint)

    DTIC Science & Technology

    2008-05-07

    mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining techniques. 15. SUBJECT TERMS 16. SECURITY...simulations utilizing polarizable force fields, and mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining...Simulations of the Energetic Ionic Liquid 1-hydroxyethyl-4-amino-1, 2, 4- triazolium Nitrate (HEATN): Molecular dynamics (MD) simulations have been

  19. Herbaceous versus forested riparian vegetation: narrow and simple versus wide, woody and diverse stream habitat

    Treesearch

    C.R. Jackson; D.S. Leigh; S.L. Scarbrough; J.F. Chamblee

    2014-01-01

    We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development,...

  20. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates

    Treesearch

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  1. Using weather prediction data for simulation of mesoscale atmospheric processes

    NASA Astrophysics Data System (ADS)

    Bart, Andrey A.; Starchenko, Alexander V.

    2015-11-01

    The paper presents an approach to specify initial and boundary conditions from the output data of global model SLAV for mesoscale modelling of atmospheric processes in areas not covered by meteorological observations. From the data and the model equations for a homogeneous atmospheric boundary layer the meteorological and turbulent characteristics of the atmospheric boundary layer are calculated.

  2. An investigation of the temporal character of mesoscale perturbations in the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1977-01-01

    The effectiveness of mesoscale models in explaining perturbations observed in vertical detailed wind profile measurements in the troposphere and lower stratosphere is assessed. The structure and persistence of the data were analyzed and interpreted in terms of several physical models with the goal of establishing explanations for the observed persistent features of the mesoscale flow patterns. The experimental data used in the investigation were obtained by a unique detailed wind profile measurement system. This system is capable of providing resolution of 50 to 100 m wavelengths for the altitude region from approximately 200 m to 18 km. The system consists of a high-resolution tracking radar and special super-pressure balloon configuration known as a Jimsphere.

  3. Digital processing of mesoscale analysis and space sensor data

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.

    1985-01-01

    The mesoscale analysis and space sensor (MASS) data management and analysis system on the research computer system is presented. The MASS data base management and analysis system was implemented on the research computer system which provides a wide range of capabilities for processing and displaying large volumes of conventional and satellite derived meteorological data. The research computer system consists of three primary computers (HP-1000F, Harris/6, and Perkin-Elmer 3250), each of which performs a specific function according to its unique capabilities. The overall tasks performed concerning the software, data base management and display capabilities of the research computer system in terms of providing a very effective interactive research tool for the digital processing of mesoscale analysis and space sensor data is described.

  4. Estimation of Eddy Dissipation Rates from Mesoscale Model Simulations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.

    2012-01-01

    The Eddy Dissipation Rate is an important metric for representing the intensity of atmospheric turbulence and is used as an input parameter for predicting the decay of aircraft wake vortices. In this study, the forecasts of eddy dissipation rates obtained from the current state-of-the-art mesoscale model are evaluated for terminal area applications. The Weather Research and Forecast mesoscale model is used to simulate the planetary boundary layer at high horizontal and vertical mesh resolutions. The Bougeault-Lacarrer and the Mellor-Yamada-Janji schemes implemented in the Weather Research and Forecast model are evaluated against data collected during the National Aeronautics and Space Administration s Memphis Wake Vortex Field Experiment. Comparisons with other observations are included as well.

  5. Numerical study of terrain-induced mesoscale motions and hydrostatic form drag in a heated, growing mixed layer

    NASA Technical Reports Server (NTRS)

    Deardorff, J. W.; Ueyoshi, K.; Han, Y.-J.

    1984-01-01

    Han et al. (1982) have found in a previous numerical study of terrain-induced mesoscale motions that the orography caused a steady-state flow pattern to occur. The study was concerned with a simplified case in which no surface heating occurred. The present investigation considers an extension of this study to the more realistic case of a heated, growing daytime mixed layer containing horizontal variations of potential temperature as well as velocity. The model is also extended to include three layers above the mixed layer. It is found for a heated, growing mixed layer, that the mesoscale form drag is a thermal-anomaly or buoyancy effect associated with horizontal variations of potential temperature within the layer.

  6. Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices

    NASA Astrophysics Data System (ADS)

    Gleghorn, Jason P.; Smith, James P.; Kirby, Brian J.

    2013-09-01

    Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or capture rare cells from complex samples has broad and impactful applications in biology and medicine. We have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant change in the flow field. Using these analytical and computational simulations, we elucidate design parameters that induce high collision rates for all particles larger than a threshold size or selectively increase collision frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental observations from various obstacle array geometries are well described by our computational model.

  7. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  8. Evaluation of the Operational Multi-scale Environment model with Grid Adaptivity (OMEGA) for use in Wind Energy Applications in the Great Basin of Nevada

    NASA Astrophysics Data System (ADS)

    King, Kristien C.

    In order to further assess the wind energy potential for Nevada, the accuracy of a computational meteorological model, the Operational Multi-scale Environment model with Grid Adaptivity (OMEGA), was evaluated by comparing simulation results with data collected from a wind monitoring tower near Tonopah, NV. The state of Nevada is characterized by high mountains and low-lying valleys, therefore, in order to determine the wind potential for the state, meteorological models that predict the wind must be able to accurately represent and account for terrain features and simulate topographic forcing with accuracy. Topographic forcing has a dominant role in the development and modification of mesoscale flows in regions of complex terrain, like Tonopah, especially at the level of wind turbine blade heights (~80 m). Additionally, model factors such as horizontal resolution, terrain database resolution, model physics, time of model initialization, stability regime, and source of initial conditions may each affect the ability of a mesoscale model to forecast winds correctly. The observational tower used for comparison was located at Stone Cabin, Nevada. The tower had both sonic anemometers and cup anemometers installed at heights of 40 m, 60 m, and 80 m above the surface. During a previous experiment, tower data were collected for the period February 9 through March 10, 2007 and compared to model simulations using the MM5 and WRF models at a number of varying horizontal resolutions. In this previous research, neither the MM5 nor the WRF showed a significant improvement in ability to forecast wind speed with increasing horizontal grid resolution. The present research evaluated the ability of OMEGA to reproduce point winds as compared to the observational data from the Stone Cabin Tower at heights of 40 m, 60 m, and 80 m. Unlike other mesoscale atmospheric models, OMEGA incorporates an unstructured triangular adaptive grid which allows for increased flexibility and accuracy in characterizing areas of complex terrain. Model sensitivity to horizontal grid resolution, initial conditions, and time of initialization were tested. OMEGA was run over three different horizontal grid resolutions with minimum horizontal edge lengths of: 18 km, 6 km, and 2 km. For each resolution, the model was initialized using both the Global Forecasting System (GFS) and North American Regional Reanalysis (NARR) to determine model sensitivity to initial conditions. For both the NARR and GFS initializations, the model was started at both 0000 UTC and 1200 UTC to determine the effect of start time and stability regime on the performance of the model. An additional intensive study into the model's performance was also conducted by a detailed evaluation of model results during two separate 24-hour periods, the first a period where the model performed well and the second a period where the model performed poorly, to determine which atmospheric factors most affect the predictive ability of the OMEGA model. The statistical results were then compared with the results from the MM5 and WRF simulations to determine the most appropriate model for wind energy potential studies in complex terrain.

  9. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  10. Model-based assessment of a Northwestern Tropical Pacific moored array to monitor intraseasonal variability

    NASA Astrophysics Data System (ADS)

    Liu, Danian; Zhu, Jiang; Shu, Yeqiang; Wang, Dongxiao; Wang, Weiqiang; Cai, Shuqun

    2018-06-01

    The Northwestern Tropical Pacific Ocean (NWTPO) moorings observing system, including 15 moorings, was established in 2013 to provide velocity profile data. Observing system simulation experiments (OSSEs) were carried out to assess the ability of the observation system to monitor intraseasonal variability in a pilot study, where ideal "mooring-observed" velocity was assimilated using Ensemble Optimal Interpolation (EnOI) based on the Regional Oceanic Modeling System (ROMS). Because errors between the control and "nature" runs have a mesoscale structure, a random ensemble derived from 20-90-day bandpass-filtered nine-year model outputs is proved to be more appropriate for the NWTPO mooring array assimilation than a random ensemble derived from a 30-day running mean. The simulation of the intraseasonal currents in the North Equatorial Current (NEC), North Equatorial Countercurrent (NECC), and Equatorial Undercurrent (EUC) areas can be improved by assimilating velocity profiles using a 20-90-day bandpass-filtered ensemble. The root mean square errors (RMSEs) of the intraseasonal zonal (U) and meridional velocity (V) above 500 m depth within the study area (between 0°N-18°N and 122°E-147°E) were reduced by 15.4% and 16.9%, respectively. Improvements in the downstream area of the NEC moorings transect were optimum where the RMSEs of the intraseasonal velocities above 500 m were reduced by more than 30%. Assimilating velocity profiles can have a positive impact on the simulation and forecast of thermohaline structure and sea level anomalies in the ocean.

  11. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    NASA Astrophysics Data System (ADS)

    Brioude, Jerome; Angevine, Wayne; Ahmadov, Ravan; Kim, Si Wan; Evan, Stephanie; McKeen, Stuart; Hsie, Eirh Yu; Frost, Greg; Neuman, Andy; Pollack, Ilana; Peischl, Jeff; Ryerson, Tom; Holloway, John; Brown, Steeve; Nowak, John; Roberts, Jim; Wofsy, Steeve; Santoni, Greg; Trainer, Michael

    2013-04-01

    We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May-June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% ± 6% in LA County and by 37% ± 10% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% ± 10% in LA County and by 27% ± 15% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 ± 18 Tg yr-1 in SoCAB. A flight during ITCT in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% ± 14% in LA County but decreased by 4% ± 10% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, CARB 2010 and the posterior inventories derived in this study. The biases in WRF-Chem ozone were reduced and correlations were increased using the posterior from this study compared with simulations with the two bottom-up inventories, showing that improving the spatial distribution of ozone precursor surface emissions is also important in mesoscale chemistry forecasts.

  12. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    NASA Astrophysics Data System (ADS)

    Brioude, J.; Angevine, W. M.; Ahmadov, R.; Kim, S.-W.; Evan, S.; McKeen, S. A.; Hsie, E.-Y.; Frost, G. J.; Neuman, J. A.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Holloway, J.; Brown, S. S.; Nowak, J. B.; Roberts, J. M.; Wofsy, S. C.; Santoni, G. W.; Trainer, M.

    2012-12-01

    We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May-June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% ± 6% in LA County and by 37% ± 10% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% ± 10% in LA County and by 27% ± 15% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 ± 18 Tg yr-1 in SoCAB. A flight during ITCT in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% ± 14% in LA County but decreased by 4% ± 10% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, CARB 2010 and the posterior inventories derived in this study. The biases in WRF-Chem ozone were reduced and correlations were increased using the posterior from this study compared with simulations with the two bottom-up inventories, showing that improving the spatial distribution of ozone precursor surface emissions is also important in mesoscale chemistry forecasts.

  13. Graphene-based magnetless converter of terahertz wave polarization

    NASA Astrophysics Data System (ADS)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  14. The angular distribution of infrared radiances emerging from broken fields of cumulus clouds

    NASA Technical Reports Server (NTRS)

    Naber, P. S.; Weinman, J. A.

    1984-01-01

    Infrared radiances were simultaneously measured from broken cloud fields over the eastern Pacific Ocean by means of the eastern and western geostationary satellites. The measurements were compared with the results of models that characterized the clouds as black circular cylinders disposed randomly on a plane and as black cuboids disposed in regular and in shifted periodic arrays. The data were also compared with the results obtained from a radiative transfer model that considered emission and scattering by a regular array of periodic cuboidal clouds. It was found that the radiances did not depend significantly on the azimuth angle; this suggested that the observed cloud fields were not regular periodic arrays. However, the dependence on zenith angle suggested that the clouds were not disposed randomly either. The implication of these measurements on the understanding of the transfer of infrared radiances through broken cloud fields is considered.

  15. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO 3 films

    DOE PAGES

    Tang, Y. L.; Zhu, Y. L; Ma, Xiuliang; ...

    2015-05-01

    Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not only the atomic morphology of the flux-closure quadrant but also a periodic array of flux closures in ferroelectric PbTiO 3 films, mediated by tensile strain on a GdScO 3 substrate. Using aberration-corrected scanning transmission electron microscopy, we directly visualize an alternating array of clockwise and counterclockwise flux closures, whose periodicity depends on the PbTiO 3 film thickness. In the vicinity of the core, the strain is sufficient to rupture the lattice, with strainmore » gradients up to 10 9 per meter. We found engineering strain at the nanoscale may facilitate the development of nanoscale ferroelectric devices.« less

  16. Taub-Nut Crystal

    NASA Astrophysics Data System (ADS)

    Imazato, Harunobu; Mizoguchi, Shun'ya; Yata, Masaya

    We consider the Gibbons-Hawking metric for a three-dimensional periodic array of multi-Taub-NUT centers, containing not only centers with a positive NUT charge but also ones with a negative NUT charge. The latter are regarded as representing the asymptotic form of the Atiyah-Hitchin metric. The periodic arrays of Taub-NUT centers have close parallels with ionic crystals, where the Gibbons-Hawking potential plays the role of the Coulomb static potential of the ions, and are similarly classified according to their space groups. After a periodic identification and a Z2 projection, the array is transformed by T-duality to a system of NS5-branes with the SU(2) structure, and a further standard embedding yields, though singular, a half-BPS heterotic 5-brane background with warped compact transverse dimensions. A discussion is given on the possibility of probing the singular geometry by two-dimensional gauge theories.

  17. Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy

    PubMed Central

    Chowdhury, Mustafa H.; Catchmark, Jeffrey M.; Lakowicz, Joseph R.

    2009-01-01

    The authors introduce a technique for three-dimensional (3D) imaging of the light transmitted through periodic nanoapertures using a scanning probe to perform optical sectioning microscopy. For a 4×4 nanohole array, the transmitted light displays intensity modulations along the propagation axis, with the maximum intensity occurring at 450 μm above the surface. The propagating fields show low divergence, suggesting a beaming effect induced by the array. At distances within 25 μm from the surface, they observe subwavelength confinement of light propagating from the individual nanoholes. Hence, this technique can potentially be used to map the 3D distribution of propagating light, with high spatial resolution. PMID:19696912

  18. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  19. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  20. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1993-01-01

    Research accomplished during the third 6-month period is summarized. Research covered the following: dual-horn antenna performance; high electron mobility transistors (HEMT) low-noise amplifiers; downconverters; fast Fourier transform (FFT) array; and backend 'feature recognizer' array.

  1. Complementary Use of Glider Data, Altimetry, and Model for Exploring Mesoscale Eddies in the Tropical Pacific Solomon Sea

    NASA Astrophysics Data System (ADS)

    Gourdeau, L.; Verron, J.; Chaigneau, A.; Cravatte, S.; Kessler, W.

    2017-11-01

    Mesoscale activity is an important component of the Solomon Sea circulation that interacts with the energetic low-latitude western boundary currents of the South Tropical Pacific Ocean carrying waters of subtropical origin before joining the equatorial Pacific. Mixing associated with mesoscale activity could explain water mass transformation observed in the Solomon Sea that likely impacts El Niño Southern Oscillation dynamics. This study makes synergetic use of glider data, altimetry, and high-resolution model for exploring mesoscale eddies, especially their vertical structures, and their role on the Solomon Sea circulation. The description of individual eddies observed by altimetry and gliders provides the first elements to characterize the 3-D structure of these tropical eddies, and confirms the usefulness of the model to access a more universal view of such eddies. Mesoscale eddies appear to have a vertical extension limited to the Surface Waters (SW) and the Upper Thermocline Water (UTW), i.e., the first 140-150 m depth. Most of the eddies are nonlinear, meaning that eddies can trap and transport water properties. But they weakly interact with the deep New Guinea Coastal Undercurrent that is a key piece of the equatorial circulation. Anticyclonic eddies are particularly efficient to advect salty and warm SW coming from the intrusion of equatorial Pacific waters at Solomon Strait, and to impact the characteristics of the New Guinea Coastal Current. Cyclonic eddies are particularly efficient to transport South Pacific Tropical Water (SPTW) anomalies from the North Vanuatu Jet and to erode by diapycnal mixing the high SPTW salinity.

  2. Examples of data assimilation in mesoscale models

    NASA Technical Reports Server (NTRS)

    Carr, Fred; Zack, John; Schmidt, Jerry; Snook, John; Benjamin, Stan; Stauffer, David

    1993-01-01

    The keynote address was the problem of physical initialization of mesoscale models. The classic purpose of physical or diabatic initialization is to reduce or eliminate the spin-up error caused by the lack, at the initial time, of the fully developed vertical circulations required to support regions of large rainfall rates. However, even if a model has no spin-up problem, imposition of observed moisture and heating rate information during assimilation can improve quantitative precipitation forecasts, especially early in the forecast. The two key issues in physical initialization are the choice of assimilating technique and sources of hydrologic/hydrometeor data. Another example of data assimilation in mesoscale models was presented in a series of meso-beta scale model experiments with and 11 km version of the MASS model designed to investigate the sensitivity of convective initiation forced by thermally direct circulations resulting from differential surface heating to four dimensional assimilation of surface and radar data. The results of these simulations underscore the need to accurately initialize and simulate grid and sub-grid scale clouds in meso- beta scale models. The status of the application of the CSU-RAMS mesoscale model by the NOAA Forecast Systems Lab for producing real-time forecasts with 10-60 km mesh resolutions over (4000 km)(exp 2) domains for use by the aviation community was reported. Either MAPS or LAPS model data are used to initialize the RAMS model on a 12-h cycle. The use of MAPS (Mesoscale Analysis and Prediction System) model was discussed. Also discussed was the mesobeta-scale data assimilation using a triply-nested nonhydrostatic version of the MM5 model.

  3. Diabatic Initialization of Mesoscale Models in the Southeastern United States: Can 0 to 12h Warm Season QPF be Improved?

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Bradshaw, Tom; Burks, Jason; Darden, Chris; Dembek, Scott

    2003-01-01

    It is well known that numerical warm season quantitative precipitation forecasts lack significant skill for numerous reasons. Some are related to the model--it may lack physical processes required to realistically simulate convection or the numerical algorithms and dynamics employed may not be adequate. Others are related to initialization-mesoscale features play an important role in convective initialization and atmospheric observation systems are incapable of properly depicting the three-dimensional stability structure at the mesoscale. The purpose of this study is to determine if a mesoscale model initialized with a diabatic initialization scheme can improve short-term (0 to 12h) warm season quantitative precipitation forecasts in the Southeastern United States. The Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory is used to diabatically initialize the Pennsylvania State University/National center for Atmospheric Research (PSUNCAR) Mesoscale Model version 5 (MM5). The SPORT Center runs LAPS operationally on an hourly cycle to produce analyses on a 15 km covering the eastern 2/3 of the United States. The 20 km National Centers for Environmental Prediction (NCEP) Rapid Update Cycle analyses are used for the background fields. Standard observational data are acquired from MADIS with GOES/CRAFT Nexrad data acquired from in-house feeds. The MM5 is configured on a 140 x 140 12 km grid centered on Huntsville Alabama. Preliminary results indicate that MM5 runs initialized with LAPS produce improved 6 and 12h QPF threat scores compared with those initialized with the NCEP RUC.

  4. Realistic full wave modeling of focal plane array pixels

    DOE PAGES

    Campione, Salvatore; Warne, Larry K.; Jorgenson, Roy E.; ...

    2017-11-01

    Here, we investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We focus on a 2x2 pixelated array structure that supports two wavelengths of operation. We design each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array. We then construct a supercell made of a 2x2 pixelated array with periodic boundary conditions mimicking the full NED; in this case, however, each pixel comprises 10-20 antennas per side. In this way, the cross-talk between contiguous pixels is accounted for in our simulations. We observe that, even though there are finite extent effects,more » the pixels work as designed, each responding at the respective wavelength of operation. This allows us to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.« less

  5. Periodically striped films produced from super-aligned carbon nanotube arrays.

    PubMed

    Liu, Kai; Sun, Yinghui; Liu, Peng; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2009-08-19

    We report a novel way to draw films from super-aligned carbon nanotube arrays at large drawing angles. The obtained super-aligned carbon nanotube films have a periodically striped configuration with alternating thinner and thicker film sections, and the width of the stripes is equal to the height of the original arrays. Compared with ordinary uniform films, the striped films provide a better platform for understanding the mechanism of spinning films from arrays because carbon nanotube junctions are easily observed and identified at the boundary of the stripes. Further studies show that the carbon nanotube junctions are bottleneck positions for thermal conduction and mechanical strength of the film, but do not limit its electrical conduction. These films can be utilized as striped and high-degree polarized light emission sources. Our results will be valuable for new applications and future large-scale production of tunable super-aligned carbon nanotube films.

  6. An overview of mesoscales distribution of ocean color in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1989-01-01

    The spatial changes in phytoplankton abundance is the result of regional differences in the amount of nutrient fluxed into the euphotic zone. The energy contributing to this flux is derived from ocean currents. A close coupling between physics and biology of the system accounts for mesoscale features associated with fluid dynamics being reflected by changes in ocean color.

  7. New Approaches to the Parameterization of Gravity-Wave and Flow-Blocking Drag due to Unresolved Mesoscale Orography Guided by Mesoscale Model Predictability Research

    DTIC Science & Technology

    2012-09-30

    oscillation (SAO) and quasi-biennial oscillation ( QBO ) of stratospheric equatorial winds in long-term (10-year) nature runs. The ability of these new schemes...to generate and maintain tropical SAO and QBO circulations in Navy models for the first time is an important breakthrough, since these circulations

  8. The use of DFDR information in the analysis of a turbulence incident over Greenland

    NASA Technical Reports Server (NTRS)

    Lester, Peter F.; Sen, Orhan; Bach, R. E., Jr.

    1989-01-01

    Digital flight data recorder (DFDR) tapes from commercial aircraft can provide useful information about the mesoscale environment of severe turbulence incidents. Air motion computations from these data and their errors are briefly described. An example of mesoscale meteorological information available from DFDR tapes is presented for a case of turbulence in mountain waves over the Greenland icecap.

  9. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed Central

    Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-01-01

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077

  10. The dynamical landscape of marine phytoplankton diversity

    PubMed Central

    Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J.; d'Ovidio, Francesco

    2015-01-01

    Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10–100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196

  11. Impact of Lidar Wind Sounding on Mesoscale Forecast

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    An Observing System Simulation Experiment (OSSE) was conducted to study the impact of airborne lidar wind sounding on mesoscale weather forecast. A wind retrieval scheme, which interpolates wind data from a grid data system, simulates the retrieval of wind profile from a satellite lidar system. A mesoscale forecast system based on the PSU/NCAR MM5 model is developed and incorporated the assimilation of the retrieved line-of-sight wind. To avoid the "identical twin" problem, the NCEP reanalysis data is used as our reference "nature" atmosphere. The simulated space-based lidar wind observations were retrieved by interpolating the NCEP values to the observation locations. A modified dataset obtained by smoothing the NCEP dataset was used as the initial state whose forecast was sought to be improved by assimilating the retrieved lidar observations. Forecasts using wind profiles with various lidar instrument parameters has been conducted. The results show that to significantly improve the mesoscale forecast the satellite should fly near the storm center with large scanning radius. Increasing lidar firing rate also improves the forecast. Cloud cover and lack of aerosol degrade the quality of the lidar wind data and, subsequently, the forecast.

  12. Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin

    NASA Astrophysics Data System (ADS)

    Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.

    2017-04-01

    The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.

  13. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic.

    PubMed

    Gaube, Peter; Barceló, Caren; McGillicuddy, Dennis J; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat

    2017-01-01

    Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50-100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features.

  14. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic

    PubMed Central

    Barceló, Caren; McGillicuddy, Dennis J.; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat

    2017-01-01

    Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50–100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features. PMID:28249020

  15. Measurement and modeling of moist processes

    NASA Technical Reports Server (NTRS)

    Cotton, William; Starr, David; Mitchell, Kenneth; Fleming, Rex; Koch, Steve; Smith, Steve; Mailhot, Jocelyn; Perkey, Don; Tripoli, Greg

    1993-01-01

    The keynote talk summarized five years of work simulating observed mesoscale convective systems with the RAMS (Regional Atmospheric Modeling System) model. Excellent results are obtained when simulating squall line or other convective systems that are strongly forced by fronts or other lifting mechanisms. Less highly forced systems are difficult to model. The next topic in this colloquium was measurement of water vapor and other constituents of the hydrologic cycle. Impressive accuracy was shown measuring water vapor with both the airborne DIAL (Differential Absorption Lidar) system and the the ground-based Raman Lidar. NMC's plans for initializing land water hydrology in mesoscale models was presented before water vapor measurement concepts for GCIP were discussed. The subject of using satellite data to provide mesoscale moisture and wind analyses was next. Recent activities in modeling of moist processes in mesoscale systems was reported on. These modeling activities at the Canadian Atmospheric Environment Service (AES) used a hydrostatic, variable-resolution grid model. Next the spatial resolution effects of moisture budgets was discussed; in particular, the effects of temporal resolution on heat and moisture budgets for cumulus parameterization. The conclusion of this colloquium was on modeling scale interaction processes.

  16. The T-REX valley wind intercomparison project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidli, J; Billings, B J; Burton, R

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less

  17. Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires

    PubMed Central

    Kwon, Soonshin; Chen, Zack C.Y.; Kim, Ji-Hun; Xiang, Jie

    2012-01-01

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anti-correlated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a post-growth annealing process. PMID:22889063

  18. Soliton creation, propagation, and annihilation in aeromechanical arrays of one-way coupled bistable elements

    NASA Astrophysics Data System (ADS)

    Rosenberger, Tessa; Lindner, John F.

    We study the dynamics of mechanical arrays of bistable elements coupled one-way by wind. Unlike earlier hydromechanical unidirectional arrays, our aeromechanical one-way arrays are simpler, easier to study, and exhibit a broader range of phenomena. Soliton-like waves propagate in one direction at speeds proportional to wind speeds. Periodic boundaries enable solitons to annihilate in pairs in even arrays where adjacent elements are attracted to opposite stable states. Solitons propagate indefinitely in odd arrays where pairing is frustrated. Large noise spontaneously creates soliton- antisoliton pairs, as predicted by prior computer simulations. Soliton annihilation times increase quadratically with initial separations, as expected for random walk models of soliton collisions.

  19. Analytical mesoscale modeling of aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Lämmel, Marc; Kroy, Klaus

    2017-11-01

    The mesoscale structure of aeolian sand transport determines a variety of natural phenomena studied in planetary and Earth science. We analyze it theoretically beyond the mean-field level, based on the grain-scale transport kinetics and splash statistics. A coarse-grained analytical model is proposed and verified by numerical simulations resolving individual grain trajectories. The predicted height-resolved sand flux and other important characteristics of the aeolian transport layer agree remarkably well with a comprehensive compilation of field and wind-tunnel data, suggesting that the model robustly captures the essential mesoscale physics. By comparing the predicted saturation length with field data for the minimum sand-dune size, we elucidate the importance of intermittent turbulent wind fluctuations for field measurements and reconcile conflicting previous models for this most enigmatic emergent aeolian scale.

  20. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  1. Mesoscale Dynamical Regimes in the Midlatitudes

    NASA Astrophysics Data System (ADS)

    Craig, G. C.; Selz, T.

    2018-01-01

    The atmospheric mesoscales are characterized by a complex variety of meteorological phenomena that defy simple classification. Here a full space-time spectral analysis is carried out, based on a 7 day convection-permitting simulation of springtime midlatitude weather on a large domain. The kinetic energy is largest at synoptic scales, and on the mesoscale it is largely confined to an "advective band" where space and time scales are related by a constant of proportionality which corresponds to a velocity scale of about 10 m s-1. Computing the relative magnitude of different terms in the governing equations allows the identification of five dynamical regimes. These are tentatively identified as quasi-geostrophic flow, propagating gravity waves, stationary gravity waves related to orography, acoustic modes, and a weak temperature gradient regime, where vertical motions are forced by diabatic heating.

  2. Anisotropic Shear Dispersion Parameterization for Mesoscale Eddy Transport

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.

    2016-02-01

    The effects of mesoscale eddies are universally treated isotropically in general circulation models. However, the processes that the parameterization approximates, such as shear dispersion, typically have strongly anisotropic characteristics. The Gent-McWilliams/Redi mesoscale eddy parameterization is extended for anisotropy and tested using 1-degree Community Earth System Model (CESM) simulations. The sensitivity of the model to anisotropy includes a reduction of temperature and salinity biases, a deepening of the southern ocean mixed-layer depth, and improved ventilation of biogeochemical tracers, particularly in oxygen minimum zones. The parameterization is further extended to include the effects of unresolved shear dispersion, which sets the strength and direction of anisotropy. The shear dispersion parameterization is similar to drifter observations in spatial distribution of diffusivity and high-resolution model diagnosis in the distribution of eddy flux orientation.

  3. Computer Simulation of the Forces Acting on a Submerged Polystyrene Probe as it Approaches the Succinonitrile Melt-Solid Interface

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Kaukler, William; Whitaker, Ann (Technical Monitor)

    2001-01-01

    A Modeling approach to simulate both mesoscale and microscopic forces acting in a typical AFM experiment is presented. A mesoscale level interaction between the cantilever tip and the sample surface is primarily described by the balance of attractive Van der Waals and repulsive forces. Ultimately, the goal is to measure the forces between a particle and the crystal-melt interface. Two modes of AFM operation are considered in this paper - a stationary and a "tapping" one. The continuous mechanics approach to model tip-surface interaction is presented. At microscopic levels, tip contamination and details of tip-surface interaction are modeled using a molecular dynamics approach for the case of polystyrene - succinonitrile contact. Integration of the mesoscale model with a molecular dynamic model is discussed.

  4. Satellite observations of mesoscale features in lower Cook Inlet and Shelikof Strait, Gulf of Alaska

    NASA Technical Reports Server (NTRS)

    Schumacher, James D.; Barber, Willard E.; Holt, Benjamin; Liu, Antony K.

    1991-01-01

    The Seasat satellite launched in Summer 1978 carried a synthetic aperture radar (SAR). Although Seasat failed after 105 days in orbit, it provided observations that demonstrate the potential to examine and monitor upper oceanic processes. Seasat made five passes over lower Cook Inlet and Shelikof Strait, Alaska, during Summer 1978. SAR images from the passes show oceanographic features, including a meander in a front, a pair of mesoscale eddies, and internal waves. These features are compared with contemporary and representative images from a satellite-borne Advanced Very High Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS), with water property data, and with current observations from moored instruments. The results indicate that SAR data can be used to monitor mesoscale oceanographic features.

  5. Mesoscale modeling: solving complex flows in biology and biotechnology.

    PubMed

    Mills, Zachary Grant; Mao, Wenbin; Alexeev, Alexander

    2013-07-01

    Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that are central for the understanding of such flows. Furthermore, computational modeling effectively facilitates the development of novel therapeutic approaches. Among other methods, dissipative particle dynamics and the lattice Boltzmann method have become increasingly popular during recent years due to their ability to solve a large variety of problems. In this review, we discuss recent applications of these mesoscale methods to several fluid-related problems in medicine, bioengineering, and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Teleseismic P-wave polarization analysis at the Gräfenberg array

    NASA Astrophysics Data System (ADS)

    Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.

    2016-12-01

    P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.

  7. Rectification of light refraction in curved waveguide arrays.

    PubMed

    Longhi, Stefano

    2009-02-15

    An "optical ratchet" for discretized light in photonic lattices, which enables observing rectification of light refraction at any input beam conditions, is theoretically presented, and a possible experimental implementation based on periodically curved zigzag waveguide arrays is proposed.

  8. Global Eddy-Permitting Ocean Reanalyses and Simulations of the Period 1992 to Present

    NASA Astrophysics Data System (ADS)

    Parent, L.; Ferry, N.; Barnier, B.; Garric, G.; Bricaud, C.; Testut, C.-E.; Le Galloudec, O.; Lellouche, J.-M.; Greiner, E.; Drevillon, M.; Remy, E.; Moulines, J.-M.; Guinehut, S.; Cabanes, C.

    2013-09-01

    We present GLORYS2V1 global ocean and sea-ice eddy permitting reanalysis over the altimetric era (1993- 2009). This reanalysis is based on an ocean and sea-ice general circulation model at 1⁄4° horizontal resolution assimilating sea surface temperature, in situ profiles of temperature and salinity and along-track sea level anomaly observations. The reanalysis has been produced along with a reference simulation called MJM95 which allows evaluating the benefits of the data assimilation. In the introduction, we briefly describe the GLORYS2V1 reanalysis system. In sections 2, 3 and 4, the reanalysis skill is presented. Data assimilation diagnostics reveal that the reanalysis is stable all along the time period, with however an improved skill when Argo observation network establishes. GLORYS2V1 captures well climate signals and trends and describes meso-scale variability in a realistic manner.

  9. Polymer nanoimprinting using an anodized aluminum mold for structural coloration

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-06-01

    Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.

  10. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  11. Experimental investigation of aerodynamics and combustion properties of a multiple-swirler array

    NASA Astrophysics Data System (ADS)

    Kao, Yi-Huan

    An annular combustor is one of the popular configurations of a modern gas turbine combustor. Since the swirlers are arranged as side-by-side in an annular combustor, the swirling flow interaction should be considered for the design of an annular gas turbine combustor. The focus of this dissertation is to investigate the aerodynamics and the combustion of a multiple-swirler array which features the swirling flow interaction. A coaxial counter-rotating radial-radial swirler was used in this work. The effects of confinement and dome recession on the flow field of a single swirler were conducted for understanding the aerodynamic characteristic of this swirler. The flow pattern generated by single swirler, 3-swirler array, and 5-swirler array were evaluated. As a result, the 5-swirler array was utilized in the remaining of this work. The effects of inter-swirler spacing, alignment of swirler, end wall distance, and the presence of confinement on the flow field generated by a 5-swirler array were investigated. A benchmark of aerodynamics performance was established. A phenomenological description was proposed to explain the periodically non-uniform flow pattern of a 5-swirler array. The non-reacting spray distribution measurements were following for understanding the effect of swirling flow interaction on the spray distribution issued out by a 5-swirler array. The spray distribution from a single swirler/ fuel nozzle was measured and treated as a reference. The spray distribution from a 5-swriler array was periodically non-uniform and somehow similar to what observed in the aerodynamic result. The inter-swirler spacing altered not only the topology of aerodynamics but also the flame shape of a 5-swirler array. As a result, the distribution of flame shape strongly depends on the inter-swirler spacing.

  12. Tuning the ferromagnetic resonance frequency of soft magnetic film by patterned permalloy micro-stripes with stripe-domain

    NASA Astrophysics Data System (ADS)

    Pan, Lining; Xie, Hongkang; Cheng, Xiaohong; Zhao, Chenbo; Feng, Hongmei; Cao, Derang; Wang, Jianbo; Liu, Qingfang

    2018-07-01

    Periodic micro-stripes arrays with stripe domains structures upon continuous permalloy (Py) film were fabricated by sputtering, photolithography and ion beam etching technology. These samples display in-plane magnetic anisotropy, and stripe domains structure is observed by the magnetic force microscopy (MFM) in the area of the micro-stripes. The periodic micro-stripes show an effective impact on static and dynamic magnetic properties of Py continuous film. In the case of dynamic magnetic properties, the resonance frequency fr of these samples can be tuned by periodic micro-stripes arrays. Compared to continuous film with resonance frequency fr of 0.64 GHz, the fr of composite structures can be tuned by the separation gap of periodic micro-stripes arrays from 0.8 GHz to 2.3 GHz at zero-field. At the same time, the fr could be also tuned by rotating the samples within the plane. This attributes to the competition of shape anisotropy induced by micro-stripes and the dynamic anisotropy originating by stripe domains structure.

  13. Experimental implementation of array-compressed parallel transmission at 7 tesla.

    PubMed

    Yan, Xinqiang; Cao, Zhipeng; Grissom, William A

    2016-06-01

    To implement and validate a hardware-based array-compressed parallel transmission (acpTx) system. In array-compressed parallel transmission, a small number of transmit channels drive a larger number of transmit coils, which are connected via an array compression network that implements optimized coil-to-channel combinations. A two channel-to-eight coil array compression network was developed using power splitters, attenuators and phase shifters, and a simulation was performed to investigate the effects of coil coupling on power dissipation in a simplified network. An eight coil transmit array was constructed using induced current elimination decoupling, and the coil and network were validated in benchtop measurements, B1+ mapping scans, and an accelerated spiral excitation experiment. The developed attenuators came within 0.08 dB of the desired attenuations, and reflection coefficients were -22 dB or better. The simulation demonstrated that up to 3× more power was dissipated in the network when coils were poorly isolated (-9.6 dB), versus well-isolated (-31 dB). Compared to split circularly-polarized coil combinations, the additional degrees of freedom provided by the array compression network led to 54% lower squared excitation error in the spiral experiment. Array-compressed parallel transmission was successfully implemented in a hardware system. Further work is needed to develop remote network tuning and to minimize network power dissipation. Magn Reson Med 75:2545-2552, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Periodically patterned structures for nanoplasmonic and biomedical applications

    NASA Astrophysics Data System (ADS)

    Peer, Akshit

    Periodically patterned nanostructures have imparted profound impact on diverse scientific disciplines. In physics, chemistry, and materials science, artificially engineered photonic crystals have demonstrated an unprecedented ability to control the propagation of photons through light concentration and diffraction. The field of photonic crystals has led to many technical advances in fabricating periodically patterned nanostructures in dielectric/metallic materials and controlling the light-matter interactions at the nanoscale. In the field of biomaterials, it is of great interest to apply our knowledge base of photonic materials and explore how such periodically patterned structures control diverse biological functions by varying the available surface area, which is a key attribute for surface hydrophobicity, cell growth and drug delivery. Here we describe closely related scientific applications of large-scale periodically patterned polymers and metal nanostructures. The dissertation starts with nanoplasmonics for improving photovoltaic devices, where we design and optimize experimentally realizable light-trapping nanostructures using rigorous scattering matrix simulations for enhancing the performance of organic and perovskite solar cells. The use of periodically patterned plasmonic metal cathode in conjunction with polymer microlens array significantly improves the absorption in solar cells, providing new opportunities for photovoltaic device design. We further show the unprecedented ability of nanoplasmonics to concentrate light at the nanoscale by designing a large-area plasmonic nanocup array with frequency-selective optical transmission. The fabrication of nanostructure is achieved by coating non-uniform gold layer over a submicron periodic nanocup array imprinted on polystyrene using soft lithography. The gold nanocup array shows extraordinary optical transmission at a wavelength close to the structure period. The resonance wavelength for transmission can be tuned by changing the period of the gold nanocup array, which opens up new avenues in subwavelength optics for designing optoelectronic devices and biological sensors. We then demonstrate strong exciton-plasmon coupling between non-toxic CuInS2/ZnS quantum dots in solution and plasmonic gold nanocup array. The photoluminescence decay rate of quantum dots can be enhanced by more than an order of magnitude due to the high electric field intensity enhancement inside the plasmonic nanocup cavity. This solution based metal-nanocrystal coupled system has great promise for biological applications such as biosensing and biolabeling. Moving to the area of biomedical applications, we fabricate nanopatterned biopolymers as templates for controlling the release of therapeutic drugs coated on the polymer surface. From careful drug release experiments performed over extended time periods (e.g. eight days), we find that nanopatterned polymers release the drug slower as compared to the flat polymer surfaces. The slow-down in the drug release from nanopatterned surfaces is attributed to increase in the surface hydrophobicity confirmed by the contact angle measurements and microfluidic simulations. This nanoscale drug release control scheme has great promise for improving the performance of drug-eluting stents in cardiac therapies.

  15. How biophysical interactions associated with sub- and mesoscale structures and migration behavior affect planktonic larvae of the spiny lobster in the Juan Fernández Ridge: A modeling approach

    NASA Astrophysics Data System (ADS)

    Medel, Carolina; Parada, Carolina; Morales, Carmen E.; Pizarro, Oscar; Ernst, Billy; Conejero, Carlos

    2018-03-01

    The Juan Fernández Ridge (JFR) is a chain of topographical elevations in the eastern South Pacific (∼33-35°S, 76-81.5°W). Rich in endemic marine species, this ridge is frequently affected by the arrival of mesoscale eddies originating in the coastal upwelling zone off central-southern Chile. The impacts of these interactions on the structure and dynamics of the JFR pelagic system have, however, not been addressed yet. The present model-based study is focused on the coupled influence of mesoscale-submesoscale processes and biological behavior (i.e., diel vertical migration) on the horizontal distribution of planktonic larvae of the spiny lobster (Jasus frontalis) around the JFR waters. Two case studies were selected from a hydrodynamic Regional Ocean Modeling System to characterize mesoscale and submesoscale structures and an Individual-based model (IBM) to simulate diel vertical migration (DVM) and its impact on the horizontal distribution and the patchiness level. DVM behavior of these larvae has not been clearly characterized, therefore, three types of vertical mechanisms were assessed on the IBM: (1) no migration (LG), (2) a short migration (0-50 m depth, DVM1), and (3) a long migration (10-200 m depth, DVM2). The influence of physical properties (eddy kinetic energy, stretching deformation and divergence) on larval aggregation within meso and submesoscale features was quantified. The patchiness index assessed for mesoscale and submesoscale structures showed higher values in the mesoscale than in the submesoscale. However, submesoscale structures revealed a higher accumulation of particles by unit of area. Both vertical migration mechanisms produced larger patchiness indices compared to the no migration experiment. DVM2 was the one that showed by far the largest aggregation of almost all the aggregation zones. Larval concentrations were highest in the submesoscale structures; these zones were characterized by low eddy kinetic energy, negative stretching deformation, and slight convergence. Stretching deformation flow appeared to be triggered by the eddy-eddy interactions and the Robinson Island barrier effect, and it likely promotes the aggregation of the spiny lobster larvae in the Juan Fernández system. These results highlighted the importance of the coupled effect of physical (mesoscale and submesoscale oceanographic features) and biological processes (DVM) in the generation of larval patchiness and concentration of spiny lobster larvae around the JFR, which could be key for their survival and retention in those waters.

  16. Implementing Connected Component Labeling as a User Defined Operator for SciDB

    NASA Technical Reports Server (NTRS)

    Oloso, Amidu; Kuo, Kwo-Sen; Clune, Thomas; Brown, Paul; Poliakov, Alex; Yu, Hongfeng

    2016-01-01

    We have implemented a flexible User Defined Operator (UDO) for labeling connected components of a binary mask expressed as an array in SciDB, a parallel distributed database management system based on the array data model. This UDO is able to process very large multidimensional arrays by exploiting SciDB's memory management mechanism that efficiently manipulates arrays whose memory requirements far exceed available physical memory. The UDO takes as primary inputs a binary mask array and a binary stencil array that specifies the connectivity of a given cell to its neighbors. The UDO returns an array of the same shape as the input mask array with each foreground cell containing the label of the component it belongs to. By default, dimensions are treated as non-periodic, but the UDO also accepts optional input parameters to specify periodicity in any of the array dimensions. The UDO requires four stages to completely label connected components. In the first stage, labels are computed for each subarray or chunk of the mask array in parallel across SciDB instances using the weighted quick union (WQU) with half-path compression algorithm. In the second stage, labels around chunk boundaries from the first stage are stored in a temporary SciDB array that is then replicated across all SciDB instances. Equivalences are resolved by again applying the WQU algorithm to these boundary labels. In the third stage, relabeling is done for each chunk using the resolved equivalences. In the fourth stage, the resolved labels, which so far are "flattened" coordinates of the original binary mask array, are renamed with sequential integers for legibility. The UDO is demonstrated on a 3-D mask of O(1011) elements, with O(108) foreground cells and O(106) connected components. The operator completes in 19 minutes using 84 SciDB instances.

  17. Investigations of severe/tornadic thunderstorm development and evolution based on satellite and AVE/SESAME/VAS data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Purdom, J. F. W.

    1984-01-01

    The use of rapid scan satellite imagery to investigate the local environment of severe thunderstorms is discussed. Mesoscale cloud tracking and vertical wind shear as it affects thunderstorm relative flow are mentioned. The role of pre-existing low level cloud cover in the outbreak of tornadoes was investigated. Applying visible atmospheric sounding imagery to mesoscale phenomena is also addressed.

  18. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE PAGES

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An; ...

    2015-02-19

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  19. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hanfeng; Zhang, Pengfei; Qiao, Zhen-An

    Lanthanum-transition-metal perovskites with robust meso-scale porous frameworks (meso-LaMO 3) are synthesized through use of ionic liquids. The resultant samples demonstrate a rather high activity for CO oxidation, by taking advantage of unique nanostructure-derived benefits. This synthesis strategy opens up a new opportunity for preparing functional mesoporous complex oxides of various compositions.

  20. The Re-Intensification of Typhoon Sinlaku (2008)

    DTIC Science & Technology

    2010-06-01

    Tropical Cyclones, TCS-08, T- PARC , Extratropical Transition, Airborne Dual Doppler Radar , ELDORA, Axisymmetrization, Mesoscale Vortices, Mesoscale...observed by multiple aircraft as part of the TCS-08 and T- PARC field programs. Airborne dual-Doppler radar , dropwindsondes, and flight-level...typhoon southwest of Japan. The evolution of the tropical cyclone (TC) structure was observed by multiple aircraft as part of the TCS-08 and T- PARC

Top