Filippov, A E; Popov, V L
2007-02-01
A modified Tomlinson equation with fractal potential is studied. The effective potential is numerically generated and its mesoscopic structure is gradually adjusted to different scales by a number of Fourier modes. It is shown that with the change of scale the intensity of velocity-dependent damping in an effective Langevin equation can be gradually substituted by an equivalent constant "dry friction." For smooth macrosopic surfaces the effective equation completely reduces to the well known Coulomb law.
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
Mesoscopic model for the viscosities of nematic liquid crystals.
Chrzanowska, A; Kröger, M; Sellers, S
1999-10-01
Based on the definition of the mesoscopic concept by Blenk et al. [Physica A 174, 119 (1991); J. Noneq. Therm. 16, 67 (1991); Mol. Cryst. Liq. Cryst. 204, 133 (1991)] an approach to calculate the Leslie viscosity coefficients for nematic liquid crystals is presented. The approach rests upon the mesoscopic stress tensor, whose structure is assumed similar to the macroscopic Leslie viscous stress. The proposed form is also the main dissipation part of the mesoscopic Navier-Stokes equation. On the basis of the correspondence between microscopic and mesoscopic scales a mean-field mesoscopic potential is introduced. It allows us to obtain the stress tensor angular velocity of the free rotating molecules with the help of the orientational Fokker-Planck equation. The macroscopic stress tensor is calculated as an average of the mesoscopic counterpart. Appropriate relations among mesoscopic viscosities have been found. The mesoscopic analysis results are shown to be consistent with the diffusional model of Kuzuu-Doi and Osipov-Terentjev with the exception of the shear viscosity alpha(4). In the nematic phase alpha(4) is shown to have two contributions: isotropic and nematic. There exists an indication that the influence of the isotropic part is dominant over the nematic part. The so-called microscopic stress tensor used in the microscopic theories is shown to be the mean-field potential-dependent representation of the mesoscopic stress tensor. In the limiting case of total alignment the Leslie coefficients are estimated for the diffusional and mesoscopic models. They are compared to the results of the affine transformation model of the perfectly ordered systems. This comparison shows disagreement concerning the rotational viscosity, whereas the coefficients characteristic for the symmetric part of the viscous stress tensor remain the same. The difference is caused by the hindered diffusion in the affine model case.
2007-05-04
TITLE AND SUBTITLE Nonlinear Acoustic Landmine Detection: Profiling Soil Surface Vibrations and Modeling Mesoscopic Elastic Behavior 6. AUTHOR(S...project report; no. 352 (2007) NONLINEAR ACOUSTIC LANDMINE DETECTION: PROFILING SOIL SURFACE VIBRATIONS AND MODELING MESOSCOPIC ELASTIC... model (Caughey 1966). Nonlinear acoustic landmine detection experiments are performed in the anechoic chamber facility using both a buried acrylic
Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media
NASA Astrophysics Data System (ADS)
Jinwei, Zhang; Handong, Huang; Chunhua, Wu; Sheng, Zhang; Gang, Wu; Fang, Chen
2018-04-01
Wave induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and micro-cracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low frequency limit and consistent with the isolated fracture model at high frequency limit. After the frequency dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analyzed through several numerical examples. We investigated three poroelastic cases: medium including pores and micro-cracks, media including pores, micro-cracks and fractures, media including pores and fractures. The frequency dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.
Influence of patchy saturation on seismic dispersion and attenuation in fractured porous media
NASA Astrophysics Data System (ADS)
Zhang, Jinwei; Huang, Handong; Wu, Chunhua; Zhang, Sheng; Wu, Gang; Chen, Fang
2018-07-01
Wave-induced fluid flow due to mesoscopic heterogeneity can explain seismic dispersion and attenuation in the seismic frequency band. The mesoscopic heterogeneity mainly contains lithological variations, patchy saturation and mesoscopic fractures. The patchy saturation models which are locally based on Biot theory for porous media have been deeply studied, but the patchy saturation model for fractured porous media is rarely studied. In this paper, we develop a model to describe the poroelastic characteristics in fractured porous media where the background and fractures are filled with different fluids based on two scales of squirt flow. The seismic dispersion and attenuation in fractured porous media occur in two scales, the microscale due to fluid flow between pores and microcracks and mesoscale due to fluid flow between background and heterogeneities. We derive the complex stiffness tensor through the solution of stress equivalence and fluid conservation. Two new parameters embodying the fluid effects are introduced into the model compared with the single fluid phase model. The model is consistent with Gassmann-Wood equation at low-frequency limit and consistent with the isolated fracture model at high-frequency limit. After the frequency-dependent stiffness tensor is obtained, the variations of velocities and inverse quality factors with frequency are analysed through several numerical examples. We investigated three poroelastic cases: medium including pores and microcracks; media including pores, microcracks and fractures; media including pores and fractures. The frequency-dependent characteristics of patchy saturation model are different with those of single fluid model not only in characteristic frequency but also in the magnitude of the attenuation. Finally, we discuss the results obtained and the special case where the fractures are saturated with gas or dry and the background is filled with water. We also compare our results with those of patchy saturation model and double porosity model. The results will contribute to the actual exploration work to a certain extent, such as the fluid identification in fractured reservoirs.
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2015-02-23
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less
Reaction rates for mesoscopic reaction-diffusion kinetics
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2016-01-01
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640
DOT National Transportation Integrated Search
2010-02-01
This technical report documents the calibration and validation of the baseline (2008) mesoscopic model for the I-394 Minneapolis, Minnesota, Pioneer Site. DynusT was selected as the mesoscopic model for analyzing operating conditions in the I-394 cor...
Statewide mesoscopic simulation for Wyoming.
DOT National Transportation Integrated Search
2013-10-01
This study developed a mesoscopic simulator which is capable of representing both city-level and statewide roadway : networks. The key feature of such models are the integration of (i) a traffic flow model which is efficient enough to : scale to larg...
DOT National Transportation Integrated Search
2013-03-01
This study developed a mesoscopic model for the before and after study of MD 200, the Inter-County Connector. It is in line with : recent efforts by the Maryland State Highway Administration (SHA) in developing effective modeling tools for traffic an...
Lattice Boltzmann model capable of mesoscopic vorticity computation
NASA Astrophysics Data System (ADS)
Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping
2017-11-01
It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.
Macroscopic and mesoscopic approach to the alkali-silica reaction in concrete
NASA Astrophysics Data System (ADS)
Grymin, Witold; Koniorczyk, Marcin; Pesavento, Francesco; Gawin, Dariusz
2018-01-01
A model of the alkali-silica reaction, which takes into account couplings between thermal, hygral, mechanical and chemical phenomena in concrete, has been discussed. The ASR may be considered at macroscopic or mesoscopic scale. The main features of each approach have been summarized and development of the model for both scales has been briefly described. Application of the model to experimental results for both scales has been presented. Even though good accordance of the model has been obtained for both approaches, consideration of the model at the mesoscopic scale allows to model different mortar mixes, prepared with the same aggregate, but of different grain size, using the same set of parameters. It enables also to predict reaction development assuming different alkali sources, such as de-icing salts or alkali leaching.
Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui
2017-09-26
Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.
An asymmetric mesoscopic model for single bulges in RNA
NASA Astrophysics Data System (ADS)
de Oliveira Martins, Erik; Weber, Gerald
2017-10-01
Simple one-dimensional DNA or RNA mesoscopic models are of interest for their computational efficiency while retaining the key elements of the molecular interactions. However, they only deal with perfectly formed DNA or RNA double helices and consider the intra-strand interactions to be the same on both strands. This makes it difficult to describe highly asymmetric structures such as bulges and loops and, for instance, prevents the application of mesoscopic models to determine RNA secondary structures. Here we derived the conditions for the Peyrard-Bishop mesoscopic model to overcome these limitations and applied it to the calculation of single bulges, the smallest and simplest of these asymmetric structures. We found that these theoretical conditions can indeed be applied to any situation where stacking asymmetry needs to be considered. The full set of parameters for group I RNA bulges was determined from experimental melting temperatures using an optimization procedure, and we also calculated average opening profiles for several RNA sequences. We found that guanosine bulges show the strongest perturbation on their neighboring base pairs, considerably reducing the on-site interactions of their neighboring base pairs.
Mesoscopic model for binary fluids
NASA Astrophysics Data System (ADS)
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite
NASA Astrophysics Data System (ADS)
Jokar, Ali; Désilets, Martin; Lacroix, Marcel; Zaghib, Karim
2018-03-01
A novel numerical model for simulating the behavior of lithium-ion batteries based on LiFePO4(LFP)/graphite is presented. The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic approach for the LFP electrode. The model comprises one representative spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the SPM equations are retained to model the negative electrode performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions and uses a non-monotonic open circuit potential for each unit. A parameter estimation study is also carried out to identify all the parameters needed for the model. The unknown parameters are the solid diffusion coefficient of the negative electrode (Ds,n), reaction-rate constant of the negative electrode (Kn), negative and positive electrode porosity (εn&εn), initial State-Of-Charge of the negative electrode (SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum resistance of the LFP units (Rmin&Rmax), and solution resistance (Rcell). The results show that the mesoscopic model can simulate successfully the electrochemical behavior of lithium-ion batteries at low and high charge/discharge rates. The model also describes adequately the lithiation/delithiation of the LFP particles, however, it is computationally expensive compared to macro-based models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinis, Panos
2016-08-07
This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME
BLANC, EMILIE; ENGBLOM, STEFAN; HELLANDER, ANDREAS; LÖTSTEDT, PER
2017-01-01
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again. PMID:29046618
NASA Astrophysics Data System (ADS)
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit significant curvature when the soil particle velocity is relatively higher. An oscillator with hysteresis modeled by a distribution of parallel spring elements each with a different threshold slip condition seems to describe fairly linear backbone curve behavior [W. D. Iwan, Transactions of the ASME, J. of Applied Mech., 33,(1966), 893-900], while a single bilinear hysteresis element describes the backbone curvature results in the experiments reported here [T. K. Caughey, Transactions of the ASME, J. of Applied Mech., 27, (1960), 640-643]. When "off target" resonances have a different backbone curvature than "on the mine" backbone curves, then false alarms may be eliminated due to resonances from the natural soil layering. See [R. A. Guyer, J. TenCate, and P. Johnson, "Hysteresis and the Dynamic Elasticity of Consolidated Granular Materials," Phys. Rev. Lett., 82, 16 (1999), 3280-3283] for recent models of nonlinear mesoscopic behavior.
ERIC Educational Resources Information Center
Besson, Ugo; Viennot, Laurence
2004-01-01
This article examines the didactic suitability of introducing models at an intermediate (i.e. mesoscopic) scale in teaching certain subjects, at an early stage. The design and evaluation of two short sequences based on this rationale will be outlined: one bears on propulsion by solid friction, the other on fluid statics in the presence of gravity.…
Revealing mesoscopic structural universality with diffusion.
Novikov, Dmitry S; Jensen, Jens H; Helpern, Joseph A; Fieremans, Els
2014-04-08
Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke.
The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin
2018-06-01
The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.
Revealing mesoscopic structural universality with diffusion
Novikov, Dmitry S.; Jensen, Jens H.; Helpern, Joseph A.; Fieremans, Els
2014-01-01
Measuring molecular diffusion is widely used for characterizing materials and living organisms noninvasively. This characterization relies on relations between macroscopic diffusion metrics and structure at the mesoscopic scale commensurate with the diffusion length. Establishing such relations remains a fundamental challenge, hindering progress in materials science, porous media, and biomedical imaging. Here we show that the dynamical exponent in the time dependence of the diffusion coefficient distinguishes between the universality classes of the mesoscopic structural complexity. Our approach enables the interpretation of diffusion measurements by objectively selecting and modeling the most relevant structural features. As an example, the specific values of the dynamical exponent allow us to identify the relevant mesoscopic structure affecting MRI-measured water diffusion in muscles and in brain, and to elucidate the structural changes behind the decrease of diffusion coefficient in ischemic stroke. PMID:24706873
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors.
Taupin, M; Khaymovich, I M; Meschke, M; Mel'nikov, A S; Pekola, J P
2016-03-16
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data.
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors
Taupin, M.; Khaymovich, I. M.; Meschke, M.; Mel'nikov, A. S.; Pekola, J. P.
2016-01-01
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data. PMID:26980225
A novel grid-based mesoscopic model for evacuation dynamics
NASA Astrophysics Data System (ADS)
Shi, Meng; Lee, Eric Wai Ming; Ma, Yi
2018-05-01
This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.
Structure and growth of the mesoscopic surfactant/silica thin films
NASA Astrophysics Data System (ADS)
Zhou, Linbo
1999-10-01
We report the study of the structure and the growth of the mesoscopic surfactant/silica thin films. We use X-ray diffraction coupled with Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Transmission Electron Microscope (TEM) and light scattering techniques to study the structure, lattice strain and the drying effect of the thin films as well as the growth kinetics and mechanism. The surfactant/silica materials are synthesized using the supramolecular assemblies of the surfactant molecules to template the condensation of the inorganic species. The subsequent calcination yields the mesoporous silica materials, which have many application properties such as unusual electronic, optical, magnetic and elastic characteristics. The films are grown on mica, graphite and silicon substrates in an acidic CTAC (Cetyltrimethyl Ammonium Chloride)/TEOS (Tetraethyl Orthosilicate) solution and are found to consist of the hexagonally packed tubules. The substrate plays an important role in the epitaxial arrangement of the film. We use the light scattering and cryo TEM to study the micelle morphology and aggregation in the solution and use synchrotron radiation X-ray diffraction to study the growth of the film at the solid/liquid interfaces in-situ. An induction time is found followed by the growth of the film at a nonlinear growth rate. The induction time depends on the ratio of the concentrations of CTAC to TEOS in the high CTAC concentration regime. The growth kinetics and mechanism are elucidated in a context of a growth model. For the technological application, Micromolding in Capillaries (MIMIC) technique and the field guided growth are used to process the patterned mesoscopic surfactant/silica thin films and align the nanotubules into the desired orientation. X-ray diffraction characterization has been performed to study the structure and orientation of the thin films. The combined influence of the electric field and the confinement of the mold allows the synthesis of the surfactant/silica thin films with the controlled orientation.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2013-12-01
A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.
Cheng, Hongyan; Yao, Nan; Huang, Zi-Gang; Park, Junpyo; Do, Younghae; Lai, Ying-Cheng
2014-12-15
Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.
Probing eukaryotic cell mechanics via mesoscopic simulations
NASA Astrophysics Data System (ADS)
Pivkin, Igor V.; Lykov, Kirill; Nematbakhsh, Yasaman; Shang, Menglin; Lim, Chwee Teck
2017-11-01
We developed a new mesoscopic particle based eukaryotic cell model which takes into account cell membrane, cytoskeleton and nucleus. The breast epithelial cells were used in our studies. To estimate the viscoelastic properties of cells and to calibrate the computational model, we performed micropipette aspiration experiments. The model was then validated using data from microfluidic experiments. Using the validated model, we probed contributions of sub-cellular components to whole cell mechanics in micropipette aspiration and microfluidics experiments. We believe that the new model will allow to study in silico numerous problems in the context of cell biomechanics in flows in complex domains, such as capillary networks and microfluidic devices.
NASA Astrophysics Data System (ADS)
Biller, A. M.; Stolbov, O. V.; Raikher, Yu L.
2017-06-01
A pair of magnetizable solid particles embedded in a cylinder made of high-elasticity material is considered as a model of a mesoscopic structure element of a magnetorheological elastomer. An applied magnetic field induces ponderomotive interaction of the particles making them to move relative to one another so as to balance the counteracting magnetic and elastic forces. In a certain parameter range, the system exhibits bistability due to which under the increase / decrease of the field, the interparticle distance changes in a hysteretic manner. This behavior has a significant effect on the ability of the mesoscopic element to resist external load. Using the developed two-particle model prone to the magnetomechanical hysteresis, we extend it to the case of a virtually macroscopic sample presenting the latter as a superposition of such elements with distributed interparticle distances. In spite of its simplicity, this scheme in a generally correct way describes the field-induced changes of the internal structure and elastic modulus of the magnetorheological composites.
Mesohysteresis model for ferromagnetic materials by minimization of the micromagnetic free energy
NASA Astrophysics Data System (ADS)
van den Berg, A.; Dupré, L.; Van de Wiele, B.; Crevecoeur, G.
2009-04-01
To study the connection between macroscopic hysteretic behavior and the microstructural properties, this paper presents and validates a new material dependent three-dimensional mesoscopic magnetic hysteresis model. In the presented mesoscopic description, the different micromagnetic energy terms are reformulated on the space scale of the magnetic domains. The sample is discretized in cubic cells, each with a local stress state, local bcc crystallographic axes, etc. The magnetization is assumed to align with one of the three crystallographic axes, in positive or negative sense, defining six volume fractions within each cell. The micromagnetic Gibbs free energy is described in terms of these volume fractions. Hysteresis loops are computed by minimizing the mesoscopic Gibbs free energy using a modified gradient search for a sequence of external applied fields. To validate the mesohysteresis model, we studied the magnetic memory properties. Numerical experiments reveal that (1) minor hysteresis loops are indeed closed and (2) the closed minor loops are erased from the memory.
NASA Astrophysics Data System (ADS)
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
Fermi edge singularities in the mesoscopic regime: Photoabsorption spectra
NASA Astrophysics Data System (ADS)
Hentschel, Martina; Ullmo, Denis; Baranger, Harold U.
2007-12-01
We study Fermi edge singularities in photoabsorption spectra of generic mesoscopic systems such as quantum dots or nanoparticles. We predict deviations from macroscopic-metallic behavior and propose experimental setups for the observation of these effects. The theory is based on the model of a localized, or rank one, perturbation caused by the (core) hole left behind after the photoexcitation of an electron into the conduction band. The photoabsorption spectra result from the competition between two many-body responses, Anderson’s orthogonality catastrophe and the Mahan-Nozières-DeDominicis contribution. Both mechanisms depend on the system size through the number of particles and, more importantly, fluctuations produced by the coherence characteristic of mesoscopic samples. The latter lead to a modification of the dipole matrix element and trigger one of our key results: a rounded K -edge typically found in metals will turn into a (slightly) peaked edge on average in the mesoscopic regime. We consider in detail the effect of the “bound state” produced by the core hole.
Mesoscopic Physics of Electronic and Optical Systems
NASA Astrophysics Data System (ADS)
Hentschel, Martina
2005-10-01
The progress in fabricating and controlling mesoscopic samples opens the possibility to investigate many-body phenomena on the nanoscopic scale, for example in quantum dots or nanoparticles. We recently studied the many-body signatures in the photoabsorption cross-section of those systems. Two counteracting many-body effects (Anderson's orthogonality catastrophe and Mahan's exciton) lead to deviations from the naively expected cross-section and to Fermi-edge singularities in the form of a peaked or rounded edge. We found that mesoscopic-coherent systems can show a many-body response that differs considerably from macroscopic samples. The reason for this lies in the finite number of particles and the lack of rotational symmetry in generic mesoscopic systems. The properties of mesoscopic systems crucially depend on whether the corresponding classical systems possess chaotic or integrable dynamics. Signatures of the underlying classical dynamics in quantum-mechanical behavior are searched for in the field of quantum chaos. We study it in the context of optical microresonators-billiards where reflection at hard walls is replaced by confinement due to total internal reflection. The relation between the simple ray model and the wave description (that has to be used when the wavelength becomes comparable to the system size) is called ``ray-wave correspondence.'' It can be established in both real and phase space. For the latter we generalized the concept of Husimi functions to dielectric boundaries. Although the ray model provides a qualitative understanding of the system properties even into the wave limit, semiclassical corrections of the ray picture are necessary in order to establish quantitative correspondence.
Spintronics: spin accumulation in mesoscopic systems.
Johnson, Mark
2002-04-25
In spintronics, in which use is made of the spin degree of freedom of the electron, issues concerning electrical spin injection and detection of electron spin diffusion are fundamentally important. Jedema et al. describe a magneto-resistance study in which they claim to have observed spin accumulation in a mesoscopic copper wire, but their one-dimensional model ignores two-dimensional spin-diffusion effects, which casts doubt on their analysis. A two-dimensional vector formalism of spin transport is called for to model spin-injection experiments, and the identification of spurious background resistance effects is crucial.
NASA Astrophysics Data System (ADS)
Yan, Han; Li, Denghua; He, Chang; Wei, Zhixiang; Yang, Yanlian; Li, Yongfang
2013-11-01
Organic solar cells have become a promising energy conversion candidate because of their unique advantages. Novel fullerene derivatives, as a common acceptor, can increase power conversion efficiency (PCE) by increasing the open-circuit voltage. As a representative acceptor, Indene-C60 bisadduct (ICBA) can reach high efficiency with poly(3-hexylthiophene) (P3HT). On the other hand, the novel synthesized polymers mainly aimed to broaden the optical absorption range have steadily promoted efficiency to higher than 9%. However, it is challenging to obtain the desired result by simply combining ICBA with other high-efficiency donors. Thus, P3HT or a high-efficiency polymer PBDTTT-C-T (copolymer of thienyl-substituted BDT with substituted TT) is used as donor and PCBM or ICBA as acceptor in this article to clarify the mechanism behind these materials. The optical and photovoltaic properties of the materials are studied for pair-wise combination. Among these four material groups, the highest PCE of 6.2% is obtained for the PBDTTT-C-T/PCBM combination while the lowest PCE of 3.5% is obtained for the PBDTTT-C-T/ICBA combination. The impact of the mesoscopic heterogeneity on the local mesoscopic photoelectric properties is identified by photo-conductive AFM (pc-AFM), and the consistence between the mesoscopic properties and the macroscopic device performances is also observed. Based on these results, an interface combined model is proposed based on the mesoscopic phase heterogeneity. This study provides a new view on the rational selection of photovoltaic materials, where, aside from the traditional energy level and absorption spectrum matching, the matching of mesoscopic heterogeneity must also be considered.Organic solar cells have become a promising energy conversion candidate because of their unique advantages. Novel fullerene derivatives, as a common acceptor, can increase power conversion efficiency (PCE) by increasing the open-circuit voltage. As a representative acceptor, Indene-C60 bisadduct (ICBA) can reach high efficiency with poly(3-hexylthiophene) (P3HT). On the other hand, the novel synthesized polymers mainly aimed to broaden the optical absorption range have steadily promoted efficiency to higher than 9%. However, it is challenging to obtain the desired result by simply combining ICBA with other high-efficiency donors. Thus, P3HT or a high-efficiency polymer PBDTTT-C-T (copolymer of thienyl-substituted BDT with substituted TT) is used as donor and PCBM or ICBA as acceptor in this article to clarify the mechanism behind these materials. The optical and photovoltaic properties of the materials are studied for pair-wise combination. Among these four material groups, the highest PCE of 6.2% is obtained for the PBDTTT-C-T/PCBM combination while the lowest PCE of 3.5% is obtained for the PBDTTT-C-T/ICBA combination. The impact of the mesoscopic heterogeneity on the local mesoscopic photoelectric properties is identified by photo-conductive AFM (pc-AFM), and the consistence between the mesoscopic properties and the macroscopic device performances is also observed. Based on these results, an interface combined model is proposed based on the mesoscopic phase heterogeneity. This study provides a new view on the rational selection of photovoltaic materials, where, aside from the traditional energy level and absorption spectrum matching, the matching of mesoscopic heterogeneity must also be considered. Electronic Supplementary Information (ESI) available. See DOI: 10.1039/c3nr03165a
Modeling snow-crystal growth: a three-dimensional mesoscopic approach.
Gravner, Janko; Griffeath, David
2009-01-01
We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.
A mesoscopic approach for draping simulation of preforms manufactured by direct fibre placement
NASA Astrophysics Data System (ADS)
Engelfried, Mathias; Fial, Julian; Tartler, Manuel; Böhler, Patrick; Hägele, Dominik; Middendorf, Peter
2017-10-01
The draping of preforms made by automated fibre placement is a suitable way to generate complex, three-dimensional preforms. The absence of weaving or sewing yarns leads to a high tendency towards defects, such as gaps. To predict those defects a detailed simulation model of the material is necessary. This work deals with a method to describe the inter-ply friction of preforms that consists of carbon fibre yarns joined by a thermoplastic binder. Therefore, a friction model which is customised to the partial presence of molten binder is proposed. This model is used in a mesoscopic draping simulation and is validated by draping experiments.
Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations
NASA Astrophysics Data System (ADS)
Flegg, Mark B.; Hellander, Stefan; Erban, Radek
2015-05-01
In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δt (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: Δt → 0 and h is fixed; Δt → 0 and h → 0 such that √{ Δt } / h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
Mesoscopic-microscopic spatial stochastic simulation with automatic system partitioning.
Hellander, Stefan; Hellander, Andreas; Petzold, Linda
2017-12-21
The reaction-diffusion master equation (RDME) is a model that allows for efficient on-lattice simulation of spatially resolved stochastic chemical kinetics. Compared to off-lattice hard-sphere simulations with Brownian dynamics or Green's function reaction dynamics, the RDME can be orders of magnitude faster if the lattice spacing can be chosen coarse enough. However, strongly diffusion-controlled reactions mandate a very fine mesh resolution for acceptable accuracy. It is common that reactions in the same model differ in their degree of diffusion control and therefore require different degrees of mesh resolution. This renders mesoscopic simulation inefficient for systems with multiscale properties. Mesoscopic-microscopic hybrid methods address this problem by resolving the most challenging reactions with a microscale, off-lattice simulation. However, all methods to date require manual partitioning of a system, effectively limiting their usefulness as "black-box" simulation codes. In this paper, we propose a hybrid simulation algorithm with automatic system partitioning based on indirect a priori error estimates. We demonstrate the accuracy and efficiency of the method on models of diffusion-controlled networks in 3D.
Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion.
de Buyl, Pierre; Kapral, Raymond
2013-02-21
The fabrication of synthetic self-propelled particles and the experimental investigations of their dynamics have stimulated interest in self-generated phoretic effects that propel nano- and micron-scale objects. Theoretical modeling of these phenomena is often based on a continuum description of the solvent for different phoretic propulsion mechanisms, including, self-electrophoresis, self-diffusiophoresis and self-thermophoresis. The work in this paper considers various types of catalytic chemical reaction at the motor surface and in the bulk fluid that come into play in mesoscopic descriptions of the dynamics. The formulation is illustrated by developing the mesoscopic reaction dynamics for exothermic and dissociation reactions that are used to power motor motion. The results of simulations of the self-propelled dynamics of composite Janus particles by these mechanisms are presented.
Wang, XinJie; Wu, YanQing; Huang, FengLei
2017-01-05
A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.
A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.
Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L
2016-11-05
The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram
2017-04-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction
NASA Astrophysics Data System (ADS)
Pahlavanias, Hassan
2018-03-01
The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.
Flexible histone tails in a new mesoscopic oligonucleosome model.
Arya, Gaurav; Zhang, Qing; Schlick, Tamar
2006-07-01
We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.
Microstructure-based hyperelastic models for closed-cell solids
Wyatt, Hayley
2017-01-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases. PMID:28484340
Microstructure-based hyperelastic models for closed-cell solids.
Mihai, L Angela; Wyatt, Hayley; Goriely, Alain
2017-04-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.
Microstructure-based hyperelastic models for closed-cell solids
NASA Astrophysics Data System (ADS)
Mihai, L. Angela; Wyatt, Hayley; Goriely, Alain
2017-04-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.
Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics.
González-Tudela, Alejandro; Porras, Diego
2013-02-22
Implementations of solid-state quantum optics provide us with devices where qubits are placed at fixed positions in photonic or plasmonic one-dimensional waveguides. We show that solely by controlling the position of the qubits and with the help of a coherent driving, collective spontaneous decay may be engineered to yield an entangled mesoscopic steady state. Our scheme relies on the realization of pure superradiant Dicke models by a destructive interference that cancels dipole-dipole interactions in one dimension.
Mesoscopic Rigid Body Modelling of the Extracellular Matrix Self-Assembly.
Wong, Hua; Prévoteau-Jonquet, Jessica; Baud, Stéphanie; Dauchez, Manuel; Belloy, Nicolas
2018-06-11
The extracellular matrix (ECM) plays an important role in supporting tissues and organs. It even has a functional role in morphogenesis and differentiation by acting as a source of active molecules (matrikines). Many diseases are linked to dysfunction of ECM components and fragments or changes in their structures. As such it is a prime target for drugs. Because of technological limitations for observations at mesoscopic scales, the precise structural organisation of the ECM is not well-known, with sparse or fuzzy experimental observables. Based on the Unity3D game and physics engines, along with rigid body dynamics, we propose a virtual sandbox to model large biological molecules as dynamic chains of rigid bodies interacting together to gain insight into ECM components behaviour in the mesoscopic range. We have preliminary results showing how parameters such as fibre flexibility or the nature and number of interactions between molecules can induce different structures in the basement membrane. Using the Unity3D game engine and virtual reality headset coupled with haptic controllers, we immerse the user inside the corresponding simulation. Untrained users are able to navigate a complex virtual sandbox crowded with large biomolecules models in a matter of seconds.
Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.
2015-07-07
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPDmore » simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.« less
Spatial and mesoscopic fluctuations in glassy dynamics
NASA Astrophysics Data System (ADS)
Chamon, Claudio C.; Cugliandolo, Leticia F.
2004-05-01
One of the striking properties of a glassy system is that many material properties depend on its age, i.e., the time since the system entered its glassy phase. In this this talk we shall review some recent progress (work in collaboration with H. E. Castillo, P. Charbonneau, J. L. Iguain, M. P. Kennett, D. R. Reichman and M. Sellitto) in understanding local aging, through the study of local observable quantities, which reveal that there are spatial heterogeneities and fluctuations in the aging process of macroscopic systems. We show that a number of universal properties are shared by many non-equilibrium systems, both with and without quenched disorder, such as the 3D Edwards-Anderson model and some kinetically constrained non-interacting 2D and 3D spin models, for example. Similar scaling relations are found for mesoscopic sample-to-sample fluctuations of global quantities in small size systems. We discuss how the emergence of a symmetry in aging systems, time-reparametrization invariance, could be responsible for the observed universal behavior of the local and mesoscopic non-equilibrium fluctuations.
Systematic parameter inference in stochastic mesoscopic modeling
NASA Astrophysics Data System (ADS)
Lei, Huan; Yang, Xiu; Li, Zhen; Karniadakis, George Em
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are "sparse". The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Probing eukaryotic cell mechanics via mesoscopic simulations
Shang, Menglin; Lim, Chwee Teck
2017-01-01
Cell mechanics has proven to be important in many biological processes. Although there is a number of experimental techniques which allow us to study mechanical properties of cell, there is still a lack of understanding of the role each sub-cellular component plays during cell deformations. We present a new mesoscopic particle-based eukaryotic cell model which explicitly describes cell membrane, nucleus and cytoskeleton. We employ Dissipative Particle Dynamics (DPD) method that provides us with the unified framework for modeling of a cell and its interactions in the flow. Data from micropipette aspiration experiments were used to define model parameters. The model was validated using data from microfluidic experiments. The validated model was then applied to study the impact of the sub-cellular components on the cell viscoelastic response in micropipette aspiration and microfluidic experiments. PMID:28922399
Kalay, Ziya
2011-08-01
How small can a macroscopic object be made without losing its intended function? Obviously, the smallest possible size is determined by the size of an atom, but it is not so obvious how many atoms are required to assemble an object so small, and yet that performs the same function as its macroscopic counterpart. In this review, we are concerned with objects of intermediate nature, lying between the microscopic and the macroscopic world. In physics and chemistry literature, this regime in-between is often called mesoscopic, and is known to bear interesting and counterintuitive features. After a brief introduction to the concept of mesoscopic systems from the perspective of physics, we discuss the functional aspects of mesoscopic architectures in cell biology, and supramolecular chemistry through many examples from the literature. We argue that the biochemistry of the cell is largely regulated by mesoscopic functional architectures; however, the significance of mesoscopic phenomena seems to be quite underappreciated in biological sciences. With this motivation, one of our main purposes here is to emphasize the critical role that mesoscopic structures play in cell biology and biochemistry.
Intact skull chronic windows for mesoscopic wide-field imaging in awake mice
Silasi, Gergely; Xiao, Dongsheng; Vanni, Matthieu P.; Chen, Andrew C. N.; Murphy, Timothy H.
2016-01-01
Background Craniotomy-based window implants are commonly used for microscopic imaging, in head-fixed rodents, however their field of view is typically small and incompatible with mesoscopic functional mapping of cortex. New Method We describe a reproducible and simple procedure for chronic through-bone wide-field imaging in awake head-fixed mice providing stable optical access for chronic imaging over large areas of the cortex for months. Results The preparation is produced by applying clear-drying dental cement to the intact mouse skull, followed by a glass coverslip to create a partially transparent imaging surface. Surgery time takes about 30 minutes. A single set-screw provides a stable means of attachment for mesoscale assessment without obscuring the cortical field of view. Comparison with Existing Methods We demonstrate the utility of this method by showing seed-pixel functional connectivity maps generated from spontaneous cortical activity of GCAMP6 signals in both awake and anesthetized mice. Conclusions We propose that the intact skull preparation described here may be used for most longitudinal studies that do not require micron scale resolution and where cortical neural or vascular signals are recorded with intrinsic sensors. PMID:27102043
Gerstner, Wulfram
2017-01-01
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957
Mesoscopic and continuum modelling of angiogenesis
Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.
2016-01-01
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. PMID:24615007
Simulating the flow of entangled polymers.
Masubuchi, Yuichi
2014-01-01
To optimize automation for polymer processing, attempts have been made to simulate the flow of entangled polymers. In industry, fluid dynamics simulations with phenomenological constitutive equations have been practically established. However, to account for molecular characteristics, a method to obtain the constitutive relationship from the molecular structure is required. Molecular dynamics simulations with atomic description are not practical for this purpose; accordingly, coarse-grained models with reduced degrees of freedom have been developed. Although the modeling of entanglement is still a challenge, mesoscopic models with a priori settings to reproduce entangled polymer dynamics, such as tube models, have achieved remarkable success. To use the mesoscopic models as staging posts between atomistic and fluid dynamics simulations, studies have been undertaken to establish links from the coarse-grained model to the atomistic and macroscopic simulations. Consequently, integrated simulations from materials chemistry to predict the macroscopic flow in polymer processing are forthcoming.
Structure of S-shaped growth in innovation diffusion
NASA Astrophysics Data System (ADS)
Shimogawa, Shinsuke; Shinno, Miyuki; Saito, Hiroshi
2012-05-01
A basic question on innovation diffusion is why the growth curve of the adopter population in a large society is often S shaped. From macroscopic, microscopic, and mesoscopic viewpoints, the growth of the adopter population is observed as the growth curve, individual adoptions, and differences among individual adoptions, respectively. The S shape can be explained if an empirical model of the growth curve can be deduced from models of microscopic and mesoscopic structures. However, even the structure of growth curve has not been revealed yet because long-term extrapolations by proposed models of S-shaped curves are unstable and it has been very difficult to predict the long-term growth and final adopter population. This paper studies the S-shaped growth from the viewpoint of social regularities. Simple methods to analyze power laws enable us to extract the structure of the growth curve directly from the growth data of recent basic telecommunication services. This empirical model of growth curve is singular at the inflection point and a logarithmic function of time after this point, which explains the unstable extrapolations obtained using previously proposed models and the difficulty in predicting the final adopter population. Because the empirical S curve can be expressed in terms of two power laws of the regularity found in social performances of individuals, we propose the hypothesis that the S shape represents the heterogeneity of the adopter population, and the heterogeneity parameter is distributed under the regularity in social performances of individuals. This hypothesis is so powerful as to yield models of microscopic and mesoscopic structures. In the microscopic model, each potential adopter adopts the innovation when the information accumulated by the learning about the innovation exceeds a threshold. The accumulation rate of information is heterogeneous among the adopter population, whereas the threshold is a constant, which is the opposite of previously proposed models. In the mesoscopic model, flows of innovation information incoming to individuals are organized as dimorphic and partially clustered. These microscopic and mesoscopic models yield the empirical model of the S curve and explain the S shape as representing the regularities of information flows generated through a social self-organization. To demonstrate the validity and importance of the hypothesis, the models of three level structures are applied to reveal the mechanism determining and differentiating diffusion speeds. The empirical model of S curves implies that the coefficient of variation of the flow rates determines the diffusion speed for later adopters. Based on this property, a model describing the inside of information flow clusters can be given, which provides a formula interconnecting the diffusion speed, cluster populations, and a network topological parameter of the flow clusters. For two recent basic telecommunication services in Japan, the formula represents the variety of speeds in different areas and enables us to explain speed gaps between urban and rural areas and between the two services. Furthermore, the formula provides a method to estimate the final adopter population.
Mesoscopic modeling of multi-physicochemical transport phenomena in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Qinjin; Wang, Moran; Mukherjee, Partha P
2009-01-01
We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth,more » and environmental systems.« less
Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route
NASA Astrophysics Data System (ADS)
Aslam, Samia; Mustafa, Faiza; Jamil, Ayesha; Abbas, Ghazanfar; Raza, Rizwan; Ahmad, Muhammad Ashfaq
2018-03-01
A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV-visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5-2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.
Systematic parameter inference in stochastic mesoscopic modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Yang, Xiu; Li, Zhen
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the priormore » knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.« less
Mesoscopic pairing without superconductivity
NASA Astrophysics Data System (ADS)
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Quasi-lattice of qubits and its mesoscopic features
NASA Astrophysics Data System (ADS)
Ian, Hou; Liu, Yu-Xi
2014-03-01
In a circuit quantum electrodynamic system, both the size of superconducting qubits and the length scale of the inter-qubit spacing in a chain of such qubits are mesoscopic. As a result, the qubit-field coupling is inhomogeneous. The excitation on the qubits is described by a projection-deformation model and this set of qubits exhibit unique mesoscopic features of what we termed a quasi-lattice. A quasi-lattice in a circuit cavity has a spacing-dependent excitation spectrum. Inhomogeneous coupling giving rise to asynchronously excited qubits, the probability of multi-photon resonance on the quasi-lattice as a whole has increased. This induces simultaneous generations of GHZ-type and W-type entanglements among the qubits. Moreover, the polaritons formed by the mixing of the quasi-lattice excitation and the cavity photon has a selective spontaneous radiation. The spectrum of the radiation has a periodicity governed by the spacing and the variation of the decay rate over the spacing coincides with the cooperation of atoms predicted by Dicke model. We present the theory behinds these effects of the quasi-lattice and discuss how the spacing affects the delay and life time of a superfluorescent pulse arising from it. Supported by Univ. of Macau and FDCT Macau.
Kojic, Milos; Filipovic, Nenad; Tsuda, Akira
2012-01-01
A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322
A Mesoscopic Electromechanical Theory of Ferroelectric Films and Ceramics
NASA Astrophysics Data System (ADS)
Li, Jiangyu; Bhattacharya, Kaushik
2002-08-01
We present a multi-scale modelling framework to predict the effective electromechanical behavior of ferroelectric ceramics and thin films. This paper specifically focuses on the mesoscopic scale and models the effects of domains and domain switching taking into account intergranular constraints. Starting from the properties of the single crystal and the pre-poling granular texture, the theory predicts the domain patterns, the post-poling texture, the saturation polarization, saturation strain and the electromechanical moduli. We demonstrate remarkable agreement with experimental data. The theory also explains the superior electromechanical property of PZT at the morphotropic phase boundary. The paper concludes with the application of the theory to predict the optimal texture for enhanced electromechanical coupling factors and high-strain actuation in selected materials.
NASA Astrophysics Data System (ADS)
Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.
2018-05-01
In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.
Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics
NASA Astrophysics Data System (ADS)
Erol, Galip Ozan
Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover, mesoscopic unit cell finite elements are coupled with a design-of-experiments method to systematically identify the important yarn material properties for the macroscale response of various weave architectures. To demonstrate the macroscopic length scale approach, two new material models for woven fabrics were developed. The Planar Material Model (PMM) utilizes two important deformation mechanisms in woven fabrics: (1) yarn elongation, and (2) relative yarn rotation due to shear loads. The yarns' uniaxial tensile response is modeled with a nonlinear spring using constitutive relations while a nonlinear rotational spring is implemented to define fabric's shear stiffness. The second material model, Sawtooth Material Model (SMM) adopts the sawtooth geometry while recognizing the biaxial nature of woven fabrics by implementing the interactions between the yarns. Material properties/parameters required by both PMM and SMM can be directly determined from standard experiments. Both macroscopic material models are implemented within an explicit finite element code and validated by comparing to the experiments. Then, the developed macroscopic material models are compared under various loading conditions to determine their accuracy. Finally, the numerical models developed in the mesoscopic and macroscopic length scales are linked thus demonstrating the new systematic design framework involving linked mesoscopic and macroscopic length scale modeling approaches. The approach is demonstrated with both Planar and Sawtooth Material Models and the simulation results are verified by comparing the results obtained from meso and macro models.
Mesoscopic homogenization of semi-insulating GaAs by two-step post growth annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, B.; Jurisch, M.; Koehler, A.
1996-12-31
Mesoscopic homogenization of the electrical properties of s.i. LEC-GaAs is commonly realized by thermal treatment of the crystals including the steps of dissolution of arsenic precipitates, homogenization of excess As and re-precipitation by creating a controlled supersaturation. Caused by the inhomogeneous distribution of dislocations and the corresponding cellular structure along and across LEC-grown crystals a proper choice of the time-temperature program is necessary to minimize fluctuations of mesoscopic homogeneity. A modified two-step ingot annealing process is demonstrated to ensure the homogeneous distribution of mesoscopic homogeneity.
NASA Astrophysics Data System (ADS)
Korman, Murray S.
2004-05-01
The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like rocks (sandstone) or granular materials. Experiments are performed with an inert VS 1.6 anti-tank mine that is buried 3.6 cm deep in dry sifted loess soil. Airborne sound at two primary frequencies f1=120 Hz and f2=130 Hz undergo acoustic-to-seismic coupling. Interactions with the compliant mine and soil generate combination frequencies that, through scattering, can affect the vibration velocity at the surface. Profiles of the soil surface particle velocity at f1 and f2 and the nonlinearly generated f1-(f2-f1) component are characterized by a single peak. Doubly peaked profiles at 2f1+f2 and 2f2+f1 are attributed to the familiar mode shape of a timpani drum. Near resonance, the bending (a softening) of a family of tuning curves for the soil surface vibration over a landmine exhibits a linear relationship between the peak frequency and the corresponding peak particle velocity, which also exhibit hysteresis effects. [Work supported by U.S. Army Communications-Electronics Command RDEC, NVESD, Fort Belvoir, VA.
NASA Astrophysics Data System (ADS)
Simonin, Olivier; Zaichik, Leonid I.; Alipchenkov, Vladimir M.; Février, Pierre
2006-12-01
The objective of the paper is to elucidate a connection between two approaches that have been separately proposed for modelling the statistical spatial properties of inertial particles in turbulent fluid flows. One of the approaches proposed recently by Février, Simonin, and Squires [J. Fluid Mech. 533, 1 (2005)] is based on the partitioning of particle turbulent velocity field into spatially correlated (mesoscopic Eulerian) and random-uncorrelated (quasi-Brownian) components. The other approach stems from a kinetic equation for the two-point probability density function of the velocity distributions of two particles [Zaichik and Alipchenkov, Phys. Fluids 15, 1776 (2003)]. Comparisons between these approaches are performed for isotropic homogeneous turbulence and demonstrate encouraging agreement.
Yang, Ying; Ri, Kwangho; Rong, Yaoguang; Liu, Linfeng; Liu, Tongfa; Hu, Min; Li, Xiong; Han, Hongwei
2014-09-07
We present a new transparent monolithic mesoscopic solid-state dye-sensitized solar cell based on trilamellar films of mesoscopic TiO2 nanocrystalline photoanode, a ZrO2 insulating layer and an indium tin oxide counter electrode (ITO-CE), which were screen-printed layer by layer on a single substrate. When the thickness of the ITO-CE was optimized to 2.1 μm, this very simple and fully printable solid-state DSSC with D102 dye and spiro-OMeTAD hole transport materials presents efficiencies of 1.73% when irradiated from the front side and 1.06% when irradiated from the rear side under a standard simulated sunlight condition (AM 1.5 Global, 100 mW cm(-2)). Higher parameters could be expected with a better transparent mesoscopic counter electrode and hole conductor for the printable monolithic mesoscopic solid-state DSSC.
Coupling Field Theory with Mesoscopic Dynamical Simulations of Multicomponent Lipid Bilayers
McWhirter, J. Liam; Ayton, Gary; Voth, Gregory A.
2004-01-01
A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations. PMID:15347594
Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models.
Le Muzic, M; Mindek, P; Sorger, J; Autin, L; Goodsell, D; Viola, I
2016-06-01
In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification was valuable and effective for both, scientific and educational purposes.
Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models
Le Muzic, M.; Mindek, P.; Sorger, J.; Autin, L.; Goodsell, D.; Viola, I.
2017-01-01
In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification was valuable and effective for both, scientific and educational purposes. PMID:28344374
Isotropic stochastic rotation dynamics
NASA Astrophysics Data System (ADS)
Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten
2017-12-01
Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.
Role of weakest links and system-size scaling in multiscale modeling of stochastic plasticity
NASA Astrophysics Data System (ADS)
Ispánovity, Péter Dusán; Tüzes, Dániel; Szabó, Péter; Zaiser, Michael; Groma, István
2017-02-01
Plastic deformation of crystalline and amorphous matter often involves intermittent local strain burst events. To understand the physical background of the phenomenon a minimal stochastic mesoscopic model was introduced, where details of the microstructure evolution are statistically represented in terms of a fluctuating local yield threshold. In the present paper we propose a method for determining the corresponding yield stress distribution for the case of crystal plasticity from lower scale discrete dislocation dynamics simulations which we combine with weakest link arguments. The success of scale linking is demonstrated by comparing stress-strain curves obtained from the resulting mesoscopic and the underlying discrete dislocation models in the microplastic regime. As shown by various scaling relations they are statistically equivalent and behave identically in the thermodynamic limit. The proposed technique is expected to be applicable to different microstructures and also to amorphous materials.
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
NASA Astrophysics Data System (ADS)
Masson, Y. J.; Pride, S. R.
2007-03-01
Seismic attenuation and dispersion are numerically determined for computer-generated porous materials that contain arbitrary amounts of mesoscopic-scale heterogeneity in the porous continuum properties. The local equations used to determine the poroelastic response within such materials are those of Biot (1962). Upon applying a step change in stress to samples containing mesoscopic-scale heterogeneity, the poroelastic response is determined using finite difference modeling, and the average strain throughout the sample computed, along with the effective complex and frequency-dependent elastic moduli of the sample. The ratio of the imaginary and real parts of these moduli determines the attenuation as a function of frequency associated with the modes of applied stress (pure compression and pure shear). By having a wide range of heterogeneity present, there exists a wide range of relaxation frequencies in the response with the result that the curves of attenuation as a function of frequency are broader than in existing analytical theories based on a single relaxation frequency. Analytical explanations are given for the various high-frequency and low-frequency asymptotic behavior observed in the numerical simulations. It is also shown that the overall level of attenuation of a given sample is proportional to the square of the incompressibility contrasts locally present.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
DOT National Transportation Integrated Search
2013-03-01
It has become apparent in recent years that significant benefits will be obtained if : the Maryland State Highway Administration (SHA) can combine its data products : and modeling tools for integrated transportation operations and planning. Examples ...
Parnell, William J; Grimal, Quentin
2008-01-01
Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200
Viscous electron flow in mesoscopic two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Gusev, G. M.; Levin, A. D.; Levinson, E. V.; Bakarov, A. K.
2018-02-01
We report electrical and magneto transport measurements in mesoscopic size, two-dimensional (2D) electron gas in a GaAs quantum well. Remarkably, we find that the probe configuration and sample geometry strongly affects the temperature evolution of local resistance. We attribute all transport properties to the presence of hydrodynamic effects. Experimental results confirm the theoretically predicted significance of viscous flow in mesoscopic devices.
Freeman, Walter J
2007-06-01
The hypothesis is proposed that the central dynamics of the action-perception cycle has five steps: emergence from an existing macroscopic brain state of a pattern that predicts a future goal state; selection of a mesoscopic frame for action control; execution of a limb trajectory by microscopic spike activity; modification of microscopic cortical spike activity by sensory inputs; construction of mesoscopic perceptual patterns; and integration of a new macroscopic brain state. The basis is the circular causality between microscopic entities (neurons) and the mesoscopic and macroscopic entities (populations) self-organized by axosynaptic interactions. Self-organization of neural activity is bidirectional in all cortices. Upwardly the organization of mesoscopic percepts from microscopic spike input predominates in primary sensory areas. Downwardly the organization of spike outputs that direct specific limb movements is by mesoscopic fields constituting plans to achieve predicted goals. The mesoscopic fields in sensory and motor cortices emerge as frames within macroscopic activity. Part 1 describes the action-perception cycle and its derivative reflex arc qualitatively. Part 2 describes the perceptual limb of the arc from microscopic MSA to mesoscopic wave packets, and from these to macroscopic EEG and global ECoG fields that express experience-dependent knowledge in successive states. These macroscopic states are conceived to embed and control mesoscopic frames in premotor and motor cortices that are observed in local ECoG and LFP of frontoparietal areas. The fields sampled by ECoG and LFP are conceived as local patterns of neural activity in which trajectories of multiple spike activities (MSA) emerge that control limb movements. Mesoscopic frames are located by use of the analytic signal from the Hilbert transform after band pass filtering. The state variables in frames are measured to construct feature vectors by which to describe and classify frame patterns. Evidence is cited to justify use of linear analysis. The aim of the review is to enable researchers to conceive and identify goal-oriented states in brain activity for use as commands, in order to relegate the details of execution to adaptive control devices outside the brain.
Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong
2014-05-30
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less
Reid, Christopher Alan; Rollo, Ben; Petrou, Steven; Berkovic, Samuel F
2018-05-01
Epilepsy has a strong genetic component, with an ever-increasing number of disease-causing genes being discovered. Most epilepsy-causing mutations are germ line and thus present from conception. These mutations are therefore well positioned to have a deleterious impact during early development. Here we review studies that investigate the role of genetic lesions within the early developmental window, specifically focusing on genetic generalized epilepsy (GGE). Literature on the potential pathogenic role of sub-mesoscopic structural changes in GGE is also reviewed. Evidence from rodent models of genetic epilepsy support the idea that functional and structural changes can occur in early development, leading to altered seizure susceptibility into adulthood. Both animal and human studies suggest that sub-mesoscopic structural changes occur in GGE. The existence of sub-mesoscopic structural changes prior to seizure onset may act as biomarkers of excitability in genetic epilepsies. We also propose that presymptomatic treatment may be essential for limiting the long-term consequences of disease-causing mutations in genetic epilepsies. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Mesoscopic structure conditions the emergence of cooperation on social networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, S.; Arenas, A.; Sanchez, A.
We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement withmore » the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.« less
Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no
Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimentalmore » data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.« less
A molecular fragment cheminformatics roadmap for mesoscopic simulation.
Truszkowski, Andreas; Daniel, Mirco; Kuhn, Hubert; Neumann, Stefan; Steinbeck, Christoph; Zielesny, Achim; Epple, Matthias
2014-12-01
Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application. The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted f SMILES) with connected molecular fragments to represent a molecular structure. The f SMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software. Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and conceptual usage hurdles. Molecular Fragment Cheminformatics may be regarded as a crucial accelerator to propagate MFD and similar mesoscopic simulation techniques in the molecular sciences. Graphical abstractA molecular fragment cheminformatics roadmap for mesoscopic simulation.
Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2018-04-01
We develop a new method to study electrical circuits at quantum nanoscale by introducing a heat momentum operator which reproduces quantum effects similar to those obtained in Suykens's nonlocal-in-time kinetic energy approach for the case of reversible motion. The series expansion of the heat momentum operator is similar to the momentum operator obtained in the framework of minimal length phenomenologies characterized by the deformation of Heisenberg algebra. The quantization of both LC and mesoscopic circuits revealed a number of motivating features like the emergence of a generalized uncertainty relation and a minimal charge similar to those obtained in the framework of minimal length theories. Additional features were obtained and discussed accordingly.
Josephson junction in the quantum mesoscopic electric circuits with charge discreteness
NASA Astrophysics Data System (ADS)
Pahlavani, H.
2018-04-01
A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.
Mesoscopic modeling for nucleic acid chain dynamics
Sales-Pardo, M.; Guimerà, R.; Moreira, A. A.; Widom, J.; Amaral, L. A. N.
2007-01-01
To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands. PMID:16089566
Fluctuations in the DNA double helix
NASA Astrophysics Data System (ADS)
Peyrard, M.; López, S. C.; Angelov, D.
2007-08-01
DNA is not the static entity suggested by the famous double helix structure. It shows large fluctuational openings, in which the bases, which contain the genetic code, are temporarily open. Therefore it is an interesting system to study the effect of nonlinearity on the physical properties of a system. A simple model for DNA, at a mesoscopic scale, can be investigated by computer simulation, in the same spirit as the original work of Fermi, Pasta and Ulam. These calculations raise fundamental questions in statistical physics because they show a temporary breaking of equipartition of energy, regions with large amplitude fluctuations being able to coexist with regions where the fluctuations are very small, even when the model is studied in the canonical ensemble. This phenomenon can be related to nonlinear excitations in the model. The ability of the model to describe the actual properties of DNA is discussed by comparing theoretical and experimental results for the probability that base pairs open an a given temperature in specific DNA sequences. These studies give us indications on the proper description of the effect of the sequence in the mesoscopic model.
2010-11-10
nanoparticles, and nanoshells by making sub 100 nm diameter nanoshells to mesoscopic sized nanoparticles (gold meatballs ) and micron sized nanoshells. In...mesoscopic gold ‘ meatballs ’, gold bipyrimids etc. In addition nanoparticles such as the nanostar demonstrate some of the highest LSPR sensitivity but...20, 535-538 (2008). 64. H. Wang and N. J. Halas, “Mesoscopic Au ‘ Meatball ’ Particles”, Advanced Materials 20, 820-825 (2008). 65. S. Priya
Mesoscopic fluctuations and intermittency in aging dynamics
NASA Astrophysics Data System (ADS)
Sibani, P.
2006-01-01
Mesoscopic aging systems are characterized by large intermittent noise fluctuations. In a record dynamics scenario (Sibani P. and Dall J., Europhys. Lett., 64 (2003) 8) these events, quakes, are treated as a Poisson process with average αln (1 + t/tw), where t is the observation time, tw is the age and α is a parameter. Assuming for simplicity that quakes constitute the only source of de-correlation, we present a model for the probability density function (PDF) of the configuration autocorrelation function. Beside α, the model has the average quake size 1/q as a parameter. The model autocorrelation PDF has a Gumbel-like shape, which approaches a Gaussian for large t/tw and becomes sharply peaked in the thermodynamic limit. Its average and variance, which are given analytically, depend on t/tw as a power law and a power law with a logarithmic correction, respectively. Most predictions are in good agreement with data from the literature and with the simulations of the Edwards-Anderson spin-glass carried out as a test.
Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.
Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando
2015-10-21
The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.
High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials
NASA Astrophysics Data System (ADS)
Snigireva, I.; Snigirev, A.
2013-10-01
We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.
NASA Astrophysics Data System (ADS)
Jin, Wenbin; Zou, Xiaoping; Bai, Xiao; Yang, Ying; Chen, Dan
2018-01-01
Herein, we report a modified vapor-assisted deposition method to fabricate CH3NH3PbI3 film at 70 °C in a vacuum drying oven. The modified method has excellent operability and expandability in preparing perovskite solar cells. The CH3NH3I treatment temperature is 130 °C or 150 °C in conventional method, but we reduced the temperature to 70 °C in the modified vapor-assisted method. Meanwhile, the quality of CH3NH3PbI3 films prepared via the modified method is superior to that of CH3NH3PbI3 films of solution-processed method.
Numerical Simulation of the Perrin-Like Experiments
ERIC Educational Resources Information Center
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…
NASA Astrophysics Data System (ADS)
Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick
2016-04-01
Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.
Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices
Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo
2011-01-01
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo
2011-03-09
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano
2014-01-21
We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.
2012-01-01
The Braess paradox, known for traffic and other classical networks, lies in the fact that adding a new route to a congested network in an attempt to relieve congestion can degrade counterintuitively the overall network performance. Recently, we have extended the concept of the Braess paradox to semiconductor mesoscopic networks, whose transport properties are governed by quantum physics. In this paper, we demonstrate theoretically that, alike in classical systems, congestion plays a key role in the occurrence of a Braess paradox in mesoscopic networks. PMID:22913510
Many-Body Effects in the Mesoscopic x-Ray Edge Problem
NASA Astrophysics Data System (ADS)
Hentschel, M.; R"Oder, G.; Ullmo, D.
Many-body phenomena, a key interest in the investigation ofbulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excition of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozières-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case.
What can we learn from noise? — Mesoscopic nonequilibrium statistical physics —
KOBAYASHI, Kensuke
2016-01-01
Mesoscopic systems — small electric circuits working in quantum regime — offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456
What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.
Kobayashi, Kensuke
2016-01-01
Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.
Electron Waiting Times in Mesoscopic Conductors
NASA Astrophysics Data System (ADS)
Albert, Mathias; Haack, Géraldine; Flindt, Christian; Büttiker, Markus
2012-05-01
Electron transport in mesoscopic conductors has traditionally involved investigations of the mean current and the fluctuations of the current. A complementary view on charge transport is provided by the distribution of waiting times between charge carriers, but a proper theoretical framework for coherent electronic systems has so far been lacking. Here we develop a quantum theory of electron waiting times in mesoscopic conductors expressed by a compact determinant formula. We illustrate our methodology by calculating the waiting time distribution for a quantum point contact and find a crossover from Wigner-Dyson statistics at full transmission to Poisson statistics close to pinch-off. Even when the low-frequency transport is noiseless, the electrons are not equally spaced in time due to their inherent wave nature. We discuss the implications for renewal theory in mesoscopic systems and point out several analogies with level spacing statistics and random matrix theory.
Design for the automation of composite wind turbine blade manufacture
NASA Astrophysics Data System (ADS)
Polcari, M. J.; White, K. D.; Sherwood, J. A.
2016-10-01
The majority of large wind turbine blades are manufactured from textile-reinforced resin-infused composites using an open mold. The placement of the textile reinforcements in the mold is traditionally accomplished by a manual process where dozens of workers hand place each dry fabric in the mold. Depending on the level of skill and experience of each worker and the relative complexity of the mold geometry, local areas may exhibit out-of-plane wrinkling and in-plane waviness. Fabric imperfections such as these can adversely impact the strength and stiffness of the blade, thereby compromising its durability in service. In an effort to reduce the variabilities associated with a manual-labor process, an automated piecewise shifting method has been proposed for fabric placement. This automated layup method saves time on the preform process and reduces variability from blade to blade. In the current research the automated shifting layup method is investigated using a robust and easy-to-use finite element modelling approach. User-defined material models utilizing a mesoscopic unit-cell modeling approach are linked with Abaqus to capture the evolution of the fabric shear stiffness and changes in the fiber orientations during the fabric-placement process. The simulation approach is demonstrated for the geometry of the trailing edge of a typical wind turbine blade. The simulation considers the mechanical behavior of the fabric and reliably predicts fabric deformation and failure zones.
Grima, R
2010-07-21
Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the regions of parameter space in which there are maximum differences between the solutions of the master equation and the corresponding rate equations. We show that these differences depend sensitively on the Fano factors and on the inherent structure and topology of the chemical network. The theory of effective mesoscopic rate equations generalizes the conventional rate equations of physical chemistry to describe kinetics in systems of mesoscopic size such as biological cells.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Mesoscopic modeling of the response of human dental enamel to mid-infrared radiation
NASA Astrophysics Data System (ADS)
Vila Verde, Ana; Ramos, Marta; Stoneham, A. M.
2006-03-01
Ablation of human dental enamel, a composite biomaterial with water pores, is of significant importance in minimally invasive laser dentistry but progress in the area is hampered by the lack of optimal laser parameters. We use mesoscopic finite element models of this material to study its response to mid-infrared radiation. Our results indicate that the cost-effective, off-the-shelf CO2 laser at λ = 10.6 μm may in fact ablate enamel precisely, reproducibly and with limited unwanted side effects such as cracking or heating, provided that a pulse duration of 10 μs is used. Furthermore, our results also indicate that the Er:YAG laser (λ = 2.94 μm), currently popular for laser dentistry, may in fact cause unwanted deep cracking in the enamel when regions with unusually high water content are irradiated, and also provide an explanation for the large range of ablation threshold values observed for this material. The model may be easily adapted to study the response of any composite material to infrared radiation and thus may be useful for the scientific community.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-07-01
Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
The adiabatic piston: a perpetuum mobile in the mesoscopic realm
NASA Astrophysics Data System (ADS)
Crosignani, Bruno; Porto, Paolo; Conti, Claudio
2004-03-01
A detailed analysis of the adiabatic-piston problem reveals, for a finely-tuned choice of the spatial dimensions of the system, peculiar dynamical features that challenge the statement that an isolated system necessarily reaches a time-independent equilibrium state. In particular, the piston behaves like a perpetuum mobile, i.e., it never comes to a stop but keeps wandering, undergoing sizeable oscillations around the position corresponding to maximum entropy; this has remarkable implications on the entropy changes of a mesoscopic isolated system and on the limits of validity of the second law of thermodynamics in the mesoscopic realm.
Mesoscopic Length Scale Controls the Rheology of Dense Suspensions
NASA Astrophysics Data System (ADS)
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-01
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Mesoscopic length scale controls the rheology of dense suspensions.
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-03
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Mesoscopic structure formation in condensed matter due to vacuum fluctuations
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Gupta, Kumar S.; Coey, J. M. D.
2015-10-01
An observable influence of zero-point fluctuations of the vacuum electromagnetic field on bound electrons is well known in the hydrogen atom, where it produces the Lamb shift. Here, we adapt an approach used to explain the Lamb shift in terms of a slight expansion of the orbits due to interaction with the zero-point field and apply it to assemblies of N electrons that are modeled as independent atomically bound two-level systems. The effect is to stabilize a collective ground-state energy, which leads to a prediction of novel effects at room temperature for quasi-two-dimensional systems over a range of parameters in the model, namely, N , the two-level excitation energy ℏ ω and the ionization energy ℏ ω +ɛ . Some mesoscopic systems where these effects may be observable include water sheaths on protein or DNA, surfaces of gaseous nanobubbles, and the magnetic response of inhomogeneous, electronically dilute oxides. No such effects are envisaged for uniform three-dimensional systems.
Thermally induced magnetic relaxation in square artificial spin ice.
Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V
2016-11-24
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.
Thermally induced magnetic relaxation in square artificial spin ice
NASA Astrophysics Data System (ADS)
Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.
2016-11-01
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.
Parameterization of a mesoscopic model for the self-assembly of linear sodium alkyl sulfates
NASA Astrophysics Data System (ADS)
Mai, Zhaohuan; Couallier, Estelle; Rakib, Mohammed; Rousseau, Bernard
2014-05-01
A systematic approach to develop mesoscopic models for a series of linear anionic surfactants (CH3(CH2)n - 1OSO3Na, n = 6, 9, 12, 15) by dissipative particle dynamics (DPD) simulations is presented in this work. The four surfactants are represented by coarse-grained models composed of the same head group and different numbers of identical tail beads. The transferability of the DPD model over different surfactant systems is carefully checked by adjusting the repulsive interaction parameters and the rigidity of surfactant molecules, in order to reproduce key equilibrium properties of the aqueous micellar solutions observed experimentally, including critical micelle concentration (CMC) and average micelle aggregation number (Nag). We find that the chain length is a good index to optimize the parameters and evaluate the transferability of the DPD model. Our models qualitatively reproduce the essential properties of these surfactant analogues with a set of best-fit parameters. It is observed that the logarithm of the CMC value decreases linearly with the surfactant chain length, in agreement with Klevens' rule. With the best-fit and transferable set of parameters, we have been able to calculate the free energy contribution to micelle formation per methylene unit of -1.7 kJ/mol, very close to the experimentally reported value.
Introscopy in nano- and mesoscopic physics: Single electronics and quantum ballistics
NASA Astrophysics Data System (ADS)
Tkachenko, V. A.; Tkachenko, O. A.; Kvon, Z. D.; Latyshev, A. V.; Aseev, A. L.
2016-09-01
A method is presented to be used in a computational experiment aimed at studying the internal structure of nano- and mesoscopic objects, i.e., conducting subsystems and quantum phenomena in solid submicron objects, which demonstrate an individual behavior of low-temperature resistance.
Toussaint, Renaud; Pride, Steven R
2002-09-01
This is the first of a series of three articles that treats fracture localization as a critical phenomenon. This first article establishes a statistical mechanics based on ensemble averages when fluctuations through time play no role in defining the ensemble. Ensembles are obtained by dividing a huge rock sample into many mesoscopic volumes. Because rocks are a disordered collection of grains in cohesive contact, we expect that once shear strain is applied and cracks begin to arrive in the system, the mesoscopic volumes will have a wide distribution of different crack states. These mesoscopic volumes are the members of our ensembles. We determine the probability of observing a mesoscopic volume to be in a given crack state by maximizing Shannon's measure of the emergent-crack disorder subject to constraints coming from the energy balance of brittle fracture. The laws of thermodynamics, the partition function, and the quantification of temperature are obtained for such cracking systems.
Thermodynamics of pairing in mesoscopic systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumaryada, Tony; Volya, Alexander
Using numerical and analytical methods implemented for different models, we conduct a systematic study of the thermodynamic properties of pairing correlations in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensembles is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the invariant correlational entropy ismore » also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of a magnetic field is discussed along with studies of superconducting thermodynamics.« less
Mesoscopic model of actin-based propulsion.
Zhu, Jie; Mogilner, Alex
2012-01-01
Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.
Mesoscopic Rings with Spin-Orbit Interactions
ERIC Educational Resources Information Center
Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto
2010-01-01
A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin…
Direct construction of mesoscopic models from microscopic simulations
NASA Astrophysics Data System (ADS)
Lei, Huan; Caswell, Bruce; Karniadakis, George Em
2010-02-01
Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.
"Active" drops as phantom models for living cells: a mesoscopic particle-based approach.
Dallavalle, Marco; Lugli, Francesca; Rapino, Stefania; Zerbetto, Francesco
2016-04-21
Drops and biological cells share some morphological features and visco-elastic properties. The modelling of drops by mesoscopic non-atomistic models has been carried out to a high degree of success in recent years. We extend such treatment and discuss a simple, drop-like model to describe the interactions of the outer layer of cells with the surfaces of materials. Cells are treated as active mechanical objects that are able to generate adhesion forces. They appear with their true size and are made of "parcels of fluids" or beads. The beads are described by (very) few quantities/parameters related to fundamental chemical forces such as hydrophilicity and lipophilicity that represent an average of the properties of a patch of material or an area of the cell(s) surface. The investigation of adhesion dynamics, motion of individual cells, and the collective behavior of clusters of cells on materials is possible. In the simulations, the drops become active soft matter objects and different from regular droplets they do not fuse when in contact, their trajectories are not Brownian, and they can be forced "to secrete" molecules, to name some of the properties targeted by the modeling. The behavior that emerges from the simulations allows ascribing some cell properties to their mechanics, which are related to their biological features.
Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J
2015-03-15
Extrusion processing of cereal starch granules with high (>50%) amylose content is a promising approach to create nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine. Whilst high amylose content seems to be required, the structural features responsible for the slow digestion of extrudates are not fully understood. We report the effects of partial enzyme digestion of extruded maize starches on amylopectin branch length profiles, double and single helix contents, crystallinity and lamellar periodicity. Comparing results for three extruded maize starches (27, 57, and 84% apparent amylose) that differ in amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. Enzyme resistance is shown to originate from a combination of molecular and mesoscopic factors, including both recrystallization and an increase in very short branches during the digestion process. This is in contrast to the behaviour of the same starches in the granular form (Shrestha et al., 2012) where molecular and mesoscopic factors are secondary to microscopic structures in determining enzyme susceptibility. Based on the structure of residual material after long-time digestion (>8h), a model for resistant starch from processed high amylose maize starches is proposed based on a fringed micelle structure with lateral aggregation and enzyme susceptibility both limited by attached clusters of branch points. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Virally, Stéphane; Olivier Simoneau, Jean; Lupien, Christian; Reulet, Bertrand
2018-03-01
The quantum behavior of the electromagnetic field in mesoscopic elements is intimately linked to the quantization of the charge. In order to probe nonclassical aspects of the field in those elements, it is essential that thermal noise be reduced to the quantum level, i.e. to scales where kT ≲ hν. This is easily achieved in dilution refrigerators for frequencies of a few GHz, i.e. in the microwave domain. Several recent experiments have highlighted the link between discrete charge transport and discrete photon emission in simple mesoscopic elements such as a tunnel junction. Photocount statistics are inferred from the measurement of continuous variables such as the quadratures of the field.
Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor
NASA Astrophysics Data System (ADS)
Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng
2018-06-01
Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.
Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale
NASA Astrophysics Data System (ADS)
Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.
2014-10-01
The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.
Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice
NASA Astrophysics Data System (ADS)
Lebrat, Martin; Grišins, Pjotrs; Husmann, Dominik; Häusler, Samuel; Corman, Laura; Giamarchi, Thierry; Brantut, Jean-Philippe; Esslinger, Tilman
2018-01-01
We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled, thin optical barriers on top of a ballistic conductor. Building an increasingly longer lattice, one site after another, we observe and characterize the emergence of a band insulating phase, demonstrating control over quantum-coherent transport. We explore the influence of atom-atom interactions and show that the insulating state persists as contact interactions are tuned from moderately to strongly attractive. Using bosonization and classical Monte Carlo simulations, we analyze such a model of interacting fermions and find good qualitative agreement with the data. The robustness of the insulating state supports the existence of a Luther-Emery liquid in the one-dimensional wire. Our work realizes a tunable, site-controlled lattice Fermi gas strongly coupled to reservoirs, which is an ideal test bed for nonequilibrium many-body physics.
Effect of Phase-Breaking Events on Electron Transport in Mesoscopic and Nanodevices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meunier, Vincent; Mintmire, John W; Thushari, Jayasekera
2008-01-01
Existing ballistic models for electron transport in mesoscopic and nanoscale systems break down as the size of the device becomes longer than the phase coherence length of electrons in the system. Krstic et al. experimentally observed that the current in single-wall carbon nanotube systems can be regarded as a combination of a coherent part and a noncoherent part. In this article, we discuss the use of Buettiker phase-breaking technique to address partially coherent electron transport, generalize that to a multichannel problem, and then study the effect of phase-breaking events on the electron transport in two-terminal graphene nanoribbon devices. We alsomore » investigate the difference between the pure-phase randomization and phase/momentum randomization boundary conditions. While momentum randomization adds an extra resistance caused by backward scattering, pure-phase randomization smooths the conductance oscillations because of interference.« less
Localization and elasticity in entangled polymer liquids as a mesoscopic glass transition
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth
2010-03-01
The reptation-tube model is widely viewed as the correct zeroth order model for entangled linear polymer dynamics under quiescent conditions. Its key ansatz is the existence of a mesoscopic dynamical length scale that prohibits transverse chain motion beyond a tube diameter of order 3-10 nm. However, the theory is phenomenological and lacks a microscopic foundation, and many fundamental questions remain unanswered. These include: (i) where does the confining tube field come from and can it be derived from statistical mechanics? (ii) what is the microscopic origin of the magnitude, and power law scaling with concentration and packing length, of the plateau shear modulus? (iii) is the tube diameter time-dependent? (iv) does the confinement field contribute to elasticity ? (v) do entanglement constraints have a finite strength? Building on our new force-level theories for the dynamical crossover and activated barrier hopping in glassy colloidal suspensions and polymer melts, a first principles self-consistent theory has been developed for entangled polymers. Its basic physical elements, and initial results that address the questions posed above, will be presented. The key idea is that beyond a critical degree of polymerization, the chain connectivity and excluded volume induced intermolecular correlation hole drives temporary localization on an intermediate length scale resulting in a mesoscopic ``ideal kinetic glass transition.'' Large scale isotropic motion is effectively quenched due to the emergence of chain length dependent entropic barriers. However, the barrier height is not infinite, resulting in softening of harmonic localization at large displacements, temporal increase of the confining length scale, and a finite strength of entanglement constraints which can be destroyed by applied stress.
Modeling of multiphase flow with solidification and chemical reaction in materials processing
NASA Astrophysics Data System (ADS)
Wei, Jiuan
Understanding of multiphase flow and related heat transfer and chemical reactions are the keys to increase the productivity and efficiency in industrial processes. The objective of this thesis is to utilize the computational approaches to investigate the multiphase flow and its application in the materials processes, especially in the following two areas: directional solidification, and pyrolysis and synthesis. In this thesis, numerical simulations will be performed for crystal growth of several III-V and II-VI compounds. The effects of Prandtl and Grashof numbers on the axial temperature profile, the solidification interface shape, and melt flow are investigated. For the material with high Prandtl and Grashof numbers, temperature field and growth interface will be significantly influenced by melt flow, resulting in the complicated temperature distribution and curved interface shape, so it will encounter tremendous difficulty using a traditional Bridgman growth system. A new design is proposed to reduce the melt convection. The geometric configuration of top cold and bottom hot in the melt will dramatically reduce the melt convection. The new design has been employed to simulate the melt flow and heat transfer in crystal growth with large Prandtl and Grashof numbers and the design parameters have been adjusted. Over 90% of commercial solar cells are made from silicon and directional solidification system is the one of the most important method to produce multi-crystalline silicon ingots due to its tolerance to feedstock impurities and lower manufacturing cost. A numerical model is developed to simulate the silicon ingot directional solidification process. Temperature distribution and solidification interface location are presented. Heat transfer and solidification analysis are performed to determine the energy efficiency of the silicon production furnace. Possible improvements are identified. The silicon growth process is controlled by adjusting heating power and moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based on SPH method and macroscopic model based on FVM, FEM and FDM, can be applied to even more complicated system. In the mesoscopic model by SPH method, some fundamental mesoscopic phenomena, such as the microstructure evolution, interface morphology represented by high resolution, particle entrapment in solidification can be studied. In the macroscopic model, the heat transfer, fluid flow, species transport can be modeled, and the simulation results provided the velocity, temperature and species boundary condition necessary for the mesoscopic model. This part falls into the region of future work. (Abstract shortened by UMI.)
Imaging of mesoscopic-scale organisms using selective-plane optoacoustic tomography.
Razansky, Daniel; Vinegoni, Claudio; Ntziachristos, Vasilis
2009-05-07
Mesoscopic-scale living organisms (i.e. 1 mm to 1 cm sized) remain largely inaccessible by current optical imaging methods due to intensive light scattering in tissues. Therefore, imaging of many important model organisms, such as insects, fishes, worms and similarly sized biological specimens, is currently limited to embryonic or other transparent stages of development. This makes it difficult to relate embryonic cellular and molecular mechanisms to consequences in organ function and animal behavior in more advanced stages and adults. Herein, we have developed a selective-plane illumination optoacoustic tomography technique for in vivo imaging of optically diffusive organisms and tissues. The method is capable of whole-body imaging at depths from the sub-millimeter up to centimeter range with a scalable spatial resolution in the order of magnitude of a few tenths of microns. In contrast to pure optical methods, the spatial resolution here is not determined nor limited by light diffusion; therefore, such performance cannot be achieved by any other optical imaging technology developed so far. The utility of the method is demonstrated on several whole-body models and small-animal extremities.
Thermally induced magnetic relaxation in square artificial spin ice
Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...
2016-11-24
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less
PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A
2012-01-01
At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM.more » To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.« less
Thermally induced magnetic relaxation in square artificial spin ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, M. S.; Pappas, S. D.; Stopfel, H.
The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less
PREFACE: Advanced many-body and statistical methods in mesoscopic systems
NASA Astrophysics Data System (ADS)
Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe
2012-02-01
It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius University (where the conference took place), the Academy of Romanian Scientists and the Romanian National Authority for Scientific Research. This conference proceedings volume brings together some of the invited and contributed talks of the conference. The hope of the editors is that they will constitute reference material for applying many-body techniques to problems in mesoscopic and nuclear physics. We thank all the participants for their contribution to the success of this conference. D V Anghel and D S Delion IFIN-HH, Bucharest, Romania G S Paraoanu Aalto University, Finland Conference photograph
NASA Astrophysics Data System (ADS)
Lo Celso, Fabrizio; Triolo, Alessandro; Gontrani, Lorenzo; Russina, Olga
2018-06-01
One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.
Many-Worlds Interpretation of Quantum Theory and Mesoscopic Anthropic Principle
NASA Astrophysics Data System (ADS)
Kamenshchik, A. Yu.; Teryaev, O. V.
2008-10-01
We suggest to combine the Anthropic Principle with Many-Worlds Interpretation of Quantum Theory. Realizing the multiplicity of worlds it provides an opportunity of explanation of some important events which are assumed to be extremely improbable. The Mesoscopic Anthropic Principle suggested here is aimed to explain appearance of such events which are necessary for emergence of Life and Mind. It is complementary to Cosmological Anthropic Principle explaining the fine tuning of fundamental constants. We briefly discuss various possible applications of Mesoscopic Anthropic Principle including the Solar Eclipses and assembling of complex molecules. Besides, we address the problem of Time's Arrow in the framework of Many-World Interpretation. We suggest the recipe for disentangling of quantities defined by fundamental physical laws and by an anthropic selection.
Mesoscopic fluctuations of the population of a qubit in a strong alternating field
NASA Astrophysics Data System (ADS)
Denisenko, M. V.; Satanin, A. M.
2016-12-01
Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau-Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of the population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.
Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E; Grätzel, Michael; Park, Nam-Gyu
2012-01-01
We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH(3)NH(3))PbI(3) as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI(2) and deposited onto a submicron-thick mesoscopic TiO(2) film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (J(SC)) exceeding 17 mA/cm(2), an open circuit photovoltage (V(OC)) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH(3)NH(3))PbI(3) NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO(2) film. The use of a solid hole conductor dramatically improved the device stability compared to (CH(3)NH(3))PbI(3) -sensitized liquid junction cells.
Kim, Hui-Seon; Lee, Chang-Ryul; Im, Jeong-Hyeok; Lee, Ki-Beom; Moehl, Thomas; Marchioro, Arianna; Moon, Soo-Jin; Humphry-Baker, Robin; Yum, Jun-Ho; Moser, Jacques E.; Grätzel, Michael; Park, Nam-Gyu
2012-01-01
We report on solid-state mesoscopic heterojunction solar cells employing nanoparticles (NPs) of methyl ammonium lead iodide (CH3NH3)PbI3 as light harvesters. The perovskite NPs were produced by reaction of methylammonium iodide with PbI2 and deposited onto a submicron-thick mesoscopic TiO2 film, whose pores were infiltrated with the hole-conductor spiro-MeOTAD. Illumination with standard AM-1.5 sunlight generated large photocurrents (JSC) exceeding 17 mA/cm2, an open circuit photovoltage (VOC) of 0.888 V and a fill factor (FF) of 0.62 yielding a power conversion efficiency (PCE) of 9.7%, the highest reported to date for such cells. Femto second laser studies combined with photo-induced absorption measurements showed charge separation to proceed via hole injection from the excited (CH3NH3)PbI3 NPs into the spiro-MeOTAD followed by electron transfer to the mesoscopic TiO2 film. The use of a solid hole conductor dramatically improved the device stability compared to (CH3NH3)PbI3 -sensitized liquid junction cells. PMID:22912919
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
NASA Astrophysics Data System (ADS)
Wang, Xiu-Xia
2016-02-01
By employing the generalized Hellmann-Feynman theorem, the quantization of mesoscopic complicated coupling circuit is proposed. The ensemble average energy, the energy fluctuation and the energy distribution are investigated at finite temperature. It is shown that the generalized Hellmann-Feynman theorem plays the key role in quantizing a mesoscopic complicated coupling circuit at finite temperature, and when the temperature is lower than the specific temperature, the value of (\\vartriangle {hat {H}})2 is almost zero and the values of
Mesoscopic fluctuations of the population of a qubit in a strong alternating field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisenko, M. V., E-mail: mar.denisenko@gmail.com; Satanin, A. M.
Fluctuations of the population of a Josephson qubit in an alternating field, which is a superposition of electromagnetic pulses with large amplitudes, are studied. It is shown that the relative phase of pulses is responsible for the rate of Landau–Zener transitions and, correspondingly, for the frequency of transitions between adiabatic states. The durations of pulses incident on the qubit are controlled with an accuracy of the field period, which results in strong mesoscopic fluctuations of the population of the qubit. Similar to the magnetic field in mesoscopic physics, the relative phase of pulses can destroy the interference pattern of themore » population of the qubit. The influence of the duration of the pulse and noise on the revealed fluctuation effects is studied.« less
Harvesting dissipated energy with a mesoscopic ratchet
NASA Astrophysics Data System (ADS)
Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.
2015-04-01
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.
The quest for solvable multistate Landau-Zener models
Sinitsyn, Nikolai A.; Chernyak, Vladimir Y.
2017-05-24
Recently, integrability conditions (ICs) in mutistate Landau-Zener (MLZ) theory were proposed. They describe common properties of all known solved systems with linearly time-dependent Hamiltonians. Here we show that ICs enable efficient computer assisted search for new solvable MLZ models that span complexity range from several interacting states to mesoscopic systems with many-body dynamics and combinatorially large phase space. This diversity suggests that nontrivial solvable MLZ models are numerous. Additionally, we refine the formulation of ICs and extend the class of solvable systems to models with points of multiple diabatic level crossing.
Coaction of intercellular adhesion and cortical tension specifies tissue surface tension
Manning, M. Lisa; Foty, Ramsey A.; Steinberg, Malcolm S.; Schoetz, Eva-Maria
2010-01-01
In the course of animal morphogenesis, large-scale cell movements occur, which involve the rearrangement, mutual spreading, and compartmentalization of cell populations in specific configurations. Morphogenetic cell rearrangements such as cell sorting and mutual tissue spreading have been compared with the behaviors of immiscible liquids, which they closely resemble. Based on this similarity, it has been proposed that tissues behave as liquids and possess a characteristic surface tension, which arises as a collective, macroscopic property of groups of mobile, cohering cells. But how are tissue surface tensions generated? Different theories have been proposed to explain how mesoscopic cell properties such as cell–cell adhesion and contractility of cell interfaces may underlie tissue surface tensions. Although recent work suggests that both may be contributors, an explicit model for the dependence of tissue surface tension on these mesoscopic parameters has been missing. Here we show explicitly that the ratio of adhesion to cortical tension determines tissue surface tension. Our minimal model successfully explains the available experimental data and makes predictions, based on the feedback between mechanical energy and geometry, about the shapes of aggregate surface cells, which we verify experimentally. This model indicates that there is a crossover from adhesion dominated to cortical-tension dominated behavior as a function of the ratio between these two quantities. PMID:20616053
Non-Linear Meissner Effect in Mesoscopic Superconductors
1998-06-01
6525 ED Nijmegen, the Netherlands Abstract. Magnetization measurements on superconducting bulk samples and large radius cylinders had resulted in the...Phenomenological London’s theory that is found to be violated in recent magnetization measurements in superconducting mesoscopic discs that exhibit a...quantity. Recently Geim et al [1] used sub-micron Hall probes to detect the magnetization of thin (thickness down to d - 0.07 pm) single superconducting
Fabrication methods for mesoscopic flying vehicle
NASA Astrophysics Data System (ADS)
Cheng, Yih-Lin
2001-10-01
Small-scale flying vehicles are attractive tools for atmospheric science research. A centimeter-size mesoscopic electric helicopter, the mesicopter, has been developed at Stanford University for these applications. The mesoscopic scale implies a design with critical features between tens of microns and several millimeters. Three major parts in the mesicopter are challenging to manufacture. Rotors require smooth 3D surfaces and a blade thickness of less than 100 mum. Components in the DC micro-motor must be made of engineering materials, which is difficult on the mesoscopic scale. Airframe fabrication has to integrate complex 3D geometry into one single structure at this scale. In this research, material selection and manufacturing approaches have been investigated and implemented. In rotor fabrication, high-strength polymers manufactured by the Shape Deposition Manufacturing (SDM) technique were the top choice. Aluminum alloys were only considered as the second choice because the fabrication process is more involved. Lift tests showed that the 4-blade polymer and aluminum rotors could deliver about 90% of the expected lift (4g). To explain the rotor performance, structural analyses of spinning rotors were performed and the fabricated geometry was investigated. The bending deflections and the torsional twists were found to be too small to degrade aerodynamic performance. The rotor geometry was verified by laser scanning and by cross-section observations. Commercially available motors are used in the prototypes but a smaller DC micro-motor was designed for future use. Components of the DC micro-motors were fabricated by the Mesoscopic Additive/Subtractive Material Processing technique, which is capable of shaping engineering materials on the mesoscopic scale. The approaches are described in this thesis. The airframe was manufactured using the SDM process, which is capable of building complex parts without assembly. Castable polymers were chosen and mixed with glass microspheres to reduce their density. The finished airframe (65.5 mm x 65.5 mm) weighed only 1.5g. Two mesicopter prototypes, weighing 3g and 17g, have illustrated that powered flight at this scale is feasible. This research provides solutions to manufacture the challenging parts for the mesicopter. The manufacturing approaches discussed here are applicable to other small flying vehicles in similar and even smaller size regimes.
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-01-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459
Thermodynamic evolution far from equilibrium
NASA Astrophysics Data System (ADS)
Khantuleva, Tatiana A.
2018-05-01
The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.
Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale.
Monaco, Giulio; Mossa, Stefano
2009-10-06
The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties that are, however, anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite a longstanding debate, remain poorly understood. By using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: The elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length scale of approximately 10 interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This reduction turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of approximately 1 THz in the vibrational density of states or at temperatures of approximately 10 K in the specific heat.
Mesoscopic Model — Advanced Simulation of Microforming Processes
NASA Astrophysics Data System (ADS)
Geißdörfer, Stefan; Engel, Ulf; Geiger, Manfred
2007-04-01
Continued miniaturization in many fields of forming technology implies the need for a better understanding of the effects occurring while scaling down from conventional macroscopic scale to microscale. At microscale, the material can no longer be regarded as a homogeneous continuum because of the presence of only a few grains in the deformation zone. This leads to a change in the material behaviour resulting among others in a large scatter of forming results. A correlation between the integral flow stress of the workpiece and the scatter of the process factors on the one hand and the mean grain size and its standard deviation on the other hand has been observed in experiments. The conventional FE-simulation of scaled down processes is not able to consider the size-effects observed such as the actual reduction of the flow stress, the increasing scatter of the process factors and a local material flow being different to that obtained in the case of macroparts. For that reason, a new simulation model has been developed taking into account all the size-effects. The present paper deals with the theoretical background of the new mesoscopic model, its characteristics like synthetic grain structure generation and the calculation of micro material properties — based on conventional material properties. The verification of the simulation model is done by carrying out various experiments with different mean grain sizes and grain structures but the same geometrical dimensions of the workpiece.
Modeling electron fractionalization with unconventional Fock spaces.
Cobanera, Emilio
2017-08-02
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.
Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi
2009-05-30
Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.
Seismoelectric effects due to mesoscopic heterogeneities
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Rubino, J. GermáN.; Carbajal, Marina Rosas; Linde, Niklas; Holliger, Klaus
2013-05-01
While the seismic effects of wave-induced fluid flow due to mesoscopic heterogeneities have been studied for several decades, the role played by these types of heterogeneities on seismoelectric phenomena is largely unexplored. To address this issue, we have developed a novel methodological framework which allows for the coupling of wave-induced fluid flow, as inferred through numerical oscillatory compressibility tests, with the pertinent seismoelectric conversion mechanisms. Simulating the corresponding response of a water-saturated sandstone sample containing mesoscopic fractures, we demonstrate for the first time that these kinds of heterogeneities can produce measurable seismoelectric signals under typical laboratory conditions. Given that this phenomenon is sensitive to key hydraulic and mechanical properties, we expect that the results of this pilot study will stimulate further exploration on this topic in several domains of the Earth, environmental, and engineering sciences.
Magnetic disorder in superconductors: Enhancement by mesoscopic fluctuations
NASA Astrophysics Data System (ADS)
Burmistrov, I. S.; Skvortsov, M. A.
2018-01-01
We study the density of states (DOS) and the transition temperature Tc in a dirty superconducting film with rare classical magnetic impurities of an arbitrary strength described by the Poissonian statistics. We take into account that the potential disorder is a source of mesoscopic fluctuations of the local DOS, and, consequently, of the effective strength of magnetic impurities. We find that these mesoscopic fluctuations result in a nonzero DOS for all energies in the region of the phase diagram where without this effect the DOS is zero within the standard mean-field theory. This mechanism can be more efficient in filling the mean-field superconducting gap than rare fluctuations of the potential disorder (instantons). Depending on the magnetic impurity strength, the suppression of Tc by spin-flip scattering can be faster or slower than in the standard mean-field theory.
Prediction of Spin-Polarization Effects in Quantum Wire Transport
NASA Astrophysics Data System (ADS)
Fasol, Gerhard; Sakaki, Hiroyuki
1994-01-01
We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.
Quantum gambling using mesoscopic ring qubits
NASA Astrophysics Data System (ADS)
Pakuła, Ireneusz
2007-07-01
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg {\\it et al} is one of the simplest yet still hard to implement applications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game.
NASA Astrophysics Data System (ADS)
Pileni, M. P.
2005-12-01
We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.
1997 Technical Digest Series. Volume 9: Quantum Optoelectronics
1997-03-01
Program Co-Chair Shigehisa Arai, Tokyo Institute of Technology, Japan Yasuhiko Arakawa, University of Tokyo, Japan Israel Bar-Joseph, Weizmann...assembly formed quantum dot active layers, (p. 3) 2:30pm (Invited) QWA3 • Optical probing of mesoscopic and nano-structures, Yasuhiko Arakawa, Univ...80, 3466 (1996). 6/QWA3-1 Optical Probing of Mesoscopic and Nano-Structures Yasuhiko Arakawa University of Tokyo, Japan We investigate the
Polymorphism of Lysozyme Condensates.
Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G
2017-10-05
Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.
Ge, Hao; Qian, Hong
2011-01-01
A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale dynamics of its mesoscopic counterpart. It shows a corresponding non-equilibrium phase transition among multiple stochastic attractors. As an example, in the canonical phosphorylation–dephosphorylation system with feedback that exhibits bistability, we show that the non-equilibrium steady-state (NESS) phase transition has all the characteristics of classic equilibrium phase transition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’, Lee–Yang's zero for a generating function and a critical point that matches the cusp in nonlinear bifurcation theory. To the biochemical system, the mathematical analysis suggests three distinct timescales and needed levels of description. They are (i) molecular signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic biochemical network. PMID:20466813
Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
Ma, Cheng; Cheng, Yongqiang; Chen, Kai; ...
2016-03-29
In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlookedmore » mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33La 0.56)TiO 3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li 0.33La 0.56)TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.« less
Transforming Mesoscopic (Bio)materials with Holographic Optical Tweezers
NASA Astrophysics Data System (ADS)
Grier, David
2004-03-01
An optical tweezer uses the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, optical tweezers have become a mainstay of research in biology, physical chemistry, and soft condensed matter physics. This talk highlights recent advances made possible by new classes of optical traps created with computer-designed holograms, a technique we call holographic optical trapping. Holographic optical tweezers can trap hundreds of mesoscopic objects simultaneously and move them independently in three dimensions. Arrays of optical traps can be used to continuously sort heterogeneous samples into selected fractions, a process we call optical fractionation. The same holograms can transform optical traps into optical scalpels and scissors that photochemically transform mesoscopic samples with exquisite spatial resolution. They also can impose arbitrary phase profiles onto the trapping beams, thereby creating optical vortices and related optical machines capable of actuating MEMS devices and driving mesoscale pumps and mixers. These new applications for laser light promise to take optical tweezers out of the laboratory and into real-world applications including manufacturing, diagnostics, and even consumer products. The unprecedented access to the mesoscopic world provided by holographic optical tweezers also offers revolutionary new opportunities for fundamental and applied research.
Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals.
Xu, Xiangling; Majetich, Sara A; Asher, Sanford A
2002-11-20
We report here the first synthesis of mesoscopic, monodisperse particles which contain nanoscopic inclusions of ferromagnetic cobalt ferrites. These monodisperse ferromagnetic composite particles readily self-assemble into magnetically responsive photonic crystals that efficiently Bragg diffract incident light. Magnetic fields can be used to control the photonic crystal orientation and, thus, the diffracted wavelength. We demonstrate the use of these ferromagnetic particles to fabricate magneto-optical diffracting fluids and magnetically switchable diffracting mirrors.
Vortex-slip transitions in superconducting a-NbGe mesoscopic channels
NASA Astrophysics Data System (ADS)
Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.
2006-06-01
Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.
Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble
NASA Astrophysics Data System (ADS)
Berggren, Tomas; Duits, Maurice
2017-09-01
In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.
2016-12-08
mesoscopic models of interfaces and interphases, and microstructure-resolved representative volume element simulations. Atomic simulations were...title and subtitle with volume number and part number, if applicable. On classified documents, enter the title classification in parentheses. 5a...careful prediction of the pressure- volume -temperature equation of state, pressure- and temperature-dependent crystal and liquid thermal and transport
Stochastic Processes in Physics: Deterministic Origins and Control
NASA Astrophysics Data System (ADS)
Demers, Jeffery
Stochastic processes are ubiquitous in the physical sciences and engineering. While often used to model imperfections and experimental uncertainties in the macroscopic world, stochastic processes can attain deeper physical significance when used to model the seemingly random and chaotic nature of the underlying microscopic world. Nowhere more prevalent is this notion than in the field of stochastic thermodynamics - a modern systematic framework used describe mesoscale systems in strongly fluctuating thermal environments which has revolutionized our understanding of, for example, molecular motors, DNA replication, far-from equilibrium systems, and the laws of macroscopic thermodynamics as they apply to the mesoscopic world. With progress, however, come further challenges and deeper questions, most notably in the thermodynamics of information processing and feedback control. Here it is becoming increasingly apparent that, due to divergences and subtleties of interpretation, the deterministic foundations of the stochastic processes themselves must be explored and understood. This thesis presents a survey of stochastic processes in physical systems, the deterministic origins of their emergence, and the subtleties associated with controlling them. First, we study time-dependent billiards in the quivering limit - a limit where a billiard system is indistinguishable from a stochastic system, and where the simplified stochastic system allows us to view issues associated with deterministic time-dependent billiards in a new light and address some long-standing problems. Then, we embark on an exploration of the deterministic microscopic Hamiltonian foundations of non-equilibrium thermodynamics, and we find that important results from mesoscopic stochastic thermodynamics have simple microscopic origins which would not be apparent without the benefit of both the micro and meso perspectives. Finally, we study the problem of stabilizing a stochastic Brownian particle with feedback control, and we find that in order to avoid paradoxes involving the first law of thermodynamics, we need a model for the fine details of the thermal driving noise. The underlying theme of this thesis is the argument that the deterministic microscopic perspective and stochastic mesoscopic perspective are both important and useful, and when used together, we can more deeply and satisfyingly understand the physics occurring over either scale.
Mesoscale Modeling of Chromatin Folding
NASA Astrophysics Data System (ADS)
Schlick, Tamar
2009-03-01
Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.
A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves.
Choi, Sun-Ho; Kim, Yong-Jung
2017-02-01
We introduce a mesoscopic scale chemotaxis model for traveling wave phenomena which is induced by food metric. The organisms of this simplified kinetic model have two discrete velocity modes, [Formula: see text] and a constant tumbling rate. The main feature of the model is that the speed of organisms is constant [Formula: see text] with respect to the food metric, not the Euclidean metric. The uniqueness and the existence of the traveling wave solution of the model are obtained. Unlike the classical logarithmic model case there exist traveling waves under super-linear consumption rates and infinite population pulse-type traveling waves are obtained. Numerical simulations are also provided.
The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.
Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing
2017-02-27
This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Berkowitz, Brian
2015-03-01
We develop continuous-time random walk (CTRW) equations governing the transport of two species that annihilate when in proximity to one another. In comparison with catalytic or spontaneous transformation reactions that have been previously considered in concert with CTRW, both species have spatially variant concentrations that require consideration. We develop two distinct formulations. The first treats transport and reaction microscopically, potentially capturing behavior at sharp fronts, but at the cost of being strongly nonlinear. The second, mesoscopic, formulation relies on a separation-of-scales technique we develop to separate microscopic-scale reaction and upscaled transport. This simplifies the governing equations and allows treatment of more general reaction dynamics, but requires stronger smoothness assumptions of the solution. The mesoscopic formulation is easily tractable using an existing solution from the literature (we also provide an alternative derivation), and the generalized master equation (GME) for particles undergoing A +B →0 reactions is presented. We show that this GME simplifies, under appropriate circumstances, to both the GME for the unreactive CTRW and to the advection-dispersion-reaction equation. An additional major contribution of this work is on the numerical side: to corroborate our development, we develop an indirect particle-tracking-partial-integro-differential-equation (PIDE) hybrid verification technique which could be applicable widely in reactive anomalous transport. Numerical simulations support the mesoscopic analysis.
NASA Astrophysics Data System (ADS)
Roirand, Q.; Missoum-Benziane, D.; Thionnet, A.; Laiarinandrasana, L.
2017-09-01
Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.
NASA Astrophysics Data System (ADS)
Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.
2015-12-01
Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The transported crystals hint at some significant differences in roughness morphology, but they do provide evidence that crystals grown in air/water mixtures and with minimal substrate influence also exhibit mesoscopic roughness with similarity to that observed in ESEM-grown crystals.
Multi-scale modelling of rubber-like materials and soft tissues: an appraisal
Puglisi, G.
2016-01-01
We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927
Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems
2014-10-13
function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer
Theory and Device Modeling for Nano-Structured Transistor Channels
2011-06-01
zinc oxide ( ZnO ) thin film transistors ( TFTs ) that contain nanocrystalline grains on the order of ~20nm. The authors of ref. 1 present results...problem in order to determine the threshold voltage. 15. SUBJECT TERMS nano-structured transistor , mesoscopic, zinc oxide , ZnO , field-effect...and R. Neidhard, “Microwave ZnO Thin - Film Transistors ”, IEEE Electron Dev. Lett. 29, 1024 (2008); doi: 10.1109/LED.2008.2001635.
Charge frustration in complex fluids and in electronic systems
NASA Astrophysics Data System (ADS)
Carraro, Carlo
1997-02-01
The idea of charge frustration is applied to describe the properties of such diverse physical systems as oil-water-surfactant mixtures and metal-ammonia solutions. The minimalist charge-frustrated model possesses one energy scale and two length scales. For oil-water-surfactant mixtures, these parameters have been determined starting from the microscopic properties of the physical systems under study. Thus, microscopic properties are successfully related to the observed mesoscopic structure.
Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.
Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J
2013-06-01
The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.
Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy
2012-01-01
Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950
Mesoscopic Vortex–Meissner currents in ring ladders
NASA Astrophysics Data System (ADS)
Haug, Tobias; Amico, Luigi; Dumke, Rainer; Kwek, Leong-Chuan
2018-07-01
Recent experimental progress have revealed Meissner and Vortex phases in low-dimensional ultracold atoms systems. Atomtronic setups can realize ring ladders, while explicitly taking the finite size of the system into account. This enables the engineering of quantized chiral currents and phase slips in between them. We find that the mesoscopic scale modifies the current. Full control of the lattice configuration reveals a reentrant behavior of Vortex and Meissner phases. Our approach allows a feasible diagnostic of the currents’ configuration through time-of-flight measurements.
Quantum Device Applications of Mesoscopic Superconductivity
NASA Astrophysics Data System (ADS)
Hakonen, P. J.
2006-08-01
A brief account is given on the possibilities of mesoscopic superconductivity in low-noise amplifier and detector applications. In particular, three devices will be described: 1) Bloch oscillating transistor (BOT), 2) Inductively-read superconducting Cooper pair transistor (L-SET), and 3) Quantum capacitive phase detector (C-SET). The BOT is a low-noise current amplifier while the L-SET and C-SET act as ultra-sensitive charge and phase detectors, respectively. The basic operating principles and the main characteristics of these devices will be reviewed and discussed.
Superconductivity in disordered thin films: giant mesoscopic fluctuations.
Skvortsov, M A; Feigel'man, M V
2005-07-29
We discuss the intrinsic inhomogeneities of superconductive properties of uniformly disordered thin films with a large dimensionless conductance g. It is shown that mesoscopic fluctuations, which usually contain a small factor 1/g, are crucially enhanced near the critical conductance g(cF) > 1 where superconductivity is destroyed at T = 0 due to Coulomb suppression of the Cooper attraction. This leads to strong spatial fluctuations of the local transition temperature and thus to the percolative nature of the thermal superconductive transition.
Feigel'man, M V; Skvortsov, M A
2012-10-05
In disordered superconductors, the local pairing field fluctuates in space, leading to the smearing of the BCS peak in the density of states and the appearance of the subgap tail states. We analyze the universal mesoscopic contributions to these effects and show that they are enhanced by the Coulomb repulsion. In the vicinity of the quantum critical point, where superconductivity is suppressed by the "fermionic mechanism," strong smearing of the peak due to mesoscopic fluctuations is predicted.
Disorder-Enhanced Dielectric Response of Nanoscale and Mesoscopic Insulators
NASA Astrophysics Data System (ADS)
Onoda, Shigeki; Chern, Chyh-Hong; Murakami, Shuichi; Ogimoto, Yasushi; Nagaosa, Naoto
2006-12-01
Enhancement of the dielectric response of insulators by disorder is theoretically proposed, where the quantum interference of electronic waves through the nanoscale or mesoscopic system and its change due to external perturbations control the polarization. In the disordered case with all the states being localized, the resonant tunneling, which is topologically protected, plays a crucial role, and enhances the dielectric response by a factor 30 40 compared with the pure case. The realization of this idea with accessible materials or structures is also discussed.
Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements
Pagan, Darren C.; Shade, Paul A; Barton, Nathan R.; ...
2017-02-17
Far-field high-energy X-ray diffraction microscopy is used to asses the evolution of slip system strengths in hexagonal close-packed (HCP) Ti-7A1 during tensile deformation in-situ. The following HCP slip system families are considered: basal < a >, prismatic < a >, pyramidal < a >, and first-order pyramidal < c + a >. A 1 mm length of the specimen's gauge section, marked with fiducials and comprised of an aggregate of over 500 grains, is tracked during continuous deformation. The response of each slip system family is quantified using 'slip system strength curves' that are calculated from the average stress tensorsmore » of each grain over the applied deformation history. These curves, which plot the average resolved shear stress for each slip system family versus macroscopic strain, represent a mesoscopic characterization of the aggregate response. A short time-scale transient softening is observed in the basal < a >, prismatic < a >, and pyramidal < a > slip systems, while a long time-scale transient hardening is observed in the pyramidal < c + a > slip systems. These results are used to develop a slip system strength model as part of an elasto-viscoplastic constitutive model for the single crystal behavior. A suite of finite element simulations is performed on a virtual polycrystal to demonstrate the relative effects of the different parameters in the slip system strength model. Finally, the model is shown to accurately capture the macroscopic stress-strain response using parameters that are chosen to capture the mesoscopic slip system responses.« less
NASA Astrophysics Data System (ADS)
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.
2015-07-01
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional `Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ~1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J.; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F.; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V.
2015-01-01
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm2 cross-section. The impurities suppress superconductivity in a three-dimensional ‘Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities. PMID:26139568
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V
2015-07-03
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics.
Blumers, Ansel L; Tang, Yu-Hang; Li, Zhen; Li, Xuejin; Karniadakis, George E
2017-08-01
Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.
Quantum Coherence and Random Fields at Mesoscopic Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, Thomas F.
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets tomore » antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.« less
NASA Astrophysics Data System (ADS)
Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan
2012-12-01
Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.
Zhang, Yumin; Zhao, Jianhong; Zhang, Jin; Jiang, Xixi; Zhu, Zhongqi; Liu, Qingju
2018-05-09
A printing process for the fabrication of perovskite solar cells (PSCs) exhibits promising future application in the photovoltaic industry due to its low-cost and eco-friendly preparation. In mesoscopic carbon-based PSCs, however, compared to conventional ones, the hole-transport-layer-free PSCs often lead to inefficient hole extraction. Here, we used liquid metal (LM, Galinstan) as an interface modifier material in combination with a carbon electrode. Considering the high conductivity and room-temperature fluidity, it is found that LMs are superior in improving hole extraction and, more importantly, LMs tend to be reserved at the interface between ZrO 2 and carbon for enhancing the contact property. Correspondingly, the carrier transfer resistance was decreased at the carbon/perovskite interface. As optimized content, the triple mesoscopic PSCs based on mixed-cation perovskite with a power conversion efficiency of 13.51% was achieved, involving a 26% increase compared to those without LMs. This work opens new techniques for LMs in optoelectronics and printing.
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2012-11-01
J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.
NASA Astrophysics Data System (ADS)
Ramos-Rodríguez, Daniel-Apolinar; Rodríguez-Hidalgo, María-del-Rosario; Soto-Figueroa, César; Vicente, Luis
2010-03-01
This work explores the diffusivity of the drug albendazole contained in a polymeric vehicle, Styrene-Divinylbenzene (ST-DVD), when it is subject to different environments. The environments consist of water and three different ionic liquids. First, the solubility parameters of these ionic liquids, [BMIM][PF6], [HMIM][Br] and [BMIM][BF4], and albendazole were evaluated by means of molecular dynamics employing COMPASS force-field and a NPT ensemble at 298 K. Then a mesoscopic simulation using Dissipative Particle Dynamics (DPD) was used. In the presence of ionic liquids the albendazole exhibits a diffusivity in [BMIM][PF6] around ten times that shown in [BMIM][BF4] or [HMIM][Br]. This is connected with the corresponding solvent power. The results obtained from these molecular and mesoscopic simulations are consistent with reported experimental results and are useful to predict and evaluate the solvent power of ionic liquids applied to drugs of pharmaceutical use.
Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam
2017-01-01
A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics. PMID:28071685
Mesoscopic modelling and simulation of soft matter.
Schiller, Ulf D; Krüger, Timm; Henrich, Oliver
2017-12-20
The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.
Simeoni, Chiara; Dinicola, Simona; Cucina, Alessandra; Mascia, Corrado; Bizzarri, Mariano
2018-01-01
In this report, we aim at presenting a viable strategy for the study of Epithelial-Mesenchymal Transition (EMT) and its opposite Mesenchymal-Epithelial Transition (MET) by means of a Systems Biology approach combined with a suitable Mathematical Modeling analysis. Precisely, it is shown how the presence of a metastable state, that is identified at a mesoscopic level of description, is crucial for making possible the appearance of a phase transition mechanism in the framework of fast-slow dynamics for Ordinary Differential Equations (ODEs).
The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory
Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing
2017-01-01
This paper attempted to provide a method to calculate progressive failure of the cohesive-frictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, E1E2E3E1E2E3. The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight E3 repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution. PMID:28772596
Efficient multiscale magnetic-domain analysis of iron-core material under mechanical stress
NASA Astrophysics Data System (ADS)
Nishikubo, Atsushi; Ito, Shumpei; Mifune, Takeshi; Matsuo, Tetsuji; Kaido, Chikara; Takahashi, Yasuhito; Fujiwara, Koji
2018-05-01
For an efficient analysis of magnetization, a partial-implicit solution method is improved using an assembled domain structure model with six-domain mesoscopic particles exhibiting pinning-type hysteresis. The quantitative analysis of non-oriented silicon steel succeeds in predicting the stress dependence of hysteresis loss with computation times greatly reduced by using the improved partial-implicit method. The effect of cell division along the thickness direction is also evaluated.
Continuation through Singularity of Continuum Multiphase Algorithms
2013-03-01
capturing simulation of two-phase flow ; a singularity- free mesoscopic simulation that bridges atomic and continuum scales; and a physics-based closure...for free surface flow . The full two-way coupling was found to be irrelevant to the overall objective of developing a closure model to allow...The method can be used for the study of single species free - surface flow , for instance, in the case of pinch-off of a liquid thread during the
NASA Astrophysics Data System (ADS)
Webb, R. A.
1998-03-01
A variety of experiments are discussed where, at low temperatures, it appears that the non-interacting picture of electrons in a Fermi liquid description of a mesoscopic sample is breaking down. Specifically, experiments on the temperature dependence of the phase-coherence time, energy relaxation rate, spin-flip scattering time, persistent currents in normal metals and transmission through a barrier in the fractional quantum Hall regime all display low-temperature properties which can not be accounted for in the independent electron picture.
Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.
Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E
2017-03-03
We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
Seismological Field Observation of Mesoscopic Nonlinearity
NASA Astrophysics Data System (ADS)
Sens-Schönfelder, Christoph; Gassenmeier, Martina; Eulenfeld, Tom; Tilmann, Frederik; Korn, Michael; Niederleithinger, Ernst
2016-04-01
Noise based observations of seismic velocity changes have been made in various environments. We know of seasonal changes of velocities related to ground water or temperature changes, co-seismic changes originating from shaking or stress redistribution and changes related to volcanic activity. Is is often argued that a decrease of velocity is related to the opening of cracks while the closure of cracks leads to a velocity increase if permanent stress changes are invoked. In contrast shaking induced changes are often related to "damage" and subsequent "healing" of the material. The co-seismic decrease and transient recovery of seismic velocities can thus be explained with both - static stress changes or damage/healing processes. This results in ambiguous interpretations of the observations. Here we present the analysis of one particular seismic station in northern Chile that shows very strong and clear velocity changes associated with several earthquakes ranging from Mw=5.3 to Mw=8.1. The fact that we can observe the response to several events of various magnitudes from different directions offers the unique possibility to discern the two possible causative processes. We test the hypothesis, that the velocity changes are related to shaking rather than stress changes by developing an empirical model that is based on the local ground acceleration at the sensor site. The eight year of almost continuous observations of velocity changes are well modeled by a daily drop of the velocity followed by an exponential recovery. Both, the amplitude of the drop as well as the recovery time are proportional to the integrated acceleration at the seismic station. Effects of consecutive days are independent and superimposed resulting in strong changes after earthquakes and constantly increasing velocities during quiet days thereafter. This model describes the continuous observations of the velocity changes solely based on the acceleration time series without individually defined dates of events associated with separately inverted parameters. As the local ground acceleration is not correlated to static stress changes we can exclude static stress changes as causative process. The shaking sensitivity and healing process is well known from laboratory experiments in composite materials as mesoscopic nonlinearity. The sensitive behavior at this station is related to the particular near surface material that is a conglomerate cemented with gypsum - so called gypcrete. However, mesoscopic nonlinearity with different parameters might be a key to understand velocity changes also at other sites.
Lin, Naibo; Liu, Xiang Yang
2015-11-07
This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase.
NASA Astrophysics Data System (ADS)
Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael
2012-10-01
We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.
Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics
NASA Astrophysics Data System (ADS)
Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.
2012-12-01
Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.
Chaos and generalised multistability in a mesoscopic model of the electroencephalogram
NASA Astrophysics Data System (ADS)
Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.
2009-06-01
We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s -1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.
NASA Astrophysics Data System (ADS)
Han, Ru
This thesis focuses on the analysis of dispersed phase reinforced composite materials with perfect as well as imperfect interfaces using the Boundary Element Method (BEM). Two problems of interest are considered, namely, to determine the limitations in the use of effective properties and the analysis of failure progression at the inclusion-matrix interface. The effective moduli (effective Young's modulus, effective Poisson's ratio, effective shear modulus, and effective bulk modulus) of composite materials can be determined at the mesoscopic level using three-dimensional parallel BEM simulations. By comparing the mesoscopic BEM results and the macroscopic results based on effective properties, limitations in the effective property approach can be determined. Decohesion is an important failure mode associated with fiber-reinforced composite materials. Analysis of failure progression at the fiber-matrix interface in fiber-reinforced composite materials is considered using a softening decohesion model consistent with thermodynamic concepts. In this model, the initiation of failure is given directly by a failure criterion. Damage is interpreted by the development of a discontinuity of displacement. The formulation describing the potential development of damage is governed by a discrete decohesive constitutive equation. Numerical simulations are performed using the direct boundary element method. Incremental decohesion simulations illustrate the progressive evolution of debonding zones and the propagation of cracks along the interfaces. The effect of decohesion on the macroscopic response of composite materials is also investigated.
OpenRBC: Redefining the Frontier of Red Blood Cell Simulations at Protein Resolution
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Lu, Lu; Li, He; Grinberg, Leopold; Sachdeva, Vipin; Evangelinos, Constantinos; Karniadakis, George
We present a from-scratch development of OpenRBC, a coarse-grained molecular dynamics code, which is capable of performing an unprecedented in silico experiment - simulating an entire mammal red blood cell lipid bilayer and cytoskeleton modeled by 4 million mesoscopic particles - on a single shared memory node. To achieve this, we invented an adaptive spatial searching algorithm to accelerate the computation of short-range pairwise interactions in an extremely sparse 3D space. The algorithm is based on a Voronoi partitioning of the point cloud of coarse-grained particles, and is continuously updated over the course of the simulation. The algorithm enables the construction of a lattice-free cell list, i.e. the key spatial searching data structure in our code, in O (N) time and space space with cells whose position and shape adapts automatically to the local density and curvature. The code implements NUMA/NUCA-aware OpenMP parallelization and achieves perfect scaling with up to hundreds of hardware threads. The code outperforms a legacy solver by more than 8 times in time-to-solution and more than 20 times in problem size, thus providing a new venue for probing the cytomechanics of red blood cells. This work was supported by the Department of Energy (DOE) Collaboratory on Mathematics for Mesoscopic Model- ing of Materials (CM4). YHT acknowledges partial financial support from an IBM Ph.D. Scholarship Award.
Mesoscopic bar magnet based on ε-Fe2O3 hard ferrite.
Ohkoshi, Shin-Ichi; Namai, Asuka; Yamaoka, Takehiro; Yoshikiyo, Marie; Imoto, Kenta; Nasu, Tomomichi; Anan, Shizuka; Umeta, Yoshikazu; Nakagawa, Kosuke; Tokoro, Hiroko
2016-06-07
Ferrite magnets have a long history. They are used in motors, magnetic fluids, drug delivery systems, etc. Herein we report a mesoscopic ferrite bar magnet based on rod-shaped ε-Fe2O3 with a large coercive field (>25 kOe). The ε-Fe2O3-based bar magnet is a single crystal with a single magnetic domain along the longitudinal direction. A wide frequency range spectroscopic study shows that the crystallographic a-axis of ε-Fe2O3, which corresponds to the longitudinal direction of the bar magnet, plays an important role in linear and non-linear magneto-optical transitions, phonon modes, and the magnon (Kittel mode). Due to its multiferroic property, a magnetic-responsive non-linear optical sheet is manufactured as an application using an ε-Fe2O3-based bar magnet, resin, and polyethylene terephthalate. Furthermore, from the viewpoint of the large coercive field property, we demonstrate that a mesoscopic ε-Fe2O3 bar magnet can be used as a magnetic force microscopy probe.
A living mesoscopic cellular automaton made of skin scales.
Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C
2017-04-12
In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.
Mesoscopic bar magnet based on ɛ-Fe2O3 hard ferrite
NASA Astrophysics Data System (ADS)
Ohkoshi, Shin-Ichi; Namai, Asuka; Yamaoka, Takehiro; Yoshikiyo, Marie; Imoto, Kenta; Nasu, Tomomichi; Anan, Shizuka; Umeta, Yoshikazu; Nakagawa, Kosuke; Tokoro, Hiroko
2016-06-01
Ferrite magnets have a long history. They are used in motors, magnetic fluids, drug delivery systems, etc. Herein we report a mesoscopic ferrite bar magnet based on rod-shaped ɛ-Fe2O3 with a large coercive field (>25 kOe). The ɛ-Fe2O3-based bar magnet is a single crystal with a single magnetic domain along the longitudinal direction. A wide frequency range spectroscopic study shows that the crystallographic a-axis of ɛ-Fe2O3, which corresponds to the longitudinal direction of the bar magnet, plays an important role in linear and non-linear magneto-optical transitions, phonon modes, and the magnon (Kittel mode). Due to its multiferroic property, a magnetic-responsive non-linear optical sheet is manufactured as an application using an ɛ-Fe2O3-based bar magnet, resin, and polyethylene terephthalate. Furthermore, from the viewpoint of the large coercive field property, we demonstrate that a mesoscopic ɛ-Fe2O3 bar magnet can be used as a magnetic force microscopy probe.
NASA Astrophysics Data System (ADS)
Qin, Chuan; Chen, Shuhan; Cai, Yunjiao; Kandaz, Fatih; Ji, Yi
2017-10-01
Spin accumulation generated by the anomalous Hall effect (AHE) in mesoscopic ferromagnetic N i81F e19 (permalloy, Py) films is detected electrically by a nonlocal method. The reciprocal phenomenon, the inverse spin Hall effect (ISHE), can also be generated and detected all electrically in the same structure. For accurate quantitative analysis, a series of nonlocal AHE/ISHE structures and supplementary structures are fabricated on each sample substrate to account for statistical variations and to accurately determine all essential physical parameters in situ. By exploring Py thicknesses of 4, 8, and 12 nm, the Py spin diffusion length λPy is found to be much shorter than the film thicknesses. The product of λPy and the Py spin Hall angle αSH is determined to be independent of thickness and resistivity: αSHλPy=(0.066 ±0.009 ) nm at 5 K and (0.041 ±0.010 )nm at 295 K. These values are comparable to those obtained from mesoscopic Pt films.
A living mesoscopic cellular automaton made of skin scales
NASA Astrophysics Data System (ADS)
Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.
2017-04-01
In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.
Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales
Ayton, Gary S.; Lyman, Edward
2014-01-01
An overall multiscale simulation strategy for large scale coarse-grain simulations of membrane protein systems is presented. The protein is modeled as a heterogeneous elastic network, while the lipids are modeled using the hybrid analytic-systematic (HAS) methodology, where in both cases atomistic level information obtained from molecular dynamics simulation is used to parameterize the model. A feature of this approach is that from the outset liposome length scales are employed in the simulation (i.e., on the order of ½ a million lipids plus protein). A route to develop highly coarse-grained models from molecular-scale information is proposed and results for N-BAR domain protein remodeling of a liposome are presented. PMID:20158037
Bennemann, K
2010-06-23
Characteristic results of magnetism in small particles, thin films and tunnel junctions are presented. As a consequence of the reduced atomic coordination in small clusters and thin films the electronic states and density of states are modified. Thus, magnetic moments and magnetization are affected. Generally, in clusters and thin films magnetic anisotropy plays a special role. In tunnel junctions the interplay of magnetism, spin currents and superconductivity are of particular interest. In ring-like mesoscopic systems Aharonov-Bohm-induced currents are studied. Results are given for single transition metal clusters, cluster ensembles, thin films, mesoscopic structures and tunnel systems. © 2010 IOP Publishing Ltd
NASA Astrophysics Data System (ADS)
Bjørlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci; Dahm, Rasmus Tindal; Zhang, Yu; Gan, Yulin; Chen, Yunzhong; Pryds, Nini; Jespersen, Thomas S.
2018-04-01
A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demonstrate a lateral resolution of ˜100 nm. We study the low temperature transport properties of nanoscale wires and demonstrate the feasibility of the technique for defining in-plane gates allowing local control of the electrostatic environment in mesoscopic devices.
Physics at the FMQT’08 conference
NASA Astrophysics Data System (ADS)
Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.
2010-01-01
This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.
Are morphological changes necessary to mediate the therapeutic effects of electroconvulsive therapy?
Nickl-Jockschat, Thomas; Palomero Gallagher, Nicola; Kumar, Vinod; Hoffstaedter, Felix; Brügmann, Elisabeth; Habel, Ute; Eickhoff, Simon B; Grözinger, Michael
2016-04-01
The neurotrophic hypothesis has become the favorite model to explain the antidepressant properties of electroconvulsive therapy (ECT). It is based on the assumption that a restoration of previously defective neural networks drives therapeutic effects. Recent data in rather young patients suggest that neurotrophic effects of ECT might be detectable by diffusion tensor imaging. We here aimed to investigate whether the therapeutic response to ECT necessarily goes along with mesoscopic effects in gray matter (GM) or white matter (WM) in our patients in advanced age. Patients (n = 21, 15 males and 7 females) suffering from major depressive disorder were treated with ECT. Before the start of treatment and after the completion of the index series, they underwent magnetic resonance imaging, including a diffusion-weighed sequence. We used voxel-based morphometry to assess GM changes and tract-based spatial statistics and an SPM-based whole-brain analysis to detect WM changes in the course of treatment. Patients significantly improved clinically during the course of ECT. This was, however, not accompanied by GM or WM changes. This result challenges the notion that mesoscopic brain structure changes are an obligatory prerequisite for the antidepressant effects of ECT.
Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale
Rutherford, Michael E.; Chapman, David J.; Derrick, James G.; Patten, Jack R. W.; Bland, Philip A.; Rack, Alexander; Collins, Gareth S.; Eakins, Daniel E.
2017-01-01
Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies. PMID:28555619
NASA Astrophysics Data System (ADS)
Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie
2018-04-01
We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.
Transferable Coarse-Grained Models for Ionic Liquids.
Wang, Yanting; Feng, Shulu; Voth, Gregory A
2009-04-14
The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.
Marincel, Dan M.; Zhang, H. R.; Briston, J.; ...
2015-04-27
The interaction of grain boundaries with ferroelectric domain walls strongly influences the extrinsic contribution to piezoelectric activity in Pb(Zr,Ti)O 3 (PZT), ubiquitous in modern transducers and actuators. However, the fundamental understanding of these phenomena has been limited by complex mechanisms originating from the interplay of atomic-level domain wall pinning, collective domain wall dynamics, and emergent mesoscopic behavior. This contribution utilizes engineered grain boundaries created by depositing epitaxial PZT films with various Zr:Ti ratio onto 24º SrTiO 3 tilt bicrystals. The nonlinear piezoelectric response and surface domain structure across the boundary are investigated using piezoresponse force microscopy whilst cross section domainmore » structure is studied using transmission electron microscopy. The grain boundary reduces domain wall motion over a width of 800±70 nm for PZT 45:55 and 450±30 nm for PZT 52:48. Phase field modeling provides an understanding of the elastic and electric fields associated with the grain boundary and local domain configurations. In conclusion, this study demonstrates that complex mesoscopic behaviors can be explored to complement atomic-level pictures of the material system.« less
Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics.
Kwon, Yeong-Dae; Armen, Michael A; Mabuchi, Hideo
2013-11-15
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Multiscale simulation of molecular processes in cellular environments.
Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone
2016-11-13
We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Absolute calibration of a charge-coupled device camera with twin beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.
2014-09-08
We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.
Bloch oscillating transistor-a new mesoscopic amplifier
NASA Astrophysics Data System (ADS)
Delahaye, J.; Hassel, J.; Lindell, R.; Sillanpää, M.; Paalanen, M.; Seppä, H.; Hakonen, P.
2003-05-01
Bloch oscillating transistor (BOT) is a novel, three-terminal Josephson junction device. Its operating principle utilizes the fact that Zener tunneling up to a higher band will lead to a blockade of coherent Cooper-pair tunneling, Bloch oscillation, in a suitably biased Josephson junction. The Bloch oscillation is resumed only after the junction has relaxed to the lowest band by quasiparticle tunneling. In this paper we present a simple model for the operation of the BOT and calculate its gain in terms of the interband transition rates.
Yu, Naiyin; Hagan, Michael F.
2012-01-01
Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self-assembly of macromolecular complexes. In this article, we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus capsid protein. By combining all-atom simulations with specialized sampling techniques, we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. Although the wild-type protein remains wet until contact, we identify a set of in silico mutations, in which three hydrophilic amino acids are replaced with nonpolar residues, that leads to dewetting before association. The existence of dewetting depends on the size and relative locations of substituted residues separated by nanometer length scales, indicating long-range cooperativity and a sensitivity to surface topography. These observations identify important details that are missing from descriptions of protein association based on buried hydrophobic surface area. PMID:22995509
NASA Astrophysics Data System (ADS)
Aoyagi, Yoshinobu; Goodnick, Stephen M.
2006-05-01
This special issue of the Journal of Physics: Conference Series contains the proceedings of the joint Seventh International Conference on New Phenomena in Mesoscopic Structures and Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices, which was held from November 27th - December 2nd, 2005, at the Ritz Carlton Kapalua, Maui, Hawaii. The string of these conferences dates back to the first one in 1989. Of special importance is that this year's conference was dedicated to Professor Gottfried Landwehr, in recognition of his many outstanding contributions to semiconductor physics. A personal tribute to Prof Landwehr by Dr K von Klitzing leads off this issue. The scope of NPMS-7/SIMD-5 spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest include: •Nanoscale fabrication: high-resolution electron lithography, FIB nano-patterning, scanning- force-microscopy (SFM) lithography, SFM-stimulated growth, novel patterning, nano-imprint lithography, special etching, and self-assembled monolayers •Nanocharacterization: SFM characterization, ballistic-electron emission microscopy (BEEM), optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, and electro-luminescence in small structures •Nanodevices: ultra-scaled FETs, quantum single-electron transistors (SETS), resonant tunneling diodes, ferromagnetic and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, and nanomagnetics •Quantum-coherent transport: the quantum Hall effect, ballistic quantum systems, quantum-computing implementations and theory, and magnetic spin systems •Mesoscopic structures: quantum wires and dots, quantum chaos, non-equilibrium transport, instabilities, nano-electro-mechanical systems, mesoscopic Josephson effects, phase coherence and breaking, and the Kondo effect •Systems of nanodevices: Quantum cellular automata, systolic SET processors, quantum neural nets, adaptive effects in circuits, and molecular circuits •Nanomaterials: nanotubes, nanowires, organic and molecular materials, self-assembled nano wires, and organic devices •Nanobioelectronics: electronic properties of biological structures on the nanoscale. This year's conference was organized by Prof Stephen Goodnick, Arizona State University, and Prof Yoshinobu Aoyagi, Tokyo Institute of Technology. The conference benefited from 14 invited speakers, whose topics spanned the above list, and a total of 97 registered attendees. The largest contingent was from Japan, followed closely by the US. In total, there were 49 from Japan, 31 fiom the US, and 17 from Europe. The organizers want to especially thank the sponsors for the meeting: The Office of Naval Research, the Army Research Office, and Arizona State University on the US side, and the Japan Society for the Promotion of Science, through their 151 Committee, on the Japanese side. PROGRAM COMMITTEE •Prof Gerhard Abstreiter, Technical University of Munich •Prof Tsuneya Ando, Tokyo Institute of Technology •Prof John Barker, University of Glasgow •Prof Jonathan Bird, the University at Buffalo •Prof Robert Blick, University of Wisconsin •Prof David Ferry, Chair, Arizona State University •Dr Yoshiro Hirayama, NTT Basic Research Laboratories •Dr Koji Ishibashi, RIKEN •Prof Carlo Jacoboni, University of Modena •Prof David Janes, Purdue University •Prof Friedl Kuchar, University of Leoben •Prof K. Matsumoto, Osaka University •Prof Wolfgang Porod, Notre Dame University •Prof Michiharu Tabe, Shizuoka University •Prof Joachim Wolter, Eindhoven Institute of Technology •Prof Lukas Worschech, University of Würzburg •Dr Naoki Yokoyama, Fujitsu Research
Modelling the Active Hearing Process in Mosquitoes
NASA Astrophysics Data System (ADS)
Avitabile, Daniele; Homer, Martin; Jackson, Joe; Robert, Daniel; Champneys, Alan
2011-11-01
A simple microscopic mechanistic model is described of the active amplification within the Johnston's organ of the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments. New results are presented using mathematical homogenization techniques to derive a mesoscopic model as a simple oscillator with nonlinear force and damping characteristics. It is shown how the results from this new model closely resemble those from the microscopic model as the number of threads approach physiologically correct values.
Viscoelastic representation of surface waves in patchy saturated poroelastic media
NASA Astrophysics Data System (ADS)
Zhang, Yu; Xu, Yixian; Xia, Jianghai; Ping, Ping; Zhang, Shuangxi
2014-08-01
Wave-induced flow is observed as the dominated factor for P wave propagation at seismic frequencies. This mechanism has a mesoscopic scale nature. The inhomogeneous unsaturated patches are regarded larger than the pore size, but smaller than the wavelength. Surface wave, e.g., Rayleigh wave, which propagates along the free surface, generated by the interfering of body waves is also affected by the mesoscopic loss mechanisms. Recent studies have reported that the effect of the wave-induced flow in wave propagation shows a relaxation behavior. Viscoelastic equivalent relaxation function associated with the wave mode can describe the kinetic nature of the attenuation. In this paper, the equivalent viscoelastic relaxation functions are extended to take into account the free surface for the Rayleigh surface wave propagation in patchy saturated poroelastic media. Numerical results for the frequency-dependent velocity and attenuation and the time-dependent dynamical responses for the equivalent Rayleigh surface wave propagation along an interface between vacuum and patchy saturated porous media are reported in the low-frequency range (0.1-1,000 Hz). The results show that the dispersion and attenuation and kinetic characteristics of the mesoscopic loss effect for the surface wave can be effectively represented in the equivalent viscoelastic media. The simulation of surface wave propagation within mesoscopic patches requires solving Biot's differential equations in very small grid spaces, involving the conversion of the fast P wave energy diffusion into the Biot slow wave. This procedure requires a very large amount of computer consumption. An efficient equivalent approach for this patchy saturated poroelastic media shows a more convenient way to solve the single phase viscoelastic differential equations.
Vollhardt, D
2015-08-01
For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantum quenches in the Luttinger model and its close relatives
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Chung, Ming-Chiang
2016-06-01
A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.
NASA Astrophysics Data System (ADS)
Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.
2018-05-01
We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.
NASA Astrophysics Data System (ADS)
Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng
2014-04-01
We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
On an aggregation in birth-and-death stochastic dynamics
NASA Astrophysics Data System (ADS)
Finkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandr; Zhizhina, Elena
2014-06-01
We consider birth-and-death stochastic dynamics of particle systems with attractive interaction. The heuristic generator of the dynamics has a constant birth rate and density-dependent decreasing death rate. The corresponding statistical dynamics is constructed. Using the Vlasov-type scaling we derive the limiting mesoscopic evolution and prove that this evolution propagates chaos. We study a nonlinear non-local kinetic equation for the first correlation function (density of population). The existence of uniformly bounded solutions as well as solutions growing inside of a bounded domain and expanding in the space are shown. These solutions describe two regimes in the mesoscopic system: regulation and aggregation.
Observable consequences of zero-point energy
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Gupta, Kumar S.
2017-12-01
Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid-liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics.
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.
2014-03-01
Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).
CHAIRMAN'S FOREWORD: First International Symposium on Advanced Nanodevices and Nanotechnology
NASA Astrophysics Data System (ADS)
Aoyagi, Yoshinobu; Goodnick, Stephen M.
2008-03-01
This volume of Journal of Physics: Conference Series contains selected papers from the First International Symposium on Advanced Nanodevices and Nanotechnology. This conference is a merging of the two previous series New Phenomena in Mesoscopic Structures and the Surfaces and Interfaces of Mesoscopic Devices. This year's conference was held 2-7 December 2007 at the Waikoloa Beach Marriott on the Kohala coast of the big island of Hawaii. The scope of ISANN spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest included: Nano-scale fabrication (high-resolution electron lithography, FIB nano-patterning SFM lithography, SFM stimulated growth, novel patterning, nano-imprint lithography, special etching, and SAMs) Nano-characterization (SFM characterization, BEEM, optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, electro-luminescence in small structures) Nano-devices (ultra-scaled FETs, quantum SETs, RTDs, ferromagnetic, and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, nano-magnetics) Quantum coherent transport (quantum Hall effect, ballistic quantum systems, quantum computing implementations and theory, magnetic spin systems, quantum NEMs) Mesoscopic structures (quantum wires and dots, chaos, non-equilibrium transport, instabilities, nano-electro-mechanical systems, mesoscopic Josephson effects, phase coherence and breaking, Kondo effect) Systems of nano-devices (QCAs, systolic SET processors, quantum neural nets, adaptive effects in circuits, molecular circuits, NEMs) Nanomaterials (nanotubes, nanowires, organic and molecular materials, self-assembled nanowires, organic devices) Nano-bio-electronics (electronic properties of biological structures on the nanoscale) We were very pleased and honored to have the opportunity to organize the first International Symposium on Advanced Nanodevices and Nanotechnology. The conference benefited from 14 invited speakers, whose topics spanned the above list, and a total of 90 registered attendees. The largest contingent was from Japan, followed closely by the USA. We wish to particularly thank the sponsors for the meeting: Arizona State University on the US side, and the Japan Society for the Promotion of Science, through their 151 Committee, on the Japanese side. We would also like to thank Dr Koji Ishibashi, of RIKEN, for his assistance in the organization of the conference, and Professor David K Ferry for serving as the Editor for the ISANN Proceedings. Yoshinobu Aoyagi and Stephen M Goodnick Conference Co-Chairs
NASA Astrophysics Data System (ADS)
Katsoulakis, Markos A.; Vlachos, Dionisios G.
2003-11-01
We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang
2017-11-01
Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.
Two-terminal conductance fluctuations in the integer quantum Hall regime
NASA Astrophysics Data System (ADS)
Ho, Chang-Ming
1999-09-01
Motivated by recent experiments on the conductance fluctuations in mesoscopic integer quantum Hall systems, we consider a model in which the Coulomb interactions are incorporated into the picture of edge-state transport through a single saddle point. The occupancies of classical localized states in the two-dimensional electron system change due to the interactions between electrons when the gate voltage on top of the device is varied. The electrostatic potential between the localized states and the saddle point causes fluctuations of the saddle-point potential and thus fluctuations of the transmission probability of edge states. This simple model is studied numerically and compared with the observation.
Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive
NASA Astrophysics Data System (ADS)
Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.
2011-12-01
An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.
Viscous and thermal modelling of thermoplastic composites forming process
NASA Astrophysics Data System (ADS)
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Morphogenesis and Complexity of the Tumor Patterns
NASA Astrophysics Data System (ADS)
Izquierdo-Kulich, E.; Nieto-Villar, J. M.
A mechanism to describe the apoptosis process at mesoscopic level through p53 is proposed in this paper. A deterministic model given by three differential equations is deduced from the mesoscopic approach, which exhibits sustained oscillations caused by a supercritical Andronov-Hopf bifurcation. Taking as hypothesis that the p53 sustained oscillation is the fundamental mechanism for apoptosis regulation; the model predicts that it is necessary a strict control of p53 to stimulated it, which is an important consideration to established new therapy strategy to fight cancer. The mathematical modeling of tumor growth allows us to describe the most important regularities of these systems. A stochastic model, based on the most important processes that take place at the level of individual cells, is proposed to predict the dynamical behavior of the expected radius of the tumor and its fractal dimension. It was found that the tumor has a characteristic fractal dimension, which contains the necessary information to predict the tumor growth until it reaches a stationary state. The mathematical modeling of tumor growth is an approach to explain the complex nature of these systems. A model that describes tumor growth was obtained by using a mesoscopic formalism and fractal dimension. This model theoretically predicts the relation between the morphology of the cell pattern and the mitosis/apoptosis quotient that helps to predict tumor growth from tumoral cells fractal dimension. The relation between the tumor macroscopic morphology and the cell pattern morphology is also determined. This could explain why the interface fractal dimension decreases with the increase of the cell pattern fractal dimension and consequently with the increase of the mitosis/apoptosis relation. Indexes to characterize tumoral cell proliferation and invasion capacities are proposed and used to predict the growth of different types of tumors. These indexes also show that the proliferation capacity is directly proportional to the invasion capacity. The proposed model assumes: i) only interface cells proliferate and invade the host, and ii) the fractal dimension of tumoral cell patterns, can reproduce the Gompertzian growth law. A mathematical model was obtained to describe the relation between the tissue morphology of cervix carcinoma and both dynamic processes of mitosis and apoptosis, and an expression to quantify the tumor aggressiveness, which in this context is associated with the tumor growth rate. The proposed model was applied to Stage III cervix carcinoma in vivo studies. In this study we found that the apoptosis rate was significantly smaller in the tumor tissues and both the mitosis rate and aggressiveness index decrease with Stage III patient's age. These quantitative results correspond to observed behavior in clinical and genetics studies. Finally, the entropy production rate was determined for avascular tumor growth. The proposed formula relates the fractal dimension of the tumor contour with the quotient between mitosis and apoptosis rate, which can be used to characterize the degree of proliferation of tumor cells. The entropy production rate was determined for fourteen tumor cell lines as a physical function of cancer robustness. The entropy production rate is a hallmark that allows us the possibility of prognosis of tumor proliferation and invasion capacities, key factors to improve cancer therapy.
Epidemic spreading on complex networks with community structures
Stegehuis, Clara; van der Hofstad, Remco; van Leeuwaarden, Johan S. H.
2016-01-01
Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities and the vertex degrees. These models show that community structure is an important determinant of the behavior of percolation processes on networks, such as information diffusion or virus spreading: the community structure can both enforce as well as inhibit diffusion processes. Our models further show that it is the mesoscopic set of communities that matters. The exact internal structures of communities barely influence the behavior of percolation processes across networks. This insensitivity is likely due to the relative denseness of the communities. PMID:27440176
NASA Astrophysics Data System (ADS)
Ozturk, Mehmet Saadeddin
Optical microscopy has been one of the essential tools for biological studies for decades, however, its application areas was limited to superficial investigation due to strong scattering in live tissues. Even though advanced techniques such as confocal or multiphoton methods have been recently developed to penetrate beyond a few hundreds of microns deep in tissues, they still cannot perform in the mesoscopic regime (millimeter scale) without using destructive sample preparation protocols such as clearing techniques. They provide rich cellular information; however, they cannot be readily employed to investigate the biological processes at larger scales. Herein, we will present our effort to establish a novel imaging approach that can quantify molecular expression in intact tissues, well beyond the current microscopy depth limits. Mesoscopic Fluorescence Molecular Tomography (MFMT) is an emerging imaging modality that offers unique potential for the non-invasive molecular assessment of thick in-vitro and in-vivo live tissues. This novel imaging modality is based on an optical inverse problem that allows for retrieval of the quantitative spatial distribution of fluorescent tagged bio-markers at millimeter depth. MFMT is well-suited for in-vivo subsurface tissue imaging and thick bio-printed specimens due to its high sensitivity and fast acquisition times, as well as relatively large fields of view. Herein, we will first demonstrate the potential of this technique using our first generation MFMT system applied to multiplexed reporter gene imaging (in-vitro) and determination of Photodynamic Therapy (PDT) agent bio-distribution in a mouse model (in-vivo). Second, we will present the design rationale, in silico benchmarking, and experimental validation of a second generation MFMT (2GMFMT) system. We will demonstrate the gain in resolution and sensitivity achieved due to the de-scanned dense detector configuration implemented. The potential of this novel platform will be showcased by applying it to the longitudinal assessment of Ink-Jet Bio-Printed tumor models. This preliminary investigation focuses on monitoring four patient-derived glioblastoma multiforme (GBM) spheroids within their bioreactor for up to 70 days and following their volume change prior to and after exposure to a cytotoxic drug. Overall, our studies indicate that 2GMFMT is a powerful technique for in-vitro and in-vivo thick tissue molecular imaging applications due to its high resolution, fast tomographic imaging capability, and high sensitivity.
Community Detection for Correlation Matrices
NASA Astrophysics Data System (ADS)
MacMahon, Mel; Garlaschelli, Diego
2015-04-01
A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.
Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles.
Terrón-Mejía, Ketzasmin A; Martínez-Benavidez, Evelin; Higuera-Ciapara, Inocencio; Virués, Claudia; Hernández, Javier; Domínguez, Zaira; Argüelles-Monal, Waldo; Goycoolea, Francisco M; López-Rendón, Roberto; Gama Goicochea, Armando
2018-06-12
The transport of hydrophobic drugs in the human body exhibits complications due to the low solubility of these compounds. With the purpose of enhancing the bioavailability and biodistribution of such drugs, recent studies have reported the use of amphiphilic molecules, such as phospholipids, for the synthesis of nanoparticles or nanocapsules. Given that phospholipids can self-assemble in liposomes or micellar structures, they are ideal candidates to function as vehicles of hydrophobic molecules. In this work, we report mesoscopic simulations of nanoliposomes, constituted by lecithin and coated with a shell of chitosan. The stability of such structures and the efficiency of the encapsulation of capsaicin, as well as the internal and superficial distribution of capsaicin and chitosan inside the nanoliposome, were analyzed. The characterization of the system was carried out through density maps and the potentials of mean force for the lecithin-capsaicin, lecithin-chitosan, and capsaicin-chitosan interactions. The results of these simulations show that chitosan is deposited on the surface of the nanoliposome, as has been reported in some experimental works. It was also observed that a nanoliposome of approximately 18 nm in diameter is stable during the simulation. The deposition behavior was found to be influenced by a pattern of N-acetylation of chitosan.
Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas
NASA Astrophysics Data System (ADS)
Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.
2010-03-01
We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.
Coarse-grained hydrodynamics from correlation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Bruce
This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configuration from a molecular dynamics simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilbrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is applied to some simple hydrodynamic cases to determine the feasibility of applying this to realistic nanoscale systems.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Suppression of the "Quasiclassical" proximity gap in correlated-metal--superconductor structures.
Nikolić, Branislav K; Freericks, J K; Miller, P
2002-02-18
We study the energy and spatial dependence of the local density of states in a superconductor--correlated-metal--superconductor Josephson junction, where the correlated metal is a non-Fermi liquid (described by the Falicov-Kimball model). Many-body correlations are treated with dynamical mean-field theory, extended to inhomogeneous systems. While quasiclassical theories predict a minigap in the spectrum of a disordered Fermi liquid which is proximity-coupled within a mesoscopic junction, we find that increasing electron correlations destroy any minigap that might be opened in the absence of many-body correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, William Michael; Plimpton, Steven James; Wang, Peng
2010-03-01
LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-13
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Towards large-scale, human-based, mesoscopic neurotechnologies.
Chang, Edward F
2015-04-08
Direct human brain recordings have transformed the scope of neuroscience in the past decade. Progress has relied upon currently available neurophysiological approaches in the context of patients undergoing neurosurgical procedures for medical treatment. While this setting has provided precious opportunities for scientific research, it also has presented significant constraints on the development of new neurotechnologies. A major challenge now is how to achieve high-resolution spatiotemporal neural recordings at a large scale. By narrowing the gap between current approaches, new directions tailored to the mesoscopic (intermediate) scale of resolution may overcome the barriers towards safe and reliable human-based neurotechnology development, with major implications for advancing both basic research and clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
NASA Astrophysics Data System (ADS)
Elgh, Björn; Yuan, Ning; Cho, Hae Sung; Magerl, David; Philipp, Martine; Roth, Stephan V.; Yoon, Kyung Byung; Müller-Buschbaum, Peter; Terasaki, Osamu; Palmqvist, Anders E. C.
2014-11-01
Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.
Balanced double-loop mesoscopic interferometer based on Josephson proximity nanojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronzani, Alberto, E-mail: alberto.ronzani@nano.cnr.it; Altimiras, Carles; Giazotto, Francesco
We report on the fabrication and characterization of a two-terminal mesoscopic interferometer based on three V/Cu/V Josephson junctions having nanoscale cross-section. The junctions have been arranged in a double-ring geometry realized by metallic thin film deposition through a suspended mask defined by electron beam lithography. Although a significant amount of asymmetry between the critical current of each junction is observed, we show that the interferometer is able to suppress the supercurrent to a level lower than 6 parts per thousand, being here limited by measurement resolution. The present nano-device is suitable for low-temperature magnetometric and gradiometric measurements over the micrometricmore » scale.« less
Structure and rheology of star polymers in confined geometries: a mesoscopic simulation study.
Zheng, Feiwo; Goujon, Florent; Mendonça, Ana C F; Malfreyt, Patrice; Tildesley, Dominic J
2015-11-28
Mesoscopic simulations of star polymer melts adsorbed onto solid surfaces are performed using the dissipative particle dynamics (DPD) method. A set of parameters is developed to study the low functionality star polymers under shear. The use of a new bond-angle potential between the arms of the star creates more rigid chains and discriminates between different functionalities at equilibrium, but still allows the polymers to deform appropriately under shear. The rheology of the polymer melts is studied by calculating the kinetic friction and viscosity and there is good agreement with experimental properties of these systems. The study is completed with predictive simulations of star polymer solutions in an athermal solvent.
Chrysocolla Redefined as Spertiniite
NASA Astrophysics Data System (ADS)
Farges, François; Benzerara, Karim; Brown, Gordon E.
2007-02-01
XAFS and μ-XAFS spectra were collected at the Cu K-edge for seven chrysocolla samples (Peru, USA, and Congo). The results suggest that that the local structure around Cu is similar to that in Cu(OH)2 (spertiniite). Cu-L3 STXM imaging and spectroscopy confirm that the chrysocolla samples examined here consist of mesoscopic Cu(II)-rich domains surrounded by Si-rich domains (in agreement with results from infra-red spectroscopy). Hence, we suggest that chrysocolla, which is generally considered to be orthorhombic with composition (Cu,Al)2H2Si2O5(OH)4ṡnH2O, is in actually a mesoscopic assemblage composed dominantly of spertiniite (Cu(OH)2), water and amorphous silica (SiO2).
Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-06-01
In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.
Energy utilization in fluctuating biological energy converters
Szőke, Abraham; Hajdu, Janos
2016-01-01
We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003); Curr. Chem. Biol. 1, 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems. PMID:27191009
Effects of finite size on spin glass dynamics
NASA Astrophysics Data System (ADS)
Sato, Tetsuya; Komatsu, Katsuyoshi
2010-12-01
In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime
NASA Astrophysics Data System (ADS)
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011), 10.1103/PhysRevLett.106.230602]. These results demonstrate how quantum mechanics constrains thermodynamics.
Spontaneous and persistent currents in superconductive and mesoscopic structures (Review)
NASA Astrophysics Data System (ADS)
Kulik, I. O.
2004-07-01
We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent and the "spontaneous" currents in Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In the case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at a certain number of electrons. Under such a condition, the persistent current has a nonzero value even at an (almost) zero applied Aharonov-Bohm flux and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may present an opportunity for (and, more generally, macromolecular cyclic structures may suggest the possibility of) engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.
Pramanik, Malay; Patra, Astam K; Bhaumik, Asim
2013-04-14
Here we report the synthesis of a new crystalline titanium phosphonate material (HTiP-7) having a self-assembled nanostructure and a mesoscopic void space without the aid of any surfactant or templating agent. The material has been synthesized hydrothermally through the reaction between benzene-1,3,5-triphosphonic acid (BTPA) and titanium(iv) isopropoxide at neutral pH at 453 K for 24 h. This hybrid phosphonate material has been thoroughly characterized by powder X-ray diffraction, N2 sorption, HR TEM, FE SEM, TG-DTA, FT IR and UV-Vis diffuse reflectance spectroscopic studies. Two very well-known software packages, REFLEX and CELSIZ unit cell refinement programs, are employed to establish the triclinic crystal phase of this hybrid material (HTiP-7). Very tiny nanocrystals of HTiP-7 self-aggregated to form spherical nanoparticles of dimension ca. 25 nm together with a mesoscopic void space and good BET surface area (255 m(2) g(-1)). The framework is thermally stable up to 650 K. The material showed excellent carrier mobility for photocurrent generation in the presence of a photosensitizer molecule (Rose Bengal). To the best of our knowledge this is the first report of a photon-to-electron energy transfer process over a dye doped titanium phosphonate nanomaterial.
Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.
Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza
2015-01-01
A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena
NASA Astrophysics Data System (ADS)
Cottet, Audrey; Dartiailh, Matthieu C.; Desjardins, Matthieu M.; Cubaynes, Tino; Contamin, Lauriane C.; Delbecq, Matthieu; Viennot, Jérémie J.; Bruhat, Laure E.; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Time-dependent photon heat transport through a mesoscopic Josephson device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn
The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heatmore » branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.« less
NASA Astrophysics Data System (ADS)
Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.
2017-11-01
In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena.
Cottet, Audrey; Dartiailh, Matthieu C; Desjardins, Matthieu M; Cubaynes, Tino; Contamin, Lauriane C; Delbecq, Matthieu; Viennot, Jérémie J; Bruhat, Laure E; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations
NASA Astrophysics Data System (ADS)
Huard, B.
2006-07-01
This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.
Duret, Alexis; Grätzel, Michael
2005-09-15
Alpha-Fe(2)O(3) films having a mesoscopic leaflet type structure were produced for the first time by ultrasonic spray pyrolysis (USP) to explore their potential as oxygen-evolving photoanodes. The target of these studies is to use translucent hematite films deposited on conducting fluorine doped tin oxide (FTO) glass as top electrodes in a tandem cell that accomplishes the cleavage of water into hydrogen and oxygen by sunlight. The properties of layers made by USP were compared to those deposited by conventional spray pyrolysis (SP). Although both types of films show similar XRD and UV-visible and Raman spectra, they differ greatly in their morphology. The mesoscopic alpha-Fe(2)O(3) layers produced by USP consist mainly of 100 nm-sized platelets with a thickness of 5-10 nm. These nanosheets are oriented mainly perpendicularly to the FTO support, their flat surface exposing (001) facets. The mesoscopic leaflet structure has the advantage that it allows for efficient harvesting of visible light, while offering at the same time the very short distance required for the photogenerated holes to reach the electrolyte interface before recombining with conduction band electrons. This allows for water oxidation by the valence band holes even though their diffusion length is only a few nanometers. Distances are longer in the particles produced by SP favoring recombination of photoinduced charge carriers. Open-circuit photovoltage measurements indicate a lower surface state density for the nanoplatelets as compared to the round particles. These factors explain the much higher photoactivity of the USP compared to the SP deposited alpha-Fe(2)O(3) layers. Addition of hydrogen peroxide to the alkaline electrolyte further improves the photocurrent-voltage characteristics of films generated by USP indicating the hole transfer from the valence band of the semiconductor oxide to the adsorbed water to be the rate-limiting kinetic step in the oxygen generation reaction.
NASA Astrophysics Data System (ADS)
López, Luis I. A.; Mendoza, Michel; Ujevic, Sebastian
2013-09-01
We have systematically studied the conductance σ( E,B) and the electronic current line shapes J( V ex ) through complex mesoscopic molecules in an elastic resonant tunneling regime. The studied systems are based on GaAs/AlGaAs hetero-structures, with several discrete states in each coupled mesoscopic molecule. The molecules were formed using different wells and barrier widths. These systems allow effective couplings and uncouplings that lead to elastic processes as a function of the electronic potential V ex and magnetic field B. In this situation, the J( V ex ) and σ( E, B) curves exhibit a sequence of peaks of difficult interpretation, in which crossings and anti-crossings (a splitting if it is generated in the resonance condition) of states contribute in a way that they cannot be easily identified. Performing a systematic analysis of the evolution of these states (before the resonance condition), we were able to determine the origin of these current peaks. We have found that the coupling of states (anti-crossing) around the resonance region can be identified as a broad mirrored- D line shape in the J( V ex ) curves. The mirrored- D line shape peaks can be clearly differentiated from the neighboring peaks because the last ones follow a very defined increasing sequence in their intensities and widths. Also, this behavior (fingerprint) can be used to identify possible splitting of states in the J( V ex ). The splittings that are generated between states with different quantum numbers (quantum numbers associated to the individual well) follow an unexpected opposite behavior when compared with those generated between states with the same quantum numbers (quasi-miniband). All these results are also observed in the conductance σ( E, B) associated with complex mesoscopic molecules based on a two-dimensional electron gas.
Nano scale devices: Fabrication, actuation, and related fluidic dynamics
NASA Astrophysics Data System (ADS)
Jing, Hao
Using external actuating magnetic fields to manipulate magnetic parts is an efficient method to manipulate mesoscopic actable devices. Extensive researches have explored the potentials of self-assembly techniques based on capillary force, static charge force, drying, surface tension, and even dynamic fields as a low cost method for ordered 2D or 3D super-lattice structures for new materials and devices. But the ability of tunable patterning nano-particles for designed actable devices is still a requirement yet to be met. Utilizing anodized aluminum oxide (AAO) membranes as templates, soft-magnetic nanowires around 200 nm in diameter, 10 microns long have been fabricated. In this thesis, I describe a method to assemble these magnetic nanowires into a two dimension Wigner structure, of which the wire-wire distance is conveniently adjustable during the fabrication procedure. Using geometric tailored magnetic fields, we can plant these self-assembled magnetic nanowires with desired patterns into a thin soft polymer support layer. The final devices may be readily actuated by an external actuating magnetic field (a self-designed magnetic system, 3-dimensional force microscope (3DFM)) with precise patterns and frequencies in a micro-fluidic system. This method offers a general method to fabricate mesoscopic devices from a wide range of materials with magnetic dipoles to desired structures. And the actable devices themselves can find direct usage in low Re number flow mixing and bio-physical fluidic dynamic researches. The beating of cilia and flagella, slender cylinders 250 nanometers in diameter with lengths from 7 to 50 microns, is responsible for many important biological functions such as organism feeding, propulsion, for bacterial clearance in the lungs and for the right-left asymmetry in vertebrates. The hydrodynamics produced by these beating structures, including mixing, shear and extensional flows, is not understood. We developed an experimental model system for cilia beating through the use of magnetic nanowires. We apply our custom magnetic system, 3DFM, to drive these magnetic nanowires rotating with desired patterns and frequencies in a liquid chamber. High speed movies of passive tracers in the oscillating 3-D flow fields reveal the spatio-temporal structure of the induced fluid motion. Complementing these experimental studies, we have developed a family of exact solutions of the Stoke's equations for a spheroid sweeping a double cone in free space, and an asymptotic solution for a spinning slender rod sweeping an upright cone above a flat, infinite no-slip plane. We are using these solutions to develop a mathematical package to quantitatively model, and predict the tracer motion induced by the spinning nano-rods with and without Brownian noise. To understand the effect of these epicyclical flows on molecular conformations, we have studied the conformation of fluorescently labeled, single DNA molecules (lambda-DNA) in the flow produced by a precessing nanowire. The flow patterns in a viscoelastic medium about a precessing nanowire are also presented to reveal the epicyclical flows in a more bio-related environment.
An approach to collective behavior in cell cultures: modeling and analysis of ECIS data
NASA Astrophysics Data System (ADS)
Rabson, David; Lafalce, Evan; Lovelady, Douglas; Lo, Chun-Min
2011-03-01
We review recent results in which statistical measures of noise in ECIS data distinguished healthy cell cultures from cancerous or poisoned ones: after subtracting the ``signal,'' the 1 /fα noise in the healthy cultures shows longer short-time and long-time correlations. We discuss application of an artificial neural network to detect the cancer signal, and we demonstrate a computational model of cell-cell communication that produces signals similar to those of the experimental data. The simulation is based on the q -state Potts model with inspiration from the Bak-Tang-Wiesenfeld sand-pile model. We view the level of organization larger than cells but smaller than organs or tissues as a kind of ``mesoscopic'' biological physics, in which few-body interactions dominate, and the experiments and computational model as ways of exploring this regime.
A simplified model for dynamics of cell rolling and cell-surface adhesion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimrák, Ivan, E-mail: ivan.cimrak@fri.uniza.sk
2015-03-10
We propose a three dimensional model for the adhesion and rolling of biological cells on surfaces. We study cells moving in shear flow above a wall to which they can adhere via specific receptor-ligand bonds based on receptors from selectin as well as integrin family. The computational fluid dynamics are governed by the lattice-Boltzmann method. The movement and the deformation of the cells is described by the immersed boundary method. Both methods are fully coupled by implementing a two-way fluid-structure interaction. The adhesion mechanism is modelled by adhesive bonds including stochastic rules for their creation and rupture. We explore amore » simplified model with dissociation rate independent of the length of the bonds. We demonstrate that this model is able to resemble the mesoscopic properties, such as velocity of rolling cells.« less
Synchrotron hard X-ray imaging of shock-compressed metal powders
NASA Astrophysics Data System (ADS)
Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.
2015-06-01
This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.
NASA Astrophysics Data System (ADS)
Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie
2016-06-01
The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.
cellPACK: A Virtual Mesoscope to Model and Visualize Structural Systems Biology
Johnson, Graham T.; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S.; Sanner, Michel F.; Olson, Arthur J.
2014-01-01
cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10−7–10−8m) between molecular and cellular biology. cellPACK’s modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive 3D models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is currently available as open source code, with tools for validation of models and with recipes and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators, and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org. PMID:25437435
Deformation associated with the Ste. Genevieve fault zone and mid-continent tectonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, A.; Baker, G.S.; Harrison, R.W.
1992-01-01
The Ste. Genevieve fault is a northwest-trending deformation zone on the northeast edge of the Ozark Dome in Missouri. The fault has been described as a high-angle block fault resulting from vertical uplift of Proterozoic basement rocks, and also as a left-lateral, strike-slip or transpressive wrench fault associated with the Reelfoot rift. Recent mapping across the fault zone documents significant changes in the style of deformation along strike, including variations in the number and the spacing of fault strands, changes in the orientation of rocks within and adjacent to the fault zone, and changes in the direction of stratigraphic offsetmore » between different fault slices. These data are inconsistent with existing Ste. Genevieve models of monoclinal folding over basement upthrusts. Mesoscopic structural analysis of rocks in and near the fault zone indicates highly deformed noncylindrical folds, faults with normal, reverse, oblique, and strike-slip components of movement, and complex joint systems. Fabric orientation, calcite shear fibers, and slickensides indicate that the majority of these mesoscopic structures are kinematically related to left-lateral oblique slip with the southwest side up. Within the fault zone are highly fractured rocks, microscopic to coarse-grained carbonate breccia, and siliciclastic cataclasite. Microscopic deformation includes twinning in carbonate rocks, deformation banding, undulose extinction, and strain-induced polygonization in quartz, tectonic stylolites, extension veining, microfractures, and grain-scale cataclasis. Data are consistent with models relating the Ste. Genevieve fault zone to left-lateral oblique slip possibly associated with New Madrid tectonism.« less
Asymmetric Differential Resistance of Current Biased Mesoscopic AuFe Wires
NASA Astrophysics Data System (ADS)
Eom, J.; Chandrasekhar, V.; Neuttiens, G.; Strunk, C.; van Haesendonck, C.; Bruynseraede, Y.
1996-03-01
An anomalous asymmetry is found in the differential resistance dV/dI of mesoscopic AuFe wires as a function of dc bias current at low temperatures. The samples are fabricated by ion implanting Au wires of length 1.0 - 35.0 μ m and of width 0.1 - 1.0 μ m with Fe at two different concentrations, 0.2 at.% and 0.4 at.%. The asymmetry is more pronounced in narrow and short samples. The asymmetric component of dV/dI increases with decreasing temperature, and saturates below the maximum in the spin glass resistance. It is found that the lead configuration for the four-terminal measurement also affects the asymmetric component of dV/dI.
Giant mesoscopic fluctuations of the elastic cotunneling thermopower of a single-electron transistor
NASA Astrophysics Data System (ADS)
Vasenko, A. S.; Basko, D. M.; Hekking, F. W. J.
2015-02-01
We study the thermoelectric transport of a small metallic island weakly coupled to two electrodes by tunnel junctions. In the Coulomb blockade regime, in the case when the ground state of the system corresponds to an even number of electrons on the island, the main mechanism of electron transport at the lowest temperatures is elastic cotunneling. In this regime, the transport coefficients strongly depend on the realization of the random impurity potential or the shape of the island. Using random-matrix theory, we calculate the thermopower and the thermoelectric kinetic coefficient and study the statistics of their mesoscopic fluctuations in the elastic cotunneling regime. The fluctuations of the thermopower turn out to be much larger than the average value.
Electron teleportation via Majorana bound states in a mesoscopic superconductor.
Fu, Liang
2010-02-05
Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.
Mesoscopic Simulations of Crosslinked Polymer Networks
NASA Astrophysics Data System (ADS)
Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.
2016-08-01
A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.
Shih, Andrew J; Purvis, Jeremy; Radhakrishnan, Ravi
2008-12-01
The complexity in intracellular signaling mechanisms relevant for the conquest of many diseases resides at different levels of organization with scales ranging from the subatomic realm relevant to catalytic functions of enzymes to the mesoscopic realm relevant to the cooperative association of molecular assemblies and membrane processes. Consequently, the challenge of representing and quantifying functional or dysfunctional modules within the networks remains due to the current limitations in our understanding of mesoscopic biology, i.e., how the components assemble into functional molecular ensembles. A multiscale approach is necessary to treat a hierarchy of interactions ranging from molecular (nm, ns) to signaling (microm, ms) length and time scales, which necessitates the development and application of specialized modeling tools. Complementary to multiscale experimentation (encompassing structural biology, mechanistic enzymology, cell biology, and single molecule studies) multiscale modeling offers a powerful and quantitative alternative for the study of functional intracellular signaling modules. Here, we describe the application of a multiscale approach to signaling mediated by the ErbB1 receptor which constitutes a network hub for the cell's proliferative, migratory, and survival programs. Through our multiscale model, we mechanistically describe how point-mutations in the ErbB1 receptor can profoundly alter signaling characteristics leading to the onset of oncogenic transformations. Specifically, we describe how the point mutations induce cascading fragility mechanisms at the molecular scale as well as at the scale of the signaling network to preferentially activate the survival factor Akt. We provide a quantitative explanation for how the hallmark of preferential Akt activation in cell-lines harboring the constitutively active mutant ErbB1 receptors causes these cell-lines to be addicted to ErbB1-mediated generation of survival signals. Consequently, inhibition of ErbB1 activity leads to a remarkable therapeutic response in the addicted cell lines.
Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.
Ozturk, Mehmet S; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B; Fisher, John P; Chen, Yu; Intes, Xavier
2016-03-01
Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.
Poncin-Epaillard, F; Herry, J M; Marmey, P; Legeay, G; Debarnot, D; Bellon-Fontaine, M N
2013-04-01
Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF4 plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhu, Yi; Cai, Zhonghou; Chen, Pice; ...
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less
NASA Astrophysics Data System (ADS)
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan
2016-02-01
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J; Jung, Il Woong; Walko, Donald A; Dufresne, Eric M; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P; Freeland, John W; Evans, Paul G; Wen, Haidan
2016-02-26
Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.
Role of clusters in nonclassical nucleation and growth of protein crystals
Sleutel, Mike; Van Driessche, Alexander E. S.
2014-01-01
The development of multistep nucleation theory has spurred on experimentalists to find intermediate metastable states that are relevant to the solidification pathway of the molecule under interest. A great deal of studies focused on characterizing the so-called “precritical clusters” that may arise in the precipitation process. However, in macromolecular systems, the role that these clusters might play in the nucleation process and in the second stage of the precipitation process, i.e., growth, remains to a great extent unknown. Therefore, using biological macromolecules as a model system, we have studied the mesoscopic intermediate, the solid end state, and the relationship that exists between them. We present experimental evidence that these clusters are liquid-like and stable with respect to the parent liquid and metastable compared with the emerging crystalline phase. The presence of these clusters in the bulk liquid is associated with a nonclassical mechanism of crystal growth and can trigger a self-purifying cascade of impurity-poisoned crystal surfaces. These observations demonstrate that there exists a nontrivial connection between the growth of the macroscopic crystalline phase and the mesoscopic intermediate which should not be ignored. On the other hand, our experimental data also show that clusters existing in protein solutions can significantly increase the nucleation rate and therefore play a relevant role in the nucleation process. PMID:24449867
Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics.
Vorontsova, Maria A; Chan, Ho Yin; Lubchenko, Vassiliy; Vekilov, Peter G
2015-11-03
Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Thin Layer Drying Model of Bacterial Cellulose Film
NASA Astrophysics Data System (ADS)
Hadi Jatmiko, Tri; Taufika Rosyida, Vita; Wheni Indrianingsih, Anastasia; Apriyana, Wuri
2017-12-01
The bacterial cellulose film produced by Acetobacter xylinum using coconut water as a carbon source was dried at a temperature of 60 to 100 C. The drying process of bacterial cellulose film occur at falling rate drying period. Increasing drying temperature will shorten the drying time. The drying data fitted with thin layer drying models that widely used, Newton, Page and Henderson and Pabis models. All thin layer drying models describe the experimental data well, but Page model is better than the other models on all various temperature with coefficients of determination (R2) range from 0.9908 to 0.9979, chi square range from 0.000212 to 0.000851 and RMSE range from 0.014307 to 0.0289458.
Rolland, N; Larson, D J; Geiser, B P; Duguay, S; Vurpillot, F; Blavette, D
2015-12-01
An analytical model describing the field evaporation dynamics of a tip made of a thin layer deposited on a substrate is presented in this paper. The difference in evaporation field between the materials is taken into account in this approach in which the tip shape is modeled at a mesoscopic scale. It was found that the non-existence of sharp edge on the surface is a sufficient condition to derive the morphological evolution during successive evaporation of the layers. This modeling gives an instantaneous and smooth analytical representation of the surface that shows good agreement with finite difference simulations results, and a specific regime of evaporation was highlighted when the substrate is a low evaporation field phase. In addition, the model makes it possible to calculate theoretically the tip analyzed volume, potentially opening up new horizons for atom probe tomographic reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.
Sharma, P; Córcoles, A; Bennett, R G; Parpia, J M; Cowan, B; Casey, A; Saunders, J
2011-11-04
We discuss the mass transport of a degenerate Fermi liquid ^{3}He film over a rough surface, and the film momentum relaxation time, in the framework of theoretical predictions. In the mesoscopic regime, the anomalous temperature dependence of the relaxation time is explained in terms of the interference between elastic boundary scattering and inelastic quasiparticle-quasiparticle scattering within the film. We exploit a quasiclassical treatment of quantum size effects in the film in which the surface roughness, whose power spectrum is experimentally determined, is mapped into an effective disorder potential within a film of uniform thickness. Confirmation is provided by the introduction of elastic scattering centers within the film. The improved understanding of surface roughness scattering may impact on enhancing the conductivity in thin metallic films.
The role of community structure on the nature of explosive synchronization.
Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein
2018-03-01
In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farges, Francois; /Museum Nat. Hist., Paris /Stanford U., Geo. Environ. Sci.; Benzerara, Karim
XAFS and {mu}-XAFS spectra were collected at the Cu K-edge for seven chrysocolla samples (Peru, USA, and Congo). The results suggest that the local structure around Cu is similar to that in Cu(OH){sub 2} (spertiniite). Cu-L{sub 3} STXM imaging and spectroscopy confirm that the chrysocolla samples examined here consist of mesoscopic Cu(II)-rich domains surrounded by Si-rich domains (in agreement with results from infra-red spectroscopy). Hence, we suggest that chrysocolla, which is generally considered to be orthorhombic with composition (Cu,Al){sub 2}H{sub 2}Si{sub 2}O{sub 5}(OH){sub 4} {center_dot} nH{sub 2}O, is in actually a mesoscopic assemblage composed dominantly of spertiniite (Cu(OH){sub 2}), watermore » and amorphous silica (SiO{sub 2}).« less
NASA Astrophysics Data System (ADS)
Beretta, Gian Paolo
2014-10-01
By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.
Electric currents induced by twisted light in Quantum Rings.
Quinteiro, G F; Berakdar, J
2009-10-26
We theoretically investigate the generation of electric currents in quantum rings resulting from the optical excitation with twisted light. Our model describes the kinetics of electrons in a two-band model of a semiconductor-based mesoscopic quantum ring coupled to light having orbital angular momentum (twisted light). We find the analytical solution, which exhibits a "circular" photon-drag effect and an induced magnetization, suggesting that this system is the circular analog of that of a bulk semiconductor excited by plane waves. For realistic values of the electric field and material parameters, the computed electric current can be as large as microA; from an applied perspective, this opens new possibilities to the optical control of the magnetization in semiconductors.
Patra, Anirban; McDowell, David L.
2016-03-25
We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less
A review of progress in the physics of open quantum systems: theory and experiment.
Rotter, I; Bird, J P
2015-11-01
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.
A comprehensive review of thin-layer drying models used in agricultural products.
Ertekin, Can; Firat, M Ziya
2017-03-04
Drying is one of the widely used methods of grain, fruit, and vegetable preservation. The important aim of drying is to reduce the moisture content and thereby increase the lifetime of products by limiting enzymatic and oxidative degradation. In addition, by reducing the amount of water, drying reduces the crop losses, improves the quality of dried products, and facilitates its transportation, handling, and storage requirements. Drying is a process comprising simultaneous heat and mass transfer within the material, and between the surface of the material and the surrounding media. Many models have been used to describe the drying process for different agricultural products. These models are used to estimate drying time of several products under different drying conditions, and how to increase the drying process efficiency and also to generalize drying curves, for the design and operation of dryers. Several investigators have proposed numerous mathematical models for thin-layer drying of many agricultural products. This study gives a comprehensive review of more than 100 different semitheoretical and empirical thin-layer drying models used in agricultural products and evaluates the statistical criteria for the determination of appropriate model.
Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel
2016-11-13
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
DRI Model of the U.S. Economy -- Model Documentation
1993-01-01
Provides documentation on Data Resources, Inc., DRI Model of the U.S. Economy and the DRI Personal Computer Input/Output Model. It also describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang; Zou, Jianfeng
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; El-Kaddah, Nagy
It is well known that casting at low superheat has a strong influence on the solidification structures of the cast alloy. Recent studies on casting magnesium AZ alloys at low superheat using the Magnetic Suspension Melting (MSM) process have shown that the cast alloy exhibit a fine globular grain structure, and the grain size depend on the cooling rate. This paper describes a stochastic mesoscopic model for predicting the grain structure and segregation in cast alloys at low superheat. This model was applied to predict the globular solidification morphology and solute redistribution of Al in cast Mg AZ31B alloy at different cooling rates. The predictions were found to be in good agreement with the observed grain structure and Al segregation. This makes the model a very useful tool for optimizing the solidification structure of cast magnesium alloys.
cDF Theory Software for mesoscopic modeling of equilibrium and transport phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-01
The approach is based on classical Density Functional Theory ((cDFT) coupled with the Poisson-Nernst-Planck (PNP) transport kinetics model and quantum mechanical description of short-range interaction and elementary transport processes. The model we proposed and implemented is fully atomistic, taking into account pairwise short-range and manybody long-range interactions. But in contrast to standard molecular dynamics (MD) simulations, where long-range manybody interactions are evaluated as a sum of pair-wise atom-atom contributions, we include them analytically based on wellestablished theories of electrostatic and excluded volume interactions in multicomponent systems. This feature of the PNP/cDFT approach allows us to reach well beyond the length-scalesmore » accessible to MD simulations, while retaining the essential physics of interatomic interactions from first principles and in a parameter-free fashion.« less
Low-noise current amplifier based on mesoscopic Josephson junction.
Delahaye, J; Hassel, J; Lindell, R; Sillanpää, M; Paalanen, M; Seppä, H; Hakonen, P
2003-02-14
We used the band structure of a mesoscopic Josephson junction to construct low-noise amplifiers. By taking advantage of the quantum dynamics of a Josephson junction, i.e., the interplay of interlevel transitions and the Coulomb blockade of Cooper pairs, we created transistor-like devices, Bloch oscillating transistors, with considerable current gain and high-input impedance. In these transistors, the correlated supercurrent of Cooper pairs is controlled by a small base current made up of single electrons. Our devices reached current and power gains on the order of 30 and 5, respectively. The noise temperature was estimated to be around 1 kelvin, but noise temperatures of less than 0.1 kelvin can be realistically achieved. These devices provide quantum-electronic building blocks that will be useful at low temperatures in low-noise circuit applications with an intermediate impedance level.
Manipulating mesoscopic multipartite entanglement with atom-light interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stasinska, J.; Rodo, C.; Paganelli, S.
2009-12-15
Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, amore » second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.« less
Mesoscopic Metal-Insulator Transition at Ferroelastic Domain Walls in VO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Keith M; Kalinin, Sergei V; Kolmakov, Andrei
2010-01-01
The novel phenomena induced by symmetry breaking at homointerfaces between ferroic variants in ferroelectric and ferroelastic materials have attracted recently much attention. Using variable temperature scanning microwave microscopy, we demonstrate the mesoscopic strain-induced metal-insulator phase transitions in the vicinity of ferroelastic domain walls in the semiconductive VO2 that nucleated at temperatures as much as 10-12 C below bulk transition, resulting in the formation of conductive channels in the material. Density functional theory is used to rationalize the process low activation energy. This behavior, linked to the strain inhomogeneity inherent in ferroelastic materials, can strongly affect interpretation of phase-transition studies inmore » VO2 and similar materials with symmetry-lowering transitions, and can also be used to enable new generations of electronic devices though strain engineering of conductive and semiconductive regions.« less
Tang, Qinggong; Piard, Charlotte; Lin, Jonathan; Nan, Kai; Guo, Ting; Caccamese, John; Fisher, John; Chen, Yu
2018-01-01
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2 ∼ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ. © 2017 Wiley Periodicals, Inc.
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
Micro- and mesoscopic process interactions in protein coagulation
NASA Astrophysics Data System (ADS)
San Biagio, P. L.; Martorana, V.; Emanuele, A.; Vaiana, S. M.; Manno, M.; Bulone, D.; Palma-Vittorelli, M. B.; Palma, M. U.
2000-04-01
It has recently been recognized that pathological protein coagulation is responsible for lethal pathologies as diverse as amyloidosis, Alzheimer and TSE. Understanding the coagulation mechanisms is therefore stirring great interest. In previous studies we have shown that on profoundly different systems coagulation is the result of a strong interaction between two processes on different length scales (mesoscopic and microscopic). Here we report experiments on bovine serum albumin (BSA) showing that the overall mechanism is the result of at least 3 distinct and strongly intertwined processes, on both length scales: molecular conformational changes, solution demixing and intermolecular crosslinking. This mechanism involves the statistical mechanics of protein-solvent interaction, its relation to the protein's landscape of configurational free energy and to the solution's thermodynamic stability, and its relation to the topological problem of crosslink-percolation, responsible for coagulation.
NASA Astrophysics Data System (ADS)
Dmitriev, Alex A.; Dmitriev, Alex S.; Makarov, Petr; Mikhailova, Inna
2018-04-01
In recent years, there has been a great interest in the development and creation of new functional energy mate-rials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and data centers). In this paper, the technology of obtaining new nanocomposites based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphene flakes of different volumetric concentration using epoxy polymers, as well as the addition of monodisperse microspheres are described. Data are given on the measurement of the contact angle and thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.
Broadband giant-refractive-index material based on mesoscopic space-filling curves
NASA Astrophysics Data System (ADS)
Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa
2016-08-01
The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.
In situ ESEM imaging of the vapor-pressure-dependent sublimation-induced morphology of ice
NASA Astrophysics Data System (ADS)
Nair, Malavika; Husmann, Anke; Cameron, Ruth E.; Best, Serena M.
2018-04-01
Sublimation is a fundamental phase transition that has a profound impact on both natural phenomena and advanced manufacturing technologies. Although great strides have been made in the study of ice growth from melt and vapor, little consideration has been given to the effect of sublimation on the morphological features that develop in the ice microstructure. In this experimental study, we demonstrate the effect of vapor pressure on the mesoscopic faceting observed and show that a vapor-pressure-specific wavelength characterizes the periodic features that arise during sublimation. The ability to control the length scale of these features not only provides us with new insights into the mesoscopic roughness of ice crystals, but also presents the potential to exploit this effect in a plethora of applications from comet dating to ice-templated tissue engineering scaffolds.
Time-dependent photon heat transport through a mesoscopic Josephson device
NASA Astrophysics Data System (ADS)
Lu, Wen-Ting; Zhao, Hong-Kang
2017-02-01
The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green's function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction.
The Complexity of Dynamics in Small Neural Circuits
Panzeri, Stefano
2016-01-01
Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing. PMID:27494737
Evolution of colloidal dispersions in novel time-varying optical potentials
NASA Astrophysics Data System (ADS)
Koss, Brian Alan
Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of discrete spatially-symmetric potential wells, which are implemented with an array of HOTs.
Mathematical and computational modeling simulation of solar drying Systems
USDA-ARS?s Scientific Manuscript database
Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...
NASA Astrophysics Data System (ADS)
Slack, N. L.; Davidson, P.; Chibbaro, M. A.; Jeppesen, C.; Eiselt, P.; Warriner, H. E.; Schmidt, H.-W.; Pincus, P.; Safinya, C. R.
2001-10-01
Double-end-anchored poly-ethylene-glycol-surfactants (DEA-PEG-surfactants) induce the gelation of lyotropic lamellar Lα phases stabilized by undulation forces. The physical hydrogel (Lα,g) derives its viscoelasticity from the proliferation of defects at a mesoscopic level. The DEA-PEG-surfactants assume both looping and bridging conformations. The existence of novel bridging conformations is indicated by the coexistence of two lamellar phases and the limited swelling of the Lα and Lα,g phases. Modeling of the polymer decorated membranes demonstrates the existence of bridging and yields a rapidly decreasing density of bridging conformations with increasing interlayer spacing.
On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons
Marquardt, Drew; Heberle, Frederick A.; Nickels, Jonathan D.; ...
2015-09-21
In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Finally, recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.
Effects of nanoparticles on the compatibility of PEO-PMMA block copolymers.
Mu, Dan; Li, Jian-Quan; Li, Wei-Dong; Wang, Song
2011-12-01
The compatibility of six kinds of designed poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers was studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depended on both the structures of the block copolymers and the simulation temperature, while the values of the order parameters of the long chains were higher than those of the short ones; temperature had a more obvious effect on long chains than on the short ones. Plain copolymers doped with poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA) homopolymer showed different order parameter values. When a triblock copolymer had the same component at both ends and was doped with one of its component polymers as a homopolymer (such as A5B6A5 doped with B6 or A5 homopolymer), the value of its order parameter depended on the simulation temperature. The highest order parameter values were observed for A5B6A5 doped with B6 at 400 K and for A5B6A5 doped with A5 at 270 K. A study of copolymers doped with nanoparticles showed that the mesoscopic phase was influenced by not only the properties of the nanoparticles, such as the size and density, but also the compositions of the copolymers. Increasing the size of the nanoparticles used as a dopant had the most significant effect on the phase morphologies of the copolymers.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhang, Zhizhong; Wang, Lezhi; Nan, Jiang; Zheng, Zhenyi; Li, Xiang; Wong, Kin; Wang, Yu; Klein, Jacques-Olivier; Khalili Amiri, Pedram; Zhang, Youguang; Wang, Kang L.; Zhao, Weisheng
2017-07-01
Beyond memory and storage, future logic applications put forward higher requirements for electronic devices. All spin logic devices (ASLDs) have drawn exceptional interest as they utilize pure spin current instead of charge current, which could promise ultra-low power consumption. However, relatively low efficiencies of spin injection, transport, and detection actually impede high-speed magnetization switching and challenge perspectives of ASLD. In this work, we study partial spin absorption induced magnetization switching in asymmetrical ASLD at the mesoscopic scale, in which the injector and detector have the nano-fabrication compatible device size (>100 nm) and their contact areas are different. The enlarged contact area of the detector is conducive to the spin current absorption, and the contact resistance difference between the injector and the detector can decrease the spin current backflow. Rigorous spin circuit modeling and micromagnetic simulations have been carried out to analyze the electrical and magnetic features. The results show that, at the fabrication-oriented technology scale, the ferromagnetic layer can hardly be switched by geometrically partial spin current absorption. The voltage-controlled magnetic anisotropy (VCMA) effect has been applied on the detector to accelerate the magnetization switching by modulating magnetic anisotropy of the ferromagnetic layer. With a relatively high VCMA coefficient measured experimentally, a voltage of 1.68 V can assist the whole magnetization switching within 2.8 ns. This analysis and improving approach will be of significance for future low-power, high-speed logic applications.
Active matter model of Myxococcus xanthus aggregation
NASA Astrophysics Data System (ADS)
Patch, Adam; Bahar, Fatmagul; Liu, Guannan; Thutupalli, Shashi; Welch, Roy; Yllanes, David; Shaevitz, Joshua; Marchetti, M. Cristina
Myxococcus xanthus is a soil-dwelling bacterium that exhibits several fascinating collective behaviors including streaming, swarming, and generation of fruiting bodies. A striking feature of M. xanthus is that it periodically reverses its motility direction. The first stage of fruiting body formation is characterized by the aggregation of cells on a surface into round mesoscopic structures. Experiments have shown that this aggregation relies heavily on regulation of the reversal rate and local mechanical interactions, suggesting motility-induced phase separation may play an important role. We have adapted self-propelled particle models to include cell reversal and motility suppression resulting from sporulation observed in aggregates. Using 2D molecular dynamics simulations, we map the phase behavior in the space of Péclet number and local density and examine the kinetics of aggregation for comparison to experiments.
NASA Astrophysics Data System (ADS)
Vanaverbeke, Sigfried; Van Den Abeele, Koen
2006-05-01
A multiscale model for the simulation of two-dimensional nonlinear wave propagation in microcracked materials exhibiting hysteretic nonlinearity is presented. We use trigger-like elements with a two state nonlinear stress-strain relation to simulate microcracks at the microlevel. A generalized Preisach space approach, based on the eigenstress-eigenstrain formulation, upscales the microscopic state relation to the mesoscopic level. The macroscopic response of the sample to an arbitrary excitation signal is then predicted using a staggered grid Elastodynamic Finite Integration Technique (EFIT) formalism. We apply the model to investigate spectral changes of a pulsed signal traversing a localized microdamaged region with hysteretic nonlinearity in a plate, and to study the influence of a superficial region with hysteretic nonlinearity on the nonlinear Rayleigh wave propagation.
Mechanics and statistics of the worm-like chain
NASA Astrophysics Data System (ADS)
Marantan, Andrew; Mahadevan, L.
2018-02-01
The worm-like chain model is a simple continuum model for the statistical mechanics of a flexible polymer subject to an external force. We offer a tutorial introduction to it using three approaches. First, we use a mesoscopic view, treating a long polymer (in two dimensions) as though it were made of many groups of correlated links or "clinks," allowing us to calculate its average extension as a function of the external force via scaling arguments. We then provide a standard statistical mechanics approach, obtaining the average extension by two different means: the equipartition theorem and the partition function. Finally, we work in a probabilistic framework, taking advantage of the Gaussian properties of the chain in the large-force limit to improve upon the previous calculations of the average extension.
Numerical Analysis of the Elastic Properties of 3D Needled Carbon/Carbon Composites
NASA Astrophysics Data System (ADS)
Tan, Y.; Yan, Y.; Li, X.; Guo, F.
2017-09-01
Based on the observation of microstructures of 3D needled carbon/carbon (C/C) composites, a model of their representative volume element (RVE) considering the true distribution of fibers is established. Using the theories of mesoscopic mechanics and introducing periodic boundary conditions for displacements, their elastic properties, with account of porosity, are determined by finite-element methods. Quasi-static tensile tests were carried out, and the numerical predictions were found to be in good agreement with test results. This means that the RVE model of 3D needled C/C composites can predict their elastic properties efficiently. The effects of needling density, radius of needled fibers, and thickness ratio of a short-cut fiber web and a weftless ply on the elastic constants of the composites are analyzed.
Self-organization and feedback effects in the shock compressed media
NASA Astrophysics Data System (ADS)
Khantuleva, Tatyana
2005-07-01
New theoretical approach to the transport in condensed matter far from equilibrium combines methods of statistical mechanics and cybernetic physics in order to construct closed mathematical model of a system with self-organization and self-regulation. Mesoscopic effects are considered as a result of the structure formation and the feedback effects in an open system under dynamic loading. Nonequilibrium state equations had been involved to incorporate the velocity dispersion. Integrodifferential balance equations describe both wave and dissipative transport properties. Boundary conditions determine the internal scale spectra. The model is completed by the feedback that introduces the structure evolution basing the methods of cybernetic physics. The obtained results open a wide prospective for the control methods in applications to new technologies, intellectual systems and prediction of catastrophic phenomena.
Cell-oriented modeling of angiogenesis.
Guidolin, Diego; Rebuffat, Piera; Albertin, Giovanna
2011-01-01
Due to its significant involvement in various physiological and pathological conditions, angiogenesis (the development of new blood vessels from an existing vasculature) represents an important area of the actual biological research and a field in which mathematical modeling proved particularly useful in supporting the experimental work. In this paper, we focus on a specific modeling strategy, known as "cell-centered" approach. This type of mathematical models work at a "mesoscopic scale," assuming the cell as the natural level of abstraction for computational modeling of development. They treat cells phenomenologically, considering their essential behaviors to study how tissue structure and organization emerge from the collective dynamics of multiple cells. The main contributions of the cell-oriented approach to the study of the angiogenic process will be described. From one side, they have generated "basic science understanding" about the process of capillary assembly during development, growth, and pathology. On the other side, models were also developed supporting "applied biomedical research" for the purpose of identifying new therapeutic targets and clinically relevant approaches for either inhibiting or stimulating angiogenesis.
Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato
NASA Astrophysics Data System (ADS)
Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif
2016-03-01
In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.
Implications of drying temperature and humidity on the drying kinetics of seaweed
NASA Astrophysics Data System (ADS)
Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md
2017-11-01
A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.
Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B
2013-10-30
Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald
2012-01-01
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480
In vivo excitation of nanoparticles using luminescent bacteria
Dragavon, Joe; Blazquez, Samantha; Rekiki, Abdessalem; Samson, Chelsea; Theodorou, Ioanna; Rogers, Kelly L.; Tournebize, Régis; Shorte, Spencer L.
2012-01-01
The lux operon derived from Photorhabdus luminescens incorporated into bacterial genomes, elicits the production of biological chemiluminescence typically centered on 490 nm. The light-producing bacteria are widely used for in vivo bioluminescence imaging. However, in living samples, a common difficulty is the presence of blue-green absorbers such as hemoglobin. Here we report a characterization of fluorescence by unbound excitation from luminescence, a phenomenon that exploits radiating luminescence to excite nearby fluorophores by epifluorescence. We show that photons from bioluminescent bacteria radiate over mesoscopic distances and induce a red-shifted fluorescent emission from appropriate fluorophores in a manner distinct from bioluminescence resonance energy transfer. Our results characterizing fluorescence by unbound excitation from luminescence, both in vitro and in vivo, demonstrate how the resulting blue-to-red wavelength shift is both necessary and sufficient to yield contrast enhancement revealing mesoscopic proximity of luminescent and fluorescent probes in the context of living biological tissues. PMID:22615349
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
Nagasaka, Masanari; Kondoh, Hiroshi; Nakai, Ikuyo; Ohta, Toshiaki
2007-01-28
The dynamics of adsorbate structures during CO oxidation on Pt(111) surfaces and its effects on the reaction were studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. The lateral interaction energies between adsorbed species were calculated by the density functional theory method. Dynamic Monte Carlo simulations were performed for the oxidation reaction over a mesoscopic scale, where the experimentally determined activation energies of elementary paths were altered by the calculated lateral interaction energies. The simulated results reproduced the characteristics of the microscopic and mesoscopic scale adsorbate structures formed during the reaction, and revealed that the complicated reaction kinetics is comprehensively explained by a single reaction path affected by the surrounding adsorbates. We also propose from the simulations that weakly adsorbed CO molecules at domain boundaries promote the island-periphery specific reaction.
p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.
Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin
2014-04-23
In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.
p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells
Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin
2014-01-01
In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics. PMID:24755642
Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon
2017-01-01
Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems. PMID:28569767
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Chen, Hong; Peters, J. A.; Goel, N.; Chung, S. J.; Santos, M. B.; van Roy, W.; Borghs, G.
2006-03-01
Spin-orbit interaction in semiconductor heterostructures can lead to various spin-dependent electronic transport effects without the presence of magnetic materials. Mesoscopic samples were fabricated on InSb/InAlSb and InAs/AlGaSb two-dimensional electron systems, where spin-orbit interaction is strong. In mesoscopic devices, the effects of spin-orbit interaction are not averaged out over the geometry, and lead to observable electronic properties. We experimentally demonstrate spin-split ballistic transport and the creation of fully spin-polarized electron beams using spin-dependent reflection geometries and transverse magnetic focusing geometries. Spin-dependent transport properties in the semiconductor materials are also investigated using antidot lattices. Spin-orbit interaction effects in high-mobility semiconductor devices may be utilized toward the design of novel spintronics implementations. We acknowledge NSF DMR-0094055 (JJH), DMR-0080054, DMR-0209371 (MBS).
NAKASHIMA, Ryuji; KAWAMOTO, Masaomi; MIYAZAKI, Shigeru; ONISHI, Rumiko; FURUSAKI, Koichi; OSAKI, Maho; KIRISAWA, Rikio; SAKUDO, Akikazu; ONODERA, Takashi
2017-01-01
In this study, the virucidal effect of a novel electrically charged disinfectant CAC-717 was investigated. CAC-717 is produced by applying an electric field to mineral water containing calcium hydrogen carbonate to generate mesoscopic crystals. Virus titration analysis showed a >3 log reduction of influenza A viruses after treatment with CAC-717 for 1 min in room temperature, while infectivity was undetectable after 15 min treatment. Adding bovine serum albumin to CAC-717 solution did not affect the disinfectant effect. Although CAC-717 is an alkaline solution (pH=12.39), upon contact with human tissue, its pH becomes almost physiological (pH 8.84) after accelerated electric discharge, which enables its use against influenza viruses. Therefore, CAC-717 may be used as a preventative measure against influenza A viruses and for biosecurity in the environment. PMID:28392537
Spatial confinement governs orientational order in patchy particles
NASA Astrophysics Data System (ADS)
Iwashita, Yasutaka; Kimura, Yasuyuki
2016-06-01
Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli.
Nonmonotonic diffusion in crowded environments
Putzel, Gregory Garbès; Tagliazucchi, Mario; Szleifer, Igal
2015-01-01
We study the diffusive motion of particles among fixed spherical crowders. The diffusers interact with the crowders through a combination of a hard-core repulsion and a short-range attraction. The long-time effective diffusion coefficient of the diffusers is found to depend non-monotonically on the strength of their attraction to the crowders. That is, for a given concentration of crowders, a weak attraction to the crowders enhances diffusion. We show that this counterintuitive fact can be understood in terms of the mesoscopic excess chemical potential landscape experienced by the diffuser. The roughness of this excess chemical potential landscape quantitatively captures the nonmonotonic dependence of the diffusion rate on the strength of crowder-diffuser attraction; thus it is a purely static predictor of dynamic behavior. The mesoscopic view given here provides a unified explanation for enhanced diffusion effects that have been found in various systems of technological and biological interest. PMID:25302920
Thermal force approach to molecular evolution.
Braun, Dieter; Libchaber, Albert
2004-06-01
Recent experiments are discussed where temperature gradients across mesoscopic pores are shown to provide essential mechanisms for autonomous molecular evolution. On the one hand, laminar thermal convection can drive DNA replication as the molecules are continuously cycled between hot and cold regions of a chamber. On the other hand, thermophoresis can accumulate charged biopolymers in similar convection settings. The experiments show that temperature differences analogous to those across porous rocks present a robust nonequilibrium boundary condition to feed the replication and accumulation of evolving molecules. It is speculated that similar nonequilibrium conditions near porous submarine hydrothermal mounds could have triggered the origin of life. In such a scenario, the encapsulation of cells with membranes would be a later development. It is expected that detailed studies of mesoscopic boundary conditions under nonequilibrium conditions will reveal new connecting pieces in the fascinating puzzle of the origins of life.
NASA Astrophysics Data System (ADS)
Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim
2018-05-01
The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).
Eigenvector centrality is a metric of elastomer modulus, heterogeneity, and damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, Jr., Paul Michael; Welch, Cynthia F.
Here, we present an application of eigenvector centrality to encode the connectivity of polymer networks resolved at the micro- and meso-scopic length scales. This method captures the relative importance of different nodes within the network structure and provides a route toward the development of a statistical mechanics model that correlates connectivity with mechanical response. This scheme may be informed by analytical and semi-analytical models for the network structure, or through direct experimental examination. It may be used to predict the reduction in mechanical performance for heterogeneous materials subjected to specific modes of damage. Here, we develop the method and demonstratemore » that it leads to the prediction of established trends in elastomers. We also apply the model to the case of a self-healing polymer network reported in the literature, extracting insight about the fraction of bonds broken and re-formed during strain and recovery.« less
Analytical network-averaging of the tube model: Strain-induced crystallization in natural rubber
NASA Astrophysics Data System (ADS)
Khiêm, Vu Ngoc; Itskov, Mikhail
2018-07-01
In this contribution, we extend the analytical network-averaging concept (Khiêm and Itskov, 2016) to phase transition during strain-induced crystallization of natural rubber. To this end, a physically-based constitutive model describing the nonisothermal strain-induced crystallization is proposed. Accordingly, the spatial arrangement of polymer subnetworks is driven by crystallization nucleation and consequently alters the mesoscopic deformation measures. The crystallization growth is elucidated by diffusion of chain segments into crystal nuclei. The crystallization results in a change of temperature and an evolution of heat source. By this means, not only the crystallization kinetics but also the Gough-Joule effect are thoroughly described. The predictive capability of the constitutive model is illustrated by comparison with experimental data for natural rubbers undergoing strain-induced crystallization. All measurable values such as stress, crystallinity and heat source are utilized for the comparison.
Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions.
Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens
2018-04-14
A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.
Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions
NASA Astrophysics Data System (ADS)
Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens
2018-04-01
A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.
Eigenvector centrality is a metric of elastomer modulus, heterogeneity, and damage
Welch, Jr., Paul Michael; Welch, Cynthia F.
2017-04-27
Here, we present an application of eigenvector centrality to encode the connectivity of polymer networks resolved at the micro- and meso-scopic length scales. This method captures the relative importance of different nodes within the network structure and provides a route toward the development of a statistical mechanics model that correlates connectivity with mechanical response. This scheme may be informed by analytical and semi-analytical models for the network structure, or through direct experimental examination. It may be used to predict the reduction in mechanical performance for heterogeneous materials subjected to specific modes of damage. Here, we develop the method and demonstratemore » that it leads to the prediction of established trends in elastomers. We also apply the model to the case of a self-healing polymer network reported in the literature, extracting insight about the fraction of bonds broken and re-formed during strain and recovery.« less
A simple quantum mechanical treatment of scattering in nanoscale transistors
NASA Astrophysics Data System (ADS)
Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.
2003-05-01
We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.
Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L
2017-08-01
Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Reid, Andrew C. E.; Olson, Gregory B.
2000-03-01
Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.
Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako
2018-03-30
A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.
NASA Astrophysics Data System (ADS)
Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako
2018-03-01
A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.
Modeling and simulation of the debonding process of composite solid propellants
NASA Astrophysics Data System (ADS)
Feng, Tao; Xu, Jin-sheng; Han, Long; Chen, Xiong
2017-07-01
In order to study the damage evolution law of composite solid propellants, the molecular dynamics particle filled algorithm was used to establish the mesoscopic structure model of HTPB(Hydroxyl-terminated polybutadiene) propellants. The cohesive element method was employed for the adhesion interface between AP(Ammonium perchlorate) particle and HTPB matrix and the bilinear cohesive zone model was used to describe the mechanical response of the interface elements. The inversion analysis method based on Hooke-Jeeves optimization algorithm was employed to identify the parameters of cohesive zone model(CZM) of the particle/binder interface. Then, the optimized parameters were applied to the commercial finite element software ABAQUS to simulate the damage evolution process for AP particle and HTPB matrix, including the initiation, development, gathering and macroscopic crack. Finally, the stress-strain simulation curve was compared with the experiment curves. The result shows that the bilinear cohesive zone model can accurately describe the debonding and fracture process between the AP particles and HTPB matrix under the uniaxial tension loading.
Status of dye solar cell technology as a guideline for further research.
Hinsch, Andreas; Veurman, Welmoed; Brandt, Henning; Jensen, Katrine Flarup; Mastroianni, Simone
2014-04-14
Recently, the first commercial dye solar cell (DSC) products based on the mesoscopic principle were successfully launched. Introduction to the market has been accompanied by a strong increase in patent applications in the field during the last four years, which is a good indication of further commercialization activity. Materials and cell concepts have been developed to such extent that easy uptake by industrial manufacturers is possible. The critical phase for broad market acceptance has therefore been reached, which implies focusing on standardization-related research topics. In parallel the number of scientific publications on DSC is growing further (>3500 since 2012), and the range of new or renewed fundamental topics is broadening. A recent example is the introduction of the perovskite mesoscopic cell, for which an efficiency of 14.1% has been certified. Thus, a growing divergence between market introduction and research could be the consequence. Herein, an attempt is made to show that such an unwanted divergence can be prevented, for example, by developing suitable reference-type cell and module concepts as well as manufacturing routes. An in situ cell manufacturing concept that can be applied to mesoscopic-based solar cells in a broader sense is proposed. As a guideline for future module concepts, recent results for large-area, glass-frit-sealed DSC modules from efficiency studies (6.6% active-area efficiency) and outdoor analysis are discussed. Electroluminescence measurements are introduced as a quality tool. Another important point that is addressed is sustainability, which affects both market introduction and the direction of fundamental research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of mesoscopic attenuation in gas-hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.
2007-05-01
Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.
Phase Competition and Magnetotransport Phenomena in Manganite Films and Mesoscopic Structures
NASA Astrophysics Data System (ADS)
Wu, Tom
2006-03-01
The importance of competition between ferromagnetic metallic (FMM) and charge-ordered insulating (COI) phases in the physics of bulk manganites has been established through a wide variety of techniques. One exotic consequence of this phase competition is step-like features in magnetotransport observed in bulk and single-crystals of Pr0.65(CaySr1-y)0.35MnO3 (PCSMO) with 0.7<=y<=0.8. The length-scale of the phase coexistence is ˜1 micron, motivating a study of structures with dimensions similar to this natural length scale where phenomenology distinct from that of bulk counterparts is expected. Toward that end, we have synthesized films and laterally confined mesoscopic bridges of PCSMO and studied their magnetotransport properties. In particular, we observed: (1) Intrinsic ultrasharp magnetization steps below 5 K in both bulk and film samples and their dependence on the extrinsic measurement protocols; (2) Spontaneous jumps of resistance during both the ramping of magnetic field and the relaxation after the field cycle; (3) I-V curves exhibiting negative differential resistance (NDR) in certain ranges of temperature and magnetic field. All of these phenomena can be explained in the context of interconversion between the COI phase and the FMM phase. As expected, this interconversion can be triggered by external magnetic field, as found in the case of the magnetization and resistance steps. Alternatively, in the mesoscopic structures with dimensions similar to the size of the competing FMM and COI domains, a local Joule heating-induced annihilation of conducting filaments causes the anomalous NDR.
Development of Solar Drying Model for Selected Cambodian Fish Species
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381
The secondary drying and the fate of organic solvents for spray dried dispersion drug product.
Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark
2015-05-01
To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.
Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices
NASA Astrophysics Data System (ADS)
Parlak, Nezaket
2015-08-01
In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.
NASA Astrophysics Data System (ADS)
Maulidah, Rifa'atul; Purqon, Acep
2016-08-01
Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passamai, V.; Saravia, L.
1997-05-01
In part one, a simple drying model of red pepper related to water evaporation was developed. In this second part the drying model is applied by means of related experiments. Both laboratory and open air drying experiments were carried out to validate the model and simulation results are presented.
Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.
Fernando, J A K M; Amarasinghe, A D U S
2016-01-01
Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).
SPM investigation of local aging effects in glassy polymers
NASA Astrophysics Data System (ADS)
Crider, Philip
2005-03-01
We investigate the cooperative and heterogeneous nature of glassy dynamics by nanometer-scale probing in a glassy polymer, Polyvinyl-Actetate (PVAc), with a Scanning Force Microscope (SFM). Using ultra-high-vacuum (UHV) Scanning Capacitive Force Microscopy techniques, nanometer-scale capacitive responses are probed. Dielectric relaxation near the glass transition is investigated, and scanning capabilities are utilized to analyze spatial response on a nanometer scale. The results of these studies may yield insight into the understanding of temperature-dependent cooperative length scales, local aging properties, and energy landscape properties of evolving dipole clusters on a mesoscopic scale. Results are used to test the validity and relevance of current models of glassy dynamics.
Theory of the Bloch oscillating transistor
NASA Astrophysics Data System (ADS)
Hassel, J.; Seppä, H.
2005-01-01
The Bloch oscillating transistor (BOT) is a device in which single electron current through a normal tunnel junction enhances Cooper pair current in a mesoscopic Josephson junction, leading to signal amplification. In this article we develop a theory in which the BOT dynamics is described as a two-level system. The theory is used to predict current-voltage characteristics and small-signal response. The transition from stable operation into the hysteretic regime is studied. By identifying the two-level switching noise as the main source of fluctuations, the expressions for equivalent noise sources and the noise temperature are derived. The validity of the model is tested by comparing the results with simulations and experiments.
NASA Astrophysics Data System (ADS)
Komarov, P.; Markina, A.; Ivanov, V.
2016-06-01
The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.
Coarse-grained hydrodynamics from correlation functions
NASA Astrophysics Data System (ADS)
Palmer, Bruce
2018-02-01
This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.
Non-Markovian Model for Transport and Reactions of Particles in Spiny Dendrites
NASA Astrophysics Data System (ADS)
Fedotov, Sergei; Méndez, Vicenç
2008-11-01
Motivated by the experiments [Santamaria , Neuron 52, 635 (2006)NERNET0896-627310.1016/j.neuron.2006.10.025] that indicated the possibility of subdiffusive transport of molecules along dendrites of cerebellar Purkinje cells, we develop a mesoscopic model for transport and chemical reactions of particles in spiny dendrites. The communication between spines and a parent dendrite is described by a non-Markovian random process and, as a result, the overall movement of particles can be subdiffusive. A system of integrodifferential equations is derived for the particles densities in dendrites and spines. This system involves the spine-dendrite interaction term which describes the memory effects and nonlocality in space. We consider the impact of power-law waiting time distributions on the transport of biochemical signals and mechanism of the accumulation of plasticity-inducing signals inside spines.
Majorana fermion surface code for universal quantum computation
Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang
2015-12-10
In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less
The effects of drying on physical properties of bilimbi slices (Averrhoa bilimbi l.)
NASA Astrophysics Data System (ADS)
Shahari, N.; Nursabrina, M.; Suhairah, A. Zai
2015-05-01
Physical appearance analyses of fruits are used to maintain food quality throughout and at the end of processing. However, control variables have to be designed to obtained the desired food quality. In the present study, the effects of pretreatment and drying air temperatures of 50°C, 60°C and 70°C on the drying kinetics of belimbi slices were investigated using a hot-air dryer. In order to investigate and select the appropriate drying model, seven experiment based mathematical drying models were fitted to the experimental data. According to the statistical criteria (R2, SSE and RMSE), a Logarithmic model was found to be the best model to describe the drying behaviour of belimbi slices at 40°C for control; The Page/modified Page model was the best model to describe drying behaviour at 40°C, 60°C pre-treatment and 50°C for the control and the Wang and Singh model fitted well for 50°C pre-treatment and 60°C for the control. Comparison between experiment based mathematical modelling with a single phase mathematical model shows that close agreement was produced. The qualities of belimbi slices in terms of colour, texture and shrinkage with different air temperature and pre-treatment were also investigated. Higher drying temperatures gives less drying time, a lighter colour but greater product shrinkage, whilst pre-treatment can reduce product shrinkage and drying time and can also give good texture properties. The results show that pre-treatment and the drying temperature are important to improve mass and heat transfer as well as the product characteristics such as colour, shrinkage and texture.
Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.
2016-01-01
Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified. PMID:26017575
Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel J; Li, David; Staii, Cristian; Pugno, Nicola M; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J
2015-05-28
Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.
Henry, B I; Langlands, T A M; Wearne, S L
2006-09-01
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps then the long time asymptotic limit has a standard linear reaction kinetics term but a fractional order temporal derivative operating on a nonstandard diffusion term. Results from the above two models are compared with a phenomenological model with standard linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion term. We have also developed further extensions of the CTRW model to include more general reaction dynamics.
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-01
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
Nestor-Bergmann, Alexander; Goddard, Georgina; Woolner, Sarah; Jensen, Oliver E
2018-01-01
Abstract Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving expressions for stress tensors starting from an energetic formulation of the model, we show that the principal axes of stress for an individual cell align with the principal axes of shape, and we determine the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests that the orientation of mechanical and geometric cues for processes such as cell division are likely to be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of Xenopus epithelial cells are highlighted. PMID:28992197
Xiao, Fan; Cui, Hua; Zhong, Xiao
2018-05-01
Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1), TNF α, Interlukin 6 (IL-6), matrix metallopeptidase 9 (MMP-9) and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress.
Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves.
Balasubramanian, S; Sharma, R; Gupta, R K; Patil, R T
2011-12-01
Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R(2)), root mean square error (RMSE) and chi square (χ (2)) to estimate drying curves. The results indicated that, logarithmic model and modified Page model could satisfactorily describe the drying curve of betel leaves for tunnel drying and cabinet dryer, respectively. In terms of colour quality, drying of betel leaves at 60°C in tunnel dryer and at 50°C in cabinet dryer was found optimum whereas, rehydration at 40°C produced the best acceptable product.
A modified dynamical model of drying process of polymer blend solution coated on a flat substrate
NASA Astrophysics Data System (ADS)
Kagami, Hiroyuki
2008-05-01
We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.
Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology
Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy
2016-05-10
A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passamai, V.; Saravia, L.
1997-05-01
Drying of red pepper under solar radiation was investigated, and a simple model related to water evaporation was developed. Drying experiments at constant laboratory conditions were undertaken where solar radiation was simulated by a 1,000 W lamp. In this first part of the work, water evaporation under radiation is studied and laboratory experiments are presented with two objectives: to verify Penman`s model of evaporation under radiation, and to validate the laboratory experiments. Modifying Penman`s model of evaporation by introducing two drying conductances as a function of water content, allows the development of a drying model under solar radiation. In themore » second part of this paper, the model is validated by applying it to red pepper open air solar drying experiments.« less
Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas
2017-05-01
Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer). Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of ultrasound pre-treatment on the drying kinetics of brown seaweed Ascophyllum nodosum.
Kadam, Shekhar U; Tiwari, Brijesh K; O'Donnell, Colm P
2015-03-01
The effect of ultrasound pre-treatment on the drying kinetics of brown seaweed Ascophyllum nodosum under hot-air convective drying was investigated. Pretreatments were carried out at ultrasound intensity levels ranging from 7.00 to 75.78 Wcm(-2) for 10 min using an ultrasonic probe system. It was observed that ultrasound pre-treatments reduced the drying time required. The shortest drying times were obtained from samples pre-treated at 75.78 Wcm(-2). The fit quality of 6 thin-layer drying models was also evaluated using the determination of coefficient (R(2)), root means square error (RMSE), AIC (Akaike information criterion) and BIC (Bayesian information criterion). Drying kinetics were modelled using the Newton, Henderson and Pabis, Page, Wang and Singh, Midilli et al. and Weibull models. The Newton, Wang and Singh, and Midilli et al. models showed the best fit to the experimental drying data. Color of ultrasound pretreated dried seaweed samples were lighter compared to control samples. It was concluded that ultrasound pretreatment can be effectively used to reduce the energy cost and drying time for drying of A. nodosum. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Qing-Guang; Liu, Lin; Huang, Qiang-Min; Nguyen, Thi-Tham; Ma, Yan-Tao; Zhao, Jia-Min
2017-01-01
The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs.
2017-01-01
Objective The aims of this study are to investigate the changes in spontaneous electrical activities (SEAs) and in acetylcholine (ACh), acetylcholine receptor (AChR), and acetylcholine esterase (AChE) levels after dry needling at myofascial trigger spots in model rats. Materials and Methods Forty-eight male Sprague-Dawley rats were divided into four groups. Thirty-six rats were assigned to three model groups, which underwent MTrSs modeling intervention. Twelve rats were assigned to the blank control (BC) group. After model construction, the 36 model rats were randomly subdivided into three groups according to treatment: MTrSs model control (MC) and two dry needling groups. One dry needling group received puncturing at MTrSs (DN-M), whereas the other underwent puncturing at non-MTrSs (DN-nM). Dry needling treatment will last for two weeks, once a week. SEAs and ACh, AChR, and AChE levels were measured after one-week rest of dry needling treatment. Results The amplitudes and frequencies of endplate noise (EPN) and endplate spike (EPS) significantly decreased after dry needling treatment in the DN-M group. Moreover, ACh and AChR levels significantly decreased, whereas AChE significantly increased after dry needling treatment in the DN-M group. Conclusion Dry needling at the exact MTrSs is more effective than dry needling at non-MTrSs. PMID:28592980
Mesoscopic Strains Maps in Woven Composite Laminas During Off-axis Tension
NASA Astrophysics Data System (ADS)
Anzelotti, G.; Nicoletto, G.; Riva, E.
2010-06-01
The mechanics of woven carbon-fiber reinforced plastic (CFRP) composites is influenced by the complex architecture of the reinforcement phase. Computational (i.e. finite element based) approaches have been used increasingly to model not only the global laminate stiffness, but also damage evolution and laminate strength. The modeling combines the identification of the architectural unit cell (UC), the selection of suitable constitutive models of the different phases, the creation of a fine discretization of the UC in finite elements, the application of an incremental solution procedure that solves iteratively for the stresses and strains in the UC, [1]. The experimental validation of computational models is carried out mainly at the macroscopical level, i.e. simulation of the macroscopic stress-strain curve. Damage, however, is a localized, straindependent phenomenon and therefore only accurate strain distribution within the UC (at the mesolevel) can identify critical conditions in terms of damage location, extension and evolution. The validation of computational damage procedures is a key task and full-field optical strain analysis methods appear the ideal instrument. However, only limited examples of direct finte element method (FEM) vs experimental strain correlation are found because of the limited sensitivity and spatial resolution of some techniques and the complexity and applicative difficulty of others. The aim of the present paper is to present the application of the digital image correlation (DIC) technique, [2], to the full-field strain analysis at the mesoscopic level (i.e. within the UC) of a woven CFRP lamina when the direction of loading forms an angle to the material direction. The material under consideration is a woven carbon fiber reinforced epoxy composite. Orthogonal yarns, each made of of several thousand fibers, are woven according the twill-weave architecture is shown in Fig. 1a. Single-ply laminas were manufactured and tested to eliminate the random 3D influence of multiple-ply laminates and to favor computational model validation. Specimens with different loading directions with respect to the material principal directions were prepared and tested in a servo-hydraulic testing machine. Specimen surface preparation consisted in a speckle pattern generation to allow the application of the DIC tecnique. During the tensile experiment, the speckle pattern is recorded (frame rate of 0.1 picture/second) using a CCD camera equipped with a microscopic lens and adjustable light sources. In-house DIC software was used for in-plane displacement and strain determination and mapping. For brevity only the case of loading in the tow yarn direction is considered here. Fig. 1b shows a tipical strain map obtained with the DIC technique at an applied macroscopic strain of 0.9%. The strains are small but the DIC dechnique is sensitive enough and suitable filtering reduce the noise level of the strain maps. Strong local strain gradients are determined and referred to the yarn architecture in Fig. 1c. The DIC measurements were validated by averaging the strain over the field of view and comparing it with the macroscopic strain given by a high-sensitivity MTS extensometer. The mesoscopic srain data obtained with DIC are used to assess and validate parallel material model development by direct FEM vs experimental strain correlation. Fig. 2a shows the FEM model of the unit cell for the twill-weave architecture with a detail of the yarn geometry and finite element discretization. Suitable boundary conditions are applied to the UC model contours before the analysis, [1]. Fig. 2b shows and example of the comparison of the local longitudinal FEM/DIC strain distribution along a transverse line of Fig. 1c. The comparison shows the excellent correlation achieved both in terms of gradients and absolute strain values, [3].
Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir
2016-07-15
Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
REPERTOIRE OF MESOSCOPIC CORTICAL ACTIVITY IS NOT REDUCED DURING ANESTHESIA
HUDETZ, ANTHONY G.; VIZUETE, JEANNETTE A.; PILLAY, SIVESHIGAN; MASHOUR, GEORGE A.
2016-01-01
Consciousness has been linked to the repertoire of brain states at various spatiotemporal scales. Anesthesia is thought to modify consciousness by altering information integration in cortical and thalamocortical circuits. At a mesoscopic scale, neuronal populations in the cortex form synchronized ensembles whose characteristics are presumably state-dependent but this has not been rigorously tested. In this study, spontaneous neuronal activity was recorded with 64-contact microelectrode arrays in primary visual cortex of chronically instrumented, unrestrained rats under stepwise decreasing levels of desflurane anesthesia (8%, 6%, 4%, and 2% inhaled concentrations) and wakefulness (0% concentration). Negative phases of the local field potentials formed compact, spatially contiguous activity patterns (CAPs) that were not due to chance. The number of CAPs was 120% higher in wakefulness and deep anesthesia associated with burst-suppression than at intermediate levels of consciousness. The frequency distribution of CAP sizes followed a power–law with slope −1.5 in relatively deep anesthesia (8–6%) but deviated from that at the lighter levels. Temporal variance and entropy of CAP sizes were lowest in wakefulness (76% and 24% lower at 0% than at 8% desflurane, respectively) but changed little during recovery of consciousness. CAPs categorized by K-means clustering were conserved at all anesthesia levels and wakefulness, although their proportion changed in a state-dependent manner. These observations yield new knowledge about the dynamic landscape of ongoing population activity in sensory cortex at graded levels of anesthesia. The repertoire of population activity and self-organized criticality at the mesoscopic scale do not appear to contribute to anesthetic suppression of consciousness, which may instead depend on large-scale effects, more subtle dynamic properties, or changes outside of primary sensory cortex. PMID:27751957
Repertoire of mesoscopic cortical activity is not reduced during anesthesia.
Hudetz, Anthony G; Vizuete, Jeannette A; Pillay, Siveshigan; Mashour, George A
2016-12-17
Consciousness has been linked to the repertoire of brain states at various spatiotemporal scales. Anesthesia is thought to modify consciousness by altering information integration in cortical and thalamocortical circuits. At a mesoscopic scale, neuronal populations in the cortex form synchronized ensembles whose characteristics are presumably state-dependent but this has not been rigorously tested. In this study, spontaneous neuronal activity was recorded with 64-contact microelectrode arrays in primary visual cortex of chronically instrumented, unrestrained rats under stepwise decreasing levels of desflurane anesthesia (8%, 6%, 4%, and 2% inhaled concentrations) and wakefulness (0% concentration). Negative phases of the local field potentials formed compact, spatially contiguous activity patterns (CAPs) that were not due to chance. The number of CAPs was 120% higher in wakefulness and deep anesthesia associated with burst-suppression than at intermediate levels of consciousness. The frequency distribution of CAP sizes followed a power-law with slope -1.5 in relatively deep anesthesia (8-6%) but deviated from that at the lighter levels. Temporal variance and entropy of CAP sizes were lowest in wakefulness (76% and 24% lower at 0% than at 8% desflurane, respectively) but changed little during recovery of consciousness. CAPs categorized by K-means clustering were conserved at all anesthesia levels and wakefulness, although their proportion changed in a state-dependent manner. These observations yield new knowledge about the dynamic landscape of ongoing population activity in sensory cortex at graded levels of anesthesia. The repertoire of population activity and self-organized criticality at the mesoscopic scale do not appear to contribute to anesthetic suppression of consciousness, which may instead depend on large-scale effects, more subtle dynamic properties, or changes outside of primary sensory cortex. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors
NASA Astrophysics Data System (ADS)
Burkard, Guido
2006-03-01
Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=<δI δI>φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).
A Crystal Plasticity Model of Fatigue of Dissimilar Magnesium Alloy Bi-Crystals
NASA Astrophysics Data System (ADS)
Knight, Simon
A crystal plasticity finite element (CPFE) model was applied to the fatigue deformation of dissimilar Mg alloy bi-crystals. The mesoscopic stress-strain and microscopic slip and twinning behaviour of the model were first validated with experimental tension and compression data of pure Mg single crystals. High-cycle fatigue (HCF) simulations up to 1000 cycles were then used to systematically examine the effect of different textures on the cyclic deformation behavior of Mg AZ31-AZ80 bi-crystals at room-temperature. Fatigue behaviour was characterized in terms of the mesoscopic average stress-strain response and the evolution of the microscopic deformation (slip/twin activity). The model captures load asymmetry, cyclic hardening/softening and ratcheting. However, the model did not capture stress concentrations at the grain boundary (GB) for the grain shapes considered. Either basal slip or tensile twinning was activated for any given orientation. When the soft AZ31 grain is oriented for basal slip almost all the shear strain is contained in that grain and has approximately ten times more accumulated shear strain than the other orientations. The results reveal there is a strong effect from orientation combinations on the cyclic deformation wherein a "hard" orientation shields a "soft" orientation from strain. When the AZ80 grain is oriented for basal slip and the AZ31 grain is oriented for tensile twinning the bi-crystal is soft, but only in one direction since twinning is a polar mechanism. Approximately half as much accumulated shear strain occurs when both grains are oriented for twinning. The slip and twinning systems quickly harden in AZ31 in the first few hundred cycles and the shear strain amplitudes quickly devolve from values between 10-6 - 10-4 to around 10-7; values which would be difficult to resolve experimentally. The results were then extended to the possible effects on the fatigue behaviour of an AZ31-AZ80 dissimilar weld idealized as an AZ31-AZ80 bi-crystal. It is predicted that the worst fatigue behaviour would occur when one grain is oriented for basal slip: AZ31 grain, results in strain localization; AZ80 grain, results in an increase in twin boundaries and irreversible deformation in an AZ31 grain.
Prediction of porosity of food materials during drying: Current challenges and directions.
Joardder, Mohammad U H; Kumar, C; Karim, M A
2017-07-18
Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.
Canadian Field Soils IV: Modeling Thermal Conductivity at Dryness and Saturation
NASA Astrophysics Data System (ADS)
Tarnawski, V. R.; McCombie, M. L.; Leong, W. H.; Coppa, P.; Corasaniti, S.; Bovesecchi, G.
2018-03-01
The thermal conductivity data of 40 Canadian soils at dryness (λ _{dry}) and at full saturation (λ _{sat}) were used to verify 13 predictive models, i.e., four mechanistic, four semi-empirical and five empirical equations. The performance of each model, for λ _{dry} and λ _{sat}, was evaluated using a standard deviation ( SD) formula. Among the mechanistic models applied to dry soils, the closest λ _{dry} estimates were obtained by MaxRTCM (it{SD} = ± 0.018 Wm^{-1}\\cdot K^{-1}), followed by de Vries and a series-parallel model (S-{\\vert }{\\vert }). Among the semi-empirical equations (deVries-ave, Advanced Geometric Mean Model (A-GMM), Chaudhary and Bhandari (C-B) and Chen's equation), the closest λ _{dry} estimates were obtained by the C-B model (± 0.022 Wm^{-1}\\cdot K^{-1}). Among the empirical equations, the top λ _{dry} estimates were given by CDry-40 (± 0.021 Wm^{-1}\\cdot K^{-1} and ± 0.018 Wm^{-1}\\cdot K^{-1} for18-coarse and 22-fine soils, respectively). In addition, λ _{dry} and λ _{sat} models were applied to the λ _{sat} database of 21 other soils. From all the models tested, only the maxRTCM and the CDry-40 models provided the closest λ _{dry} estimates for the 40 Canadian soils as well as the 21 soils. The best λ _{sat} estimates for the 40-Canadian soils and the 21 soils were given by the A-GMM and the S-{\\vert }{\\vert } model.
NASA Astrophysics Data System (ADS)
Tiwari, Sumit; Tiwari, G. N.
2018-06-01
In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes ( Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.
Multiscale Modeling of Diffusion in a Crowded Environment.
Meinecke, Lina
2017-11-01
We present a multiscale approach to model diffusion in a crowded environment and its effect on the reaction rates. Diffusion in biological systems is often modeled by a discrete space jump process in order to capture the inherent noise of biological systems, which becomes important in the low copy number regime. To model diffusion in the crowded cell environment efficiently, we compute the jump rates in this mesoscopic model from local first exit times, which account for the microscopic positions of the crowding molecules, while the diffusing molecules jump on a coarser Cartesian grid. We then extract a macroscopic description from the resulting jump rates, where the excluded volume effect is modeled by a diffusion equation with space-dependent diffusion coefficient. The crowding molecules can be of arbitrary shape and size, and numerical experiments demonstrate that those factors together with the size of the diffusing molecule play a crucial role on the magnitude of the decrease in diffusive motion. When correcting the reaction rates for the altered diffusion we can show that molecular crowding either enhances or inhibits chemical reactions depending on local fluctuations of the obstacle density.
Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer
NASA Astrophysics Data System (ADS)
Suherman, Trisnaningtyas, Rona
2015-12-01
This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.
NASA Astrophysics Data System (ADS)
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea ofmore » this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.« less
High-throughput automated home-cage mesoscopic functional imaging of mouse cortex
Murphy, Timothy H.; Boyd, Jamie D.; Bolaños, Federico; Vanni, Matthieu P.; Silasi, Gergely; Haupt, Dirk; LeDue, Jeff M.
2016-01-01
Mouse head-fixed behaviour coupled with functional imaging has become a powerful technique in rodent systems neuroscience. However, training mice can be time consuming and is potentially stressful for animals. Here we report a fully automated, open source, self-initiated head-fixation system for mesoscopic functional imaging in mice. The system supports five mice at a time and requires minimal investigator intervention. Using genetically encoded calcium indicator transgenic mice, we longitudinally monitor cortical functional connectivity up to 24 h per day in >7,000 self-initiated and unsupervised imaging sessions up to 90 days. The procedure provides robust assessment of functional cortical maps on the basis of both spontaneous activity and brief sensory stimuli such as light flashes. The approach is scalable to a number of remotely controlled cages that can be assessed within the controlled conditions of dedicated animal facilities. We anticipate that home-cage brain imaging will permit flexible and chronic assessment of mesoscale cortical function. PMID:27291514
Kang, Jin Soo; Choi, Hyelim; Kim, Jin; Park, Hyeji; Kim, Jae-Yup; Choi, Jung-Woo; Yu, Seung-Ho; Lee, Kyung Jae; Kang, Yun Sik; Park, Sun Ha; Cho, Yong-Hun; Yum, Jun-Ho; Dunand, David C; Choe, Heeman; Sung, Yung-Eun
2017-09-01
Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm -2 is achieved in the conventional N719 dye-I 3 - /I - redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons
Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew CN; Swindale, Nicholas V; Murphy, Timothy H
2017-01-01
Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps. DOI: http://dx.doi.org/10.7554/eLife.19976.001 PMID:28160463
Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators
Wu, Jiagui; Huang, Shu-Wei; Huang, Yongjun; Zhou, Hao; Yang, Jinghui; Liu, Jia-Ming; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Duan, Shukai; Wei Wong, Chee
2017-01-01
Chaos has revolutionized the field of nonlinear science and stimulated foundational studies from neural networks, extreme event statistics, to physics of electron transport. Recent studies in cavity optomechanics provide a new platform to uncover quintessential architectures of chaos generation and the underlying physics. Here, we report the generation of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics, bifurcations and stable regimes, along with distinct transitional routes into chaos. This provides a CMOS-compatible and scalable architecture for understanding complex dynamics on the mesoscopic scale. PMID:28598426
Reprint of : Scattering theory approach to bosonization of non-equilibrium mesoscopic systems
NASA Astrophysics Data System (ADS)
Sukhorukov, Eugene V.
2016-08-01
Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.
Scattering theory approach to bosonization of non-equilibrium mesoscopic systems
NASA Astrophysics Data System (ADS)
Sukhorukov, Eugene V.
2016-03-01
Between many prominent contributions of Markus Büttiker to mesoscopic physics, the scattering theory approach to the electron transport and noise stands out for its elegance, simplicity, universality, and popularity between theorists working in this field. It offers an efficient way to theoretically investigate open electron systems far from equilibrium. However, this method is limited to situations where interactions between electrons can be ignored, or considered perturbatively. Fortunately, this is the case in a broad class of metallic systems, which are commonly described by the Fermi liquid theory. Yet, there exist another broad class of electron systems of reduced dimensionality, the so-called Tomonaga-Luttinger liquids, where interactions are effectively strong and cannot be neglected even at low energies. Nevertheless, strong interactions can be accounted exactly using the bosonization technique, which utilizes the free-bosonic character of collective excitations in these systems. In the present work, we use this fact in order to develop the scattering theory approach to the bosonization of open quasi-one dimensional electron systems far from equilibrium.
NASA Astrophysics Data System (ADS)
Xu, Yun-qiang; Zhou, Guo-wei; Wu, Cui-cui; Li, Tian-duo; Song, Hong-bin
2011-05-01
Ordered mesoporous SBA-15 was prepared by hydrothermal process and was functionalized with(3-aminopropyl) triethoxysilane (APTES) by post-synthesis-grafting method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS), small-angle X-ray powder diffraction (SAXRD), N 2 adsorption-desorption and Fourier transform infrared spectroscopy (FT-IR). The results indicated that SBA-15 had a 2-dimensional hexagonal p6 mm mesoscopic structure and the mesoscopic structure was remained after the functionalization procedure. The activities of porcine pancreatic lipase (PPL) immobilized in SBA-15 by physical adsorption and in APTES functionalized SBA-15 by chemical adsorption were studied by hydrolysis of triacetin. Chemically adsorbed PPL showed higher loading amount and catalytic activity comparing with physically adsorbed PPL. The stability of immobilized PPL against thermal and pH of reaction medium was significantly improved. Recycling experiments showed that chemically adsorbed PPL exhibited better reusability than physically adsorbed PPL.
An Ultra-Wideband Cross-Correlation Radiometer for Mesoscopic Experiments
NASA Astrophysics Data System (ADS)
Toonen, Ryan; Haselby, Cyrus; Qin, Hua; Eriksson, Mark; Blick, Robert
2007-03-01
We have designed, built and tested a cross-correlation radiometer for detecting statistical order in the quantum fluctuations of mesoscopic experiments at sub-Kelvin temperatures. Our system utilizes a fully analog front-end--operating over the X- and Ku-bands (8 to 18 GHz)--for computing the cross-correlation function. Digital signal processing techniques are used to provide robustness against instrumentation drifts and offsets. The economized version of our instrument can measure, with sufficient correlation efficiency, noise signals having power levels as low as 10 fW. We show that, if desired, we can improve this performance by including cryogenic preamplifiers which boost the signal-to-noise ratio near the signal source. By adding a few extra components, we can measure both the real and imaginary parts of the cross-correlation function--improving the overall signal-to-noise ratio by a factor of sqrt[2]. We demonstrate the utility of our cross-correlator with noise power measurements from a quantum point contact.
Power output and carrier dynamics studies of perovskite solar cells under working conditions.
Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng
2017-08-02
Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.
NASA Astrophysics Data System (ADS)
Rong, Yaoguang; Han, Hongwei
2013-01-01
A monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene-modified mesoscopic carbon-counter electrode is developed. A TiO2-working electrode layer, ZrO2 spacer layer, and carbon counter electrode layer were constructed on a single conducting glass substrate by screen printing. The quasi-solid-state polymer gel electrolyte employed a polymer composite as the gelator, and effectively infiltrated the porous layers. Fabricated with normal carbon-counter electrode (NC-CE) containing graphite and carbon black, the DSSC had a power conversion efficiency (PCE) of 5.09% with the fill factor of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE was modified with graphene sheets, the PCE and fill factor were enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.
Dissecting anode swelling in commercial lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Ningxin; Tang, Huaqiong
2012-11-01
An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.
NASA Astrophysics Data System (ADS)
Carbone, F.; Bruno, A. G.; Naccarato, A.; De Simone, F.; Gencarelli, C. N.; Sprovieri, F.; Hedgecock, I. M.; Landis, M. S.; Skov, H.; Pfaffhuber, K. A.; Read, K. A.; Martin, L.; Angot, H.; Dommergue, A.; Magand, O.; Pirrone, N.
2018-01-01
The probability density function (PDF) of the time intervals between subsequent extreme events in atmospheric Hg0 concentration data series from different latitudes has been investigated. The Hg0 dynamic possesses a long-term memory autocorrelation function. Above a fixed threshold Q in the data, the PDFs of the interoccurrence time of the Hg0 data are well described by a Tsallis q-exponential function. This PDF behavior has been explained in the framework of superstatistics, where the competition between multiple mesoscopic processes affects the macroscopic dynamics. An extensive parameter μ, encompassing all possible fluctuations related to mesoscopic phenomena, has been identified. It follows a χ2 distribution, indicative of the superstatistical nature of the overall process. Shuffling the data series destroys the long-term memory, the distributions become independent of Q, and the PDFs collapse on to the same exponential distribution. The possible central role of atmospheric turbulence on extreme events in the Hg0 data is highlighted.
Ordered molecular arrays as templates: A new approach to synthesis of mesoporous materials
NASA Astrophysics Data System (ADS)
Behrens, P.; Stucky, G.
There has been a growing interest in the extension of the microporous molecular sieve synthesis and applications to mesoscopic dimensions. Typical areas for the application of mesoscopic zeolite-type structures are in separation (e.g., protein separation and selective adsorption of large organic molecules from waste waters) and catalysis (e.g., processing of tar sand and of the high distillates of crude oils to valuable low-boiling products). Another is in the supramolecular assembly of molecular array and polymers for electronic and optical applications. In a new concept in the synthesis of porous material the templating agent is no longer a single, solvated, organic molecule or metal ion, but rather a self-assembled molecular array. This template leads to mesoporous materials with adjustable pore sizes between 16 and greater than 100 Angstrom, covering well the mesophorous range of greatest interest. The periodic arrangement of pores is very regular, and the pore size distribution measured by absorption is nearly as sharp as that of conventional zeolites.
NASA Astrophysics Data System (ADS)
Wang, Minhuan; Feng, Yulin; Bian, Jiming; Liu, Hongzhu; Shi, Yantao
2018-01-01
The mesoscopic perovskite solar cells (M-PSCs) were synthesized with MAPbI3 perovskite layers as light harvesters, which were grown with one-step and two-step solution process, respectively. A comparative study was performed through the quantitative correlation of resulting device performance and the crystalline quality of perovskite layers. Comparing with the one-step counterpart, a pronounced improvement in the steady-state power conversion efficiencies (PCEs) by 56.86% was achieved with two-step process, which was mainly resulted from the significant enhancement in fill factor (FF) from 48% to 77% without sacrificing the open circuit voltage (Voc) and short circuit current (Jsc). The enhanced FF was attributed to the reduced non-radiative recombination channels due to the better crystalline quality and larger grain size with the two-step processed perovskite layer. Moreover, the superiority of two-step over one-step process was demonstrated with rather good reproducibility.
'Metal'-like transport in high-resistance, high aspect ratio two-dimensional electron gases.
Backes, Dirk; Hall, Richard; Pepper, Michael; Beere, Harvey; Ritchie, David; Narayan, Vijay
2016-01-13
We investigate the striking absence of strong localisation observed in mesoscopic two-dimensional electron gases (2DEGs) (Baenninger et al 2008 Phys. Rev. Lett. 100 016805, Backes et al 2015 arXiv:1505.03444) even when their resistivity [Formula: see text]. In particular, we try to understand whether this phenomenon originates in quantum many-body effects, or simply percolative transport through a network of electron puddles. To test the latter scenario, we measure the low temperature (low-T) transport properties of long and narrow 2DEG devices in which percolation effects should be heavily suppressed in favour of Coulomb blockade. Strikingly we find no indication of Coulomb blockade and that the high-ρ, low-T transport is exactly similar to that previously reported in mesoscopic 2DEGs with different geometries. Remarkably, we are able to induce a 'metal'-insulator transition (MIT) by applying a perpendicular magnetic field B. We present a picture within which these observations fit into the more conventional framework of the 2D MIT.
Fluid dynamics simulation for design on sludge drying equipment
NASA Astrophysics Data System (ADS)
Li, Shuiping; Liang, Wang; Kai, Zhang
2017-10-01
Sludge drying equipment is a key component in the sludge drying disposal, the structure of drying equipment directly affects the drying disposal of the sludge, so it is necessary to analyse the performance of the drying equipment with different structure. Fluent software can be very convenient to get the distribution of the flow field and temperature field inside the drying equipment which reflects the performance of the structure. In this paper, the outlet position of the sludge and the shape of the sludge inlet are designed. The geometrical model of the drying equipment is established by using pre-processing software Gambit, and the meshing of the model is carried out. The Eulerian model is used to simulate the flow of each phase and the interaction between them, and the realizable turbulence model is used to simulate the turbulence of each phase. Finally, the simulation results of the scheme are compared and the optimal structure scheme is obtained, the operational requirement is proposed. The CFD theory provides a reliable basis for the drying equipment research and reduces the time and costs of the research.
Shrinkage stress in concrete under dry-wet cycles: an example with concrete column
NASA Astrophysics Data System (ADS)
Gao, Yuan; Zhang, Jun; Luosun, Yiming
2014-02-01
This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.
Simulation of stochastic diffusion via first exit times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lötstedt, Per, E-mail: perl@it.uu.se; Meinecke, Lina, E-mail: lina.meinecke@it.uu.se
2015-11-01
In molecular biology it is of interest to simulate diffusion stochastically. In the mesoscopic model we partition a biological cell into unstructured subvolumes. In each subvolume the number of molecules is recorded at each time step and molecules can jump between neighboring subvolumes to model diffusion. The jump rates can be computed by discretizing the diffusion equation on that unstructured mesh. If the mesh is of poor quality, due to a complicated cell geometry, standard discretization methods can generate negative jump coefficients, which no longer allows the interpretation as the probability to jump between the subvolumes. We propose a methodmore » based on the mean first exit time of a molecule from a subvolume, which guarantees positive jump coefficients. Two approaches to exit times, a global and a local one, are presented and tested in simulations on meshes of different quality in two and three dimensions.« less
Simulation of stochastic diffusion via first exit times
Lötstedt, Per; Meinecke, Lina
2015-01-01
In molecular biology it is of interest to simulate diffusion stochastically. In the mesoscopic model we partition a biological cell into unstructured subvolumes. In each subvolume the number of molecules is recorded at each time step and molecules can jump between neighboring subvolumes to model diffusion. The jump rates can be computed by discretizing the diffusion equation on that unstructured mesh. If the mesh is of poor quality, due to a complicated cell geometry, standard discretization methods can generate negative jump coefficients, which no longer allows the interpretation as the probability to jump between the subvolumes. We propose a method based on the mean first exit time of a molecule from a subvolume, which guarantees positive jump coefficients. Two approaches to exit times, a global and a local one, are presented and tested in simulations on meshes of different quality in two and three dimensions. PMID:26600600
Pattern Transitions in Bacterial Oscillating System under Nanofluidic Confinement
NASA Astrophysics Data System (ADS)
Shen, Jie-Pan; Chou, Chia-Fu
2011-03-01
Successful binary fission in E. coli relies on remarkable oscillatory behavior of the MinCDE protein system to determine the exact division site. The most favorable models to explain this fascinating spatiotemporal regulation on dynamic MinDE pattern formation in cells are based on reaction-diffusion scenario. Although not fully understood, geometric factors caused by bacterial morphology play a crucial role in MinDE dynamics. In the present study, bacteria were cultured, confined and reshaped in various micro/nanofluidic devices, to mimic either curvature changes of cell peripherals. Fluorescence imaging was utilized to detail the mode transitions in multiple MinDE patterns. The understanding of the physics in multiple pattern formations is further complemented via in silico modeling. The study synergizes the join merits of in vivo, in vitro and in silico approaches, to grasp the insight of stochastic dynamics inherited from the noisy mesoscopic biophysics. We acknowledge support from the Foresight Project, Academia Sinica.
Physics of Electronic Materials
NASA Astrophysics Data System (ADS)
Rammer, Jørgen
2017-03-01
1. Quantum mechanics; 2. Quantum tunneling; 3. Standard metal model; 4. Standard conductor model; 5. Electric circuit theory; 6. Quantum wells; 7. Particle in a periodic potential; 8. Bloch currents; 9. Crystalline solids; 10. Semiconductor doping; 11. Transistors; 12. Heterostructures; 13. Mesoscopic physics; 14. Arithmetic, logic and machines; Appendix A. Principles of quantum mechanics; Appendix B. Dirac's delta function; Appendix C. Fourier analysis; Appendix D. Classical mechanics; Appendix E. Wave function properties; Appendix F. Transfer matrix properties; Appendix G. Momentum; Appendix H. Confined particles; Appendix I. Spin and quantum statistics; Appendix J. Statistical mechanics; Appendix K. The Fermi-Dirac distribution; Appendix L. Thermal current fluctuations; Appendix M. Gaussian wave packets; Appendix N. Wave packet dynamics; Appendix O. Screening by symmetry method; Appendix P. Commutation and common eigenfunctions; Appendix Q. Interband coupling; Appendix R. Common crystal structures; Appendix S. Effective mass approximation; Appendix T. Integral doubling formula; Bibliography; Index.
Overbias light emission due to higher-order quantum noise in a tunnel junction.
Xu, F; Holmqvist, C; Belzig, W
2014-08-08
Understanding tunneling from an atomically sharp tip to a metallic surface requires us to account for interactions on a nanoscopic scale. Inelastic tunneling of electrons generates emission of photons, whose energies intuitively should be limited by the applied bias voltage. However, experiments [G. Schull et al., Phys. Rev. Lett. 102, 057401 (2009) indicate that more complex processes involving the interaction of electrons with plasmon polaritons lead to photon emission characterized by overbias energies. We propose a model of this observation in analogy to the dynamical Coulomb blockade, originally developed for treating the electronic environment in mesoscopic circuits. We explain the experimental finding quantitatively by the correlated tunneling of two electrons interacting with a LRC circuit modeling the local plasmon-polariton mode. To explain the overbias emission, the non-Gaussian statistics of the tunneling dynamics of the electrons is essential.
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2017-03-01
The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.
How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, P. H.
2016-11-01
This Rapid Communication sets forth the mechanism by which mesoscale staircase structures condense to form macroscopic states of enhanced confinement. Density, vorticity, and turbulent potential enstrophy are the variables for this model. Formation of the staircase structures is due to inhomogeneous mixing of (generalized) potential vorticity (PV). Such mixing results in the local sharpening of density and vorticity gradients. When PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps" and "steps," which are, respectively, regions of local gradient steepening and flattening. The jumps then merge and migrate in radius, leading to the emergence of a new macroscale profile structure, so indicating that profile self-organization is a global process, which may be described by a local, but nonlinear model. This work predicts and demonstrates how mesoscale condensation of staircases leads to global states of enhanced confinement.
Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu
2013-01-01
The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.
Drying of Durum Wheat Pasta and Enriched Pasta: A Review of Modeling Approaches.
Mercier, Samuel; Mondor, Martin; Moresoli, Christine; Villeneuve, Sébastien; Marcos, Bernard
2016-05-18
Models on drying of durum wheat pasta and enriched pasta were reviewed to identify avenues for improvement according to consumer needs, product formulation and processing conditions. This review first summarized the fundamental phenomena of pasta drying, mass transfer, heat transfer, momentum, chemical changes, shrinkage and crack formation. The basic equations of the current models were then presented, along with methods for the estimation of pasta transport and thermodynamic properties. The experimental validation of these models was also presented and highlighted the need for further model validation for drying at high temperatures (>-100°C) and for more accurate estimation of the pasta diffusion and mass transfer coefficients. This review indicates the need for the development of mechanistic models to improve our understanding of the mass and heat transfer mechanisms involved in pasta drying, and to consider the local changes in pasta transport properties and relaxation time for more accurate description of the moisture transport near glass transition conditions. The ability of current models to describe dried pasta quality according to the consumers expectations or to predict the impact of incorporating ingredients high in nutritional value on the drying of these enriched pasta was also discussed.
New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
Chayjan, Reza Amiri; Alaei, Behnam
2016-01-01
Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired results for colour change.
NASA Astrophysics Data System (ADS)
Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-04-01
This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.
Contact drying: a review of experimental and mechanistic modeling approaches.
Sahni, Ekneet Kaur; Chaudhuri, Bodhisattwa
2012-09-15
Drying is one of the most complex unit operations with simultaneous heat and mass transfer. The contact drying process is also not well understood as several physical phenomena occur concurrently. This paper reviews current experimental and modeling approaches employed towards a better understanding of the contact drying operation. Additionally, an overview of some fundamental aspects relating to contact drying is provided. A brief discussion of some model extensions such as incorporation of noncontact forces, interstitial fluids and attrition rate is also presented. Copyright © 2012 Elsevier B.V. All rights reserved.
Two-Scale Simulation of Drop-Induced Failure of Polysilicon MEMS Sensors
Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Martini, Roberto; Simoni, Barbara
2011-01-01
In this paper, an industrially-oriented two-scale approach is provided to model the drop-induced brittle failure of polysilicon MEMS sensors. The two length-scales here investigated are the package (macroscopic) and the sensor (mesoscopic) ones. Issues related to the polysilicon morphology at the micro-scale are disregarded; an upscaled homogenized constitutive law, able to describe the brittle cracking of silicon, is instead adopted at the meso-scale. The two-scale approach is validated against full three-scale Monte-Carlo simulations, which allow for stochastic effects linked to the microstructural properties of polysilicon. Focusing on inertial MEMS sensors exposed to drops, it is shown that the offered approach matches well the experimentally observed failure mechanisms. PMID:22163885
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Diffusional correlations among multiple active sites in a single enzyme.
Echeverria, Carlos; Kapral, Raymond
2014-04-07
Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.
Wide-range simulation of elastoplastic wave fronts and failure of solids under high-speed loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saveleva, Natalia, E-mail: saveleva@icmm.ru; Bayandin, Yuriy, E-mail: buv@icmm.ru; Naimark, Oleg, E-mail: naimark@icmm.ru
2015-10-27
The aim of this paper is numerical study of deformation processes and failure of vanadium under shock-wave loading. According developed statistical theory of solid with mesoscopic defects the constitutive equations were proposed in terms of two structural variables characterizing behavior of defects ensembles: defect density tensor and structural scaling parameter. On the basis of wide-range constitutive equations the mathematical model of deformation behavior and failure of vanadium was developed taking into account the bond relaxation mechanisms, multistage of fracture and nonlinearity kinetic of defects. Results of numerical simulation allow the description of the major effects of shock wave propagation (elasticmore » precursor decay, grow of spall strength under grow strain rate)« less
Lattice Boltzmann method for rain-induced overland flow
NASA Astrophysics Data System (ADS)
Ding, Yu; Liu, Haifei; Peng, Yong; Xing, Liming
2018-07-01
Complex rainfall situations can generate overland flow with complex hydrodynamic characteristics, affecting the surface configuration (i.e. sheet erosion) and environment to varying degrees. Reliable numerical simulations can provide a scientific method for the optimization of environmental management. A mesoscopic numerical method, the lattice Boltzmann method, was employed to simulate overland flows. To deal with complex rainfall, two schemes were introduced to improve the lattice Boltzmann equation and the local equilibrium function, respectively. Four typical cases with differences in rainfall, bed roughness, and slopes were selected to test the accuracy and applicability of the proposed schemes. It was found that the simulated results were in good agreement with the experimental data, analytical values, and the results produced by other models.
Invited review liquid crystal models of biological materials and silk spinning.
Rey, Alejandro D; Herrera-Valencia, Edtson E
2012-06-01
A review of thermodynamic, materials science, and rheological liquid crystal models is presented and applied to a wide range of biological liquid crystals, including helicoidal plywoods, biopolymer solutions, and in vivo liquid crystals. The distinguishing characteristics of liquid crystals (self-assembly, packing, defects, functionalities, processability) are discussed in relation to biological materials and the strong correspondence between different synthetic and biological materials is established. Biological polymer processing based on liquid crystalline precursors includes viscoelastic flow to form and shape fibers. Viscoelastic models for nematic and chiral nematics are reviewed and discussed in terms of key parameters that facilitate understanding and quantitative information from optical textures and rheometers. It is shown that viscoelastic modeling the silk spinning process using liquid crystal theories sheds light on textural transitions in the duct of spiders and silk worms as well as on tactoidal drops and interfacial structures. The range and consistency of the predictions demonstrates that the use of mesoscopic liquid crystal models is another tool to develop the science and biomimetic applications of mesogenic biological soft matter. Copyright © 2011 Wiley Periodicals, Inc.
Formation of a disordered solid via a shock-induced transition in a dense particle suspension
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Frost, David L.; Higgins, Andrew J.; Ouellet, Simon
2012-02-01
Shock wave propagation in multiphase media is typically dominated by the relative compressibility of the two components of the mixture. The difference in the compressibility of the components results in a shock-induced variation in the effective volume fraction of the suspension tending toward the random-close-packing limit for the system, and a disordered solid can take form within the suspension. The present study uses a Hugoniot-based model to demonstrate this variation in the volume fraction of the solid phase as well as a simple hard-sphere model to investigate the formation of disordered structures within uniaxially compressed model suspensions. Both models are discussed in terms of available experimental plate impact data in dense suspensions. Through coordination number statistics of the mesoscopic hard-sphere model, comparisons are made with the trends of the experimental pressure-volume fraction relationship to illustrate the role of these disordered structures in the bulk properties of the suspensions. A criterion for the dynamic stiffening of suspensions under high-rate dynamic loading is suggested as an analog to quasi-static jamming based on the results of the simulations.
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
We have developed a coupled land-surface and dry deposition model for realistic treatment of surface fluxes of heat, moisture, and chemical dry deposition within a comprehensive air quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...
The thin-layer drying characteristics of sewage sludge by the appropriate foaming pretreatment.
Wang, Hui-Ling; Yang, Zhao-Hui; Huang, Jing; Wang, Li-Ke; Gou, Cheng-Liu; Yan, Jing-Wu; Yang, Jian
2014-01-01
As dewatered sludge is highly viscous and sticky, the combination of foaming pretreatment and drying process seems to be an alternative method to improve the drying performance of dewatered sludge. In this study, CaO addition followed by mechanical whipping was employed for foaming the dewatered sludge. It was found that the foams were stable and the diameters of bubbles mainly ranged from 0.1 to 0.3 mm. The drying experiments were carried out in a drying oven in the convective mode. The results indicated that foamed sludge at 0.70 g/cm(3) had the best drying performance at each level of temperature, which could save 35-45% drying time to reach 20% moisture content compared with the non-foamed sludge. The drying rate of foamed sludge at 0.70 g/cm(3) was improved with the increasing of drying temperature. The impact of sample thickness on drying rate was not obvious when the sample thickness increased from 2 to 8 mm. Different mathematical models were used for the simulation of foamed sludge drying curves. The Wang and Singh model represented the drying characteristics better than other models with coefficient of determination values over 0.99.
Physics-based statistical learning approach to mesoscopic model selection.
Taverniers, Søren; Haut, Terry S; Barros, Kipton; Alexander, Francis J; Lookman, Turab
2015-11-01
In materials science and many other research areas, models are frequently inferred without considering their generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predictive coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics (GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD "training" data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested on GD "test" data independent of the data used to train the model on. Using two different error metrics, we perform a detailed analysis of the error between magnetization time trajectories simulated using the learned sGLE coarse-grained description and those obtained using the GD model. We show that both for equilibrium and out-of-equilibrium GD training trajectories, the standard phenomenological description using a quartic free energy does not always yield the most predictive coarse-grained model. Moreover, increasing the amount of training data can shift the optimal model complexity to higher values. Our results are promising in that they pave the way for the use of statistical learning as a general tool for materials modeling and discovery.
Stick-slip friction and ageing in Velcro®
NASA Astrophysics Data System (ADS)
Mariani, Lisa; Angiolillo, Paul
2014-03-01
The mesoscopic hook and loop system of Velcro® provides a model of stick-slip friction that exhibits behavior reminiscent of results seen in nanoscale model systems. The friction is linearly dependent on contact area and independent of driving velocity. Morever, there is a power law dependence of the friction on loading, with exponent between 1/4 and 1/3. Furthermore, the evolution of stick-slip to more smooth sliding, as controlled by contact area, is also noted. These transition predictions follow power law profiles, as well, with respect to increasing contact area. Thus, the hook-and-loop system shows to be a good mesoscale model system of stick-slip friction and provides a link between nanoscale and macroscale friction. Through an investigation into the ageing of the hooks in the system, the data suggests that the hooks age during the shearing regime and take a characteristic time to return to initial attachment strength. Additionally, there does not appear to be a significant affect of ageing on the kinetic friction experienced by the system.
NASA Astrophysics Data System (ADS)
Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George
2015-11-01
Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.
Numerical modeling of interface displacement in heterogeneously wetting porous media
NASA Astrophysics Data System (ADS)
Hiller, T.; Brinkmann, M.; Herminghaus, S.
2013-12-01
We use the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the standard SRD method, we present an approach on implementing complex wettability on heterogeneous surfaces. We use 3D SRD to simulate immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. The simulations are designed to resemble experimental measurements of capillary pressure saturation. We show that the correlation length of the wetting patterns influences the temporal evolution of the interface and thus percolation, residual saturation and work dissipated during the fluid displacement. Our numerical results are in qualitatively good agreement with the experimental data. Besides of modeling flow in porous media, our SRD implementation allows us to address various questions of interfacial dynamics, e.g. the formation of capillary bridges between spherical beads or droplets in microfluidic applications to name only a few.
Mesoscopic Modeling of Blood Clotting: Coagulation Cascade and Platelets Adhesion
NASA Astrophysics Data System (ADS)
Yazdani, Alireza; Li, Zhen; Karniadakis, George
2015-11-01
The process of clot formation and growth at a site on a blood vessel wall involve a number of multi-scale simultaneous processes including: multiple chemical reactions in the coagulation cascade, species transport and flow. To model these processes we have incorporated advection-diffusion-reaction (ADR) of multiple species into an extended version of Dissipative Particle Dynamics (DPD) method which is considered as a coarse-grained Molecular Dynamics method. At the continuum level this is equivalent to the Navier-Stokes equation plus one advection-diffusion equation for each specie. The chemistry of clot formation is now understood to be determined by mechanisms involving reactions among many species in dilute solution, where reaction rate constants and species diffusion coefficients in plasma are known. The role of blood particulates, i.e. red cells and platelets, in the clotting process is studied by including them separately and together in the simulations. An agonist-induced platelet activation mechanism is presented, while platelets adhesive dynamics based on a stochastic bond formation/dissociation process is included in the model.
Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface.
Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J
2016-03-07
This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential. We provide a short account of different methodological factors (size-effects, truncation procedures, long-range corrections and potential models) that can affect the results of the simulations. Accurate calculations are presented for the calculation of the surface tension as a function of the temperature, pressure and composition by considering the planar gas-liquid interface of a range of molecular fluids. In particular, we consider the challenging problems of reproducing the interfacial tension of salt solutions as a function of the salt molality; the simulations of spherical interfaces including the calculation of the sign and size of the Tolman length for a spherical droplet; the use of coarse-grained models in the calculation of the interfacial tension of liquid-liquid surfaces and the mesoscopic simulations of oil-water-surfactant interfacial systems.
Sulis, William H
2017-10-01
Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.
An adaptive tau-leaping method for stochastic simulations of reaction-diffusion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, Jill M. A.; Ilie, Silvana, E-mail: silvana@ryerson.ca
2016-03-15
Stochastic modelling is critical for studying many biochemical processes in a cell, in particular when some reacting species have low population numbers. For many such cellular processes the spatial distribution of the molecular species plays a key role. The evolution of spatially heterogeneous biochemical systems with some species in low amounts is accurately described by the mesoscopic model of the Reaction-Diffusion Master Equation. The Inhomogeneous Stochastic Simulation Algorithm provides an exact strategy to numerically solve this model, but it is computationally very expensive on realistic applications. We propose a novel adaptive time-stepping scheme for the tau-leaping method for approximating themore » solution of the Reaction-Diffusion Master Equation. This technique combines effective strategies for variable time-stepping with path preservation to reduce the computational cost, while maintaining the desired accuracy. The numerical tests on various examples arising in applications show the improved efficiency achieved by the new adaptive method.« less
NASA Astrophysics Data System (ADS)
Krawczyk, Piotr; Badyda, Krzysztof
2011-12-01
The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan
NASA Astrophysics Data System (ADS)
Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon
2018-01-01
Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.
NASA Astrophysics Data System (ADS)
Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.
2017-12-01
In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.
NASA Astrophysics Data System (ADS)
Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia
2018-06-01
Seismic propagation in the upper part of the crust, where geothermal reservoirs are located, shows generally strong velocity dispersion and attenuation due to varying permeability and saturation conditions and is affected by the brittleness and/or ductility of the rocks, including zones of partial melting. From the elastic-plastic aspect, the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. We describe the related effects with a Burgers mechanical element for the shear modulus of the dry-rock frame. The Arrhenius equation combined to the octahedral stress criterion define the Burgers viscosity responsible of the brittle-ductile behaviour. The effects of permeability, partial saturation, varying porosity and mineral composition on the seismic properties is described by a generalization of the White mesoscopic-loss model to the case of a distribution of heterogeneities of those properties. White model involves the wave-induced fluid flow attenuation mechanism, by which seismic waves propagating through small-scale heterogeneities, induce pressure gradients between regions of dissimilar properties, where part of the energy of the fast P-wave is converted to slow P (Biot)-wave. We consider a range of variations of the radius and size of the patches and thin layers whose probability density function is defined by different distributions. The White models used here are that of spherical patches (for partial saturation) and thin layers (for permeability heterogeneities). The complex bulk modulus of the composite medium is obtained with the Voigt-Reuss-Hill average. Effective pressure effects are taken into account by using exponential functions. We then solve the 3D equation of motion in the space-time domain, by approximating the White complex bulk modulus with that of a set of Zener elements connected in series. The Burgers and generalized Zener models allows us to solve the equations with a direct grid method by the introduction of memory variables. The algorithm uses the Fourier pseudospectral method to compute the spatial derivatives. It is tested against an analytical solution obtained with the correspondence principle. We consider two main cases, namely the same rock frame (uniform porosity and permeability) saturated with water and a distribution of steam patches, and water-saturated background medium with thin layers of dissimilar permeability. Our model indicates how seismic properties change with the geothermal reservoir temperature and pressure, showing that both seismic velocity and attenuation can be used as a diagnostic tool to estimate the in situ conditions.
Drying characteristics and modeling of yam slices under different relative humidity conditions
USDA-ARS?s Scientific Manuscript database
The drying characteristics of yam slices under different 23 constant relative humidity (RH) and step-down RH levels were studied. A mass transfer model was developed based on Bi-Di correlations containing a drying coefficient and a lag factor to describe the drying process. It was validated using ex...
High-Tc SNS Junctions: A New Generation of Proximity-Coupled Josephson Devices
NASA Technical Reports Server (NTRS)
Kleinsasser, A. W.
1997-01-01
This paper reviews this evolution of proximity - coupled Josephson jucntion from the early investigations on low temperature superconductor-normal -superconductor junctions through the introduction of hybrid superconductor-semiconductor devices and the resulting interest in mesoscopic Josephson junctions, to the recent development of high temperature devices.
Model for heat and mass transfer in freeze-drying of pellets.
Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda
2009-07-01
Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.
Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics
NASA Astrophysics Data System (ADS)
İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen
2018-02-01
In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.
Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu
2013-01-01
Purpose The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Methods Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Results Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. Conclusion These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye. PMID:23386781
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.
NASA Astrophysics Data System (ADS)
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
NASA Astrophysics Data System (ADS)
Milani, Marco; Rubino, J. Germán; Baron, Ludovic; Sidler, Rolf; Holliger, Klaus
2015-10-01
The attenuation and velocity dispersion of sonic waves contain valuable information on the mechanical and hydraulic properties of the probed medium. An inherent complication arising in the interpretation of corresponding measurements is, however, that there are multiple physical mechanisms contributing to the energy dissipation and that the relative importance of the various contributions is difficult to unravel. To address this problem for the practically relevant case of terrestrial alluvial sediments, we analyse the attenuation and velocity dispersion characteristics of broad-band multifrequency sonic logs with dominant source frequencies ranging between 1 and 30 kHz. To adequately compensate for the effects of geometrical spreading, which is critical for reliable attenuation estimates, we simulate our experimental setup using a correspondingly targeted numerical solution of the poroelastic equations. After having applied the thus inferred corrections, the broad-band sonic log data set, in conjunction with a comprehensive suite of complementary logging data, allows for assessing the relative importance of a range of pertinent attenuation mechanisms. In doing so, we focus on the effects of wave-induced fluid flow over a wide range of scales. Our results indicate that the levels of attenuation due to the presence of mesoscopic heterogeneities in unconsolidated clastic sediments fully saturated with water are expected to be largely negligible. Conversely, Monte-Carlo-type inversions indicate that Biot's classical model permits to explain most of the considered data. Refinements with regard to the fitting of the observed attenuation and velocity dispersion characteristics are locally provided by accounting for energy dissipation at the microscopic scale, although the nature of the underlying physical mechanism remains speculative.
Tracing the evolution of the two energy gaps in magnesium diboride under pressure
NASA Astrophysics Data System (ADS)
Kononenko, V.; Tarenkov, V.; Belogolovskii, M.; Döring, S.; Schmidt, S.; Seidel, P.
2015-04-01
We have studied transport characteristics of mesoscopic multiple-mode superconducting contacts formed between two grains in bulk two-gap magnesium diboride. The experimental setup was realized by driving a normal-metal tip into MgB2 polycrystalline sample and proved to be extremely stable, providing possibility to perform pressure experiments at low temperatures. It is argued that in our procedure a small piece of the superconducting electrode is captured by the tip apex and, as a result, two junctions in series are formed: a junction between a tip and MgB2 grain and a mesoscopic disordered contact between two superconducting pellets. Although the relative weight of the first junction resistance was considerably less, its contribution is shown to be important for the comparison of measured data with expected gap values. Two hallmarks of multiple Andreev reflections inside the MgB2-c-MgB2 contact (c stands for a high-transparent constriction), a zero-bias 1/ √{|V | } -like singularity of the dc differential conductance and peaks connected to the two gap values, have been revealed. Finally, we report results of a hydrostatic compression experiment showing the evolution of the MgB2 gap values with pressure. In contrast to the theoretical expectations, we have observed an increase of the smaller gap Δπ whereas the larger gap Δσ decreased with increasing pressure as it should be for the electron-phonon pairing mechanism. We argue that the so-called separable model of anisotropy effects is insufficient to describe such changes and only improved two-band versions are capable to reproduce the pressure effect on the energy gaps in magnesium diboride.
Sahni, Ekneet K; Pikal, Michael J
2017-03-01
Although several mathematical models of primary drying have been developed over the years, with significant impact on the efficiency of process design, models of secondary drying have been confined to highly complex models. The simple-to-use Excel-based model developed here is, in essence, a series of steady state calculations of heat and mass transfer in the 2 halves of the dry layer where drying time is divided into a large number of time steps, where in each time step steady state conditions prevail. Water desorption isotherm and mass transfer coefficient data are required. We use the Excel "Solver" to estimate the parameters that define the mass transfer coefficient by minimizing the deviations in water content between calculation and a calibration drying experiment. This tool allows the user to input the parameters specific to the product, process, container, and equipment. Temporal variations in average moisture contents and product temperatures are outputs and are compared with experiment. We observe good agreement between experiments and calculations, generally well within experimental error, for sucrose at various concentrations, temperatures, and ice nucleation temperatures. We conclude that this model can serve as an important process development tool for process design and manufacturing problem-solving. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Modelling of nectarine drying under near infrared - Vacuum conditions.
Alaei, Behnam; Chayjan, Reza Amiri
2015-01-01
Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour difference and shrinkage of nectarine slices on near infrared-vacuum drying was decreased with decrease of vacuum pressure and decrease of drying temperature.
Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.
Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat
2015-05-01
In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period.
Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model.
Picotti, Stefano; Carcione, José M
2017-07-01
The acoustic behavior of porous media can be simulated more realistically using a stress-strain relation based on the Cole-Cole model. In particular, seismic velocity dispersion and attenuation in porous rocks is well described by mesoscopic-loss models. Using the Zener model to simulate wave propagation is a rough approximation, while the Cole-Cole model provides an optimal description of the physics. Here, a time-domain algorithm is proposed based on the Grünwald-Letnikov numerical approximation of the fractional derivative involved in the time-domain representation of the Cole-Cole model, while the spatial derivatives are computed with the Fourier pseudospectral method. The numerical solution is successfully tested against an analytical solution. The methodology is applied to a model of saline aquifer, where carbon dioxide (CO 2 ) is injected. To follow the migration of the gas and detect possible leakages, seismic monitoring surveys should be carried out periodically. To this aim, the sensitivity of the seismic method must be carefully assessed for the specific case. The simulated test considers a possible leakage in the overburden, above the caprock, where the sandstone is partially saturated with gas and brine. The numerical examples illustrate the implementation of the theory.
New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains
NASA Astrophysics Data System (ADS)
Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.
2017-07-01
A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.
Model of community emergence in weighted social networks
NASA Astrophysics Data System (ADS)
Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.
2009-04-01
Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.
A user-friendly model for spray drying to aid pharmaceutical product development.
Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W
2013-01-01
The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Gül, Doğan; Şahin, Arzu Şencan
2017-07-01
The determination of drying behavior of herbal plants is a complex process. In this study, gene expression programming (GEP) model was used to determine drying behavior of herbal plants as fresh sweet basil, parsley and dill leaves. Time and drying temperatures are input parameters for the estimation of moisture ratio of herbal plants. The results of the GEP model are compared with experimental drying data. The statistical values as mean absolute percentage error, root-mean-squared error and R-square are used to calculate the difference between values predicted by the GEP model and the values actually observed from the experimental study. It was found that the results of the GEP model and experimental study are in moderately well agreement. The results have shown that the GEP model can be considered as an efficient modelling technique for the prediction of moisture ratio of herbal plants.
Electrohydrodynamic drying of carrot slices.
Ding, Changjiang; Lu, Jun; Song, Zhiqing
2015-01-01
Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique.
NASA Astrophysics Data System (ADS)
Ilg, Patrick; Evangelopoulos, Apostolos E. A. S.
2018-03-01
While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic susceptibility χ″ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential relaxation and a broadening of χ″. The model we study also allows us to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.
Large-scale model of flow in heterogeneous and hierarchical porous media
NASA Astrophysics Data System (ADS)
Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît
2017-11-01
Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.
NASA Astrophysics Data System (ADS)
Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar
2018-04-01
Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.
Trirattanapikul, W; Phoungchandang, S
2014-12-01
The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.
TG-DSC method applied to drying characteristics of areca inflorescence during drying
NASA Astrophysics Data System (ADS)
Song, Fei; Wang, Hui; Huang, Yulin; Zhang, Yufeng; Chen, Weijun; Zhao, Songlin; Zhang, Ming
2017-10-01
In this study, suitability of eight drying models available in literature on defining drying characteristics of areca inflorescence has been examined by non-linear regression analysis using the Statistic Computer Program. The coefficient of determination ( R 2 ) and the reduced chi-square (χ2) are used as indicators to evaluate the best suitable model. According to the results, the Verma et al. model gave the best results for explaining the drying characteristics of areca inflorescence. The drying process could be divided into three periods: rising rate, constant rate and the falling rate period. Fick's second law can describe the moisture transport during the food drying process that takes place in the falling rate period. The values of effective diffusivity during the drying of areca inflorescence ranged from 2.756 × 10-7 to 6.257 × 10-7 m2/s and the activation energy was tested for 35.535 kJ/mol. The heat requirement of areca inflorescence at 40-60 °C was calculated from 50.57 to 60.50 kJ/kg during the drying process.
Mathematical modeling of drying of pretreated and untreated pumpkin.
Tunde-Akintunde, T Y; Ogunlakin, G O
2013-08-01
In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40-80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page, Midilli-Kucuk and Parabolic model and the statistical validity of models tested were determined by non-linear regression analysis. The Parabolic model had the highest R(2) and lowest χ(2) and RMSE values. This indicates that the Parabolic model is appropriate to describe the dehydration behavior for the pumpkin.
NASA Astrophysics Data System (ADS)
Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.
2017-11-01
In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.
Heat and mass transfer models to understand the drying mechanisms of a porous substrate.
Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti
2016-02-01
While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.
Drying characteristics of electro-osmosis dewatered sludge.
Ma, Degang; Qian, Jingjing; Zhu, Hongmin; Zhai, Jun
2016-12-01
Electro-osmotic dewatering (EDW) is one of the effective deeply dewatering technologies that is suitable for treating sludge with 55-80% of moisture content. Regarding EDW as the pre-treatment process of drying or incinerating, this article investigated the drying characteristics of electro-osmosis-dewatered sludge, including shear stress test, drying curves analysis, model analysis, and energy balance calculation. After EDW pre-treatment, sludge adhesion was reduced. The sludge drying rate was higher compared to the non-pre-treated sludge, especially under high temperatures (80-120°C). In addition, it is better to place the sludge cake with cathode surface facing upward for improving the drying rate. An adjusted model based on the Logarithmic model could better describe the EDW sludge drying process. Using the energy balance calculation, EDW can save the energy consumed in the process of sludge incineration and electricity generation and enable the system to run without extra energy input.
Drying kinetics of apricot halves in a microwave-hot air hybrid oven
NASA Astrophysics Data System (ADS)
Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni
2017-06-01
Drying behavior and kinetics of apricot halves were investigated in a microwave-hot air domestic hybrid oven at 120, 150 and 180 W microwave power and 50, 60 and 70 °C air temperature. Drying operation was finished when the moisture content reached to 25% (wet basis) from 77% (w.b). Increase in microwave power and air temperature increased drying rates and reduced drying time. Only falling rate period was observed in drying of apricot halves in hybrid oven. Eleven mathematical models were used for describing the drying kinetics of apricots. Modified logistic model gave the best fitting to the experimental data. The model has never been used to explain drying behavior of any kind of food materials up to now. Fick's second law was used for determination of both effective moisture diffusivity and thermal diffusivity values. Activation energy values of dried apricots were calculated from Arrhenius equation. Those that obtained from effective moisture diffusivity, thermal diffusivity and drying rate constant values ranged from 31.10 to 39.4 kJ/mol, 29.56 to 35.19 kJ/mol, and 26.02 to 32.36 kJ/mol, respectively.
A new approach for modeling dry deposition velocity of particles
NASA Astrophysics Data System (ADS)
Giardina, M.; Buffa, P.
2018-05-01
The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
NASA Astrophysics Data System (ADS)
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
Drying characteristics of garlic ( Allium sativum L) slices in a convective hot air dryer
NASA Astrophysics Data System (ADS)
Demiray, Engin; Tulek, Yahya
2014-06-01
The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10-10 to 2.221 × 10-10 m2 s-1 over the temperature range studied, and activation energy was 30.582 kJ mol-1.
Modelling and simulation of a moving interface problem: freeze drying of black tea extract
NASA Astrophysics Data System (ADS)
Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan
2017-06-01
The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.