NASA Astrophysics Data System (ADS)
Gerrard, Andrew John
Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.
NASA Astrophysics Data System (ADS)
Parameswaran, K.; Rajeev, K.; Sasi, M. N.; Ramkumar, Geetha; Krishna Murthy, B. V.; Satheesan, K.; Jain, A. R.; Bhavanikumar, Y.; Raghunath, Kalavai J.; Krishnaiah, M.
2002-01-01
Rayleigh lidar observations of temperature in the stratosphere and mesosphere are carried out an Gadanki from February 29 to March 31, 2000, which provided a powerful means of studying the gravity wave characteristics over the tropical atmosphere during winter. The potential energy per unit mass associated with the gravity wave activity in the upper stratosphere and mesosphere is found to undergo periodic fluctuations, which are closely correlated with the zonal wind fluctuations in the stratosphere produced by the equatorial waves. This provides the first observational evidence for the modulation of the gravity wave activity by the long period equatorial waves over the tropical middle atmosphere. The vertical wave number spectra of gravity waves shows that power spectral density decease with increasing wave number with a slope less than that expected for the saturated gravity wave spectrum in the stratosphere and mesosphere. PSD decreases for vertical wavelengths smaller than about 10 km in the stratosphere while the decrease is observed for the complete range of observed gravity wave spectrum in the mesosphere. A monochromatic upward propagating gravity wave with periodicity of 6 hour, amplitude of about 1 K to 3 K and vertical wavelength of 11 km was observed on 22 March, 2000.
NASA Astrophysics Data System (ADS)
Ren, Shuzhan; Polavarapu, Saroja M.; Shepherd, Theodore G.
2008-03-01
The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.
NASA Astrophysics Data System (ADS)
Becker, Erich; Vadas, Sharon L.
2018-03-01
This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.
NASA Technical Reports Server (NTRS)
Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.
2004-01-01
We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.
Unexpected Occurrence of Mesospheric Frontal Gravity Wave Events Over South Pole (90°S)
NASA Astrophysics Data System (ADS)
Pautet, P.-D.; Taylor, M. J.; Snively, J. B.; Solorio, C.
2018-01-01
Since 2010, Utah State University has operated an infrared Advanced Mesospheric Temperature Mapper at the Amundsen-Scott South Pole station to investigate the upper atmosphere dynamics and temperature deep within the vortex. A surprising number of "frontal" gravity wave events (86) were recorded in the mesospheric OH(3,1) band intensity and rotational temperature images (typical altitude of 87 km) during four austral winters (2012-2015). These events are gravity waves (GWs) characterized by a sharp leading wave front followed by a quasi-monochromatic wave train that grows with time. A particular subset of frontal gravity wave events has been identified in the past (Dewan & Picard, 1998) as "bores." These are usually associated with wave ducting within stable mesospheric inversion layers, which allow them to propagate over very large distances. They have been observed on numerous occasions from low-latitude and midlatitude sites, but to date, very few have been reported at high latitudes. This study provides new analyses of the characteristics of frontal events at high latitudes and shows that most of them are likely ducted. The occurrence of these frontal GW events over this isolated region strongly supports the existence of horizontally extensive mesospheric thermal inversion layers over Antarctica, leading to regions of enhanced stability necessary for GW trapping and ducting.
Turbulence and stress owing to gravity wave and tidal breakdown
NASA Technical Reports Server (NTRS)
Lindzen, R. S.
1981-01-01
For some years it has been accepted that tides and gravity waves propagating into the upper mesosphere from below are the major source of turbulence in the upper mesosphere. The considered investigation has the objective to examine the implications of such a situation in some detail. The main propagating diurnal mode seems to be the primary contributor at tropical latitudes. Because of the high phase speed of this mode, it is only slightly affected by the mean zonal flow of the atmosphere. Wavebreaking appears to occur around 85 km, leading to a layer of enhanced eddy diffusion and wave induced acceleration extending between 85 km and about 108 km. Above 108 km molecular transport dominates. Gravity waves appear to be dominant at middle and high latitudes. The flow distribution will effectively determine which gravity waves (depending on phase speed) can reach the mesosphere.
A numerical model of gravity wave breaking and stress in the mesosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.
1983-01-01
The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.
Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves
NASA Technical Reports Server (NTRS)
Eberstein, I. J.; Theon, J. S.
1975-01-01
Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.
NASA Technical Reports Server (NTRS)
Garcia, R. R.
1986-01-01
The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.
NASA Astrophysics Data System (ADS)
Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi
2017-05-01
The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.
Density response of the mesospheric sodium layer to gravity wave perturbations
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.
1980-01-01
Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.
2003-01-01
The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.
NASA Astrophysics Data System (ADS)
Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng
2017-11-01
The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.
Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements
NASA Astrophysics Data System (ADS)
Suzuki, S.; Shiokawa, K.
2016-12-01
Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.
Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere
NASA Astrophysics Data System (ADS)
Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi
2017-04-01
An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.
A model for gravity-wave spectra observed by Doppler sounding systems
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1986-01-01
A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.
NASA Astrophysics Data System (ADS)
Eswaraiah, S.; Venkata Chalapathi, G.; Niranjan Kumar, K.; Venkat Ratnam, M.; Kim, Yong Ha; Vishnu Prasanth, P.; Lee, Jaewook; Rao, S. V. B.
2018-04-01
We have utilized the Gadanki MST Radar and Rayleigh LIDAR to understand the vertical coupling between the lower atmosphere and mesosphere through the short-period gravity waves (GWs). The short-period GWs (20 min-2 h) are noticed both in the troposphere and in the mesosphere during the deep convection. During the convection, the large vertical velocities (>5 m/s) and significant variations in the momentum flux (∼3 m2/s2) are noticed in the troposphere and higher fluxes (∼45 m2/s2) are evidenced in the mesosphere. The observations suggest the vertical coupling between the lower and middle atmosphere during convection.
Middle Atmosphere Program. Handbook for MAP, volume 20
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1986-01-01
Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.
NASA Astrophysics Data System (ADS)
Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.
2018-01-01
This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.; Boville, Byron A.
1994-01-01
According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.
Wave Dynamics and Transport in the Stratosphere
NASA Technical Reports Server (NTRS)
Holton, James R.; Alexander, M. Joan
1999-01-01
The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.
A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.
1985-01-01
Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.
Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images
NASA Astrophysics Data System (ADS)
Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.
2018-01-01
We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.
Influence of vertically and obliquely propagating gravity waves on the polar summer mesosphere
NASA Astrophysics Data System (ADS)
Thurairajah, B.; Siskind, D. E.; Bailey, S. M.
2017-12-01
Polar Mesospheric Clouds (PMCs) are sensitive to changes in temperature of the cold polar summer mesosphere, which in turn are modulated by gravity waves (GWs). In this study we investigate the link between PMCs and GWs that propagate both vertically (i.e. wave propagation is directly above the source region) and obliquely (lateral or non-vertical propagation upward but away from the source region). Several observational studies have analyzed the link between PMCs and vertically propagating GWs and have reported both positive and negative correlations. Moreover, while modelling studies have noted the possibility of oblique propagation of GWs from the low-latitude stratosphere to the high-latitude mesosphere, observational studies of the influence of these waves on the polar summer mesosphere are sparse. We present a comprehensive analysis of the influence of vertically and obliquely propagating GWs on the northern hemisphere (NH) polar summer mesosphere using data from 8 PMC seasons. Temperature data from the SOFIE experiment on the AIM satellite and SABER instrument on the TIMED satellite are used to derive GW parameters. SOFIE PMC data in terms of Ice Water Content (IWC) are used to quantify the changes in the polar summer mesosphere. At high latitudes, preliminary analysis of vertically propagating waves indicate a weak but positive correlation between GWs at 50 km and GWs at the PMC altitude of 84 km. Overall there is a negative correlation between GWs at 50 km and IWC and a positive correlation between GWs at 84 km and IWC. These results and the presence of a slanted structure (slanted from the low-latitude stratosphere to the high-latitude mesosphere) in GW momentum flux suggest the possibility of a significant influence of obliquely propagating GWs on the polar summer mesosphere
NASA Astrophysics Data System (ADS)
Pautet, P. D.; Taylor, M.; Kaifler, B.
2016-12-01
The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.
Planetary wave-gravity wave interactions during mesospheric inversion layer events
NASA Astrophysics Data System (ADS)
Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.
2013-07-01
lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.
NASA Astrophysics Data System (ADS)
Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan
2014-10-01
A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.
NASA Technical Reports Server (NTRS)
Goldberg, R. A.; Fritts, D. C.; Chou, H.-G.; Schmidlin, F. J.; Barcus, J. R.
1988-01-01
The origin of wintertime mesospheric echoes observed with the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, was studied by probing the mesosphere with in situ rocket measurements during echo occurrences in the early spring, 1985. Within the height range 65-75 km, the structure of the large scale wave field was identified. In this region, a gravity wave with a vertical wavelength of about 2 km was found superimposed on a wave with a larger amplitude and a vertical wavelength of about 6.6 km. Because of the close correlation between the smaller amplitude wave and the modulation observed in the S/N profiles, it is concluded that the smaller wave was dominant in generating turbulence within the middle atmosphere.
NASA Astrophysics Data System (ADS)
Kam, Hosik; Jee, Geonhwa; Kim, Yong; Ham, Young-bae; Song, In-Sun
2017-03-01
We have investigated the characteristics of mesospheric short period (<1 h) gravity waves which were observed with all-sky images of OH Meinel band and OI 557 nm airglows over King Sejong Station (KSS) (62.22°S, 58.78°W) during a period of 2008-2015. By applying 2-dimensional FFT to time differenced images, we derived horizontal wavelengths, phase speeds, and propagating directions (188 and 173 quasi-monochromatic waves from OH and OI airglow images, respectively). The majority of the observed waves propagated predominantly westward, implying that eastward waves were filtered out by strong eastward stratospheric winds. In order to obtain the intrinsic properties of the observed waves, we utilized winds simultaneously measured by KSS Meteor Radar and temperatures from Aura Microwave Limb Sounder (MLS). More than half the waves propagated horizontally, as waves were in Doppler duct or evanescent in the vertical direction. This might be due to strong eastward background wind field in the mesosphere over KSS. For freely propagating waves, the vertical wavelengths were in the interquartile range of 9-33 km with a median value of 15 km. The vertical wavelengths are shorter than those observed at Halley station (76°S, 27°W) where the majority of the observed waves were freely propagating. The difference in the wave propagating characteristics between KSS and Halley station suggests that gravity waves may affect mesospheric dynamics in this part of the Antarctic Peninsula more strongly than over the Antarctic continent. Furthermore, strong wind shear over KSS played an important role in changing the vertical wavenumbers as the waves propagated upward between two airglow layers (87 and 96 km).
Waves in the Mesosphere of Venus as seen by the Venus Express Radio Science Experiment VeRa
NASA Astrophysics Data System (ADS)
Tellmann, Silvia; Häusler, B.; Hinson, D. P.; Tyler, G.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.
2013-10-01
The Venus Express Radio Science Experiment (VeRa) has retrieved more than 700 profiles of the mesosphere and troposphere of Venus. These profiles cover a wide range of latitudes and local times, enabling study of atmospheric wave phenomena over a range spatial scales at altitudes of 40-90 km. In addition to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves, and turbulence play a significant role in the development and maintenance of atmospheric super-rotation. Small-scale temperature variations with vertical wavelengths of 4 km or less have wave amplitudes reaching TBD km in the stable atmosphere above the tropopause, in contrast with much weaker temperature perturbations observed in the middle cloud layer below. The strength of gravity waves increases with latitude in both hemispheres. The results suggest that convection at low latitudes and topographical forcing at high northern latitudes—possibly in combination with convection and/or Kelvin-Helmholtz instabilities—play key roles in the genesis of gravity waves. Further, thermal tides also play an important role in the mesosphere. Diurnal and semi-diurnal wave modes are observed at different latitudes and altitudes. The latitudinal and height dependence of the thermal tide modes will be investigated.
Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region
NASA Astrophysics Data System (ADS)
Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre
2016-07-01
This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.
Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Rosenlof, K. H.
1996-01-01
The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.
Long-term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Jackman, C. (Technical Monitor)
2000-01-01
An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.
Investigating mesospheric mountain wave characteristics over New Zealand during DEEPWAVE
NASA Astrophysics Data System (ADS)
McLaughlin, P.; Taylor, M. J.; Pautet, P. D.; Kaifler, B.; Smith, S. M.
2017-12-01
The Deep Propagating Gravity Wave Experiment, "DEEPWAVE" was an international measurement and modelling program designed to characterize and predict the generation and propagation of a broad range of atmospheric gravity waves (GWs) with measurements extending from the ground to 100 km altitude. An analysis of 2 months of GW image data obtained during 2014 in New Zealand by a ground-based Advanced Mesospheric Temperature Mapper (AMTM) identified 19 events with clear signatures of orographic forcing. This is by far the largest occurrence of MW activity ever recorded at MLT heights. The observed events were quasi-stationary, exhibited a variety of horizontal wavelengths and lasted for > 1 hour. One prior study has reported such waves in the mesosphere over the Andes Mountain Range. We utilize data obtained by a collection of ground-based instrumentation operated at NIWA Lauder Station, NZ [45.0°S] to perform a detailed investigation of the generation and propagation of mountain waves into the upper mesosphere and to quantify their impact on this region using their measured momentum fluxes (MF). Instruments included an AMTM, a Rayleigh Lidar and an all-sky imager. The results focus on the derived MFs, comparing and contrasting their magnitudes and variability under different forcing conditions.
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.
1998-01-01
Progress in research into the global morphology of gravity wave activity using UARS data is described for the period March-June, 1998. Highlights this quarter include further progress in the analysis and interpretation of CRISTA temperature variances; model-generated climatologies of mesospheric gravity wave activity using the HWM-93 wind and temperature model; and modeling of gravity wave detection from space-based platforms. Preliminary interpretations and recommended avenues for further analysis are also described.
Case Studies of the Mesospheric Response to Recent Minor, Major, and Extended Stratospheric Warmings
2010-06-06
Pawson, J. N. Lee , W. H. Daffer, R. A. Fuller, and N. J. Livesey (2009b), Aura Micro- wave Limb Sounder observations of dynamics and transport during...Schoeberl, M., D. Strobel , and J. Apruzese (1983), A numerical model of gravity wave breaking and stress in the mesosphere, J. Geophys. Res., 88(C9
Radar studies of gravity waves and tides in the middle atmosphere - A review
NASA Technical Reports Server (NTRS)
Rastogi, P. K.
1981-01-01
A review is presented of recent radar studies of gravity waves and tides in the middle atmosphere (over regions of approximately 10-30 and 60-90 km). The techniques used for monitoring the motions are outlined and their limitations are pointed out. The radars provide observations of short-period (1 min-1 h) gravity waves and tides at selected height intervals, depending on the radar frequency and the observation technique. The following contributions to the study of the midatmosphere are included in the discussion: (1) buoyancy oscillations and short-period (less than 10 min) acoustic-gravity waves have been observed in the troposphere and stratosphere and, in several cases, their generation and propagation near critical levels has been reconciled with theoretical models; (2) excitation of stratospheric waves by penetrative convection associated with thunderstorms has been established; (3) stratospheric and mesospheric tides at diurnal and semidiurnal periods have been observed; and (4) long-period (approximately 2 to 5 days) waves have been observed in the mesosphere. It is noted that more comprehensive data bases need to be obtained for further tidal and wave studies.
Oblique propagation of monsoon gravity waves during the northern hemisphere 2007 summer
NASA Astrophysics Data System (ADS)
Thurairajah, Brentha; Siskind, David E.; Bailey, Scott M.; Carstens, Justin N.; Russell, James M.; Mlynczak, Martin G.
2017-05-01
We present a combination of satellite observation and high-resolution model output to understand monsoon convection as a source of high-latitude mesospheric gravity waves (GWs). The GWs generated over the Northern Hemisphere (NH) monsoon region during the 2007 summer and the role of the winds in focusing these GWs toward the high-latitude middle atmosphere are analyzed using the Sounding of the Atmosphere using Broadband Emission Radiometry/Thermosphere Ionosphere Mesosphere Energetics and Dynamics (SABER/TIMED) satellite temperature data and the high-resolution Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS/ALPHA) model results. In the NH, above the stratosphere, the monsoon GW Momentum Flux (GWMF) exhibits a poleward tilt that follows the slanted structure of the easterly jet. The correlation coefficients (>0.5) between the time series of NH tropical stratospheric GWMF and the global winds also have a slanted structure that coincide with the easterly jet, confirming the modeling theory that stratospheric monsoon GWs are refracted into the summer easterly jet and can reach the high-latitude mesosphere. Since Polar Mesospheric Clouds (PMCs) are sensitive indicators of changes in the polar summer mesosphere, we compared the time series of tropical stratospheric GWMF to the PMC occurrence frequency (OF) obtained from the Cloud Imaging and Particle Size/Aeronomy of Ice in the Mesosphere satellite data to assess the influence of this wave focusing in the mesosphere. There is a significant positive correlation between the high-latitude PMC OF and the tropical stratospheric GWMF suggesting a definite influence of monsoon GWs on the high-latitude mesosphere. The disagreement in correlation at the end of the PMC season is attributed to the enhancement of the quasi 5 day planetary wave dominating over the influence of monsoon GWs on PMCs.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Ridley, E. C.
1994-01-01
A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Zhao, Y.; Pautet, P. D.; Carstens, J. N.; Pugmire, J. R.; Smith, S. M.; Liu, A. Z.; Vargas, F.; Swenson, G. R.; Randall, C. E.; Bailey, S. M.; Russell, J. M., III
2016-12-01
To date, the primary research goals of the Aeronomy of Ice in the Mesosphere (AIM) satellite have focussed on investigating the occurrence, properties and dynamics of high-latitude Polar Mesospheric Clouds (PMC). With the evolution of the AIM orbit beta angle the opportunity now exists to make measurements outside the PMC region covering mid-low and equatorial latitudes. As part of the extended AIM mission science program, the AIM platform in conjunction with auxiliary ground-based measurements will be used to better understand upper atmospheric dynamics and vertical coupling due to gravity waves. Over the next 2 years AIM will take advantage of a new imaging capability of the on-board large-field CIPS UV imager to capture new data on the characteristics and spatial extents of stratospheric gravity waves near the 50 km level and their variation with latitude and season. In this study we report on initial coordinated ground-based measurements with the Andes Lidar Observatory (ALO) at Cerro Pachon, Chile ( 30°S) and nearby El Leoncito Observatory, Argentina, high in the Andes Mountains, where regular remote-sensing measurements are made using meteor radar, mesospheric airglow imagers, temperature mappers and an Na wind-temperature lidar (on a campaign basis). First coordinated measurements were made during the winter period in June 2016. AIM daytime overpasses have been analysed to search for and characterize extensive stratospheric wave events, as well as long-lived "Mountain Waves" over South America. Subsequent night-time ground-based measurements have been used to quantify wave characteristics in the mesopause region ( 80-100 km) to investigate vertical coupling. These measurements are continuing and it is planned to extend the new AIM stratospheric gravity wave data set for similar studies from a number of well-instrumented ground sites around the world.
Equatorial waves in the NCAR stratospheric general circulation model
NASA Technical Reports Server (NTRS)
Boville, B. A.
1985-01-01
Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.
Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois
NASA Technical Reports Server (NTRS)
Kwon, K. H.; Senft, D. C.; Gardner, C. S.; Voelz, D. G.; Sechrist, C. F., Jr.; Roesler, F. L.
1986-01-01
For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds.
Mesospheric heating due to intense tropospheric convection
NASA Technical Reports Server (NTRS)
Taylor, L. L.
1979-01-01
A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.
NASA Astrophysics Data System (ADS)
Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.
2016-12-01
Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.
Gravity waves and instabilities in the lower and middle atmosphere
NASA Technical Reports Server (NTRS)
Klostermeyer, Juergen
1989-01-01
Some basic aspects of mesoscale and small-scale gravity waves and instability mechanisms are discussed. Internal gravity waves with wavelengths between ten and less than one kilometer and periods between several hours and several minutes appear to play a central role in atmospheric wavenumber and frequency spectra. Therefore, the author discusses the propagation of gravity waves in simplified atmospheric models. Their interaction with the wind as well as their mutual interaction and stability mechanisms based on these processes are discussed. Mesosphere stratosphere troposphere radar observations showing the relevant hydrodynamic processes are stressed.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Trob, D.; Porter, H. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Special Session: SA03 The mesosphere/lower thermosphere region: Structure, dynamics, composition, and emission. Ground based and satellite observations in the upper mesosphere and lower thermosphere (MLT) reveal large seasonal variations in the horizontal wind fields of the diurnal and semidiurnal tides. To provide an understanding of the observations, we discuss results obtained with our Numerical Spectral Model (NMS) that incorporates the gravity wave Doppler Spread Parameterization (DSP) of Hines. Our model reproduces many of the salient features observed, and we discuss numerical experiments that delineate the important processes involved. Gravity wave momentum deposition and the seasonal variations in the tidal excitation contribute primarily to produce the large equinoctial amplitude maxima in the diurnal tide. Gravity wave induced variations in eddy viscosity, not accounted for in the model, have been shown by Akmaev to be important too. For the semidiurnal tide, with amplitude maximum observed during winter solstice, these processes also contribute, but filtering by the mean zonal circulation is more important. A deficiency of our model is that it cannot reproduce the observed seasonal variations in the phase of the semidiurnal tide, and numerical experiments are being carried out to diagnose the cause and to alleviate this problem. The dynamical components of the upper mesosphere are tightly coupled through non-linear processes and wave filtering, and this may constrain the model and require it to reproduce in detail the observed phenomenology.
Very high resolution observations of waves in the OH airglow at low latitudes.
NASA Astrophysics Data System (ADS)
Franzen, Christoph; Espy, Patrick J.; Hibbins, Robert E.; Djupvik, Amanda A.
2017-04-01
Vibrationally excited hydroxyl (OH) is produced in the mesosphere by the reaction of atomic hydrogen and ozone. This excited OH radiates a strong, near-infrared airglow emission in a thin ( 8 km thick) layer near 87 km. In the past, remote sensing of perturbations in the OH Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through this region. However, information on the highest frequency gravity waves is often limited by the temporal and spatial resolution of the available observations. In an effort to expand the wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements are taken with a 10 s integration time (24 s repetition rate), and the spatial resolution at 87 km is as small as 10 m, allowing us to quantify the transition between the gravity and acoustic wave domains in the mesosphere.
NASA Astrophysics Data System (ADS)
Rusch, D.; Thomas, G.; Merkel, A.; Olivero, J.; Chandran, A.; Lumpe, J.; Carstans, J.; Randall, C.; Bailey, S.; Russell, J.
2017-09-01
Observations by the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite have demonstrated the existence of Polar Mesospheric Cloud (PMC) regions populated by particles whose mean sizes range between 60 and 100 nm (radii of equivalent volume spheres). It is known from numerous satellite experiments that typical mean PMC particle sizes are of the order of 40-50 nm. Determination of particle size by CIPS is accomplished by measuring the scattering of solar radiation at various scattering angles at a spatial resolution of 25 km2. In this size range we find a robust anti-correlation between mean particle size and albedo. These very-large particle-low-ice (VLP-LI) clouds occur over spatially coherent areas. The surprising result is that VLP-LI are frequently present either in the troughs of gravity wave-like features or at the edges of PMC voids. We postulate that an association with gravity waves exists in the low-temperature summertime mesopause region, and illustrate the mechanism by a gravity wave simulation through use of the 2D Community Aerosol and Radiation Model for Atmospheres (CARMA). The model results are consistent with a VLP-LI population in the cold troughs of monochromatic gravity waves. In addition, we find such events in Whole Earth Community Climate Model/CARMA simulations, suggesting the possible importance of sporadic downward winds in heating the upper cloud regions. This newly-discovered association enhances our understanding of the interaction of ice microphysics with dynamical processes in the upper mesosphere.
NASA Technical Reports Server (NTRS)
Kato, S.
1989-01-01
Japan contributed much to MAP in many branches. The MU (middle and upper atmosphere) radar, in operation during the MAP period, produced various novel possibilities in observations of middle atmosphere dynamics; possibilities which were fairly well realized. Gravity wave saturation and its spectrum in the mesosphere were observed successfully. Campaign observations by radars between Kyoto and Adelaide were especially significant in tidal and planetary wave observations. In Antarctica, middle atmosphere observation of the dramatic behavior of aerosols in winter is well elucidated together with the ozone hole. Theoretical and numerical studies have been progressing actively since a time much earlier than MAP. Now it is pointed out that gravity waves play an important role in producing the weak wind region in the stratosphere as well as the mesosphere.
Inertio Gravity Waves in the Upper Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.
2003-01-01
In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.
Mesospheric gravity-wave climatology at Adelaide
NASA Technical Reports Server (NTRS)
Vincent, R. A.
1986-01-01
The MF Adelaide partial-reflection radar has been operating continuously since November 1983. This has enabled a climatology of gravity-wave activity to be constructed for the mesosphere. The data have been analyzed for a medium-period range of 1 to 8 hr. and a longer period range between 8 and 24 hr. covering the inertio-period waves. The tidal motions have been filtered out prior to analysis. For the data analyses so far (Nov. 1983 to Dec. 1984), a number of interesting features emerged. Firstly, the wave activity at heights above 80 km shows a small seimannual variation with season with the activity being strongest in summer and winter. At heights below 80 km however, there is a similar but more marked variation with the weakest amplitudes occurring at the time of the changeovers in the prevailing circulation. If breaking gravity waves are responsible for much of the turbulence in the mesosphere, then the periods March to April and September to October might also be expected to be periods of weak turbulence. The wave field appears to be partially polarized. The meridional amplitudes are larger than the zonal amplitudes, especially in water. It is found that the degree of polarization is about 15% in summer and 30% in winter. The polarized component is found to propagate in the opposite direction to the background flow in the stratosphere, which suggests that the polarization arises through directional filtering of the waves as they propagate up from below.
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.
1981-01-01
The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response.
PMP-2 Report: Equatorial Wave Dynamics
NASA Technical Reports Server (NTRS)
Hirota, I.
1982-01-01
The activities of the pre-MAP project 2 (PMP-2) from 1978 through 1981 are described. The following topics relating to the equatorial middle atmosphere are discussed briefly: (1) the semi-annual oscillation and Kelvin waves; (2) planetary Rossby waves; (3) upper mesospheric waves; and (4) gravity waves.
NASA Astrophysics Data System (ADS)
Pautet, P. D.; Ma, J.; Taylor, M. J.; Bossert, K.; Doyle, J. D.; Eckermann, S. D.; Williams, B. P.; Fritts, D. C.
2014-12-01
The DEEPWAVE project recently took place in New Zealand during the months of June and July 2014. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves. A series of instruments was operated at several ground-based locations and on-board the NSF Gulfstream V aircraft. 26 research flights were performed to explore possible wave sources and their effects on the middle and upper atmosphere. On July 14th, a research flight was conducted over the Auckland Islands, a small sub Antarctic archipelago located ~450km south of New Zealand. Moderate southwesterly tropospheric wind (~25m/s) was blowing over the rugged topography of the islands, generating mountain wave signature at the flight altitude. Spectacular small-scale gravity waves were simultaneously observed at the mesopause level using the USU Advanced Mesospheric Temperature Mapper (AMTM). Their similarity with the model-predicted waves was striking. This presentation will describe this remarkable case of deep wave propagation and compare the measurements obtained with the instruments on-board the aircraft with forecasting and wave propagation models.
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.
1998-01-01
This is the first quarter's report on research to extract global gravity-wave data from satellite data and to model those observations synoptically. Preliminary analysis of global maps of extracted middle atmospheric temperature variance from the CRISTA instrument is presented, which appear to contain gravity-wave information. Corresponding simulations of global gravity-wave and mountain-wave activity during this mission period are described using global ray-tracing and mountain-wave models, and interesting similarities among simulated data and CRISTA data are noted. Climatological simulations of mesospheric gravity-wave activity using the HWM-03 wind-temperature climatology are also reported, for comparison with UARS MLS data. Preparatory work on modeling of gravity wave observations from space-based platforms and subsequent interpretation of the MLS gravity-wave product are also described. Preliminary interpretation and relation to the research objectives are provided, and further action for the next quarter's research is recommended.
Upper atmospheric planetary-wave and gravity-wave observations
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.
NASA Astrophysics Data System (ADS)
Williams, B. P.; Kjellstrand, B.; Jones, G.; Reimuller, J. D.; Fritts, D. C.; Miller, A.; Geach, C.; Limon, M.; Hanany, S.; Kaifler, B.; Wang, L.; Taylor, M. J.
2017-12-01
PMC-Turbo is a NASA long-duration, high-altitude balloon mission that will deploy 7 high-resolution cameras to image polar mesospheric clouds (PMC) and measure gravity wave breakdown and turbulence. The mission has been enhanced by the addition of the DLR Balloon Lidar Experiment (BOLIDE) and an OH imager from Utah State University. This instrument suite will provide high horizontal and vertical resolution of the wave-modified PMC structure along a several thousand kilometer flight track. We have requested a flight from Kiruna, Sweden to Canada in June 2017 or McMurdo Base, Antarctica in Dec 2017. Three of the PMC camera systems were deployed on an aircraft and two tomographic ground sites for the High Level campaign in Canada in June/July 2017. On several nights the cameras observed PMC's with strong gravity wave breaking signatures. One PMC camera will piggyback on the Super Tiger mission scheduled to be launched in Dec 2017 from McMurdo, so we will obtain PMC images and wave/turbulence data from both the northern and southern hemispheres.
Wave-mean flow interactions in the upper atmosphere
NASA Technical Reports Server (NTRS)
Lindzen, R. S.
1973-01-01
The nature of internal gravity waves is described with special emphasis on their ability to transport energy and momentum. The conditions under which these fluxes interact with the mean state of the atmosphere are described and the results are applied to various problems of the upper atmosphere, including the quasi-biennial oscillation, the heat budget of the thermosphere, the general circulation of the mesosphere, turbulence in the mesosphere, and the 4-day circulation of the Venusian atmosphere.
2009-01-01
spheric quasi-biennial oscillation ( QBO ). In this paper we combine several measured data sets with the Gravity wave Regional Or Global RAy Tracer (GROGRAT...equatorial wave modes and a broad spectrum of gravity waves (GWs) Kelvin waves are one of the main drivers of the quasi-biennial oscil- lation ( QBO ) of the...and dy- namics in the stratosphere and mesosphere (even at high lati- tudes) are modulated or influenced by the QBO , showing the importance of the
NASA Astrophysics Data System (ADS)
G J, B.
2016-12-01
The present work investigates the Equatorial Mesosphere Lower Thermosphere/Ionosphere (MLTI) response to severe cyclonic storm `Aila (23-26 May 2009)' and `Ward (10-16 December 2009)' which were observed over north Indian Ocean during the extended solar minimum of the year 2009. This report reveals the coupling between Tropical Cyclone and MLTI region. Tropical cyclone track and data can be obtained from Indian Meteorological Department (IMD), New Delhi. Mesospheric and Ionospheric variation can be examined with the help of ground based Mesosphere Lower Thermosphere (MLT) radar and Digisonde located at equatorial low latitude station, Tirunelveli (8.7oN, 77.8oE). The Outgoing Long wave Radiation (OLR) data is used as a proxy for identifying the convective activity, which are retrieved from NOAA Climate Data Centre. It is observed that the tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. These upward propagating gravity waves deposit their energy and momentum into the upper region of atmosphere as `Travelling Ionospheric Disturbances (TIDs). During the cyclonic storm periods, we found increased gravity wave amplitude with upward propagation in the MLT region. Ionospheric response to severe cyclonic storm is examined with the dynamical parameters, foF2, hmF2, h'F2 and Total Election Content (TEC). Significant increase of foF2 frequency is observed during `Ward' cyclonic storm. Drastic variation in foF2 and h'F2 is observed during Aila cyclonic storm than ward event. More statistical analysis has been done for finding the correlation between cyclonic storm and Ionospheric parameters. Detailed results will be presented in the meeting.
Mesospheric Non-Migrating Tides Generated With Planetary Waves: II Influence of Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.
2003-01-01
We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating tides could generate in the upper mesosphere non-migrating tides with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating tides. The GWs thus affect significantly the migrating tides and PWs, the building blocks of non-migrating tides. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and tides. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating tides.
Tsuda, Toshitaka
2014-01-01
The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.
TSUDA, Toshitaka
2014-01-01
The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645
NASA Astrophysics Data System (ADS)
Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.
2013-12-01
The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.
NASA Astrophysics Data System (ADS)
Grygalashvyly, M.; Becker, E.; Sonnemann, G. R.
2012-06-01
The influence of gravity waves (GWs) on the distributions of minor chemical constituents in the mesosphere-lower thermosphere (MLT) is studied on the basis of the effective diffusivity concept. The mixing ratios of chemical species used for calculations of the effective diffusivity are obtained from numerical experiments with an off-line coupled model of the dynamics and chemistry abbreviated as KMCM-MECTM (Kuehlungsborn Mechanistic general Circulation Model—MEsospheric Chemistry-Transport Model). In our control simulation the MECTM is driven with the full dynamical fields from an annual cycle simulation with the KMCM, where mid-frequency GWs down to horizontal wavelengths of 350 km are resolved and their wave-mean flow interaction is self-consistently induced by an advanced turbulence model. A perturbation simulation with the MECTM is defined by eliminating all meso-scale variations with horizontal wavelengths shorter than 1000 km from the dynamical fields by means of spectral filtering before running the MECTM. The response of the MECTM to GWs perturbations reveals strong effects on the minor chemical constituents. We show by theoretical arguments and numerical diagnostics that GWs have direct, down-gradient mixing effects on all long-lived minor chemical species that possess a mean vertical gradient in the MLT. Introducing the term wave diffusion (WD) and showing that wave mixing yields approximately the same WD coefficient for different chemical constituents, we argue that it is a useful tool for diagnostic irreversible transport processes. We also present a detailed discussion of the gravity-wave mixing effects on the photochemistry and highlight the consequences for the general circulation of the MLT.
NASA Astrophysics Data System (ADS)
Taori, A.; Dashora, N.; Raghunath, K.; Russell, J. M., III; Mlynczak, Martin G.
2011-07-01
We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5°N, 79.2°E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted.
Gravity Waves in the Presence of Shear during DEEPWAVE
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.
2016-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.
NASA Technical Reports Server (NTRS)
Strobel, D. F.; Apruzese, J. P.; Schoeberl, M. R.
1985-01-01
The constraints on turbulence improved by the mesospheric heat budget are reexamined, and the sufficiency of the theoretical evidence to support the hypothesis that the eddy Prandtl number is greater than one in the mesosphere is considered. The mesopause thermal structure is calculated with turbulent diffusion coefficients commonly used in chemical models and deduced from mean zonal wind deceleration. It is shown that extreme mesopause temperatures of less than 100 K are produced by the large net cooling. The results demonstrate the importance of the Prandtl number for mesospheric turbulence.
NASA Astrophysics Data System (ADS)
Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.
2016-12-01
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high-altitude numerical weather prediction models.
Evolution of stationary wave patterns in mesospheric water vapor due to climate change
NASA Astrophysics Data System (ADS)
Demirhan Barı, Deniz; Gabriel, Axel; Sezginer Ünal, Yurdanur
2016-07-01
The variability in the observed stationary wave patterns of the mesospheric water vapor (H2O) is investigated using CMIP5 RCP 4.5 and RCP 8.5 projections. The change in the vertical and meridional wave structure at northern mid- and polar latitudes associated to the zonal and meridional eddy heat fluxes is discussed by analyzing the advection of H2O due to residual wind components. The alteration in the characteristics of the stationary wave-1 pattern of the lower mesospheric H2O (up to about 75km) related to change in the projected radiative forcing is observed for the years from 2006 to 2100. Additionally the remarkable effect of the increase in global temperature on the zonal asymmetries in small-scale transient waves and parameterized gravity waves, which largely contribute to the observed stationary wave patterns of H2O in the upper mesosphere, is analyzed. For validation purposes, the derived stratospheric patterns are verified against the eddy heat fluxes and residual advection terms derived from Aura/MLS satellite data between 2004-2010 and the reference period of the CMIP5 MPI dataset (1976-2005) providing confidence in the applied method.
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.
2010-01-01
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
NASA Astrophysics Data System (ADS)
Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun
2017-01-01
A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.
NASA Technical Reports Server (NTRS)
Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.
1997-01-01
In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alcantara rocket site in northeastern Brazil as part of the International Guard Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3 deg S) and magnetic (approx. 0.5 deg S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.
NASA Astrophysics Data System (ADS)
Goldberg, Richard A.; Lehmacher, Gerald A.; Schmidlin, Frank J.; Fritts, David C.; Mitchell, J. D.; Croskey, C. L.; Friedrich, M.; Swartz, W. E.
1997-11-01
In August 1994, the Mesospheric and Lower Thermospheric Equatorial Dynamics (MALTED) Program was conducted from the Alca‸ntara rocket site in northeastern Brazil as part of the International Guará Rocket Campaign to study equatorial dynamics, irregularities, and instabilities in the ionosphere. This site was selected because of its proximity to the geographic (2.3°S) and magnetic (~0.5°S) equators. MALTED was concerned with planetary wave modulation of the diurnal tidal amplitude, which exhibits considerable amplitude variability at equatorial and subtropical latitudes. Our goals were to study this global modulation of the tidal motions where tidal influences on the thermal structure are maximum, to study the interaction of these tidal structures with gravity waves and turbulence at mesopause altitudes, and to gain a better understanding of dynamic influences and variability on the equatorial middle atmosphere. Four (two daytime and two nighttime) identical Nike-Orion payloads designed to investigate small-scale turbulence and irregularities were coordinated with 20 meteorological falling-sphere rockets designed to measure temperature and wind fields during a 10-day period. These in situ measurements were coordinated with observations of global-scale mesospheric motions that were provided by various ground based radars and the Upper Atmosphere Research Satellite (UARS) through the Coupling and Dynamics of Regions Equatorial (CADRE) campaign. The ground-based observatories included the Jicamarca radar observatory near Lima, Peru, and medium frequency (MF) radars in Hawaii, Christmas Island, and Adelaide. Since all four Nike-Orion flights penetrated and overflew the electrojet with apogees near 125 km, these flights provided additional information about the electrodynamics and irregularities in the equatorial ionospheric E region and may provide information on wave coupling between the mesosphere and the electrojet. Simultaneous with these flights, the CUPRI 50-MHz radar (Cornell University) provided local sounding of the electrojet region. A description of the campaign logistics and the measurements performed with the Nike-Orion instrumentation and their implications for turbulence due to gravity waves and tidal instability in the mesosphere and lower thermosphere (MLT) are presented here. From a study of electron density fluctuations measured by rocket probes, we have found evidence for equatorial mesospheric neutral-atmospheric turbulence between 85 and 90 km. Furthermore, falling-sphere data imply that gravity wave breaking was a source for this turbulence. Mean motions and the various planetary, tidal, and gravity wave structures and their coherence and variability are the subjects of a companion paper.
NASA Astrophysics Data System (ADS)
Gudadze, N.; Chau, J. L.; Stober, G.; Latteck, R.
2016-12-01
Mesosphere-lower-thermosphere (MLT) polar dynamics are interesting and important subject for study in atmospheric physic. It is considered that mesopause region is where the main part of the Atmospheric gravity waves breaks and/or dissipates. However this region is difficult to observe. Continuous Observations of the polar summer mesosphere with the Middle Atmosphere Alomar Radar System (MAARSY) and its predecessor the ALOMAR-Wind-Radar (ALWIN) (before 2010), have been used to investigate dynamical structures of well-known phenomenon - Polar Mesosphere Summer Echoes (PMSE) which is an important tracer in the summer polar mesopause region. Signal to Noise Ratio (SNR) and Doppler radial velocity from the PMSE are used to investigate the wave-like motions with periods larger than 5 minutes. Such oscillations are studied in terms of atmospheric gravity waves (AGWs). Processes also connected with AGWs as PMSE layering, are studied in connection with the background conditions of the neutral atmosphere as well. Background winds are obtained from collocated meteor radar (MR). We used local enhancement method for the processing of altitude-time SNR images to detect layers in the PMSEs and characterised them. Our preliminary results indicate that PMSE strength and behaviour is correlated with the meridional wind. Furthermore we found that the spectral width (SW), which is a proxy of turbulence, is most of the time weakly dependent on SNR strength. However, there are some events where SW is highly dependent on SNR intensity indicating that they could be associated to turbulent-dominated events.
The role of the winter residual circulation in the summer mesopause regions in WACCM
NASA Astrophysics Data System (ADS)
Sanne Kuilman, Maartje; Karlsson, Bodil
2018-03-01
High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
NASA Astrophysics Data System (ADS)
Yasui, R.; Sato, K.; Miyoshi, Y.
2016-12-01
In the middle atmosphere, gravity waves (GWs), tides (TWs) and Rossby waves (RWs) are dominant. By interacting with the mean flow and driving the atmospheric global circulation, these waves maintain the thermal structure which is partly much different from that expected from a radiative balance. GWs are mainly generated in the troposphere and play important roles in the mesosphere. Planetary-scale RWs are dominant in the mesosphere, which are called quasi-two day waves in the summer hemisphere or 4-day waves in the winter hemisphere. However, the momentum budget of the middle atmosphere has not thoroughly examined particularly for the mesosphere and lower thermosphere (MLT). In this study, the momentum budget in the MLT region is examined in terms of respective contribution by these waves by using a satellite data and a whole atmosphere model data. Analyzed data are the temperature and geopotential height data from Aura MLS observation as a satellite data and the neutral atmosphere data from the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA), which is a whole atmosphere model. The analyzed period is about 11 years from 8 August 2004 to 19 June 2015. For the RW component, EPFD is significantly positive in the summer mesosphere. Strong upward EPF above the positive EPFD region is extended up to 110 km in the lower thermosphere. By potential vorticity (PV) analysis, it seems that RWs associated with this strong upward EPF are radiated from the PV maximum in the summer mesosphere. This PV maximum is caused by increase in both static stability and relative vorticity due to parameterized GW forcing in GAIA model. Interestingly, there are significant resolved GW components having strong EPF and EPFD. In the summer MLT region, eastward GWs with downward EPF are dominant particularly above the PV maximum. The frequency of Richardson number (Ri) smaller than 1/4 is higher in this region, suggesting that the GW are generated by shear instability in the summer MLT region.
Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)
NASA Technical Reports Server (NTRS)
Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.
2003-01-01
For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.
Temporal variability of gravity wave drag - vertical coupling and possible climate links
NASA Astrophysics Data System (ADS)
Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr
2017-04-01
In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.
NASA Astrophysics Data System (ADS)
Singh, Ravindra P.; Pallamraju, Duggirala
2017-08-01
This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric altitudes.
Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.
2003-01-01
We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.
On the Possible Anticorrelation of Polar Mesospheric (Noctilucent) Clouds and Aurorae.
1986-08-01
that sudden aurorally induced heating may generate these waves. Testud (1970) made some numerical computations which show that heating can create...Nitrogen from 50-120 km, II. D-region ion chemistry and the winter anomaly. J. Geophys. Res., 87, 7206. Testud , J., 1970: Gravity waves generated during
Investigating gravity waves evidences in the Venus upper atmosphere
NASA Astrophysics Data System (ADS)
Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide
2014-05-01
We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.
Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)
2000-01-01
We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.
NASA Astrophysics Data System (ADS)
Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.
2010-09-01
Rayleigh lidar observations at Gadanki (13.5°N, 79.2°E) show an enhancement of the nightly mean temperature by 10-15 K at altitudes 70-80 km and of gravity wave potential energy at 60-70 km during the 2009 major stratospheric warming event. An enhanced quasi-16-day wave activity is observed at 50-70 km in the wavelet spectrum of TIMED-SABER temperatures, possibly due to the absence of a critical level in the low-latitude stratosphere because of less westward winds caused by this warming event. The observed low-latitude mesospheric warming could be due to wave breaking, as waves are damped at 80 km.
NASA Astrophysics Data System (ADS)
Pautet, P.-D.; Taylor, M. J.; Fritts, D. C.; Bossert, K.; Williams, B. P.; Broutman, D.; Ma, J.; Eckermann, S. D.; Doyle, J. D.
2016-02-01
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) project was conducted over New Zealand and the surrounding regions during June and July 2014, to more fully understand the generation, propagation, and effects of atmospheric gravity waves. A large suite of instruments collected data from the ground to the upper atmosphere (~100 km), with several new remote-sensing instruments operating on board the NSF Gulfstream V (GV) research aircraft, which was the central measurement platform of the project. On 14 July, during one of the research flights (research flight 23), a spectacular event was observed as the GV flew in the lee of the sub-Antarctic Auckland Islands (50.7°S). An apparent "ship wave" pattern was imaged in the OH layer (at ~83.5 km) by the Utah State University Advanced Mesospheric Temperature Mapper and evolved significantly over four successive passes spanning more than 4 h. The waves were associated with orographic forcing generated by relatively strong (15-20 m/s) near-surface wind flowing over the rugged island topography. The mountain wave had an amplitude T' ~ 10 K, a dominant horizontal wavelength ~40 km, achieved a momentum flux exceeding 300 m2 s-2, and eventually exhibited instability and breaking at the OH altitude. This case of deep mountain wave propagation demonstrates the potential for strong responses in the mesosphere arising from a small source under suitable propagation conditions and suggests that such cases may be more common than previously believed.
Middle Atmosphere Program. Handbook for MAP. Volume 30: International School on Atmospheric Radar
NASA Technical Reports Server (NTRS)
Fukao, Shoichiro (Editor)
1989-01-01
Broad, tutorial coverage is given to the technical and scientific aspects of mesosphere stratosphere troposphere (MST) meteorological radar systems. Control issues, signal processing, atmospheric waves, the historical aspects of radar atmospheric dynamics, incoherent scatter radars, radar echoes, radar targets, and gravity waves are among the topics covered.
Is chemical heating a major cause of the mesosphere inversion layer?
NASA Technical Reports Server (NTRS)
Meriwether, John W.; Mlynczak, Martin G.
1995-01-01
A region of thermal enhancement of the mesosphere has been detected on numerous occasions by in situ measurements, remote sensing from space, and lidar techniques. The source of these 'temperature inversion layers' has been attributed in the literature to the dissipation relating to dynamical forcing by gravity wave or tidal activity. However, evidence that gravity wave breaking can produce the inversion layer with amplitude as large as that observed in lidar measurements has been limited to results of numerical modeling. An alternative source for the production of the thermal inversion layer in the mesosphere is the direct deposition of heat by exothermic chemical reactions. Two-dimensional modeling combining a comprehensive model of the mesosphere photochemistry with the dynamical transport of long-lived species shows that the region from 80 to 95 km may be heated as much as 3 to 10 K/d during the night and half this rate during the day. Given the uncertainties in our understanding of the dynamics and chemistry for the mesopause region, separating the two sources by passive observations of the mesosphere thermal structure looks to be difficult. Therefore we have considered an active means for producing a mesopause thermal layer, namely the release of ozone into the upper mesosphere from a rocket payload. The induced effects would include artificial enhancements of the OH and Na airglow intensities as well as the mesopause thermal structure. The advantages of the rocket release of ozone is that detection of these effects by ground-based imaging, radar, and lidar systems and comparison of these effects with model predictions would help quantify the partition of the artificial inversion layer production into sources of dynamical and chemical forcing.
Case study of convective instability observed in airglow images over the Northeast of Brazil
NASA Astrophysics Data System (ADS)
Carvalho, A. J. A.; Paulino, I.; Medeiros, A. F.; Lima, L. M.; Buriti, R. A.; Paulino, A. R.; Wrasse, C. M.; Takahashi, H.
2017-02-01
An intense activity of ripples during the nighttime was observed in airglow images over São João do Cariri (36.5° W, 7.4° S) on 10 October 2004 which lasted for two hours. Those ripples appeared simultaneously with the crossing of a mesospheric front and medium scale gravity waves. The ripples occurred ahead of the mesospheric front and their phase front were almost parallel to the phase of the mesospheric front and were almost perpendicular to the phase front of the gravity wave. Using wind measurements from a meteor radar located at São João do Cariri and simultaneous vertical temperature profiles from the TIMED/SABER satellite, on the night of the events and within the imager field of view, the atmospheric background environment in the mesosphere and lower thermosphere (MLT) was investigated in order to understand the instability process that caused the appearance of the ripples. Dynamic and convective instabilities have been pointed out as responsible for creation of ripples in the MLT. The observed ripples were advected by the neutral wind, they occurred into a region with negative lapse rate of the potential temperature and the Richardson number was negative as well. According to these characteristics, the ripple structures could be generated in the MLT region due to the predominance of convective instability.
Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland
NASA Astrophysics Data System (ADS)
Lainer, Martin; Hocke, Klemens; Rüfenacht, Rolf; Kämpfer, Niklaus
2017-12-01
Observations of oscillations in the abundance of middle-atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long-term, high-temporal-resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare but would facilitate better understanding of the impact of atmospheric waves on the middle atmosphere. Here we report on water vapor measurements from the ground-based microwave radiometer MIAWARA (MIddle Atmospheric WAter vapor RAdiometer) located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 h are analyzed in the pressure range 0.02-2 hPa. Seven out of 12 months have the highest wave amplitudes between 15 and 21 h periods in the mesosphere above 0.1 hPa. The quasi 18 h wave signature in the water vapor tracer is studied in more detail by analyzing its temporal evolution in the mesosphere up to an altitude of 75 km. Eighteen-hour oscillations in midlatitude zonal wind observations from the microwave Doppler wind radiometer WIRA (WInd RAdiometer) could be identified within the pressure range 0.1-1 hPa during an ARISE (Atmospheric dynamics Research InfraStructure in Europe)-affiliated measurement campaign at the Observatoire de Haute-Provence (355 km from Bern) in France in 2013. The origin of the observed upper-mesospheric quasi 18 h oscillations is uncertain and could not be determined with our available data sets. Possible drivers could be low-frequency inertia-gravity waves or a nonlinear wave-wave interaction between the quasi 2-day wave and the diurnal tide.
Interhemispheric Asymmetry in the Mesosphere and Lower Thermosphere Observed by SABER/TIMED
NASA Astrophysics Data System (ADS)
Yee, J. H.
2017-12-01
In this paper we analyze nearly 15 years of satellite observations of temperature, airglow, and composition in the Mesosphere and Lower Thermosphere (MLT) to quantify their interhemispheric asymmetries ao one can provide quantitative links between observed asymmetries and the spatial and temporal variations of the gravity wave activity. Two processes are believed to be responsible for observed interhemispheric differences in the MLT. The first is the direct radiation effect from the eccentricity of the Earth orbit amd the other is the difference in gravity wave source distribution and filtering due to asymmetries in mean winds of the lower atmosphere. Both processes have been theoretically investigated to explain the observed asymmetry in some of the atmospheric parameters, but not self-consistently in all observed parameters together. In this paper we will show the asymmetry in the time-varying zonal-mean latitudinal structures of temperature, airglow emission rate, and composition observed by TIMED/SABER. We will quantify their interhemispheric asymmetries for different seasons under different solar activity conditions. In addition, temperature measurements will also be used to obtain temporal and spatial morphology of gravity wave potential energies. We will interpret the asymmetry in the observed fields and examine qualitatively their consistency with the two responsible processes, especially the one due to gravity wave filtering process. Our goal is to introduce and to share the spatial and temporal morphologies of all the observed fields to the modeling community so, together self-consistently, they be can be used to gain physical insights into the relative importance of various drivers responsible for the observed asymmetry, especially the role of gravity wave induced eddy drag and mixing, a critical, but least quantitatively understood process.
Planetary and Gravity Waves in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Vincent, R. A.
1985-01-01
Rocket and ground based studies of the mesosphere and lower thermosphere show that waves play an important role in the dynamics of their region. The waves manifest themselves in wind, temperature, density, pressure, ionization and airglow fluctuations in the 80-120 km height range. Rockets have enabled the density and temperature structure to be measured with excellent height resolution, while long term studies of wind motions using MST, partial reflection and meteor radars and, more recently, lidar investigations of temperature and density, have enabled the temporal behaviour of the waves to be better understood. A composite of power spectra is shown of wind motions measured near the mesopause at widely separated locations and illustrates how wave energy is distributed as a function of frequency. The spectra show three distinct parts; (1) a long period section corresponding to periods longer than 24 h; (2) a section between 12 and 24 h priod where the spectra are dominated by narrow; peaks associated with the semidiurnal and diurnal tides and (3) a section at periods less than 12 h where the spectral density decreases montonically (except for the 8 h tidal peak). The long period section is associated with transient planetary scale waves while the short period motions are caused by gravity waves.
Response of mesospheric ozone to the heating of the lower ionosphere by high-power HF radio emission
NASA Astrophysics Data System (ADS)
Kulilov, Yu. Yu.; Frolov, V. L.; Grigor'ev, G. I.; Demkin, V. M.; Komrakov, G. P.; Krasilnokov, A. A.; Ryskin, V. G.
2013-01-01
We detected a decrease in the intensity of microwave radiation at the atmospheric ozone line at a frequency of 110836.04 MHz during ionospheric modification by high-power HF radiowaves radiated by the Sura Ionospheric Heating Facility. The obtained experimental data allowed us to hypothesize that this effect was caused by the fact that mesospheric ozone was affected by internal gravity waves generated in the E region of the ionosphere during its high-power HF radiowave heating.
The quasi 2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA
NASA Astrophysics Data System (ADS)
Wang, Jack C.; Chang, Loren C.; Yue, Jia; Wang, Wenbin; Siskind, D. E.
2017-05-01
The quasi 2 day wave (QTDW) is a traveling planetary wave that can be enhanced rapidly to large amplitudes in the mesosphere and lower thermosphere (MLT) region during the northern winter postsolstice period. In this study, we present five case studies of QTDW events during January and February 2005, 2006 and 2008-2010 by using the Thermosphere-Ionosphere-Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) nudged with the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) Weather Forecast Model. With NOGAPS-ALPHA introducing more realistic lower atmospheric forcing in TIME-GCM, the QTDW events have successfully been reproduced in the TIME-GCM. The nudged TIME-GCM simulations show good agreement in zonal mean state with the NOGAPS-ALPHA 6 h reanalysis data and the horizontal wind model below the mesopause; however, it has large discrepancies in the tropics above the mesopause. The zonal mean zonal wind in the mesosphere has sharp vertical gradients in the nudged TIME-GCM. The results suggest that the parameterized gravity wave forcing may need to be retuned in the assimilative TIME-GCM.
Mean winds and momemtum fluxes over Jicamarca, Peru, during June and August 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchman, M.H.; Bywaters, K.W.; Fritts, D.C.
1992-12-15
Data from the mesophere-stratosphere-troposphere (MST) radar at Jicamarca, Peru, together with other available data, are used to diagnose the mean structure of winds and gravity-wave momentum fluxes from the surface to 90 km during two ten-day campaigns in June and August of 1987. In the stratosphere a layer of maximum eastward flow associated with the quasi-biennial oscillation (QBO) was seen to strengthen and descend rapidly from June to August, overlying persitent westward flow. A layer of enhanced signal return, suggestive of a turbulent layer, was observed just above the descending QBO eastward maximum. Notable zonal asymmetries were present during thismore » transition and the local meridional circulation departed form zonal-mean QBO theory. A substantial northeastward momentum flux was found below 25 km, which may be related to topographic gravity waves excited by southeastward flow across the Andes. In the lower mesosphere a relatively weak second mesopause semiannual oxcillation is confirmed. Gravity-wave zonal and meridional momentum fluxes usually opposed the flow, yielding body forces of [approximately]10-100 ms[sup [minus]1] day [sup [minus]1]. In both the lower stratosphere and mesosphere, body forces were comparable in magnitude to inferred Coriolis torques. 52 refs., 9 figs.« less
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)
2000-01-01
Our Numerical Spectral Model (NSM), which extends from the ground up into the thermosphere, is non-linear, time-dependent and has been employed for 2D and 3D applications. The standard version of the NSM incorporates Hines' Doppler Spread Parameterization for small scale gravity waves (GW), but planetary waves generated in the troposphere have also been incorporated. The NSM has been applied to describe: (1) the anomalous seasonal variations of the zonal circulation and temperature in the upper mesosphere, (2) the equatorial oscillations (quasi-biennial and semi-annual oscillations (QBO and SAO)) extending from the stratosphere into the upper mesosphere, (3) the diurnal and semi-diurnal tides, and (4) the planetary waves that are excited in the mesosphere. With the emphasis to provide understanding, we present here results from numerical experiments with the NSM that shed light on the GW processes that are of central importance in the mesosphere and lower thermosphere. These are our conclusions: (1) The large semiannual variations in the diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength, but variations in eddy viscosity associated with GW interactions are also important. (2) The semidiurnal tide (SDT) and its phase in particular, is strongly influenced by the mean zonal circulation. The SDT, individually, is also amplified by GW. But the DT filters out GW such that the GW interaction effectively reduces the amplitude of the SDT, producing a strong nonlinear interaction between the DT and SDT. (3) Without external time dependent energy or momentum sources, planetary waves (PW) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 40 m/s and periods between 50 and 2 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW induced reversal in the latitudinal temperature gradient) is playing an important role. Numerical experiment show that GW, directly, also greatly amplify the PW. A common feature of the PW generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large, which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PW propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter at altitudes below 80 km. (4) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT. In summary we conclude that GW play major roles in generating and amplifying the dynamical components in the MLT region and, acting principally through wave filtering, produce important non-linear interactions between the components.
The Influence of Planetary Waves on Polar Mesospheric Clouds
NASA Astrophysics Data System (ADS)
France, J. A.; Randall, C. E.; Harvey, L.; Siskind, D. E.; Lumpe, J. D.; Bailey, S. M.; Carstens, J. N.; Russell, J. M., III
2016-12-01
Polar mesospheric clouds (PMCs) form as a result of low temperatures and enhanced water vapor near the polar summer mesospause. These conditions occur as a result of upwelling associated with the upper branch of the gravity wave-driven global residual circulation, and are sensitive to changes in planetary wave breaking in the winter hemisphere through interhemispheric coupling (IHC). Observations by the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite show an anomalous decline in northern hemisphere PMCs in August 2014. The decline is attributed to IHC triggered by planetary wave activity in the Antarctic stratosphere. The results indicate that the IHC in 2014 occurred via a pathway that previous studies have not emphasized. Based on Aura Microwave Limb Sounder data, we suggest that shifts in zonal winds in the summer stratosphere triggered a circulation change that led to the observed PMC decline. We also show that the 5-day planetary wave modulates the response to IHC, in that PMCs persist in the trough when zonal mean temperatures are too high to support PMCs, and are absent in the ridge when mean temperatures are low enough to support PMCs.
Martian atmospheric gravity waves simulated by a high-resolution general circulation model
NASA Astrophysics Data System (ADS)
Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul
2016-07-01
Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.
Effect of Small-Scale Gravity Waves on Polar Mesospheric Clouds Observed From CIPS/AIM
NASA Astrophysics Data System (ADS)
Gao, Haiyang; Li, Licheng; Bu, Lingbing; Zhang, Qilin; Tang, Yuanhe; Wang, Zhen
2018-05-01
Data from the Cloud Imaging and Particle Size experiment on the Aeronomy of Ice in the Mesosphere (AIM) satellite are employed to study the impact of small-scale gravity wave (GW) on albedo, ice water content (IWC), and particle radius (PR) of polar mesospheric clouds. Overall, 23,987 eligible GW events, with a horizontal wavelength of 20-150 km are eventually extracted from Cloud Imaging and Particle Size level 2 orbit albedo maps during 2007-2011. The overall statistical results show that when small-scale GWs travel horizontally in polar mesospheric clouds, they can amplify the albedo and IWC by a rate of 10.0-22.6%, while reducing the PR by as much as -7.01%. Owing to the strong temporal and spatial dependences, the albedo and IWC variations are larger on an average during the core of the season, while they decrease during the initial and final periods of the season. The obvious zonal asymmetries are also found. The albedo variations show a positive linear relation with the GW amplitudes in albedo, as opposed to a negative linear relation with GW horizontal wavelengths. In most of the GW events, the periodic variation in the trend of albedo exhibits an anticorrelation with that of PR. Combining previous research studies with our results, we deduce that the rapid change in particle concentration and the upward movement of water vapor by GWs may be very important aspects for explaining the influence mechanism.
NASA Astrophysics Data System (ADS)
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Evidence of Tropospheric 90 Day Oscillations in the Thermosphere
NASA Astrophysics Data System (ADS)
Gasperini, F.; Hagan, M. E.; Zhao, Y.
2017-10-01
In the last decade evidence demonstrated that terrestrial weather greatly impacts the dynamics and mean state of the thermosphere via small-scale gravity waves and global-scale solar tidal propagation and dissipation effects. While observations have shown significant intraseasonal variability in the upper mesospheric mean winds, relatively little is known about this variability at satellite altitudes (˜250-400 km). Using cross-track wind measurements from the Challenging Minisatellite Payload and Gravity field and steady-state Ocean Circulation Explorer satellites, winds from a Modern-Era Retrospective Analysis for Research and Applications/Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model simulation, and outgoing longwave radiation data, we demonstrate the existence of a prominent and global-scale 90 day oscillation in the thermospheric zonal mean winds and in the diurnal eastward propagating tide with zonal wave number 3 (DE3) during 2009-2010 and present evidence of its connection to variability in tropospheric convective activity. This study suggests that strong coupling between the troposphere and the thermosphere occurs on intraseasonal timescales.
Middle atmosphere dynamical sources of the semiannual oscillation in the thermosphere and ionosphere
NASA Astrophysics Data System (ADS)
Jones, M.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.
2017-01-01
The strong global semiannual oscillation (SAO) in thermospheric density has been observed for five decades, but definitive knowledge of its source has been elusive. We use the National Center of Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) to study how middle atmospheric dynamics generate the SAO in the thermosphere-ionosphere (T-I). The "standard" TIME-GCM simulates, from first principles, SAOs in thermospheric mass density and ionospheric total electron content that agree well with observed climatological variations. Diagnosis of the globally averaged continuity equation for atomic oxygen ([O]) shows that the T-I SAO originates in the upper mesosphere, where an SAO in [O] is forced by nonlinear, resolved-scale variations in the advective, net tidal, and diffusive transport of O. Contrary to earlier hypotheses, TIME-GCM simulations demonstrate that intra-annually varying eddy diffusion by breaking gravity waves may not be the primary driver of the T-I SAO: A pronounced SAO is produced without parameterized gravity waves.
A climatology of gravity wave parameters based on satellite limb soundings
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin
2017-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.
NASA Astrophysics Data System (ADS)
Takeo, D.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Nakamura, T.; Yamamoto, M.
2017-08-01
We analyzed the horizontal phase velocity of gravity waves and medium-scale traveling ionospheric disturbances (MSTIDs) by using the three-dimensional fast Fourier transform method developed by Matsuda et al. (2014) for 557.7 nm (altitude: 90-100 km) and 630.0 nm (altitude: 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8°N, 136.1°E, dip angle: 49°) over ˜16 years from 16 March 1999 to 20 February 2015. The analysis of 557.7 nm airglow images shows clear seasonal variation of the propagation direction of gravity waves in the mesopause region. In spring, summer, fall, and winter, the peak directions are northeastward, northeastward, northwestward, and southwestward, respectively. The difference in east-west propagation direction between summer and winter is probably caused by the wind filtering effect due to the zonal mesospheric jet. Comparison with tropospheric reanalysis data shows that the difference in north-south propagation direction between summer and winter is caused by differences in the latitudinal location of wave sources due to convective activity in the troposphere relative to Shigaraki. The analysis of 630.0 nm airglow images shows that the propagation direction of MSTIDs is mainly southwestward with a minor northeastward component throughout the 16 years. A clear negative correlation is seen between the yearly power spectral density of MSTIDs and F10.7 solar flux. This negative correlation with solar activity may be explained by the linear growth rate of the Perkins instability and secondary wave generation of gravity waves in the thermosphere.
NASA Astrophysics Data System (ADS)
Matthias, Vivien; Ern, Manfred
2018-04-01
The midwinter 2015/2016 was characterized by an unusually strong polar night jet (PNJ) and extraordinarily large stationary planetary wave (SPW) amplitudes in the subtropical mesosphere. The aim of this study is, therefore, to find the origin of these mesospheric SPWs in the midwinter 2015/2016 study period. The study duration is split into two periods: the first period runs from late December 2015 until early January 2016 (Period I), and the second period from early January until mid-January 2016 (Period II). While the SPW 1 dominates in the subtropical mesosphere in Period I, it is the SPW 2 that dominates in Period II. There are three possibilities explaining how SPWs can occur in the mesosphere: (1) they propagate upward from the stratosphere, (2) they are generated in situ by longitudinally variable gravity wave (GW) drag, or (3) they are generated in situ by barotropic and/or baroclinic instabilities. Using global satellite observations from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) the origin of the mesospheric SPWs is investigated for both time periods. We find that due to the strong PNJ the SPWs were not able to propagate upward into the mesosphere northward of 50° N but were deflected upward and equatorward into the subtropical mesosphere. We show that the SPWs observed in the subtropical mesosphere are the same SPWs as in the mid-latitudinal stratosphere. Simultaneously, we find evidence that the mesospheric SPWs in polar latitudes were generated in situ by longitudinally variable GW drag and that there is a mixture of in situ generation by longitudinally variable GW drag and by instabilities at mid-latitudes. Our results, based on observations, show that the abovementioned three mechanisms can act at the same time which confirms earlier model studies. Additionally, the possible contribution from, or impact of, unusually strong SPWs in the subtropical mesosphere to the disruption of the quasi-biennial oscillation (QBO) in the same winter is discussed.
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Jackman, Charles H. (Technical Monitor)
2000-01-01
This report provides a broad outline of the total body of research conducted during the past three years. We report on detailed model studies of the precise way in which infrared limb scanning satellites explicitly detect gravity waves, and use these insights to resolve earlier discrepant zonal mean estimates of gravity wave variances from satellite limb scanners. Detailed analysis of CRISTA temperature fluctuations are outlined, which provide new global information on long-wavelength stratospheric gravity waves generated by mountains, tropical convection and the mid-latitude jet stream- vortex system, as well as interactions higher in the mesosphere with the diurnal tide. The detailed insights gained from analyzing CRISTA data are applied to provide a multi- year analysis of stratospheric mountain waves over the Andes evident in MLS limb-track data. We also demonstrate for the first time that stratospheric temperature data from the CLAES instrument on UARS resolved gravity waves, and we highlight mountain wave information in a subset of these data. Final conclusions and recommendations are set forth, and the present findings are directly related to the original goals of the research contract. A full list of publications that resulted from this research is provided.
Long-Term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.
2000-01-01
This report provides a broad outline of the total body of research conducted during the past three years. We report on detailed model studies of the precise way in which infrared limb scanning satellites explicitly detect gravity waves, and use these insights to resolve earlier discrepant zonal mean estimates of gravity wave variances from satellite limb scanners. Detailed analysis of CRISTA temperature fluctuations are outlined, which provide new global information on long-wavelength stratospheric gravity waves generated by mountains, tropical convection and the mid-latitude jet stream-vortex system, as well as interactions higher in the mesosphere with the diurnal tide. The detailed insights gained from analyzing CRISTA data are applied to provide a multiyear analysis of stratospheric mountain waves over the Andes evident in MLS limb-track data. We also demonstrate for the first time that stratospheric temperature data from the CLAES instrument on UARS resolved gravity waves, and we highlight mountain wave information in a subset of these data. Final conclusions and recommendations are set forth, and the present findings are directly related to the original goals of the research contract. A full list of publications that resulted from this research is provided.
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.
2014-12-01
ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.
Aeronomy of Ice in the Mesosphere (AIM)
NASA Technical Reports Server (NTRS)
2003-01-01
The overall goal of the Aeronomy of Ice in the Mesosphere (AIM) experiment is to resolve why Polar Mesospheric Clouds form and why they vary. By measuring PMCs and the thermal, chemical and dynamical environment in which they form, we will quanti@ the connection between these clouds and the meteorology of the polar mesosphere. In the end, this will provide the basis for study of long-term variability in the mesospheric climate and its relationship to global change. The results of AIM will be a rigorous validation of predictive models that can reliably use past PMC changes and present trends as indicators of global change. The AIM goal will be achieved by measuring PMC extinction, brightness, spatial distribution, particle size distributions, gravity wave activity, dust influx to the atmosphere and precise, vertical profile measurements of temperature, H20, C&, 0 3 , C02, NO. and aerosols. These data can only be obtained by a complement of instruments on an orbiting spacecraft (S/C).
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Jones, M., Jr.; Picone, J. M.; Drob, D. P.; Siskind, D. E.
2017-12-01
The thermosphere-ionosphere (T-I) exhibits a strong ( ±20%) semiannual oscillation (SAO) in globally averaged mass and electron density; the source of the SAO is still unclear. Two prominent proposed mechanisms are: (1) the "thermospheric spoon" mechanism (TSM) [Fuller-Rowell, 1998], which is a resolved-scale, seasonally dependent mixing process that drives an SAO through interhemispheric meridional and vertical transport of constituents and (2) seasonal variations in eddy diffusion (Kzz) associated with breaking gravity waves ("Kzz hypothesis") [Qian et al. 2009]. In this study, we use the National Center for atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to investigate the source of the T-I SAO. We performed numerical experiments over a continuous calendar year assuming constant solar and geomagnetic forcing and several configurations of lower atmospheric tidal forcing, lower atmospheric gravity wave forcing, and the obliquity of Earth's rotational axis with respect to the ecliptic plane. The prominent results are as follows: (1) In the absence of lower atmospheric gravity wave and tidal forcing a 30% SAO in globally averaged mass density (with respect to its global annual average) is simulated in the TIME-GCM, suggesting that seasonally-varying Kzz driven by breaking gravity waves is not the primary driver of the T-I SAO; (2) When the Earth's obliquity is set to zero (i.e., perpetual equinox) the T-I SAO is reduced to 2%; (3) When Earth's obliquity is set to 11.75° (i.e., half its actual value), the mass density SAO is 10%; (4) The meridional and vertical transport patterns in the simulations are consistent with the TSM, except that coupling with the upper mesospheric circulation also contributes to the T-I SAO; and (5) Inclusion of lower atmospheric tidal and gravity wave forcing weakens the TSM and thus damps the T-I SAO. These results suggest that the TSM accurately describes the primary source of the T-I SAO.
QBO Modulation of the Mesopause Gravity Wave Momentum Flux over Tierra del Fuego
NASA Technical Reports Server (NTRS)
De Wit, R. J.; Janches, D.; Fritts, D. C.; Hibbins, R. E.
2016-01-01
The interannual variability of the mesosphere and lower thermosphere (MLT) gravity wave momentum flux over southern mid latitudes (53.7degS) has been studied using more than 7 years of meteor radar observations at Ro Grande, Argentina. A modulation, with periods similar to that of the equatorial stratospheric quasi-biennial oscillation (QBO), is observed in the vertical flux of zonal as well as meridional momentum. The QBO signal is largest in the zonal component during summer and is in phase with the stratospheric QBO at 50 hPa (approx. 21 km). The relation between the stratospheric QBO and the QBO modulation in the MLT gravity wave forcing (derived from the divergence of the momentum flux) was found to be consistent with that expected from the Holton-Tan effect coupled to the interhemispheric coupling mechanism. These results provide the first observational support for the existence of the midlatitude gravity wave forcing anomalies as hypothesized in the interhemispheric coupling mechanism.
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
NASA Astrophysics Data System (ADS)
Yuan, T.; Heale, C. J.; Snively, J. B.
2016-12-01
Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper (MTM) at Bear Lake Observatory (BLO) [41.9°N, 111.4°W], we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W) that occurred on September 2nd, 2011, to study the waves' evolution as a packet propagates upward. The lidar observed temperature perturbation was dominated by close to a 1-hour modulation at 100 km during the early hours, but gradually evolved into a 1.5-hour modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is utilized to simulate the observed GW processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.
Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Jee, Geonhwa; Kim, Jeong-Han; Lee, Changsup; Kim, Yong Ha
2014-06-01
Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere
Gravity Wave Detection through All-sky Imaging of Airglow
NASA Astrophysics Data System (ADS)
Nguyen, T. V.; Martinez, A.; Porat, I.; Hampton, D. L.; Bering, E., III; Wood, L.
2017-12-01
Airglow, the faint glow of the atmosphere, is caused by the interaction of air molecules with radiation from the sun. Similarly, the aurora is created by interactions of air molecules with the solar wind. It has been shown that airglow emissions are altered by gravity waves passing through airglow source region (100-110km), making it possible to study gravity waves and their sources through airglow imaging. University of Houston's USIP - Airglow team designed a compact, inexpensive all-sky imager capable of detecting airglow and auroral emissions using a fisheye lens, a simple optical train, a filter wheel with 4 specific filters, and a CMOS camera. This instrument has been used in USIP's scientific campaign in Alaska throughout March 2017. During this period, the imager captured auroral activity in the Fairbanks region. Due to lunar conditions and auroral activity images from the campaign did not yield visible signs of airglow. Currently, the team is trying to detect gravity wave patterns present in the images through numerical analysis. Detected gravity wave patterns will be compared to local weather data, and may be used to make correlations between gravity waves and weather events. Such correlations could provide more data on the relationship between the mesosphere and lower layers of the atmosphere. Practical applications of this research include weather prediction and detection of air turbulence.
NASA Astrophysics Data System (ADS)
Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.
2016-07-01
Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 hPa. The presence of these waves and oscillations right from upper troposphere to lower thermosphere simultaneously is noticed. Though these waves are expected to have higher wave number (higher horizontal wave lengths) few important differences are noticed between Tirupati and Thumba, that are separated by only 500 km. The implication of these waves and oscillations on the background atmosphere and vice versa are discussed. Thus, installation of SVU meteor radar made good complementary observations that can be effectively used to investigate vertical and lateral coupling. Role of these tides in modulating the mesopause altitude is further investigated using the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. It is found that mesopause altitude is always close to 100 km and is strongly affected by gravity waves, tides and planetary waves.
Gravity-wave spectra in the atmosphere observed by MST radar, part 4.2B
NASA Technical Reports Server (NTRS)
Scheffler, A. O.; Liu, C. H.
1984-01-01
A universal spectrum of atmospheric buoyancy waves is proposed based on data from radiosonde, Doppler navigation, not-wire anemometer and Jimsphere balloon. The possible existence of such a universal spectrum clearly will have significant impact on several areas in the study of the middle atmosphere dynamics such as the parameterization of sub-grid scale gravity waves in global circulation models; the transport of trace constituents and heat in the middle atmosphere, etc. Therefore, it is important to examine more global wind data with temporal and spatial resolutions suitable for the investigation of the wave spectra. Mesosphere-stratosphere-troposphere (MST) radar observations offer an excellent opportunity for such studies. It is important to realize that radar measures the line-of-sight velocity which, in general, contains the combination of the vertical and horizontal components of the wave-associated particle velocity. Starting from a general oblique radar observation configuration, applying the dispersion relation for the gravity waves, the spectrum for the observed fluctuations in the line-of-sight gravity-wave spectrum is investigated through a filter function. The consequence of the filter function on data analysis is discussed.
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
NASA Astrophysics Data System (ADS)
Singh, Ravindra P.; Pallamraju, Duggirala
2016-06-01
Mesospheric nightglow intensities at three emissions (O2(0-1), OH(6-2) bands, and Na(589.3 nm)) from a low-latitude location, Gurushikhar, Mount Abu (24.6°N, 72.8°E), in India, showed similar wave features on 26 October 2014 with a common periodicity of around 4 h. A convective activity due to the cyclone Nilofar, which had developed in the Arabian Sea during 25-31 October 2014, was found to be the source as this too showed a gravity wave period coherent with that of the mesospheric emissions on the 26th. The periodicities at the source region were obtained using outgoing longwave radiation fluxes (derived from Kalpana-1 satellite) which were used as a tracer of tropospheric activity. Cyclone Nilofar had two centers located at a distance of 1103 and 1665 km from the observational station. From the phase offset in time between residuals of O2 and OH emission intensities and the observed common periodicity the vertical phase speed and wavelength have been found to be 1.13 ms-1 and 16.47 km. From the wavelet analyses it is seen that the travel time of the wave from the convection region to O2 emission height was around 8.1 h. From these observations the horizontal phase speed and wavelength of the wave in the mesosphere were calculated to be 37.8 ms-1 and 553 km. These results thus provide not only unambiguous evidence on the vertical coupling of atmospheres engendered by the tropical cyclone Nilofar but also the characteristics of waves that exist during such cyclonic events.
Modulation of Gravity Waves by Tides as Seen in CRISTA Temperatures
NASA Technical Reports Server (NTRS)
Preusse, P.; Eckermann, S. D.; Oberheide, J.; Hagan, M. E.; Offermann, D.
2001-01-01
During shuttle missions STS-66 (November, 1994) and STS-85 (August, 1997) the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) acquired temperature data with very high spatial resolution. These are analyzed for gravity waves (GW). The altitude range spans the whole middle atmosphere from the tropopause up to the mesopause. In the upper mesosphere tidal amplitudes exceed values of 10 K. Modulation of GW activity by the tides is observed and analyzed using CRISTA temperatures and tidal predictions of the Global Scale Wave Model (GSWM). The modulation process is identified as a tidally-induced change of the background buoyancy frequency. The findings agree well with the expectations for saturated GW and are the first global scale observations of this process.
Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.
2004-01-01
In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.
First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System
NASA Astrophysics Data System (ADS)
La Hoz, C.
2015-12-01
Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a gigantic refrigerator that cools the polar mesospheres in summer. Momentum flux investigations will be the subject of a separate report.
Small-Scale Dynamical Structures Using OH Airglow From Astronomical Observations
NASA Astrophysics Data System (ADS)
Franzen, C.; Espy, P. J.; Hibbins, R. E.; Djupvik, A. A.
2017-12-01
Remote sensing of perturbations in the hydroxyl (OH) Meinel airglow has often been used to observe gravity, tidal and planetary waves travelling through the 80-90 km region. While large scale (>1 km) gravity waves and the winds caused by their breaking are widely documented, information on the highest frequency waves and instabilities occurring during the breaking process is often limited by the temporal and spatial resolution of the available observations. In an effort to better quantify the full range of wave scales present near the mesopause, we present a series of observations of the OH Meinel (9,7) transition that were executed with the Nordic Optical Telescope on La Palma (18°W, 29°N). These measurements have a 24 s repetition rate and horizontal spatial resolutions at 87 km as small as 10 cm, allowing us to quantify the transition in the mesospheric wave domains as the gravity waves break. Temporal scales from hours to minutes, as well as sub-100 m coherent structures in the OH airglow have been observed and will be presented.
NASA Astrophysics Data System (ADS)
Yang, C.; Li, T.; Smith, A. K.; Dou, X.
2017-12-01
Using the Specified-Dynamic (SD) Whole Atmosphere Community Climate Model (WACCM), we investigated the effects of the Madden-Julian oscillation (MJO) on the mid-winter stratosphere and mesosphere in the southern hemisphere (SH). The most significant responses of the SH polar cap temperature to the MJO are found 30 days after MJO Phase 1 (P1) and 10 days after the MJO Phase 5 (P5) in both the ERA-interim reanalysis and the SD-WACCM simulation. The 200 and 500 hPa geopotential height anomalies in the SH reveal that wave trains emanate from the Indian and Pacific Oceans when the MJO convection is enhanced in the eastern Indian Ocean and the western Pacific. As a result, the upward propagation and dissipation of planetary waves (PWs) in the mid- and high- latitude of the SH stratosphere is significantly enhanced, the Brewer-Dobson (BD) circulation in the SH stratosphere strengthens, and temperatures in the SH polar stratosphere increase. Wavenumber 1 in the stratosphere is the dominant component of the PW perturbation induced by the MJO convection. Filtering by the modified SH stratospheric winds alters the gravity waves (GWs) that propagate to the mesosphere. The dissipation and breaking of these waves causes anomalous downwelling in the mid- and high- latitudes of the mesosphere. The circulation changes, in turn, result in significant anomalous cooling in the mesosphere in response to MJO P1 and P5 at lags of 10 days and 30 days, respectively.
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2018-05-01
For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.
Small-scale structure and turbulence observed in MAP/WINE)
NASA Technical Reports Server (NTRS)
Blix, T. A.
1989-01-01
During MAP/WINE small scale structure and turbulence in the mesosphere and lower thermosphere was studied in situ by rocket-borne instruments as well as from the ground by remote sensing techniques. The eight salvoes launched during the campaign resulted in a wealth of information on the dynamical structure of these regions. The experimental results are reviewed and their interpretation is discussed in terms of gravity waves and turbulence. It is shown that eddy diffusion coefficients and turbulent energy dissipation rates may be derived from the in situ measurements in a consistent manner. The observations are also shown to be consistent with the hypothesis that turbulence can be created by a process of gravity wave saturation.
NASA Astrophysics Data System (ADS)
Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.
2007-12-01
In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.
A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves
NASA Technical Reports Server (NTRS)
Sassi, Fabrizio; Garcia, Rolando R.
1994-01-01
A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.
Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.
NASA Astrophysics Data System (ADS)
Heale, C. J.; Snively, J. B.
2017-12-01
Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.
Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry
NASA Astrophysics Data System (ADS)
Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.
2017-06-01
Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.
Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.
2003-01-01
In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.
Influence of El Nino Southern Oscillation on the Mesospheric Temperature
NASA Technical Reports Server (NTRS)
Li, Tao; Calvo, Natalia; Yue, Jia; Dou, Xiankang; Russell, J. M, III; Mlynczak, M. G.; She, Chiao-Yao; Xue, Xianghui
2013-01-01
Using the middle atmosphere temperature data set observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite experiment between 2002 and 2012, and temperatures simulated by the Whole Atmospheric Community Climate Model version 3.5 (WACCM3.5) between 1953 and 2005, we studied the influence of El Niño-Southern Oscillation (ENSO) on middle atmosphere temperature during the Northern Hemisphere (NH) wintertime. For the first time, a significant winter temperature response to ENSO in the middle mesosphere has been observed, with an anomalous warming of approximately 1.0 K/MEI (Multivariate ENSO Index) in the tropics and an anomalous cooling of approximately 2.0 K/MEI in the NH middle latitudes. The observed temperature responses to ENSO in the mesosphere are opposite to those in the stratosphere, in agreement with previous modeling studies. Temperature responses to ENSO observed by SABER show similar patterns to those simulated by the WACCM3.5 model. Analysis of the WACCM3.5 residual mean meridional circulation response to ENSO reveals a significant downwelling in the tropical mesosphere and upwelling in the NH middle and high latitudes during warm ENSO events, which is mostly driven by anomalous eastward gravity wave forcing in the NH mesosphere.
Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.
2003-01-01
We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.
The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere
NASA Astrophysics Data System (ADS)
Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.
2008-12-01
The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on the temporal and spatial resolutions the model simulations can provide. We shall discuss the concept and organization of the TFM and present samples of GW simulations that illustrate the capabilities of the model and its user interface. We shall discuss in particular the waves that leak into the mesopause from the thermosphere above and propagate into the region from tropospheric weather systems below.
Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1) Bands
NASA Astrophysics Data System (ADS)
Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, J.
2001-06-01
As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1) bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E). These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1) airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.
Gravity Wave Predictability and Dynamics in Deepwave
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.
2015-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1984-01-01
Various topics relative to middle atmosphere research were discussed. meteorological and aeronomical requirements for mesosphere-stratosphere-troposphere (MST) radar networks, general circulation of the middle atmosphere, the interpretation of radar returns from clear air, spaced antenna and Doppler techniques for velocity measurement, and techniques for the study of gravity waves and turbulence are among the topics discussed.
A new numerical model of the middle atmosphere. 2: Ozone and related species
NASA Technical Reports Server (NTRS)
Garcia, Rolando R.; Solomon, Susan
1994-01-01
A new two-dimensional model with detailed photochemistry is presented. The model includes descriptions of planetary wave and gravity wave propagation and dissipation to characterize the wave forcing and associated mixing in the stratosphere and mesosphere. Such a representation allows for explicit calculation of the regions of strong mixing in the middle atmosphere required for accurate simulation of trace gas transport. The new model also includes a detailed description of photochemical processes in the stratosphere and mesosphere. The downward transport of H2, H2O, and NO(y) from the mesosphere to the stratosphere is examined, and it is shown that mesospheric processes can influence the distributions of these chemical species in polar regions. For HNO3 we also find that small concentrations of liquid aerosols above 30 km could play a major role in determining the abundance in polar winter at high latitudes. The model is also used to examine the chemical budget of ozone in the midlatitude stratosphere and to set constraints on the effectiveness of bromine relative to chlorine for ozone loss and the role of the HO2 + BrO reaction. Recent laboratory data used in this modeling study suggest that this process greatly enhances the effectiveness of bromine for ozone destruction, making bromine-catalyzed chemistry second only to HO(x)-catalyzed ozone destruction in the contemporary stratosphere at midlatitudes below about 18 km. The calculated vertical distribution of ozone in the lower stratosphere agrees well with observations, as does the total column ozone during most seasons and latitudes, with the important exception of southern hemisphere winter and spring.
Middle Atmosphere Program. Handbook for MAP, volume 28
NASA Technical Reports Server (NTRS)
Liu, C. H. (Editor); Edwards, Belva (Editor)
1989-01-01
Extended abstracts from the fourth workshop on the technical and scientific aspects of MST (mesosphere stratosphere troposphere) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence; intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management.
Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Oberheide, J.; Sutton, E. K.; Liu, H.-L.; Anderson, J. L.; Raeder, K.
2016-04-01
The intraseasonal variability of the eastward propagating nonmigrating diurnal tide with zonal wave number 3 (DE3) during 2007 in the mesosphere, ionosphere, and thermosphere is investigated using a whole atmosphere model reanalysis and satellite observations. The atmospheric reanalysis is based on implementation of data assimilation in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The tidal variability in the WACCM+DART reanalysis is compared to the observed variability in the mesosphere and lower thermosphere (MLT) based on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations, in the ionosphere based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations, and in the upper thermosphere (˜475 km) based on Gravity Recovery and Climate Experiment (GRACE) neutral density observations. To obtain the short-term DE3 variability in the MLT and upper thermosphere, we apply the method of tidal deconvolution to the TIMED/SABER observations and consider the difference in the ascending and descending longitudinal wave number 4 structure in the GRACE observations. The results reveal that tidal amplitude changes of 5-10 K regularly occur on short timescales (˜10-20 days) in the MLT. Similar variability occurs in the WACCM+DART reanalysis and TIMED/SABER observations, demonstrating that the short-term variability can be captured in whole atmosphere models that employ data assimilation and in observations by the technique of tidal deconvolution. The impact of the short-term DE3 variability in the MLT on the ionosphere and thermosphere is also clearly evident in the COSMIC and GRACE observations. Analysis of the troposphere forcing in WACCM+DART and simulations of the Global Scale Wave Model (GSWM) show that the short-term DE3 variability in the MLT is not related to a single source; rather, it is due to a combination of changes in troposphere forcing, zonal mean atmosphere, and wave-wave interactions.
NASA Astrophysics Data System (ADS)
Miller, S. D.; Seaman, C.; Combs, C.; Solbrig, J. E.; Straka, W. C.; Walther, A.; NOH, Y. J.; Heidinger, A.
2016-12-01
Since its launch in October 2011, the Visible/Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has delivered above and beyond expectations, revolutionizing our ability to observe and characterize the nocturnal environment. Taking advantage of natural and artificial (man-made) light sources, the DNB offers unique information content ranging from the surface to the upper atmosphere. Notable developments include the quantitative use of moonlight for cloud property retrievals and the discovery of nightglow sensitivity revealing the signatures of gravity waves. The DNB represents a remarkable advance to the heritage low-light visible sensing of the Operational Linescan System (OLS), providing spatial and radiometric resolution unprecedented to the space platform. Soon, we will have yet another dimension of resolution to consider—temporal. In early 2017, NOAA's Joint Polar Satellite System-1 (J1) will join S-NPP in early afternoon (1330 local time, ascending node) sun-synchronous orbital plane, displaced ½ orbit ( 50 min) from S-NPP. Having two DNB sensors will offer an expanded ability (lower latitudes) to examine the temporal properties of various light sources, track the motion of ships, low-level clouds and dust storms, fire line evolution, cloud optical properties, and even the dynamics of mesospheric gravity wave structures such as thunderstorm-induced concentric gravity waves and mesospheric bores. This presentation will provide an update to the science and application-oriented research involving the S-NPP/DNB, examples of key capabilities, first results of lunar irradiance model validation, and a look ahead toward the new research opportunities to be afforded by tandem S-NPP/J1 observations. The AGU is well-positioned for anticipating these capabilities "on the eve" of the J1 launch.
NASA Technical Reports Server (NTRS)
Le Texier, H.; Solomon, S.; Thomas, R. J.; Garcia, R. R.
1989-01-01
Seasonal variations of the OH-asterisk (7-5) mesospheric hydroxyl emission at 1.89 microns observed by the SME near-IR spectrometer are compared with the theoretical predictions of a two-dimensional dynamical/chemical model. The good agreement found at low latitudes for both dayglow and nightglow provides support for the model assumption that breaking gravity waves induce seasonal and latitudinal variations in diffusion. The seasonal behavior of atomic hydrogen in the upper mesosphere (related to vertical transport) and/or uncertainties in the OH Meinel band parameters are proposed as possible explanations for the discrepancy noted between model and observational data for the middle latitudes.
NASA Astrophysics Data System (ADS)
Bougher, S. W.; Rafkin, S.; Drossart, P.
2006-11-01
A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).
NASA Astrophysics Data System (ADS)
Negale, Michael Ray
An important property of the Earth's atmosphere is its ability to support wave motions, and indeed, waves exist throughout the Earth's atmosphere at all times and all locations. What is the importance of these waves? Imagine standing on the beach as water waves come crashing into you. In this case, the waves transport energy and momentum to you, knocking you off balance. Similarly, waves in the atmosphere crash, known as breaking, but what do they crash into? They crash into the atmosphere knocking the atmosphere off balance in terms of the winds and temperatures. Although the Earth's atmosphere is full of waves, they cannot be observed directly; however, their effects on the atmosphere can be observed. Waves can be detected in the winds and temperatures, as mentioned above, but also in pressure and density. In this dissertation, three different studies of waves, known as gravity waves, were performed at three different locations. For these studies, we investigate the size of the waves and in which direction they move. Using specialized cameras, gravity waves were observed in the middle atmosphere (50-70 miles up) over Alaska (for three winter times) and Norway (for one winter time). A third study investigated gravity waves at a much higher altitude (70 miles on up) using radar data from Alaska (for three years). These studies have provided important new information on these waves and how they move through the atmosphere. This in turn helps to understand in which direction these waves are crashing into the atmosphere and therefore, which direction the energy and momentum are going. Studies such as these help to better forecast weather and climate.
NASA Astrophysics Data System (ADS)
Yang, Chengyun; Smith, Anne K.; Li, Tao; Dou, Xiankang
2018-05-01
The response of the mesospheric migrating diurnal (DW1) tide to the Madden-Julian oscillation (MJO) is investigated for the first time using a simulation from the Specified-Dynamic Whole Atmosphere Community Climate Model (SD-WACCM), which is driven by reanalysis data. Analysis shows that a significant connection exists between the MJO and the mesospheric DW1 tidal amplitude. During MJO phases 2 and 3, the convection anomalies are associated with enhancement in both the solar insolation absorption and latent heat release in the equatorial troposphere; these in turn lead to stronger DW1 forcing. Conversely, the forcing of DW1 by solar and latent heating in the troposphere is weaker during MJO phase 8. The difference of the tidal amplitude during the opposite MJO phases from the boreal winter mean state is 15-20%. The parameterized gravity wave variations are found to have a significant impact on the DW1 tidal response in some phases of the MJO.
Satellite-based observations of tsunami-induced mesosphere airglow perturbations
NASA Astrophysics Data System (ADS)
Yang, Yu-Ming; Verkhoglyadova, Olga; Mlynczak, Martin G.; Mannucci, Anthony J.; Meng, Xing; Langley, Richard B.; Hunt, Linda A.
2017-01-01
Tsunami-induced airglow emission perturbations were retrieved by using space-based measurements made by the Sounding of the Atmosphere using Broad-band Emission Radiometry (SABER) instrument on board the Thermosphere-Ionosphere-Mesosphere Energetics Dynamics spacecraft. At and after the time of the Tohoku-Oki earthquake on 11 March 2011, and the Chile earthquake on 16 September 2015, the spacecraft was performing scans over the Pacific Ocean. Significant ( 10% relative to the ambient emission profiles) and coherent nighttime airglow perturbations were observed in the mesosphere following Sounding of the Atmosphere using Broad-band Emission Radiometry limb scans intercepting tsunami-induced atmospheric gravity waves. Simulations of emission variations are consistent with the physical characteristics of the disturbances at the locations of the corresponding SABER scans. Airglow observations and model simulations suggest that atmospheric neutral density and temperature perturbations can lead to the observed amplitude variations and multipeak structures in the emission profiles. This is the first time that airglow emission rate perturbations associated with tsunamis have been detected with space-based measurements.
The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space
NASA Astrophysics Data System (ADS)
Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.
2017-12-01
New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.
NASA Technical Reports Server (NTRS)
Alexander, Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
NASA Technical Reports Server (NTRS)
Alexander, M. Joan
1996-01-01
This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.
NASA Astrophysics Data System (ADS)
Siskind, D. E.; Eckermann, S. D.; McCormack, J. P.; Hoppel, K. W.; Russell, J. M.; Bailey, S.; Hervig, M.; Rusch, D.
2007-12-01
The Navy Operational Global Atmospheric Prediction System (NOGAPS), the Department of Defense's global numerical weather prediction (NWP) system, consists of two main components: the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System (NAVDAS) and a global spectral general circulation model (GCM) for forecasting. NRL researchers are currently developing an Advanced-Level Physics High-Altitude (ALPHA) NOGAPS prototype that extends the currently operational 1 hPa upper boundary of NOGAPS through the mesosphere and lower thermosphere (MLT) to ~110 km. We report results of preliminary experiments with this NOGAPS-ALPHA system during May-June 2007, focused on the northern hemisphere (NH) summer mesosphere observed from the Aeronomy of Ice in the Mesosphere (AIM) satellite. These AIM-period NOGAPS-ALPHA experiments have two main goals: to provide global modeling support for AIM science and to allow objective validation of these new NOGAPS-ALPHA MLT fields using independent observations from AIM. We report results of runs which assimilate temperature and water vapor data from the SABER and MLS instruments up to ~0.01 hPa. We investigate the development of the cold NH summer mesopause in NOGAPS-ALPHA and its sensitivity to parameterized nonorographic gravity wave drag (GWD) and radiative heating/cooling by comparing with temperatures and water vapor measured by AIM's SOFIE instrument. We can also compare the variability in the NOGAPS-ALPHA temperature and water vapor fields with mesospheric cloud occurrence statistics measured by CIPS on AIM.
Model of Semidiurnal Pseudo Tide in the High-Latitude Upper Mesosphere
NASA Technical Reports Server (NTRS)
Talaat, E. R.; Mayr, H. G.
2011-01-01
We present numerical results for the m = 1 meridional winds of semi diurnal oscillations in the high-latitude upper mesosphere, which are generated in the Numerical Spectral Model (NSM) without solar excitations of the tides. Identified with heuristic computer runs, the pseudo tides attain amplitudes that are, at times, as large as the non-migrating tides produced with standard solar forcing. Under the influence of parameterized gravity waves, the nonlinear NSM generates internal oscillations like the quasi-biennial oscillation, that are produced with periods favored by the dynamical properties of the system. The Coriolis force would favor at polar latitudes the excitation of the 12-hour periodicity. This oscillation may help explain the large non-migrating semidiurnal tides that are observed in the region with ground-based and satellite measurements.
NASA Astrophysics Data System (ADS)
Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Leme, N. M. P.
2012-01-01
A new generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1°S) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8°S). Motivations for the radars include the “hotspot” of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contributes most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from ˜20 to >70 ms-1. In contrast, the diurnal tide and various planetary waves achieve maximum winds of ˜10 to 20 ms-1. Monthly mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below ˜85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this “hotspot.”
NASA Technical Reports Server (NTRS)
Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.
2011-01-01
A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".
Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994
NASA Astrophysics Data System (ADS)
Fritts, David C.; Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.
Mesopause Jumps: Observations and Explanation
NASA Astrophysics Data System (ADS)
Luebken, F. J.; Becker, E.; Höffner, J.; Viehl, T. P.; Latteck, R.
2017-12-01
Recent high resolution temperature measurements by resonance lidar at Davis (69°S) occasionally showed a sudden mesopause altitude increase by 5km and an associated mesopause temperature decrease by 10K. We present further observations which are closely related to this `mesopause jump', namely the increase of mean height of polar mesospheric summer echoes (PMSE) observed by a VHF radar, very strong westward winds in the upper mesosphere measured by an MF radar, and relatively large eastward winds in the stratosphere taken from reanalysis. We compare to similar observations in the Northern Hemisphere, namely at ALOMAR (69°N) where such mesopause jumps have never been observed. We present a detailed explanation of mesopause jumps. They occur only when stratospheric winds are moderately eastward and mesospheric winds are very large (westward). Under these conditions, gravity waves with comparatively large eastward phase speeds can pass the stratosphere and propagate to the lower thermosphere because their vertical wavelengths in the mesosphere are rather large which implies reduced dynamical stability. When finally breaking in the lower thermosphere, these waves drive an enhanced residual circulation that causes a cold and high-altitude mesopause. The conditions for a mesopause jump occur only in the Southern Hemisphere (SH) and are associated with the late breakdown of the polar vortex.Mesopause jumps are primarily, but not only, observed prior and close to solstice. We also show that during the onset of PMSE in the SH, stratospheric zonal winds are still eastward (up to 30m/s), and that the onset is not closely related to the transition of the stratospheric circulation.
New AIM/CIPS global observations of gravity waves near 50-55 km
NASA Astrophysics Data System (ADS)
Randall, C. E.; Carstens, J.; France, J. A.; Harvey, V. L.; Hoffmann, L.; Bailey, S. M.; Alexander, M. J.; Lumpe, J. D.; Yue, J.; Thurairajah, B.; Siskind, D. E.; Zhao, Y.; Taylor, M. J.; Russell, J. M.
2017-07-01
This paper describes a new data set from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument, from which gravity waves (GWs) at an altitude of 50-55 km can be inferred. CIPS is sensitive to GWs with horizontal wavelengths from 15 to 600 km and vertical wavelengths longer than 15 km. Several examples of GWs in CIPS observations are shown, including waves associated with the Andes Mountains, island topography, convection, the polar night jet, and the tropospheric jet stream. GW signatures in the CIPS data are shown to agree well with near-coincident but lower altitude measurements from the Atmospheric Infrared Sounder (AIRS) in June of 2016. Results suggest the power of combining CIPS measurements with those from other instruments to investigate GW filtering and propagation. The CIPS data set opens new areas of inquiry, enabling comprehensive investigations of GWs in the middle atmosphere on a near-global scale.
Statistical comparisons of gravity wave features derived from OH airglow and SABER data
NASA Astrophysics Data System (ADS)
Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.
2017-12-01
The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.
Rocket measurements of electron density irregularities during MAC/SINE
NASA Technical Reports Server (NTRS)
Ulwick, J. C.
1989-01-01
Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.
NASA Astrophysics Data System (ADS)
Pokhotelov, Dimitry; Becker, Erich; Stober, Gunter; Chau, Jorge L.
2018-06-01
Thermal tides play an important role in the global atmospheric dynamics and provide a key mechanism for the forcing of thermosphere-ionosphere dynamics from below. A method for extracting tidal contributions, based on the adaptive filtering, is applied to analyse multi-year observations of mesospheric winds from ground-based meteor radars located in northern Germany and Norway. The observed seasonal variability of tides is compared to simulations with the Kühlungsborn Mechanistic Circulation Model (KMCM). It is demonstrated that the model provides reasonable representation of the tidal amplitudes, though substantial differences from observations are also noticed. The limitations of applying a conventionally coarse-resolution model in combination with parametrisation of gravity waves are discussed. The work is aimed towards the development of an ionospheric model driven by the dynamics of the KMCM.
NASA Technical Reports Server (NTRS)
Roettger, J.
1989-01-01
During the MAP/WINE campaign in winter 1983 to 1984 several instrumental techniques, such as meteorological rockets, sounding rockets, MST radar and incoherent scatter radar, were applied to measure wind velocities in the middle atmosphere. Profiles of mean, tidal and fluctuating wind velocities were obtained up to 90 to 100 km altitude. These are compared with profiles from models, measurements at other locations and at other times as well as satellite derived data. The results are discussed in terms of ageostropic winds, planetary waves, tidal modes and the possibility of a saturated gravity wave spectrum in the mesosphere.
NASA Astrophysics Data System (ADS)
Becker, E.
2009-04-01
The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.
NASA Astrophysics Data System (ADS)
Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.
2017-12-01
Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.
NASA Astrophysics Data System (ADS)
Wilms, H.; Rapp, M.; Kirsch, A.
2016-12-01
The comparison of microphysical simulations of polar mesospheric cloud properties with ground based and satellite borne observations suggests that vertical wind variance imposed by gravity waves is an important prerequisite to realistically model PMC properties. This paper reviews the available observational evidence of vertical wind measurements at the polar summer mesopause (including their frequency content). Corresponding results are compared to vertical wind variance from several global models and implications for the transport of trace constituents in this altitude region are discussed.
Modeling the Observed QBO and Inter-Annual Variations of the Diurnal Tide in the Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.; Huang, F. T.
2006-01-01
In the current version of the Numerical Spectral Model (NSM), the Quasi-biennial Oscillation (QBO) is generated primarily by small-scale gravity waves (GW) from Hines' Doppler Spread Parameterization (DSP). The model does not have topography, and the planetary waves are solely generated by instabilities. We discuss a 3D modeling study that describes the QBO extending from the stratosphere into the upper mesosphere, where the oscillation produces significant inter-annual variations in the diurnal tide. The numerical results are compared with temperature measurements from the SABER (TIMED) and MLS (UARS) instruments obtained by Huang et al. (2006). With a GW source that peaks at the Equator and is taken to be isotropic and independent of season, the NSM generates a QBO with variable periods around 26 months and zonal wind amplitudes of almost 25 m/s at 30 km. As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal tide at altitudes around 95 km. The modeled QBO modulates the tide such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. To shed light on the underlying mechanisms, the relative importance of the advection terms are discussed, and they are shown to be important in the stratosphere. At altitudes above 80 km, however, the QBO-related inter-annual variations of the tide are generated primarily by GW momentum deposition. In qualitative agreement with the SABER measurements, the model generates distinct zonal-mean QBO temperature variations in the stratosphere and mesosphere. In the stratosphere, the computed amplitudes are not much smaller than those observed, and the rate of downward propagation at the Equator is reproduced. The modeled temperature amplitudes in the mesosphere, however, are much smaller than those observed. The observed and computed temperature variations of the QBO peak at the Equator but extend with phase reversals to high latitudes, in contrast to the zonal winds that are confined to equatorial latitudes. Hemispherical asymmetries also appear in both the model results and the observations. The temperature amplitudes outside the equatorial region however tend to occur at lower latitudes in the model results. While there is qualitative agreement between the TIMED measurements and the model prediction, there are some areas of significant disagreement that require us to reexamine the present version of the NSM. The numerical results critically depend on the chosen parameters that determine the wave forcing, and there are a number of avenues to improve the performance of the model that had not been tuned to fit the observations. The GW spectrum and its latitude dependence in the troposphere are not well known, and numerical experiments are discussed that describe the related model response. While it appears that eastward propagating Kelvin waves and westward propagating Rossby gravity waves are not the primary source to generate the QBO, the GW forcing can seed the oscillation and act as a catalyst to enhance effectiveness of these planetary waves.
A ground-base Radar network to access the 3D structure of MLT winds
NASA Astrophysics Data System (ADS)
Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.
2016-12-01
The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.
NASA Astrophysics Data System (ADS)
Limpasuvan, Varavut; Orsolini, Yvan J.; Chandran, Amal; Garcia, Rolando R.; Smith, Anne K.
2016-05-01
Based on a climate-chemistry model (constrained by reanalyses below ~50 km), the zonal-mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5-12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi-stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes.
Gravity Waves and Tidal Measurement Capabilities from a Space-borne Lidar across the Mesopause.
NASA Astrophysics Data System (ADS)
Dawkins, E. C. M.; Gardner, C. S.; Kaifler, B.; Marsh, D. R.; Janches, D.
2017-12-01
A new proposed NASA mission, ACaDAMe (Atmospheric Coupling and Dynamics Across the Mesopause region) consists of a space-borne sodium lidar, mounted upon the International Space Station. Combining the advantages of a lidar with the near-global coverage provided by the ISS (orbital inclination: 51.6o, orbital period: 92.7 mins), the ACaDAMe mission has enormous potential to quantify the waves that provide the major momentum and energy forcing of the Ionosphere-Thermosphere-Mesosphere system from below. Specifically, this mission seeks to quantify the dominant wave momentum and energy inputs across the mesopause, and identify the near-global distribution of gravity waves and tides that impact the Thermosphere/Ionosphere and are the terrestrial drivers of Space Weather. Leveraging on existing instrument heritage and expertise, this nadir-pointing narrowband lidar would be tuned to two-frequencies (at the peak of the D2a line, and at the minimum between the D2a and D2b peaks), with a capability to retrieve vertically-resolved [Na] and temperature, T, for both nighttime and daytime conditions. Here we outline the proposed mission, present an error characterization for [Na] and T, and describe the capabilities to estimate gravity waves and tidal features which will provide a crucial role in advancing our understanding of small-scale dynamical processes and coupling across this important atmospheric region.
Optical Imaging Observation of the Geospace from the International Space Station by ISS-IMAP
NASA Astrophysics Data System (ADS)
Saito, A.; Sakanoi, T.; Yoshikawa, I.; Yamazaki, A.; Hozumi, Y.; Perwitasari, S.; Otsuka, Y.; Yamamoto, M.
2017-12-01
Optical imaging observation of the mesosphere, thermosphere, ionosphere, and plasmasphere was carried out from the International Space Station (ISS) with ISS-IMAP (Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping) mission instruments. ISS-IMAP instruments was installed on the Exposed Facility of Japanese Experiment Module of the ISS in August, 2012, and removed in August, 2015. They are two imagers, Visible-light and Infrared Spectrum Imager (VISI) and Extreme UltraViolet Imager (EUVI). VISI made imaging observations of the airglow and aurora in the nadir direction. It had two slits perpendicular to the trajectory of ISS, and the movement of ISS made the two-dimensional observation whose field-of-view width is 600km at 100km altitude. It covered the wave length range from 500nm to 900nm. The airglow of 730nm (OH, Alt. 85km), 762nm (O2, Alt. 95km), and 630nm (O, Alt. 250km) were mainly observed besides the other airglow, such as 589nm (Na) and 557 (O). EUVI made imaging observation of the resonant scattering from ions. It had two telescopes, and observed the resonant scattering of He+ in 30.4nm, and O+ in 83.4nm in the limb direction. VISI captured the airglow structures whose wavelength from 80km to 500km. The concentric wave structures were frequently observed in the mesosphere and lower thermosphere region. They are strong evidence of the vertical coupling between the lower atmosphere and the upper atmosphere by vertical propagation of the atmospheric gravity waves. The other airglow structures, such as mesospheric bores, were also detected by ISS-IMAP/VISI. The meso-scale structures in the ionosphere, such as plasma bubbles, and traveling ionospheric disturbances were also observed. EUVI revealed the longitudinal structures of He+ in the top side of the ionosphere. It was attributed to the neutral wind in the thermosphere. In the presentation, the outline and results of the ISS-IMAP's VISI and EUVI observations will be discussed.
NASA Astrophysics Data System (ADS)
Rapp, Markus
Gravity waves (GW) play an important role in the coupling between the troposphere and the middle atmosphere (˜10 - 120 km). GWs couple different atmospheric regions both in the vertical as well as in the horizontal directions by means of momentum and energy transport. Notably, this coupling is effective both from the troposphere upwards, and also in the opposite direction by indirect effects on circulation patterns. While the importance of GW for understanding atmospheric structure, dynamics and climate is now widely recognized, surprisingly little is still known about the details of the GW life cycle, i.e., the processes of GW excitation, propagation and dissipation. To address this issue a coordinated field program - named GW-LCYCLE - has been established in which ground based observations with radars, lidars and airglow imagers are combined with airborne observations, balloon soundings, and modelling to trace GWs from their source in the troposphere to their area of dissipation in the middle atmosphere. Within GW-LCYCLE an initial field campaign was conducted in December 2013 in Northern Scandinavia. The research aircraft DLR-FALCON was deployed to Kiruna, Sweden, from where several flights (with a total of 25 flight hours) were conducted to study mountain wave generation by flow over the Scandinavian mountain ridge. The FALCON was equipped with a downward looking wind lidar operating at a wavelength of 2 mum as well as with an in-flight system to measure winds, temperatures and pressures and with several in-situ instruments to detect wave signatures in trace gases like H _{2}O, CO _{2}, CO, CH _{4}, N _{2}O, HNO _{3} and SO _{2}. Ground based observations of winds and temperatures from the troposphere to the mesosphere/lower thermosphere (MLT-) region were conducted from Kiruna as well as from Andenes, Norway. These measurements were augmented by balloon soundings from the same places as well as from Sodankylä in Finland. Coordinated observations were conducted during five intensive observations periods, IOPs, where during two IOPs strong mountain wave generation was observed. In this paper we present an overview of the initial preliminary results of this first GW-LCYCLE campaign contrasting results from selected IOPs with and without strong mountain wave generation. We will discuss in how far observed tropospheric and lower stratospheric wave signatures can be reconciled with regional modelling and whether simultaneously observed mesospheric waves can be attributed to dedicated GW sources in the troposphere using GW ray tracing as well as high-resolution idealized modelling.
NASA Astrophysics Data System (ADS)
Fritts, David C.; Wang, Ling; Laughman, Brian; Lund, Thomas S.; Collins, Richard L.
2018-01-01
A companion paper by Fritts, Laughman, et al. (2017) employed an anelastic numerical model to explore the dynamics of gravity waves (GWs) encountering a mesospheric inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. That study revealed that MIL responses, including GW transmission, reflection, and instabilities, are sensitive functions of GW parameters. This paper expands on two of the Fritts, Laughman, et al. (2017) simulations to examine GW instability dynamics and turbulence in the MIL; forcing of the mean wind and stability environments by GW, instability, and turbulence fluxes; and associated heat and momentum transports. These direct numerical simulations resolve turbulence inertial-range scales and yield the following results: GW breaking and turbulence in the MIL occur below where they would otherwise, due to enhancements of GW amplitudes and shears in the MIL. 2-D GW and instability heat and momentum fluxes are 20-30 times larger than 3-D instability and turbulence fluxes. Mean fields are driven largely by 2-D GW and instability dynamics rather than 3-D instabilities and turbulence. 2-D and 3-D heat fluxes in regions of strong turbulence yield small departures from initial
Gravity Waves in the Atmospheres of Mars and Venus
NASA Astrophysics Data System (ADS)
Tellmann, Silvia; Paetzold, Martin; Häusler, Bernd; Bird, Michael K.; Tyler, G. Leonard; Hinson, David P.; Imamura, Takeshi
2016-10-01
Gravity waves are ubiquitous in all stably stratified planetary atmospheres and play a major role in the redistribution of energy and momentum. Gravity waves can be excited by many different mechanisms, e.g. by airflow over orographic obstacles or by convection in an adjacent layer.Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. They might be excited by convection in the daytime boundary layer or by strong winter jets in combination with the pronounced topographic diversity on Mars.On Venus, gravity waves play an important role in the mesosphere above the cloud layer [5] and probably below. Convection in the cloud layer is one of the most important source mechanisms but certain correlations with topography were observed by different experiments [6,7,8].Temperature height profiles from the radio science experiments on Mars Express (MaRS) [9] and Venus Express (VeRa) [10] have the exceptionally high vertical resolution necessary to study small-scale vertical gravity waves, their global distribution, and possible source mechanisms.Atmospheric instabilities, which are clearly identified in the data, can be investigated to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves.[1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037.[2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058.[3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421.[5] Tellmann, S., et al. (2012), Icarus, 221, 471 - 480.[6] Blamont, J.E. et al., (1986) 231, 1422-1425.[7] Bertaux J.-L., et al. (2016), J. Geophys. Res., Planets, in press.[8] Piccialli, A., et al. (2014), Icarus, 227, 94 - 111.[9] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.[10] Häusler, B. et al., (2006). 1315-1335.
NASA Astrophysics Data System (ADS)
Häusler, K.; Hagan, M. E.; Baumgaertner, A. J. G.; Maute, A.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.; Gasperini, F.
2014-08-01
We report on a new source of tidal variability in the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). Lower boundary forcing of the TIME-GCM for a simulation of November-December 2009 based on 3-hourly Modern-Era Retrospective Analysis for Research and Application (MERRA) reanalysis data includes day-to-day variations in both diurnal and semidiurnal tides of tropospheric origin. Comparison with TIME-GCM results from a heretofore standard simulation that includes climatological tropospheric tides from the global-scale wave model reveal evidence of the impacts of MERRA forcing throughout the model domain, including measurable tidal variability in the TIME-GCM upper thermosphere. Additional comparisons with measurements made by the Gravity field and steady-state Ocean Circulation Explorer satellite show improved TIME-GCM capability to capture day-to-day variations in thermospheric density for the November-December 2009 period with the new MERRA lower boundary forcing.
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal; Medvedev, Alexander S.
2017-04-01
Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.
Rayleigh lidar observations of gravity wave activity in the stratosphere and lower mesosphere
NASA Technical Reports Server (NTRS)
Miller, M. S.; Gardner, C. S.; Liu, C. H.
1987-01-01
Forty-two monochromatic gravity wave events were observed in the 25 to 55 km altitude region during 16 nights of Rayleigh lidar measurements at Poker Flat, Alaska and Urbana, Illinois. The measured wave parameters were compared to previous radar and lidar measurements of gravity wave activity. Vertical wavelengths, lambda(z), between 2 and 11.5 km with vertical phase velocities, c(z), between 0.1 and 1 m/s were observed. Measured values of lambda(z) and c(z) were used to infer observed wave periods, T(ob), between 50 and 1000 minutes and horizontal wavelengths, lambda(x), from 25 to 2000 km. Dominant wave activity was found at vertical wavelengths between 2 to 4 km and 7 to 10 km. No seasonal variations were evident in the observed wave parameters. Vertical and horizontal wavelengths showed a clear tendency to increase with T(ob), which is consistent with recent sodium lidar studies of monochromatic wave events near the mesopause. Measured power law relationships between the wave parameters were lambda(z) varies as T(ob) sup 0.96, lambda(x) varies as T(ob) sup 1.8, and c(z) varies as T(ob) sup -0.85. The kinetic energy calculated for the monochromatic wave events varied as k(z) sup -2, k(x) sup -1, and f(ob) sup -1.7. The atmospheric scale heights calculated for each observation date range from 6.5 to 7.6 km with a mean value of 7 km. The increase of rms wind perturbations with altitude indicated an amplitude growth length of 20.9 km. The altitude profile of kinetic energy density decreased with height, suggesting that waves in this altitude region were subject to dissipation or saturation effects.
NASA Technical Reports Server (NTRS)
Vincent, R. A. (Editor); Edwards, B. (Editor); Hirota, I. (Editor)
1991-01-01
Extended abstracts from the fourth workshop on the technical and scientific aspects of mesosphere stratosphere troposphere (MST) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; the dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence, intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management.
Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere
NASA Astrophysics Data System (ADS)
Becker, E.
2016-12-01
At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).
VHF radar measurements during MAP/WINE
NASA Technical Reports Server (NTRS)
Czechowsky, P.; Klostermeyer, J.; Ruster, R.; Schmidt, G.; Rottger, J.
1983-01-01
Sensitive Doppler radars which operate in the very high frequency (VHF) band, usually near 50 MHz can measure profiles of background winds, tides, atmospheric gravity waves and turbulence at tropospheric, stratospheric and mesospheric heights. Their ability to observe simultaneously large and small-scale processes makes them unique instruments for studying not only each process separately but also their nonlinear interactions. The mobile VHF radar to be used during the MAP/WINE campaign on Andoya is a modified version of the SOUSY VHF radar being in operation for six years in the Harz Mountains.
NASA Astrophysics Data System (ADS)
Snively, J. B.
2017-12-01
Our understanding of acoustic-gravity wave (AGW) dynamics at short periods ( minutes to hour) and small scales ( 10s to 100s km) in the mesosphere, thermosphere, and ionosphere (MTI) has benefited considerably from horizontally- and vertically-resolved measurements of layered species. These include, for example, imagery of the mesopause ( 80-100 km) airglow layers and vertical profiles of the sodium layer via lidar [e.g., Taylor and Hapgood, PSS, 36(10), 1988; Miller et al., PNAS, 112(49), 2015; Cao et al., JGR, 121, 2016]. In the thermosphere-ionosphere, AGW perturbations are also revealed in electron density profiles [Livneh et al., JGR, 112, 2007] and maps of total electron content (TEC) from global positioning system (GPS) receivers [Nishioka et al., GRL, 40(21), 2013]. To the extent that AGW signatures in layered species can be quantified, and the ambient atmospheric state measured or estimated, numerical models enable investigations of dynamics at intermediate altitudes that cannot readily be measured (e.g., above and below the 80-100 km mesopause region). Here, new 2D and 3D versions of the Model for Acoustic-Gravity Wave Interactions and Coupling (MAGIC) [e.g., Snively and Pasko, JGR, 113(A6), 2008, and references therein] are introduced and applied to investigate spectra of short-period AGW that can pass through the mesopause region to reach and impact the thermosphere. Simulation case studies are constructed to investigate both their signatures through the hydroxyl airglow layer [e.g., Snively et al., JGR 115(A11), 2010] and their effects above. These waves, with large vertical wavelengths and fast horizontal phase speeds, also include those that may be subject to evanescence at mesopause or in the middle-thermosphere, with potential for ducting or dissipation between where static stability is higher. Despite complicating interpretations of momentum fluxes, evanescence plays an under-appreciated role in vertical coupling by AGW [Walterscheid and Hecht, JGR, 108(D11), 2003]; it enables rapid ascents via tunneling and in some cases may enhance observable signatures. Results provide insight into these complications, and suggest opportunities to better-interpret signatures of waves that may have large effects via vertical coupling into the thermosphere despite limited impacts on mean flow.
Modelling the descent of nitric oxide during the elevated stratopause event of January 2013
NASA Astrophysics Data System (ADS)
Orsolini, Yvan J.; Limpasuvan, Varavut; Pérot, Kristell; Espy, Patrick; Hibbins, Robert; Lossow, Stefan; Raaholt Larsson, Katarina; Murtagh, Donal
2017-03-01
Using simulations with a whole-atmosphere chemistry-climate model nudged by meteorological analyses, global satellite observations of nitrogen oxide (NO) and water vapour by the Sub-Millimetre Radiometer instrument (SMR), of temperature by the Microwave Limb Sounder (MLS), as well as local radar observations, this study examines the recent major stratospheric sudden warming accompanied by an elevated stratopause event (ESE) that occurred in January 2013. We examine dynamical processes during the ESE, including the role of planetary wave, gravity wave and tidal forcing on the initiation of the descent in the mesosphere-lower thermosphere (MLT) and its continuation throughout the mesosphere and stratosphere, as well as the impact of model eddy diffusion. We analyse the transport of NO and find the model underestimates the large descent of NO compared to SMR observations. We demonstrate that the discrepancy arises abruptly in the MLT region at a time when the resolved wave forcing and the planetary wave activity increase, just before the elevated stratopause reforms. The discrepancy persists despite doubling the model eddy diffusion. While the simulations reproduce an enhancement of the semi-diurnal tide following the onset of the 2013 SSW, corroborating new meteor radar observations at high northern latitudes over Trondheim (63.4°N), the modelled tidal contribution to the forcing of the mean meridional circulation and to the descent is a small portion of the resolved wave forcing, and lags it by about ten days.
HRDI Observations of Inertia-Gravity Waves in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Lieberman, Ruth S.
1999-01-01
Vertical profiles of High-resolution Doppler imager (HRDI) mesospheric winds have small-scale structure (vertical wavelengths between 10 and 20 km) that is virtually always present. Fourier analysis of HRDI zonal and meridional wind profiles have been carried out, and the spectral characteristics are sorted by latitude, month and local time. Power spectral density (PSD) exhibits a universal exp(-km) structure in the 10-20km wavelength regime, with K lying between 2 and 3. The observed PSD for wavelengths between 10 and 20 km is a factor of 3 higher than a null spectrum constructed from HRDI reported error bars multiplied by randomly varying numbers between -1 and +1. Stokes parameters were consolidated by month into Northern and Southern hemisphere middle and high latitudes belts (40-72 degrees), tidal belts (32-16 degrees) and a tropical belt (8S-8N). Vertical waves between 10 and 15 km in wavelength are about 10-15% polarized everywhere. The inferred propagation direction in the middle and high latitude Southern hemisphere is predominantly meridional during solstice, and significantly more zonal during equinoxes. In the tropical belt, the wave orientations are nearly North-South during solstices, with a slightly higher east-west component during equinox. In the tidal belts where the background wind includes a strong meridional tidal wind, the preferred wave orientation has a significant zonal component during equinox. These findings are consistent with the interpretation of wave filtering by the background wind.
NASA Astrophysics Data System (ADS)
Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.
2018-05-01
We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.
Determination of gravity wave parameters in the airglow combining photometer and imager data
NASA Astrophysics Data System (ADS)
Nyassor, Prosper K.; Arlen Buriti, Ricardo; Paulino, Igo; Medeiros, Amauri F.; Takahashi, Hisao; Wrasse, Cristiano M.; Gobbi, Delano
2018-05-01
Mesospheric airglow measurements of two or three layers were used to characterize both vertical and horizontal parameters of gravity waves. The data set was acquired coincidentally from a multi-channel filter (Multi-3) photometer and an all-sky imager located at São João do Cariri (7.4° S, 36.5° W) in the equatorial region from 2001 to 2007. Using a least-square fitting and wavelet analysis technique, the phase and amplitude of each observed wave were determined, as well as the amplitude growth. Using the dispersion relation of gravity waves, the vertical and horizontal wavelengths were estimated and compared to the horizontal wavelength obtained from the keogram analysis of the images observed by an all-sky imager. The results show that both horizontal and vertical wavelengths, obtained from the dispersion relation and keogram analysis, agree very well for the waves observed on the nights of 14 October and 18 December 2006. The determined parameters showed that the observed wave on the night of 18 December 2006 had a period of ˜ 43.8 ± 2.19 min, with the horizontal wavelength of 235.66 ± 11.78 km having a downward phase propagation, whereas that of 14 October 2006 propagated with a period of ˜ 36.00 ± 1.80 min with a horizontal wavelength of ˜ 195 ± 9.80 km, and with an upward phase propagation. The observation of a wave taken by a photometer and an all-sky imager allowed us to conclude that the same wave could be observed by both instruments, permitting the investigation of the two-dimensional wave parameter.
NASA Astrophysics Data System (ADS)
Amaro-Rivera, Yolián; Huang, Tai-Yin; Urbina, Julio
2018-06-01
The atmospheric reference model utilized in an airglow numerical study is important since airglow emissions depend on the number density of the light-emitting species. In this study, we employ 2-dimensional, nonlinear, time-dependent numerical models, Multiple Airglow Chemistry Dynamics (MACD) and OH Chemistry Dynamics (OHCD), that use the MSISE-90, NRLMSISE-00, and Garcia and Solomon (GS) model data as atmospheric reference models, to investigate gravity wave-induced airglow variations for the OH(8,3) airglow, O2(0,1) atmospheric band, and O(1S) greenline emissions in the Mesosphere and Lower Thermosphere (MLT) region. Our results show that the OHCD-00 produces the largest wave-induced OH(8,3) airglow intensity variation (∼34%), followed by the OHCD-90 (∼30%), then by the OHCD (∼22%). For O(1S) greenline, the MACD produces the largest wave-induced variation (∼33%), followed by the MACD-90 (∼28%), then by MACD-00 (∼26%). As for O2(0,1) atmospheric band, the MACD produces the largest wave-induced variation (∼31%), followed by the MACD-90 and MACD-00 (∼29%). Our study illustrates the importance and the need for a good atmospheric reference model that can accurately represent the atmosphere.
NASA Astrophysics Data System (ADS)
Figueiredo, C. A. O. B.; Takahashi, H.; Wrasse, C. M.; Otsuka, Y.; Shiokawa, K.; Barros, D.
2018-03-01
A ground-based network of Global Navigation Satellite Systems receivers has been used to monitor medium-scale traveling ionospheric disturbances (MSTIDs). MSTIDs were studied using total electron content perturbation maps and keograms over south-southeast of Brazil during the period from December 2012 to February 2016. In total, 826 MSTIDs were observed mainly in daytime, thus presenting median values of horizontal wavelength, period, and horizontal phase velocity of 452 ± 107 km, 24 ± 4 min. and 323 ± 81 m/s, respectively. The direction of propagation varies on the season: during the winter (June-August), the waves preferentially propagated to north-northeast, while in the other seasons the waves propagated to other directions. The anisotropy observed in the MSTID propagation direction could be associated with the region of the gravity wave generation that takes place in the troposphere. We also found that the MSTIDs were observed most frequently during the daytime, between 11 and 15 local time in winter and near to dusk solar terminator (17-19 local time) in the other seasons. Furthermore, the occurrence of MSTIDs was higher in winter. We suggest that atmospheric gravity waves in the thermosphere, mesosphere, and troposphere could play an important role in generating the MSTIDs and the propagation direction may depend on location of the wave sources.
Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region
NASA Astrophysics Data System (ADS)
Li, Qinzeng; Xu, Jiyao; Liu, Xiao; Yuan, Wei; Chen, Jinsong
2016-09-01
The Tibetan Plateau (TP), known as "Third Pole" of the Earth, has important influences on global climates and local weather. An important objective in present study is to investigate how orographic features of the TP affect the geographical distributions of gravity wave (GW) sources. Three-year OH airglow images (November 2011 to October 2014) from Qujing (25.6°N, 103.7°E) were used to study the characteristics of GWs over the southeastern TP region. Along with the almost concurrent and collocated meteor radar wind measurements and temperature data from SABER/TIMED satellite, the propagation conditions of three types of GWs (freely propagating, ducted, or evanescent) were estimated. Most of GWs exhibited ducted or evanescent characteristics. Almost all GWs propagate southeastward in winter. The GW propagation directions in winter are significantly different from other airglow imager observations at northern middle latitudes. Wind data and convective precipitation fields from the European Centre for Medium-Range Weather Forecasts reanalysis data are used to study the sources of GWs on the edge of the TP. Using backward ray-tracing analysis, we find that most of the mesospheric freely propagating GWs are located in or near the large wind shear intensity region ( 10 km- 17 km) on the southeastern edge of the TP in spring and winter. The averaged value of momentum flux is 11.6 ± 5.2 m2/s2 in winter and 7.5 ± 3.1 m2/s2 in summer. This work will provide valuable information for the GW parameterization schemes in general circulation models in TP region.
First OH Airglow Observation of Mesospheric Gravity Waves Over European Russia Region
NASA Astrophysics Data System (ADS)
Li, Qinzeng; Yusupov, Kamil; Akchurin, Adel; Yuan, Wei; Liu, Xiao; Xu, Jiyao
2018-03-01
For the first time, we perform a study of mesospheric gravity waves (GWs) for four different seasons of 1 year in the latitudinal band from 45°N to 75°N using an OH all-sky airglow imager over Kazan (55.8°N, 49.2°E), Russia, during the period of August 2015 to July 2016. Our observational study fills a huge airglow imaging observation gap in Europe and Russia region. In total, 125 GW events and 28 ripple events were determined by OH airglow images in 98 clear nights. The observed GWs showed a strong preference of propagation toward northeast in all seasons, which was significantly different from airglow imager observations at other latitudes that the propagation directions were seasonal dependent. The middle atmosphere wind field is used to explain the lack of low phase speed GWs since these GWs were falling into the blocking region due to the filtering effects. Deep tropospheric convections derived from the European Centre for Medium-Range Weather Forecasts reanalysis data are determined near Caucasus Mountains region, which suggests that the convections are the dominant source of the GWs in spring, summer, and autumn seasons. This finding extends our knowledge that convection might also be an important source of GWs in the higher latitudes. In winter the generation mechanism of the GWs are considered to be jet stream systems. In addition, the occurrence frequency of ripple is much lower than other stations. This study provides some constraints on the range of GW parameters in GW parameterization in general circulation models in Europe and Russia region.
NASA Astrophysics Data System (ADS)
Jones, M.; Emmert, J. T.; Drob, D. P.; Picone, J. M.; Meier, R. R.
2018-01-01
We demonstrate how Earth's obliquity generates the global thermosphere-ionosphere (T-I) semiannual oscillation (SAO) in mass density and electron density primarily through seasonally varying large-scale advection of neutral thermospheric constituents, sometimes referred to as the "thermospheric spoon" mechanism (TSM). The National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) is used to isolate the TSM forcing of this prominent intraannual variation (IAV) and to elucidate the contributions of other processes to the T-I SAO. An ˜30% SAO in globally averaged mass density (relative to its global annual average) at 400 km is reproduced in the TIME-GCM in the absence of seasonally varying eddy diffusion, tropospheric tidal forcing, and gravity wave breaking. Artificially, decreasing the tilt of Earth's rotation axis with respect to the ecliptic plane to 11.75° reduces seasonal variations in insolation and weakens interhemispheric pressure differences at the solstices, thereby damping the global-scale, interhemispheric transport of atomic oxygen (O) and molecular nitrogen in the thermosphere and reducing the simulated global mass density SAO amplitude to ˜10%. Simulated T-I IAVs in mass density and electron density have equinoctial maxima at all latitudes near the F2 region peak; this phasing and its latitude dependence agree well with empirically inferred climatologies. When tropospheric tides and gravity waves are included, simulated IAV amplitudes and their latitudinal dependence also agree well with empirically inferred climatologies. Simulated meridional and vertical transport of O due to the TSM couples to the upper mesospheric circulation, which also contributes to the T-I SAO through O chemistry.
The subtropical mesospheric jet observed by the Nimbus 7 Limb Infrared Monitor of the Stratosphere
NASA Technical Reports Server (NTRS)
Dunkerton, T. J.; Delisi, D. P.
1985-01-01
Nimbus 7 Limb Infrared Monitor of the Stratosphere observations of wave-mean flow interactions in the winter 1978-1979 middle atmosphere are surveyed, extending up to 0.05 mbar. These observations describe the evolution of the subtropical mesospheric jet and its polar mixed layer. Quasi-steady mean wind patterns are disrupted by three transitions in this winter: one primarily affecting the mesosphere (December 15, 1978), a minor warming affecting both regions (January 26-February 8, 1979), and a major warming largely confined to the stratosphere (February 22, 1979). The zonally averaged flow is barotropically unstable in the wings of the subtropical mesospheric jet. All the major decelerations of the mean flow are correlated with D(F), the body force per unit mass directly attributable to planetary Rossby waves, indicating that these waves make a significant contribution to the momentum budget in the lower half of the mesosphere.
Dynamics of the Mesopause Region as Revealed in Images of Polar Mesospheric Clouds
NASA Astrophysics Data System (ADS)
Bailey, Scott; Thurairajah, Brentha; Nielsen, Kim; Lumpe, Jerry; Randall, Cora; Taylor, Michael J.; Zhao, Yucheng
Studying the geospace response to variable inputs and waves from the lower atmosphere is particularly important since the induced variability competes with the solar and magnetic driving from above. Consequences for telecommunications, re-entry and satellite operations still need to be explored. The extent to which the effects of this quiescent atmospheric variability are transmitted to the magnetosphere is yet to be resolved. We thus stand right now at an exciting research frontier: understanding the cause-and-effect chain that connects tropospheric and strato-/mesospheric variability with geospace processes. CAWSES-II Task Group 4 (TG4) will therefore elucidate the dynamical coupling from the low and middle atmosphere to geospace including the upper atmosphere, ionosphere, and magnetosphere, for various frequencies and scales, such as gravity waves, tides, and planetary waves, and for equatorial, middle, and high latitudes. Attacking the problem clearly requires a systems approach involving experimentalists, data analysts and modelers from different communities. For that purpose, the most essential part of TG4 is to encourage interactions between atmospheric scientists and plasma scientists on all occasions. Four project are established in TG4, i.e., Project 1: How do atmospheric waves connect tropospheric weather with ITM variability?, Project 2: What is the relation between atmospheric waves and ionospheric instabilities?, Project 3: How do the different types of waves interact as they propagate through the stratosphere to the ionosphere?, and Project 4: How do thermospheric disturbances generated by auroral processes interact with the neutral and ionized atmosphere? A joint project with TG2 is also proposed for the topic of Project 5: How does climate change affects atmospheric waves in the ITM? In this presentation we show current status and future plan of CAWSES-II TG4 activities of 2009-2013.
Development of a Sodium Lidar for Space-Borne Missions
NASA Astrophysics Data System (ADS)
Janches, D.; Krainak, M. A.; Yu, A. W.; Jones, S.; Chen, J. R.
2015-12-01
We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage to study the composition and dynamics of Earth's mesosphere based on a spaceborne instrument that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere - Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize the effect of small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. A nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the International Space Station (ISS) will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with ~5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2/ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving "single" detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the ISS as well as show current progress results.
NASA Astrophysics Data System (ADS)
Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa
2017-04-01
In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378
Global simulations and observations of O(1S), O2(1Σ) and OH mesospheric nightglow emissions
NASA Astrophysics Data System (ADS)
Yee, Jeng-Hwa; Crowley, G.; Roble, R. G.; Skinner, W. R.; Burrage, M. D.; Hays, P. B.
1997-09-01
Despite a large number of observations of mesospheric nightglow emissions in the past, the quantitative comparison between theoretical and experimental brightnesses is rather poor, owing primarily to the short duration of the observations, the strong variability of the tides, and the influence of short-timescale gravity waves. The high-resolution Doppler imager (HRDI) instrument onboard the upper atmosphere research satellite (UARS) provides nearly simultaneous, near-global observations of O(1S) green line, O2(0-1) atmospheric band, and OH Meinel band nightglow emissions. Three days of these observations near the September equinox of 1993 are presented to show the general characteristics of the three emissions, including the emission brightness, peak emission altitude, and their temporal and spatial variabilities. The global distribution of these emissions is simulated on the basis of atmospheric parameters from the recently developed National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). The most striking features revealed by the global simulation are the structuring of the mesospheric nightglow by the diurnal tides and enhancements of the airglow at high latitudes. The model reproduces the inverse relationship observed by HRDI between the nightglow brightness and peak emission altitude. Analysis of our model results shows that the large-scale latitudinal/tidal nightglow brightness variations are a direct result of a complex interplay between mesospheric and lower thermospheric diffusive and advective processes, acting mainly on the atomic oxygen concentrations. The inclination of the UARS spacecraft precluded observations of high latitude nightglow emissions by HRDI. However, our predicted high-latitude brightness enhancements confirm previous limited groundbased observations in the polar region. This work provides an initial validation of the NCAR-TIMEGCM using airglow data.
Perturbations to the lower ionosphere by tropical cyclone Evan in the South Pacific Region
NASA Astrophysics Data System (ADS)
Kumar, Sushil; NaitAmor, Samir; Chanrion, Olivier; Neubert, Torsten
2017-08-01
Very low frequency (VLF) electromagnetic signals from navigational transmitters propagate worldwide in the Earth-ionosphere waveguide formed by the Earth and the electrically conducting lower ionosphere. Changes in the signal properties are signatures of variations in the conductivity of the reflecting boundary of the lower ionosphere which is located in the mesosphere and lower thermosphere, and their analysis is, therefore, a way to study processes in these remote regions. Here we present a study on amplitude perturbations of local origin on the VLF transmitter signals (NPM, NLK, NAA, and JJI) observed during tropical cyclone (TC) Evan, 9-16 December 2012 when TC was in the proximity of the transmitter-receiver links. We observed a maximum amplitude perturbation of 5.7 dB on JJI transmitter during 16 December event. From Long Wave Propagation Capability model applied to three selected events we estimate a maximum decrease in the nighttime D region reference height (H') by 5.2 km (13 December, NPM) and maximum increase in the daytime D region H' by 6.1 km and 7.5 km (14 and 16 December, JJI). The results suggest that the TC caused the neutral densities of the mesosphere and lower thermosphere to lift and sink (bringing the lower ionosphere with it), an effect that may be mediated by gravity waves generated by the TC. The perturbations were observed before the storm was classified as a TC, at a time when it was a tropical depression, suggesting the broader conclusion that severe convective storms, in general, perturb the mesosphere and the stratosphere through which the perturbations propagate.
An investigation of turbulent scatter from the mesosphere as observed by coherent-scatter radar
NASA Technical Reports Server (NTRS)
Gibbs, K. P.; Bowhill, S. A.
1983-01-01
Turbulent scatter from he mesosphere is observed using the Urbana coherent-scatter radar. The variation in signal-to-noise ratio as a function of time-of-day is examined. The origin of scattering regions is investigated by comparing the variations in scattered power and Doppler velocity. Nighttime echoes are shown for periods of enhanced electron concentration. The spectrum of the returned signal is studied with a resolution of ten seconds. Spectral information is used to increase altitude resolution and observe the motion of scatterers. The expected variation in signal-to-noise ratio with solar flux is observed. It is found that variations in the scattered power generally do not correspond to the gravity waves which are simultaneously observed. Turbulent layers are observed at altitudes with high shear in the horizontal velocity and at altitudes with low shear. The ten-second resolution is necessary to distinguish meteor echoes from echoes produced by the advection of a scattering layer through the radar beam.
Comment on ``Mesoplates: Resolving a Decades-Old Controversy''
NASA Astrophysics Data System (ADS)
Liu, Han-Shou; Kolenkiewicz, R.
2004-07-01
Plate tectonics is primarily a geokinematic theory. Additional new concepts or components are needed to provide insights and constrains for geodynamic modeling. Recently, in Eos (23 December 2003), Pilger has developed a new concept regarding the kinematics of the lithospheric plates and the underlying mesosphere. He proposed that three mesoplates under the lithosphere can provide a framework for resolving a decades-old controversy on hot spots and mantle plumes. Geodynamic modelers are forced to establish the existence of these three mesoplates. We have attempted to verify the mesoplate hypothesis using satellite gravity signals for remote sensing the stresses in the mesosphere. Our stress patterns of the mesosphere at 100 km depth as inferred from satellite gravity signals show that global stress concentrations are mainly restricted to the boundaries of the Hawaiian, Tristan, and Icelandic Mesoplate as defined by Pilger.
NASA Astrophysics Data System (ADS)
Tellmann, Silvia; Häusler, Bernd; Hinson, David P.; Tyler, G. Leonard; Andert, Thomas P.; Bird, Michael K.; Imamura, Takeshi; Pätzold, Martin; Remus, Stefan
2015-04-01
Atmospheric waves on all spatial scales play a crucial role in the redistribution of energy, momentum, and atmospheric constituent in planetary atmosphere and are thought to be involved in the development and maintenance of the atmospheric superrotation on Venus. The Venus Express Radio-Science Experiment VeRa sounded the Venus neutral atmosphere and ionosphere in Earth occultation geometry using the spacecraft radio subsystem at two coherent frequencies. Radial profiles of neutral number density, covering the altitude range 40-90 km, are then converted to vertical profiles of temperature and pressure, assuming hydrostatic equilibrium. The extensive VeRa data set enables us to study global scale atmospheric wave phenomena like thermal tides in the mesosphere and troposphere. A pronounced local time dependency of the temperature is found in the mesosphere at different altitude levels. Wave-2 structures dominate the low latitude range in the upper mesosphere while the higher latitudes show a strong wave-1 structure at the top of the cloud layer. The investigation of these wave structures provides valuable information about the energy transport in the atmosphere.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
Simulations of Atmospheric Neutral Wave Coupling to the Ionosphere
NASA Astrophysics Data System (ADS)
Siefring, C. L.; Bernhardt, P. A.
2005-12-01
The densities in the E- and F-layer plasmas are much less than the density of background neutral atmosphere. Atmospheric neutral waves are primary sources of plasma density fluctuations and are the sources for triggering plasma instabilities. The neutral atmosphere supports acoustic waves, acoustic gravity waves, and Kelvin Helmholtz waves from wind shears. These waves help determine the structure of the ionosphere by changes in neutral density that affect ion-electron recombination and by neutral velocities that couple to the plasma via ion-neutral collisions. Neutral acoustic disturbances can arise from thunderstorms, chemical factory explosions and intentional high-explosive tests. Based on conservation of energy, acoustic waves grow in amplitude as they propagate upwards to lower atmospheric densities. Shock waves can form in an acoustic pulse that is eventually damped by viscosity. Ionospheric effects from acoustic waves include transient perturbations of E- and F-Regions and triggering of E-Region instabilities. Acoustic-gravity waves affect the ionosphere over large distances. Gravity wave sources include thunderstorms, auroral region disturbances, Space Shuttle launches and possibly solar eclipses. Low frequency acoustic-gravity waves propagate to yield traveling ionospheric disturbances (TID's), triggering of Equatorial bubbles, and possible periodic structuring of the E-Region. Gravity wave triggering of equatorial bubbles is studied numerically by solving the equations for plasma continuity and ion velocity along with Ohms law to provide an equation for the induced electric potential. Slow moving gravity waves provide density depressions on bottom of ionosphere and a gravitational Rayleigh-Taylor instability is initiated. Radar scatter detects field aligned irregularities in the resulting plasma bubble. Neutral Kelvin-Helmholtz waves are produced by strong mesospheric wind shears that are also coincident with the formation of intense E-layers. An atmospheric model for periodic structures with Kelvin-Helmholtz (KH) wavelengths is used to show the development of quasi-periodic structures in the E-layer. For the model, a background atmosphere near 100 km altitude with a scale height of 12.2 km is subjected to a wind shear profile varying by 100 m/s over a distance of 1.7 km. This neutral speed shear drives the KH instability with a growth time of about 100 seconds. The neutral KH wave is a source of plasma turbulence. The E-layer responds to the KH-Wave structure in the neutral atmosphere as an electrodynamic tracer. The plasma flow leads to small scale plasma field aligned irregularities from a gradient drift, plasma interchange instability (GDI) or a Farley-Buneman, two-stream instability (FBI). These irregularities are detected by radar scatter as quasi-periodic structures. All of these plasma phenomena would not occur without the initiation by neutral atmospheric waves.
NASA Astrophysics Data System (ADS)
Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming
2018-03-01
The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.
Interseasonal Variations in the Middle Atmosphere Forced by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Porter, H. S.; Chan, K. L.; Bhartia, P. K. (Technical Monitor)
2002-01-01
In our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations in the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric (m = 0) meridional circulation. A distinct but variable meridional wind oscillation (MWO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MWO through momentum deposition of GWs propagating in the north/south direction. The resulting momentum source represents a third (generally odd) order non-linear function of the meridional winds, and this enables the oscillation, as in the case of the QBO for the zonal winds. Since the meridional winds are relatively small compared to the zonal winds, however, the vertical wavelength that maintains the MWO is much smaller, i.e., only about 10 km instead of 40 km for the QBO. Consistent with the associated increase of the viscous stress, the period of the MWO is then short compared with that of the QBO, i.e., only about two to four months. Depending on the strength of the GW forcing, the computed amplitudes of the MWO are typically 4 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D (two-dimensional) and 3D (three-dimensional) reveal that the MWO is modulated by and in turn influences the QBO.
NASA Astrophysics Data System (ADS)
Hecht, J. H.; Fritts, D. C.; Wang, L.; Gelinas, L. J.; Rudy, R. J.; Walterscheid, R. L.; Taylor, M. J.; Pautet, P. D.; Smith, S.; Franke, S. J.
2018-01-01
Although mountain waves (MWs) are thought to be a ubiquitous feature of the wintertime southern Andes stratosphere, it was not known whether these waves propagated up to the mesopause region until Smith et al. (2009) confirmed their presence via airglow observations. The new Andes Lidar Observatory at Cerro Pachon in Chile provided the opportunity for a further study of these waves. Since MWs have near-zero phase speed, and zero wind lines often occur in the winter upper mesosphere (80 to 100 km altitude) region due to the reversal of the zonal mean and tidal wind, MW breakdown may routinely occur at these altitudes. Here we report on very high spatial/temporal resolution observations of the initiation of MW breakdown in the mesopause region. Because the waves are nearly stationary, the breakdown process was observed over several hours; a much longer interval than has previously been observed for any gravity wave breakdown. During the breakdown process observations were made of initial horseshoe-shaped vortices, leading to successive vortex rings, as is also commonly seen in Direct Numerical Simulations (DNS) of idealized and multiscale gravity wave breaking. Kelvin-Helmholtz instability (KHI) structures were also observed to form. Comparing the structure of observed KHI with the results of existing DNS allowed an estimate of the turbulent kinematic viscosity. This viscosity was found to be around 25 m2/s, a value larger than the nominal viscosity that is used in models.
Universal Power Law of the Gravity Wave Manifestation in the AIM CIPS Polar Mesospheric Cloud Images
NASA Astrophysics Data System (ADS)
Rong, P. P.; Yue, J.; Russell, J. M., III; Siskind, D. E.; Randall, C. E.
2017-12-01
A large ensemble of gravity waves (GWs) resides in the PMCs and we aim to extract the universal law that governs the wave display throughout the GW population. More specifically, we examined how wave display morphology and clarity level varies throughout the wave population manifested through the PMC albedo data. Higher clarity refers to more distinct exhibition of the features which often correspond to larger variances and better organized nature. A gravity wave tracking algorithm is designed and applied to the PMC albedo data taken by the AIM Cloud Imaging and Particle Size (CIPS) instrument to obtain the gravity wave detections throughout the two northern summers in 2007 and 2010. The horizontal wavelengths in the range of 20-60km are the focus of the study because they are the most commonly observed and readily captured in the CIPS orbital strips. A 1-dimensional continuous wavelet transform (CWT) is applied to PMC albedo along all radial directions within an elliptical region that has a radius of 400 km and an axial ratio of 0.65. The center of the elliptical region moves around the CIPS orbital strips so that waves at different locations and orientations can be captured. It shows that the CWT albedo power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution via removing the dependence of the albedo power on the background cloud brightness because we tend to examine the wave morphology beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution, and at three brightness levels, to represent the high, medium, and low albedo power categories. For these cases the albedo CWT power spectra follow exponential decay toward smaller scales. The high albedo power has the most rapid decay (i.e., exponent=-3.2) and corresponds to the most distinct wave display. Overall higher albedo power and more rapid decay both contributed to the more distinct display. The wave display becomes increasingly more blurry for the medium and low power categories that hold the exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can be collapsed irrespective of the brightness levels but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.
Annual variation of gravity-wave activity at middle and high latitudes in a high-resolution GCM
NASA Astrophysics Data System (ADS)
Becker, E.
2017-12-01
A high-resolution version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM) with resolved gravity waves (GWs) is employed to analyze the annual variation of GW activity in both hemispheres at middle and high latitudes. The geographical distributions of GW hotspots in the winter stratosphere are consistent with existing satellite data. Vertical profiles up to the lower thermosphere agree with ground-based measurements for both season. The model confirms the semi-annual variation of GW energy in the upper mesosphere that was found previously in radar-measurements in the northern hemisphere Furthermore, the GW potential energy per unit mass during winter shows two maxima, one around 50-70 km and one around 80-100 km. We interpret the upper maximum as a result of secondary GWs that are generated in the stratopause region due to the intermittent body forces of primary GWs. In a recent study we showed that these secondary GWs produce a significant eastward drag in the mesopause region during austral winter. This mechanism is found to be important in the northern winter as well.
NASA Astrophysics Data System (ADS)
Heale, C. J.; Bossert, K.; Snively, J. B.; Fritts, D. C.; Pautet, P.-D.; Taylor, M. J.
2017-01-01
A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a λx=200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25-28 km) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70 km altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave.
NASA Astrophysics Data System (ADS)
Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.
2018-04-01
Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50-70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40-60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.
On the distortions in calculated GW parameters during slanted atmospheric soundings
NASA Astrophysics Data System (ADS)
de la Torre, Alejandro; Alexander, Peter; Schmidt, Torsten; Llamedo, Pablo; Hierro, Rodrigo
2018-03-01
The significant distortions introduced in the measured atmospheric gravity wavelengths by soundings other than those in vertical and horizontal directions, are discussed as a function of the elevation angle of the sounding path and the gravity wave aspect ratio. Under- or overestimation of real vertical wavelengths during the measurement process depends on the value of these two parameters. The consequences of these distortions on the calculation of the energy and the vertical flux of horizontal momentum are analyzed and discussed in the context of two experimental limb satellite setups: GPS-LEO radio occultations and TIMED/SABER ((Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics)) measurements. Possible discrepancies previously found between the momentum flux calculated from satellite temperature profiles, on site and from model simulations, may to a certain degree be attributed to these distortions. A recalculation of previous momentum flux climatologies based on these considerations seems to be a difficult goal.
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.; Huang, Frank T.
2007-01-01
The Numerical Spectral Model (NSM) simulates the Quasi-biennial Oscillation (QBO) that dominates the zonal circulation of the lower stratosphere at low latitudes. In the model, the QBO is generated with parameterized small-scale gravity waves (GW), which are partially augmented in 3D with planetary waves owing to baroclinic instability. Due to GW filtering, the QBO extends into the upper mesosphere, evident in UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, even in simulations with latitude-independent wave source, the associated temperature variations extend to high latitudes. The meridional circulation redistributes some of the QBO energy to focus it partially onto the Polar Regions. The resulting QBO temperature variations away from the equator tend to increase at higher altitudes to produce inter-annual variations that can exceed 5 K in the polar mesopause region -- and our 3D model simulations show that the effect is variable from year to year and can produce large differences between the two hemispheres, presumably due to interactions involving the seasonal variations. Modeling studies with the NSM have shown that long-term variations can also be generated by the QBO interacting with the seasonal cycles through OW node-filtering. A 30-month QBO, optimally synchronized by the 6-month Semi-Annual Oscillation (SAO), thus produces a 5-year or semi-decadal (SD) oscillation -- and observational evidence for that has been provided by a recent analysis of stratospheric NCEP data. In a simulation with the 2D version of the NSM, this SD oscillation extends into the upper mesosphere, and we present results to show that the related temperature variations could contribute significantly to the long-term variations of the polar mesopause region. Quasi-decadal variations could furthermore arise from the modeled solar cycle modulations of the QBO and 12-month annual oscillation. Our numerical results are discussed in the context of the observed low summer temperatures reproduced by the model, to demonstrate that the above interannual and long-term variations could contribute significantly to the climatology of Polar Mesospheric Clouds (PMC) investigated by the Aeronomy of Ice in the Mesosphere (AIM) mission.
Spherical solitons in Earth'S mesosphere plasma
NASA Astrophysics Data System (ADS)
Annou, K.; Annou, R.
2016-01-01
Soliton formation in Earth's mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev-Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.
Spherical solitons in Earth’S mesosphere plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annou, K., E-mail: kannou@cdta.dz; Annou, R.
2016-01-15
Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.
NASA Astrophysics Data System (ADS)
Deiml, Michael; Kaufmann, Martin
2017-04-01
Coupling processes initiated by gravity waves in the middle atmosphere have increasing importance for the modeling of the climate system and represent one of the larger uncertainties in this field. To support new modeling efforts spatially resolved measurements of wave fields are very beneficial. This contribution proposes a new small satellite mission based on a three unit CubeSat form factor to observe the Oxygen Atmospheric Band emission around 762 nm for temperature derivation in a limb sounding configuration to characterize gravity waves. The satellite instrument resolves individual rotational lines whose intensities follow a Boltzmann law allowing for the derivation of temperature from the relative structure of these lines. The employed Spatial Heterodyne Spectrometer is characterized by its high throughput at a small form factor, allowing to perform scientific remote sensing measurements within a small satellite during day and night. The spectrometer consists of a thermally stabilized solid block and has no moving parts, which increases its reliability in orbit while allowing high precision measurements within a small volume. The instrument is verified in its precursor mission, the Atmospheric Heterodyne Interferometer Test (AtmoHIT), within the REXUS/BEXUS ballistic rocket flight campaign. The description of the flight campaign and the results thereof conclude this contribution.
Modeling Tides, Planetary Waves, and Equatorial Oscillations in the MLT
NASA Technical Reports Server (NTRS)
Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)
2001-01-01
Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of tides and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by tides and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the tides and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of tides and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.
NASA Technical Reports Server (NTRS)
Kidiyarova, V. G.; Fomina, N. N.
1989-01-01
The part of energy of the planetary waves which enters the stratosphere depends on conditions of planetary wave generation and propagation through the tropopause, and the part of planetary wave energy which enters the mesosphere depends on conditions of planetary wave propagation through the stratopause. An attempt is made to estimate connections between extratropical middle atmosphere temperature long term variations and portions of energy of planetary waves which enter the mesosphere and stratosphere during winter seasons in Northern and Southern Hemispheres. Interannual variations of temperatures at the 30 km and 70 km levels are investigated for the central winter months of the period 1970 to 1986. This period includes the descending branch of the 20th solar cycle and the whole 21st cycle. Calculations are made on the basis of measurements at Heiss Island and Molodezhnaya.
Tropical Cumulus Convection and Upward Propagating Waves in Middle Atmospheric GCMs
NASA Technical Reports Server (NTRS)
Horinouchi, T.; Pawson, S.; Shibata, K.; Langematz, U.; Manzini, E.; Giorgetta, M. A.; Sassi, F.; Wilson, R. J.; Hamilton, K. P.; deGranpre, J.;
2002-01-01
It is recognized that the resolved tropical wave spectrum can vary considerably between general circulation models (GCMs) and that these differences can have an important impact on the simulated climate. A comprehensive comparison of the waves is presented for the December-January-February period using high-frequency (three-hourly) data archives from eight GCMs and one simple model participating in the GCM Reality Intercomparison Project for SPARC (GRIPS). Quantitative measures of the structure and causes of the wavenumber-frequency structure of resolved waves and their impacts on the climate are given. Space-time spectral analysis reveals that the wave spectrum throughout the middle atmosphere is linked to variability of convective precipitation, which is determined by the parameterized convection. The variability of the precipitation spectrum differs by more than an order of magnitude between the models, with additional changes in the spectral distribution (especially the frequency). These differences can be explained primarily by the choice of different, cumulus par amet erizations: quasi-equilibrium mass-flux schemes tend to produce small variability, while the moist-convective adjustment scheme is most active. Comparison with observational estimates of precipitation variability suggests that the model values are scattered around the truth. This result indicates that a significant portion of the forcing of the equatorial quasi-biennial oscillation (QBO) is provided by waves with scales that are not resolved in present-day GCMs, since only the moist convective adjustment scheme (which has the largest transient variability) can force a QBO in models that have no parameterization of non-stationary gravity waves. Parameterized cumulus convection also impacts the nonmigrating tides in the equatorial region. In most of the models, momentum transport by diurnal nonmigrating tides in the mesosphere is larger than that by Kelvin waves, being more significant than has been thought. It is shown that the equatorial semi-annual oscillation in the models examined is driven mainly by gravity waves with periods shorter than three days, with at least some contribution from parameterized gravity waves; the contribution from the ultra-fast zonal wavenumber-1 Kelvin waves is negligible.
NASA Astrophysics Data System (ADS)
Li, T.; Leblanc, T.; McDermid, S.; Wu, D. L.
2007-12-01
The JPL Rayleigh lidars at Mauna Loa Observatory (MLO), HI (19.5N, 155.6W) and Table Mountain Observatory (TMO), CA (34.4N, 117.7W) have been operated for the regular nighttime data acquisition of temperature since 1994 and 1989 respectively. Using the monthly mean temperature vertical profiles observed by the JPL lidars (35- 85km) and nearby radiosondes (5-30km), and with the linear regression analysis, we are able to extract the temperature trend, solar cycle, El Nino South Oscillation (ENSO), and Quasi-Biennial Oscillation (QBO) signals from the troposphere to upper mesosphere over MLO and TMO. The temperature trends show different behaviors at two sites, minor trend at MLO, but more negative trend at TMO. The solar cycle responses in temperature are generally positive above the middle stratosphere at both sites, but negative response at MLO and positive at TMO below. During the El Nino events, the warmer temperatures in the troposphere and upper mesosphere, and the colder temperatures in the stratosphere and lower mesosphere were observed at MLO and almost visa verse at TMO. The significant QBO oscillations were observed in the stratosphere with amplitudes of ~2-3K and with clearer downward phase progression at MLO than that at TMO. The mesospheric QBO near 75-85km is clearly present at both sites with amplitude of ~2K and with longer vertical wavelength than that in stratosphere. In addition, we calculated the GW variances using lidar temperature profiles with 30min and 1km resolutions in the upper stratosphere (38-50km) and lower mesosphere (50-62km), and nearby radiosondes in the lower stratosphere (18-30km). The monthly mean GW variances clearly show an annual oscillation with a maximum in the winter and minimum in the summer. The QBO signature could be clearly seen in the lower stratosphere. In the upper stratosphere, a longer period oscillation (~5-6 years) with maxima in 2000-2001 and 2006 was revealed to synchronize with the solar maximum and minimum. No clear signature of GW activity in the lower mesosphere could be associated to that in the upper stratosphere, suggesting that part of gravity waves may either dissipated or reflected when crossing the stratopause region.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.
1982-01-01
Rocket observations made from two sites in northern Scandinavia between November 6 and December 1, 1980, as part of the Energy Budget Campaign are discussed. It was found that significant vertical and temporal changes in the wind structure were present and that they coincided with different geomagnetic conditions, that is, quiet and enhanced. Before November 16, the meridional wind component above 60 km was found to be positive (southerly), whereas the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly), and the magnitude of the zonal wind component was observed to decrease with altitude. Time sections of the perturbations of the zonal wind reveal the presence of vertically propagating waves, suggesting gravity wave activity. The waves are found to increase in wavelength from 3-4 km near 40 km to more than 12 km near 80 km. The observational techniques made use of chaff foil, chemical trails, inflatable spheres, and parachutes.
Middle Atmosphere Program. Handbook for MAP, volume 9
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1983-01-01
The term Mesosphere-Stratosphere-Troposphere radar (MST) was invented to describe the use of a high power radar transmitter together with a large vertically, or near vertically, pointing antenna to study the dynamics and structure of the atmosphere from about 10 to 100 km, using the very weak coherently scattered radiation returned from small scale irregularities in refractive index. Nine topics were addressed including: meteorological and dynamic requirements for MST radar networks; interpretation of radar returns for clear air; techniques for the measurement of horizontal and vertical velocities; techniques for studying gravity waves and turbulence; capabilities and limitations of existing MST radar; design considerations for high power VHF radar transceivers; optimum radar antenna configurations; and data analysis techniques.
NASA Technical Reports Server (NTRS)
Zhang, K. S.; Sasamori, T.
1984-01-01
The structure of unstable planetary waves is computed by a quasi-geostrophic model extending from the surface up to 80 km by means of eigenvalue-eigenfunction techniques in spherical coordinates. Three kinds of unstable modes of distinct phase speeds and vertical structures are identified in the winter climate state: (1) the deep Green mode with its maximum amplitude in the stratosphere; (2) the deep Charney mode with its maximum amplitude in the troposphere: and (3) the shallow Charney mode which is largely confined to the troposphere. Both the Green mode and the deep Charney mode are characterized by very slow phase speeds. They are mainly supported by upward wave energy fluxes, but the local baroclinic energy conversion within the stratosphere also contributes in supporting these deep modes. The mesosphere and the troposphere are dynamically independent in the summer season decoupled by the deep stratospheric easterly. The summer mesosphere supports the easterly unstable waves 1-4. Waves 3 and 4 are identified with the observed mesospheric 2-day wave and 1.7-day wave, respectively.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.
2004-12-01
The SuperDARN HF radars are best known for observing the ExB drift of ionospheric plasma in the high-latitude F region. At mesospheric altitudes the trails of ionization produced by meteors provide another kind of target for radar backscatter, and the motions imparted to these trails by winds in the neutral atmosphere can be measured. In the northern hemisphere the coverage of mesospheric winds currently extends over a 180 deg longitude sector but is confined by propagation conditions to latitudes near 55 deg geographic. We have analyzed several extended periods of simultaneous observations of the neutral wind involving SuperDARN and the TIMED suite of instruments. Often, the winds show clear evidence of large-scale wave events. The quasi 2-day planetary waves are prominent and their occurrence is seen to depend on season. By comparing the wave characteristics between the satellite and ground observations we obtain a complete breakdown of the wave activity in terms of wave periods and zonal wavenumbers. In addition, the semidiurnal tide is a ubiquitous feature of the mid-latitude mesosphere. A single radar station cannot resolve the sun-synchronous component from other contributions at the semidiurnal frequency. We show that with a chain of radars along a latitude band, the true sun-synchronous, or migrating, component can be inferred. Joint analysis can be performed chiefly with data from the SABRE and TIDI instruments.
NASA Astrophysics Data System (ADS)
Song, Byeong-Gwon; Chun, Hye-Yeong; Kim, Young-Ha
2015-04-01
A composite analysis for 21 stratospheric sudden warming (SSW) cases in 1979-2012 northern winter is performed using the MERRA reanalysis in order to investigate the changes in residual circulation and temperature during the SSW evolution. The SSW cases are classified as Type-1 and Type-2, based on the relative amplitude of planetary waves with zonal wavenumbers 1 and 2. The residual circulation induced by each forcing term in the transformed Eulerian mean (TEM) equation and the temperature advection associated with the circulation are calculated for both types of SSW. It is found that strong poleward and downward motion exists in the polar stratosphere just before the central date of SSW, which is induced primarily by the Eliassen-Palm flux divergence forcing (EPD). Gravity-wave drag (GWD) induces strong poleward and downward motion in the lower mesosphere. The temperature advection is significantly increased in the stratosphere before the central date of the SSW, as a result of the strong downward motion due to the EPD. However, the temperature change in the lower mesosphere is small despite the strong downward motion, because the vertical gradient of the potential temperature is relatively small at these altitudes. The temperature change in the stratosphere before the SSW is more rapid for Type-2 than Type-1. After the central date of SSW, the polar stratospheric temperature is recovered primarily by diabatic heating rather than by the residual circulation associated with wave forcing. Difference in the speed of temperature recovery between the two types of SSW is not significant.
Stereoscopic imaging of gravity waves in the mesosphere over Per.
NASA Astrophysics Data System (ADS)
Moreels, G.; Faivre, M.; Clairemidi, J.; Meriwether, J. W.; Lehmacher, G. A.; Chau, J. L.; Vidal, E.; Veliz, O.
A program of stereo-imaging of the mesospheric near-infrared emissive layer has recently been initiated using two CCD cameras operating in a vis- a -vis observation mode at a separation distance of sim 550 km These images were analyzed using a stereo-correlation method suitable for low contrast objects without discrete contours This approach consists of calculating a normalized cross-correlation parameter for the intensities of matched points Initially the altitude of the layer is chosen to be between 82 and 92 km The computer code calculates the altitude of the centroid of the emissive layer for each observed point and produces surface maps of the layer for 50x50 km 2 areas In addition to results from the Peruvian observations results of simultaneous observations obtained at the Pic du Midi Pyr e n e es and the Ch a teau-Renard Alpes observatories will be presented The surface maps are compared with coded maps of the emission intensity Both types of maps show significant wave structures The vertical amplitude of the waves is found to be typically between 1 and 2 km The Fourier characteristics are measured using a Morlet type wavelet generator function The horizontal wavelengths in the meridional and zonal directions are sim 20-40 km and 100-150 km and the temporal periods are sim 15-30 minutes The same observational program was conducted in the Peruvian Andes in October 2005 The sites were the Cosmos Observatory 12 r 04 S 75 r 34 W altitude 4620m and the Cerro Verde Tellolo mountain 16 r 33 S
NASA Astrophysics Data System (ADS)
Beissner, Kenneth C.
1997-10-01
Temperature observations of the middle atmosphere have been carried out from September 1993 through July 1995 using a Rayleigh backscatter lidar located at Utah State University (42oN, 111oW). Data have been analyzed to obtain absolute temperature profiles from 40 to 90 km. Various sources of error were reviewed in order to ensure the quality of the measurements. This included conducting a detailed examination of the data reduction procedure, integration methods, and averaging techniques, eliminating errors of 1-3%. The temperature structure climatology has been compared with several other mid-latitude data sets, including those from the French lidars, the SME spacecraft, the sodium lidars at Ft. Collins and Urbana, the MSISe90 model, and a high- latitude composite set from Andenes, Norway. In general, good agreement occurs at mid-latitudes, but areas of disagreement do exist. Among these, the Utah temperatures are significantly warmer than the MSISe90 temperatures above approximately 80 km, they are lower below 80 km than any of the others in summer, they show major year- to-year variability in the winter profiles, and they differ from the sodium lidar data at the altitudes where the temperature profiles should overlap. Also, comparisons between observations and a physics based global circulation model, the TIME-GCM, were conducted for a mid-latitude site. A photo-chemical model was developed to predict airglow intensity of OH based on output from the TIME-GCM. Many discrepancies between the model and observations were found, including a modeled summer mesopause too high, a stronger summer inversion not normally observed by lidar, a fall-spring asymmetry in the OH winds and lidar temperatures but not reproduced in the TIME-GCM equinoctial periods, larger winter seasonal wind tide than observed by the FPI, and a failure of the model to reverse the summertime mesospheric jet. It is our conclusion these discrepancies are due to a gravity wave parameterization in the model that is too weak and an increase will effectively align the model calculations with our observations.
NASA Astrophysics Data System (ADS)
Shiokawa, K.; Otsuka, Y.; Tsuchiya, S.; Moral, A. C.; Okoh, D.
2017-12-01
We review recent observational results of medium-scale traveling ionospheric disturbances (MSTIDs) and equatorial plasma bubbles obtained by using airglow imagers and Fabry-Perot interferometers of the Optical Mesosphere Thermosphere Imagers (OMTIs) at Asian and African sectors. The OMTIs contains 20 airglow imagers and 5 Fabry-Perot interferometers (FPIs) at Canada, USA (Alaska), Russia, Finland, Norway, Iceland, Japan, Thailand, Indonesia, Australia, and Nigeria (http://stdb2.isee.nagoya-u.ac.jp/omti/). The 3-dimentional Fast Fourier Transformation of airglow images makes it possible to analyze 16-year airglow images obtained at Shigaraki (34.8N) and Rikubetsu (43.5N), Japan, to obtain phase velocity spectra of gravity waves and MSTIDs. The MSTIDs spectra show clear southwestward preference of propagation and minor northeastward propagation over Japan. We also found clear negative correlation between MSTID power and solar F10.7 flux, indicating that MSTIDs becomes more active during solar quiet time. This fact suggest the control of ionospheric Perkins and E-F coupling instabilities by solar activities. Three TIDs in airglow images over Indonesia, including midnight brightness waves (MBWs), were compared with CHAMP-satellite overpass to investigate neutral density variations in the thermosphere associated with the TIDs. We found clear correspondence in variations between the airglow intensities and neutral densities, suggesting that the observed TIDs over the equatorial region is caused by gravity waves. We also compare average thermospheric temperatures measured by the four FPIs for 3-4 years with the MSIS90E and GAIA models. The comparison shows that GAIA generally shows better fitting than the MSIS90E, but at the equatorial stations, GAIA tends to fail to reproduce the FPI temperature, probably due to ambiguity of location of the midnight temperature maximum. We also made statistics of plasma bubble occurrence using airglow imager and GNSS receiver at Abuja (9.0N), Nigeria near the geomagnetic equator based on 1.6 year observations. The bubble occurrence is high at equinoxes. There are 33 % of events for which bubble detection by airglow image and GNSS ROTI is different. We discuss possible cause of these differences in the presentation.
Mesospheric sodium structure variability on horizontal scales relevant to laser guide star asterisms
NASA Astrophysics Data System (ADS)
Pfrommer, Thomas; Hickson, Paul
2012-07-01
Adaptive optics (AO) systems of modern telescopes use laser guide stars, produced by resonant excitation of sodium atoms in the mesosphere at around 92 km. Wavefront sensor subapertures, if sufficiently far away from the primary mirror center, resolve the internal structure of the sodium layer. The variability of this structure is caused by the influence of gravity waves and wind shear turbulence. The relevance of such dynamics to AO has been investigated over the past four years. A high-resolution lidar system, employed at the 6-m liquid mirror telescope, which is located near Vancouver, Canada, has been used to study mesospheric dynamics, such as the temporal behavior of the mean altitude. The main results from this study have been published elsewhere and will be summarized here. Along with the temporal variability, the mean altitude on horizontal scales of order IOs of meters has been studied by introducing a tip/tilt stage in the experimental setup. This enables us to swap the laser pulse within a 1 arcmin field of view. The horizontal mean altitude structure function has been measured on 10 observing nights between July and August 2011. Results reveal severe structural differences and a strong horizontal anisotropy. Individual laser beacons in a laser guide star asterism will therefore have at the same time significantly different focus heights. By propagating this 2d structure function to the entrance pupil of a 39 m telescope, we derive a differential focus wavefront error map.
NASA Astrophysics Data System (ADS)
Matsuda, Takashi S.; Nakamura, Takuji; Shiokawa, Kazuo; Tsutsumi, Masaki; Suzuki, Hidehiko; Ejiri, Mitsumu K.; Taguchi, Makoto
Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere and cause the mean wind accelerations in the mesosphere. This momentum deposit drives the general circulation and affects the temperature structure. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs at around 90 km altitude. Recently, there are many reports about statistical characteristics of AGWs observed by airglow imaging. However, comparison of these results obtained at various locations is difficult because each research group uses its own method for extracting and analyzing AGW events. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. This method was applied to the data obtained at Syowa Station, Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. We plan to apply this method to airglow imaging data observed at Syowa Station in 2002 and between 2008 and 2013, and also to the data observed at other stations in Antarctica (e.g. Rothera Station (67S, 68W) and Halley Station (75S, 26W)), in order to investigate the behavior of AGWs propagation direction and source distribution in the MLT region over Antarctica. In this presentation, we will report interim analysis result of the data at Syowa Station.
Development of a Sodium LIDAR for Spaceborne Missions
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey
2015-01-01
We are currently developing laser and electro-optic technologies to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earths mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. There is a pressing need in the Ionosphere Thermosphere - Mesosphere (ITM) community for high-resolution measurements that can characterize small-scale dynamics (i.e. Gravity Waves with wavelengths smaller than a few hundred km) and their effects in the Mesosphere-Lower-Termosphere (MLT) on a global basis. This is compelling because they are believed to be the dominant contributors to momentum transport and deposition in the MLT, which largely drive the global circulation and thermal structure and interactions with the tides and planetary waves in this region. We are developing a spaceborne remote sensing technique that will enable acquisition of global Na density, temperature and wind measurements in the MLT with the spatial and temporal resolution required to resolve issues associated with the structure, chemistry, dynamics, and energetics of this regionA nadir-pointing spaceborne Na Doppler resonance fluorescence LIDAR on board of the ISS will essentially make high-resolution, in time and space, Na density, temperature and vertical wind measurements, from 75-115 km (MLT region). Our instrument concept consisted of a high-energy laser transmitter at 589 nm and highly sensitive photon counting detector that allows for range-resolved atmospheric-sodium-temperature profiles. The atmospheric temperature is deduced from the linewidth of the resonant fluorescence from the atomic sodium vapor D2 line as measured by our tunable laser. We are currently developing a high power energy laser that allows for some day time sodium lidar observations with the help of a narrow bandpass filter based on etalon or atomic sodium Faraday filter with 5 to 10 pm optical bandwidth. The current baseline detector for the lidar instrument is a 16-channel Photomultiplier Tube with receiver electronics that has been space-qualified for the ICESat-2ATLAS mission. Our technique uses the 16-channels as a photon-number-resolving single detector to provide the required full-spectroscopic sodium lineshape waveform for recovering Mesospheric temperature profiles. In this paper, we will describe our instrument concept for a future Heliophysics space mission based on board of the International Space Station (ISS).
Comparisons Between TIME-GCM/MERRA Simulations and LEO Satellite Observations
NASA Astrophysics Data System (ADS)
Hagan, M. E.; Haeusler, K.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.
2014-12-01
We report on yearlong National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulations where we utilize the recently developed lower boundary condition based on 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data to account for tropospheric waves and tides propagating upward into the model domain. The solar and geomagnetic forcing is based on prevailing geophysical conditions. The simulations show a strong day-to-day variability in the upper thermospheric neutral temperature tidal fields, which is smoothed out quickly when averaging is applied over several days, e.g. up to 50% DE3 amplitude reduction for a 10-day average. This is an important result with respect to tidal diagnostics from satellite observations where averaging over multiple days is inevitable. In order to assess TIME-GCM performance we compare the simulations with measurements from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites.
NASA Technical Reports Server (NTRS)
Sivjee, G.; McEwen, D.; Walterscheid, R.
2003-01-01
The Polar Cap is the Upper-Atmosphere cum Mag-netosphere region which is enclosed by the poleward boundary of the Auroral Oval and is threaded by open geomagnetic tield lines. In this region, there is normally a steady precipition (Polar "drizzle") of low energy (w 300eV) electrons that excite optical emissions from the ionosphere. At times, enhanced ionization patches are formed near the Dayside Cusp regions that drift across the Polar Cap towards the Night Sector of the Auroral Oval. Discrete auroral arcs and auroras formed during Solar Magnetic Cloud (SMC)/Coronal Mass Ejection (CME) events are also observed in the Polar Cap. Spectrophotometric observations of all these Polar Cap phenomena provide a measure of the average energy as well a energy flux of the electrons precipitating in the Polar Cap region during these disturbances. Such measurements also point to modulations of the Polar Cap Mesosphere-Lower Thermosphere (MLT) air density and temperature by zonally symmetric tides whose Hough functions peak in the Polar region. MLT cooling during Stratospheric Warming events and their relation to Polar Vortex and associated Gravity wave activities are also observed at the Polar Cap sites.
The Whole Atmosphere Community Climate Model
NASA Astrophysics Data System (ADS)
Boville, B. A.; Garcia, R. R.; Sassi, F.; Kinnison, D.; Roble, R. G.
The Whole Atmosphere Community Climate Model (WACCM) is an upward exten- sion of the National Center for Atmospheric Research Community Climate System Model. WACCM simulates the atmosphere from the surface to the lower thermosphere (140 km) and includes both dynamical and chemical components. The salient points of the model formulation will be summarized and several aspects of its performance will be discussed. Comparison with observations indicates that WACCM produces re- alistic temperature and zonal wind distributions. Both the mean state and interannual variability will be summarized. Temperature inversions in the midlatitude mesosphere have been reported by several authors and are also found in WACCM. These inver- sions are formed primarily by planetary wave forcing, but the background state on which they form also requires gravity wave forcing. The response to sea surface temperature (SST) anomalies will be examined by com- paring simulations with observed SSTs for 1950-1998 to a simulation with clima- tological annual cycle of SSTs. The response to ENSO events is found to extend though the winter stratosphere and mesosphere and a signal is also found at the sum- mer mesopause. The experimental framework allows the ENSO signal to be isolated, because no other forcings are included (e.g. solar variability and volcanic eruptions) which complicate the observational record. The temperature and wind variations asso- ciated with ENSO are large enough to generate significant perturbations in the chem- ical composition of the middle atmosphere, which will also be discussed.
NASA Astrophysics Data System (ADS)
Chu, X.
2017-12-01
A new STAR Na Doppler lidar will be installed to Arrival Heights near McMurdo Station, Antarctica in October 2017. This new lidar will be operated next to an existing Fe Boltzmann lidar to make simultaneous and common-volume measurements of metal Na and Fe layers, neutral temperatures, and vertical winds in the mesosphere and thermosphere, up to nearly 200 km. These measurements will be used to study a variety of science topics, e.g., the meteoric metal layers, wave dynamics, polar mesospheric clouds, constituent and heat fluxes, and cosmic dust. The discoveries of thermospheric neutral Fe layers and persistent gravity waves by the Fe Boltzmann lidar observations has opened a new door to explore the space-atmosphere interactions with ground-based instruments, especially in the least understood but crucially important altitude range of 100-200 km. These neutral metal layers provide excellent tracers for modern resonance lidars to measure the neutral wind and temperature directly. Even more exciting, the neutral metal layers in the thermosphere provide a natural laboratory to test our fundamental understandings of the atmosphere-ionosphere-magnetosphere coupling and processes. This paper will report the first summer results from the simultaneous Na and Fe lidar observations from Antarctica, and highlight important discoveries made by the Fe lidar during its first seven years of campaign at McMurdo. A thermosphere-ionosphere Fe/Fe+ (TIFe) model will be introduced to explain the TIFe layers in Antarctica.
Modeling the QBO and SAO Driven by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.
1999-01-01
Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by wave mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean zonal and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. (4) In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.
Observations of the 5-day wave in the mesosphere and lower thermosphere
NASA Technical Reports Server (NTRS)
Wu, D. L.; Hays, P. B.; Skinner, W. R.
1994-01-01
The 5-day planetary wave has been detected in the winds measured by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) in the mesosphere and lower thermosphere (50-110 km). The appearances of the 5-day wave are transient, with a lifetime of 10-20 days in the two-year data set. The structures of selected 5-day wave events are in generally good agreement with the (1,1) Rossby normal mode for both zonal and meridional components. A climatology of the 5-day wave is presented for an altitude of 95 km and latitudes mainly between 40 deg S and 40 deg N.
The Mega Mesospheric Parachute
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Oberto, Robert; Kinsey, Robert
2005-01-01
The current understanding and modeling of the upper reaches of the atmosphere is incomplete. Upper atmospheric interactions with the lower atmosphere, effects of ionizing radiation, high altitude cloud phenomena, and the dynamical interaction with the magnetosphere require greater definition. The scientific objective of obtaining a greater understanding of the upper atmosphere can be achieved by designing, implementing, testing, and utilizing a facility that provides long period in-situ measurements of the mesosphere. Current direct sub-sonic measurements of the upper atmosphere are hampered by the approximately one minute sub-sonic observation window of a ballistic sounding rocket regardless of the launch angle. In-situ measurements at greater than transonic speeds impart energy into the molecular atmospheric system and distort the true atmospheric chemistry. A long duration, sub-sonic capability will significantly enhance our ability to observe and measure: (1) mesospheric lightning phenomena (sprites and blue jets) (2) composition, structure and stratification of noctilucent clouds (3) physics of seasonal radar echoes, gravity wave phenomena (4) chemistry of mesospheric gaseous ratio mixing (5) mesospheric interaction of ionizing radiation (6) dynamic electric and magnetic fields This new facility will also provide local field measurements which complement those that can be obtained through external measurements from satellite and ground-based platforms. The 400 foot (approximately 130 meter) diameter lightweight mega-mesospheric parachute system, deployed with a sounding rocket, is proposed herein as a method to increase sub-sonic mesospheric measurement time periods by more than an order of magnitude. The report outlines a multi-year evolving science instrumentation suite in parallel with the development of the mega meso-chute facility. The developmental issues surrounding the meso-chute are chiefly materials selection (thermal and structural) and deployment mechanism physics. Three mission cases were conceived and developed to include cost and schedules estimates. Each scenario has increasing scientific utility with paralleling launch weight, parachute hang-time, deployment altitude, and parachute size: (1) Case #1: $8.4M@24 months, 6kg payload, 20 min., 50km alt., 80 m. dia. (2) Case #2: $10.4M@24 months, 6kg payload, 20 min., 60km alt, 130m. dia. (3) Case #3: $13.6M@36 months, 30kg payload, 30 min., 90km alt., 200m. dia. The initial breakout cost for the parachute system is approximately $2M@24 months. This report identifies that although the challenges of the mega-meso-chute may be difficult, they can be surmounted and valuable results can be achieved.
Diurnal Variation in Gravity Wave Activity at Low and Middle Latitudes
NASA Technical Reports Server (NTRS)
Andrioli, V. F.; Fritts, D. C.; Batista, P. P.; Clemesha, B. R.; Janches, Diego
2013-01-01
We employ a modified composite day extension of the Hocking (2005) analysis method to study gravity wave (GW) activity in the mesosphere and lower thermosphere using 4 meteor radars spanning latitudes from 7deg S to 53.6deg S. Diurnal and semidiurnal modulations were observed in GW variances over all sites. Semidiurnal modulation with downward phase propagation was observed at lower latitudes mainly near the equinoxes. Diurnal modulations occur mainly near solstice and, except for the zonal component at Cariri (7deg S), do not exhibit downward phase propagation. At a higher latitude (SAAMER, 53.6deg S) these modulations are only observed in the meridional component where we can observe diurnal variation from March to May, and semidiurnal, during January, February, October (above 88 km) and November. Some of these modulations with downward phase progression correlate well with wind shear. When the wind shear is well correlated with the maximum of the variances the diurnal tide has its largest amplitudes, i.e., near equinox. Correlations exhibiting variations with tidal phases suggest significant GW-tidal interactions that have different characters depending on the tidal components and possible mean wind shears. Modulations that do not exhibit phase variations could be indicative of diurnal variations in GW sources.
The MATS Satellite Mission - Tomographic Perspectives on the Mesosphere
NASA Astrophysics Data System (ADS)
Karlsson, B.; Gumbel, J.
2015-12-01
Tomography in combination with space-borne limb imaging opens exciting new ways of probing atmospheric structures. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that applies these ideas to the mesosphere. MATS science questions focus on mesospheric wave activity and noctilucent clouds. Primary measurement targets are O2 Atmospheric band dayglow and nightglow in the near infrared (759-767 nm) and sunlight scattered from noctilucent clouds in the ultraviolet (270-300 nm). While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric composition, temperature and cloud properties. This poster introduces instrument and analysis ideas, and discusses scientific perspectives and connections to other missions. MATS is being prepared for a launch in 2018.
Investigation of Mesospheric Metal Emission Signals from SCIAMACHY Limb Measurements
2013-10-31
Mg seasonal variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.3 Mg annual mean...19 5.4 Mg+ monthly means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.5 Mg+ seasonal variations ...ground, which have a good vertical and tempo - ral resolution. Valuable information on mesospheric temperatures, wind speeds and wave propagation effects
NASA Astrophysics Data System (ADS)
Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Mitchell, N. J.; Stockwell, R. G.; Fuller, B.; Vandepeer, B.; Hormaechea, J.; Brunini, C.; Levato, H.
2010-09-01
The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ˜24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ˜20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ˜30 days.
Coherent structures in the Es layer and neutral middle atmosphere
NASA Astrophysics Data System (ADS)
Mošna, Zbyšek; Knížová, Petra Koucká; Potužníková, Kateřina
2015-12-01
The present paper shows results from the summer campaign performed during geomagnetically quiet period from June 1 to August 31, 2009. Within time-series of stratospheric and mesospheric temperatures at pressure levels 10-0.1 hPa, mesospheric winds measured in Collm, Germany, and the sporadic E-layer parameters foEs and hEs measured at the Pruhonice station we detected specific coherent wave-bursts in planetary wave domain. Permanent wave-like activity is observed in all analyzed data sets. However, the number of wave-like structures persistent in large range of height from the stratosphere to lower ionosphere is limited. The only coherent modes that are detected on consequent levels of the atmosphere are those corresponding to eigenmodes of planetary waves.
Stratospheric and Mesospheric Trace Gas Studies Using Ground-Based mm-Wave Receivers
NASA Technical Reports Server (NTRS)
daZafra, Robert L.
1997-01-01
The goal of the proposed work was to understand the latitude structure of nitric oxide in the mesosphere and lower thermosphere. The problem was portrayed by a clear difference between predictions of the nitric oxide distribution from chemical/dynamical models and data from observations made by the Solar Mesosphere Explorer (SMEE) in the early to mid eighties. The data exhibits a flat latitude structure of NO, the models tend to produce at equatorial maximum.
Migrating diurnal tide variability induced by propagating planetary waves
NASA Astrophysics Data System (ADS)
Chang, Loren C.
The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on the tide is smaller than the advective tendencies throughout most of the MLT region, and cannot iv directly account for the changes in the tide during the QTDW model simulation. In the case of the UFK wave, baseline tidal amplitudes are found to show much smaller changes of 10% or less, despite the larger amplitudes of the UFK wave in the lower thermosphere region compared to the QTDW. Analysis of the nonlinear advective tendencies shows smaller magnitudes than those in the the case of the QTDW, with interaction regions limited primarily to a smaller region in latitude and altitude. Increased tidal convergence in the tropical lower thermosphere is attributed to eastward forcing of the background zonal mean winds by the UFK wave. Increasing the UFK wave forcing by an order of magnitude, although unrealistic, results in changes to the tide comparable in magnitude to the case of the QTDW. While child waves generated by nonlinear advection are present with both of the propagating planetary waves examined, the QTDW produces much greater tidal variability through both nonlinear and linear advection due to its broader horizontal and vertical structure, compared to the UFK wave. Planetary wave induced background atmosphere changes can also drive tidal variability, suggesting that changes to the tidal response in the MLT can also result from this indirect coupling mechanism, in addition to nonlinear advection.
NASA Astrophysics Data System (ADS)
Kim, J.-H.; Kim, Y. H.; Moon, B.-K.; Chung, J.-K.; Won, Y.-I.
A spectral airglow temperature imager SATI was operated at King Sejong Station 62 22 r S 301 2 r E Korea Antarctic Research Station during a period of 2002 - 2005 Rotational temperatures from the OH 6-2 and O 2 0-1 band airglow were obtained for more than 600 nights during the 4 year operation Both the OH and O 2 temperatures show similar seasonal variations which change significantly year by year A maximum temperature occurred early May in 2003 and 2004 whereas two maxima appeared in April and August in 2002 The 2005 data show only a broad and weak maximum during months of April and May The data also show oscillations with periods of hours that seem to relate to tides and gravity waves and fluctuations with timescales of days that could be due to planetary waves Detailed analysis will be performed to the data set to identify major atmospheric oscillations or variation over hours days and seasons
NASA Astrophysics Data System (ADS)
Aoyama, T.; Iyemori, T.; Nakanishi, K.
2014-12-01
We present case studies of small-scale magnetic fluctuations above typhoons, hurricanes and cyclones as observed by the swarm constellation. It is reported lately that AGWs(atmospheric gravity waves) generated by meteorological phenomena in the troposphere such as typhoons and tornadoes, large earthquakes and volcanic eruptions propagate to the mesosphere and thermosphere. We observe them in various forms(e.g. airglows, ionospheric disturbances and TEC variations). We are proposing the following model. AGWs caused by atmospheric disturbances in the troposphere propagate to the ionospheric E-layer, drive dynamo action and generate field-aligned currents. The satellites observe magnetic fluctuations above the ionosphere. In this presentation, we focus on cases of tropical cyclone(hurricanes in North America, typhoons in North-West Pacific).
Do we need a geoelectric index?
NASA Technical Reports Server (NTRS)
Holzworth, R.; Volland, H.
1986-01-01
The need for a geoelectric index (GI) measuring the global level of atmospheric electrical activity for a given time is assessed, and methods for defining a GI are compared. Current problems in atmospheric and space electrodynamics (the global circuit, solar-terrestrial coupling, lightning effects on the ionosphere/magnetosphere, and mesospheric generators), atmospheric chemistry (the stratospheric ozone cycle and atmospheric gravity waves), and meteorology (fog forecasting) are reviewed to illustrate the usefullness of a GI. Derivations of a GI from in situ electrical measurements and from ground or satellite remote sensing of source properties are described, and a system based on ground measurement of the intensity of the Schumann resonance lines (as proposed by Polk, 1982) is found to be the most practical, requiring as few as three (automatically operated) stations for global coverage.
NASA Astrophysics Data System (ADS)
Giongo, Gabriel Augusto; Valentin Bageston, José; Prado Batista, Paulo; Wrasse, Cristiano Max; Dornelles Bittencourt, Gabriela; Paulino, Igo; Paes Leme, Neusa Maria; Fritts, David C.; Janches, Diego; Hocking, Wayne; Schuch, Nelson Jorge
2018-02-01
The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2 < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88-92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases.
NASA Technical Reports Server (NTRS)
Fleming, Eric L.; Jackman, Charles H.; Considine, David B.
1999-01-01
We have adopted the transport scenarios used in Part 1 to examine the sensitivity of stratospheric aircraft perturbations to transport changes in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric residence time and reduced the magnitude of the negative perturbation response in total ozone. Increasing the stratospheric K(sub yy) increased the residence time and enhanced the global scale negative total ozone response. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and results in a significantly weaker perturbation response, relative to the base case, throughout the stratosphere. We found a relatively minor model perturbation response sensitivity to the magnitude of K(sub yy) in the tropical stratosphere, and only a very small sensitivity to the magnitude of the horizontal mixing across the tropopause and to the strength of the mesospheric gravity wave drag and diffusion. These transport simulations also revealed a generally strong correlation between passive NO(sub y) accumulation and age of air throughout the stratosphere, such that faster transport rates resulted in a younger mean age and a smaller NO(y) mass accumulation. However, specific variations in K(sub yy) and mesospheric gravity wave strength exhibited very little NO(sub y)-age correlation in the lower stratosphere, similar to 3-D model simulations performed in the recent NASA "Models and Measurements" II analysis. The base model transport, which gives the most favorable overall comparison with inert tracer observations, simulated a global/annual mean total ozone response of -0.59%, with only a slightly larger response in the northern compared to the southern hemisphere. For transport scenarios which gave tracer simulations within some agreement with measurements, the annual/globally averaged total ozone response ranged from -0.45% to -0.70%. Our previous 1995 model exhibited overly fast transport rates, resulting in a global/annually averaged perturbation total ozone response of -0.25%, which is significantly weaker compared to the 1999 model. This illustrates how transport deficiencies can bias model simulations of stratospheric aircraft.
QBO Generated Inter-annual Variations of the Diurnal Tide in the Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.
2004-01-01
We report results from a study with the Numerical Spectral Model (NSM), which produces in the mesosphere significant inter-annual variations in the diurnal tide. Applying Hines Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates near the equator a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m / s at 30 Ism. As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal tide at altitudes around 95 km. In the present paper it is shown that the QBO modulates the tide such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the tide thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanism, the relative importance of the linearized advection terms are discussed that involve the meridional and vertical winds of the diurnal tide.
Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere
NASA Technical Reports Server (NTRS)
Bjarnason, Gudmundur G.; Solomon, Susan; Garcia, Rolando R.
1987-01-01
Possible dynamical influences on the diurnal behavior of ozone are investigated. A time dependent one-dimensional photochemical model is developed for this purpose; all model calculations are made at 70 deg N during summer. It is shown that the vertical diffusion can vary as much as 1 order of magnitude within a day as a result of large changes in the zonal wind induced by atmospheric thermal tides. It is found that by introducing a dissipation time scale for turbulence produced by breaking gravity waves, the agreement with Poker Flat echo data is improved. Comparisons of results from photochemical model calculations, where the vertical diffusion is a function of height only, with those in which the vertical diffusion coefficient is changing in time show large differences in the diurnal behavior of ozone between 70 and 90 km. By including the dynamical effect, much better agreement with the Solar Mesosphere Explorers data is obtained. The results are, however, sensitive to the background zonally averaged wind. The influence of including time-varying vertical diffusion coefficient on the OH densities is also large, especially between 80 and 90 km. This suggests that dynamical effects are important in determining the diurnal behavior of the airglow emission from the Meinel bands.
NASA Astrophysics Data System (ADS)
Tsuchiya, S.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Nakamura, T.; Yamamoto, M.
2017-12-01
A new spectral analysis technique has been developed to obtain power spectra in the horizontal phase velocity by using the 3-D Fast Fourier Transform [Matsuda et al., JGR, 2014]. Takeo et al. (JGR, 2017) studied spectral parameters of atmospheric gravity waves (AGWs) in the mesopause region and medium-scale traveling ionospheric disturbances (MSTIDs) in the thermosphere over 16 years by using airglow images at wavelengths of 557.7 nm (emission altitudes: 90-100 km) and 630.0 nm (200-300 km) obtained at Shigaraki (34.8N, 136.1E), Japan. In this study, we have applied the same spectral analysis technique to the 557.7 nm and 630.0-nm airglow images obtained at Rikubetsu (43.5N, 143.8E), Japan, for 16 years from 1999 to 2014. We compared spectral features of AGWs and MSTIDs over 16 years observed at Shigaraki and Rikubetsu, which are separated by 1,174 km. The propagation direction of mesospheric AGWs seen in 557.7-nm airglow images is northeastward in summer and southwestward in winter at both Shigaraki and Rikubetsu, probably due to wind filtering of these waves by the mesospheric jet. In winter, the propagation direction of AGWs gradually shifted from southwestward to northwestward as time progresses from evening to morning at both stations. We suggest that this local-time shift of propagation direction can also be explained by the wind filtering effect. The propagation direction of AGWs changed from southwestward to northeastward at Rikubetsu on the day of the reversal of eastward zonal wind at 60N and 10 hPa (about 35 km in altitude) by the stratospheric sudden warming (SSW), while such a SSW-associated change was not identified at Shigaraki, indicating that the effect of SSW wind reversal reached only to the Rikubetsu latitudes. For MSTIDs, there is a negative correlation between yearly variation of powers spectral density and F10.7 flux and propagation direction is southwestward in all season at both Shigaraki and Rikubetsu. This negative correlation can be explained by considering the linear growth rate of the Perkins instability which is a cause of the nighttime MSTIDs.
NASA Technical Reports Server (NTRS)
Petzoldt, K.
1989-01-01
For the MAP/WINE winter temperature and wind measurements of rockets were combined with SSU radiances (Stratospheric Sounder Unit onboard the NOAA satellites) and stratopause heights from the Solar Mesosphere Explorer (SME) to get a retrieved data set including all available information. By means of this data set a hemispheric geopotential height, temperature and geostrophic wind fields eddy transports for wave mean flow interaction and potential vorticity for the interpretation of nonlinear wave breaking could be computed. Wave reflection at critical lines was investigated with respect of stratospheric warmings. The meridional gradient of the potential vorticity and focusing of wave activity is compared with derived data from satellite observations during other winters.
NASA Astrophysics Data System (ADS)
Taori, A.; Kamalakar, V.; Raghunath, K.; Rao, S. V. B.; Russell, J. M.
2012-04-01
We utilize simultaneous Rayleigh lidar and mesospheric OH and O2 airglow measurements to identify the dominant and propagating waves within 40-95 km altitude regions over a low latitude station Gadanki (13.8° N, 79.2 °E). It is found that waves with 0.4-0.6 h periodicity are common throughout the altitude range of 40-95 km with significant amplitudes. The ground based temperature measurements with lidar and airglow monitoring are found to compare well with SABER data. With simultaneous Rayleigh lidar (temperature) and mesospheric airglow (emission intensity and temperature) measurements, we estimate the amplitude growth and Krassovsky parameters to characterize the propagation and dissipation of these upward propagating waves.
On inter-hemispheric coupling in the middle atmosphere
NASA Astrophysics Data System (ADS)
Karlsson, Bodil; Bailey, S.; Benze, S.; Gumbel, J.; Harvey, V. L.; Kürnich, H.; Lossow, S.; McLandress, D. Marsh, C.; Merkel, A. W.; Mills, M.; Randall, C. E.; Russell, J.; Shepherd, T. G.
On inter-hemispheric coupling in the middle atmosphere From recent studies it is evident that planetary wave activity in the winter hemisphere influences the high-latitude summer mesosphere on the opposite side of the globe. This is an extraordinary example of multi-scale wave-mean flow interaction. The first indication of this inter-hemispheric coupling came from a model study by Becker and Schmitz (2003). Since then, the results have been reproduced in several models, and observations have confirmed the existence of this link. We present current understanding of inter-hemispheric coupling and its consequences for the middle atmosphere, focusing on the summer mesosphere where polar mesospheric clouds (PMCs) form. The results shown are based on year-to-year and intra-seasonal variability in PMCs ob-served by the Odin satellite and the Aeronomy of Ice in the Mesosphere (AIM) satellite, as well as on model results from the extended Canadian Middle Atmosphere Model (CMAM), the Whole Atmosphere Community Climate Model (WACCM) and the Kühlungsborn Mechanis-u tic general Circulation Model (KMCM). The latter has been used to pinpoint the proposed mechanism behind the inter-hemispheric coupling.
NASA Astrophysics Data System (ADS)
Vadas, Sharon L.; Crowley, Geoff
2010-07-01
We model the gravity waves (GWs) excited by Tropical Storm (TS) Noel at 0432 UT on 30 October 2007. Using forward ray tracing, we calculate the body forces which result from the saturation and dissipation of these GWs. We then analyze the 59 traveling ionospheric disturbances (TIDs) observed by the TIDDBIT ionospheric sounder at 0400-1000 UT near Wallops Island. These TIDs were located at the bottomside of the F layer at z = 230-290 km, had periods of τr = 15 to 90 min, horizontal wavelengths of λH = 100 to 3000 km, and horizontal phase speeds of cH = 140 to 650 m/s. 33 (˜60%) of the TIDs were propagating northwest(NW) and north(N)ward, from the direction of TS Noel 1700-2000 km away. We show that these TIDs were likely GWs. 40% of these GWs had phase speeds larger than 280m/s. This precluded a tropospheric source and suggested mesospheric and thermospheric sources instead. Using reverse ray tracing, we compare the GW locations with the regions of convective overshoot, mesospheric body forces, and thermospheric body forces. We identify 27 of the northwest/northward propagating GWs as likely being secondary GWs excited by thermospheric body forces. Three may have originated from mesospheric body forces, although this is much less likely. None are identified as primary GWs excited directly by TS Noel. 11 of these GWs with cH < 205 m/s likely reflected near the tropopause prior to detection. This secondary GW spectrum peaks at λH ˜ 100-300 km and cH ˜ 100-300 m/s. To our knowledge, this is the first identification and quantification of secondary GWs from thermospheric body forces.
EISCAT observations during MAC/SINE and MAC/Epsilon
NASA Technical Reports Server (NTRS)
Roettger, J.; Hoppe, U.-P.; Hall, C.
1989-01-01
The EISCAT incoherent scatter radar facility in Tromsoe, Norway was operated during the MAC/SINE campaign for 78 hours in the period 10 June to 17 July 1987, and during the MAC/Epsilon campaign for 90 hours in the period 15 October to 5 November 1987. The VHF (224 MHz) radar operations during MAC/SINE yielded most interesting observations of strong coherent echoes from the mesopause region. Characteristic data of these polar mesospheric summer echoes are presented. The UHF (933 MHz) radar operations during MAC/Epsilon were done with 18 deg off zenith beam and allows the deduction of meridonal and horizontal wind components as well as radial velocity spectra in addition to the usual electron density profiles in the D and lower E regions. Some results from the VHF and UHF radars indicating the presence of gravity waves are examined.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Goldberg, R. A.; Gerlach, John C. (Technical Monitor)
2002-01-01
A significant number of passive inflatable falling spheres launched from Alcantara, Brazil (2S) during the MALTED campaign in August 1994 showed unusual temperature layering at 70 and 85 km, Reprocessing of the original radar position data reveal more consistent temperature inversions over time than was observed during the DROPPS campaign conducted from northern Scandinavia during July 1999. Comparison between falling sphere measurements and the HALOE instrument on UARS provides a now perspective about the atmospheric structure at two widely separated locations. The availability of NASA and Brazilian C-band radars established high confidence in the data quality during MALTED. A new campaign, MaCWAVE scheduled this summer from Andoys, Rocket Range, Norway (67N) will provide characteristics of gravity wave activity that will be compared with the MALTED temperature and wind profiles.
Equatorial waves in temperature in the altitude range 4 to 70 km
NASA Astrophysics Data System (ADS)
Krishna Murthy, B. V.; Satheesan, K.; Parameswaran, K.; Sasi, M. N.; Ramkumar, Geetha; Bhavanikumar, Y.; Raghunath, K.; Krishniah, M.
2002-04-01
Using altitude profiles of temperature in the range 4 to 70 km derived from Mesosphere-Stratosphere- Troposphere radar and lidar observations at Gadanki (13.5°N, 79.2°E) from 18 January 1999 to 5 March 1999, characteristics of equatorial waves are studied. Two-dimensional Fourier-transform analysis of the temperature profiles is carried out to identify the periodicities and their vertical wave numbers. From the characteristics obtained, equatorial slow Kelvin waves with periodicities 15.7 d, 9.4 d, 7.8 d and 6.7 d are identified in the troposphere and stratosphere regions and among these 7.8 d and 6.7 d periodicities are found to penetrate into the mesosphere. Equatorial waves with smaller periodicities in the range 5.2 d to 3.6 d are also observed. The vertical flux of horizontal momentum (zonal) of the identified slow Kelvin-wave periodicities in the altitude region 4-25 km is estimated. It is found that equatorial waves modulate tropical tropopause temperature and altitude.
NASA Astrophysics Data System (ADS)
Zhang, X.; Forbes, J. M.; Maute, A. I.
2017-12-01
Planetary Wave-Tide Interactions in Atmosphere-Ionosphere Coupling Xiaoli Zhang, Jeffrey M. Forbes, Astrid Maute, and Maura E. Hagan The existence of secondary waves in the mesosphere and thermosphere due to nonlinear interactions between atmospheric tides and longer-period waves have been revealed in both satellite data and in the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The longer-period waves include the quasi-2-day and 6-day westward-propagating "normal modes" of the atmosphere, and eastward-propagating ultra-fast Kelvin waves with periods between 2 and 4 days. The secondary waves add to both the temporal and longitude variability of the atmosphere beyond that associated with the linear superposition of the interacting waves, thus adding "complexity" to the system. Based on our knowledge of the processes governing atmosphere-ionosphere interactions, similar revelations are expected to occur in electric fields, vertical plasma drifts and F-region electron densities. Towards this end, examples of such ionospheric manifestations of wave-wave interactions in TIE-GCM simulations will be presented.
Sensitivity of the mesosphere to the Lorenz energy cycle of the troposphere
NASA Astrophysics Data System (ADS)
Becker, Erich
The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability in the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. In particular, a fixed GW source at a single level in the troposphere is often assumed. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs tends to vanish, the main contribution to the EPF divergence at high latitudes of the MLT is due to midand high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of a mechanistic GCM with high spatial resolution and a sophisticated parameterization of turbulence. This model explicitly simulates the wave drag of the MLT that results from the dynamical GW sources in the troposphere. The Smagorinsky-type horizontal and vertical diffusion coefficients are scaled by the Richardson criterion such that no sponge layer is required for the GWs to dissipate in the MLT. A sensitivity experiment shows that a reduced static stability in the lower troposphere, which may be associated with climate change, leads to a stronger Lorenz energy cycle. The intensification of the tropospheric heat engine is accompanied by enhanced GW acitivity in the upper troposphere at middle latitudes. These changes induce the following remote effects in the summer MLT: downshift of the residual circulation, as well as stronger dissipation, lower temperatures, and reduced easterlies below the mesopause. The simulated sensitivity is consistent with enhanced turbulent diffusion at lower altitudes resulting from stronger GW amplitudes.
Periodic variations in stratospheric-mesospheric temperature from 20-65 km at 80 N to 30 S
NASA Technical Reports Server (NTRS)
Nastrom, G. D.; Belmont, A. D.
1975-01-01
Results on large-scale periodic variations of the stratospheric-mesospheric temperature field based on Meteorological Rocket Network (MRN) measurements are reported for a long-term (12-year) mean, the quasi-biennial oscillation (QBO), and the first three harmonics of the annual wave (annual wave, semi-annual wave, and terannual wave or 4-month variation). Station-to-station comparisons are tabulated and charted for amplitude and phase of periodic variations in the temperature field. Masking and biasing factors, such as diurnal tides, solar radiation variations, mean monthly variations, instrument lag, aerodynamic heating, are singled out for attention. Models of the stratosphere will have to account for these oscillations of different periods in the thermal field and related properties of the wind fields, with multilayered horizontal stratification with height taken into account.-
Infrasonic troposphere-ionosphere coupling in Hawaii
NASA Astrophysics Data System (ADS)
Garces, M. A.
2011-12-01
The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.
Mesospheric plasma irregularities caused by the missile destruction on 9 December 2009
NASA Astrophysics Data System (ADS)
Kozlovsky, Alexander; Shalimov, Sergey; Lester, Mark
2017-06-01
On 9 December 2009 at about 07 UT a solid propellant 36.8 t ballistic rocket was self-destroyed at an altitude of 170-260 km, at a distance of about 500 km to the east of Sodankylä Geophysical Observatory (SGO, 67°22'N, 26°38'E, Finland). After 2-3 h the SGO meteor radar (operating at a frequency 36.9 MHz) received unusual echoes, which indicate turbulence of ionospheric plasma (irregularities of electron density) with a temporal scale on the order of 0.1 s and a spatial scale of a few to tens of meters. The turbulence occurred at a height of about 80 km and was localized in several areas of about 60 km in horizontal scale. Line-of-sight velocity of the irregularities was up to a few tens of meters per second toward the radar. The event occurred in the winter high-latitude mesosphere during extremely low solar and geomagnetic activity. Aerosol particles caused by the missile explosion played a key role in producing the electron density irregularities. As a possible explanation, we suggest that sedimented by gravity and, hence, moving with respect to the air, charged aerosol particles (presumably composed of aluminum oxide) might produce meter-scale irregularities (electrostatic waves) via dissipative instability, which is a mechanism analogous to that of the resistive beam-plasma instability.
Properties of the mesosphere and thermosphere and comparison with CIRA 72
NASA Astrophysics Data System (ADS)
Champion, K. S. W.
Exospheric temperatures of several reference atmosphere are reviewed and a recommendation is made for the exospheric temperature of a proposed mean CIRA. One of the deficiencies of CIRA 72 and other present thermospheric models is the representation of density changes with geomagnetic activity. This deficiency is illustrated with samples of data. The data show the effects of geomagnetic activity, particle precipitation, a solar proton event, and gravity waves. An empirical model developed from the unique AFGL satellite density data bank using multiple linear regression is reviewed. The present model is for low to moderate solar flux and quiet geomagnetic conditions, but it is planned to extend the model to active conditions. Good progress has been made since CIRA 72 was specified in our knowledge and understanding of the properties of the lower thermosphere, although there are still some unresolved problems. The biggest progress has been made in the theory of tidal effects and of particulate energy deposition and of electrojet heating. On the other hand, it is still not possible to define adequately the systematic variations of the lower boundary conditions of thermospheric models. This is due to lack of knowledge of the systematic variations of the structure properties in the 100 to 120 km altitude region and inadequate information on the mesospheric turbulence profile and variations in the turbopause altitude.
Interactions between finite amplitude small and medium-scale waves in the MLT region.
NASA Astrophysics Data System (ADS)
Heale, C. J.; Snively, J. B.
2016-12-01
Small-scale gravity waves can propagate high into the thermosphere and deposit significant momentum and energy into the background flow [e.g., Yamada et al., 2001, Fritts et al., 2014]. However, their propagation, dissipation, and spectral evolution can be significantly altered by other waves and dynamics and the nature of these complex interactions are not yet well understood. While many ray-tracing and time-dependent modeling studies have been performed to investigate interactions between waves of varying scales [e.g., Eckermann and Marks .1996, Sartelet. 2003, Liu et al. 2008, Vanderhoff et al., 2008, Senf and Achatz., 2011, Heale et al., 2015], the majority of these have considered waves of larger (tidal) scales, or have simplified one of the waves to be an imposed "background" and discount (or limit) the nonlinear feedback mechanisms between the two waves. In reality, both waves will influence each other, especially at finite amplitudes when nonlinear effects become important or dominant. We present a study of fully nonlinear interactions between small-scale 10s km, 10 min period) and medium-scale wave packets at finite amplitudes, which include feedback between the two waves and the ambient atmosphere. Time-dependence of the larger-scale wave has been identified as an important factor in reducing reflection [Heale et al., 2015] and critical level effects [Sartelet, 2003, Senf and Achatz, 2011], we choose medium-scale waves of different periods, and thus vertical scales, to investigate how this influences the propagation, filtering, and momentum and energy deposition of the small-scale waves, and in turn how these impacts affect the medium-scale waves. We also consider the observable features of these interactions in the mesosphere and lower thermosphere.
NASA Astrophysics Data System (ADS)
Stray, Nora H.; Espy, Patrick J.
2018-06-01
This paper examines the influence of neutral dynamics on the high latitude ionosphere. Using a longitudinal chain of ionosondes at high northern latitudes (52°-65° N), planetary wave-like structures were observed in the spatial structure of the peak electron density in the ionosphere. Longitudinal wavenumbers S0, S1 and S2 have been extracted from these variations of the F layer. The observed wave activity in wavenumber one and two does not show any significant correlation with indices of magnetic activity, suggesting that this is not the primary driver. In addition, the motion of the S1 ionospheric wave structures parallels that of the S1 planetary waves observed in the winds of the mesosphere-lower-thermosphere derived from a longitudinal array of SuperDARN meteor-radar wind measurements. The time delay between the motions of the wave structures would indicate a indirect coupling, commensurate with the diffusion to the ionosphere of mesospheric atomic oxygen perturbations.
NASA Astrophysics Data System (ADS)
Serva, Federico; Cagnazzo, Chiara; Riccio, Angelo
2016-04-01
The effects of the propagation and breaking of atmospheric gravity waves have long been considered crucial for their impact on the circulation, especially in the stratosphere and mesosphere, between heights of 10 and 110 km. These waves, that in the Earth's atmosphere originate from surface orography (OGWs) or from transient (nonorographic) phenomena such as fronts and convective processes (NOGWs), have horizontal wavelengths between 10 and 1000 km, vertical wavelengths of several km, and frequencies spanning from minutes to hours. Orographic and nonorographic GWs must be accounted for in climate models to obtain a realistic simulation of the stratosphere in both hemispheres, since they can have a substantial impact on circulation and temperature, hence an important role in ozone chemistry for chemistry-climate models. Several types of parameterization are currently employed in models, differing in the formulation and for the values assigned to parameters, but the common aim is to quantify the effect of wave breaking on large-scale wind and temperature patterns. In the last decade, both global observations from satellite-borne instruments and the outputs of very high resolution climate models provided insight on the variability and properties of gravity wave field, and these results can be used to constrain some of the empirical parameters present in most parameterization scheme. A feature of the NOGW forcing that clearly emerges is the intermittency, linked with the nature of the sources: this property is absent in the majority of the models, in which NOGW parameterizations are uncoupled with other atmospheric phenomena, leading to results which display lower variability compared to observations. In this work, we analyze the climate simulated in AMIP runs of the MAECHAM5 model, which uses the Hines NOGW parameterization and with a fine vertical resolution suitable to capture the effects of wave-mean flow interaction. We compare the results obtained with two version of the model, the default and a new stochastic version, in which the value of the perturbation field at launching level is not constant and uniform, but extracted at each time-step and grid-point from a given PDF. With this approach we are trying to add further variability to the effects given by the deterministic NOGW parameterization: the impact on the simulated climate will be assessed focusing on the Quasi-Biennial Oscillation of the equatorial stratosphere (known to be driven also by gravity waves) and on the variability of the mid-to-high latitudes atmosphere. The different characteristics of the circulation will be compared with recent reanalysis products in order to determine the advantages of the stochastic approach over the traditional deterministic scheme.
NASA Astrophysics Data System (ADS)
Takahashi, H.; Figueiredo, C. A. O. B.; Wrasse, C. M.; Otsuka, Y.; Shiokawa, K.; Barros, D.
2017-12-01
Medium Scale Traveling Ionospheric Disturbances (MSTIDs) were studied using detrended Total Electron Content (dTEC) maps and keograms over South-Southeast of Brazil during the period from December 2012 to February 2016. In total 826 MSTIDs were observed and they present average values of horizontal wavelength, period, and horizontal phase velocity of 445.19 ± 106.70 km, 23.58 ± 3.65 min e 322.68 ± 80.95 m/s, respectively. The direction of propagation presented anisotropy depending on the season. In addition, the occurrences of MSTIDs were during the daytime between 11-15 LT in winter and other seasons near to solar terminator (17-19 LT). Furthermore, the seasonality of MSTIDs has a higher occurrence rate in winter. The MSTIDs characteristics also suggest that gravity wave activities in the thermosphere, mesosphere and troposphere could play an important role in generating the MSTIDs.
NASA Astrophysics Data System (ADS)
Chung, J.-K.; Kim, Y. H.; Moon, B.-G.; Oh, T.-H.; Won, Y.-I.
A spectral airglow temperature imager (SATI) was operated at King Sejong Station (62.22^oS, 301.2^oE), Korea Antarctic Research Station during the period March, 2002 through October, 2003. We analyze data obtained at 24 and 22 nights with clear sky condition lasting more than 6 hours in 2002 and 2003, respectively. A dominant and coherent 4-hr oscillation was seen in both the OH(6-2) and O_2(0-1) band airglow rotational temperatures at two nights, and similar weak features appeared at several nights . The data also show fluctuations of long period that seem to relate to tides, and short period oscillations that could be due to propagating gravity waves. Detailed harmonic analysis will be performed to seasonal data sets to identify any variation in the major atmospheric oscillations over season.
NASA Technical Reports Server (NTRS)
Bemra, R. S.; Rastogi, P. K.; Balsley, B. B.
1986-01-01
An analysis of frequency spectra at periods of about 5 days to 5 min from two 20-day sets of velocity measurements in the stratosphere and troposphere region obtained with the Poker Flat mesosphere-stratosphere-troposphere (MST) radar during January and June, 1984 is presented. A technique based on median filtering and averaged order statistics for automatic editing, smoothing and spectral analysis of velocity time series contaminated with spurious data points or outliers is outlined. The validity of this technique and its effects on the inferred spectral index was tested through simulation. Spectra obtained with this technique are discussed. The measured spectral indices show variability with season and height, especially across the tropopause. The discussion briefly outlines the need for obtaining better climatologies of velocity spectra and for the refinements of the existing theories to explain their behavior.
NASA Astrophysics Data System (ADS)
Eswaraiah, S.; Kim, Yong Ha; Hong, Junseok; Kim, Jeong-Han; Ratnam, M. Venkat; Chandran, A.; Rao, S. V. B.; Riggin, Dennis
2016-03-01
A minor stratospheric sudden warming (SSW) event was noticed in the southern hemisphere (SH) during September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. Among the three warming events, the signature of mesosphere response was detected only for the September event in the mesospheric wind dataset from both meteor radar and MF radar located at King Sejong Station (62°S, 59°W) and Rothera (68°S, 68°W), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW event, as has been observed in the 2002 major SSW. Signatures of mesospheric cooling (MC) in association with stratospheric warmings are found in temperatures measured by the Microwave Limb Sounder (MLS). Simulations of specified dynamics version of Whole Atmosphere Community Climate Model (SD-WACCM) are able to reproduce these observed features. The mesospheric wind field was found to differ significantly from that of normal years probably due to enhanced planetary wave (PW) activity before the SSW. From the wavelet analysis of wind data of both stations, we find that strong 14-16 day PWs prevailed prior to the SSW and disappeared suddenly after the SSW in the mesosphere. Our study provides evidence that minor SSWs in SH can result in significant effects on the mesospheric dynamics as in the northern hemisphere.
NASA Astrophysics Data System (ADS)
Thomas, Gary; Thurairajah, Brentha; von Savigny, Christian; Hervig, Mark; Snow, Martin
2016-04-01
Solar cycle variations of ultraviolet radiation have been implicated in the 11-year and 27-day variations of Polar Mesospheric Cloud (PMC) properties. Both of these variations have been attributed to variable solar ultraviolet heating and photolysis, but no definitive studies of the mechanisms are available. The solar forcing issue is critical toward answering the broader question of whether PMC's have undergone long-term changes, and if so, what is the nature of the responsible long-term climate forcings? One of the principal goals of the Aeronomy of Ice in the Mesosphere satellite mission was to answer the question: "How does changing solar irradiance affect PMCs and the environment in which they form?" We describe an eight-year data set from the AIM Solar Occultation for Ice Experiment (SOFIE) and the AIM Cloud Imaging and Particle Size (CIPS) experiment. Together, these instruments provide high-precision measurements of high-latitude summertime temperature (T), water vapor (H2O), and PMC ice properties for the period 2007-present. The complete temporal coverage of the summertime polar cap region for both the primary atmospheric forcings of PMC (T and H2O), together with a continually updated time series of Lyman-alpha solar irradiance, allows an in-depth study of the causes and effects of 27-day PMC variability. The small responses of these variables, relative to larger day-to-day changes from gravity waves, tides, inter-hemispheric coupling, etc. require a careful statistical analysis to isolate the solar influence. We present results for the 27-day responses of T, H2O and PMC for a total of 15 PMC seasons, (30 days before summer solstice to 60 days afterward, for both hemispheres). We find that the amplitudes and phase relationships are not consistent with the expected mechanisms of solar UV heating and photolysis - instead we postulate a primarily dynamical response, in which a periodic vertical wind heats/cools the upper mesosphere, and modulates PMC properties via the strong T and H2O sensitivity of ice microphysics. We propose that the wind acting on the strong H2O gradient in the 80-85 km region causes water vapor to be vertically transported, amplifying the temperature effect. Supporting evidence of a ~27-day mode of oscillation will be presented. PMC height is also shown to have a 27-day periodicity, presumably a result of rising/falling of pressure surfaces. Implications of these results for the 11-year variability of PMC will be presented.
NASA Astrophysics Data System (ADS)
Costantino, Lorenzo; Heinrich, Philippe
2014-05-01
Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637
Remote sensing of mesospheric electric fields using MF radars
NASA Astrophysics Data System (ADS)
Meek, C. E.; Manson, A. H.; Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.
2004-07-01
Large mesospheric electric fields can play an essential role in middle atmospheric electrodynamics (see, e.g., Goldberg, R. A., Middle Atmospheric Electrodynamics during MAP, Adv. Space Res. 10 (10) (1990) 209). The V/m electric fields of atmospheric origin can be the possible cause of large variations in the electron collision frequency at mesospheric altitudes, and this provides a unique opportunity to take measurements of electric fields in the lower ionosphere by using remote sensing instruments employing radiowave techniques. A technique has been proposed for making estimates of large mesospheric electric field intensities on the lower edge of the ionosphere by using MF radar data and the inherent effective electron collision frequency. To do this, data collected in Canada and Ukraine were utilized. The developed technique permits the changes in mesospheric electric field intensities to be derived from MF radar data in real time. The statistical analysis of data consistent with large mesospheric electric field intensities in the 60-67km region resulted in the following inferences. There are at least two mechanisms for the generation of large mesospheric electric fields in the mesosphere. The most likely mechanism, with a probability of 60-70%, is the summation of random fields from a large number of elementary small-scale mesospheric generators, which results in a one-parameter Rayleigh distribution of the total large mesospheric electric field intensity E with a mean value of approximately 0.7-0.9V/m in the 60-67km altitude region, or in the corresponding one-parameter exponential distribution of the intensity squared E2 of large mesospheric electric fields. The second mechanism of unknown nature, with 5-15% probability, gives rise to the sporadic appearance of large mesospheric electric field intensities E>2.5V/m with a mean of 4V/m. Statistically significant seasonal differences in the averaged large mesospheric electric field parameters have not been revealed. The probability of the absence of local large mesospheric electric fields amounts to approximately 25% for Ukraine and approximately 30% for Canada. A comparison of the Ukrainian and Canadian data indicates the possible existence of a latitudinal dependence in mean large mesospheric electric field features. Hence, the large electric fields are an additional source of electron heating that must be taken into account in studying a disturbed lower ionosphere and radio wave propagation within it.
The Middle Atmosphere Program: Winter In Northern Europe (MAP/WINE)
NASA Technical Reports Server (NTRS)
Vonzahn, U.
1982-01-01
The goals of map/wind (winter in Northern Europe) are to better understand: (1) the interaction of planetary waves of tropospheric origin; (2) the temporal and spatial development of sudden stratospheric warmings; (3) the temporal and spatial development of mesospheric cooling events in conjunction with stratospheric warmings; (4) the vertical and horizontal transport of minor constituents; (5) the effects on the chemistry of neutral and charged species of the large temperature changes occurring during stratospheric warmings and mesospheric cooling; (6) sources of turbulent energy; (7) the temporal and spatial development of turbulent layers; and (8) the contributions of dynamical processes to the heating and cooling of the mesospheric and turbopause region.
Tropical behavior of mesospheric ozone as observed by SMM
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Kendig, D. J.
1992-01-01
The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985-1989 period. Annual as well as semi-annual waves are observed in the 50-70 km altitude region. In the latitude range of +/- 30 deg the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than +/- 15 deg). There is a hemispheric asymmetry in the ozone annual wave in the 20-30 deg region, with Northern Hemispheric ozone having a larger amplitude than Southern Hemispheric ozone.
Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio-waves
NASA Astrophysics Data System (ADS)
Cohen, M.; Zhang, X.; Cohen, M.; Mahmoudian, A.; Scales, W.; Kosch, M. J.; M Farahani, M.; Mohebalhojeh, A.
2016-12-01
So-called polar mesospheric winter echoes (PMWE) are radar echoes observed during winter at altitudes around 50-80 km and are much weaker than their PMSE (Polar Mesospheric Summer Echoes) counterpart. Unlike PMSE, PMWE are less studied and understood. Breaking of gravity waves and the associated turbulence are proposed as the major source for PMWE echoes. The action of neutral turbulence alone does not appear to give a good explanation for PMWE. PMWE is also attributed to Bragg scatter from electron irregularities which result from charging of free electrons onto sub-visible particles. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and off are distinct parameters that are a function of radar frequency. This work presents the first study of the modulation of PMWE by artificial radiowave heating using computational modeling and experimental observation in different radar frequency bands. Variation of dust plasma parameters associated with PMWE such as dust radius, dust density, recombination rate, electron- and dust-neutral collision frequencies, photo-detachment current and electron temperature enhancement ratio are included. Computational results derived from different sets of parameters are considered and compared with recent observations at EISCAT using 224 MHz and 56 MHz radars. The agreement between the model results and the observations show the high potential of remote sensing of dust and plasma parameters associated with PMWE. Measurement of Te/Ti using ISR and simultaneous observations in two frequency bands may lead to a more accurate estimation of dust density and radius. The enhancement of backscattered signal in the HF band during PMWE heating is predicted for the first time. The required background dust-plasma parameters as well as heater power (Te/Ti) for the observation of turn-on overshoot are investigated. It has been shown that the similarity of the temporal evolution of radar echoes in HF band and average charge on the dust particles can be used to study the fundamental physics associated with the dust charging in the PMWE source region. The possibilities of perusing PMWE heating experiments at HAARP will be discussed.
Modelled thermal and dynamical responses of the middle atmosphere to EPP-induced ozone changes
NASA Astrophysics Data System (ADS)
Karami, K.; Braesicke, P.; Kunze, M.; Langematz, U.; Sinnhuber, M.; Versick, S.
2015-11-01
Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over the polar regions of both hemispheres, where they can greatly disturb the chemical composition of the upper and middle atmosphere and contribute to ozone depletion in the stratosphere and mesosphere. The chemistry-climate general circulation model EMAC is used to investigate the impact of changed ozone concentration due to Energetic Particle Precipitation (EPP) on temperature and wind fields. The results of our simulations show that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes over a wide range of latitudes and altitudes. In both hemispheres, as winter progresses the temperature and wind anomalies move downward with time from the mesosphere/upper stratosphere to the lower stratosphere. In the Northern Hemisphere (NH), once anomalies of temperature and zonal wind reach the lower stratosphere, another signal develops in mesospheric heights and moves downward. Analyses of Eliassen and Palm (EP) flux divergence show that accelerating or decelerating of the stratospheric zonal flow is in harmony with positive and negative anomalies of the EP flux divergences, respectively. This results suggest that the oscillatory mode in the downwelling signal of temperature and zonal wind in our simulations are the consequence of interaction between the resolved waves in the model and the mean stratospheric flow. Therefore, any changes in the EP flux divergence lead to anomalies in the zonal mean zonal wind which in turn feed back on the propagation of Rossby waves from the troposphere to higher altitudes. The analyses of Rossby waves refractive index show that the EPP-induced ozone anomalies are capable of altering the propagation condition of the planetary-scale Rossby waves in both hemispheres. It is also found that while ozone depletion was confined to mesospheric and stratospheric heights, but it is capable to alter Rossby wave propagation down to tropospheric heights. In response to an accelerated polar vortex in the Southern Hemisphere (SH) late wintertime, we found almost two weeks delay in the occurrence of mean dates of Stratospheric Final Warming (SFW). These results suggest that the stratosphere is not merely a passive sink of wave activity from below, but it plays an active role in determining its own budget of wave activity.
Properties of QBO and SAO Generated by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.
1999-01-01
We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.
Evidence of nonlinear interaction between quasi 2 day wave and quasi-stationary wave
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang; Wu, Qian; Russell, James M.
2015-02-01
The nonlinear interaction between the westward quasi 2 day wave (QTDW) with zonal wave number s = 3 (W3) and stationary planetary wave with s = 1 (SPW1) is first investigated using both Thermosphere, Ionosphere, and Mesosphere Electric Dynamics (TIMED) satellite observations and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. A QTDW with westward s = 2 (W2) is identified in the mesosphere and lower thermosphere (MLT) region in TIMED/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and TIMED/TIMED Doppler Imager (TIDI) wind observations during 2011/2012 austral summer period, which coincides with a strong SPW1 episode at high latitude of the northern winter hemisphere. The temperature perturbation of W2 QTDW reaches a maximum amplitude of ~8 K at ~30°S and ~88 km in the Southern Hemisphere, with a smaller amplitude in the Northern Hemisphere at similar latitude and minimum amplitude at the equator. The maximum meridional wind amplitude of the W2 QTDW is observed to be ~40 m/s at 95 km in the equatorial region. The TIME-GCM is utilized to simulate the nonlinear interactions between W3 QTDW and SPW1 by specifying both W3 QTDW and SPW1 perturbations at the lower model boundary. The model results show a clear W2 QTDW signature in the MLT region, which agrees well with the TIMED/SABER temperature and TIMED/TIDI horizontal wind observations. We conclude that the W2 QTDW during the 2011/2012 austral summer period results from the nonlinear interaction between W3 QTDW and SPW1.
NASA Astrophysics Data System (ADS)
Zhao, J.; Geraghty, I.; Chu, X.; Vadas, S.; Becker, E.; Harvey, V. L.; Jones, R. M.; Chen, C.; Lu, X.
2017-12-01
After Antarctic persistent gravity waves (GWs) in the Mesosphere and Lower Thermosphere (MLT) were discovered from lidar observations [Chen et al., 2013, 2016], secondary wave generation theory was proposed to explain the source. Here we perform a source investigation of such persistent GWs through analyzing both stratospheric and MLT GWs at McMurdo using temperature measurements (30 - 50 km, year 2011 - 2015) obtained by Fe Boltzmann lidar. In the stratosphere, GW vertical wavelengths (λ) and periods exhibit seasonal cycles with winter maxima and summer minima, which linearly correlated with mean zonal wind velocities. GWs dissipate more in winter than in summer due to larger wave amplitudes. The potential energy density (Ep) are anti-correlated with wind rotation angles but positively correlated with surface and stratospheric winds. Critical level filtering, in-situ generation of GWs, and wave saturation changes play roles in Ep seasonal variations (winter maxima and summer minima). The large increase of Ep from summer to winter possibly results from the decrease in critical level filtering. The gradual variations of Ep from Mar to Oct are likely related both to the increased λ towards winter, allowing larger wave amplitudes before saturation, and to in-situ GW generation via geostrophic adjustment, secondary GW generation. Large Ep occur when McMurdo is inside the jet stream core 5-24º poleward from vortex edge. In winter MLT, the persistent GWs cause larger temperature perturbations (± 30 K, compared to ± 10 K in the stratosphere) with longer λ (23.5 km) and larger vertical phase speeds (1.8 m/s). More waves (95.4%) show downward phase progression compared to the stratospheric GWs (70.4%). Since the inferred horizontal wavelength of stratospheric GWs (350 - 450 km) are much shorter than those of the persistent GWs in the MLT (1000 - 2000 km), the dominant stratospheric GWs are not the direct source of the MLT persistent GWs. Secondary wave generation possibly provides the source for the persistent GWs. Primary GWs (such as dominant stratospheric GWs) generated from the lower atmosphere break at 50 km, create body forces, and generate secondary GWs, providing the persistent GWs we observed in the MLT. The theoretically predicted "Fish-bone" patterns are presented from our lidar measurements.
2011-01-01
et al., 2008). Since wind observations are sparse and standard data assimilation systems ( DASs ) do not extend through the mesosphere, we have far...et al., 2008). Figure 1f plots a time-height cross section of wave- 2 F z at 60◦N, scaled by exp(z/2H), where z is pres- sure altitude and H =7 km. As
NASA Technical Reports Server (NTRS)
Raghavarao, R.; Suhasini, R.; Sridharan, R.; Krishnamurthy, B. V.; Nagpal, O. P.
1990-01-01
Results are presented of the equatorial wave campaign-II, a meteorological rocket study which was part of the Indian Middle Atmosphere Program. The equatorial wave campaign-II was conducted from Shar, India (13.7 deg N, 80.2 deg E) from January 15-February 28, 1986. By means of high altitude balloon and the RH-200 meteorological rocket, winds were measured from ground level up to 60 km altitude once each day during the 45-day period. The oscillation frequencies of the deviations in the east-west component of the winds from their mean at each 1-km height interval are obtained by the maximum entropy method. The phases and amplitudes of these frequencies are determined by use of the least squares method on the wind variation time series. Enhanced wave activity is shown to take place in the troposphere and lower mesosphere. The tropospheric waves observed suggest themselves to be Rossby waves of extratropical origin penetrating to tropical latitudes. The observed stratospheric/mesospheric waves appear to emanate from a source around the stratopause.
Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation
NASA Astrophysics Data System (ADS)
Gan, Quan; Wang, Wenbing; Yue, Jia; Liu, Hanli; Chang, Loren C.; Zhang, Shaodong; Burns, Alan; Du, Jian
2016-10-01
The Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to theoretically study the 6 day wave effects on the ionosphere. By introducing a 6 day perturbation with zonal wave number 1 at the model lower boundary, the TIME-GCM reasonably reproduces the 6 day wave in temperature and horizontal winds in the mesosphere and lower thermosphere region during the vernal equinox. The E region wind dynamo exhibits a prominent 6 day oscillation that is directly modulated by the 6 day wave. Meanwhile, significant local time variability (diurnal and semidiurnal) is also seen in wind dynamo as a result of altered tides due to the nonlinear interaction between the 6 day wave and migrating tides. More importantly, the perturbations in the E region neutral winds (both the 6 day oscillation and tidal-induced short-term variability) modulate the polarization electric fields, thus leading to the perturbations in vertical ion drifts and ionospheric F2 region peak electron density (NmF2). Our modeling work shows that the 6 day wave couples with the ionosphere via both the direct neutral wind modulation and the interaction with atmospheric tides.
Radiative-photochemical response of the mesosphere to dynamical forcing
NASA Technical Reports Server (NTRS)
Frederick, J. E.
1981-01-01
Combination of the chemical continuity equation for odd oxygen with the second law of thermodynamics yields analytic solutions which describe the coupled behavior of temperature and ozone perturbations in response to an externally specified forcing. The results appear in a form which allows easy physical interpretation of the coupling between radiative and photochemical processes. When the forcing is chosen to mimic a planetary scale wave, the theory shows that photochemical acceleration of radiative damping reduces the amplitude of the temperature perturbation by an amount which increases with the wave period. Although ozone fluctuations are anti-correlated with those in temperature, minima in ozone do not coincide exactly in longitude with temperature maxima. The percentage variation in ozone increases upward and is always larger than that in temperature at the same pressure. This demonstrates that variations in ozone on constant pressure surfaces may serve as a sensitive indicator of wave activity in the mesosphere.
NASA Astrophysics Data System (ADS)
Sharma, Som; Kumar, Prashant; Vaishnav, Rajesh; Jethva, Chintan; Beig, G.
2017-12-01
Long term variations of the middle atmospheric thermal structure in the upper stratosphere and lower mesosphere (20-90 km) have been studied over Ahmedabad (23.1°N, 72.3°E, 55 m amsl), India using SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) onboard TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) observations during year 2002 to year 2014. For the same period, three different atmospheric models show over-estimation of temperature (∼10 K) near the stratopause and in the upper mesosphere, and a signature of under-estimation is seen above mesopause when compared against SABER measured temperature profiles. Estimation of monthly temperature anomalies reveals a semiannual and ter-annual oscillation moving downward from the mesosphere to the stratosphere during January to December. Moreover, Lomb Scargle periodogram (LSP) and Wavelet transform techniques are employed to characterize the semi-annual, annual and quasi-biennial oscillations to diagnose the wave dynamics in the stratosphere-mesosphere system. Results suggested that semi-annual, annual and quasi-biennial oscillations are exist in stratosphere, whereas, semi-annual and annual oscillations are observed in mesosphere. In lower mesosphere, LSP analyses revealed conspicuous absence of annual oscillations in altitude range of ∼55-65 km, and semi-annual oscillations are not existing in 35-45 km. Four monthly oscillations are also reported in the altitude range of about 45-65 km. The temporal localization of oscillations using wavelet analysis shows strong annual oscillation during year 2004-2006 and 2009-2011.
Formation of Mesospheric Clouds on Mars
NASA Astrophysics Data System (ADS)
Plane, J. M. C.; Audouard, J.; Listowski, C.; Mangan, T.; Maattanen, A. E.; Montmessin, F.; Forget, F.; Millour, E.; Spiga, A.; Crismani, M. M. J.; Schneider, N. M.
2017-12-01
Martian Mesospheric Clouds (MMCs) are observed intermittently in the Martian atmosphere between 60 and 100 km, occurring particularly at low latitudes. The clouds consist mainly of CO2-ice particles around 1 mm in radius. Explaining the nucleation and growth of these particles is challenging: it has been assumed that - by analogy with polar mesospheric clouds in the terrestrial atmosphere - nucleation occurs on meteoric smoke particles (very small metal-silicate particles resulting from the condensation of the vapor produced by cosmic dust ablation). Indeed, 1D modeling of CO2 microphysics suggests that an exogenous source of nuclei is necessary to model CO2 MMCs, in agreement with observations in cold pockets produced by the coupling of gravity waves and thermal tides. However, a recent laboratory study has shown that smoke particles, which would be around 1 nm in size - require extremely high CO2 supersaturations to nucleate CO2 ice. Here we present an alternative picture of the nucleation of CO2-ice particles. The major meteoric metals - Mg and Fe - should form MgCO3 and FeCO3 molecules in the Mars atmosphere below 90 km. These molecules have enormous electric dipole moments (11.6 and 9.3 Debye, respectively), and so will immediately form stable clusters with 3 CO2 molecules, which then slowly exchange with H2O to produce hexa-hydrated carbonate molecules. These primary particles polymerize readily to form a background population of "dirty" water-ice particles. Using MAVEN-IUVS measurements of the background Mg+ ion layer to constrain the injection rates of Mg and Fe from meteoric ablation, and a 1D model of metal chemistry coupled to an aerosol coagulation model, we show that the population of these water-ice particles with radii greater than 10 nm should be around 200 cm-3 at 80 km, thus providing a population of effective CO2-ice nuclei. When these nuclei are input in the Laboratoire de Météorologie Dynamique (LMD) Mars GCM, first results show that they can be activated in the upper mesosphere cold pockets and hence contribute to form CO2-ice clouds whose characteristics (spatial and seasonal distribution, opacities, and particle sizes) are in agreement with observations.
Tomographic reconstruction of atmospheric gravity wave parameters from airglow observations
NASA Astrophysics Data System (ADS)
Song, Rui; Kaufmann, Martin; Ungermann, Jörn; Ern, Manfred; Liu, Guang; Riese, Martin
2017-11-01
Gravity waves (GWs) play an important role in the dynamics of the mesosphere and lower thermosphere (MLT). Therefore, global observations of GWs in the MLT region are of particular interest. The small scales of GWs, however, pose a major problem for the observation of GWs from space. We propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from atmospheric soundings. In our study, we simulate satellite observations of the rotational structure of the O2 A-band nightglow. A key element of the new method is the ability of the instrument or the satellite to operate in so-called target mode
, i.e. to point at a particular point in the atmosphere and collect radiances at different viewing angles. These multi-angle measurements of a selected region allow for tomographic 2-D reconstruction of the atmospheric state, in particular of GW structures. The feasibility of this tomographic retrieval approach is assessed using simulated measurements. It shows that one major advantage of this observation strategy is that GWs can be observed on a much smaller scale than conventional observations. We derive a GW sensitivity function, and it is shown that target mode
observations are able to capture GWs with horizontal wavelengths as short as ˜ 50 km for a large range of vertical wavelengths. This is far better than the horizontal wavelength limit of 100-200 km obtained from conventional limb sounding.
Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project
NASA Astrophysics Data System (ADS)
Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L. G.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J. D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Sindelarova, T.; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, J.
2018-03-01
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions.
The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric Tides
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.
1999-01-01
We discuss a Numerical Spectral Mode (NSM) that extends from the ground up into the thermosphere and incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations in the mean zonal circulation, the semi-annual and quasi-biennial oscillations (SAO and QBO), as well as the tides and planetary waves in the middle atmosphere. Initial results showed that this model can reproduce the salient features observed, including the QBO extending into the upper mesosphere inferred from UARS measurements. The model has now been extended to simulate also: (a) the zonal circulation of the lower stratosphere and upper troposphere, and (b) the upwelling at equatorial latitudes associated with the Brewer Dobsen circulation that affects the dynamics significantly as pointed out by Dunkerton. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase in the model the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. This development is conducive to extending the QBO and SAO to higher latitudes through global scale momentum redistribution. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. A somewhat larger GW source (well within the DSP range) is then required to generate realistic QBO and SAO amplitudes. Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 70 and 120 km. Wave filtering by the mean zonal circulation causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide tends to peak during solstice. Under the influence of GW, the tides are modulated significantly by planetary waves that are generated preferentially during solstice in part due to baroclinic instability.
NASA Astrophysics Data System (ADS)
Kim, Yongha; Sunkara, Eswaraiah; Hong, Junseok; Ratnam, Venkat; Chandran, Amal; Rao, Svb; Riggin, Dennis
2015-04-01
The mesosphere-lower thermosphere (MLT) response to extremely rare minor sudden stratospheric warming (SSW) events was observed for the first time in the southern hemisphere (SH) during 2010 and is investigated using the meteor radar located at King Sejong Station (62.22°S, 58.78°W), Antarctica. Three episodic SSWs were noticed from early August to late October 2010. The mesospheric wind field was found to significantly differ from normal years due to enhanced planetary wave (PW) activity before the SSWs and secondary PWs in the MLT afterwards. The zonal winds in the mesosphere reversed approximately a week before the SSW occurrence in the stratosphere as has been observed 2002 major SSW, suggesting the downward propagation of disturbance during minor SSWs as well. Signatures of mesospheric cooling (MC) in association with SSWs are found in the Microwave Limb Sounder (MLS) measurements. SD-WACCM simulations are able to produce these observed features.
NASA Astrophysics Data System (ADS)
Huang, W.; Chu, X.; Gardner, C. S.; Barry, I. F.; Smith, J. A.; Fong, W.; Yu, Z.; Chen, C.
2014-12-01
The vertical transport of heat and constituent by gravity waves and tides plays a fundamental role in establishing the thermal and constituent structures of the mesosphere and lower thermosphere (MLT), but has not been thoroughly investigated by observations. In particular, direct measurements of vertical heat flux and metal constituent flux caused by dissipating waves are extremely rare, which demand precise measurements with high spatial and temporal resolutions over a long period. Such requirements are necessary to overcome various uncertainties to reveal the small quantities of the heat and constituent fluxes induced by dissipating waves. So far such direct observations have only been reported for vertical heat and Na fluxes using a Na Doppler lidar at Starfire Optical Range (SOR) in Albuquerque, New Mexico. Furthermore, estimate of eddy heat and constituent fluxes from the turbulent mixing generated by breaking waves is even more challenging due to the even smaller temporal and spatial scales of the eddy. Consequently, the associated coefficients of thermal (kH) and constituent (kzz) diffusion have not been well characterized and remain as large uncertainties in models. We attempt to address these issues with direct measurements by a Na Doppler lidar with exceptional high-resolution measurement capabilities. Since summer 2010, we have been operating a Na Doppler lidar at Boulder, Colorado. The efficiency of the lidar has been greatly improved in summer of 2011 and achieved generally over 1000 counts of Na signal per lidar pulse in winter. In 2013, we made extensive Na lidar observations in 98 nights. These data covering each month of a full year will be used to characterize the seasonal variations of heat and Na fluxes and to be compared with the pioneering observations at SOR. In November 2013, we further upgraded the lidar with two new frequency shifters and a new data acquisition scheme, which are optimized for estimating eddy fluxes and reducing the measurement bias. Since then, we have been making observations in order to directly measure the eddy heat and Na fluxes for the first time. Such lidar observations at Boulder will certainly help advance the understanding on the vertical transport in the MLT region and provide crucial observational references to the models.
Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R
2014-01-01
Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)—a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5–10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N2, as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Key Points Dissipating planetary waves (PWs) in the MLT can drive background wind changes Mixing from dissipating PWs drive thermosphere/ionosphere composition changes First observations of QTDW-driven variability from this mechanism PMID:26312201
Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R
2014-06-01
Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)-a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N 2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5-10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N 2 , as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Dissipating planetary waves (PWs) in the MLT can drive background wind changesMixing from dissipating PWs drive thermosphere/ionosphere composition changesFirst observations of QTDW-driven variability from this mechanism.
Suomi NPP Satellite Views of Tropical Cyclone Mahasen in the Northern Indian Ocean
2017-12-08
The first tropical cyclone in the Northern Indian Ocean this season has been getting better organized as seen in NASA satellite imagery. Tropical Cyclone Mahasen is projected to track north through the Bay of Bengal and make landfall later this week. On May 13, NASA-NOAA's Suomi NPP satellite captured various night-time and day-time imagery that showed Mesospheric Gravity Waves, lightning, and heavy rainfall in false-colored imagery. For more information and updates on Cyclone Mahasen, visit NASA's Hurricane page at www.nasa.gov/hurricane. Image Credit: UWM-CIMSS/William Straka III/NASA/NOAA Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
On the Interaction Between Gravity Waves and Atmospheric Thermal Tides
NASA Astrophysics Data System (ADS)
Agner, Ryan Matthew
Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been shown to enhance the tidal amplitudes compared to observations while the parameterization scheme in SD-WACCM (Lindzen scheme) overdamps the tides. It is shown here that the Hines scheme assumption that only small scale gravity waves force the atmosphere do not create enough drag to properly constrain the tidal amplitudes. The Lindzen scheme produces too much drag because all wave scales are assumed to be saturated thus continuing to provide forcing on the atmosphere above the breaking altitude. The final part of this work investigates GWs, tides and their interactions on a local time scale instead of a global scale in the two GCMs. The local time GWs in eCMAM are found to have a strong seasonal dependence, with the majority of the forcings at the winter pole at latitudes where the diurnal variations are weak limiting their interactions. In SD-WACCM, the largest local GW forcings are located at mid latitudes near where the diurnal variations peak causing them to dampen the diurnal amplitudes. On a local time level the diurnal variations may be a summation of many tidal modes. The analysis reveals that in eCMAM the DW1 tidal mode is by far the dominant mode accounting for the local time variations. The high amount of modulation of GWs by the DW1 tidal winds does not allow it to be properly constrained, causing it to dominate the local time diurnal variations. Similarly, the DW1 projection of GW forcing is dominant over all other other modes and contributes the most to the local time diurnal GW variations. The local time wind variations in SD-WACCM are in uenced by several tidal modes because the DW1 tide is of compatible amplitudes to other modes. This is because of the increased damping on the tide by the GWs. It is also found that the local GW diurnal variations have significant contributions from all tidal modes due to the time and location of the forcing being dependent only on the tropospheric source regions and not the at altitude tidal winds.
NASA Astrophysics Data System (ADS)
Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojciech; Marcq, Emmanuel; Lebonnois, Sébastien; Patsaeva, Marina; Turin, Alexander
2015-04-01
UV images (at 365 nm) of Venus cloud top collected with VMC camera on board Venus Express allowed to derive a large number of wind measurements at altitude 67±2 km from tracking of cloud features in the period 2006-2012. Both manual (45,600) and digital (391,600) individual wind measurements over 127 orbits were analyzed showing various patterns with latitude and local time. A new longitude-latitude geographic map of the zonal wind shows a conspicuous region of strongly decreased zonal wind, a remarkable feature that was unknown up to now. While the average zonal wind near equator (from 5°S to 15°s) is -100.9 m/s in the longitude range 200-330°, it reaches -83.4 m/s in the range 60-100°, a difference of 17.5 m/s. When compared to the altimetry map of Venus, it is found that the zonal wind pattern is well correlated with the underlying relief in the region of Aphrodite Terra, with a downstream shift of about 30° (˜3,200 km). We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. A similar phenomenon is known to operate on Earth with an influence on mesospheric winds. The LMD-GCM for Venus was run with or without topography, with and without a parameterization of gravity waves and does not display such an observed change of velocity near equator. The cloud albedo map at 365 nm varies also in longitude and latitude. We speculate that it might be the result of increased vertical mixing associated to wave breaking, and decreased abundance of the UV absorber which makes the contrast in images. The impact of these new findings on current super rotation theories remains to be assessed. This work was triggered by the presence of a conspicuous peak at 117 days in a time series of wind measurements. This is the length of the solar day as seen at the ground of Venus. Since VMC measurements are done preferably in a local time window centred on the sub-solar point, any parameter having a geographic longitude dependence will show a peak at 117 days.
Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere
NASA Astrophysics Data System (ADS)
Cullens, C. Y.; England, S.; Immel, T. J.
2014-12-01
The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.
NASA Astrophysics Data System (ADS)
Funke, Bernd; Ball, William; Bender, Stefan; Gardini, Angela; Harvey, V. Lynn; Lambert, Alyn; López-Puertas, Manuel; Marsh, Daniel R.; Meraner, Katharina; Nieder, Holger; Päivärinta, Sanna-Mari; Pérot, Kristell; Randall, Cora E.; Reddmann, Thomas; Rozanov, Eugene; Schmidt, Hauke; Seppälä, Annika; Sinnhuber, Miriam; Sukhodolov, Timofei; Stiller, Gabriele P.; Tsvetkova, Natalia D.; Verronen, Pekka T.; Versick, Stefan; von Clarmann, Thomas; Walker, Kaley A.; Yushkov, Vladimir
2017-03-01
We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.
SAO and Kelvin Waves in the EuroGRIPS GCMS and the UK Meteorological Offices Analyses
NASA Technical Reports Server (NTRS)
Amodei, M.; Pawson, S.; Scaife, A. A.; Lahoz, W.; Langematz, U.; Li, Ding Min; Simon, P.
2000-01-01
This work is an intercomparison of four tropospheric-stratospheric climate models, the Unified Model (UM) of the U.K. Meteorological Office (UKMO), the model of the Free University in Berlin (FUB). the ARPEGE-climat model of the National Center for Meteorological Research (CNRM), and the Extended UGAMP GCM (EUGCM) of the Center for Global Atmospheric Modelling (CGAM), against the UKMO analyses. This comparison has been made in the framework of the "GSM-Reality Intercomparison Project for SPARC" (GRIPS). SPARC (Stratospheric Processes and their Role in Climate) aims are to investigate the effects of the middle atmosphere on climate and the GRIPS purpose is to organized a comprehensive assessment of current Middle Atmosphere-Climate Models (MACMs). The models integrations were made without identical contraints e.g. boundary conditions, incoming solar radiation). All models are able to represent the dominant features of the extratropical circulation. In this paper, the structure of the tropical winds and the strengths of the Kelvin waves are examined. Explanations for the differences exhibited. between the models. as well as between models and analyses, are also proposed. In the analyses a rich spectrum of waves (eastward and westward) is present and contributes to drive the SAO (SemiAnnual Oscillation) and the QBO (Quasi-Biennal Oscillation). The amplitude of the Kelvin waves is close to the one observed in UARS (Upper Atmosphere Research Satellite) data. In agreement with observations, the Kelvin waves generated in the models propagate into the middle atmosphere as wave packets which underlines convective forcing origin. In most models, slow Kelvin waves propagate too high and are hence overestimated in the upper stratosphere and in the mesosphere, except for the UM which is more diffusive. These waves are not sufficient to force realistic westerlies of the QBO or SAO westerly phases. If the SAO is represented by all models only two of them are able to generate westerlies between 10 hPa and 50 hPa. The importance of the role played by subgrided gravity waves is more and more recognized. Actually, the EUGCM which includes a parametrization of gravity waves with a non-zero phase speed is able to simulate. with however some unrealistic features, clear easterly to westerly transitions as well as westerlies downward propagations. Thermal damping is also important in the westerlies forcing in the stratosphere. The model ARPEGE-climat shows more westerlies in the stratosphere than tile other three models probably due to the use of a simplified scheme to predict the ozone distribution in the middle atmosphere.
Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4
NASA Astrophysics Data System (ADS)
Peck, E. D.; Randall, C. E.; Harvey, V. L.; Marsh, D. R.
2015-06-01
The Whole Atmosphere Community Climate Model version 4 (WACCM4) is used to quantify solar cycle impacts, including both irradiance and particle precipitation, on the middle atmosphere. Results are compared to previous work using WACCM version 3 (WACCM3) to estimate the sensitivity of simulated solar cycle effects to model modifications. The residual circulation in WACCM4 is stronger than in WACCM3, leading to larger solar cycle effects from energetic particle precipitation; this impacts polar stratospheric odd nitrogen and ozone, as well as polar mesospheric temperatures. The cold pole problem, which is present in both versions, is exacerbated in WACCM4, leading to more ozone loss in the Antarctic stratosphere. Relative to WACCM3, a westerly shift in the WACCM4 zonal winds in the tropical stratosphere and mesosphere, and a strengthening and poleward shift of the Antarctic polar night jet, are attributed to inclusion of the QBO and changes in the gravity wave parameterization in WACCM4. Solar cycle effects in WACCM3 and WACCM4 are qualitatively similar. However, the EPP-induced increase from solar minimum to solar maximum in polar stratospheric NOy is about twice as large in WACCM4 as in WACCM3; correspondingly, maximum increases in polar O3 loss from solar min to solar max are more than twice as large in WACCM4. This does not cause large differences in the WACCM3 versus WACCM4 solar cycle responses in temperature and wind. Overall, these results provide a framework for future studies using WACCM to analyze the impacts of the solar cycle on the middle atmosphere.
Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run
NASA Astrophysics Data System (ADS)
Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.
2016-12-01
This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.
Intra-seasonal Oscillations Inferred from SABER (TIMED) and MLS (UARS) Temperature Measurements
NASA Technical Reports Server (NTRS)
Huang, F. T.; Mayr, H. G.; Russell, J.; Mlynczak, M.; Reber, C. A.; Mengel, J. G.
2006-01-01
In the zonal mean meridional winds of the upper mesosphere, intra-seasonal oscillations with periods between 1 and 4 months have been inferred from UARS measurements and independently predicted with the Numerical Spectral Model WSM). The wind oscillations tend to be confined to low latitudes and appear to be driven, at least in part, by small-scale gravity waves propagating in the meridional direction. Winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. Investigating this phenomenon, we have analyzed SABER temperatures from TIMED in the altitude range between 55 and 95 km to delineate with an empirical model, the year-long variability of the migrating tides and zonal mean components. The inferred seasonal variations of the diurnal tide, characterized by amplitude maxima near equinox, are in substantial agreement with UARS observations and results from the NSM. For the zonal mean, the dominant seasonal variations in the SABER temperatures, with annual (12 months) and semiannual (6 months) periodicities, agree well with those derived from UARS measurements. The intra-seasonal variations with periods between 2 and 4 months have amplitudes close to 2 K, almost half as large as those for the dominant seasonal variations. Their amplitudes are in qualitative agreement with the corresponding values inferred from UARS during different years. The SABER and UARS temperature variations reveal pronounced hemispherical asymmetries, consistent with meridional wind oscillations across the equator. The phase of the semi-annual temperature oscillations from the NSM agrees with the observations from UARS and SABER. But the amplitudes are systematically smaller, which may indicate that planetary waves are more important than is allowed for in the model. For the shorter-period intra-seasonal variations, which can be generated by gravity wave drag, the model results are generally in better agreement with the observations.
Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Kaoru
1993-02-14
This paper describes small-scale wind disturbances associated with Typhoon Kelly (October 1987) that were observed by the MU radar, one of the MST (mesosphere, stratosphere, and troposphere) radars, for about 60 hours with fine time and height resolution. To elucidate the background of small-scale disturbances, synoptic-scale variation in atmospheric stability related to the typhoon structure during the observation is examined. When the typhoon passed near the MU radar site, the structure was no longer axisymmetric. There is deep convection only in north-northeast side of the typhoon while convection behind it is suppressed by a synoptic-scale cold air mass moving eastwardmore » to the west of the typhoon. A change in atmospheric stability over the radar site as indicated by echo power profiles is likely due to the passage of the sharp transition zone of convection. Strong small-scale wind disturbances were observed around the typhoon passage. The statistical characteristics are different before (BT) and after (AT) the typhoon passage, especially in frequency spectra of vertical wind fluctuations. The spectra for BT are unique compared with earlier studies of vertical winds observed by VHF radars. Another difference is dominance of a horizontal wind component with a vertical wavelength of about 3 km, observed only in AT. Further analyses are made of characteristics and vertical momentum fluxes for dominant disturbances. Some disturbances are generated to remove the momentum of cyclonic wind rotation of the typhoon. Deep convection, topographic effects in strong winds, and strong vertical shear of horizontal winds around an inversion layer are possible sources of the disturbances. Two monochromatic disturbances lasting for more than 10 h in the lower stratosphere observed in BT and AT are identified as inertio-gravity waves, by obtaining wave parameters consistent with all observed quantities. Both of the inertio-gravity waves propagate energy away from the typhoon.« less
2015-09-30
We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves
Exploring Wave-Wave Interactions in a General Circulation Model
NASA Astrophysics Data System (ADS)
Nystrom, Virginia; Gasperini, Federico; Forbes, Jeffrey M.; Hagan, Maura E.
2018-01-01
Nonlinear interactions involving Kelvin waves with (periods, zonal wave numbers) = (3.7d, s =- 1) (UFKW1) and = (2.4d, s =- 1) (UFKW2) and s = 0 and s = 1 quasi 9 day waves (Q9DW) with diurnal tides DW1, DW2, DW3, DE2, and DE3 are explored within a National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulation driven at its ˜30 km lower boundary by interpolated 3-hourly output from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The existence of nonlinear wave-wave interactions between the above primary waves is determined by the presence of secondary waves (SWs) with frequencies and zonal wave numbers that are the sums and differences of those of the primary (interacting) waves. Focus is on 10-21 April 2009, when the nontidal dynamics in the mesosphere-lower thermosphere (MLT) region is dominated by UFKW and when identification of SW is robust. Fifteen SWs are identified in all. An interesting triad is identified involving UFKW1, DE3, and a secondary UFKW4 = (1.5d, s =- 2): The UFKW1-DE3 interaction produces UFKW4, the UFKW4-DE3 interaction produces UFKW1, and the UFKW1 interaction with UFKW4 produces DE3. At 120 km the dynamic range of the reconstructed latitude-longitude zonal wind field due to all of the SW is roughly half that of the primary waves, which produced them. This suggests that nonlinear wave-wave interactions could significantly modify the way that the lower atmosphere couples with the ionosphere.
NASA Astrophysics Data System (ADS)
Song, I.-S.; Lee, C.; Kim, J.-H.; Jee, G.; Kim, Y.-H.; Choi, H.-J.; Chun, H.-Y.; Kim, Y. H.
2017-04-01
Vertically propagating low-frequency inertia-gravity waves (IGWs) are retrieved from meteor radar winds observed at King Sejong Station (KSS: 62.22°S, 58.78°W), Antarctica. IGW horizontal winds extracted from temporal band-pass filtering in regular time-height bins show the frequent occurrence of IGWs with the downward phase progression and the counterclockwise rotation of their horizontal wind vectors with time (i.e., upward energy propagation) near the mesopause region throughout the whole year of 2014. The vertical wavelengths of the observed IGWs roughly range from 14 km to more than 20 km, which is consistent with previous observational studies on the mesospheric IGWs over Antarctica. Stokes parameters and rotary spectra computed from the hodographs of the IGW horizontal wind components reveal that the intrinsic frequencies of the upward propagating IGWs are |f|-3|f| with seasonal variations of the relative predominance between |f|-2|f| and 2|f|-3|f|, where f is the Coriolis parameter at KSS. The hodograph analysis also indicates that the N-S propagation is dominant in austral summer, while the NE-SW propagation is pronounced in austral winter. The propagation direction is discussed in relation to the generation of IGWs due to dynamical imbalances occurring in the tropospheric and stratospheric jet flow systems. Ray tracing results indicate that the N-S propagation in summer may be due to the jet flow systems roughly north of KSS and the NE-SW propagation in winter may be either the SW propagation from the jet flow systems northeast of KSS or the NE propagation (around the South Pole) from the south of Australia and Southern Indian and Pacific Oceans.
NASA Technical Reports Server (NTRS)
Balsiger, F.; Kopp, E.; Friedrich, M.; Torkar, K. M.; Walchli, U.
1993-01-01
A novel mass spectrometer designed to measure simultaneously positive ion composition in the mesosphere, was successfully launched during the NLC-91 project. Instruments supporting the mass spectrometer were a probed to measure both electrons and positive ions as well as a wave propagation experiment. The location of the Noctilucent Clouds (NLC) was determined by a particle impact sensor to detect secondary electrons and ions from the impact of NLC particle. The density of proton hydrates and of the related total ions is depleted in the NLC region at 83 km. An improved detection limit of 5 x 10(exp 4)/cu m for positive ions and improved height resolution revealed for the first time large gradients in the O2(+), H(+)(H2O)2 and H(+)(H2O)6 densities within a small height range of the order of 50 m. Such gradients at the altitude of NLC and Polar Mesospheric Summer Echoes (PMSE) are associated with strong variability of mesospheric water vapor, temperature and neutral air density.
NASA Astrophysics Data System (ADS)
Tellmann, S.; Häusler, B.; Hinson, D. P.; Tyler, G. L.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.
2014-04-01
Atmospheric waves on almost all spatial scales have been observed in the Venus atmosphere in various atmospheric regions. They play a crucial role in the redistribution of energy, momentum, and atmospheric constituent and are thought to be involved in the development and maintenance of the atmospheric superrotation.
Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite
NASA Astrophysics Data System (ADS)
Gan, Q.; Oberheide, J.
2017-12-01
The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.
NASA Astrophysics Data System (ADS)
Chung, J.-K.; Kim, Y. H.; Won, Y.-I.; Moon, B. K.; Oh, T. H.
2006-01-01
A Spectral Airglow Temperature Imager (SATI) was operated at King Sejong Station (62°13'S, 58°47'W), Korea Antarctic Research Station during the period of March, 2002-September, 2003. We analyze rotational temperatures and emission rates of the O 2 (0-1) and OH (6-2) nightglows obtained at 67 nights with clear sky lasting more than 4 h. A spectral analysis of the dataset shows two dominant oscillations with periods of 4 and 6 h. The 6-h oscillations have a nearly constant phase, whereas the 4-h oscillations have nearly random phases. Although the harmonic periods of both oscillations are suggestive of tidal origin, the 4-h oscillation may have interference by other sources such as gravity waves. The 6-h oscillations could be interpreted as zonally symmetric non-migrating tides because migrating tides except high order modes have very weak amplitudes at high latitudes according to the classical tidal theory. For most cases of the observed oscillations the temperature peak leads the intensity peak, which is consistent with theoretical models for zonally symmetric tides, but contrary to other theoretical models for waves. It is needed to resolve among theoretical models whether or not zonally symmetric tide cause temperature variation prior to intensity variation in mesospheric airglows.
On resonant coupling of acoustic waves and gravity waves
NASA Astrophysics Data System (ADS)
Millet, Christophe
2017-11-01
Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.
NASA Astrophysics Data System (ADS)
Ortland, David A.
2017-04-01
Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.
Semidiurnal Solar Tide during the Fall Transition in the Northern Hemisphere
NASA Astrophysics Data System (ADS)
Conte, J. F.; Chau, J. L.; Laskar, F.; Stober, G.; Schmidt, H.
2017-12-01
We present an analysis of the semidiurnal solar tide (S2) during the fall transition in the Northern Hemisphere mesosphere and lower thermosphere (MLT) region. The tidal information has been derived from wind measurements provided by meteor radars at Andenes (69°N) and Juliusruh (54°N). During the autumn, S2 is characterized by a sudden and pronounced decrease occurring around day 285, every year and at all height levels. The spring transition also shows a decrease of S2, but that progressively extends from lower to higher altitudes during an interval of 15 to 40 days whose starting date varies from one year to the next. Possible explanations for the differences observed between fall and spring time periods are investigated using Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) simulations of zonal and meridional winds, as well as ozone concentrations. Our results indicate that both, the westward propagating wave number 2 migrating tide (SW2) and the westward propagating wave number 1 non-migrating tide (SW1) decrease significantly during the fall, which results in a pronounced decrease of S2, as seen in the observations. During the spring, SW2 also decreases while SW1 remains approximately constant or slightly increases, resulting in a not so pronounced and more extended in time decrease of S2. SW2 and ozone concentrations do not show significant differences from one year to the next. SW1 on the other hand, presents considerable variability, which suggests that its source might be connected to interaction with other waves, such as gravity and planetary waves.
The double seismic zone in downgoing slabs and the viscosity of the mesosphere
NASA Technical Reports Server (NTRS)
Sleep, N. H.
1979-01-01
The seismic zone beneath several island arcs between about 100 and 200 km depth consists of an upper zone having down-dip compression and a lower zone having down-dip tension. Several numerical models of the Aleutian arc were computed to test the hypothesis that these double seismic zones are due to sagging of the slab under its own weight. This sagging occurs because the asthenosphere (between about 100 and 200 km) provides little support or resistance to the slab, which is supported from below by the more viscous mesosphere and from above by the lithosphere. The viscosity of the mesosphere was constrained to the interval between 0.25 x 10 to the 22nd and 0.5 x 10 to the 22nd P by noting that the slab would have mainly down-dip compression at higher viscosities and mainly down-dip tension at lower viscosities. The deviatoric stress in the slab and the fault plane between the slab and the island arc is about 200-300 bars (expressed as shear stress). The models were calibrated to the observed depth and gravity anomalies in the trench.
NASA Astrophysics Data System (ADS)
Alexander, M. Joan; Stephan, Claudia
2015-04-01
In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.
Mesospheric turbulence and related parameters over the low latitude region
NASA Astrophysics Data System (ADS)
Chakravarty, S.; Datta, J.; Kamala, S.; Gupta, S.
Recently a number of studies have been carried out primarily by using ground based radar techniques to understand the phenomena of wave dynamics and turbulence in the mesosphere. While such studies have covered the middle and high latitude region quite well there is a lack of such data for the low latitude region. Extensive studies using MST radar conducted from middle and high latitude stations have resulted in providing a clear picture of the mesospheric dynamics and related structures (? n) responsible for radar backscattered echoes from mesosphere. The experiments have also enabled determination of various turbulence related parameters such as e , , LB, uz etc. A major discovery in this region is the, occurrence of PMSE layers in the mesopause regions which considerably enhances the SNR of radar return power. Only in recent times MST radar systems have been set up over the low latitude region even though the technique itself was first demonstrated at equatorial station Jicamarca using the available incoherent backscatter radar. Using these facilities broad characteristics of the turbulence structures in the mesosphere have been brought out showing similarities and differences of such results when compared with middle and high latitude stations. In all these observations it has not been possible to characterise the mesospheric turbulence with respect to the energy spectrum and its micro structure. Rocket measurements have been carried out to study the ionization parameters such as electron density irregularities in the mesosphere ( Ne) either independently or? simultaneously with MST radar observations wherever possible. Some consistency has been noticed in the occurrence of ? Ne and simultaneous radar return echo power from the height range of these irregularities. The main aim of this paper is to analyse the existing results on mesospheric dynamics and turbulence with the associated modulation in mesospheric ionization from sounding rockets launched from Thumba (8.5o N, 70.8o E) and SHAR (13o N, 80o E) and MST radar data over the Indian station Gadanki (13.5o N, 79.2o E). The emphasis of the study is to present the high resolution dynamical and ionization structures available from these two techniques and examine them in terms of theories of turbulence. It is observed that the turbulence in the mesosphere has a very complicated 3 D configuration and it manifests as a number of thin layers- superimposed on a larger area of influence.
Analysis and numerical study of inertia-gravity waves generated by convection in the tropics
NASA Astrophysics Data System (ADS)
Evan, Stephanie
2011-12-01
Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.
Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.
Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun
2017-09-01
Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.
Density and pressure variability in the mesosphere and thermosphere
NASA Technical Reports Server (NTRS)
Davis, T. M.
1986-01-01
In an effort to isolate the essential physics of the mesosphere and the thermosphere, a steady one-dimensional density and pressure model has been developed in support of related NASA activities, i.e., projects such as the AOTV and the Space Station. The model incorporates a zeroth order basic state including both the three-dimensional wind field and its associated shear structure, etc. A first order wave field is also incorporated in period bands ranging from about one second to one day. Both basic state and perturbation quantities satsify the combined constraints of mass, linear momentum and energy conservation on the midlatitude beta plane. A numerical (iterative) technique is used to solve for the vertical wind which is coupled to the density and pressure fields. The temperature structure from 1 to 1000 km and the lower boundary conditions are specified using the U.S. Standard Atmosphere 1976. Vertical winds are initialized at the top of the Planetary Boundary Layer using Ekman pumping values over flat terrain. The model also allows for the generation of waves during the geostrophic adjustment process and incorporates wave nonlinearity effects.
Antenna induced range smearing in MST radars
NASA Technical Reports Server (NTRS)
Watkins, B. J.; Johnston, P. E.
1984-01-01
There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.
Comparison of mesospheric VHF radar echoes and rocket probe electron concentration measurements
NASA Technical Reports Server (NTRS)
Royrvik, O.; Smith, L. G.
1984-01-01
Refractive index irregularities in the equatorial mesosphere have been investigated using both the Jicamarca VHF radar and a rocket-borne Langmuir probe launched from Punta Lobos, Peru. On February 27, 1983, a single layer of turbulence was observed in the upper mesosphere by both experiments. There is very good agreement between the observed radar echo power and the radar scattering cross section calculated from the rocket data when these are interpreted in the context of isotropic turbulence. The inner and outer scales of turbulence have been calculated from both the radar and the rocket data, and good agreement is found. The radar data show indications of large-scale vortices in the layer of irregularities. Rocket data show that the inner scale of turbulence in the upper mesosphere is a few tens of meters and that the Jicamarca radar Bragg wavelength (3 m) is well within the viscous subrange of turbulence in this altitude range. The spectral index in the inertial subrange is close to -5/3, changing to about - 7 at higher wave numbers. Energy dissipation rate in the layer was calculated to be 0.05 W/kg, in good agreement with previous estimates.
NASA Astrophysics Data System (ADS)
Klimenko, Vladimir; Klimenko, Maxim; Bessarab, Fedor; Korenkov, Yurij; Karpov, Ivan
The Sudden Stratospheric Warming (SSW) is a large-scale phenomenon, which response is detected in the mesosphere, thermosphere and ionosphere. SSW ionospheric effects are studied using multi-instrumental satellites and by ground-based measurements. We report a brief overview of the observational and theoretical results of the global ionospheric response and its formation mechanisms during Sudden Stratospheric Warming. We also present the results of our investigation of thermosphere-ionosphere response to the SSW obtained within the Global Self-consistent Model of the Thermosphere, Ionosphere, Protonosphere (GSM TIP). The SSW effects were modeled by specifying various boundary conditions at the height of 80 km in the GSM TIP model: (1) by setting the stationary perturbations s = 1 of the temperature and density at high latitudes; (2) by setting the global distribution of the neutral atmosphere parameters, calculated in the TIME-GCM and CCM SOCOL models for the conditions of the SSW 2009 event. It has been shown that the selected low boundary conditions do not allow to fully reproduce the observed variation in the ionospheric parameters during SSW 2009 event. Based on observations of the velocity of vertical plasma drift obtained by the incoherent scatter radar at Jicamarca, we introduced additional electric potential in the GSM TIP model, which allowed us to reproduce the zonal electric field (ÉB vertical plasma drift) and the observed SSW effects in the low-latitude ionosphere. Furthermore, we tried to reproduce the SSW ionospheric effects by including internal gravity waves in the high-latitude mesosphere. We discuss the model calculation results and possible reasons for model/data disagreements and give the proposals for further investigations. This work was supported by RFBR Grants No.12-05-31217 and No.14-05-00578.
New Gravity Wave Treatments for GISS Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2011-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.
New Gravity Wave Treatments for GISS Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2010-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.
Influence of Internal Waves on Transport by a Gravity Current
NASA Astrophysics Data System (ADS)
Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart
2017-11-01
Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.
A Census of Atmospheric Variability From Seconds to Decades
NASA Astrophysics Data System (ADS)
Williams, Paul D.; Alexander, M. Joan; Barnes, Elizabeth A.; Butler, Amy H.; Davies, Huw C.; Garfinkel, Chaim I.; Kushnir, Yochanan; Lane, Todd P.; Lundquist, Julie K.; Martius, Olivia; Maue, Ryan N.; Peltier, W. Richard; Sato, Kaoru; Scaife, Adam A.; Zhang, Chidong
2017-11-01
This paper synthesizes and summarizes atmospheric variability on time scales from seconds to decades through a phenomenological census. We focus mainly on unforced variability in the troposphere, stratosphere, and mesosphere. In addition to atmosphere-only modes, our scope also includes coupled modes, in which the atmosphere interacts with the other components of the Earth system, such as the ocean, hydrosphere, and cryosphere. The topics covered include turbulence on time scales of seconds and minutes, gravity waves on time scales of hours, weather systems on time scales of days, atmospheric blocking on time scales of weeks, the Madden-Julian Oscillation on time scales of months, the Quasi-Biennial Oscillation and El Niño-Southern Oscillation on time scales of years, and the North Atlantic, Arctic, Antarctic, Pacific Decadal, and Atlantic Multidecadal Oscillations on time scales of decades. The paper serves as an introduction to a special collection of Geophysical Research Letters on atmospheric variability. We hope that both this paper and the collection will serve as a useful resource for the atmospheric science community and will act as inspiration for setting future research directions.
Variability of the Brunt-Väisälä frequency at the OH* layer height
NASA Astrophysics Data System (ADS)
Wüst, Sabine; Bittner, Michael; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III
2017-12-01
In and near the Alpine region, the most dense subnetwork of identical NDMC (Network for the Detection of Mesospheric Change, https://www.wdc.dlr.de/ndmc/) instruments can be found: five stations are equipped with OH* spectrometers which deliver a time series of mesopause temperature for each cloudless or only partially cloudy night. These measurements are suitable for the derivation of the density of gravity wave potential energy, provided that the Brunt-Väisälä frequency is known. However, OH* spectrometers do not deliver vertically resolved temperature information, which is necessary for the calculation of the Brunt-Väisälä frequency. Co-located measurements or climatological values are needed. We use 14 years of satellite-based temperature data (TIMED-SABER, 2002-2015) to investigate the inter- and intra-annual variability of the Brunt-Väisälä frequency at the OH* layer height between 43.93-48.09° N and 5.71-12.95° E and provide a climatology.
NASA Astrophysics Data System (ADS)
Xie, H. Y.; Ning, B. Q.; Zhao, X. K.; Hu, L. H.
2017-03-01
Using the Na lidar at Haikou (20.0°N, 110.3°E), the VHF coherent radar and the digital ionosonde both at Sanya (18.4°N, 109.6°E), cases of simultaneous observations of sporadic sodium layer (SSL), E-region field-aligned irregularities (FAI) and sporadic E layer (Es) in the mesosphere and lower thermosphere (MLT) region at low latitude of China are studied. It is found that SSL occurs simultaneously or follows the enhancement of Es and FAI. The Es, FAI and SSL descend slowly with time which is mostly controlled by the diurnal tide (DT). Besides, the interaction of gravity wave (GW) with tides can cause oscillations in FAI and SSL. Our observations support the neutralization of ions for SSL formation: when the metallic ions layer descents to the altitudes where models predict, the sodium ions convert rapidly to atomic Na that may form an SSL event. Moreover, the SSL peak density will increase (decrease) in the convergence (divergence) vertical shear region of zonal wind.
Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
NASA Astrophysics Data System (ADS)
Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan
2018-01-01
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.
The quasi-6 day wave and its interactions with solar tides
NASA Astrophysics Data System (ADS)
Forbes, Jeffrey M.; Zhang, Xiaoli
2017-04-01
Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) temperature measurements between 20 and 110 km altitude and ±50° latitude during 2002-2015 are employed to reveal the climatological characteristics of the quasi-6 day wave (Q6DW) and evidence for secondary waves (SW) resulting from its nonlinear interactions with solar tides. The mean period is 6.14d with a standard deviation (σ) of 0.26d. Multiyear-mean maximum amplitudes (3-5 K, σ ˜ 4 K) occur within the mesosphere-lower thermosphere (MLT) region between 75 and 100 km during day of year (DOY) 60-120 and 180-300 in the Northern Hemisphere and DOY 0-110 and 200-300 in the Southern Hemisphere. Amplitudes approach 10 K in some individual years. At midlatitudes downward phase progression exists from 100 to 35 km with a mean vertical wavelength of about 70 km. Signatures of SW due to Q6DW-tide interactions appear at distinct space-based zonal wave numbers (ks) in temperature spectra constructed in the reference frame of the TIMED orbit. However, SW produced by several different tides can collapse onto the same (ks) value, rendering their relative contributions indistinguishable. Nevertheless, by determining the space-based wave amplitudes attached to these values of (ks), and demonstrating that they are a large fraction of the interacting wave amplitudes, we conclude that the aggregate contributions of the SW to the overall wave spectrum must be significant. Because the SW have periods, zonal wave numbers, and latitude-height structures different from those of the primary waves, they contribute additionally to the complexity of the wave spectrum. This complexity is communicated to the ionosphere through collisions or through the dynamo electric fields generated by the total wave spectrum.
Mesospheric temperature trends derived from standard phase-height measurements
NASA Astrophysics Data System (ADS)
Peters, Dieter H. W.; Entzian, Günter; Keckhut, Philippe
2017-10-01
New homogeneous time series of daily standard phase-height (SPH) and daily plasma scale-height (PSH) have been derived from a 50-year long-radio-wave measurement of the broadcasting station Allouis (France, 162 kHz). The signal was received at Kühlungsborn (54°N, 12°E, Mecklenburg, Germany) and the present series is a third release. The daily time series of SPH shows in its spectrum dominant modes which are typical for the solar cycle (SC), for El Niño-Southern Oscillation (ENSO) and for quasi-biannual oscillation (QBO), indicating solar and lower atmospheric influences. Surprisingly, the time series of daily PSH shows a band of dominant cycles larger than 16 years. In order to exclude the influence of the winter anomaly in the determination of column-integrated mesospheric temperature trends the phase-height-temperature procedure is confined to summer months. The derived thickness temperature of the mesosphere decreased statistically significant over the period 1959-2008 after pre-whitening with summer mean of solar sun spot numbers. The trend value is in the order of about -1.05 K/decade if the stratopause trend is excluded. The linear regression is more pronounced, -1.35 K/decade for the period of 1963-1985 (2 SCs), but weaker, -0.51 K/decade during 1986-2008 (last 2 SCs). The linear regression is in very good agreement with a mean column-integrated mesospheric trend derived from OHP-Lidar temperatures on a monthly mean basis for the last two SCs. This clearly shows that the thickness temperature of the mesosphere derived from phase-height measurement is a useful proxy for the long-term summer temperature change in the mesosphere from 1959 until 2008.
NASA Technical Reports Server (NTRS)
Takahashi, Masaaki; Holton, James R.
1991-01-01
Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.
Dense Gravity Currents with Breaking Internal Waves
NASA Astrophysics Data System (ADS)
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
Mars’ seasonal mesospheric transport seen through nitric oxide nightglow
NASA Astrophysics Data System (ADS)
Milby, Zachariah; Stiepen, Arnaud; Jain, Sonal; Schneider, Nicholas M.; Deighan, Justin; Gonzalez-Galindo, Francisco; Gerard, Jean-Claude; Stevens, Michael H.; Bougher, Stephen W.; Evans, J. Scott; Stewart, A. Ian; Chaffin, Michael; Crismani, Matteo; McClintock, William E.; Clarke, John T.; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Forget, Francois; Lo, Daniel Y.; Hubert, Benoît; Jakosky, Bruce
2017-10-01
We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by ˜20° latitude to the north.These questions are now addressed through an extensive dataset of disk images, in complement to improved simulations of the LMD-MGCM and the Mars Global Ionosphere-Thermosphere Model (MGITM) models.
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Krueger, Kirstin; Pawson, Steven; Minschwaner, Ken; Schwartz, Michael J.; Daffer, William H.; Livesey, Nathaniel J.; Mlynczak, Martin G.; Remsberg, Ellis E.; Russell, James M., III;
2008-01-01
Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by 30 km and warmed during development of a major "wave 1" SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.
NASA Astrophysics Data System (ADS)
Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.
2010-12-01
We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.
Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, R. E.; Cheng, B.
1996-01-01
For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.
Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms
Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...
2015-07-30
Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less
Changes of the Ionosphere Caused By the Interaction Between the Quasi-Two-Day Wave and Tides
NASA Astrophysics Data System (ADS)
Yue, J.; Wang, W.; Chang, L. C.
2014-12-01
Traveling planetary waves, such as the quasi-two-day wave (QTDW), are one essential element of the mesosphere and lower thermosphere dynamics. These planetary waves have been observed to cause strong ionospheric day-to-day variations. We have understood that the QTDW can impact the thermosphere and ionosphere either by directly penetrating into the lower thermosphere and modulating E-region dynamo in a period of about 2-days, or by enhancing mixing and decreasing thermosphere O/N2 and in ionospheric electron density. In this work, we introduce the third mechanism of how the QTDW impacts the ionosphere, the QTDW-tidal interactions occurring in the mesosphere and lower thermosphere (MLT). We employ the NCAR TIME-GCM to simulate the interaction between the QTDW and tides, and the impact of this interaction on the ionospheric E-region dynamo, equatorial fountain effect, and F-region plasma density. We find that the tidal amplitudes and phases are dramatically altered during strong QTDW events during post-solstice. In particular, the amplitudes of the migrating tides can decrease as much as 20-30%. The changed tides result in different dynamo electric field, vertical ion drift, and thus different diurnal and semidiurnal cycles in F-region electron density.
Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Geller, Marvin A.
1994-01-01
The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.
Triad Resonance in the Gravity-Acoustic Family
NASA Astrophysics Data System (ADS)
Kadri, U.
2015-12-01
Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic envelope (middle) travels relatively fast to the right minimising the interaction time. Consequently, the resultant acoustic wave envelope (bottom) might be significantly smaller. As the two acoustic beams concurrently move away from the gravity wave, with disparate group velocities, the resonant interaction gradually vanishes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, M.; Holton, J.R.
1991-09-15
Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less
NASA Astrophysics Data System (ADS)
Campbell, Lucy J.; Shepherd, Theodore G.
2005-12-01
This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
A Multi-Instrument Measurement of a Mesospheric Bore at the Equator
NASA Technical Reports Server (NTRS)
Shiokawa, K.; Suzuki, S.; Otsuka, Y.; Ogawa, T.; Nakamura, T.; Mlynczak, M. G.; Russell, J. M., III
2005-01-01
We have made a comprehensive measurement of mesospheric bore phenomenon at the equator at Kototabang, Indonesia (0.2 deg S, 100.3 deg E), using an airglow imager, an airglow temperature photometer, a meteor radar, and the SABER instrument on board the TIMED satellite. The bore was detected in airglow images of both OH-band (peak emission altitude: 87 km) and 557.7-nm (96 km) emissions, as east-west front-like structure propagating northward with a velocity of 52-58 m/s. Wave trains with a horizontal wavelength of 30-70 km are observed behind the bore front. The airglow intensity decreases for all the mesospheric emissions of OI (557.7 nm), OH-band, O2-band (altitude: 94 km), and Na (589.3 nm) (90 km) after the bore passage. The rotational temperatures of both OH-band and O2-band also decrease approximately 10 K after the bore passage. An intense shear in northward wind velocity of 80m/s was observed at altitudes of 84-90 km by the meteor radar. Kinetic temperature profile at altitudes of 20-120 km was observed near Kototabang by TIMED/SABER. On the basis of these observations, we discuss generation and ducting of the observed mesospheric bore.
NASA Technical Reports Server (NTRS)
Bassiri, Sassan; Hajj, George A.
1993-01-01
Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.
New challenges of the ARISE project
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth
2015-04-01
It has been robustly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate throughout the troposphere all the way to the Earth's surface. A key part of the coupling between the troposphere and stratosphere occurs through the propagation and breaking of planetary-scale Rossby waves and gravity waves. Limited observation of the middle atmosphere and these waves in particular limits the ability to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The ARISE project combines for the first time international networks with complementary technologies such as infrasound, lidar and airglow. This joint network provided advanced data products that started to be used as benchmarks for weather forecast models. The ARISE network also allows enhanced and detailed monitoring of other extreme events in the Earth system such as erupting volcanoes, magnetic storms, tornadoes and tropical thunderstorms. In order to improve the ability of the network to monitor atmospheric dynamics, ARISE proposes to extend i) the existing network coverage in Africa and the high latitudes, ii) the altitude range in the stratosphere and mesosphere, iii) the observation duration using routine observation modes, and to use complementary existing infrastructures and innovative instrumentations. Data will be collected over the long term to improve weather forecasting to monthly or seasonal timescales, to monitor atmospheric extreme events and climate change. ARISE focuses on the link between models and observations for future assimilation of data by operational weather forecasting models. Among the applications, ARISE2 proposes infrasound remote volcano monitoring to provide notifications to civil aviation.
Observations of OH(3,1) airglow emission using a Michelson interferometer at 62° S
NASA Astrophysics Data System (ADS)
Won, Young-In; Cho, Young-Min; Niciejewski, Rick J.; Kim, Jhoon
A Michelson interferometer was used to observe the hydroxyl (OH) emission in the upper mesosphere at the King Sejong Station (62.22° S, 301.25° E), Antarctica. The instrument was installed in February 1999 and has been in routine operation since then. An intensive operational effort has resulted in a substantial data set between April and June, 1999. A spectral analysis was performed on individual data to examine the information of dominant waves. A harmonic analysis was also carried out on the monthly average data to investigate the characteristics of the major low frequency oscillations. The 12-hr temperature oscillations exhibit a striking agreement with a theoretical tidal model, supporting the tidal (migrating) origin. The 8-hr wave is found to be persistent and dominant, reflecting its major role in the upper mesospheric dynamics at the given latitude. The 6-hr oscillation is observed only in May with its value close to the prediction for zonally symmetric tides.
NASA Technical Reports Server (NTRS)
Wu, Dong L.; Zhang, Fuqing
2004-01-01
Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.
First tomographic observations of gravity waves by the infrared limb imager GLORIA
NASA Astrophysics Data System (ADS)
Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Dörnbrack, Andreas; Eckermann, Stephen D.; Ern, Manfred; Friedl-Vallon, Felix; Kaufmann, Martin; Oelhaf, Hermann; Rapp, Markus; Strube, Cornelia; Riese, Martin
2017-12-01
Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
NASA Astrophysics Data System (ADS)
Gan, Quan; Du, Jian; Fomichev, Victor I.; Ward, William E.; Beagley, Stephen R.; Zhang, Shaodong; Yue, Jia
2017-04-01
A recent 31 year simulation (1979-2010) by extended Canadian Middle Atmosphere Model (eCMAM30) and the 14 year (2002-2015) observation by the Thermosphere Ionosphere Mesosphere and Dynamics/Sounding of the Atmosphere using Broadband Emssion Radiometry (TIMED/SABER) are utilized to investigate the temperature response to the 11 year solar cycle on the mesosphere. Overall, the zonal mean responses tend to increase with height, and the amplitudes are on the order of 1-2 K/100 solar flux unit (1 sfu = 10-22 W m-2 Hz-1) below 80 km and 2-4 K/100 sfu in the mesopause region (80-100 km) from the eCMAM30, comparatively weaker than those from the SABER except in the midlatitude lower mesosphere. A pretty good consistence takes place at around 75-80 km with a response of 1.5 K/100 sfu within 10°S/N. Also, a symmetric pattern of the responses about the equator agrees reasonably well between the two. It is noteworthy that the eCMAM30 displays an alternate structure with the upper stratospheric cooling and the lower mesospheric warming at midlatitudes of the winter hemisphere, in favor of the long-term Rayleigh lidar observation reported by the previous studies. Through diagnosing multiple dynamical parameters, it is manifested that this localized feature is induced by the anomalous residual circulation as a consequence of the wave-mean flow interaction during the solar maximum year.
Breaking Gravity Waves Over Large-Scale Topography
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Shapiro, M. A.
2002-12-01
The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.
NASA Astrophysics Data System (ADS)
Matsuda, T. S.; Nakamura, T.; Ejiri, M. K.; Tsutsumi, M.; Shiokawa, K.
2014-12-01
Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs around mesopause. There are many airglow imagers operated all over the world, and a large amount of data which could improve our understanding of AGWs propagation direction and source distribution in the MLT region. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain (phase velocity spectrum), from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. From a series of images projected onto the geographic coordinates, 3-D Fourier transform is applied and 3-D power spectrum in horizontal wavenumber and frequency domain is obtained. Then, it is converted into phase velocity and frequency domain. Finally, the spectrum is integrated along the frequency for the range of interest and 2-D spectrum in horizontal phase velocity is calculated. This method was applied to the data obtained at Syowa Station (69ºS, 40ºE), Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal propagation characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. Airglow imaging observation has been operated with various sampling intervals. We also presents how the images with different sample interval should be treated.
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Wu, Xue; Alexander, M. Joan
2018-02-01
Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.
NASA Astrophysics Data System (ADS)
Heavens, N. G.
2017-12-01
It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.
NASA Astrophysics Data System (ADS)
Hickey, M. P.
2017-12-01
Tsunamis propagate on the ocean surface at the shallow water phase speed which coincides with the phase speed of fast atmospheric gravity waves. The forcing frequency also corresponds with those of internal atmospheric gravity waves. Hence, the coupling and effective forcing of gravity waves due to tsunamis is particularly effective. The fast horizontal phase speeds of the resulting gravity waves allows them to propagate well into the thermosphere before viscous dissipation becomes strong, and the waves can achieve nonlinear amplitudes at these heights resulting in large amplitude traveling ionospheric disturbances (TIDs). Additionally, because the tsunami represents a moving source able to traverse large distances across the globe, the gravity waves and associated TIDs can be detected at large distances from the original tsunami (earthquake) source. Although it was during the mid 1970s when the tsunami source of gravity waves was first postulated, only relatively recently (over the last ten to fifteen years) has there has been a surge of interest in this research arena, driven largely by significant improvements in measurement technologies and computational capabilities. For example, the use of GPS measurements to derive total electron content has been a particularly powerful technique used to monitor the propagation and evolution of TIDs. Monitoring airglow variations driven by atmospheric gravity waves has also been a useful technique. The modeling of specific events and comparison with the observed gravity waves and/or TIDs has been quite revealing. In this talk I will review some of the most interesting aspects of this research and also discuss some interesting and outstanding issues that need to be addressed. New modeling results relevant to the Tohoku tsunami event will also be presented.
Role of Gravity Waves in Determining Cirrus Cloud Properties
NASA Technical Reports Server (NTRS)
OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong
2008-01-01
Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).
Acoustic-gravity waves, theory and application
NASA Astrophysics Data System (ADS)
Kadri, Usama; Farrell, William E.; Munk, Walter
2015-04-01
Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.
On the wave forcing of the semi-annual zonal wind oscillation
NASA Technical Reports Server (NTRS)
Nagpal, O. P.; Raghavarao, R.
1991-01-01
Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.
NASA Astrophysics Data System (ADS)
Eswaraiah, S.; Kim, Y.; Lee, J.; Kim, J. H.; Venkat Ratnam, M.; Riggin, D. M.; Vijaya Bhaskara Rao, S.
2017-12-01
A minor Sudden Stratospheric Warming (SSW) was noticed in the southern hemisphere (SH) during the September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. The signature of the mesosphere and lower thermosphere (MLT) response was detected using the ground based and space borne observations along with the model predictions. The changes in the mesosphere wind field were studied from the observations of both meteor radar and MF radar located at King Sejong Station (62.22°S, 58.78°W) and Rothera (68oS, 68oW), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW occurrence. We have also analyzed the MLT tides using both the radars and noticed strong enhancement of semi-diurnal tide (SDT) a few days later the cessation of 2010 SSW. We note the similar enhancement during the 2002 major SSW. Specifically, the SDT amplitude enhancement is greater for the 2010 SSW than 2002 SSW. We found that strong 14-16 day PWs prevailed prior to the 2010 minor SSW and disappeared suddenly after the SSW in the mesosphere by generating the quasi-secondary waves of periodicity 3-9 days. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km are simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder (MLS) data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to the 2002 major SSW.
Dynamics of severe storms through the study of thermospheric-tropospheric coupling
NASA Technical Reports Server (NTRS)
Hung, R. J.; Smith, R. E.
1979-01-01
Atmospheric acoustic-gravity waves associated with severe local thunderstorms, tornadoes, and hurricanes can be studied through the coupling between the thermosphere and the troposphere. Reverse group ray tracing computations of acoustic-gravity waves, observed by an ionospheric Doppler sounder array, show that the wave sources are in the neighborhood of storm systems and the waves are excited prior to the storms. It is suggested that the overshooting and ensuing collapse of convective turrets may be responsible for generating the acoustic-gravity waves observed. The results of this study also show that the study of wave-wave resonant interactions may be a potential tool for investigating the dynamical behavior of severe storm systems using ionospheric observations of atmospheric acoustic-gravity waves associated with severe storms.
Seasonal Transport in Mars' Mesosphere-Thermosphere revealed by Nitric Oxide nightglow
NASA Astrophysics Data System (ADS)
Royer, E. M.; Stiepen, A.; Schneider, N. M.; Jain, S.; Milby, Z.; Deighan, J.; Gonzalez-Galindo, F.; Bougher, S. W.; Gerard, J. C. M. C.; Stevens, M. H.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; McClintock, B.; Clarke, J. T.; Montmessin, F.; Holsclaw, G.; Lefèvre, F.; Forget, F.; Lo, D.; Hubert, B. A.; Jakosky, B. M.
2017-12-01
We analyze the ultraviolet nightglow in the atmosphere of Mars through the Nitric Oxide (NO) δ and γ band emissions observed by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at apoapsis and periapsis. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They descend in the nightside mesosphere, where they can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting UV photons in the δ and γ bands. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017). A large dataset of nightside disk images and vertical limb scans during southern winter, fall equinox and southern summer conditions have been accumulated since the beginning of the mission. We will present a discussion regarding the variability of the brightness and altitude of the emission with season, geographical position (longitude) and local time and possible interpretation for local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves structuring the emission longitudinally and indicating a wave-3 structure in Mars' nightside mesosphere. Quantitative comparison with calculations from the LMD-MGCM (Laboratoire de Météorologie Dynamique-Mars Global Climate Model) show that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation but also indicates large discrepancies (up to a factor 50 fainter in the model) suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by ˜20° latitude north. These questions are now addressed with an extensive dataset of disk images, complemented with improved simulations from the LMD-MGCM and new M-GITM (Mars Global Ionosphere-Thermosphere Model) simulations of emissions for selected sampling periods.
Experimental observation of negative effective gravity in water waves.
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.
Experimental Observation of Negative Effective Gravity in Water Waves
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132
Detecting Interplanetary Dust Particles with Radars to Study the Dynamics at the Edge of the Space
NASA Technical Reports Server (NTRS)
Janches, Diego
2015-01-01
The Earth's mesosphere is the region of the atmosphere between approximately 60-120 km altitude, where the transition from hydrodynamic flow to molecular diffusion occurs. It is highly dynamic region where turbulence by wave braking is produced and energy is deposited from sources from both, below and above this altitude range. Because aircraft and nearly all balloons reach altitudes below approximately 50 km and orbital spacecrafts are well above approximately 400 km, the mesosphere has only been accessed through the use of sounding rockets or remote sensing techniques, and as a result, it is the most poorly understood part of the atmosphere. In addition, millions of Interplanetary Dust Particles (IDPs) enter the atmosphere. Within the mesosphere most of these IDPs melt or vaporize as a result of collisions with the air particles producing meteors that can be detected with radars. This provides a mean to study the dynamics of this region. In this lecture the basic principles of the utilization of meteor radars to study the dynamics of the mesosphere will be presented. A system overview of these systems will be provided as well as discuss the advantages/disadvantages of these systems, provide details of the data processing methodology and give a brief overview of the current status of the field as well as the vision for the next decade.
NASA Astrophysics Data System (ADS)
Vals, M.
2017-09-01
We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.
NASA Astrophysics Data System (ADS)
Campbell, Lucy J.; Shepherd, Theodore G.
2005-12-01
Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.
Electron-impact vibrational excitation of the hydroxyl radical in the nighttime upper atmosphere
NASA Astrophysics Data System (ADS)
Campbell, Laurence; Brunger, Michael J.
2018-02-01
Chemical processes produce vibrationally excited hydroxyl (OH) in a layer centred at an altitude of about 87 km in the Earth's atmosphere. Observations of this layer are used to deduce temperatures in the mesosphere and to observe the passage of atmospheric gravity waves. Due to the low densities and energies at night of electrons at the relevant altitude, it is not expected that electron-impact excitation of OH would be significant. However, there are unexplained characteristics of OH densities and radiative emissions that might be explained by electron impact. These are measurements of higher than expected densities of OH above 90 km and of emissions at higher energies that cannot be explained by the chemical production processes. This study simulates the role of electron impact in these processes, using theoretical cross sections for electron-impact excitation of OH. The simulations show that electron impact, even in a substantial aurora, cannot fully explain these phenomena. However, in the process of this investigation, apparent inconsistencies in the theoretical cross sections and reaction rates were found, indicating that measurements of electron-impact excitation of OH are needed to resolve these problems and scale the theoretical predictions to allow more accurate simulations.
NASA Technical Reports Server (NTRS)
Revelle, D. O.
1987-01-01
A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.
A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.;
2013-01-01
For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.
Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event
NASA Astrophysics Data System (ADS)
Liu, Lu; Ran, Lingkun; Gao, Shouting
2018-05-01
A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.
Southern Argentina Agile Meteor Radar: Initial assessment of gravity wave momentum fluxes
NASA Astrophysics Data System (ADS)
Fritts, D. C.; Janches, D.; Hocking, W. K.
2010-10-01
The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity wave momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity wave momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity wave momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean zonal winds and gravity wave momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity wave sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity wave sources within this “hot spot.” SAAMER measurements of mean zonal and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.
NASA Technical Reports Server (NTRS)
Garfinkel, C. I.; Oman, L. D.
2018-01-01
The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.
Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation
NASA Astrophysics Data System (ADS)
Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.
2017-06-01
There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.
NASA Astrophysics Data System (ADS)
Cao, B.; Gelinas, L. J.; Liu, A. Z.; Hecht, J. H.
2016-12-01
Instabilities generated by large amplitude gravity waves are ubiquitous in the mesopause region, and contribute to the strong forcing on the background atmosphere. Gravity waves and ripples generated by instability are commonly detected by high resolution airglow imagers that measure the hydroxyl emissions near the mesopause ( 87 km). Recently, a method based on 2D wavelet is developed by Gelinas et al. to characterize the statistics of ripple parameters from the Aerospace Infrared Camera at Andes Lidar Observatory located at Cerro Pachón, Chile (70.74°W, 30.25°S). In the meantime, data from a collocated all-sky imager is used to derive gravity wave parameters and their statistics. In this study, the relationship between the ripples and gravity waves that appeared at the same time and location are investigated in terms of their orientations, magnitudes and scales, to examine the statistical properties of the gravity wave induced instabilities and the ripples they generate.
Complexity-action duality of the shock wave geometry in a massive gravity theory
NASA Astrophysics Data System (ADS)
Miao, Yan-Gang; Zhao, Long
2018-01-01
On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.
On the use of infrasound for constraining global climate models
NASA Astrophysics Data System (ADS)
Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David
2017-11-01
Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.
NASA Astrophysics Data System (ADS)
Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.
2016-12-01
The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.
NASA Astrophysics Data System (ADS)
Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef
2018-01-01
Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.
Some classes of gravitational shock waves from higher order theories of gravity
NASA Astrophysics Data System (ADS)
Oikonomou, V. K.
2017-02-01
We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Baker, J. B.; Greenwald, R. A.; Clausen, L. B.; Shepherd, S. G.; Bristow, W. A.; Talaat, E. R.; Barnes, R. J.
2010-12-01
Within the past year the first pair of SuperDARN radars funded under the NSF MSI program has become operational at a site near Hays, Kansas. The fields of view of the co-located radars are oriented to provide common-volume observations with two existing radars in Virginia (Wallops, Blackstone) and two MSI radars under construction in Oregon (Christmas Valley). The emerging mid-latitude radar chain will complement the existing SuperDARN coverage at polar cap and auroral latitudes within North America. The mid-latitude radars observe the expansion of auroral effects during disturbed periods, subauroral polarization streams, and small-scale ionospheric irregularities on the nightside that open a window on the plasma drifts and electric fields of the quiet-time subauroral ionosphere. They also measure neutral winds at mesospheric heights and the propagation of ionospheric disturbances due to the passage of atmospheric gravity waves. The new radar capabilities provide unprecedented views of ITM processes in the subauroral ionosphere with applications to studies of ionospheric electric fields, ion-neutral coupling, atmospheric tides and planetary waves, ionospheric plasma structuring and plasma instability. In this talk we describe the new capabilities and the potential for providing large-scale context for related ITM measurements over North America. We present the first high-resolution two-dimensional maps of ionospheric plasma convection at mid-latitudes as generated from common-volume observations with the Hays and Blackstone radars.
Radar studies of the atmosphere using spatial and frequency diversity
NASA Astrophysics Data System (ADS)
Yu, Tian-You
This work provides results from a thorough investigation of atmospheric radar imaging including theory, numerical simulations, observational verification, and applications. The theory is generalized to include the existing imaging techniques of coherent radar imaging (CRI) and range imaging (RIM), which are shown to be special cases of three-dimensional imaging (3D Imaging). Mathematically, the problem of atmospheric radar imaging is posed as an inverse problem. In this study, the Fourier, Capon, and maximum entropy (MaxEnt) methods are proposed to solve the inverse problem. After the introduction of the theory, numerical simulations are used to test, validate, and exercise these techniques. Statistical comparisons of the three methods of atmospheric radar imaging are presented for various signal-to-noise ratio (SNR), receiver configuration, and frequency sampling. The MaxEnt method is shown to generally possess the best performance for low SNR. The performance of the Capon method approaches the performance of the MaxEnt method for high SNR. In limited cases, the Capon method actually outperforms the MaxEnt method. The Fourier method generally tends to distort the model structure due to its limited resolution. Experimental justification of CRI and RIM is accomplished using the Middle and Upper (MU) Atmosphere Radar in Japan and the SOUnding SYstem (SOUSY) in Germany, respectively. A special application of CRI to the observation of polar mesosphere summer echoes (PMSE) is used to show direct evidence of wave steepening and possibly explain gravity wave variations associated with PMSE.
Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de
Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less
NASA Astrophysics Data System (ADS)
Ding, F.; Yuan, H.; Wan, W.; Reid, I. M.; Woithe, J. M.
2004-07-01
This paper presents a 7 year climatology describing medium-scale gravity waves observed in the menopause region covering the years from 1995 to 2001. The data comes from the OI and OH airglow observations of the three-field photometer employed at the University of Adelaide's Buckland Park, Australia (34.5°S, 138.5°E). About 1300 gravity wave events (AGW) are identified during the years 1995-2001. These AGW events usually persist for between 40 min and 4 hours. The magnitudes range from 1% to 14% of the background intensities and peak at 2% for OI observations and at 3% for OH observations. The observed periods range from 10 to 30 min, and the horizontal phase speeds range from 20 to 250 m s-1, with dominant wave scales of 17 min, 70 m s-1 for OI observations and 20 min, 40 m s-1 for OH observations. The intrinsic parameters are obtained by using medium-frequency (MF) wind data observed at the same place. The occurrence frequency of AGW events peaks at 13 min, 40 m s-1 for both OI and OH observations. The occurrence rate of gravity waves has a major peak in summer and a minor peak in winter. There is an obvious dominating southeastward direction for gravity waves, with azimuths of 160° in summer and 130° in winter. Studies for gravity waves observed in various locations show a similar tendency of propagating meridionally toward the summer pole. This implies that the tendency of propagating toward the summer pole may be a global trend for medium-scale gravity waves observed in the mesopause region. During summer, gravity waves propagate against winds measured by MF radar in their dominating direction. Using the ray tracing method, we found that the seasonal variation of winds limits the access of gravity waves to the observation height through reflection and critical coupling, which is one of the causes leading to the seasonal behavior of gravity waves observed over Adelaide.
NASA Astrophysics Data System (ADS)
Silber, Israel; Price, Colin
2017-03-01
The ionospheric D-region ( 60 km up to 95 km) and the corresponding neutral atmosphere, often referred to as the mesosphere-lower thermosphere (MLT), are challenging and costly to probe in situ. Therefore, remote sensing techniques have been developed over the years. One of these is based on very low frequency (VLF, 3-30 kHz) electromagnetic waves generated by various natural and man-made sources. VLF waves propagate within the Earth-ionosphere waveguide and are extremely sensitive to perturbations occurring in the D-region along their propagation path. Hence, measurements of these signals serve as an inexpensive remote sensing technique for probing the lower ionosphere and the MLT region. This paper reviews the use of VLF narrowband (NB) signals (generated by man-made transmitters) in the study of the D-region and the MLT for over 90 years. The fields of research span time scales from microseconds to decadal variability and incorporate lightning-induced short-term perturbations; extraterrestrial radiation bursts; energetic particle precipitation events; solar eclipses; lower atmospheric waves penetrating into the D-region; sudden stratospheric warming events; the annual oscillation; the solar cycle; and, finally, the potential use of VLF NB measurements as an anthropogenic climate change monitoring technique.
Variability of Martian Turbopause Altitudes
NASA Astrophysics Data System (ADS)
Slipski, Marek; Jakosky, Bruce; Benna, Mehdi; Mahaffy, Paul R.; Elrod, Meredith K.; Kass, David M.; Gonzalez-Galindo, Francisco
2017-10-01
The transition region between the well-mixed, turbulent lower atmosphere and the diffusive upper atmosphere - the turbopause - is an area of coupled physical processes that can have significant impacts on the structure and dynamics of the mesosphere and thermosphere. Above the turbopause, molecular diffusion dominates and species fractionate according to their masses. Below, turbulence is strong and waves dissipate and break. We have used density measurements from MAVEN's NGIMS instrument and temperatures from MRO's MCS to calculate turbopause altitudes over the course of a Martian year.The homopause, or "mixing-turbopause,” is defined with respect to the mixing ratio of a given atmospheric species. The mean molecular mass of the atmosphere remains essentially constant below, but each species has its own scale height above. We determined this altitude for each MAVEN orbit between Feb 2015 - Dec 2016 by extrapolating the ratio of N2 and 40Ar densities downward to where their ratio equals that measured by Curiosity. To determine the "wave-turbopause" (Offermann et al., 2007) we used variations in monthly-averaged temperature profiles of the upper and lower atmosphere. Because the dissipation of waves produces turbulence the turbopause altitude is set by the transition from strong to weak dissipation. If no energy were lost, the amplitude of a vertically propagating gravity wave would increase exponentially with altitude. Using the monthly standard deviation in temperatures as a proxy for wave amplitude, we show that waves are strongly dissipated at low altitudes but freely propagating in the lower thermosphere. The altitude at which the standard deviation begins to increase substantially from low values at mid-altitudes determines the altitude of the "wave-turbopause."The observed range of turbopause altitudes is 80-140 km. The turbopause is highest during the day and for Ls values near 270°. Homopause altitudes correlate well with changes in CO2 densities. The variation in turbopause altitudes means that energy, mass, and momentum transported vertically are deposited at different altitudes across the planet, which can have a substantial effect on the thermal and dynamical state of the middle-upper atmosphere.
NASA Astrophysics Data System (ADS)
Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.
2015-07-01
Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.
Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'
NASA Astrophysics Data System (ADS)
Hima Bindu, H.; Venkat Ratnam, M.; Yesubabu, V.; Narayana Rao, T.; Eswariah, S.; Naidu, C. V.; Vijaya Bhaskara Rao, S.
2018-04-01
Synoptic-scale systems like cyclones can generate broad spectrum of waves, which propagate from its source to the middle atmosphere. Coupling between the lower and middle atmosphere over Tirupati (13.6°N, 79.4°E) is studied during a very severe cyclonic storm 'Madi' (06-13 December 2013) using Weather Research and Forecast (WRF) model assimilated fields and simultaneous meteor radar observations. Since high temporal and spatial measurements are difficult to obtain during these disturbances, WRF model simulations are obtained by assimilating conventional and satellite observations using 3DVAR technique. The obtained outputs are validated for their consistency in predicting cyclone track and vertical structure by comparing them with independent observations. The good agreement between the assimilated outputs and independent observations prompted us to use the model outputs to investigate the gravity waves (GWs) and tides over Tirupati. GWs with the periods 1-5 h are observed with clear downward phase propagation in the lower stratosphere. These upward propagating waves obtained from the model are also noticed in the meteor radar horizontal wind observations in the MLT region (70-110 km). Interestingly, enhancement in the tidal activity in both the zonal and meridional winds in the mesosphere and lower thermosphere (MLT) region is noticed during the peak cyclonic activity except the suppression of semi-diurnal tide in meridional wind. A very good agreement in the tidal activity is also observed in the horizontal winds in the troposphere and lower stratosphere from the WRF model outputs and ERA5. These results thus provide evidence on the vertical coupling of lower and middle atmosphere induced by the tropical cyclone.
NASA Technical Reports Server (NTRS)
Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart
2007-01-01
In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.
Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams
NASA Technical Reports Server (NTRS)
Chunchuzov, Y. P.; Torgashin, Y. M.
1979-01-01
A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less
2010-09-01
ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound
Ionospsheric observation of enhanced convection-initiated gravity waves during tornadic storms
NASA Technical Reports Server (NTRS)
Hung, R. J.
1981-01-01
Atmospheric gravity waves associated with tornadoes, with locally severe storms occuring with tornadoes, and with hurricanes were studied through the coupling between the ionosphere and the troposphere. Reverse group ray tracing computations of gravity waves observed by an ionospheric Doppler sounder array were analyzed. The results of ray tracing computations and comparisons between the computed location of the wave sources and with conventional meteorological data indicate that the computed sources of the waves were near the touchdown of the tornadoes, near the eye of the hurricanes, and directly on the squall line of the severe thunderstorms. The signals excited occurred one hour in advance of the tornadoes and three hours in advance of the hurricanes. Satellite photographs show convective overshooting turrets occurring at the same locations and times the gravity waves were being excited. It is suggested that gravity wave observations, conventional meteorological data, and satellite photographs be combined to develop a remote sensing technique for detecting severe storms.
Plasma-Neutral Coupling on the Dark and Bright Sides of Antarctica
NASA Astrophysics Data System (ADS)
Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Zhao, J.; Huang, W.; Roberts, B. R.; Fuller-Rowell, T. J.; Richmond, A. D.; Gerrard, A. J.; Weatherwax, A. T.; Gardner, C. S.
2014-12-01
The polar mesosphere and thermosphere provide a unique natural laboratory for studying the complex physical, chemical, neutral dynamical and electrodynamics processes in the Earth's atmosphere and space environment. McMurdo (geographic 77.83S, geomagnetic 80S) is located by the poleward edge of the aurora oval; so energetic particles may penetrate into the lower thermosphere and mesosphere along nearly vertical geomagnetic field lines. Lidar observations at McMurdo from December 2010 to 2014 have discovered several neutral atmosphere phenomena closely related to ionosphereic parameters and geomagnetic activity. For example, the diurnal tidal amplitude of temperatures not only increases super-exponentially from 100 to 110 km but also its growth rate becomes larger at larger Kp index. The lidar discovery of neutral iron (Fe) layers with gravity wave signatures in the thermosphere enabled the direct measurements of neutral temperatures from 30 to 170 km, revealing the neutral-ion coupling and aurora-enhanced Joule heating. A lidar 'marathon' of 174-hour continuous observations showed dramatic changes of composition (Fe atoms and ice particles) densities (over 40 times) in the mesopause region and their correlations to solar events. In this paper we will study the plasma-neutral coupling on the dark side of Antarctica via observation analysis and numerical modeling of the thermospheric Fe layers in the 100-200 km. A newly developed thermospheric Fe/Fe+ model is used to quantify how Fe+ ions are transported from their main deposition region to the E-F region and then neutralized to form Fe layers under dark polar conditions. We will also study the plasma-neutral coupling on the bright side of Antarctica via analyzing Fe events in summer. Complementary observations will be combined to show how the extreme changes of Fe layers are related to aurora particle precipitation and visible/sub-visible ice particles. These observations and studies will open new areas of scientific inquiry regarding the composition, chemistry, neutral dynamics, thermodynamics, and electrodynamics of one of the least-understood regions in the atmosphere.
Dramatic changes of the thermosphere and ionosphere caused by the quasi-two-day wave forcing
NASA Astrophysics Data System (ADS)
Yue, J.; Wang, W.
2013-12-01
Traveling planetary waves, such as the quasi-two-day wave (QTDW), are one essential element of the mesosphere and lower thermosphere dynamics. These planetary waves have been observed to cause strong ionospheric day-to-day variations. However, the mechanisms of this effect either by penetrating directly into the thermosphere or by perturbing the dynamo electrodynamics have not been determined. We employ the NCAR TIME-GCM to simulate the interaction between traveling planetary waves and mean wind or tides, and the impact of this interaction on the ionospheric E-region dynamo, F-region plasma density, thermospheric density and O/N2. In particular, as shown in Figure 1, the TEC decreases by 20-30% during a strong QTDW event in the lower thermosphere from the TIME-GCM output. We find a simultaneously 20-30% decrease of O/N2 in the F2 peak in Figure 2. Therefore, the changes of the thermosphere general circulation, neutral temperature and eddy diffusivity are investigated to account for the O/N2 decrease. Because the QTDW dissipates in the lower thermosphere and drive the mean wind westward, the general circulation patterns are altered and the upwelling is enhanced. On the other hand, the QTDW interacts strongly with tides in the mesosphere and lower thermosphere, consequently changing the wind dynamo in the E-region. The effects of these interactions on the changes of the thermosphere and ionosphere will be reported. Decrease of TEC by the QTDW forcing Change of O/N2 by the QTDW forcing
NASA Astrophysics Data System (ADS)
Walterscheid, R. L.; Hecht, J. H.; Hickey, M. P.; Gelinas, L. J.; Vincent, R. A.; Reid, I. M.; Woithe, J.
2010-12-01
The Aerospace Corporation’s Nightglow Imager observed a large step-function change in airglow in the form of a traveling front in the OH and O2 airglow emissions over Alice Springs Australia on February 2, 2003. The front exhibited a stepwise increase of nearly a factor two in the OH brightness and a stepwise decrease in the O2 brightness. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. The OH airglow brightness behind the front was the brightness night for 02 at Alice Springs that we have measured in seven years of observations. The OH brightness was among the five brightest. The event was associated with a strong phase-locked two-day wave (TDW).We have analyzed the stability conditions for the upper mesosphere and lower thermosphere and found that the airglow layers were found in a region of strong ducting. The thermal structure was obtained from combining data from the SABER instrument on the TIMED satellite and the NRLMSISE-00 model. The wind profile was obtained by combining the HWM07 model and MF radar winds from Buckland Park Australia. We found that the TDW-disturbed profile was significantly more effective in supporting a high degree of ducting than a profile based only on HWM07 winds. Dramatic wall events have been interpreted as manifestations of undular bores (e.g., Smith et al. [2003]). Undular bores are nonlinear high Froude number events that must generate an ever increasing train of waves to carry the excess energy away from the bore front. Only a very weak wave train behind the initial disturbance was seen for the Alice Springs event. The form of the amplitude ordering was not typical of a nonlinear wave train. Therefore a bore interpretation requires another means of energy dissipation, namely turbulent dissipation. We suggest that a reasonable interpretation of the observed event is a turbulent bore. We are unaware of any previous event having characteristics of a turbulent bore. Smith, S. M., et al., A multidiagnostic investigation of the mesospheric bore phenomenon, J. Geophys. Res., 108, 2003
NASA Technical Reports Server (NTRS)
Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.
1984-01-01
On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.
On the wave number 2 eastward propagating quasi 2 day wave at middle and high latitudes
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Liu, Yu
2017-04-01
The temperature and wind data sets from the ensemble data assimilation version of the Whole Atmosphere Community Climate Model + Data Assimilation Research Testbed (WACCM + DART) developed at the National Center for Atmospheric Research (NCAR) are utilized to study the seasonal variability of the eastward quasi 2 day wave (QTDW) with zonal wave number 2 (E2) during 2007. The aliasing ratio of E2 from wave number 3 (W3) in the synoptic WACCM data set is a constant value of 4 × 10-6% due to its uniform sampling pattern, whereas the aliasing is latitudinally dependent if the WACCM fields are sampled asynoptically based on the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) sampling. The aliasing ratio based on SABER sampling is 75% at 40°S during late January, where and when W3 peaks. The analysis of the synoptic WACCM data set shows that the E2 is in fact a winter phenomenon, which peaks in the stratosphere and lower mesosphere at high latitudes. In the austral winter period, the amplitudes of E2 can reach 10 K, 20 m/s, and 30 m/s for temperature, zonal, and meridional winds, respectively. In the boreal winter period, the wave perturbations are only one third as strong as those in austral winter. Diagnostic analysis also shows that the mean flow instabilities in the winter upper mesosphere polar region provide sources for the amplification of E2. This is different from the westward QTDWs, whose amplifications are related to the summer easterly jet. In addition, the E2 also peaks at lower altitude than the westward modes.
3D DNS and LES of Breaking Inertia-Gravity Waves
NASA Astrophysics Data System (ADS)
Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.
2012-04-01
As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.
Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lay, Erin Hoffmann
In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse
2016-01-01
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763
On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.
Marlton, G J; Williams, P D; Nicoll, K A
2016-09-28
Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.
Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.
Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil
2017-06-02
We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.
A Simple Theory of Capillary-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1995-01-01
Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.
Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions
NASA Astrophysics Data System (ADS)
Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele
2016-04-01
The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.
NASA Astrophysics Data System (ADS)
Vollmer, D. R.; McHarg, M. G.; Harley, J.; Haaland, R. K.; Stenbaek-Nielsen, H.
2016-12-01
On 23 July 2014, a mesoscale convective event over western Nebraska produced a large number of sprites. One frame per second images obtained from a low-noise Andor Scientific CMOS camera showed regularly-spaced horizontal striations in the airglow both before and during several of the sprite events, suggesting the presence of vertically-propagating gravity waves in the middle atmosphere. Previous work hypothesized that the gravity waves were produced by the thunderstorm itself. We compare our observations with previous work, and present numerical simulations conducted to determine source, structure, and propagation of atmospheric gravity waves.
Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..
NASA Astrophysics Data System (ADS)
Berhanu, Michael
2017-04-01
Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)
Tsunami and infragravity waves impacting Antarctic ice shelves
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.
2017-07-01
The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.
2010-07-01
by changes in wind and stability to a vertical wavelength lying outside the observable range. Gravity-wave parametrizations also represent intermit ...tropopause variability. J. Atmos. Sci. 65: 1817–1837. Salby ML. 1982. Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic
The influence of the equatorial QBO on sudden stratospheric warmings
NASA Technical Reports Server (NTRS)
Holton, James R.; Austin, John
1991-01-01
A global primitive-equation model of the stratosphere and mesosphere is integrated for specified planetary-wave forcing at the 100-mb level with mean zonal flow conditions corresponding to the westerly and easterly phases of the equatorial QBO, respectively. The responses in the two QBO phases were compared for integrations with wavenumber-1 forcing-amplitude maxima at 100 mb and 60 deg N varying from 100 to 400 m. The phase of the QBO had little effect on the results in the weak-wave (100-m) cases, which did not produce warmings, and strong-wave (400-m) cases, which produced major sudden warmings.
The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen
2013-09-27
All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization ofmore » further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.« less
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
No further gravitational wave modes in F(T) gravity
NASA Astrophysics Data System (ADS)
Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego
2013-11-01
We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar-tensor representation of F(T) gravity.
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan
2017-04-01
Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation. Reference: Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381-9397, doi:10.5194/acp-16-9381-2016, 2016.
Influence of internal waves on the dispersion and transport of inclined gravity currents
NASA Astrophysics Data System (ADS)
Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.
2016-02-01
Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.
NASA Astrophysics Data System (ADS)
Hanuise, C.; Blanc, E.; Crosby, N.; Ebert, U.; Mareev, E.; Neubert, T.; Rothkaehl, H.; Santolik, O.; Yair, Y.; Gille, P.
2008-12-01
Transient luminous events in the stratosphere and mesosphere, the sprites, elves, blue jets and gigantic jets, are observed above intense thunderstorms in association with particularly intense lightning discharges. Their recent discovery (1989) offers an opportunity to study the fundamental process of the electric discharge under the different conditions of the troposphere (lightning), stratosphere (blue jets) and the mesosphere (sprites) and the coupling between these regions by electric and magnetic fields. It further facilitates studies of the more general questions of thunderstorm effects on the atmosphere and the role of thunderstorms in a changing climate. New space missions will be launched in the coming years to study the various effects of thunderstorms. They will focus on transient luminous events, the generation of relativistic electron beams in discharges, and the perturbation to the atmosphere, ionosphere and magnetosphere of lightning, transient luminous events, water vapour transport and gravity waves. The missions are the French micro-satellite TARANIS, the ESA ASIM payload on board the International Space Station and the Japanese Sprite Sat mission. These highly interdisciplinary missions will result in a wealth of new data, which require knowledge based capacity building to underpin the observations with improved statistical data analysis and theoretical modelling. We are therefore establishing a global framework for research on thunderstorm processes and their effect on the atmosphere, in particular (1) the fundamental process of the electric discharge as manifested in the stratosphere and mesosphere as sprites and jets, (2) the relationship between cosmic rays, lightning discharges, transient luminous events and terrestrial gamma ray flashes, and (3) the environmental impact of the above physical processes, and thunderstorms in general, on the atmosphere and near-Earth space. The first step has been the creation of the European research group (GDRE) dubbed E-CANES (Electromagnetic Coupling of the Atmosphere with the Near-Earth Space). It complements in a synergistic way the former EU Research Training Network 'Coupling of Atmospheric Layers', the existing COST action on 'The physics of lightning flash and its effects', the ASIM Topical Team, and other programs. The main objective of E-CANES is to initiate and promote coordination activities towards a global research community on the subject. The first actions include the establishment of an organization for coordinating ground, balloon and aircraft observation campaigns, the creation of a community-wide mailing list and website, and the promotion and coordination of joint activities with other structures - to include new communities and to avoid the duplication of meetings and workshops.
NASA Astrophysics Data System (ADS)
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline
NASA Astrophysics Data System (ADS)
Zaqarashvili, Teimuraz
2018-03-01
The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.
NASA Astrophysics Data System (ADS)
Schoon, Lena; Zülicke, Christoph
2018-05-01
For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia-gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia-gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.
On the generation of internal wave modes by surface waves
NASA Astrophysics Data System (ADS)
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Geometric controls of the flexural gravity waves on the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Sergienko, O. V.
2017-12-01
Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.
Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View
NASA Astrophysics Data System (ADS)
Bouchette, F.; Mohammadi, B.
2016-12-01
It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given promising results for the generation of near-shore sand bar from scratch and their growth when forced by fair-weather waves. Here, we use it to explore the coupling between a very simple infra-gravity content and the nucleation of near-shore sand-bars. It is shown that even a very poor infra-gravity content strongly improves the generation of sand bars.
Gravity Waves in the Atmosphere: Instability, Saturation, and Transport.
1995-11-13
role of gravity wave drag in the extratropical QBO , destabilization of large-scale tropical waves by deep moist convection, and a general theory of equatorial inertial instability on a zonally nonuniform, nonparallel flow.
Remote sensing of mesospheric winds with the High-Resolution Doppler Imager
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.
1992-01-01
Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.
NASA Astrophysics Data System (ADS)
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
NASA Astrophysics Data System (ADS)
Sousasantos, Jonas; Sobral, José Humberto Andrade; Alam Kherani, Esfhan; Magalhães Fares Saba, Marcelo; Rodolfo de Campos, Diovane
2018-03-01
The vertical coupling between the troposphere and the ionosphere presents some remarkable features. Under intense tropospheric convection, gravity waves may be generated, and once they reach the ionosphere, these waves may seed instabilities and spread F and equatorial plasma bubble events may take place. Additionally, there is a close association between severe tropospheric convection and lightning strikes. In this work an investigation covering an equinox period (September-October) during the deep solar minimum (2009) presents the relation between lightning strike activity and spread F (equatorial plasma bubble) detected over a low-latitude Brazilian region. The results show a considerable correlation between these two phenomena. The common element in the center of this conformity seems to be the gravity waves. Once gravity waves and lightning strikes share the same source (intense tropospheric convection) and the effects of such gravity waves in the ionosphere include the seeding of instabilities according to the gravity waves magnitude, the monitoring of the lightning strike activity seems to offer some information about the subsequent development of spread F over the equatorial region.
Radiating Instabilities of Internal Inertio-gravity Waves
NASA Astrophysics Data System (ADS)
Kwasniok, F.; Schmitz, G.
The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.
Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity
NASA Astrophysics Data System (ADS)
Das, S.; Sahoo, T.; Meylan, M. H.
2018-01-01
The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.
Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.
Das, S; Sahoo, T; Meylan, M H
2018-01-01
The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.
NASA Astrophysics Data System (ADS)
Koushik, N.; Kumar, Karanam Kishore; Ramkumar, Geetha; Subrahmanyam, K. V.
2018-04-01
The changes in zonal mean circulation and meridional temperature gradient brought about by Sudden Stratospheric Warming (SSW) events in polar middle atmosphere are found to significantly affect the low latitude counterparts. Several studies have revealed the signatures of SSW events in the low latitude Mesosphere- Lower Thermosphere (MLT) region. Using meteor wind radar observations, the present study investigates the response of semidiurnal oscillations and quasi 2-day waves in the MLT region, simultaneously over low latitude and equatorial stations Thumba (8.5oN, 76.5oE) and Kototabang (0.2oS, 100oE). Unlike many case studies, the present analysis examines the response of low and equatorial latitude MLT region to typical polar stratospheric conditions viz., Quiet winter, Major SSW winter and Minor SSW winter. The present results show that (i) the amplitudes of semidiurnal oscillations and quasi 2-day waves in the equatorial and low latitude MLT region enhance in association with major SSW events, (ii) the semidiurnal oscillations show significant enhancement selectively in the zonal and meridional components over the Northern Hemispheric low latitude and the equatorial stations, respectively (iii) The minor SSW event of January 2012 resulted in anomalously large amplitudes of quasi 2- day waves without any notable increase in the amplitude of semidiurnal oscillations. The significance of the present study lies in comprehensively bringing out the signatures of SSW events in the semidiurnal oscillations and quasi 2-day waves in low latitude and equatorial MLT region, simultaneously for the first time over these latitudes.
QBO Generated Inter-annual Variations of the Diurnal Tide in the Mesosphere
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, John G.
2004-01-01
We report results from a study with the Numerical Spectral Model (NSM), which produces in the d i d tide significant inter-annual variations. Applying Hines' Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m/s at 30 lan, As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal tide at altitudes around 95 km. In the present paper it is shown that the QBO modulates the tide such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the tide thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanisms, we discuss (a) the relative importance of the linearized advection terms that involve the meridional and vertical winds of the diurnal tide and (b) the effects momentum deposition from GWs filtered by the QBO.
On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs
NASA Astrophysics Data System (ADS)
Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.
2016-05-01
The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.
NASA Astrophysics Data System (ADS)
Kim, Y.; Lee, C.; Kim, J.; Jee, G.; Won, Y.; Wu, D. L.
2012-12-01
We have analyzed neutral wind data obtained from a VHF meteor radar at King Sejong Station (KSS), Antarctica to investigate wave activities in the altitude region of 80 - 100 km over the Antarctic vortex boundary. The seasonal behavior of semidiurnal tides is generally consistent with the prediction of GSWM (Global Scale Wave Model) except for the altitude region above ~96 km. The gravity wave activities inferred from variances of neutral winds show very similar seasonal characteristics to the semidiurnal tides, implying that there is a close interaction between the gravity wave and tide. Although the seasonal behaviors of the wind variance as an indicator of the gravity wave activity are consistent with those observed at the adjacent Rothera station, the magnitude of the variances at KSS is much larger above the mesopause, especially from May through September, than those at Rothera. The Aura Microwave Limb Sounder (MLS) satellite observations also confirmed the enhancement of gravity wave activity during the same period near the tip of Antarctic Peninsula, where KSS is located. The observed large wind variances at KSS may imply that the atmospheric conditions near the Antarctic vortex are very effective for generation of the gravity waves that propagate to the upper atmosphere.
NASA Astrophysics Data System (ADS)
Hupe, Patrick; Ceranna, Lars; Pilger, Christoph; Le Pichon, Alexis
2017-04-01
The infrasound network of the International Monitoring System (IMS) has been established for monitoring the atmosphere to detect violations of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The IMS comprises 49 certified infrasound stations which are globally distributed. Each station provides data for up to 16 years. Due to the uniform distribution of the stations, the IMS infrasound network can be used to derive global information on atmospheric dynamics' features. This study focuses on mountain-associated waves (MAWs), i.e. acoustic waves in the frequency range between approximately 0.01 Hz and 0.05 Hz. MAWs can be detected in infrasound data by applying the Progressive Multi-Channel Correlation (PMCC) algorithm. As a result of triangulation, global hotspots of MAWs can be identified. Previous studies on gravity waves indicate that global hotspots of gravity waves are similar to those found for MAWs by using the PMCC algorithm. The objective of our study is an enhanced understanding of the excitation sources and of possible interactions between MAWs and gravity waves. Therefore, spatial and temporal correlation analyses will be performed. As a preceding step, we will present (seasonal) hotspots of MAWs as well as hotspots of gravity waves derived by the IMS infrasound network.
Impact location of objects hitting the water surface
NASA Astrophysics Data System (ADS)
Kadri, Usama
2017-04-01
Analysis of data, recorded on March 8th 2014 at the Comprehensive Test ban Treaty Organisation's hydroacoustic station off Cape Leeuwin Western Australia, reveal pressure signatures of objects impacting at the sea surface which could be associated with falling meteorites as well as the missing Malaysian MH370 airplane. The location of the sources are identified analytically by an inverse solution based on acoustic-gravity wave theory (e.g. see references below) which have been developed and validated experimentally. Apart from the direct contribution to the search efforts after the missing airplane, the method we describe here is very efficient for identifying the location of sources that result in a sudden change in the water pressure in general. References 1. T.Yamamoto,1982.Gravity waves and acoustic waves generated by submarine earthquakes, Soil Dyn. Earthquake Eng., 1, 75-82. 2. M. Stiassnie, 2010. Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math., 67, 23-32, doi:10.1007/s10665-009-9323-x. 3. U. Kadri and M. Staissnie, 2012. Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res., 117, C03035, doi: 10.1029/2011JC007674. 4. E. Eyov, A. Klar, U. Kadri and M. Stiassnie, 2013. Progressive waves in a compressible ocean with elastic bottom, Wave Motion 50, 929-939. doi: 10.1016/j.wavemoti.2013.03.003 5. G. Hendin and M. Stiassnie, 2013. Tsunami and acoustic-gravity waves in water of constant depth, Phys. Fluids 25, 086103, doi: 10.1063/1.481799. 6. U. Kadri, 2016. Acoustic-gravity waves from an oscillating ice-block in arctic zones. Advances in Acoustics and Vibration, 8076108, http://dx.doi.org/10.1155/2016/8076108 7. T.C.A. Oliveira, U. Kadri, 2016. Acoustic-gravity waves from the 2004 Indian Ocean earthquake and tsunami. Journal of Geophysical Research: Oceans. doi: 10.1002/2016JC011742
NASA Astrophysics Data System (ADS)
Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico
2018-03-01
Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.
Instabilities of Internal Gravity Wave Beams
NASA Astrophysics Data System (ADS)
Dauxois, Thierry; Joubaud, Sylvain; Odier, Philippe; Venaille, Antoine
2018-01-01
Internal gravity waves play a primary role in geophysical fluids: They contribute significantly to mixing in the ocean, and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We discuss the reason for the ubiquity of wave beams in stratified fluids, which is related to the fact that they are solutions of the nonlinear governing equations. We focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams: (a) the triadic resonant instability generating two secondary wave beams and (b) the streaming instability corresponding to the spontaneous generation of a mean flow.
A MOSAIC for the Science Classroom
NASA Astrophysics Data System (ADS)
Fish, Vincent L.; Needles, M. M.; Rogers, A. E. E.; Costa, D.; Cadigan, J.; Clements, C.; May, S. K.
2011-01-01
MOSAIC (Mesospheric Ozone System for Atmospheric Investigations in the Classroom) is a project to engage secondary and undergraduate students in authentic inquiry-based science learning using a network of inexpensive spectrometers monitoring the mesospheric ozone concentration. The MOSAIC system observes the 11 GHz emission line of ozone using electronics built around satellite television equipment. The possibilities for student investigation are broad and scientifically significant. MOSAIC observations have confirmed diurnal variations in mesospheric ozone concentration and detected semiannual variations that may be due to inter-hemispheric meridional circulation of water vapor. Possible future projects include monitoring the temperature of the mesosphere and correlations with the solar cycle. Students are also encouraged to design their own investigations with MOSAIC data. Early results have been reported in a major scientific journal, and further scientific progress is likely as future MOSAIC systems are deployed -- increasing the sensitivity and geographic coverage of the network. Complete teaching units, including slides, laboratory activities, background information, student worksheets, and conformance with national and Massachusetts educational standards, have been developed to integrate MOSAIC into a classroom environment. One unit introduces the layers of the atmosphere, Earth's energy balance, the greenhouse effect, processes of ozone creation and destruction, noctilucent clouds, heat transfer, the laws of thermodynamics, radio waves (including radio astronomy), and fluid behavior. A second unit, currently being tested in classrooms, uses the MOSAIC system to motivate and deepen understanding of a large portion of electromagnetism in a conceptual physics class. MOSAIC has also been used in a local high school chemistry class. MOSAIC is still in development and is funded by the National Science Foundation.
Observation of Wood's anomalies on surface gravity waves propagating on a channel.
Schmessane, Andrea
2016-09-01
I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.
Self-similar gravity wave spectra resulting from the modulation of bound waves
NASA Astrophysics Data System (ADS)
Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric
2018-05-01
We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.
NASA Astrophysics Data System (ADS)
Greer, Katelynn R.
The polar winter middle atmosphere is a dynamically active region that is driven primarily by wave activity. Planetary waves intermittently disturbed the region at different levels and the most spectacular type of disturbance is a major Sudden Stratospheric Warming (SSW). However, other types of extreme disturbances occur on a more frequent, intraseasonal basis. One such disturbance is a synoptic-scale "weather event" observed in lidar and rocket soundings, soundings from the TIMED/SABER instrument and UK Meteorological Office (MetO) assimilated data. These disturbances are most easily identified near 42 km where temperatures are elevated over baseline conditions by a remarkable 50 K and an associated cooling is observed near 75 km. As these disturbances have a coupled vertical structure extending into the lower mesosphere, they are termed Upper Stratospheric/Lower Mesospheric (USLM) disturbances. This research begins with description of the phenomenology of USLM events in observations and the assimilated data set MetO, develops a description of the dynamics responsible for their development and places them in the context of the family of polar winter middle atmospheric disturbances. Climatologies indicates that USLM disturbances are commonly occurring polar wintertime disturbances of the middle atmosphere, have a remarkably repeating thermal structure, are located on the East side of the polar low and are related planetary wave activity. Using the same methodology for identifying USLM events and building climatologies of these events, the Whole Atmosphere Community Climate Model WACCM version 4 is established to spontaneously and internally generate USLM disturbances. Planetary waves are seen to break at a level just above the stratopause and convergence of the EP-flux vector is occurring in this region, decelerating the eastward zonal-mean wind and inducing ageostrophic vertical motion to maintain mass continuity. The descending air increases the horizontal temperature gradient at 2 hPa and is responsible for the stratopause warming. Embedded in this planetary wave breaking process is baroclinic instability, as indicated by the Charney-Stern criteria and an EP-flux analysis decomposed by planetary and synoptic-scale waves. It is recognized that USLM events are part of a family of disturbances that occur in the polar winter middle atmosphere which have the potential to impact the entire atmospheric column. Relationships between USLM events, minor SSWs and major SSWs are examined and displayed through a Venn diagram which looked for events that were linked to each other (or not) by temporal evolution of the polar vortex within 14 days. Critically, every identified major SSW (in both MetO and WACCM) is preceded by a USLM disturbance, and the baroclinic instability that is embedded in the planetary wave breaking of USLM disturbances mark significant disruption to the middle atmosphere, which may aid in the forecast of major SSWs. This leads to the proposal of new dynamics based definitions of minor and major SSWs.
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Zhang, H.; Maceira, M.
2017-10-01
We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.
Auroral origin of medium scale gravity waves in neutral composition and temperature
NASA Technical Reports Server (NTRS)
Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.
1979-01-01
The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.
In Situ Observations of PSCs Generated by Gravity Waves
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Bui, Paul; Mahoney, M. J.; Gandrud, Bruce; Hipskind, K. Stephen (Technical Monitor)
2000-01-01
During SOLVE, the bulk of the in-situ observations of PSCs are of large scale extended structures associated with synoptic scale cooling. The nature of these structures is also determined by layers of high relative NOy that have been stretched into thin layers by advective processes. Some of the in situ observations, however, are clearly correlated with gravity wave signatures. The first goal of this work is to examine these cases and evaluate gravity wave parameters. In particular, we are interested in the intrinsic periods of the waves and their temperature amplitude, which are key ingredients in the nucleation process. Secondly, we will examine some rudimentary properties of the particle size distributions and composition, comparing these with in situ observations of the more extended PSC features. Finally, we will attempt to ascertain the mechanism which generates the gravity waves.
Short and long periodic atmospheric variations between 25 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balachandran, N.K.; Rind, D.
1995-08-01
Results of experiments with a GCM involving changes in UV input ({plus_minus}25%, {plus_minus}10%, {plus_minus}5% at wavelengths below 0.3 {mu}m) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitudemore » of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also seen in the observations. The high-latitude responses are due to altered planetary wave effects, while the model`s tropical response in the upper stratosphere is due to gravity wave drag. Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical west winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary waves, altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied. Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes (east QBO effect) is prevented from then propagating vertically (reduced UV effect). 30 refs., 14 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Shiokawa, Kazuo; Oberheide, Jens
2012-07-01
Recent developments of coupled modeling between neutral and ionized atmosphere and various observation techniques such as advanced radars, airglow imaging, and GPS networks, make it possible to study geospace response to variable inputs from the lower atmosphere. Consequences for telecommunications, re-entry and satellite operations still need to be explored. The extent to which the effects of this quiescent atmospheric variability are transmitted to the magnetosphere is yet to be resolved. We thus stand right now at an exciting research frontier: understanding the cause-and-effect chain that connects tropospheric and strato-/mesospheric variability with geospace processes. CAWSES-II Task Group 4 (TG4) will therefore elucidate the dynamical coupling from the low and middle atmosphere to the geospace including the upper atmosphere, ionosphere, and magnetosphere, for various frequencies and scales, such as gravity waves, tides, and planetary waves, and for equatorial, middle, and high latitudes. Attacking the problem clearly requires asystems approach involving experimentalists, data analysts and modelers from different communities. For that purpose, the most essential part of TG4 is to encourage interactions between atmospheric scientists and plasma scientists on all occasions. TG4 newsletters are distributed to the related scientists every 3-4 months to introduce various activities of atmospheric and ionospheric researches. Five projects are established in TG4, i.e., Project 1: How do atmospheric waves connect tropospheric weather with ITM variability?, Project 2: What is the relation between atmospheric waves and ionospheric instabilities?, Project 3: How do the different types of waves interact as they propagate through the stratosphere to the ionosphere?, Project 4: How do thermospheric disturbances generated by auroral processes interact with the neutral and ionized atmosphere?, and Project 5: How do thunderstorm activities interact with the atmosphere, ionosphere and magnetosphere? Three campaign observations have been carried out in relation to the TG4 activity, i.e, stratospheric sudden warming campaign (January-February, 2010), longitudinal campaign (September 1-November 12, 2010 and August 22-November 2, 2011), and CAWSES Tidal Campaign. In this presentation we show the current status and future plan of CAWSES-II TG4 activities of 2009-2013.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.
NASA Astrophysics Data System (ADS)
Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.
2017-12-01
Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a potential support for future earthquake and tsunami warning systems. Acknowledgement: This work is supported by NSFC (41604135), China Postdoctoral Science Foundation funded project (1231703), State Key Laboratory of Earthquake Dynamics (LED2015B04), Key Laboratory of Earth and Planetary Physics, Hubei Subsurface Multi-scale Imaging Key Laboratory.
High resolution mesospheric sodium properties for adaptive optics applications
NASA Astrophysics Data System (ADS)
Pfrommer, T.; Hickson, P.
2014-05-01
Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims: It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods: We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results: The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a specified fraction of the returned sodium light. We find a mean value of 13.1 ± 0.3 km for the range containing 95% of the photons, with a maximum width of 21 km. The temporal power spectral density of fluctuations of the centroid altitude is well described by a power law having an index that ranges from -1.6 to -2.3 with a mean value of -1.87 ± 0.02. This is significantly steeper than the value of -5/3 that would be expected if the dynamics were dominated by Kolmogorov turbulence, indicating that other factors such as gravity waves play an important role. The amplitude of the power spectrum has a mean value of 34+6-5~m2 Hz-1 at a frequency of 1 Hz, but ranges over two orders of magnitude. The annual means of the index and amplitude show a variation that is well beyond the calculated error range. Long-term global weather patterns may be responsible for this effect. The database is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A102
Evidence for a continuous spectrum of equatorial waves in the Indian Ocean
NASA Astrophysics Data System (ADS)
Eriksen, Charles C.
1980-06-01
Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).
Velocity Structure of the Iran Region Using Seismic and Gravity Observations
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.
2015-12-01
We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.
Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas
2012-11-21
an oscillating LOS velocity with the same periodicity as the heating modulation pattern. A set of Fourier periodogram from the MUIR LOS velocity...scale ionospheric turbulence are discussed separately, viz., (a) anomalous heat source-induced acoustic gravity waves (AGW), and (b) HF radio wave...ionospheric ducts, acoustic gravity waves (AGWs), anomalous heat sources, inner and outer radiation belts, L parameter, whistler wave interactions
ESRAD/EISCAT polar mesosphere winter echoes during MAGIC and ROMA
NASA Astrophysics Data System (ADS)
Kirkwood, Sheila; Belova, Evgenia; Chilson, Philip; Dalin, Peter; Ekeberg, Jonas; Häggström, Ingemar; Osepian, Aleftina
2005-08-01
Both ESRAD and the EISCAT VHF radars were operated during January 2005 covering the times of both the MAGIC and ROMA sounding rocket campaigns at Esrange and Andøya, respectively. Thin layers of enhanced radar echoes (PMWE) were observed on several occasions with ESRAD, and on one occasion with EISCAT. The PMWE show very high horizontal scatterer travel speeds and high aspect sensitivity (ESRAD), and spectral widths indistinguishable from those caused by the background plasma (EISCAT). We propose that scatter from highly-damped ion-acoustic waves generated by partial reflection of infrasonic waves provides a reasonable explanation of PMWE characteristics.
Gravitational wave production by Hawking radiation from rotating primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu
In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the totalmore » energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.« less
Experimental study of three-wave interactions among capillary-gravity surface waves
NASA Astrophysics Data System (ADS)
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
Experimental study of three-wave interactions among capillary-gravity surface waves.
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
NASA Technical Reports Server (NTRS)
Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.
2012-01-01
The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.
NASA Astrophysics Data System (ADS)
La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.
2017-12-01
Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.
GPS Observations of Medium-Scale Traveling Ionospheric Disturbances over New Zealand
NASA Astrophysics Data System (ADS)
Otsuka, Y.; Lee, C.; Shiokawa, K.; Tsugawa, T.; Nishioka, M.
2014-12-01
Using the GPS data obtained from dual-frequency GPS receivers in New Zealand, we have made two-dimensional maps of total electron content (TEC) in 2012 in order to reveal statistical characteristics of MSTIDs at mid-latitudes in southern hemisphere. As of 2012, approximately 40 GPS receivers are in operation in New Zealand. We found that most of the MSITDs over New Zealand propagate northwestward during nighttime in summer and northeastward during daytime in winter. The propagation direction of the nighttime MSTIDs is consistent with the theory that polarization electric fields play an important role in the generating MSTIDs. Because the daytime MSTIDs propagate equatorward, we can speculate that they could be caused by atmospheric gravity waves in the thermosphere. The propagation direction of the daytime MSTIDs also has an eastward component in addition to the equatorward component. This feature is consistent with the daytime MSTIDs observed at mid-latitudes in both northern and southern hemispheres. By carrying out model calculations, we have shown that the eastward component of the MSTID propagation direction during daytime is attributed to an interaction of gravity waves to the background neutral winds. Because most of the daytime MSTIDs appear before 14 LT, the background neutral winds could blow westward. According to the dispersion relation for atmospheric gravity waves, vertical wavelength of the gravity waves becomes larger when the gravity wave propagates in the direction opposite to the background winds. Consequently, the gravity waves having an eastward component of the propagation direction could cause larger amplitude of TEC variations compared to the gravity waves propagating westward. This could be a reason why the propagation direction of the dime MSTIDs has an eastward component.
NASA Astrophysics Data System (ADS)
Rakshit, G.; Jana, S.; Maitra, A.
2017-12-01
The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.
Convectively-generated gravity waves and clear-air turbulence (CAT)
NASA Astrophysics Data System (ADS)
Sharman, Robert; Lane, Todd; Trier, Stanley
2013-04-01
Upper-level turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. The relation of convectively-induced gravity waves to turbulence outside the cloud (either above cloud or laterally away from cloud) is examined based on high resolution cloud-resolving simulations, both with and without cloud microphysics in the simulations. Results for both warm-season and cold-season cloud systems indicate that the turbulence in the clear air away from cloud is often caused by gravity wave production processes in or near the cloud which once initiated, are able to propagate away from the storm, and may eventually "break." Without microphysics of course this effect is absent and turbulence is not produced in the simulations. In some cases the convectively-induced turbulence may be many kilometers away from the active convection and can easily be misinterpreted as "clear-air turbulence" (CAT). This is a significant result, and may be cause for a reassessment of the working definition of CAT ("turbulence encountered outside of convective clouds", FAA Advisory Circular AC 00-30B, 1997).
Condition of The Stratospheric and Mesospheric Ozone Layer Over Bulgaria for the Period 1996-2012
NASA Astrophysics Data System (ADS)
Kaleyna, Petya; Mukhtarov, Plamen; Miloshev, Nikolay
2014-05-01
A detailed analysis of the variations of the stratospheric and mesospheric ozone over Bulgaria, in the period 1996-2012, is presented in the article on the basis of ground and satellite measurements of the Total Ozone Content (TOC). The move of the most important components: yearly running mean values, amplitudes and phases of the first four harmonics of the seasonal cycle. Their mean values for the period and the existing long term trends have been found. An evaluation of the general characteristics of the short term variability of the Total Ozone Content (TOC) over Bulgaria also has been made in the article. The impact of the planetary wave activity of the stratosphere on the total ozone has been studied and the climatology of the oscillation amplitudes with periods of 4, 7, 11 and 25 days has been defined.
NASA Technical Reports Server (NTRS)
Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.
2004-01-01
Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI) on the UARS spacecraft in the upper mesosphere (95 km), persistent and regular intra-seasonal oscillations (ISO) with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here an analysis of concurrent temperature measurements on UARS, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55 km), their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.
Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere
2015-10-08
Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon
NASA Astrophysics Data System (ADS)
Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric
2016-08-01
Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.
Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions
NASA Astrophysics Data System (ADS)
Allaerts, Dries; Meyers, Johan
2018-02-01
We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.
NASA Technical Reports Server (NTRS)
Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)
1995-01-01
The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.
A Plant's Response to Gravity as a Wave Guide Phenomenon
NASA Astrophysics Data System (ADS)
Wagner, Orvin
1997-11-01
Plant experimental data provides a unifying wave theory (W-wave theory) for the growth and development of plants. A plant's response to gravity is an important aspect of this theory. It appears that a plant part is tuned to the angle with which it initially grew with respect to the gravitational field and changes produce correction responses. This is true because the velocity of W-waves (whose standing waves determine plant structure) within plant tissue is found to be different in different directions (angle a) with respect to the gravitational field. I found that there are preferred values of a, namely integral multiples of near 5 degrees for some plants. Conifers apparently are more sensitive to the gravitational field than deciduous trees, in the cases studied, so their structure is determined in more detail by the gravitational field. A plant's response to gravity appears to be a fundamental phenomenon and may provide a new model for gravity that can be experimentally verified in the laboratory. Along these same lines accelerometers placed in plant tissue indicate that plants produce gravity related forces that facilitate sap flow. See the
Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse
NASA Technical Reports Server (NTRS)
Fritts, David C.; Luo, Zhangai
1993-01-01
We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.
NASA Technical Reports Server (NTRS)
Yamanaka, M. D.
1989-01-01
In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.
Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat
NASA Astrophysics Data System (ADS)
Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Voight, Barry
2010-04-01
The sudden ejection of material during an explosive eruption generates a broad spectrum of pressure oscillations, from infrasonic to gravity waves. An infrasonic array, installed at 3.5 km from the Soufriere Hills Volcano has successfully detected and located, in real-time, the infrasound generated by several pyroclastic flows (PF) estimating mean flow speeds of 30-75 m/s. On July 29 and December 3, 2008, two differential pressure transducers, co-located with the array, recorded ultra long-period (ULP) oscillations at frequencies of 0.97 and 3.5 mHz, typical of atmospheric gravity waves, associated with explosive eruptions. The observation of gravity waves in the near-field (<6 km) at frequencies as low as about 1 mHz is unprecedented during volcanic eruptions.
Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica
2017-07-11
Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica
Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less
NASA Astrophysics Data System (ADS)
Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.
2017-12-01
Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in ice shelves that may trigger tabular iceberg calving and/or ice shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross Ice Shelf (RIS) and on the Pine Island Glacier (PIG) ice shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic ice shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-ice seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the ice-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these ice shelf parameters from observations will improve modeling of ice shelf response to ocean forcing, and ice shelf evolution.
Tropical waves and the quasi-biennial oscillation in the lower stratosphere
NASA Technical Reports Server (NTRS)
Miller, A. J.; Angell, J. K.; Korshover, J.
1976-01-01
By means of spectrum analysis of 11 years of lower stratospheric daily winds and temperatures at Balboa, Ascension and Canton-Singapore, evidence is presented supporting the existence of two principal wave modes with periods of about 11-17 days (Kelvin waves) and about 4-5 days (mixed Rossby-gravity waves). The structure of the two wave modes, as well as the vertical eddy momentum flux by the waves, is shown to be related to the quasi-biennial cycle, although for the mixed Rossby-gravity waves this is obvious only at Ascension. In addition, the Coriolis term, suggested as a source of vertical easterly momentum flux for the mixed Rossby-gravity waves, is investigated and found to be of the same magnitude as the vertical eddy flux term. Finally, we have examined the mean meridional motion and the meridional eddy momentum flux for its possible association with the quasi- biennial variation.
Three-wave and four-wave interactions in gravity wave turbulence
NASA Astrophysics Data System (ADS)
Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas
2017-11-01
Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.
NASA Technical Reports Server (NTRS)
Callis, L. B.; Alpert, J. C.; Geller, M. A.
1985-01-01
Hines (1974) speculated that solar-induced modifications of the middle and upper atmosphere may alter the transmissivity of the stratosphere to upwardly propagating atmospheric waves. It was suggested that subsequent constructive or destructive interference may result in a change of phase or amplitude of these waves in the troposphere leading to weather or climate changes. The present investigation has the objective to bring together both radiative transfer and planetary wave studies in an effort to assess specifically whether Hines mechanism can be initiated by the solar ultraviolet flux variability assumed to be associated with the 11-year solar cycle. The obtained results suggest that the presently studied mechanism, which links solar-induced zonal wind changes in the stratosphere and mesosphere to planetary wave changes in the troposphere, is not strong enough to cause substantive changes in the troposphere.
Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D
2014-01-01
The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].
Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave
NASA Technical Reports Server (NTRS)
Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.
1992-01-01
Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.
Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S
2017-07-01
In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.
On the presence of equatorial waves in the lower stratosphere of a general circulation model
NASA Astrophysics Data System (ADS)
Maury, P.; Lott, F.
2014-02-01
To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi-biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby gravity waves are also very similar but significantly weaker than in observations. We demonstrate that this bias on the Rossby gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward. During a westward phase of the QBO, the ERA-Interim Rossby gravity waves compare well with those in the model. These results suggest that (i) in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering, and (ii) the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions, whereas in the ERA-Interim reanalysis the sources are more equatorial. We show that non-equatorial sources are also significant in reanalysis data sets as they explain the presence of the Rossby gravity waves in the stratosphere. To illustrate this point, we identify situations with large Rossby gravity waves in the reanalysis middle stratosphere for dates selected when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a stratospheric reloading.
On the presence of equatorial waves in the lower stratosphere of a general circulation model
NASA Astrophysics Data System (ADS)
Maury, P.; Lott, F.
2013-08-01
To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby-gravity waves are also very close but significantly weaker than in observations. We demonstrate that this bias on the Rossby-gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward: during a westward phase of the QBO, the Rossby-gravity waves in ERA-Interim compare well with those in the model. These results suggest that in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering and the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions whereas in the ERA-Interim reanalysis the sources are more equatorial. We also show that non-equatorial sources are significant in reanalysis data, and we consider the case of the Rossby-gravity waves. We identify situations in the reanalysis where here are large Rossby-gravity waves in the middle stratosphere, and for dates when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a "stratospheric reloading".
Chilean Tsunami Rocks the Ross Ice Shelf
NASA Astrophysics Data System (ADS)
Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.
2016-12-01
The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Straus, J. M.
1974-01-01
Photographs of global scale auroral forms taken by scanning radiometers onboard weather satellites in 1972 show that auroral bands exhibit well organized wave motion with typical zonal wave number of 5 or so. The scale size of these waves is in agreement with that of well organized neutral wind fields in the 150- to 200-km region during the geomagnetic storm of May 27, 1967. Further, the horizontal scale size revealed by these observations are in agreement with that of high altitude traveling ionospheric disturbances. It is conjectured that the geomagnetic storm is a source of planetary and synoptic scale neutral atmospheric waves in the middle atmosphere. Although there is, at present, no observation of substorm related waves of this scale size at mesospheric and stratospheric altitudes, the possible existence of a new source of waves of the proper scale size to trigger instabilities in middle atmospheric circulation systems may be significant in the study of lower atmospheric response to geomagnetic activity.
Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland
NASA Astrophysics Data System (ADS)
Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.
2003-11-01
A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.
NASA Astrophysics Data System (ADS)
Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.
2004-08-01
A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.
In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.
NASA Astrophysics Data System (ADS)
Jia, Mingjiao; Xue, Xianghui; Dou, Xiankang; Tang, Yihuan; Yu, Chao; Wu, Jianfei; Xu, Jiyao; Yang, Guotao; Ning, Baiqi; Hoffmann, Lars
2016-03-01
In this work, we used observational data from an all-sky airglow imager at Xinglong (40.2 °N, 117.4 °E), a sodium lidar at Yanqing (40.4 °N, 116.0 °E) and a meteor radar at Shisanling (40.3 °N, 116.2 °E) to study the propagation of a mesoscale gravity wave. During the night of March 1, 2011, the imager identified a mesoscale gravity wave structure in the OH airglow that had a wave period of 2 hours, propagated along an azimuthal direction (clockwise) with an angle of 163°, a phase speed of 73 m/s, and a horizontal wavelength of 566 km. Simultaneous measurements provided by the sodium lidar also showed a perturbation in the sodium layer with a 2-hour period. Based on the SABER/TIMED and radar data, we estimated that the momentum flux and the energy flux of the gravity wave were approximately 0.59 m2/s2 and 0.22 mW/m2, respectively. Ray-tracing analysis showed that the gravity wave was likely generated in the center of Lake Baikal owing to the existence of a jet- front system in the upper troposphere at that time.
Causal properties of nonlinear gravitational waves in modified gravity
NASA Astrophysics Data System (ADS)
Suvorov, Arthur George; Melatos, Andrew
2017-09-01
Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.
Gravitational waves in modified teleparallel theories of gravity.
Abedi, Habib; Capozziello, Salvatore
2018-01-01
Teleparallel theory of gravity and its modifications have been studied extensively in literature. However, gravitational waves has not been studied enough in the framework of teleparallelism. In the present study, we discuss gravitational waves in general theories of teleparallel gravity containing the torsion scalar T , the boundary term B and a scalar field ϕ . The goal is to classify possible new polarizations generalizing results presented in Bamba et al. (Phys Lett B 727:194-198, arXiv:1309.2698, 2013). We show that, if the boundary term is minimally coupled to the torsion scalar and the scalar field, gravitational waves have the same polarization modes of General Relativity.
Gravitational waves in modified teleparallel theories of gravity
NASA Astrophysics Data System (ADS)
Abedi, Habib; Capozziello, Salvatore
2018-06-01
Teleparallel theory of gravity and its modifications have been studied extensively in literature. However, gravitational waves has not been studied enough in the framework of teleparallelism. In the present study, we discuss gravitational waves in general theories of teleparallel gravity containing the torsion scalar T, the boundary term B and a scalar field φ . The goal is to classify possible new polarizations generalizing results presented in Bamba et al. (Phys Lett B 727:194-198, arXiv:1309.2698, 2013). We show that, if the boundary term is minimally coupled to the torsion scalar and the scalar field, gravitational waves have the same polarization modes of General Relativity.
Solar Eclipse-Induced Changes in the Ionosphere over the Continental US
NASA Astrophysics Data System (ADS)
Erickson, P. J.; Zhang, S.; Goncharenko, L. P.; Coster, A. J.; Hysell, D. L.; Sulzer, M. P.; Vierinen, J.
2017-12-01
For the first time in 26 years, a total solar eclipse occurred over the continental United States on 21 August 2017, between 16:00-20:00 UT. We report on American solar eclipse observations of the upper atmosphere, conducted by a team led by MIT Haystack Observatory. Efforts measured ionospheric and thermospheric eclipse perturbations. Although eclipse effects have been studied for more than 50 years, recent major sensitivity and resolution advances using radio-based techniques are providing new information on the eclipse ionosphere-thermosphere-mesosphere (ITM) system response. Our study was focused on quantifying eclipse effects on (1) traveling ionospheric disturbances (TIDs) and atmospheric gravity waves (AGWs); (2) spatial ionospheric variations associated with the eclipse; and (3) altitudinal and temporal ionospheric profile variations. We present selected early findings on ITM eclipse response including a dense global network of 6000 GNSS total electron content (TEC) receivers (100 million measurements per day; 1x1 degree spatial grid) and the Millstone Hill and Arecibo incoherent scatter radars. TEC depletions of up to 60% in magnitude were associated with the eclipse umbra and penumbra and consistently trailed the eclipse totality center. TEC enhancements associated with prominent orographic features were observed in the western US due to complex interactions as the lower atmosphere cooled in response to decreasing EUV energy inputs. Strong TIDs in the form of bow waves, stern waves, and a stern wake were observed in TEC data. Altitude-resolved plasma parameter profiles from Millstone Hill saw a nearly 50% decrease in F region electron density in vertical profiles, accompanied by a corresponding 200-250 K decrease in electron temperature. Wide field Millstone Hill radar scans showed similar decreases in electron density to the southwest, maximizing along the line of closest approach to totality. Data is available to the research community through the MIT Haystack Madrigal system. Alongside a summary of observations, we will also present preliminary quantitative comparisons with several ongoing modeling efforts.
NASA Astrophysics Data System (ADS)
Malhotra, G.; Ridley, A. J.; Marsh, D. R.; Wu, C.; Paxton, L. J.
2017-12-01
The exchange of energy between lower atmospheric regions with the ionosphere-thermosphere (IT) system is not well understood. A number of studies have observed day-to-day and seasonal variabilities in the difference between data and model output of various IT parameters. It is widely speculated that the forcing from the lower atmosphere, variability in weather systems and gravity waves that propagate upward from troposphere into the upper mesosphere and lower thermosphere (MLT) may be responsible for these spatial and temporal variations in the IT region, but their exact nature is unknown. These variabilities can be interpreted in two ways: variations in state (density, temperature, wind) of the upper mesosphere or spatial and temporal changes in the small-scale mixing, or Eddy diffusion that is parameterized within the model.In this study, firstly, we analyze the sensitivity of the thermospheric and ionospheric states - neutral densities, O/N2, total electron content (TEC), peak electron density, and peak electron height - to various lower boundary conditions in the Global Ionosphere Thermosphere Model (GITM). We use WACCM-X and GSWM to drive the lower atmospheric boundary in GITM at 100 km, and compare the results with the current MSIS-driven version of GITM, analyzing which of these simulations match the measurements from GOCE, GUVI, CHAMP, and GPS-derived TEC best. Secondly, we analyze the effect of eddy diffusion in the IT system. The turbulence due to eddy mixing cannot be directly measured and it is a challenge to completely characterize its linear and non-linear effects from other influences, since the eddy diffusion both influences the composition through direct mixing and the temperature structure due to turbulent conduction changes. In this study we input latitudinal and seasonal profiles of eddy diffusion into GITM and then analyze the changes in the thermospheric and ionospheric parameters. These profiles will be derived from both WACC-X simulations and direct observations of errors between the model and data such as GUVI O/N2 ratios and TEC data. In each case, the model results will be compared to data to determine the improvement.
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-01-01
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.
Observation of gravity waves during the extreme tornado outbreak of 3 April 1974
NASA Technical Reports Server (NTRS)
Hung, R. J.; Phan, T.; Smith, R. E.
1978-01-01
A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.
NASA Technical Reports Server (NTRS)
Rind, D.; Suozzo, R.; Balachandran, N. K.
1988-01-01
The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.
NASA Astrophysics Data System (ADS)
Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.
2015-06-01
Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.
Gravity waves in Titan's atmosphere
NASA Technical Reports Server (NTRS)
Friedson, A. James
1994-01-01
Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.
NASA Astrophysics Data System (ADS)
Jones, M., Jr.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.
2016-12-01
The thermosphere exhibits intra-annual variations (IAV) in globally averaged mass density that noticeably impact the drag environment of satellites in low Earth orbit. Particularly, the annual and semiannual oscillations (AO and SAO) are collectively the second largest component, after solar variability, of thermospheric global mass density variations. Several mechanisms have been proposed to explain the oscillations, but they have yet to be reproduced by first-principles modeling simulations. Recent studies have focused on estimating the SAO in eddy diffusion required to explain the thermospheric SAO in mass density. Less attention has been paid to the effect of lower and middle atmospheric drivers on the lower boundary of the thermosphere. In this study, we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to elucidate how the different lower atmospheric drivers influence IAV, and in particular the SAO of globally-averaged thermospheric mass density. We performed numerical simulations of a continuous calendar year assuming constant solar forcing, manipulating the lower atmospheric tidal forcing and gravity wave parameterization in order to quantify the SAO in thermospheric mass density attributable to different lower atmospheric drivers. The prominent initial results are as follows: (1) The "standard" TIME-GCM is capable of simulating the SAO in globally-averaged mass density at 400 km from first-principles, and its amplitude and phase compare well with empirical models; (2) The simulations suggest that seasonally varying Kzz driven by breaking GWs is not the primary driver of the SAO in upper thermospheric globally averaged mass density; (3) Preliminary analysis suggests that the SAO in the upper thermospheric mass density could be a by-product of dynamical wave transport in the mesopause region.
Strong anti-gravity Life in the shock wave
NASA Astrophysics Data System (ADS)
Fabbrichesi, Marco; Roland, Kaj
1992-12-01
Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.