Sample records for mesozoic passive margin

  1. Preliminary assessment of a Cretaceous-Paleogene Atlantic passive margin, Serrania del Interior and Central Ranges, Venezuela/Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pindell, J.L.; Drake, C.L.; Pitman, W.C.

    1991-03-01

    For several decades, Cretaceous arc collision was assumed along northern Venezuela based on isotopic ages of metamorphic minerals. From subsidence histories in Venezuelan/Trinidadian basins, however, it is now clear that the Cretaceous metamorphic rocks were emplaced southeastward as allochthons above an autochthonous suite of rocks in the Cenozoic, and that the pre-Cenozoic autochthonous rocks represent a Mesozoic passive margin. The passive margin rocks have been metamorphosed separately during overthrusting by the allochthons in central Venezuela, but they are uplifted but not significantly metamorphosed in Eastern Venezuela and Trinidad. There, in the Serrania del Interior and Central Ranges of Venezuela/Trinidad, Mesozoic-Paleogenemore » passive margin sequences were uplifted in Neogene time, when the Caribbean Plate arrived from the west and transpressionally inverted the passive margin. Thus, this portion of South America's Atlantic margin subsided thermally without tectonism from Jurassic to Eocene time, and these sections comprise the only Mesozoic-Cenozoic truly passive Atlantic margin in the Western Hemisphere that is now exposed for direct study. Direct assessments of sedimentological, depositional and faunal features indicative of, and changes in, water depth for Cretaceous and Paleogene time may be made here relative to a thermally subsiding passive margin without the complications of tectonism. Work is underway, and preliminary assessments presented here suggest that sea level changes of Cretaceous-Paleogene time are not as pronounced as the frequent large and rapid sea level falls and rises that are promoted by some.« less

  2. Mesozoic evolution of northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1989-03-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desertmore » basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.« less

  3. Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin

    NASA Astrophysics Data System (ADS)

    Almatrood, M.; Mann, P.; Bugti, M. N.

    2016-12-01

    We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and collision along its southeastern edge; and 2) Laramide collision along its western edge in Mexico.

  4. Syn- and post-rift anomalous vertical movements in the eastern Central Atlantic passive margin: a transect across the Moroccan passive continental margin.

    NASA Astrophysics Data System (ADS)

    Charton, Remi; Bertotti, Giovanni; Arantegui, Angel; Luber, Tim; Redfern, Jonathan

    2017-04-01

    Traditional models of passive margin evolution suggesting generalised regional subsidence with rates decreasing after the break-up have been questioned in the last decade by a number of detailed studies. The occurrence of episodic km-scale exhumation well within the post-rift stage, possibly associated with significant erosion, have been documented along the Atlantic continental margins. Despite the wide-spread and increasing body of evidence supporting post-rift exhumation, there is still limited understanding of the mechanism or scale of these phenomena. Most of these enigmatic vertical movements have been discovered using low-temperature geochronology and time-temperature modelling along strike of passive margins. As proposed in previous work, anomalous upward movements in the exhuming domain are coeval with higher-than-normal downward movements in the subsiding domain. These observations call for an integrated analysis of the entire source-to-sink system as a pre-requisite for a full understanding of the involved tectonics. We reconstruct the geological evolution of a 50km long transect across the Moroccan passive margin from the Western Anti-Atlas (Ifni area) to the offshore passive margin basin. Extending the presently available low-temperature geochronology database and using a new stratigraphic control of the Mesozoic sediments, we present a reconstruction of vertical movements in the area. Further, we integrate this with the analysis of an offshore seismic line and the pattern of vertical movements in the Anti-Atlas as documented in Gouiza et al. (2016). The results based on sampled rocks indicate exhumation by circa 6km after the Variscan orogeny until the Middle Jurassic. During the Late Jurassic to Early Cretaceous the region was subsequently buried by 1-2km, and later exhumed by 1-2km from late Early/Late Cretaceous onwards. From the Permian to present day, the Ifni region is the link between the generally exhuming Anti Atlas and continually subsiding offshore basins. Along strike, the rifted margin exhibits significant variability in the architecture of the Mesozoic deposits onshore and present day offshore shelf. North of the High Atlas, the ca. 2km thick Mesozoic succession is characterized by continuous sedimentation. South of the High Atlas the thickness increases to 6km in the offshore Tarfaya basin, where the Jurassic succession may be separated by a regional unconformity. Further south, close to the border with Mauritania, the Triassic to Jurassic succession is missing and the Cretaceous attains less than a kilometre of strata. In the Meseta and High Atlas, studies documented a similar kinematic Mesozoic evolution, whereas in the Anti-Atlas Gouiza et al. (2016) and this study document a different evolution. In addition, the kinematic evolution of the Reguibate domain to the south is also different from the other segments, showing post-Variscan exhumation with amplitudes lower than the ones observed in the Anti-Atlas. These observations highlight changes in the pattern of enigmatic movements along the same passive continental margin thereby showing that passive continental margins are more complex than expected only a few years ago. Gouiza, M., Charton, R., Bertotti, G., Andriessen, P. and Storms, J.E.A., 2016. Post-Variscan evolution of the Anti-Atlas belt of Morocco constrained from low-temperature geochronology: International Journal of Earth Sciences.

  5. Structures in the transition zone of the northeast South China Sea: serpentinite dome vs mantle exhumation, or evidence of Mesozoic active subduction transferring to Cenozoic passive extension?

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Zhou, D.

    2013-12-01

    Complete sedimentary sequences and weak erosion make the transition zone of the South China Sea the optimal place to study the entire evolution history of marginal sea basins, as well as the transition mechanism from active subduction to passive extension. 2D long cable seismic profiles revealed that both Baiyun and Liwan sag in the northeast South China Sea margin were lack of large controlling faults, especially in Liwan sag, syn-rift sequences waved above the basement. Dome-like uplifts(serpetinite uplifts?) or diapirs(?) came from below the basement, caused the syn-rift sequences pushed up around 36Ma(T80). Gravity inversion based on seismic reflection indicated that the dome has a lower density and a lower layer velocity than normal crust. Also around the Continent-Ocean Boundary (COB), a small segment similar to the lower crust was exposed. Between this exposed segment and the Cenozoic oceanic crust, mantle seems to be exhumed along the breakup point. Between the COB and roughly the shelf break, high velocity lower crust was discriminated in the northeast continental margin. Structures in northeast South China Sea seems having many similarities with Newfoundland-Iberia margin, by serpentinite(?) dome and exhumed mantle, although spreading rate here is intermediate. In fact, regional background suggests that there might be another interpretation: transition from Mesozoic subduction to Cenozoic extension occurred through paleo oceanic crust breakup in the northeast, which in turn retained Mesozoic subduction system beneath the northeast continental margin. Confined with magnetic anomaly, Bouguer gravity gradient anomaly, and well drilling lithological evidences, Cenozoic Baiyun sag developed upon Mesozoic fore-arc, while Cenozoic Liwan sag developed upon Mesozoic accretionary prism. The high velocity lower crust was caused by both remnant subducted slab and by Oceanic-Continent interaction due to subduction. There might also be serpentinite dome and exhumed mantle, but may be caused by extension and breakup of paleo oceanic slab, not the depth-dependent extension. IODP drillings are needed to test all these scientific conjectures.

  6. Architecture of ductile-type passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone (`Chaînons Béarnais', Western Pyrenees)

    NASA Astrophysics Data System (ADS)

    Corre, B.; Lagabrielle, Y.; Labaume, P.; Lahfid, A.; Boulvais, P.; Bergamini, G.; Fourcade, S.; Clerc, C. N.; Asti, R.

    2017-12-01

    Subcontinental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust. The North-Pyrenean Zone (NPZ) exposes remnants of such extremely stretched paleo-passive margin that represent field analogues to study the processes of continental crust thinning and mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. The Chaînons Béarnais belt displays a fold-and-thrust structure involving the Mesozoic sedimentary cover associated with peridotite bodies in tectonic contact with Paleozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of this paleo-margin. Field work confirms that the Mesozoic cover is intimately associated with mantle rocks and thin tectonic lenses of middle crust. Micro-structural studies show that the greenschist facies ductile deformation in the crust produced a mylonitic foliation which is always parallel to the crust/mantle contact. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the margin. We show that: (i) the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. The ductile behavior is related to the presence of a thick pre- and syn-rift cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.

  7. Architecture of ductile-type, hyper-extended passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone ('Chaînons Béarnais', Western Pyrenees)

    NASA Astrophysics Data System (ADS)

    Corre, Benjamin; Lagabrielle, Yves; Labaume, Pierre; Lahfid, Abdeltif; Boulvais, Philippe; Bergamini, Geraldine; Fourcade, Serge; Clerc, Camille

    2017-04-01

    Sub-continental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust during plate separation. Remnants of the Northern Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and represent field analogues to study the processes of continental crust thinning and subcontinental mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. In the western NPZ, the 'Chaînons Béarnais' ranges display a fold-and-thrust structure involving the Mesozoic sedimentary cover, decoupled from its continental basement and associated with peridotite bodies in tectonic contact with Palaeozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the allochthonous Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of the northern Iberia paleo-margin. Field work confirms that the pre-rift Mesozoic cover is intimately associated to mantle rocks and to thin tectonic lenses of crustal basement. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the hyper-extended margin. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands defining a plurimetric phacoidal fabric at the top of the serpentinized mantle. The detachment is marked by a layer of metasomatic rocks, locally 20 meters thick, made of talc-chlorite-pyrite-rich rocks that developped under greenschist facies conditions. Raman Spectroscopy on Carbonaceous Materials (RSCM), performed on the Mesozoic cover reveal that the entire sedimentary pile underwent temperatures ranging between 200°C and 480°C. We show that: (i) at the site of mantle rocks exhumation, the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. Therefore the overall crustal rheology appears dominated by shallow levels having a ductile behavior. This rheology is related to the presence of a thick pre- and syn-rift decoupled cover acting as an efficient thermal blanket. This new geological data set highlights important characteristics of ductile-type hyper-extended passive margin that cannot be obtained from the study of seismic lines. Finally, we stress that studying field analogues represents a major tool to better understand the mechanisms of extreme crustal thinning associated with mantle exhumation and their structural inheritance during tectonic inversion.

  8. Late Jurassic - Early Cretaceous convergent margins of Northeastern Asia with Northwestern Pacific and Proto-Arctic oceans

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey; Luchitskaya, Marina; Tuchkova, Marianna; Moiseev, Artem; Ledneva, Galina

    2013-04-01

    Continental margin of Northeastern Asia includes many island arc terranes that differ in age and tectonic position. Two convergent margins are reconstructed for Late Jurassic - Early Cretaceous time: Uda-Murgal and Alazeya - Oloy island arc systems. A long tectonic zone composed of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks is recognized along the Asian continent margin from the Mongol-Okhotsk thrust-fold belt on the south to the Chukotka Peninsula on the north. This belt represents the Uda-Murgal arc, which was developed along the convergent margin between Northeastern Asia and Northwestern Meso-Pacific. Several segments are identified in this arc based upon the volcanic and sedimentary rock assemblages, their respective compositions and basement structures. The southern and central parts of the Uda-Murgal island arc system were a continental margin belt with heterogeneous basement represented by metamorphic rocks of the Siberian craton, the Verkhoyansk terrigenous complex of Siberian passive margin and the Koni-Taigonos late Paleozoic to early Mesozoic island arc with accreted oceanic terranes. At the present day latitude of the Pekulney and Chukotka segments there was an ensimatic island arc with relicts of the South Anyui oceanic basin in backarc basin. Alazeya-Oloy island arc systems consists of Paleozoic and Mesozoic complexes that belong to the convergent margin between Northeastern Asia and Proto-Artic Ocean. It separated structures of the North American and Siberian continents. The Siberian margin was active whereas the North American margin was passive. The Late Jurassic was characterized by termination of a spreading in the Proto-Arctic Ocean and transformation of the latter into the closing South Anyui turbidite basin. In the beginning the oceanic lithosphere and then the Chukotka microcontinent had been subducted beneath the Alazeya-Oloy volcanic belt

  9. Study of crustal structure and stretch mechanism of central continental shelf of northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cao, J.; Xia, S.; Sun, J.; Wan, K.; Xu, H.

    2017-12-01

    Known as a significant region to study tectonic relationship between South China block and South China Sea (SCS) block and the evolution of rifted basin in continental margin, the continental shelf of northern SCS documents the evolution from continental splitting to seafloor spreading of SCS. To investigate crustal structure of central continental shelf in northern SCS, two wide-angle onshore-offshore seismic experiments and coincident multi-channel seismic (MCS) profiles were carried out across the onshore-offshore transitional zone in northern SCS, 2010 and 2012. A total of 34 stations consisted of ocean bottom seismometers, portable and permanent land stations were deployed during the survey. The two-dimensional precise crustal structure models of central continental shelf in northern SCS was constructed from onshore to offshore, and the stretching factors along the P-wave velocity models were calculated. The models reveal that South China block is a typical continental crust with a 30-32 km Moho depth, and a localized high-velocity anomaly in middle-lower crust under land area near Hong Kong was imaged, which may reflect magma underplating caused by subduction of paleo-Pacific plate in late Mesozoic. The littoral fault zone is composed of several parallel, high-angle, normal faults that mainly trend northeast to northeast-to-east and dip to the southeast with a large displacement, and the fault is divided into several segments separated by the northwest-trending faults. The shelf zone south of LFZ was consisted of a differential thinning upper and lower continental crust, which indicate stretch thinning of passive continent margin during the Cenozoic spreading of the SCS. The results appear to further confirm that the northern margin of SCS experienced a transition from active margin to passive one during late Mesozoic and Cenozoic.

  10. An integrated geophysical study on the Mesozoic strata distribution and hydrocarbon potential in the South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Weijian; Hao, Tianyao; Jiang, Weiwei; Xu, Ya; Zhao, Baimin; Jiang, Didi

    2015-11-01

    A series of drilling, dredge, and seismic investigations indicate that Mesozoic sediments exist in the South China Sea (SCS) which shows a bright prospect for oil and gas exploration. In order to study the distribution of Mesozoic strata and their residual thicknesses in the SCS, we carried out an integrated geophysical study based mainly on gravity data, gravity basement depth and distribution of residual Mesozoic thickness in the SCS were obtained using gravity inversion constrained with high-precision drilling and seismic data. In addition, the fine deep crustal structures and distribution characteristics of Mesozoic thicknesses of three typical profiles were obtained by gravity fitting inversion. Mesozoic strata in the SCS are mainly distributed in the south and north continental margins, and have been reformed by the later tectonic activities. They extend in NE-trending stripes are macro-controlled by the deep and large NE-trending faults, and cut by the NW-trending faults which were active in later times. The offset in NW direction of Mesozoic strata in Nansha area of the southern margin are more obvious as compared to the north margin. In the Pearl River Mouth Basin and Southwest Taiwan Basin of the north continental margin the Mesozoic sediments are continuously distributed with a relatively large thickness. In the Nansha area of the south margin the Mesozoic strata are discontinuous and their thicknesses vary considerably. According to the characteristics of Mesozoic thickness distribution and hydrocarbon potential analyses from drilling and other data, Dongsha Uplift-Chaoshan Depression, Southwest Taiwan Basin-Peikang Uplift and Liyue Bank have large thickness of the Mesozoic residual strata, have good hydrocarbon genesis capability and complete source-reservoir-cap combinations, show a bright prospect of Mesozoic oil/gas resources.

  11. Lomonosov Ridge, Arctic Ocean: New MCS Data for the Definition of Targets for Scientific Drilling

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Y.; Coakley, B.; Hall, J. K.

    2001-12-01

    The 1500 km long and 50-150 km wide Lomonosov Ridge rises more than 3000 m above the adjacent abyssal plains, separating the Mesozoic-aged Amerasian basin from the Cenozoic-Recent Eurasian basin. Multichannel seismic reflection data collected from icebreakers on four cruises together with swath bathymetry and high resolution chirp sonar data collected by nuclear submarines across the central ridge show a cap of hemipelagic drape (c. 450 m thick) on top of normal faulted and peneplained sedimentary sequences, the remnants of the Mesozoic Barents margin, which pre-dates the opening of the Eurasian Basin. A new multichannel seismic survey to augment the site survey data base for ODP proposal 533 was carried out on the Lomonosov Ridge under difficult ice conditions in late July 2001 from the Swedish icebreaker Oden. The primary objectives of ODP Proposal 533 are to obtain continuous paleoceanographic records for most of the Cenozoic from the hemipelagic sequence and to sample the underlying passive margin sequence below the regional unconformity, which would provide the first direct constraints on the early tectonic history of the ridge. Of particular interest is the extent of mass wasting along the ridge perimeter. This regional unconformity offers an opportunity for implementing a strategy of offset shallow drill holes to obtain a complete hemi-pelagic section as well as to penetrate the regional unconformity. The new data, which will, in conjunction with the existing MCS data base, provide the first 3-D control on the passive margin structures and overlying unconformity, will be presented.

  12. Shale hydrocarbon reservoirs: some influences of tectonics and paleogeography during deposition: Chapter 2

    USGS Publications Warehouse

    Eoff, Jennifer D

    2014-01-01

    Fundamental to any of the processes that acted during deposition, however, was active tectonism. Basin type can often distinguish self-sourced shale plays from other types of hydrocarbon source rocks. The deposition of North American self-sourced shale was associated with the assembly and subsequent fragmentation of Pangea. Flooded foreland basins along collisional margins were the predominant depositional settings during the Paleozoic, whereas deposition in semirestricted basins was responsible along the rifted passive margin of the U.S. Gulf Coast during the Mesozoic. Tectonism during deposition of self-sourced shale, such as the Upper Jurassic Haynesville Formation, confined (re)cycling of organic materials to relatively closed systems, which promoted uncommonly thick accumulations of organic matter.

  13. Gravimetric and magnetic fabric study of the Sintra Igneous complex: laccolith-plug emplacement in the Western Iberian passive margin

    NASA Astrophysics Data System (ADS)

    Terrinha, Pedro; Pueyo, Emilio L.; Aranguren, Aitor; Kullberg, José Carlos; Kullberg, Maria Carla; Casas-Sainz, Antonio; Azevedo, Maria do Rosário

    2017-12-01

    The geometry and emplacement of the 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive margin is presented, based on structural data, gravimetric modeling, and magnetic fabrics. A granite laccolith ( 76 km2, < 1 km thick, according to gravimetric modeling) surrounds a suite of gabbro-diorite-syenite plugs ( 20 km2, 4 km deep) and is encircled by cone sheets and radial dykes. Anisotropy of Magnetic Susceptibility was interpreted from 54 sites showing fabrics of para- and ferro-magnetic origin. Most fabrics can be interpreted to have a magmatic origin, according to the scarcity of solid-state deformation in most part of the massif. Magnetic foliations are shallowly dipping in the granite laccolith and contain a sub-horizontal ENE-WSW lineation. The gabbro-syenite body displays concentric magnetic foliations having variable dips and steeply-plunging lineations. The SIC can be interpreted to be intruded along an NNW-SSE, 200 km-long fault, perpendicular to the magnetic lineation within the laccolith, and was preceded by the intrusion of basic sills and plugs. The SIC intruded the Mesozoic series of the Lusitanian Basin during the post-rift, passive margin stage, and its geometry was only slightly modified during the Paleogene inversion that resulted in thrusting of the northern border of the intrusion over the country rocks.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, P.R.; Johns, C.C.; Clark-Lowes, D.D.

    Western Turkey consists of a number of tectonic terranes joined together by a network of suture zones. The terranes originated as microcontinental plates that rifted away from the continental margins forming the northern and southern boundaries of the Tethyan sea. These micro-continents were united by a series of collisions beginning in the Late Triassic and ending in the Miocene, with the final closure of the Tethyan sea. The sedimentary cover of the microcontinents consists of Paleozoic and Mesozoic passive margin and rift basin sequences containing numerous potential source and reservoir intervals. Most of these sequences show affinities with Gondwanaland, withmore » the notable exception of the Istanbul nappe, which is strongly Laurasian in character. Forearc basin sequences were also deposited on the margins of the microcontinents during early Tertiary plate convergence. Ensuing continental collisions resulted in compressional deformation of sedimentary cover sequences. The intensity of deformation ranged from basin inversion producing numerous potential hydrocarbon traps, to large-scale overthrusting. Following continental suturing, continued compression in eastern Turkey has been accommodated since the Miocene by westward escape of continental lithosphere between the North and South Anatolian transform faults. Neotectonic pull-apart basins formed in response to these movements, accumulating large thicknesses of Miocene-Pliocene carbonates and clastic sediments. Potential reservoirs in the Neotectonic basins may be sourced either in situ or from underlying Paleozoic and Mesozoic source rocks that remain within the hydrocarbon generating window today.« less

  15. Development of continental margins of the Atlantic Ocean and successive breakup of the Pangaea-3 supercontinent

    NASA Astrophysics Data System (ADS)

    Melankholina, E. N.; Sushchevskaya, N. M.

    2017-01-01

    Comparative tectonic analysis of passive margins of the Atlantic Ocean has been performed. Tectonotypes of both volcanic and nonvolcanic margins are described, and their comparison with other passive Atlantic margins is given. The structural features of margins, peculiarities of magmatism, its sources and reasons for geochemical enrichment of melts are discussed. The important role of melting of the continental lithosphere in the development of magmatism is demonstrated. Enriched EM I and EM II sources are determined for the lower parts of the volcanic section, and a depleted or poorly enriched source is determined for the upper parts of the volcanic section based on isotope data. The conclusions of the paper relate to tectonic settings of the initial occurrence of magmatism and rifting and breakup during the period of opening of the Mesozoic Ocean. It was found out that breakup and magmatism at proximal margins led only to insignificant structural transformations and reduction of the thickness of the ancient continental crust, while very important magmatic events happened later in the distal zone. New growth of magmatic crust at the stage of continental breakup is determined as a typical feature of distal zones of the margins under study. The relationship of development of margins with the impact of deep plumes as the source of magmatic material or a heat source only is discussed. Progradation of the zone of extension and breakup into the areas of cold lithosphere of the Atlantic and the formation of a single tectonomagmatic system of the ocean are under consideration.

  16. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early Triassic time, and marine sediment deposited on the subsiding continental shelf overlapped the previously deformed Permian rocks. Renewed contractional deformation, probably in the Middle Triassic, is interpreted to be associated with emplacement of the Golconda allochthon onto the margin of the continent. This event, which is identified with certainty in the Sierra Nevada, also may have significantly affected rocks in the White and Inyo Mountains to the east. Subduction and arc magmatism that created most of the Sierra Nevada batholith began in the Late Triassic and lasted through the remainder of the Mesozoic. During this time, the East Sierran thrust system (ESTS) developed as a narrow zone of intense, predominantly E-vergent contractional deformation along the eastern margin of the growing batholith. Activity on the ESTS took place over an extended part of Mesozoic time, both before and after intrusion of voluminous Middle Jurassic plutons, and is interpreted to have been mechanically linked to emplacement of the batholith. Deformation on the ESTS and magmatism in the Sierra Nevada both ended prior to the close of the Cretaceous.

  17. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  18. Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek

    2011-01-01

    The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.

  19. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  20. Mesozoic evolution of the northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1988-08-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.

  1. Insights into crustal structure of the Eastern North American Margin from community multichannel seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.

    2017-12-01

    In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.

  2. The North Sakhalin Neogene total petroleum system of eastern Russia

    USGS Publications Warehouse

    Lindquist, S.J.

    2000-01-01

    The North Sakhalin Basin Province of eastern Russia contains one Total Petroleum System (TPS) ? North Sakhalin Neogene ? with more than 6 BBOE known, ultimately recoverable petroleum (61% gas, 36% oil, 3% condensate). Tertiary rocks in the basin were deposited by the prograding paleo-Amur River system. Marine to continental, Middle to Upper Miocene shale to coaly shale source rocks charged marine to continental Middle Miocene to Pliocene sandstone reservoir rocks in Late Miocene to Pliocene time. Fractured, self-sourced, Upper Oligocene to Lower Miocene siliceous shales also produce hydrocarbons. Geologic history is that of a Mesozoic Asian passive continental margin that was transformed into an active accretionary Tertiary margin and Cenozoic fold belt by the collision of India with Eurasia and by the subduction of Pacific Ocean crustal plates under the Asian continent. The area is characterized by extensional, compressional and wrench structural features that comprise most known traps.

  3. Tethys- and Atlas-related deformations in the Triassic Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.S.; Moore, S.R.; Quarles, A.I.

    1995-08-01

    Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less

  4. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary series (up to 3500 m) as a mixed combination of debris flows, internal preserved blocks, and/or compressively-deformed distal allochthonous masses. Transported material have proceeded from the dismantling of the Mesozoic mixed carbonate-siliciclastic platform. They can spread down slope over areas as large as 70000 of km2. According to stratigraphic correlations with global sea-level positions, platform instability would have been triggered by the gravitational collapse of the carbonate-siliciclastic platform under its own weight after successive subaerial exposures which were able to generate karstification processes. Seismic interpretation is constrained by a detailed assessment of the Egyptian margin paleogeography supported by wells. This margin segment is briefly compared to the outcropping Apulian margin in Italy.

  5. Petroleum systems of the Po Basin Province of northern Italy and the northern Adriatic Sea; Porto Garibaldi (biogenic), Meride/Riva di Solto (thermal), and Marnoso Arenacea (thermal)

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Porto Garibaldi total petroleum system dominates the Po Basin Province of onshore northern Italy and offshore Italy and Croatia in the northern Adriatic Sea. Porto Garibaldi contains Pliocene (primarily) and Pleistocene (secondarily) biogenic gas ? approximately 16 TCF (2.66 BBOE) ultimately recoverable ? accumulated in co-eval siliciclastic reservoirs. This area was the northwestern edge of the Gondwanan (African) continental plate in pre-Hercynian time until the assembly of Pangea, a dominantly carbonate passive continental margin during the Mesozoic breakup of Pangea, and a Cenozoic collision zone with siliciclastic foredeep and foreland regions surrounded by thrust belts. At least two other petroleum systems, with Triassic (Meride / Riva di Solto) and Miocene (Marnoso Arenacea) source rocks, contribute oil and thermal gas reserves (nearly 1 BBOE) to the province. The major time of hydrocarbon expulsion of the thermal systems was Late Neogene during the Alpine and Apennine orogenies. Local Mesozoic oil expulsion from Triassic rocks also occurred, but those oils either were not trapped or were leaked from faulty traps through time.

  6. Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.

    2017-12-01

    Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post-rift unconformity into the Mesozoic rocks. Preliminary results from the southeast Georgia Embayment suggest that Mesozoic strata can be good reservoirs for CO2 storage while Paleozoic and Cenozoic strata can be good lower and, respectively, upper seals.

  7. Low post-Cenomanian denudation depths across the Brazilian Northeast: Implications for long-term landscape evolution at a transform continental margin

    NASA Astrophysics Data System (ADS)

    Peulvast, Jean-Pierre; Claudino Sales, Vanda; Bétard, François; Gunnell, Yanni

    2008-05-01

    The Brazilian Northeast affords good opportunities for obtaining reliable timings and rates of landscape evolution based on stratigraphic correlations across a vast region. The landscape formed in the context of an episodically fluctuating but continuously falling base level since the Cenomanian. After formation of the transform passive margin in Aptian times, landscape development was further driven by a swell-like uplift with its crest situated ˜ 300 km from the coastline. The seaward flank of this swell or broad monocline between the interior Araripe and coastal Potiguar basins was eroded, and currently forms a deeply embayed plain bordered by a semi-circular, north-facing erosional escarpment. The post-Cenomanian uplift caused an inversion of the Cretaceous basins and generated a landscape in which the most elevated landforms correspond either to resistant Mesozoic sedimentary caprock, or to eroded stumps of syn-rift Cretaceous footwall uplands. Denudation in the last 90 My never exceeded mean rates of 10 m·My - 1 and exhumed a number of Cretaceous stratigraphic unconformities. As a result, some topographic surfaces at low elevations are effectively Mesozoic land surfaces that became re-exposed in Cenozoic times. The Neogene Barreiras Formation forms a continuous and mostly clastic apron near the coast. It testifies to the last peak of erosion in the hinterland and coincided with the onset of more arid climates at ˜ 13 Ma or earlier. The semi-circular escarpment is not directly related to the initial breakup rift flanks, which had been mostly eroded before the end of the Mesozoic, but the cause and exact timing of post-Cenomanian crustal upwarping are poorly constrained. It could perhaps have been a flexural response of the low-rigidity lithosphere to sediment loads on the margin, and thus a slowly ongoing process since the late Cretaceous. Uplift could instead be the consequence of a more discrete dynamic event related either to Oligocene magmatism in the region, or to continental-scale far-field stresses determined by Andean convergence.

  8. pre-Mesozoic evolution of the basement of the Catalan Coastal Ranges: implications from geochemical and Sm-Nd isotope data of the Palaeozoic succession of the Collserola Range

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pin, Christian

    2016-04-01

    In the whole of the Western Europe and neighbouring areas numerous studies have addressed the provenance of pre-Mesozoic sedimentary rocks and the Palaeozoic geodynamic evolution using the Sm-Nd systematics. However, at present, there are still large areas of the Variscan mountain chain without systematic determinations of their whole - rock Sm-Nd isotope signatures. This is the case of the Palaeozoic blocks of the Catalan Coastal Ranges (NE Iberia). In the context of the Variscan belt many authors interpret the Palaeozoic basement of the Catalan Coastal Ranges as part of the southern foreland basin of the mountain belt. The pre-Mesozoic rocks in the Catalan Coastal Ranges exhibit important stratigraphical affinities with those outcropping in the Eastern Pyrenees, Montagne Noire, Sardinia and Iberian Range. Paleogeographic reconstructions predict that the Catalan Coastal Ranges were located in a transitional area between the northern branch of the Ibero-Armorican arc and the core of the arc. The Collserola Range, located in the metropolitan area of Barcelona, includes a representative Palaeozoic stratigraphic section, from Cambro-Ordovician to Carboniferous, of the central part of the Catalan Coastal Ranges. In this presentation we present an up-to-date review of the stratigraphy and structure of the Palaeozoic of the Collserola Range, and provide geochemical and Sm-Nd isotope data to constrain the Pre-Mesozoic crustal evolution of this sector of the Variscan belt. Geochemical compositions indicate that the Palaeozoic siliciclastic rocks of the Collserola Range were fed by a relative mature heterogeneous source of sediment, comprising from quartz-rich sediments to intermediate igneous rocks. The siliciclastic rocks of the Collserola Range show great geochemical affinity with the turbidites of passive margins. The Sm-Nd signature of the siliciclastic rocks is compatible with those of the Palaeozoic and Late Proterozoic fine grained siliciclastic rocks of the neighbouring terrains of SW Europe. There is a small decrease of the ɛNdT with decreasing age of sedimentation, from the Cambro-Ordovician to the Carboniferous, suggesting an increase of the amount of more 'juvenile' material. The presence of small volumes of alkaline basaltic rocks provides evidence for the input of juvenile material in the Early Palaeozoic basin and suggests that an extensional tectonic regime prevailed during the Cambro-Ordovician sedimentation. From a geodynamic point of view, overall, the analysis of the data evokes that the Palaeozoic rocks of the Catalan Coastal Ranges were part of the Northern Gondwana passive margin before the closure of the Rheic Ocean and the subsequent Variscan orogeny.

  9. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France

    NASA Astrophysics Data System (ADS)

    Corre, B.; Boulvais, P.; Boiron, M. C.; Lagabrielle, Y.; Marasi, L.; Clerc, C.

    2018-02-01

    Sub-continental lithospheric mantle rocks are exhumed in the distal part of magma-poor passive margins. Remnants of the North Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and offers a field analogue to study the processes of continental crust thinning, subcontinental mantle exhumation and associated fluid circulations. The Saraillé Massif which belongs to the `Chaînons Béarnais' range (Western Pyrenees), displays field, petrographic and stable isotopic evidence of syn-kinematic fluid circulations. Using electron probe micro-analyses on minerals, O, C, Sr isotopes compositions and micro thermometry/Raman spectrometry of fluid inclusions, we investigate the history of fluid circulations along and in the surroundings of the Saraillé detachment fault. The tectonic interface between the pre-rift Mesozoic sedimentary cover and the mantle rocks is marked by a metasomatic talc-chlorite layer. This layer formed through the infiltration of a fluid enriched in chemical elements like Cr leached from the exhuming serpentinized mantle rocks. In the overlying sediments (dolomitic and calcitic marbles of Jurassic to Aptian age), a network of calcitic veins, locally with quartz, formed as a consequence of the infiltration of aqueous saline fluids (salinities up to 34 wt% NaCl are recorded in quartz-hosted fluid inclusions) at moderate temperatures ( 220 °C). These brines likely derived from the dissolution of the local Triassic evaporites. In the upper part of the metasomatic system, upward movement of fluids is limited by the Albian metasediments, which likely acted as an impermeable layer. The model of fluid circulation in the Saraillé Massif sheds light onto other synchronous metasomatic systems in the Pyrenean realm.

  10. Thermochronological constraints on the Cambrian to recent geological evolution of the Argentina passive continental margin

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.; Rossello, Eduardo A.; Stockli, Daniel F.; Schad, Sabrina; Pereyra, Ricardo E.

    2017-10-01

    Passive continental margins are geo-archives that store information from the interplay of endogenous and exogenous forces related to continental rifting, post-breakup history, and climate changes. The recent South Atlantic passive continental margins (SAPCMs) in Brazil, Namibia, and South Africa are partly high-elevated margins ( 2000 m a.s.l.), and the recent N-S-trending SAPCM in Argentina and Uruguay is of low elevation. In Argentina, an exception in elevation is arising from the higher topography (> 1000 m a.s.l.) of the two NW-SE-trending mountain ranges Sierras Septentrionales and Sierras Australes. Precambrian metamorphic and intrusive rocks, and siliciclastic rocks of Ordovician to Permian age represent the geological evolution of both areas. The Sierras Australes have been deformed and metamorphosed (incipient - greenschist) during the Gondwanides Orogeny. The low-temperature thermochronological (LTT) data (< 240 °C) indicated that the Upper Jurassic to Lower Cretaceous opening of the South Atlantic has not completely thermally reset the surface rocks. The LTT archives apatite and zircon still revealed information on the pre- to post-orogenic history of the Gondwanides and the Mesozoic and Cenozoic South Atlantic geological evolution. Upper Carboniferous zircon (U-Th/He)-ages (ZHe) indicate the earliest cooling below 180 °C/1 Ma. Most of the ZHe-ages are of Upper Triassic to Jurassic age. The apatite fission-track ages (AFT) of Sierras Septentrionales and the eastern part of Sierras Australes indicate the South Atlantic rifting and, thereafter. AFT-ages of Middle to Upper Triassic on the western side of the Sierras Australes are in contrast, indicating a Triassic exhumation caused by the eastward thrusting along the Sauce Grande wrench. The corresponding t-T models report a complex subsidence and exhumation history with variable rates since the Ordovician. Based on the LTT-data and the numerical modelling we assume that the NW-SE-trending mountain ranges received their geographic NW-SE orientation during the syn- to post-orogenic history of the Gondwanides.

  11. Paleogeographic evolution of foldbelts adjacent to petroleum basins of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, E.D.; Koch, P.S.; Summa, L.L.

    1996-08-01

    The foldbelts of Venezuela and Trinidad have shaped the history of adjacent sedimentary basins. A set of paleogeographic maps on reconstructed bases depict the role of foldbelts in the development of the sedimentary basins of Venezuela. Some of the foldbelts are inverted, pre-Tertiary graben/passive margin systems. Other foldbelts are allochthonous nappes or parautochthons that override the Mesozoic passive margin hinge without inversion. The emergence of these foldbelts changed the course of existing river systems and provided a new source for sediments and maturation in adjacent deeps. The Merida Andes area was remobilized beginning in the Early Miocene as a zonemore » of lateral shear, along which the Bonaire Block has moved over 200 km to the northeast, dismembering the Maracaibo and Barinas basins. Late Miocene to Recent transpression and fault reactivation have driven rapid Andean uplift with thrust-related subsidence and maturation (e.g., SE Maracaibo foredeep). To the east, uplift and erosion of the Serrania del Interior (1) curtailed mid-Tertiary fluvial systems flowing northward from the igneous and sedimentary rocks of the Guyana Shield, deflecting them eastward, and (2) removed the thick early Miocene foredeep fill into a younger foredeep. Thus, the fold-thrust belts and sedimentary basins in this region are linked in their evolutionary histories.« less

  12. Angola seismicity

    NASA Astrophysics Data System (ADS)

    Neto, Francisco António Pereira; França, George Sand; Condori, Cristobal; Sant'Anna Marotta, Giuliano; Chimpliganond, Cristiano Naibert

    2018-05-01

    This work describes the development of the Angolan earthquake catalog and seismicity distribution in the Southwestern African Plate, in Angola. This region is one of the least seismically active, even for stable continental regions (SCRs) in the world. The maximum known earthquake had a magnitude of 6.0 Ms, while events with magnitudes of 4.5 have return period of about 10 years. Events with magnitude 5 and above occur with return period of about 20 years. Five seismic zones can be confirmed in Angola, within and along craton edges and in the sedimentary basins including offshore. Overall, the exposed cratonic regions tend to have more earthquakes compared to other regions such as sedimentary basins. Earthquakes tend to occur in Archaic rocks, especially inside preexisting weakness zones and in tectonic-magmatic reactivation zones of Mesozoic and Meso-Cenozoic, associated with the installation of a wide variety of intrusive rocks, strongly marked by intense tectonism. This fact can be explained by the models of preexisting weakness zones and stress concentration near intersecting structures. The Angolan passive margin is also a new region where seismic activity occurs. Although clear differences are found between different areas along the passive margin, in the middle near Porto Amboim city, seismic activity is more frequent compared with northwestern and southwestern regions.

  13. The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves

    NASA Astrophysics Data System (ADS)

    Eccles, Jennifer D.; White, Robert S.; Christie, Philip A. F.

    2011-07-01

    Imaging challenges caused by highly attenuative flood basalt sequences have resulted in the understanding of volcanic rifted continental margins lagging behind that of non-volcanic rifted and convergent margins. Massive volcanism occurred during break-up at 70% of the passive margins bordering the Atlantic Ocean, the causes and dynamics of which are still debated. This paper shows results from traveltime tomography of compressional and converted shear wave arrivals recorded on 170 four-component ocean bottom seismometers along two North Atlantic continental margin profiles. This traveltime tomography was performed using two different approaches. The first, a flexible layer-based parameterisation, enables the quality control of traveltime picks and investigation of the crustal structure. The second, with a regularised grid-based parameterisation, requires correction of converted shear wave traveltimes to effective symmetric raypaths and allows exploration of the model space via Monte Carlo analyses. The velocity models indicate high lower-crustal velocities and sharp transitions in both velocity and Vp/Vs ratios across the continent-ocean transition. The velocities are consistent with established mixing trends between felsic continental crust and high magnesium mafic rock on both margins. Interpretation of the high quality seismic reflection profile on the Faroes margin confirms that this mixing is through crustal intrusion. Converted shear wave data also provide constraints on the sub-basalt lithology on the Faroes margin, which is interpreted as a pre-break-up Mesozoic to Paleocene sedimentary system intruded by sills.

  14. Mesozoic Deformation and Its Geological Significance in the Southern Margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Rongwei; Liu, Hailing; Yao, Yongjian; Wang, Yin

    2018-05-01

    The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E-N(N)W and N(N)W-S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.

  15. Palaeozoic and Mesozoic tectonic implications of Central Afghanistan

    NASA Astrophysics Data System (ADS)

    Sliaupa, Saulius; Motuza, Gediminas

    2017-04-01

    The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying low tectonic regime. There was a break in sedimentation during the upper Cretaceous that is likely related to the Alpine orogenic event. It associated with some Upper Cretaceous magmatic activity (Debon et al., 1987). This event is reflected in the sedimentation pattern in the adjacent Band-e-Bayan zone and Tadjick block. The lower part of the Upper Cretaceous succession is composed of reddish terrigenic sediments. They are overlain by uppermost Cretaceous (and Danian) shallow marine sediments implying establishment of quiet tectonic conditions.

  16. Variscan to Neogene thermal and exhumation history at the Moroccan passive continental margin assessed by low temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Sehrt, M.; Glasmacher, U. A.; Stockli, D. F.; Kluth, O.; Jabour, H.

    2012-04-01

    In North Africa, a large amount of Mesozoic terrigenous sedimentary rocks are deposited in most of the basins along the continental margin indicating a major episode of erosion occurred during the rift and early post-rift period in the Central Atlantic. In the Tarfaya-Dakhla Basin, Morocco the sedimentary cover reaches thicknesses of up to 9000 m. The presence of high surface elevations in the Anti-Atlas mountain belt (2500 m) indicates a potential source area for the surrounding basins. The NE-SW oriented Anti-Atlas of Morocco is located at the northwestern fringe of the West African Craton and south of the High Atlas and represents the Phanerozoic foreland of the Late Paleozoic North African Variscides and the Cenozoic Atlas Belt. Variscan deformation affected most of Morocco. Paleozoic basins were folded and thrusted, with the major collision dated as late Devonian to Late Carboniferous. Zircon fission-track ages of 287 (±23) to 331 (±24) Ma confirmed the main exhumation referred to the Variscan folding, followed by rapid exhumation and the post-folding erosion. Currently, phases of uplift and exhumation in the Anti-Atlas during the Central Atlantic rifting and places where the associated erosion products are deposited are poorly constrained and there is little quantitative data available at present. The objective of the study is to determine the thermal and exhumation history of the Anti-Atlas and the connected Tarfaya-Dakhla Basin at the Moroccan passive continental margin. Besides zircon fission-track dating, apatite and zircon (U-Th-Sm)/He and apatite fission-track analyses and furthermore 2-D modelling with 'HeFTy' software has been carried out at Precambrian rocks of the Western Anti-Atlas and Cretaceous to Neogene sedimentary rocks from the Northern Tarfaya-Dakhla Basin. The apatite fission-track ages of 120 (±13) to 189 (±14) Ma in the Anti-Atlas and 176 (±20) to 216 (±18) Ma in the Tarfaya Basin indicate very obvious a Central Atlantic opening signal and confirm the Anti-Atlas as a potential source area of the Mesozoic basins along the passive continental margin. Young apatite (U-Th-Sm)/He ages of 49 (±3) Ma to 89 (±5) Ma in the Anti-Atlas and 64 (±4) to 73 (±4) Ma in the Tarfaya Basin are related to the interplay between the African and Eurasian plates. The time-temperature models of samples from the AA indicate that the main exhumation in the Anti-Atlas occurred during the Variscan folding, the post-folding erosion and besides the Central Atlantic rifting phase until the Upper Triassic. After this event large parts of the Western Anti-Atlas hold a stable position without significant movements during the Jurassic and Cretaceous, followed by an exhumation phase during the Atlasian orogeny.

  17. Early Mesozoic cooling from low temperature thermochronology in N Spain and N Africa

    NASA Astrophysics Data System (ADS)

    Grobe, R.; Alvarez-Marrón, J.; Glasmacher, U. A.; Menéndez-Duarte, R.

    2009-04-01

    In the western prolongation of the Pyrenees, the substratum of the Cantabrian Mountains consists of an E-W crustal section of the Gondwana continental margin involved in the Variscan collision. In Mesozoic times, the region was modified by rifting and the opening of the Atlantic and the Bay of Biscay, while in Paleogene-Neogene times it was affected by the convergence of the Iberian Plate with the Eurasian Plate resulting in the present mountains. Our thermochronological data and modelled time-temperature histories suggest an earlier, relative fast cooling period during Early Triassic to Early Jurassic. This cooling event coincides temporally with the process of rifting that caused Pangaea continental break-up and the opening of the North Atlantic. Other authors report similar cooling histories from Early Triassic to Middle Jurassic from other parts of the Iberian Peninsula (Juez-Larré, 2003; Barbero et al., 2005) as well as from the Moroccan Meseta, in N Africa (Ghorbal et al., 2008). Furthermore, the time span of this cooling event includes the period of main activity of the Central Atlantic Magmatic Province (CAMP) magmatism at around 200 Ma (Marzoli et al., 1999). Wilson (1997) postulates a relationship between this magmatic activity and upwelling of a large-scale mantle plume (super-plume) beneath the West African craton. Correlatives of this province have been identified as far as the southern Iberian Peninsula, Newfoundland, and possibly in Brittany, among other European areas (Pe-Piper et al., 1992; Jourdan et al., 2003). The current presentation aims to discuss possible African far-field effects on thermochronological data in the Cantabrian Mountains of NW Spain. References: Barbero, L.; Glasmacher, U. A.; Villaseca, C.; López García, J. A.; Martín-Romera, C. (2005). Long-term thermo-tectonic evolution of the Montes de Toledo area (Central Hercynian Belt, Spain): constraints from apatite fission-track analysis. International Journal of Earth Sciences , Volume 94, Issue 2, pp.193-203. Ghorbal, B.; Bertotti, G.; Foeken, J.; Andriessen, P. (2008). Unexpected Jurassic to Neogene vertical movements in ‘stable' parts of NW Africa revealed by low temperature geochronology. Terra Nova, Volume 20, Number 5, October 2008 , pp. 355-363(9). Jourdan, F.; Marzoli, A.; Bertrand, H.; Cosca, M.; Fontignie, D. (2003). The Northernmost CAMP: 40Ar/39Ar Age, petrology and Sr-Nd-Pb isotope geochemistry of the Kerforne Dike, Brittany, France. In: Hames, W.E., McHone, J.G., Renne, P.R., Ruppel, C. (Eds.), The Central Atlantic Magmatic Province: Insights From Fragments of Pangea. AGU, Geophys. Mon., vol. 136, pp. 209-226. Juez-Larré, J. (2003). Post Late Paleozoic tectonothermal evolution of the northeastern margin of Iberia, assessed by fission-track and (U-T)/He analysis: a case history from the Catalan Coastal Ranges. Ph.D. thesis, Free University of Amsterdam. 200 pp. Marzoli, A.; Renne, P.R.; Piccirillo, E.M.; Ernesto, M.; Bellieni, G.; De Min, A. (1999). Extensive 200-million-year-old continental food basalts of the Central Atlantic magmatic province. Science 284, 616-618. Pe-Piper, G.; Jansa, L.F.; Lambert, R.St.-J. (1992). Early Mesozoic magmatism of the Eastern Canadian margin. In: Puffer, J.H., Ragland, P.C. (Eds.), Eastern North American Mesozoic magmatism. Geol. Soc. Am., Spec. Paper, vol. 268, pp. 13-36. Wilson, M. (1997). Thermal evolution of the Central Atlantic passive margins: continental break-up above a Mesozoic super-plume. J. Geol. Soc. (Lond.) 154, 491-495.

  18. An Amphibious Seismic Study of the Crustal Structure of the Adriatic Microplate

    NASA Astrophysics Data System (ADS)

    Dannowski, A.; Kopp, H.; Schurr, B.; Improta, L.; Papenberg, C. A.; Krabbenhoeft, A.; Argnani, A.; Ustaszewski, K. M.; Handy, M.; Glavatovic, B.

    2016-12-01

    The present-day structure of the southern Adriatic area is controlled by two oppositely-vergent fold-and-thrust belt systems (Apennines and Dinarides). The Adriatic continental domain is one of the most enigmatic segments of the Alpine-Mediterranean collision zone. It separated from the African plate during the Mesozoic extensional phase that led to the opening of the Ionian Sea. Basin widening and deepening peaked during Late Triassic-Liassic extension, resulting in the formation of the southern Adriatic basin, bounded on either side by the Dinaric and Apulian shallow water carbonate platforms. Because of its present foreland position with respect to the Dinaric part of orogenic belt, the southern Adriatic basin represents the only remnant of the Neotethyan margin and offers the unique opportunity to image a segment of Mesozoic passive margin in the Mediterranean. To study the deep crustal structure, the upper mantle and the shape of the plate margin, the German research vessel Meteor acquired 2D seismic refraction and wide-angle reflection data during an onshore-offshore experiment (cruise M86-3). We present two profiles: Profile P03 crossed Adria from the Gargano Promontory into Albania. A second profile (P01) was shot parallel to the coastlines, extending from the southern Adriatic basin to a possible mid-Adriatic strike-slip fault that purportedly segments the Adriatic microplate. Two different approaches of travel time tomography are applied to the data set: A non-linear approach is used for the shorter profile P01. A linear approach is applied to profile P03 (360 km length) and allows for the integration of the 36 ocean bottom stations and 19 land stations. First results show a good resolution of the sedimentary part of the Adriatic region. The depth of the basement as well as the depth of the Moho discontinuity vary laterally and deepen towards the North-East, consistent with the notion of flexural loading of the externally propagating orogenic wedge of the Dinarides.

  19. Palinspastic reconstruction of Lower Mesozoic stratigraphic sequences near the latitude of Las Vegas: Implications for the entire Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzolf, J.E.

    1993-04-01

    On the Colorado Plateau, lower Mesozoic stratigraphy is subdivided by regional unconformities into the Lower Triassic Moenkopi, Upper Triassic Chinle, Lower and Middle( ) Jurassic Glen Canyon, and Middle Jurassic lower San Rafael tectonosequences. Palinspastic reconstruction for Cenozoic extensional and mesozoic compressional deformations near the latitude of Las Vegas indicates the Moenkopi tectono-sequence constructed a passive-margin-like architecture of modest width overlapping folded. Thrust-faulted, and intruded Permian strata, with state boundaries fixed relative to the Colorado Plateau, comparison of the location of the Early Triassic shelf-slope break near latitude 36[degree] with the palinspastically restored location of the shelf-slope break in southeasternmore » Idaho implies strata of the Moenkopi tectonosequence in the Mesozoic marine province of northwest NV lay in western utah in the Early Triassic. This reconstruction: suggests that the Galconda and Last Chance faults are part of the same thrust system; aligns late Carnian paleovalleys of the chinle tectonosequence on the Colorado Plateau with a coeval northwest-trending paleovalley cut across the Star Pea, and the Norian Cottonwood paleovalley with the coeval Grass Valley delta; defines a narrow, northward deepening back-arc basin in which the Glen Canyon tectonosequence was deposited; aligns east-facing half grabens along the back side of the arc from the Cowhole Mountains to the Clan Alpine Range; projects the volcan-arc/back-arc transition from northwest Arizona to the east side of the Idaho batholith; and predicts the abrupt facies change from silicic volcanics to marine strata of the lower San Rafael sequence lay in western Utah. The paleogeographic was altered in the late Bathonian to Callovian by back-arc extension north of a line extending from Cedar City, UT to Mina, NV. The palinspastic reconstruction implies the Paleozoic was tectonically stacked at the close of the Paleozoic.« less

  20. Petroleum geology of the mid-Atlantic continental margin, offshore Virginia

    USGS Publications Warehouse

    Bayer, K.C.; Milici, R.C.

    1989-01-01

    The Baltimore Canyon Trough, a major sedimentary basin on the Atlantic continental shelf, contains up to 18 km of Mesozoic and Cenozoic strata. The basin has been studied extensively by multichannel common depth point (CDP) seismic reflection profiles and has been tested by drilling for hydrocarbon resources in several places. The Mesozoic and Cenozoic strata contained in the basin were deposited in littoral to bathyal depositional settings and contain immature to marginally mature oil-prone and gas-prone kerogen. The more deeply buried strata of Early Mesozoic age are more likely to be thermally mature than are the younger strata with respect to hydrocarbon generation, but contain terrestrially derived coaly organic matter that would be prone to yield gas, rather than oil. An analysis of available CDP seismic reflection data has indicated that there are several potential hydrocarbon plays in the area offshore of Virginia. These include: (1) Lower Mesozoic synrift basins that appear similar to those exposed in the Appalachian Piedmont, (2) a stratigraphic updip pinchout of strata of Early Mesozoic age in the offshore region near the coast, (3) a deeply buried paleoshelf edge, where seismic reflectors dip sharply seaward; and (4) a Cretaceous/Jurassic shelf edge beneath the present continental rise. Of these, the synrift basins and Cretaceous/Jurassic shelf edge are considered to be the best targets for exploration. ?? 1989.

  1. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    NASA Astrophysics Data System (ADS)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  2. Tectonic evolution of west Antarctica and its relation to east Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalziel, I.W.D.

    1987-05-01

    West Antarctica consists of five major blocks of continental crust separated by deep sub-ice basins. Marie Byrd Land appears to have been rifted off the adjacent margin of the East Antarctic craton along the line of the Transantarctic Mountains during the Mesozoic. Ellsworth-Whitmore mountains and Haag Nunataks blocks were also rifted from the margin of the craton. They appear to have moved together with the Antarctic Peninsula and Thurston Island blocks, segments of a Pacific margin Mesozoic-Cenozoic magmatic arc, during the Mesozoic opening of the Weddell Sea basin. Paleomagnetic data suggest that all four of these blocks remained attached tomore » western Gondwanaland (South America-Africa) until approximately 125 m.y. ago, and that the present geographic configuration of the Antarctic continent was essentially complete by the mid-Cretaceous, although important Cenozoic rifting has also occurred. Fragmentation of the Gondwanaland supercontinent was preceded in the Middle to Late Jurassic by an important and widespread thermal event of uncertain origin that resulted in the emplacement of an extensive bimodal igneous suite in South America, Africa, Antarctica, and Australia. This was associated with the development of the composite back-arc basin along the western margin of South America. Inversion of this basin in the mid-Cretaceous initiated Andean orogenesis. The presentation will include new data from the joint US-UK West Antarctic Tectonics Project.« less

  3. Initiation of Extension in South China Continental Margin during the Active-Passive Margin Transition: Thermochronological and Kinematic Constraints

    NASA Astrophysics Data System (ADS)

    Zuo, X.; Chan, L. S.

    2015-12-01

    The South China continental margin is characterized by a widespread magmatic belt, prominent NE-striking faults and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from active to passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. Our zircon fission-track data in this region show two episodes of exhumation: The first episode, occurring during 170-120Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115-70Ma, including the Yunkai Terrane and the Nanling Range. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the fact that exhumation of the granite-dominant Nanling Range occurred earlier than that of the gneiss-dominant Yunkai Terrane. In addition to the difference in rock types, the heat from Jurassic-Early Cretaceous magmatism in Nanling may have softened the upper crust, causing the area to exhume more readily than Yunkai. Numerical modeling results also indicate that (1) high lithospheric geothermal gradient, high slab dip angle and low convergence velocity favor the reversal of crustal stress state from compression to extension in the upper continental plate; (2) late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension imply that the Late Cretaceous-early Paleogene red-bed basins in South China could have formed during the late stage of the subduction, accounting for the occurrence of volcanic events in some sedimentary basins. We propose that the rifting started as early as Late Cretaceous, probably before the cessation of subduction process.

  4. Initiation of extension in South China continental margin during the active-passive margin transition: kinematic and thermochronological constraints

    NASA Astrophysics Data System (ADS)

    ZUO, Xuran; CHAN, Lung

    2015-04-01

    The southern South China Block is characterized by a widespread magmatic belt, prominent NE-striking fault zones and numerous rifted basins filled by Cretaceous-Eocene sediments. The geology denotes a transition from an active to a passive margin, which led to rapid modifications of crustal stress configuration and reactivation of older faults in this area. In this study, we used zircon fission-track dating (ZFT) and numerical modeling to examine the timing and kinematics of the active-passive margin transition. Our ZFT results on granitic plutons in the SW Cathaysia Block show two episodes of exhumation of the granitic plutons. The first episode, occurring during 170 Ma - 120 Ma, affected local parts of the Nanling Range. The second episode, a more regional exhumation event, occurred during 115 Ma - 70 Ma. Numerical geodynamic modeling was conducted to simulate the subduction between the paleo-Pacific plate and the South China Block. The modeling results could explain the observation based on ZFT data that exhumation of the granite-dominant Nanling Range occurred at an earlier time than the gneiss-dominant Yunkai Terrane. In addition to the difference in geology between Yunkai and Nanling, the heating from Jurassic-Early Cretaceous magmatism in the Nanling Range may have softened the upper crust, causing the area to exhume more readily. Numerical modeling results also indicate that (1) high slab dip angle, high geothermal gradient of lithosphere and low convergence velocity favor the subduction process and the reversal of crustal stress state from compression to extension in the upper plate; (2) the late Mesozoic magmatism in South China was probably caused by a slab roll-back; and (3) crustal extension could have occurred prior to the cessation of plate subduction. The inversion of stress regime in the continental crust from compression to crustal extension has shed light on the geological condition producing the red bed basins during Late Cretaceous-early Paleogene in South China. It appears that the red bed basins could have formed during the late stage of the subduction process, accounting for the observations why concurrent volcanic rocks could be found in some sedimentary basin formation. We propose that the extensional events started as early as the Late Cretaceous, probably before the cessation of subduction process. (Funding from Total Company and matching support from UGC are gratefully acknowledged).

  5. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A-type granitoids formed. 4) These dynamics are the result of subduction and extension of the oceanic plates that bordered East Asia. 5) The complex mosaic of geology and geochemistry is the result of compositional variation in the deep lithosphere, as well as variation in the dynamics of oceanic plate movements.

  6. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  7. A modern regional geological analysis of Venezuela - lessons from a major new world oil province on exploration in mature areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, M.; Audemard, F.; Valdes, G.

    1993-09-01

    Venezuela has produced some 44 billion bbl of oil since the early part of the century. As such, it represents one of the world's major oil producers and a mature petroleum province. However, major tracts of Venezuela's sedimentary basins remain underexplored and large discoveries are still being made in new and old reservoir systems. A regional geological analysis of Venezuela, focusing on basin evolution and sequence stratigraphy and incorporating data from the three national oil companies, is presented. The analysis presents a regionally consistent tectonostratigraphic model capable of explaining the evolution of the Mesozoic and Cenozoic basins of Venezuela andmore » placing the major reservoir facies in their regional tectonic and sequence stratigraphic context. Four regional cross sections describe the stratigraphic and structural model. The model recognizes a Jurassic rifting event and inversion, succeeded by an Early Cretaceous passive margin. In western Venezuela, the Early Cretaceous passive subsidence is enhanced locally by extension related to the Colombian active margin. Venezuela experienced a major change in the Campanian with the initial collision of the Caribbean arc, recorded by foreland structuring and widespread stratigraphic changes. From the Campanian onward, the tectonostratigraphic evolution can be modeled in terms of a progressive southeast-directed arc-continent collision and the migration of the associated foredeep and rift basins. Within the tectonic framework, the major sequence stratigraphic units are identified and the reservoir distribution interpreted. This model provides a strong predictive tool to extrapolate reservoir systems into Venezuela's underexplored areas and to readdress its traditional areas.« less

  8. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill-hole and seismic data along the Augusta profile show that there is a significant offset (approximately 7m) down to the SE of Pinehurst and older Cretaceous deposits. The Pen Branch fault seismic profile shows evidence of Cenozoic reactivation and inversion. The youngest discontinuous reflector (the top of the Dry Branch Formation) is offset by 1-4m and constrains the latest fault movement to be Middle Eocene in age. A NW-SE well derived cross-section across the Allendale fault shows that there is no significant offset above 50m below sea level (top of the Late Eocene Black Mingo Group), however a SW-NE cross section shows an approximately 21m offset NE side up across the newly postulated fault striking NW-SE. The top of the oldest undeformed formation (Middle Eocene Santee Limestone) and the top of the youngest deformed unit (Late Eocene Black Mingo Group) constrain a time frame for the latest deformation of the Coastal Plain sediments to be between approximately 50 and 40 Ma. The results of this research provide an opportunity to address the Cenozoic tectonism in SC, advance the knowledge and current understanding of the structure of the rift basins, update the database used for the ongoing CO2 sequestration project, the local hydrology, and the Savannah River Site safety evaluation.

  9. Long-term landscape evolution of the South Atlantic passive continental margin along the Kaoko- and Damara Belts, NW-Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Glasmacher, Ulrich Anton; Hackspacher, Peter; Schneider, Gabriele; Salomon, Eric

    2015-04-01

    The Kaoko Belt in northwestern Namibia originates in the collision of the Rio de la Plata and Kongo Craton during the Pan-African Orogeny in the Neoproterozoic (1) and represents the northern arm of the Damara Orogen. NW-Namibias continental crust mainly consists of the NE-SW striking intracontinental branch of the Pan-African Damara mobile belt, which separates the Congo from the Kalahari craton. The Damara Orogen is divided into several tectonostratigraphic zones that are bounded by steeply dipping, ductile shear zones. These regional lineaments can be traced at least 150 km offshore (2). The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks (534 (7) Ma - 481 (25) Ma (3) as well as Mesozoic sedimentary and igneous rocks. From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (4), and the deposition of the Nama Group sediments and the Karoo megasequence (5). Between the Otjihorongo and the Omaruru Lineament-Waterberg Thrust early Mesozoic tectonic activity is recorded by coarse clastic sediments deposited within NE trending half-graben structures. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183±1 Ma (6). The Early Cretaceous Paraná-Etendeka flood basalts (132±1 Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (7). Early Cretaceous alkaline intrusions (137-124 Ma) occur preferentially along Mesozoic half-graben structures and are called the Damaraland Igneous Province (8). Late Cretaceous alkaline intrusions and kimberlite pipes occur in northern Namibia. Post Early Paleocene siliciclastic sedimentation in Namibia was largely restricted to a 150 km wide zone (9) and is represented by the Tsondab Sandstone Formation (~ 300 m thickness). The oldest part has an age of early Paleocene and the upper part span from middle Miocene (~13 Ma) to Pliocene (~2 Ma) (10). Cenozoic alkaline intrusions and kimberlite pipes are also known from the region. The so-called "Great Escarpment" that reach elevation of up to 2350 m characterizes strongly the morphology of the passive continental margin in Namibia (11,12). In contrast to Brazil, the escarpment is more than 150 km inland of Namibia. Interesting enough the Brandenberg intrusive complex of ~130 Ma age clearly indicates the post-intrusion denudation of more than 4,000m (13). The Great Escarpment can be traced from central Angola to the eastern edge of South Africa. A considerable variation along its distribution reflects variations in tectonic history, in lithologies, and in the drainage system. In Namibia, the retreating model has dominated the genetic discussion (14,15,16). However, surface process modeling has suggested other possibilities11. In addition, apatite fission-track research, terrigenious cosmogenic nuclides (TCN) have been used on specific landscape elements to determine denudation rates. In the central Namib Desert, denudation rates calculated from 10Be and 26Al are in the range of ±5 m Ma-1 and might be representative for the last 103 - 106 a (17). The persistence of arid climatic conditions throughout the Cenozoic might even lead to such low denudation rates for the past 10-12 Ma. A low retreat rate of ~10 m Ma-1 representative for the last 1 Ma was determined for the Great Escarpment in central and southern Namibia. Considering all currently, available thermochronological data for the Namibian margin (18,19,20), the validity of the scarp retreat model is highly problematic. Apatite fission-track ages revealed so far range between 390.9±17.9 Ma and 80.8±6.0 Ma. The large spread in ages is partly related to significant changes of ages at the NW-SE trending Purros Lineament and at the Sesfontein thrust. In general, the AFT-ages are older northeast of the Purros Lineament. Furthermore, all basalt samples of Etendeka age display the same AFT-age range within error, between 103.5±4.9 and 108.0±5.6 Ma. The oldest ages are revealed from metamorphic rocks of the Damara Group as well as sandstones and glacial deposits of the Permo-Carboniferous Karoo series. References 1. Goscombe, B. D., Gray, D. R., 2008. Structure and strain variation at mid-crustal levels in a transpressional orogen: A review of Kaoko Belt structure and the character of west Gondwana amalgamation and dispersal. Gondwana Res. 13, 45-85. 2. Clemson, J., Cartwright, J., Booth, J., 1997. Structural segmentation and the influence of basement structure on the Namibian passive margin. J. Geol. Soc. London 154, 477-482. 3. Miller, R.M., 1983. Evolution of the Damara Orogen, Vol. 11, Geol. Soc., South Africa Spec. Pub.. 4. Coward, M.P., Daly, M.C., 1984. Crustal lineaments and shear zones in Africa: Their relationships to plate movements, Precambrian Research 24: 27-45. 5. Stollhofen, H., 1999. Karoo Synrift-Sedimentation und ihre tektonische Kontrolle am entstehenden Kontinentalrand Namibias, Z.dt.geol.Ges. 149: 519-632. 6. Duncan, R., Hooper, P., Rehacek, J., March, J., Duncan, A., 1997. The timing and duration of the Karoo igneous event, southern Gondwana, J. Geophy. Res. 102: 18127-18138. 7. Renne, P.R., Glen, J.M., Milner, S.C., Duncan, A.R., 1996. Age of Etendeka flood volcanism and associated intrusions in southwestern Africa, Geology 24 (7): 659- 662. 8. Watkins, R.T., McDougall, I., le Roex, A. P., 1994. K-Ar ages of the Brandberg and Okenenya igneous complexes, north-western Namibia, Geol. Rund. 83: 348-356. 9. Ward, J.D., 1988. Geology of the Tsondab Sandstone Formation, Journal of Sedimentary Geology 55: 143-162. 10. Senut, B., Pickford, M., 1995. Fossil eggs and Cenozoic continental biostratigraphy of Namibia, Pal. Afr.,32: 33-37. 11. Gilchrist, A.R., Kooi, H., Beaumont, C.,1994. Post Gondwana geomorphic evolution of southwestern Africa: Implications for the controls on landscape development from observations and numerical experiments, J. Geophy. Res. 99: 12211-12228. 12. Brown, R. W., Gallagher, K. and Gleadow, A. J. W., 2000. Morphotectonic evolution of the South Atlantic margins of Africa and South America, in M. A. Summerfield (ed.), Geomorphology and Global Tectonics, JohnWiley and Sons Ltd., Chichester, pp. 255-281. 13. Raab, M. J., Brown, R. W., Gallagher, K., Weber, K., Gleadow, A. J. W., 2005. Denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia's Atlantic passive margin Tectonics 24: 1-15. 14. Guillocheau, F., Rouby, D., Robin, C. Helm, C., Rolland, N., Le Carlier de Veslud, C., Braun, J., 2012. Quantification and causes of the terrigeneous sediment budget at the scale of a continent margin: a new method applied to the Namibia-South Africa Margin. BasinRes. 24, 3-30. 15. Dauteuil, O., Rouby, D., Braun, J., Guillocheau, F., Deschamps, F., 2013. Post-breakup evolution of the margin of Namibia: constraints from numerical approach. Tectonophysics 604, 122-138. 16. Rouby, D., Braun, J., Dauteuil, O., Deschamps, F., Robin, C., 2013. Long-term stratigraphic evolution of Atlantic-type passive margins: a numerical approach of interactions between surface processes, flexural isostasy and 3D thermal subsidence. Tectonophysics 604, 83-103. 17. Cockburn, H. A. P., Brown, R. W., Summerfield, M. A. and Seidl, M. A., 2000. Quantifying passive margin denudation and landscape development using a combined fission-track thermochronology and cosmogenic isotope analysis approach, EPSL 179: 429-435. 18. Brown, R. W., 1992. A fission track thermochronology study of the tectonic and geomorphic development of the sub-aerial continental margins of southern Africa., PhD thesis, La Trobe University, Bundoora, Australia. 19. Gallagher, K. and Brown, R. W., 1999. Denudation and uplift at passive margins: the record on the Atlantic Margin of southern Africa, Philosophical Transactions Royal Society London A 357: 835-859. 20. Raab, M. J., Brown, R. W., Gallagher, K., Carter, A., Weber, K., 2002. Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics 349: 75-92.

  10. Paleozoic and Lower Mesozoic magmas from the eastern Klamath Mountains (North California) and the geodynamic evolution of northwestern America

    NASA Astrophysics Data System (ADS)

    Lapierre, H.; Brouxel, M.; Albarede, F.; Coulin, C.; Lecuyer, C.; Martin, P.; Mascle, G.; Rouer, O.

    1987-09-01

    The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430-480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin. A consistent plate-tectonic model is proposed for the area, consisting of six main stages: (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin; (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc; (3) opening and development of the Trinity back-arc basin around 430-480 Ma ago; (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock; (5) break in volcanic activity from the Early Devonian to the Early Permian; and (6) development of a mature island-arc from the Early Permian to the Late Triassic. The eastern Klamath Mountains island-arc formations and ophiolitic suite are part of the "Cordilleran suspect terranes", considered to be Gondwana margin fragments, that have undergone large northward translations before final collision with the North American craton during Late Mesozoic or Cenozoic times. These eastern Klamath Mountains island-arcs could be associated with the paleo-Pacific oceanic plate that led to accretion of these allochthonous terranes to the American margin.

  11. The Paleoecology, Habitats, and Stratigraphic Range of the Enigmatic Cretaceous Brachiopod Peregrinella

    PubMed Central

    Kiel, Steffen; Glodny, Johannes; Birgel, Daniel; Bulot, Luc G.; Campbell, Kathleen A.; Gaillard, Christian; Graziano, Roberto; Kaim, Andrzej; Lazăr, Iuliana; Sandy, Michael R.; Peckmann, Jörn

    2014-01-01

    Modern and Cenozoic deep-sea hydrothermal-vent and methane-seep communities are dominated by large tubeworms, bivalves and gastropods. In contrast, many Early Cretaceous seep communities were dominated by the largest Mesozoic rhynchonellid brachiopod, the dimerelloid Peregrinella, the paleoecologic and evolutionary traits of which are still poorly understood. We investigated the nature of Peregrinella based on 11 occurrences world wide and a literature survey. All in situ occurrences of Peregrinella were confirmed as methane-seep deposits, supporting the view that Peregrinella lived exclusively at methane seeps. Strontium isotope stratigraphy indicates that Peregrinella originated in the late Berriasian and disappeared after the early Hauterivian, giving it a geologic range of ca. 9.0 (+1.45/–0.85) million years. This range is similar to that of rhynchonellid brachiopod genera in general, and in this respect Peregrinella differs from seep-inhabiting mollusks, which have, on average, longer geologic ranges than marine mollusks in general. Furthermore, we found that (1) Peregrinella grew to larger sizes at passive continental margins than at active margins; (2) it grew to larger sizes at sites with diffusive seepage than at sites with advective fluid flow; (3) despite its commonly huge numerical abundance, its presence had no discernible impact on the diversity of other taxa at seep sites, including infaunal chemosymbiotic bivalves; and (4) neither its appearance nor its extinction coincides with those of other seep-restricted taxa or with global extinction events during the late Mesozoic. A preference of Peregrinella for diffusive seepage is inferred from the larger average sizes of Peregrinella at sites with more microcrystalline carbonate (micrite) and less seep cements. Because other seep-inhabiting brachiopods occur at sites where such cements are very abundant, we speculate that the various vent- and seep-inhabiting dimerelloid brachiopods since Devonian time may have adapted to these environments in more than one way. PMID:25296341

  12. Geodynamic evolution of the Taiwan-Luzon-Mindoro belt since the late eocene

    NASA Astrophysics Data System (ADS)

    Stephan, Jean François; Blanchet, René; Rangin, Claude; Pelletier, Bernard; Letouzey, Jean; Muller, Carla

    1986-05-01

    The structural framework of the Taiwan-Luzon-Mindoro belt (or festoon) is described, following three major transects: the Luzon transect with active subduction and active island arc; the Taiwan transect with active collision; the Mindoro transect with active subduction and inactive collision. Based on this geological study and on available geophysical data, a model for the geodynamic evolution of this portion of the Philippine Sea and Eurasia Plates boundary is proposed in a succession of reconstructions between the Late Eocene and the Present. The major geodynamic events are: (1) beginning of the opening of the South China Sea (S.C.S.) in Lower Oligocene times, contemporaneous with obduction of the Zambales and Angat ophiolites on Luzon. (2) subduction of a Mesozoic (?) oceanic basin along the proto-Manila trench from the Upper Oligocene to the Lower Miocene. (3) obduction of the South China Sea oceanic crust onto the Chinese and Reed Bank—Calamian passive margins in Middle Miocene time (14-15 Ma) related to a major kinematic reorganization (end of opening of the S.C.S.). (4) beginning of collision between the Luzon microblock and the two margins of the S.C.S. in the Upper Miocene (~ 7 Ma); collision is still active in Taiwan whereas it stopped in Mindoro during the Pliocene.

  13. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.

  14. Passive margin evolution, initiation of subduction and the Wilson cycle

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1984-10-01

    We have constructed finite element models at various stages of passive margin evolution, in which we have incorporated the system of forces acting on the margin, depth-dependent rheological properties and lateral variations across the margin. We have studied the interrelations between age-dependent forces, geometry and rheology, to decipher their net effect on the state of stress at passive margins. Lithospheric flexure induced by sediment loading dominates the state of stress at passive margins. This study has shown that if after a short evolution of the margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favourable for transformation into an active margin. Although much geological evidence is available in support of the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept.

  15. Constraints on the Final Stages of Breakup and Early Spreading history of the Eastern North American Margin from New Multichannel Seismic Data of the Community Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Becel, A.

    2016-12-01

    In September-October 2014, the East North American Margin (ENAM) Community Seismic Experiment (CSE) acquired deep penetration multichannel seismic (MCS) reflection on a 500 km wide section of the Mid-Atlantic continental margin offshore North Carolina and Virginia. This margin formed after the Mesozoic breakup of supercontinent Pangea. One of the goals of this experiment is an improved understanding of events surrounding final stage of breakup including the relationship between the timing of rifting and the occurrence of offshore magmatism and early spreading history of this passive margin that remain poorly understood. Deep penetration MCS data were acquired with the 6600 cu.in. tuned airgun array and the 636 channel, 8-km-long streamer of the R/V Marcus Langseth. The source and the streamer were both towed at a depth of 9 m for deep imaging. Here we present initial results from MCS data along two offshore margin normal profiles (450-km long and 370-km-long, respectively), spanning from continental crust 50 km off the coast to mature oceanic crust and a 350-km-long MCS profile along the enigmatic Blake Spur Magnetic Anomaly (BSMA). Initial images reveal a major change in the basement roughness at the BSMA on both margin normal profiles. Landward of this anomaly, the basement is rough and more faulted whereas starting at the anomaly and seaward, the basement is very smooth and reflective. Clear Moho reflections are observed 2.5-3s (7.75-9.3 km assuming an average crustal velocity of 6.2 km/s) beneath the top of the basement on the seaward part of two margin normal profiles and on the margin parallel profile. Intracrustal reflections are also observed over both transitional and oceanic basement. A long-lived mantle thermal anomaly close to the ridge axis during the early opening of the Atlantic Ocean could explain the thicker than normal oceanic crust and smooth basement topography observed in the data.

  16. The Tjellefonna fault system of Western Norway: Linking late-Caledonian extension, post-Caledonian normal faulting, and Tertiary rock column uplift with the landslide-generated tsunami event of 1756

    NASA Astrophysics Data System (ADS)

    Redfield, T. F.; Osmundsen, P. T.

    2009-09-01

    On February 22, 1756, approximately 15.7 million cubic meters of bedrock were catastrophically released as a giant rockslide into the Langfjorden. Subsequently, three ˜ 40 meter high tsunami waves overwhelmed the village of Tjelle and several other local communities. Inherited structures had isolated a compartment in the hanging wall damage zone of the fjord-dwelling Tjellefonna fault. Because the region is seismically active in oblique-normal mode, and in accordance with scant historical sources, we speculate that an earthquake on a nearby fault may have caused the already-weakened Tjelle hillside to fail. From interpretation of structural, geomorphic, and thermo-chronological data we suggest that today's escarpment topography of Møre og Trøndelag is controlled to a first order by post-rift reactivation of faults parallel to the Mesozoic passive margin. In turn, a number of these faults reactivated Late Caledonian or early post-Caledonian fabrics. Normal-sense reactivation of inherited structures along much of coastal Norway suggests that a structural link exists between the processes that destroy today's mountains and those that created them. The Paleozoic Møre-Trøndelag Fault Complex was reactivated as a normal fault during the Mesozoic and, probably, throughout the Cenozoic until the present day. Its NE-SW trending strands crop out between the coast and the base of a c. 1.7 km high NW-facing topographic 'Great Escarpment.' Well-preserved kinematic indicators and multiple generations of fault products are exposed along the Tjellefonna fault, a well-defined structural and topographic lineament parallel to both the Langfjorden and the Great Escarpment. The slope instability that was formerly present at Tjelle, and additional instabilities currently present throughout the region, may be viewed as the direct product of past and ongoing development of tectonic topography in Møre og Trøndelag county. In the Langfjorden region in particular, structural geometry suggests additional unreleased rock compartments may be isolated and under normal fault control. Although post-glacial rebound and topographically-derived horizontal spreading stresses might in part help drive present-day oblique normal seismicity, the normal-fault-controlled escarpments of Norway were at least partly erected in pre-glacial times. Cretaceous to Early Tertiary post-rift subsidence was interrupted by normal faulting at the innermost portion of the passive margin, imposing a strong tectonic empreinte on the developing landscape.

  17. Magmatic Complexes of the Vetlovaya Marginal Sea Paleobasin (Kamchatka): Composition and Geodynamic Setting

    NASA Astrophysics Data System (ADS)

    Tsukanov, N. V.; Saveliev, D. P.; Kovalenko, D. V.

    2018-01-01

    This study presents new geochemical and isotope data on igneous rocks of the Vetlovaya marginal sea paleobasin (part of the Late Mesozoic-Cenozoic margin of the northwestern Pacific). The results show that the rock complexes of this marginal sea basin comprise igneous rocks with geochemical compositions similar to those of normal oceanic tholeiites, enriched transitional tholeiites, and ocean island and back-arc basin basalts. Island-arc tholeiitic basalts are present only rarely. The specific geochemical signatures of these rocks are interpreted as being related to mantle heterogeneity and the geodynamic conditions in the basin.

  18. The Thermal Evolution of the Southeast Baffin Island Continental Margin: An Integrated Apatite Fission Track and Apatite (U-Th)/He Study

    NASA Astrophysics Data System (ADS)

    Jess, S.; Stephenson, R.; Brown, R. W.

    2017-12-01

    The elevated continental margins of the North Atlantic continue to be a focus of considerable geological and geomorphological debate, as the timing of major tectonic events and the age of topographic relief remain controversial. The West Greenland margin, on the eastern flank of Baffin Bay, is believed by some authors to have experienced tectonic rejuvenation and uplift during the Neogene. However, the opposing flank, Baffin Island, is considered to have experienced a protracted erosional regime with little tectonic activity since the Cretaceous. This work examines the thermal evolution of the Cumberland Peninsula, SE Baffin Island, using published apatite fission track (AFT) data with the addition of 103 apatite (U-Th)/He (AHe) ages. This expansion of available thermochronological data introduces a higher resolution of thermal modelling, whilst the application of the newly developed `Broken Crystals' technique provides a greater number of thermal constraints for an area dominated by AHe age dispersion. Results of joint thermal modelling of the AFT and AHe data exhibit two significant periods of cooling across the Cumberland Peninsula: Devonian/Carboniferous to the Triassic and Late Cretaceous to present. The earliest phase of cooling is interpreted as the result of major fluvial systems present throughout the Paleozoic that flowed across the Canadian Shield to basins in the north and south. The later stage of cooling is believed to result from rift controlled fluvial systems that flowed into Baffin Bay during the Mesozoic and Cenozoic during the early stages and culmination of rifting along the Labrador-Baffin margins. Glaciation in the Late Cenozoic has likely overprinted these later river systems creating a complex fjordal distribution that has shaped the modern elevated topography. This work demonstrates how surface processes, and not tectonism, can explain the formation of elevated continental margins and that recent methodological developments in the field of low temperature thermochronology are improving our understanding of onshore passive margin development.

  19. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data

    NASA Astrophysics Data System (ADS)

    Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.

    2018-01-01

    This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above. To the west, oceanic subduction of the Bay of Biscay under the North Iberian margin is supported by an upper plate thrust wedge, gravity and magnetic anomalies, and 3D inclined sub-crustal reflections. However, discrepancies remain for the location of continent-ocean transitions in the Bay of Biscay and for the extent of oceanic subduction. The plate-kinematic evolution during the Mesozoic, which involves issues as the timing and total amount of opening, as well as the role of strike-slip drift, is also under debate, discrepancies arising from first-order interpretations of the adjacent oceanic magnetic anomaly record.

  20. Moroccan crustal response to continental drift.

    PubMed

    Kanes, W H; Saadi, M; Ehrlich, E; Alem, A

    1973-06-01

    The formation and development of a zone of spreading beneath the continental crust resulted in the breakup of Pangea and formation of the Atlantic Ocean. The crust of Morocco bears an extremely complete record of the crustal response to this episode of mantle dynamics. Structural and related depositional patterns indicate that the African margin had stabilized by the Middle Jurassic as a marine carbonate environment; that it was dominated by tensile stresses in the early Mesozoic, resulting in two fault systems paralleling the Atlantic and Mediterranean margins and a basin and range structural-depositional style; and that it was affected by late Paleozoic metamorphism and intrusion. Mesozoic events record the latter portion of African involvement in the spreading episode; late Paleozoic thermal orogenesis might reflect the earlier events in the initiation of the spreading center and its development beneath significant continental crust. In that case, more than 100 million years were required for mantle dynamics to break up Pangea.

  1. Alpine inversion of the North African margin and delamination of its continental lithosphere

    NASA Astrophysics Data System (ADS)

    Roure, FrançOis; Casero, Piero; Addoum, Belkacem

    2012-06-01

    This paper aims at summarizing the current extent and architecture of the former Mesozoic passive margin of North Africa from North Algeria in the west up to the Ionian-Calabrian arc and adjacent Mediterranean Ridge in the east. Despite that most paleogeographic models consider that the Eastern Mediterranean Basin as a whole is still underlain by remnants of the Permo-Triassic or a younger Cretaceous Tethyan-Mesogean ocean, the strong similarities documented here in structural styles and timing of inversion between the Saharan Atlas, Sicilian Channel and the Ionian abyssal plain evidence that this portion of the Eastern Mediterranean Basin still belongs to the distal portion of the North African continental margin. A rim of Tethyan ophiolitic units can be also traced more or less continuously from Turkey and Cyprus in the east, in onshore Crete, in the Pindos in Greece and Mirdita in Albania, as well as in the Western Alps, Corsica and the Southern Apennines in the west, supporting the hypothesis that both the Apulia/Adriatic domain and the Eastern Mediterranean Basin still belong to the former southern continental margin of the Tethys. Because there is no clear evidence of crustal-scale fault offsetting the Moho, but more likely a continuous yet folded Moho extending between the foreland and the hinterland beneath the Mediterranean arcs, we propose here a new model of delamination of the continental lithosphere for the Apennines and the Aegean arcs. In this model, only the mantle lithosphere of Apulia and the Eastern Mediterranean is still locally subducted and recycled in the asthenosphere, most if not all the northern portion of the African crust and coeval Moho being currently decoupled from its former, currently delaminated and subducted mantle lithosphere.

  2. Geology of the Río de la Plata and the surrounding areas of Argentina and Uruguay related to the evolution of the Atlantic margin

    NASA Astrophysics Data System (ADS)

    Rossello, Eduardo A.; Veroslavsky, Gerardo; de Santa Ana, Héctor; Rodríguez, Pablo

    2018-04-01

    An integrated study of geological and geophysical data of the Río de la Plata region and its relation to the evolution of the Atlantic passive margin is herein described. This characterization is based on the available geological and geophysical information and on the correlation of the southern end of the best-known Santa Lucía Basin in Uruguay to the Salado Basin in Argentina, and their connection through the Quilmes Trough. Furthermore, a new Meso-Cenozoic depocenter is characterized and identified as Recalada Trough, subparallely aligned to the Quilmes Trough and separated from it by the Magdalena-Montevideo High. Both sedimentary fillings present ENE-WSW trending main axes and reach an average thickness of almost 2000 m. This suggests an evolution from a triple junction where interconnected extensional arms developed, which have had common Mesozoic tectosedimentary histories related to the early opening of the Atlantic Ocean. Based on the geophysical and geological evidence, the previously accepted existence in the Río de la Plata of a first-order structural feature along the international border between Argentina and Uruguay, associated to an ENE-WSW trending tectonic high, identified as Martín García, is unjustified. The tectonic evolution of the Atlantic margin in front of the Río de la Plata estuary is the consequence of a long deformation history starting in the Precambrian up to recent times. Each Precambrian, Paleozoic, Mesozoic and Cenozoic tectonic scenario adds different weak trends on the continental crust, which control the evolution of the sedimentary depocenters. The presence of these tectosedimentary records influence the bathymetric control of the Río de la Plata and the dynamics of the recent estuarine deposits. The Meso-Cenozoic sedimentary infill is estimated to comprise considerable ranges of sandstones and conglomerates associated with faulted blocks of the crystalline basement, with expected petrophysical conditions oscillating in the order of 12%-15% of effective porosity and with expected traps of the stratigraphic and combined (closing against faulting) type, and overlapped by fine sediments with excellent quality as seals. The economic significance of these sedimentary volumes lies in their yet unexplored potential as natural fluid reservoirs (hydrocarbons and groundwater), of great importance due to their strategic position near the large urban areas of Buenos Aires and Montevideo.

  3. The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.; Hashmat, Ajruddin

    2001-10-01

    The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan platform began in the Miocene. Oil and gas traps are mainly in Upper Jurassic carbonates and Lower Cretaceous sandstones across the entire North Afghan block. Upper Jurassic carbonate traps, sealed by evaporites, occur mainly north of the southern limit of the Upper Jurassic salt. Lower Cretaceous traps consist of fine-grained continental sandstones, sealed by Aptian-Albian shales and siltstones. Upper Cretaceous-Palaeocene carbonates, sealed by Palaeogene shales are the main traps along the northern edge of the platform and in the Tajik basin. Almost all the traps are broad anticlines related to Neogene wrench faulting, in this respect, like similar traps along the San Andreas fault. Hydrocarbon sources are in the Mesozoic section. The Lower-Middle Jurassic continental coal-bearing beds provide about 75% of the hydrocarbons; the Callovian-Oxfordian provides about 10%; the Neocomian a meagre 1%, and the Aptian-Albian about 14%. The coal-bearing source rocks decrease very markedly in thickness southwards cross the North Afghan platform. Much of the hydrocarbon generation probably occurred during the Late Cretaceous-Paleogene and migrated to structural traps during Neogene deformation. Since no regional structural dip aids southward hydrocarbon migration, and since the traps are all structural and somewhat small, then there is little chance of very large petroleum fields on the platform. Nevertheless, further studies of the North Afghan platform should be rewarding because: (a) the traps of strike-slip belts are difficult to find without detailed exploration; (b) the troubles of the last 20 years mean that almost no exploration has been done; and, (c) conditions may soon become more favorable. There should be ample potential for oil, and particularly gas, discoveries especially in the northern and western parts of the North Afghan platform.

  4. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, R.

    2013-05-01

    The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and Huayacocotla formations). The Middle to Upper Jurassic La Joya Formation overlies unconformable all continental and marine-marginal successions and older rocks, and records the transgressive basal deposits of the Gulf series, changing upsection to the evaporites and limestone of the Oxfordian Zuloaga Group. Successive intraoceanic subduction zones to the West sparked magmatic arcs whose accretion in the continental margin produced the consolidation of much of the Mexican territory up to the current Pacific margin. Scattered isolated outcrops from the Early Mesozoic succession in central- and northeastern Mexico allow interpretation of tectonic setting and paleogeography associated to each stratigraphic unit, revealing a strongly different geologic evolution than the previously established models, opening a range of new possibilities and areas of opportunity for mining and fossil fuels exploration. However, most of the Triassic-Jurassic rocks or stratigraphic units in northern Mexico lie under many hundreds of meters of a Cretaceous-Cenozoic cover. Their recognition and preliminary evaluation implies the use of indirect techniques like geophysical methods, before drilling or subsurface mining.

  5. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  6. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less

  7. Submarine fans: Characteristics, models, classification, and reservoir potential

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.; Moiola, R. J.

    1988-02-01

    Submarine-fan sequences are important hydrocarbon reservoirs throughout the world. Submarine-fan sequences may be interpreted from bed-thickness trends, turbidite facies associations, log motifs, and seismic-reflection profiles. Turbidites occurring predominantly in channels and lobes (or sheet sands) constitute the major portion of submarine-fan sequences. Thinning- and thickening-upward trends are suggestive of channel and lobe deposition, respectively. Mounded seismic reflections are commonly indicative of lower-fan depositional lobes. Fan models are discussed in terms of modern and ancient fans, attached and detached lobes, highly efficient and poorly efficient systems, and transverse and longitudinal fans. In general, depositional lobes are considered to be attached to feeder channels. Submarine fans can be classified into four types based on their tectonic settings: (1) immature passive-margin fans (North Sea type); (2) mature passive-margin fans (Atlantic type); (3) active-margin fans (Pacific type); and (4) mixed-setting fans. Immature passive-margin fans (e.g., Balder, North Sea), and active-margin fans (e.g., Navy, Pacific Ocean) are usually small, sand-rich, and possess well developed lobes. Mature passive-margin fans (e.g., Amazon, Atlantic Ocean) are large, mud-rich, and do not develop typical lobes. However, sheet sands are common in the lower-fan regions of mature passive-margin fans. Mixed-setting fans display characteristics of either Atlantic type (e.g., Bengal, Bay of Bengal), or Pacific type (Orinoco, Caribbean), or both. Conventional channel-lobe models may not be applicable to fans associated with mature passive margins. Submarine fans develop primarily during periods of low sea level on both active- and passive-margin settings. Consequently, hydrocarbon-bearing fan sequences are associated generally with global lowstands of sea level. Channel-fill sandstones in most tectonic settings are potential reservoirs. Lobes exhibit the most favorable reservoir quality in terms of sand content, lateral continuity, and porosity development. Lower-fan sheet sands may also make good reservoirs. Quartz-rich sandstones of mature passive-margin fans are most likely to preserve depositional porosity, whereas lithic sandstones of active-margin fans may not.

  8. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity. Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.

  9. Mesozoic­ and Cenozoic Tectono-depositional History of the Southwestern Chukchi Borderland: Implications of Pre-Brookian Passive-margin Slope Deposits for the Jurassic Extensional Deformation of the Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ilhan, I.; Coakley, B.

    2016-12-01

    A stratigraphic framework for offshore northwest of Alaska has been developed from multi-channel seismic reflection data and direct seismic-well ties to the late 80's Crackerjack and Popcorn exploration wells along the late Cretaceous middle Brookian unconformity. This unconformity is characterized by downlap, onlap, and bi-directional onlap of the overlying upper Brookian strata in high accommodation, and erosional incision of the underlying lower Brookian strata in low accommodation. This surface links multiple basins across the southwestern Chukchi Borderland, Arctic Ocean. The lower Brookian strata are characterized by pinch out basin geometry in which parallel-continuous reflectors show north-northeasterly progressive onlap of the younger strata onto a lower Cretaceous unconformity. These strata are subdivided into Aptian-Albian and Upper Cretaceous sections along a middle Cretaceous unconformity. The north-northeasterly thinning-by-onlap is consistent across hundreds of kilometers along the southwestern Chukchi Borderland. While this suggests a south-southwesterly regional source of sediment and transport from the Early Cretaceous Arctic Alaska-Chukotka orogens, pre-Brookian clinoform strata, underlying the lower Cretaceous unconformity angularly, have been observed for the first time in southeastern margin of the Chukchi Abyssal Plain. This suggests a change in sediment source and transport direction between the pre-Brookian and the lower Brookian strata. Although the mechanism for the accommodation is not well understood, we interpret the pre-Brookian strata as passive-margin slope deposits due to the fact that we have not observed any evidence for upper crustal tectonic deformation or syn-tectonic "growth" strata in the area. Thus, this implies that depositional history of the southwestern Chukchi Borderland post-dates the accommodation. This interpretation puts a new substantial constrain on the pre-Valanginian clockwise rotation of the Chukchi Borderland away from the East Siberian continental shelf, associated with the antecedent counter-clockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic Islands and extensional deformation of the Amerasia Basin.

  10. Mesozoic Compressional Folds of the Nansha Waters, Southern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Liu, H.; Yao, Y.; Wang, Y.

    2017-12-01

    As an important part of the South China Sea, the southern margin of the South China Sea is fundamental to understand the interaction of the Eurasian, Pacific and Indian-Australian plates and the evolution of the South China Sea. Some multi-channel seismic profiles of the Nansha waters together with published drillings and dredge data were correlated for interpretation. The strata of the study region can be divided into the upper, middle and lower structural layers. The upper and middle structural layers with extensional tectonics are Cenozoic; the lower structural layer suffered compression is Mesozoic. Further structural restoration was done to remove the Cenozoic tectonic influence and to calculate the Mesozoic tectonic compression ratios. The results indicate that two diametrically opposite orientations of compressive stress, S(S)E towards N(N)W orientation and N(N)W towards S(S)E orientation respectively, once existed in the lower structural layer of the study area and shared the same variation trend. The compression ratio values gradually decrease both from the north to the south and from the west to the east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate of the Nansha block drifted northward in Late Jurassic to Late Cretaceous, which had pushed the Nansha block drifted northward until it collided and sutured with the Southern China Margin. Thus the opening of the present-day South China Sea may be related to this suture zone, which was tectonically weakness zone.Key words: Mesozoic compression; structural restoration; proto-South China Sea; Nansha waters; Southern South China Sea; Acknowledgements: The work was granted by the National Natural Science Foundation of China (Grant Nos. 41476039, 91328205, 41576068 and 41606080).

  11. Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Ayuso, Robert A.; Aleinikoff, John N.; Amato, Jeffrey M.; Slack, John F.; Shanks, W.C. Pat

    2014-01-01

    The Nome Complex is a large metamorphic unit that sits along the southern boundary of the Arctic Alaska–Chukotka terrane, the largest of several micro continental fragments of uncertain origin located between the Siberian and Laurentian cratons. The Arctic Alaska–Chukotka terrane moved into its present position during the Mesozoic; its Mesozoic and older movements are central to reconstruction of Arctic tectonic history. Accurate representation of the Arctic Alaska–Chukotka terrane in reconstructions of Late Proterozoic and early Paleozoic paleogeography is hampered by the paucity of information available. Most of the Late Proterozoic to Paleozoic rocks in the Alaska–Chukotka terrane were penetratively deformed and recrystallized during the Mesozoic deformational events; primary features and relationships have been obliterated, and age control is sparse. We use a variety of geochemical, geochronologic, paleontologic, and geologic tools to read through penetrative deformation and reconstruct the protolith sequence of part of the Arctic Alaska–Chukotka terrane, the Nome Complex. We confirm that the protoliths of the Nome Complex were part of the same Late Proterozoic to Devonian continental margin as weakly deformed rocks in the southern and central part of the terrane, the Brooks Range. We show that the protoliths of the Nome Complex represent a carbonate platform (and related rocks) that underwent incipient rifting, probably during the Ordovician, and that the carbonate platform was overrun by an influx of siliciclastic detritus during the Devonian. During early phases of the transition to siliciclastic deposition, restricted basins formed that were the site of sedimentary exhalative base-metal sulfide deposition. Finally, we propose that most of the basement on which the largely Paleozoic sedimentary protolith was deposited was subducted during the Mesozoic.

  12. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    NASA Astrophysics Data System (ADS)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  13. Tectonic and thermal history of the western Serrania del Interior foreland fold and thrust belt and Guarico Basin, north central Venezuela: Implications of new apatite fission track analysis and seismic interpretation

    NASA Astrophysics Data System (ADS)

    Perez de Armas, Jaime Gonzalo

    Structural analysis, interpretation of seismic reflection lines, and apatite fission-track analysis in the Western Serrania del Interior fold and thrust belt and in the Guarico basin of north-central Venezuela indicate that the area underwent Mesozoic and Tertiary-to-Recent deformation. Mesozoic deformation, related to the breakup of Pangea, resulted in the formation of the Espino graben in the southernmost portion of the Guarico basin and in the formation of the Proto-Caribbean lithosphere between the diverging North and South American plates. The northern margin of Venezuela became a northward facing passive margin. Minor normal faults formed in the Guarico basin. The most intense deformation took place in the Neogene when the Leeward Antilles volcanic island arc collided obliquely with South America. The inception of the basal foredeep unconformity in the Late Eocene-Early Oligocene marks the formation of a perisutural basin on top of a buried graben system. It is coeval with minor extension and possible reactivation of Cretaceous normal faults in the Guarico basin. It marks the deepening of the foredeep. Cooling ages derived from apatite fission-tracks suggest that the obduction of the fold and thrust belt in the study area occurred in the Late Oligocene through the Middle Miocene. Field data and seismic interpretations suggest also that contractional deformation began during the Neogene, and specifically during the Miocene. The most surprising results of the detrital apatite fission-track study are the ages acquired in the sedimentary rocks of the easternmost part of the study area in the foreland fold and thrust belt. They indicate an Eocene thermal event. This event may be related to the Eocene NW-SE convergence of the North and South American plates that must have caused the Proto-Caribbean lithosphere to be shortened. This event is not related to the collision of the arc with South America, as the arc was far to the west during the Eocene.

  14. Foreland sedimentary record of Andean mountain building during advancing and retreating subduction

    NASA Astrophysics Data System (ADS)

    Horton, Brian K.

    2016-04-01

    As in many ocean-continent (Andean-type) convergent margins, the South American foreland has long-lived (>50-100 Myr) sedimentary records spanning not only protracted crustal shortening, but also periods of neutral to extensional stress conditions. A regional synthesis of Andean basin histories is complemented by new results from the Mesozoic Neuquén basin system and succeeding Cenozoic foreland system of west-central Argentina (34-36°S) showing (1) a Late Cretaceous shift from backarc extension to retroarc contraction and (2) an anomalous mid-Cenozoic (~40-20 Ma) phase of sustained nondeposition. New detrital zircon U-Pb geochronological results from Jurassic through Neogene clastic deposits constrain exhumation of the evolving Andean magmatic arc, retroarc thrust belt, foreland basement uplifts, and distal eastern craton. Abrupt changes in sediment provenance and distal-to-proximal depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, post-extensional thermal subsidence, punctuated tectonic inversion involving thick- and thin-skinned shortening, alternating phases of erosion and rapid accumulation, and overlapping igneous activity. U-Pb age distributions define the depositional ages of several Cenozoic stratigraphic units and reveal a major late middle Eocene-earliest Miocene (~40-20 Ma) hiatus in the Malargüe foreland basin. This boundary marks an abrupt shift in depositional conditions and sediment sources, from Paleocene-middle Eocene distal fluviolacustrine deposition of sediments from far western volcanic sources (Andean magmatic arc) and subordinate eastern cratonic basement (Permian-Triassic Choiyoi igneous complex) to Miocene-Quaternary proximal fluvial and alluvial-fan deposition of sediments recycled from emerging western sources (Malargüe fold-thrust belt) of Mesozoic basin fill originally derived from basement and magmatic arc sources. Neogene eastward advance of the fold-thrust belt involved thick-skinned basement inversion with geometrically and kinematically linked thin-skinned thrust structures at shallower levels in the eastern foreland, including well-dated late Miocene growth strata. The mid-Cenozoic hiatus potentially signifies nondeposition during passage of a flexural forebulge or nondeposition during neutral to extensional conditions possibly driven by a transient retreating-slab configuration along the western margin of South America. Similar long-lived stratigraphic gaps are commonly observed in other foreland records of continental convergent margins. It is proposed that Andean orogenesis along the South American convergent margin has long been sensitive to variations in subduction dynamics throughout Mesozoic-Cenozoic time, such that shifts in relative convergence and degree of mechanical coupling along the subduction interface (i.e., transitions between advancing versus retreating modes of subduction) have governed fluctuating contractional, extensional, and neutral conditions. Unclear is whether these various modes affected the entire convergent margin simultaneously due to continental-scale changes (e.g., temporal shifts in plate convergence, absolute motion of upper plate, or mantle wedge circulation) or whether parts of the margin behaved independently due to smaller-scale fluctuations (e.g., spatial variations in the age of the subducted plate, buoyant asperities in the downgoing slab, or asthenospheric anomalies).

  15. High-pressure amphibolite facies dynamic metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east- central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.

    1995-01-01

    Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors

  16. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  17. The importance of structural softening for the evolution and architecture of passive margins

    PubMed Central

    Duretz, T.; Petri, B.; Mohn, G.; Schmalholz, S. M.; Schenker, F. L.; Müntener, O.

    2016-01-01

    Lithospheric extension can generate passive margins that bound oceans worldwide. Detailed geological and geophysical studies in present and fossil passive margins have highlighted the complexity of their architecture and their multi-stage deformation history. Previous modeling studies have shown the significant impact of coarse mechanical layering of the lithosphere (2 to 4 layer crust and mantle) on passive margin formation. We built upon these studies and design high-resolution (~100–300 m) thermo-mechanical numerical models that incorporate finer mechanical layering (kilometer scale) mimicking tectonically inherited heterogeneities. During lithospheric extension a variety of extensional structures arises naturally due to (1) structural softening caused by necking of mechanically strong layers and (2) the establishment of a network of weak layers across the deforming multi-layered lithosphere. We argue that structural softening in a multi-layered lithosphere is the main cause for the observed multi-stage evolution and architecture of magma-poor passive margins. PMID:27929057

  18. West margin of North America - A synthesis of recent seismic transects

    USGS Publications Warehouse

    Fuis, G.S.

    1998-01-01

    A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward (seen in rocks east of the San Andreas fault) and cessation of Farallon-plate subduction (seen in rocks west of the San Andreas fault). In northern California, lower-crustal rocks east of the San Andreas fault have oceanic-crustal velocity and thickness and contain patches of high reflectivity. They may represent basaltic rocks magmatically underplated in the wake of the migration of the Mendocino triple junction, or they may represent stalled, subducted fragments of the Farallon/Gorda plate. The latter alternative does not fit the accepted 'slabless window' model for the migration of the triple junction. This lower-crustal layer and the Moho are offset at the San Andreas and Maacama faults. In central California, a similar lower-crustal layer is observed west of the San Andreas fault. West of the continental slope, it is Pacitic oceanic crust, but beneath the continent it may represent either Pacific oceanic crust, stalled, subducted fragments (microplates) of the Farallon plate, or basaltic rocks magmatically underplated during subduction of the Pacific/Farallon ridge or during breakup of the subducted Farallon plate. The transect in southern California is only partly representative of regional structure, as the structure here is 3-dimensional. In the upper crust, a Mesozoic prism has been thrust beneath crystalline basement rocks of the San Gabriel Mountains and Mojave Desert. In the mid-crust, a bright reflective zone is interpreted as a possible 'master' decollement that can be traced from the fold-and-thrust belt of the Los Angeles basin northward to at least the San Andreas fault. A Moho depression beneath the San Gabriel Mountains is consistent with downwelling of lithospheric mantle beneath the Transverse Ranges that appears to be driving the compression across the Transverse Ranges and Los Angeles basin. ?? 1998 Elsevier Science B.V. All rights reserved.

  19. The Misis-Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Unlügenç, Ülvi Can; İnan, Nurdan; Ta ṡli, Kemal

    2004-01-01

    The Mid-Tertiary (Mid-Eocene to earliest Miocene) Misis-Andırın Complex documents tectonic-sedimentary processes affecting the northerly, active margin of the South Tethys (Neotethys) in the easternmost Mediterranean region. Each of three orogenic segments, Misis (in the SW), Andırın (central) and Engizek (in the NE) represent parts of an originally continuous active continental margin. A structurally lower Volcanic-Sedimentary Unit includes Late Cretaceous arc-related extrusives and their Lower Tertiary pelagic cover. This unit is interpreted as an Early Tertiary remnant of the Mesozoic South Tethys. The overlying melange unit is dominated by tectonically brecciated blocks (>100 m across) of Mesozoic neritic limestone that were derived from the Tauride carbonate platform to the north, together with accreted ophiolitic material. The melange matrix comprises polymict debris flows, high- to low-density turbidites and minor hemipelagic sediments. The Misis-Andırın Complex is interpreted as an accretionary prism related to the latest stages of northward subduction of the South Tethys and diachronous continental collision of the Tauride (Eurasian) and Arabian (African) plates during Mid-Eocene to earliest Miocene time. Slivers of Upper Cretaceous oceanic crust and its Early Tertiary pelagic cover were accreted, while blocks of Mesozoic platform carbonates slid from the overriding plate. Tectonic mixing and sedimentary recycling took place within a trench. Subduction culminated in large-scale collapse of the overriding (northern) margin and foundering of vast blocks of neritic carbonate into the trench. A possible cause was rapid roll back of dense downgoing Mesozoic oceanic crust, such that the accretionary wedge taper was extended leading to gravity collapse. Melange formation was terminated by underthrusting of the Arabian plate from the south during earliest Miocene time. Collision was diachronous. In the east (Engizek Range and SE Anatolia) collision generated a Lower Miocene flexural basin infilled with turbidites and a flexural bulge to the south. Miocene turbiditic sediments also covered the former accretionary prism. Further west (Misis Range) the easternmost Mediterranean remained in a pre-collisional setting with northward underthrusting (incipient subduction) along the Cyprus arc. The Lower Miocene basins to the north (Misis and Adana) indicate an extensional (to transtensional) setting. The NE-SW linking segment (Andırın) probably originated as a Mesozoic palaeogeographic offset of the Tauride margin. This was reactivated by strike-slip (and transtension) during Later Tertiary diachronous collision. Related to on-going plate convergence the former accretionary wedge (upper plate) was thrust over the Lower Miocene turbiditic basins in Mid-Late Miocene time. The Plio-Quaternary was dominated by left-lateral strike-slip along the East Anatolian transform fault and also along fault strands cutting the Misis-Andırın Complex.

  20. Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains

    NASA Astrophysics Data System (ADS)

    Llave, Estefanía; Jané, Gloria; Maestro, Adolfo; López-Martínez, Jerónimo; Hernández-Molina, F. Javier; Mink, Sandra

    2018-07-01

    The offshore region of northwestern Iberia offers an opportunity to study the impacts of along-slope processes on the morphology of a glacially influenced continental margin, which has traditionally been conceptually characterised by predominant down-slope sedimentary processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-resolution seismic reflection profile data are integrated and analysed to describe the present-day and recent geomorphological features and to interpret their associated sedimentary processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, interpreted as structural features (escarpments, marginal platforms and related fluid escape structures) and depositional and erosional bedforms developed either by the influence of bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), are identified for the first time in the study area (spanning 90,000 km2 and water depths of 300 m to 5 km). Different types of slope failures and turbidity currents are mainly observed on the upper and lower slopes and along submarine canyons and deep-sea channels. The middle slope morphologies are mostly determined by the actions of bottom currents (North Atlantic Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep Water), which thereby define the margin morphologies and favour the reworking and deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite features are also observed at the foot of the slope due to the influence of the deepest water masses (i.e., the North Atlantic Deep Water and Lower Deep Water). This work shows that the study area is the result of Mesozoic to present-day tectonics (e.g. the marginal platforms and structural highs). Therefore, tectonism constitutes a long-term controlling factor, whereas the climate, sediment supply and bottom currents play key roles in the recent short-term architecture and dynamics. Moreover, the recent predominant along-slope sedimentary processes observed in the studied northwestern Iberian Margin represent snapshots of the progressive stages and mixed deep-water system developments of the marginal platforms on passive margins and may provide information for a predictive model of the evolution of other similar margins.

  1. The role of tectonic inheritance in the morphostructural evolution of the Galicia continental margin and adjacent abyssal plains from digital bathymetric model (DBM) analysis (NW Spain)

    NASA Astrophysics Data System (ADS)

    Maestro, A.; Jané, G.; Llave, E.; López-Martínez, J.; Bohoyo, F.; Druet, M.

    2018-06-01

    The identification of recent major tectonic structures in the Galicia continental margin and adjacent abyssal plains was carried out by means of a quantitative analysis of the linear structures having bathymetric expression on the seabed. It was possible to identify about 5800 lineaments throughout the entire study area, of approximately 271,500 km2. Most lineaments are located in the Charcot and Coruña highs, in the western sector of the Galicia Bank, in the area of the Marginal Platforms and in the northern sector of the margin. Analysis of the lineament orientations shows a predominant NE-SW direction and three relative maximum directions: NW-SE, E-W and N-S. The total length of the lineaments identified is over 44,000 km, with a mode around 5000 m and an average length of about 7800 m. In light of different tectonic studies undertaken in the northwestern margin of the Iberian Peninsula, we establish that the lineaments obtained from analysis of the digital bathymetric model of the Galicia continental margin and adjacent abyssal plains would correspond to fracture systems. In general, the orientation of lineaments corresponds to main faults, tectonic structures following the directions of ancient faults that resulted from late stages of the Variscan orogeny and Mesozoic extension phases related to Triassic rifting and Upper Jurassic to Early Cretaceous opening of the North Atlantic Ocean. The N-S convergence between Eurasian and African plates since Palaeogene times until the Miocene, and NW-SE convergence from Neogene to present, reactivated the Variscan and Mesozoic fault systems and related physiography.

  2. Geochemistry of Mesozoic plutons, southern Death Valley region, California: Insights into the origin of Cordilleran interior magmatism

    USGS Publications Warehouse

    Ramo, O.T.; Calzia, J.P.; Kosunen, P.J.

    2002-01-01

    Mesozoic granitoid plutons in the southern Death Valley region of southeastern California reveal substantial compositional and isotopic diversity for Mesozoic magmatism in the southwestern US Cordillera. Jurassic plutons of the region are mainly calc-alkaline mafic granodiorites with ??Ndi of -5 to -16, 87Sr/86Sri of 0.707-0.726, and 206Pb/204Pbi of 17.5-20.0. Cretaceous granitoids of the region are mainly monzogranites with ??Ndi of -6 to -19, 87Sr/86Sri of 0.707-0.723, and 206Pb/204Pbi of 17.4-18.6. The granitoids were generated by mixing of mantle-derived mafic melts and pre-existing crust - some of the Cretaceous plutons represent melting of Paleoproterozoic crust that, in the southern Death Valley region, is exceptionally heterogeneous. A Cretaceous gabbro on the southern flank of the region has an unuasually juvenile composition (??Ndi -3.2, 87Sr/86Sri 0.7060). Geographic position of the Mesozoic plutons and comparison with Cordillera plutonism in the Mojave Desert show that the Precambrian lithosphere (craton margin) in the eastern Mojave Desert region may consists of two crustal blocks separated by a more juvenile terrane.

  3. Atlantic continental margin of the United States

    USGS Publications Warehouse

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  4. Cenozoic oblique collision of South American and Caribbean plates: New evidence in the Coastal Cordillera of Venezuela and Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, R.C.; Russo, R.M.; Foland, K.A.

    The hinterland of the Caribbean Mts. orogen in Trinidad and Venezuela contains schist and gneiss whole protoliths are wholly or partly of continental provenance. The hinterland lies between the foreland thrust belt and terranes. The terranes are alien to continental South America (SA) and may have proto-Caribbean or Caribbean plate origins. The hinterland rocks were widely thought to come from sediments and granitoids of Mesozoic protolithic ages and to be of Cretaceous metamorphic age. Such rocks are now know to be of at least two or more types, as follows: (1) low grade, protoliths of pre-Mesozoic basement and shelfal covermore » of uncertain age range, inboard locus, Oligocene to mid-Miocene metamorphic ages younging eastward (Caracas, Paria, and Northern Range belts), and (2) higher grade including high P/T, varies protoliths of uncertain age range, Cretaceous and ( )early Paleogene metamorphic ages (Tacagua, Araya, Margarita). The geometry, protoliths, structures, and metamorphic ages of type 1 parautochthoneity and an origin as a thickened wedge of crust-cored passive margin cover. The wedge grew by accretion between about 35 and 20 Ma during oblique transport toward the foreland. The diachroneity of metamorphism implies, as does the timing of foreland deformation, that the wedge evolved in a right-oblique collision between northern SA and terranes moving wholly or partly with the Caribbean plate since the Eocene. Type 2 rocks probably came with the terranes and are products of convergent zone tectonics, either in the proto-Caribbean plate. The hinterland boundaries are brittle thrusts that are out of sequence and imply progressive contraction from mid-Cenozoic to the present.« less

  5. New 40Ar-39Ar dating of Lower Cretaceous basalts at the southern front of the Central High Atlas, Morocco: insights on late Mesozoic tectonics, sedimentation and magmatism

    NASA Astrophysics Data System (ADS)

    Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.

    2018-04-01

    This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.

  6. Methane Metabolizing Microbial Communities in the Cold Seep Areas in the Northern Continental Shelf of South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, F.; Liang, Q.

    2016-12-01

    Marine sediment contains large amount of methane, estimated approximately 500-2500 gigatonnes of dissolved and hydrated methane carbon stored therein, mainly in continental margins. In localized specific areas named cold seeps, hydrocarbon (mainly methane) containing fluids rise to the seafloor, and support oases of ecosystem composed of various microorganisms and faunal assemblages. South China Sea (SCS) is surrounded by passive continental margins in the west and north and convergent margins in the south and east. Thick organic-rich sediments have accumulated in the SCS since the late Mesozoic, which are continuing sources to form gas hydrates in the sediments of SCS. Here, Microbial ecosystems, particularly those involved in methane transformations were investigated in the cold seep areas (Qiongdongnan, Shenhu, and Dongsha) in the northern continental shelf of SCS. Multiple interdisciplinary analytic tools such as stable isotope probing, geochemical analysis, and molecular ecology, were applied for a comprehensive understanding of the microbe mediated methane transformation in this project. A variety of sediments cores have been collected, the geochemical profiles and the associated microbial distribution along the sediment cores were recorded. The major microbial groups involved in the methane transformation in these sediment cores were revealed, known methane producing and oxidizing archaea including Methanosarcinales, anaerobic methane oxidizing groups ANME-1, ANME-2 and their niche preference in the SCS sediments were found. In-depth comparative analysis revealed the presence of SCS-specific archaeal subtypes which probably reflected the evolution and adaptation of these methane metabolizing microbes to the SCS environmental conditions. Our work represents the first comprehensive analysis of the methane metabolizing microbial communities in the cold seep areas along the northern continental shelf of South China Sea, would provide new insight into the mechanisms of methane biotransformation.

  7. Passive margins getting squeezed in the mantle convection vice

    NASA Astrophysics Data System (ADS)

    Yamato, Philippe; Husson, Laurent; Becker, Thorsten W.; Pedoja, Kevin

    2014-05-01

    Passive margins often exhibit uplift, exhumation and tectonic inversion. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. In the same time, the many mountain belts at active margins that accompany this event seem readily witness this increase. However, how that compression increase affects passive margins remains unclear. In order to address this issue, we design a 2D viscous numerical model wherein a lithospheric plate rests above a weaker mantle. It is driven by a mantle conveyor belt, alternatively excited by a lateral downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, representing the cases of free convergence, and collision or slab anchoring, respectively. This distinction changes the upper boundary condition for mantle circulation and, as a consequence, the stress field. Our results show that between these two regimes, the flow pattern transiently evolves from a free-slip convection mode towards a no-slip boundary condition above the upper mantle. In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins provided that upwellings are active. Conversely, if downwellings alone are activated, compression occurs at short distances from the trench and extension prevails elsewhere. These results are supported by Earth-like 3D spherical models that reveal the same pattern, where active upwellings are required to excite passive margins compression. These results support the idea that compression at passive margins, is the response to the underlying mantle flow, that is increasingly resisted by the Cenozoic collisions.

  8. Is the Gop rift oceanic? A reevaluation of the Seychelles-India conjugate margins

    NASA Astrophysics Data System (ADS)

    Guan, Huixin; Werner, Philippe; Geoffroy, Laurent

    2016-04-01

    Recent studies reevaluated the timing and evolution of the breakup process between the Seychelles continental ridge and India, and the relationship between this evolution and mantle melting associated with the Deccan Igneous Province1,2,3. Those studies, mainly based on gravity and seismic refraction surveys, point that the oceanic domain located between the Seychelles and the Laxmi Ridge (here designed as the Carlsberg Basin) is the youngest oceanic domain between India and the Seychelles. To the East of the Laxmi Ridge, the aborted Gop Rift is considered as an older highly magmatic extensional continental system with magmatism, breakup and oceanic spreading being coeval with or even predating the emplacement of the major pulse of the Deccan trapps. This interpretation on the oceanic nature of the Gop Rift conflicts with other extensive surveys based on magnetic and seismic reflection data4 which suggest that the Gop Rift is an extended syn-magmatic continental domain. In our work based (a) on the existing data, (b) on new deep-seismic reflection surveys (already published by Misra5) down to the Moho and underlying mantle and (c) on new concepts on the geometry of volcanic passive margins, we propose a distinct interpretation of the Seychelles-India system. As proposed by former authors6,7, the Indian margin suffered some continental stretching and thinning before the onset of the Deccan traps during the Mesozoic. Thus continental crust thickness cannot be used easily as a proxy of syn-magmatic stretching-thinning processes or even to infer the presence or not of oceanic-type crust based, solely, on crustal thickness. However, some remarkable features appear on some of the deep penetration seismic lines we studied. We illustrate that the whole Seychelles/India system, before the opening of the present-day "Carlsberg Basin" may simply be regarded as a pair of sub-symmetric conjugate volcanic passive margins (VPMs) with inner and outer SDR wedges dipping towards the Gop Rift axis. We propose that the conspicuous buoyant central part of the Gop Rift is likely associated with a continental C-Block as described in a recent paper on conjugated VPMs8, at least in the southern part of the Gop Rift. The crust below the Laxmi basin is probably transitional continental i.e. strongly intruded. West of India and west of the Laxmi Ridge, the transition to the Carlsberg Basin occurs along a clearly-expressed transform fault, not through an extended and thinned continental margin. We reinterpret the whole system based on those observations and propositions, giving some explanations on controversial magnetic anomalies based on similar observations from the southern Atlantic Ocean. 1: Collier et al., 2008. Age of the Seychelles-India break-up. Earth and Planetary Science Letters. 2: Minshull et al., 2008. The relationship between riftingand magmatism in the northeastern Arabian Sea. Nature Geoscience. 3 : Armitage et al., 2010. The importance of rift history for volcanic margin. Nature. 4 : Krishna et al., 2006. Nature of the crust in the Laxmi Basin (14 degrees-20 degrees N), western continental margin of India. Tectonics. 5 : Misra et al., 2015. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology. 6 : Biswas, 1982. Rift basins in the western margin of India and their hydrocarbon prospects. Bull. Am. Assoc. Pet. Geol. 7 : Chatterjee et al., 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Research. 8 : Geoffroy et al., 2015. Volcanic passive margins: anotherway to break up continents. Scientific Reports.

  9. Passive margins getting squeezed in the mantle convection vice

    NASA Astrophysics Data System (ADS)

    Yamato, Philippe; Husson, Laurent; Becker, Thorsten W.; Pedoja, Kevin

    2013-12-01

    margins often exhibit uplift, exhumation, and tectonic inversion. We speculate that the compression in the lithosphere gradually increased during the Cenozoic, as seen in the number of mountain belts found at active margins during that period. Less clear is how that compression increase affects passive margins. In order to address this issue, we design a 2-D viscous numerical model wherein a lithospheric plate rests above a weaker mantle. It is driven by a mantle conveyor belt, alternatively excited by a lateral downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, representing the cases of free convergence, and collision (or slab anchoring), respectively. This distinction changes the upper mechanical boundary condition for mantle circulation and thus, the stress field. Between these two regimes, the flow pattern transiently evolves from a free-slip convection mode toward a no-slip boundary condition above the upper mantle. In the second case, the lithosphere is highly stressed horizontally and deforms. For a constant total driving force, compression increases drastically at passive margins if upwellings are active. Conversely, if downwellings alone are activated, compression occurs at short distances from the trench and extension prevails elsewhere. These results are supported by Earth-like models that reveal the same pattern, where active upwellings are required to excite passive margins compression. Our results substantiate the idea that compression at passive margins is in response to the underlying mantle flow that is increasingly resisted by the Cenozoic collisions.

  10. The Eastern Sardinian Margin (Tyrrhenian Sea, Western Mediterranean) : a key area to study the rifting and post-breakup evolution of a back-arc passive continental margin

    NASA Astrophysics Data System (ADS)

    Gaullier, Virginie; Chanier, Frank; Vendeville, Bruno; Maillard, Agnès; Thinon, Isabelle; Graveleau, Fabien; Lofi, Johanna; Sage, Françoise

    2016-04-01

    The Eastern Sardinian passive continental margin formed during the opening of the Tyrrhenian Sea, which is a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system (middle Miocene to Pliocene). Up to now, rifting in this key area was considered to be pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.32 Ma). We use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantify vertical and horizontal movements. On this young, highly-segmented margin, the Messinian Erosion Surface and the Upper and Mobile Units are systematically associated, respectively, to basement highs and deeper basins, showing that a rifted deep-sea domain already existed by Messinian times, therefore a major pre-MSC rifting episode occurred across the entire domain. Data show that there are no signs of Messinian syn-rift sediments, hence no evidence for rifting after Late Tortonian times. Moreover, because salt tectonics creates fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined to distinguish the effects of crustal tectonics (rifting) and salt tectonics. We also precise that rifting is clearly diachronous from the upper margin (East-Sardinia Basin) to the lower margin (Cornaglia Terrace) with two unconformities, attributed respectively to the necking and to the lithospheric breakup unconformities. The onshore part of the upper margin has been recently investigated in order to characterize the large crustal faults affecting the Mesozoic series (geometry, kinematics and chronology) and to decipher the role of the structural inheritance and of the early rifting. Seaward, we also try to constrain the architecture and timing of the continent-ocean transition, between the hyper-extended continental crust and the first oceanic crust. Widespread post-breakup deformation also occurred during the Pliocene. Some Pliocene vertical movements have been evidenced by discovering localized gravity gliding of the salt and its Late Messinian (UU) and Early Pliocene overburden. To the South, crustal-scale southward tilting triggered along-strike gravity gliding of salt and cover recorded by upslope extension and downslope shortening. To the North, East of the Baronie Ridge, there was some post-salt crustal activity along a narrow N-S basement trough, bounded by crustal faults. The salt geometry would suggest that nothing happened after Messinian times, but some structural features (confirmed by analogue modelling) show that basement fault slip was accommodated by lateral salt flow, which thinned upslope and thickened downslope, while the overlying sediments remained sub-horizontal. Along the inner domain of Eastern Sardinian margin, the post-rift deformation style greatly varies. Compressional structures (reverse faults and folds) are observed both onshore and offshore while post-rift extensional structures are mainly identified offshore. Such late deformation could be attributed to mechanisms acting alone or combined, such as : i. the reactivation of the margin, as already described for the Ligurian, Algerian or South-Balearic margins due to the Eurasian-African convergence ; 2. the Zanclean reflooding and the resulting water overload on the elastic lithosphere ; 3. an episodic mantle upwelling.

  11. Evolution of passive continental margins and initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1982-05-01

    Although the initiation of subduction is a key element in plate tectonic schemes for evolution of lithospheric plates, the underlying mechanisms are not well understood. Plate rupture is an important aspect of the process of creating a new subduction zone, as stresses of the order of kilobars are required to fracture oceanic lithosphere1. Therefore initiation of subduction could take place preferentially at pre-existing weakness zones or in regions where the lithosphere is prestressed. As such, transform faults2,3 and passive margins4,5 where the lithosphere is downflexed under the influence of sediment loading have been suggested. From a model study of passive margin evolution we found that ageing of passive margins alone does not make them more suitable sites for initiation of subduction. However, extensive sediment loading on young lithosphere might be an effective mechanism for closure of small ocean basins.

  12. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  13. Cenozoic magmatism throughout east Africa resulting from impact of a single plume

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Sleep, N. H.

    1998-10-01

    The geology of northern and central Africa is characterized by broad plateaux, narrower swells and volcanism occurring from ~45Myr ago to the present. The greatest magma volumes occur on the >1,000-km-wide Ethiopian and east African plateaux, which are transected by the Red Sea, Gulf of Aden and east African rift systems, active since the late Oligocene epoch. Evidence for one or more mantle plumes having impinged beneath the plateaux comes from the dynamic compensation inferred from gravity studies, the generally small degrees of extension observed and the geochemistry of voluminous eruptive products. Here we present a model of a single large plume impinging beneath the Ethiopian plateau that takes into account lateral flow and ponding of plume material in pre-existing zones of lithospheric thinning. We show that this single plume can explain the distribution and timing of magmatism and uplift throughout east Africa. The thin lithosphere beneath the Mesozoic-Palaeogene rifts and passive margins of Africa and Arabia guides the lateral flow of plume material west to the Cameroon volcanic line and south to the Comoros Islands. Our results demonstrate the strong control that the lithosphere exerts on the spatial distribution of plume-related melting and magmatism.

  14. Collapse of passive margins by lithospheric damage and plunging grain size

    NASA Astrophysics Data System (ADS)

    Mulyukova, Elvira; Bercovici, David

    2018-02-01

    The collapse of passive margins has been proposed as a possible mechanism for the spontaneous initiation of subduction. In order for a new trench to form at the junction between oceanic and continental plates, the cold and stiff oceanic lithosphere must be weakened sufficiently to deform at tectonic rates. Such rates are especially hard to attain in the cold ductile portion of the lithosphere, at which the mantle lithosphere reaches peak strength. The amount of weakening required for the lithosphere to deform in this tectonic setting is dictated by the available stress. Stress in a cooling passive margin increases with time (e.g., due to ridge push), and is augmented by stresses present in the lithosphere at the onset of rifting (e.g., due to drag from underlying mantle flow). Increasing stress has the potential to weaken the ductile portion of the lithosphere by dislocation creep, or by decreasing grain size in conjunction with a grain-size sensitive rheology like diffusion creep. While the increasing stress acts to weaken the lithosphere, the decreasing temperature acts to stiffen it, and the dominance of one effect or the other determines whether the margin might weaken and collapse. Here, we present a model of the thermal and mechanical evolution of a passive margin, wherein we predict formation of a weak shear zone that spans a significant depth-range of the ductile portion of the lithosphere. Stiffening due to cooling is offset by weakening due to grain size reduction, driven by the combination of imposed stresses and grain damage. Weakening via grain damage is modest when ridge push is the only source of stress in the lithosphere, making the collapse of a passive margin unlikely in this scenario. However, adding even a small stress-contribution from mantle drag results in damage and weakening of a significantly larger portion of the lithosphere. We posit that rapid grain size reduction in the ductile portion of the lithosphere can enable, or at least significantly facilitate, the collapse of a passive margin and initiate a new subduction zone. We use this model to estimate the conditions for passive margin collapse for modern and ancient Earth, as well as for Venus.

  15. The Mesozoic and Palaeozoic granitoids of north-western New Guinea

    NASA Astrophysics Data System (ADS)

    Jost, Benjamin M.; Webb, Max; White, Lloyd T.

    2018-07-01

    A large portion of the Bird's Head Peninsula of NW New Guinea is an inlier that reveals the pre-Cenozoic geological history of the northern margin of eastern Gondwana. The peninsula is dominated by a regional basement high exposing Gondwanan ('Australian') Palaeozoic metasediments intruded by Palaeozoic and Mesozoic granitoids. Here, we present the first comprehensive study of these granitoids, including field and petrographic descriptions, bulk rock geochemistry, and U-Pb zircon age data. We further revise and update previous subdivisions of granitoids in the area. Most granitoids were emplaced as small to medium-scale intrusions during two episodes in the Devonian-Carboniferous and the Late Permian-Triassic, separated by a period of apparent magmatic quiescence. The oldest rocks went unrecognised until this study, likely due to the younger intrusive events resetting the K-Ar isotopic system used in previous studies. Most of the Palaeozoic and Mesozoic granitoids are peraluminous and in large parts derived from partial melts of the country rock. This is corroborated by local migmatites and country rock xenoliths. Although rare, metaluminous and mafic rocks show that partial melts of mantle-derived material played a minor role in granitoid petrogenesis, especially during the Permian-Triassic. The Devonian-Carboniferous granitoids and associated volcanics are locally restricted, whereas the Permian-Triassic intrusions are found across NW New Guinea and further afield. The latter were likely part of an extensive active continental margin above a subduction system spanning the length of what is now New Guinea and potentially extending southward through eastern Australia and Antarctica.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, E.G.

    Throughout the Mesozoic, shallow-water carbonate ramps and platforms of the circumequatorial Tethyan Ocean were characterized by extensive development of reef ecosystems, especially during times of eustatic highstand, expansion of the Tropics, and warm equable global climates. The greatest reef development was north of the paleoequator in the Caribbean and Indo-Mediterranean provinces. These reefs and associated debris facies comprise major petroleum reservoirs, in some cases with remarkable porosity and permeability normally attributed to a combination of sedimentologic, tectonic, and diagenetic factors. The biological evolution of Mesozoic reefs also has had an important, and in some cases dominant, role in determining reservoirmore » quality. Three major biological factors are critical to mesozoic reef-associated reservoir development: (1) the replacement/competitive displacement of coral-algal dominated, highly integrated reef ecosystems by loosely packed rudistid bivalve-dominated reef ecosystems in the Barremian-Albian; (2) the evolution of dominantly aragonitic, highly porous shells among framework-building rudistids in the middle and Late Cretaceous; and (3) competitive strategies among rudistids that effectively prevented widespread biological binding of Cretaceous reefs, leading to the production of large marginal fans that comprise major carbonate reservoirs. Detailed studies of these evolutionary trends in reef/framework development and of the distribution of different groups of bioconstructors on reefs lead to predictive modeling for primary and secondary porosity development in mesozoic carbonate reservoirs. The competitive displacement of coral-algal communities by rudistids on Cretaceous reefs was so effective that, even after Maastrichtian mass extinction of rudistids and other important groups comprising Mesozoic reef/carbonate platform ecosystems, coral-algal reef-building communities did not evolve again until the late Eocene.« less

  17. Extreme Mesozoic crustal thinning in the Eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough)

    NASA Astrophysics Data System (ADS)

    Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.

    2017-12-01

    Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.

  18. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  19. Estimating long-wavelength dynamic topographic change of passive continental margins since the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Hassan, Rakib; Gurnis, Michael; Flament, Nicolas; Williams, Simon

    2017-04-01

    The influence of mantle convection on dynamic topographic change along continental margins is difficult to unravel, because their stratigraphic record is dominated by tectonic subsidence caused by rifting. Yet, dynamic topography can potentially introduce significant depth anomalies along passive margins, influencing their water depth, sedimentary environments and geohistory. Here we follow a three-fold approach to estimate changes in dynamic topography along both continental interiors and passive margins based on a set of seven global mantle convection models. These models include different methodologies (forward and hybrid backward-forward methods), different plate reconstructions and alternative mantle rheologies. We demonstrate that a geodynamic forward model that includes adiabatic heating in addition to internal heating from radiogenic sources, and a mantle viscosity profile with a gradual increase in viscosity below the mantle transition zone, provides a greatly improved match to the spectral range of residual topography end-members as compared with previous models at very long wavelengths (spherical degrees 2-3). We combine global sea level estimates with predicted surface dynamic topography to evaluate the match between predicted continental flooding patterns and published paleo-coastlines by comparing predicted versus geologically reconstructed land fractions and spatial overlaps of flooded regions for individual continents since 140 Ma. Modelled versus geologically reconstructed land fractions match within 10% for most models, and the spatial overlaps of inundated regions are mostly between 85% and 100% for the Cenozoic, dropping to about 75-100% in the Cretaceous. We categorise the evolution of modelled dynamic topography in both continental interiors and along passive margins using cluster analysis to investigate how clusters of similar dynamic topography time series are distributed spatially. A subdivision of four clusters is found to best reveal end-members of dynamic topography evolution along passive margins and their hinterlands, differentiating topographic stability, long-term pronounced subsidence, initial stability over a dynamic high followed by moderate subsidence and regions that are relatively proximal to subduction zones with varied dynamic topography histories. Along passive continental margins the most commonly observed process is a gradual move from dynamic highs towards lows during the fragmentation of Pangea, reflecting that many passive margins now overly slabs sinking in the lower mantle. Our best-fit model results in up to 500 ±150 m of total dynamic subsidence of continental interiors while along passive margins the maximum predicted dynamic topographic change over 140 million years is about 350 ±150 m of subsidence. Models with plumes exhibit clusters of transient passive margin uplift of about 200 ±200m. The good overall match between predicted dynamic topography and geologically mapped paleo-coastlines makes a convincing case that mantle-driven topographic change is a critical component of relative sea level change, and one of the main driving forces generating the observed geometries and timings of large-scale shifts in paleo-coastlines.

  20. The age and degree of diachroneity of India-Asia collision determined from the sedimentary record: a comparison of new evidence from the east (Tibet) and west (Ladakh) of the orogen

    NASA Astrophysics Data System (ADS)

    Najman, Y.; Boudagher-Fadel, M.; Godin, L.; Parrish, R.; Bown, P.; Garzanti, E.; Horstwood, M.; Jenks, D.

    2009-12-01

    The age and degree of diachroneity of India-Asia collision is critical to construction of models of orogenesis and to understanding the causes of spatial variations in Himalayan evolution along strike. The age of collision is quoted between 65-34 Ma (Jaeger et al 1989; Aitchison et al 2007) and the degree of dichroneity is considered negligible (Searle et al 1997) to substantial (Rowley 1998). We studied the youngest Tethyan succession in the east (Tingri, Tibet) and west (Ladakh, India) of the orogen and used two approaches to date collision: 1) timing of closure of Tethys, by dating the youngest marine strata and 2) first evidence of Asian detritus deposited on the Indian plate, using U-Pb ages of detrital zircon to assess provenance. Both these approaches provide a minimum age to collision. In Ladakh, Indian plate passive margin limestones of the Paleocene Dibling Fm are overlain by the youngest marine facies of the region, the marine Kong Fm and fluvio-deltaic Chulung La Fm (Garzanti et al 1987). The age of the Kong and Chulung La Formations is disputed, from P5/6 (Fuchs & Willems 1990) to P8 (Garzanti et al 1987) the discrepancy possibly the result of research at different locations. Provenance is considered to be either ophiolitic from the Indian plate (Fuchs & Willems 1990) or containing detritus from the Trans-Himalayan arc of the Asian plate (Garzanti et al 1987; Critelli & Garzanti 1994). Our samples from the Kong Fm contained planktic foraminifera indicating a Middle to Early P6 age (54-56 Ma) and larger benthic foraminifera indicating Middle SBZ8 age (53-54 Ma). U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Fms shows a primary provenance from the Asian plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate by 54 Ma. In Tingri, Tibet, Indian plate passive margin limestones of the Zephure Shan Fm extend to the early Eocene, overlain by marine facies of the Pengqu Fm. The youngest marine facies have been dated at 34 Ma (Wang et al. 2002), but this age is disputed by other workers who assign an age of 50 Ma (Zhu et al. 2005). Our new biostratigraphic data from the Pengqu Fm show that calcareous nannofossil species are compatible with an age corresponding to Zones NP11-12 (50.6-53.5 Ma). The dominant population of detrital zircons have Cretaceous-Paleocene ages, derived from the Asian plate, thus indicating that contact between India and Asia had occurred by this time. We therefore conclude that India-Asia collision occurred by 54 Ma in the west, with only extremely limited, if any diachroneity eastward.

  1. Lithosphere structure and subsidence evolution of the conjugate S-African and Argentine margins

    NASA Astrophysics Data System (ADS)

    Dressel, Ingo; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Götze, Hans-Jürgen; Franke, Dieter

    2016-04-01

    The bathymetric evolution of the South Atlantic passive continental margins is a matter of debate. Though it is commonly accepted that passive margins experience thermal subsidence as a result of lithospheric cooling as well as load induced subsidence in response to sediment deposition it is disputed if the South Atlantic passive margins were affected by additional processes affecting the subsidence history after continental breakup. We present a subsidence analysis along the SW African margin and offshore Argentina and restore paleobathymetries to assess the subsidence evolution of the margin. These results are discussed with respect to mechanisms behind margin evolution. Therefore, we use available information about the lithosphere-scale present-day structural configuration of these margins as a starting point for the subsidence analysis. A multi 1D backward modelling method is applied to separate individual subsidence components such as the thermal- as well as the load induced subsidence and to restore paleobathymetries for the conjugate margins. The comparison of the restored paleobathymetries shows that the conjugate margins evolve differently: Continuous subsidence is obtained offshore Argentina whereas the subsidence history of the SW African margin is interrupted by phases of uplift. This differing results for both margins correlate also with different structural configurations of the subcrustal mantle. In the light of these results we discuss possible implications for uplift mechanisms.

  2. Porphyry deposits of the Canadian Cordillera

    USGS Publications Warehouse

    McMillan, W.J.; Thompson, J.F.H.; Hart, C.J.R.; Johnston, S.T.

    1996-01-01

    Porphyry deposits are intrusion-related, large tonnage low grade mineral deposits with metal assemblages that may include all or some of copper, molybdenum, gold and silver. The genesis of these deposits is related to the emplacement of intermediate to felsic, hypabyssal, generally porphyritic intrusions that are commonly formed at convergent plate margins. Porphyry deposits of the Canadian Cordillera occur in association with two distinctive intrusive suites: calc-alkalic and alkalic. In the Canadian Cordillera, these deposits formed during two separate time periods: Late Triassic to Middle Jurassic (early Mesozoic), and Late Cretaceous to Eocene (Mesozoic-Cenozoic). Deposits of the early Mesozoic period occur in at least three different arc terranes (Wrangellia, Stikinia and Quesnellia) with a single deposit occurring in the oceanic assemblage of the Cache Creek terrane. These terranes were located outboard from continental North America during formation of most of their contained early Mesozoic porphyry deposits. Some of the deposits of this early period may have been emplaced during terrane collisions. Metal assemblages in deposits of the calc-alkalic suite include Mo-Cu (Brenda), Cu-Mo (Highland Valley, Gibraltar), Cu-Mo-Au-Ag (Island Copper, Schaft Creek) and Cu-Au (Kemess, Kerr).The alkalic suite deposits are characterized by a Cu-Au assemblage (Copper Mountain, Afton-Ajax, Mt. Milligan, Mount Polley, Galore Creek). Although silver is recovered from calc-alkalic and alkalic porphyry copper mining operations, silver data are seldom included in the published reserve figures. Those available are in the range of 1-2 grams per tonne (g??t-1). Alkalic suite deposits are restricted to the early Mesozoic and display distinctive petrology, alteration and mineralization that suggest a similar tectonic setting for both Quesnellia and Stikinia in Early Jurassic time. The younger deposits, late Mesozoic to Cenozoic in age, formed in an intracontinental setting, after the outboard host arc and related terranes accreted to the western margin of North America. These deposits are interpreted to occur in continental arc settings, and individual deposits are hosted by a variety of older country rocks. These younger deposits also show a spectrum of metal associations: Cu-Mo (Huckleberry, Berg), Cu-Au (-Mo) (Bell, Granisle, Fish Lake, Casino), Mo (Endako, Boss Mountain, Kit-sault, Quartz Hill), Mo-W (Logtung), Au-W (Dublin Gulch) and Au (Ft. Knox). There may be a continuum between Mo, Mo-W, Au-Mo-W and Au deposits. The distribution and timing of these post-accretion deposits likely reflect major crustal structures and subduction geometry. Cordilleran porphyry metallic deposits show the full range of morphological and depth relationships found in porphyry deposits worldwide. In addition, the Cordillera contains numerous alkalic suite deposits, which are rare worldwide: the unusual, possibly syntectonic Gibraltar deposit; and end-member gold-rich granite-hosted deposits, such as Ft. Knox (Alaska).

  3. Genesis of giant promontories during two-stage continental breakup and implications for post-Rodinia circum-Arctic margins (Invited)

    NASA Astrophysics Data System (ADS)

    Bradley, D. C.

    2013-12-01

    Giant promontories are a seldom-noted feature of the present-day population of passive margins. A number of them formed during the breakup of Pangea: the South Tasman Rise and Naturaliste Plateau off Australia, the Grand Banks and Florida off North America, the Falkland Plateau off South America, and the Horn of Africa. Giant promontories protrude hundreds of kms seaward from a corner of the continent and are not to be confused with the low-amplitude irregularies that occur at intervals along most passive margins. Giant promontories that might have formed during the breakup of the earlier supercontinents, Rodinia and Nuna, have not been recognized. Properties of the modern examples suggest some identifying criteria. They are cored by continental crust that was created or last reworked during the previous collisional cycle. Judging from the examples listed, the early histories of the two flanks of a promontory will differ because separate continents or microcontinents drift away in different directions at different times. For example, the eastern flank of the >500-km-long South Tasman Rise formed when the Lord Howe Rise separated from Australia at ca. 85 Ma, whereas the western flank formed when Antarctica moved past at ca. 65-33 Ma. (Age spans of various passive margins quoted herein are from Bradley, 2008, Earth Sci. Rev. 91:1-26.) During ocean closure (typically, arc-passive margin collision), a promontory may be exposed to earlier and more intense tectonism than elsewhere along the margin. Unique events are also possible. For example, the tip of Florida experienced a glancing collision with Cuba during the Paleogene, an event that was not felt elsewhere along the Gulf or Atlantic margins of the southeastern U.S. Giant promontories are unlikely to have deep lithospheric keels and may be prone to being dislodged and rotated during collision. Thus, what starts as a promontory may end up as a microcontinent in an orogen. The case for giant promontories in the circum-Arctic has not been thoroughly assessed, but the shape of Laurentia and the ages of its Paleozoic margins suggest that promontories dating from breakup of Rodinia may have jutted from its NE and (or) NW corners. The NE corner lies at the junction of an eastern (Caledonian) passive margin that existed from ca. 815 to 444 Ma and a northern (Innuitian) passive margin that existed from ca. 620 to 444 Ma. The hypothetical NE promontory would have attached to northern East Greenland where early Paleozoic passive-margin deposits are notably lacking. Nearby remnants of the NE promontory might include the Yermak plateau off North Greenland, the Morris Jessup plateau off Svalbard, or parts of Svalbard itself. A hypothetical NW Laurentian promontory would have attached somewhere between Banks Island in the Canadian Arctic, where the 620-444 Ma Innuitian margin is truncated along the present-day rifted margin, and east-central Alaska, site of the most northerly rocks that can be confidently placed along the ca. 710-385 Ma Cordilleran passive margin. Remnants of this promontory might include older rocks of the Ruby terrane and (or) the northeastern Brooks Range, both in Alaska. Either hypothetical promontory would have been involved in orogenesis associated with the postulated extrusion of terranes through the gap between Laurentia and Siberia.

  4. Three-Dimensional Seismic Imaging of Eastern Russia

    DTIC Science & Technology

    2008-09-01

    small blocks or microplates within the ancient suture and present-day plate boundary zones. We assembled catalog picks from ~13,000 events and ~100... oceanic fragments that have been disrupted, deformed, and juxtaposed. The Kolyma-Omolon superterrane consists of a number of cratonal (Omolon...Prikolyma), continental margin (Omulevka), island arc (Alazeya, Khetachan), and oceanic terranes of diverse ages that amalgamated in the Early Mesozoic

  5. Microbial communities in methane seep sediments along US Atlantic Margin are structured by organic matter and seepage dynamics

    NASA Astrophysics Data System (ADS)

    Graw, M. F.; Pohlman, J.; Treude, T.; Ruppel, C. D.; Colwell, F. S.

    2016-12-01

    Methane seeps are dynamic environments on continental margins where subsurface methane reaches the ocean. Microbial communities play a critical role in carbon cycling within seep sediments via organic carbon degradation, methane production, and anaerobic oxidation of methane (AOM), which consumes 20-80% of methane in seep sediments. However, biogeochemical controls on microbial community structure at seeps on a margin-wide scale remain unclear. The passive US Atlantic Margin (USAM) has been identified as a region of active methane seepage. Passive margin seeps have traditionally been understudied relative to seeps on active margins. Passive margins exhibit large cross-margin variability in organic carbon deposition and are anticipated to have divergent seep dynamics from active margins. Thus, the USAM offers a unique opportunity to investigate controls on microbial communities in seep sediments. We undertook analysis of microbial communities inhabiting seep sediments at 6 biogeochemically distinct sites along the USAM. Microbiological samples were co-located with measurements of sediment geochemistry and AOM and sulfate reduction rates. Illumina sequencing of the 16S rRNA gene, using both universal (83 samples) and archaeal-specific (64 samples) primers, and the mcrA gene (18 samples) identified 44 bacterial phyla and 7 archaeal phyla. Seeps in canyons and on open slope, likely representing high and low organic content sediments, hosted distinct communities; the former was dominated by ammonia-oxidizing Marine Group I Thaumarchaeota and the latter by mixotrophic Hadesarchaeota. Seep stability also impacted microbial community structure, and in particular the establishment of an AOM community rather than a Bathyarchaeota-dominated community. These findings contribute to understanding how microbial communities are structured within methane seep sediments and pave the way for investigating broad differences in carbon cycling between seeps on passive and active margins.

  6. Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo-Alaskan margin

    USGS Publications Warehouse

    Hults, Chad P.; Wilson, Frederic H.; Donelick, Raymond A.; O'Sullivan, Paul B.

    2013-01-01

    The provenance of Jurassic to Cretaceous flysch along the northern boundary of the allochthonous Wrangellia composite terrane, exposed from the Lake Clark region of southwest Alaska to the Nutzotin Mountains in eastern Alaska, suggests that the flysch can be divided into two belts having different sources. On the north, the Kahiltna flysch and Kuskokwim Group overlie and were derived from the Farwell and Yukon-Tanana terranes, as well as smaller related terranes that were part of the paleo-Alaskan margin. Paleocurrent indicators for these two units suggest that they derived sediment from the north and west. Sandstones are predominantly lithic wacke that contain abundant quartz grains, lithic rock fragments, and detrital mica, which suggest that these rocks were derived from recycled orogen and arc sources. Conglomerates contain limestone clasts that have fossils matching terranes that made up the paleo-Alaskan margin. In contrast, flysch units on the south overlie and were derived from the Wrangellia composite terrane. Paleocurrent indicators for these units suggest that they derived sediment from the south. Sandstones are predominantly feldspathic wackes that contain abundant plagioclase grains and volcanic rock fragments, which suggest these rocks were derived from an arc. Clast compositions in conglomerate south of the boundary match rock types of the Wrangellia composite terrane. The distributions of detrital zircon ages also differentiate the flysch units. Flysch units on the north average 54% Mesozoic, 14% Paleozoic, and 32% Precambrian detrital zircons, reflecting derivation from the older Yukon-Tanana, Farewell, and other terranes that made up the paleo-Alaskan margin. In comparison, flysch units on the south average 94% Mesozoic, 1% Paleozoic, and 5% Precambrian zircons, which are consistent with derivation from the Mesozoic oceanic magmatic arc rocks in the Wrangellia composite terrane. In particular, the flysch units on the south contain a large proportion of zircons ranging from 135 to 175 Ma, corresponding to the age of the Chitina magmatic arc in the Wrangellia terrane and the plutons of the Peninsular terrane, which are part of the Wrangellia composite terrane. Flysch units on the north do not contain significant numbers of zircons in this age range. The flysch overlying the Wrangellia composite terrane apparently does not contain detritus derived from rocks of the paleo-Alaska margin, and the flysch overlying the paleo-Alaskan margin apparently does not contain detritus derived from the Wrangellia composite terrane. The provenance difference between the two belts helps to constrain the location of the northern boundary of the Wrangellia composite terrane. Geophysical models place a deep, through-going, crustal-scale suture zone in the area between the two flysch belts. The difference in the provenance of the two belts supports this interpretation. The youngest flysch is Late Cretaceous in age, and structural disruption of the flysch units is constrained to the Late Cretaceous, so it appears that the Wrangellia composite terrane was not near the paleo-Alaskan margin until the Late Cretaceous.

  7. Geochronological Constraints on the Exhumation and Emplacement of Subcontinental Lithospheric Mantle Peridotites in the Westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Garrido, Carlos J.; Hidas, Károly; Marchesi, Claudio; Varas-Reus, María Isabel; Booth-Rea, Guillermo

    2017-04-01

    Exhumation of subcontinental mantle peridotite in the Western Mediterranean has been attributed to different tectonic processes including pure extension, transpression, or alternating contractive and extensional processes related with continental subduction followed by extension, before final their contractive intracrustal emplacement. Any model trying to explain the exhumation and emplacement of subcontinental lithospheric mantle peridotites in the westernmost Mediterranean should take into account the available geochronological constraints, as well as the petrological and geochemical processes that lead to internal tectono-magmatic zoning so characteristic of the Betic and Rif orogenic peridotites. Different studies have suggested a Hercynian, Cenozoic-Mesozoic or an Alpine age for the late tectono-magmatic evolution and intra-crustal emplacement of Betic-Rif peridotites. The pervasive presence of Mesozoic U-Pb zircon ages in Ronda UHP and HP garnet pyroxenites does not support a Hercynian age for the intracrustal emplacement of the peridotite. A hyper-extended margin setting for is in good agreement with the Jurassic extensional event that pervasively affected ALKAPECA terrains (i.e. the Alboran, Kabylides, Peloritani, and Calabria domains) in the western Mediterranean due to the opening of the Piemonte-Ligurian Ocean. However, a Jurassic age and a passive margin tectonic setting do not account, among other observations, for the late Miocene thermochronological ages recorded in zircons rims (U-Pb) and garnets (Lu-Hf) in garnet pyroxenites from the Betic-Rif peridotites, the pervasive Miocene resetting of U-Pb zircon and monazite ages in the overlying Jubrique crustal section, the supra-subduction radiogenic signature of late pyroxenite intrusive dikes in the Ronda peridotite, and the arc tholeiitic affinity of late mantle-derived, gabbroic dykes intruding in the Ronda and Ojen plagioclase lherzolites. These data are more consistent with a supra-subduction backarc setting for the Paleocene Alpine evolution of the Alboran peridotite massifs due to slab rollback in the westernmost Mediterranean. Several geodynamic models have proposed initial south directed migration of the orogenic arc in a more easterly position (south of the Balearic Islands) during the Paleogene before the closure of the Paleo-Tethys Ocean and collision with the Algerian margin. This early emplacement for the Ronda Peridotite (approx. 25-23 Ma) in such an easterly position would provide a common origin for the peridotite bodies found in the Kabylies in Algeria, and in the Betics-Rif. We propose that after thinning and extension in a back-arc setting recorded in the Ronda spinel tectonite domain and the recrystallization front, the final Miocene exhumation of Ronda Peridotite is associated with early folding and later but probably synkinematic shearing of the SCLM in a contractive geodynamic setting. This process is recorded in the low-pressure plagioclase tectonite domain of the Ronda peridotite and the supra-subduction bonititic affinity of late intrusive pyroxenites.

  8. Passive margins getting squeezed in the mantle convection vice

    NASA Astrophysics Data System (ADS)

    Husson, Laurent; Yamato, Philippe; Becker, Thorsten; Pedoja, Kevin

    2013-04-01

    Quaternary coastal geomorphology reveals that passive margins underwent wholesale uplift at least during the glacial cycle. In addition, these not-so-passive margins often exhibit long term exhumation and tectonic inversion, which suggest that compression and tectonic shortening could be the mechanism that triggers their overall uplift. We speculate that the compression in the lithosphere gradually increased during the Cenozoic. The many mountain belts at active margins that accompany this event readily witness this increase. Less clear is how that compression increase affects passive margins. In order to address this issue, we design minimalist 2D viscous models to quantify the impact of plate collision on the stress regime. In these models, a sluggish plate is disposed on a less viscous mantle. It is driven by a "mantle conveyor belt" alternatively excited by lateral shear stresses that represent a downwelling on one side, an upwelling on the other side, or both simultaneously. The lateral edges of the plate are either free or fixed, respectively representing the cases of free convergence and collision. In practice, it dramatically changes the upper boundary condition for mantle circulation and subsequently, for the stress field. The flow pattern transiently evolves almost between two end-members, starting from a situation close to a Couette flow to a pattern that looks like a Poiseuille flow with an almost null velocity at the surface (though in the models, the horizontal velocity at the surface is not strictly null, as the lithosphere deforms). In the second case, the lithosphere is highly stressed horizontally and deforms. For an equivalent bulk driving force, compression increases drastically at passive margins if upwellings are active because they push plates towards the collision. Conversely, if only downwellings are activated, compression occurs on one half of the plate and extension on the other half, because only the downwelling is pulling the plate. Thus, active upwellings underneath oceanic plates are required to explain compression at passive margins. This conclusion is corroborated by "real-Earth" 3D spherical models, wherein the flow is alternatively driven by density anomalies inferred from seismic tomography -and therefore include both downwellings at subduction zones and upwellings above the superswells- and density anomalies that correspond to subducting slabs only. While the second scenario mostly compresses the active margins of upper plates and leave other areas at rest, the first scenario efficiently compresses passive margins where the geological record reveals their uplift, exhumation, and tectonic inversion.

  9. Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey

    USGS Publications Warehouse

    Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

    1975-01-01

    A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

  10. Insights into Rift Initiation, Evolution, and Failure from North America's Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S.; Elling, R. P.; Keller, G. R.; Kley, J.; Wysession, M. E.

    2017-12-01

    Recent studies of the Midcontinent Rift (MCR) near Lake Superior give insights into how some rifts start, evolve, and fail because the rift-filling volcanic and sedimentary rocks are exposed at the surface and well imaged by deep seismic reflection and gravity data. The MCR was traditionally considered to have formed by midplate extension and volcanism 1.1 Ga that ended due to compression from the Grenville orogeny, the 1.3 - 0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that the MCR formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. A cusp in Laurentia's apparent polar wander path just before the onset of MCR volcanism likely reflects the rifting. Such cusps have been observed elsewhere when continents separate and a new ocean forms between the two fragments. New analyses also find that the MCR's failure did not result from Grenville compression. This view is consistent with the observation that many intracontinental rifts form and fail as part of plate boundary reorganizations. Present-day continental extension in the East African Rift and seafloor spreading in the Red Sea and Gulf of Aden form a classic three-arm rift geometry as Africa splits into Nubia, Somalia, and Arabia. The West Central African Rift system formed during the Mesozoic breakup of Africa and South America and became inactive once full seafloor spreading was established on the Mid-Atlantic Ridge. An important feature of the MCR is that it is has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). We view it as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP. The MCR exhibits many key features of volcanic passive margins: seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and a high-velocity lower crustal body. Hence the MCR can be treated as a rift that failed just short of forming a passive margin.

  11. Structure and Evolution of the Central Appalachians from the Mantle to the Surface: Results from the MAGIC Project

    NASA Astrophysics Data System (ADS)

    Long, M. D.; Benoit, M. H.; Evans, R. L.; King, S. D.; Kirby, E.; Aragon, J. C.; Miller, S. R.; Liu, S.; Elsenbeck, J.

    2017-12-01

    The eastern margin of North America has undergone multiple episodes of orogenesis and rifting, yielding the surface geology and topography visible today. It is poorly known, however, how the crust and mantle lithosphere have responded to these tectonic forces, and how geologic units preserved at the surface relate to deeper structures. Furthermore, the evolution of Appalachian topography through time, which reflects a complex interplay among erosion, lithology, and mantle flow, remains a major outstanding problem. The MAGIC project involves a multidisciplinary, collaborative effort to understand the structure and evolution of the central Appalachians, from the mantle to the surface. New images of the lithosphere derived from a passive broadband seismic array and a magnetotelluric deployment demonstrate significant along-strike lateral variability across the MAGIC transect. We observe a sharp change in crustal thickness across the eastern edge of the Appalachians, with a deeper Moho beneath the mountains than suggested by simple isostatic models. We find evidence for a relatively shallow lithosphere-asthenosphere boundary (LAB) beneath the Appalachians, with the thinnest LAB coinciding with the location of Eocene volcanism in and around Harrisonburg, VA. This observation is consistent with lithospheric loss as a mechanism for Eocene volcanic activity. Observations of seismic anisotropy suggest deformation of the mantle lithosphere associated with both Appalachian orogenesis and later Mesozoic rifting, with an observable component of anisotropy due to present-day mantle flow. Geodynamic models of mantle flow using a variety of tomographic models and density scaling relationships are being used to generate predictions of dynamic topography and plate motions for comparison with observations, and are currently being refined to incorporate realistic lithospheric morphology based on imaging results. Models of present-day erosion rates throughout the Appalachians from stream profile analysis show particularly fast erosion rates just to the west of Harrisonburg. Integration of results from the MAGIC project is yielding new insight into the structure and evolution of the central Appalachians and into the processes associated with orogenesis, rifting, and post-rift evolution of the passive margin.

  12. New Insights on the Geologic Framework of Alaska and Potential Targets of Opportunity for Future Research

    NASA Astrophysics Data System (ADS)

    Ridgway, K.; Trop, J. M.; Finzel, E.; Brennan, P. R.; Gilbert, H. J.; Flesch, L. M.

    2015-12-01

    Studies the past decade have fundamentally changed our perspective on the Mesozoic and Cenozoic tectonic configuration of Alaska. New concepts include: 1) A link exists between Mesozoic collisional zones, Cenozoic strike-slip fault systems, and active deformation that is related to lithospheric heterogeneities that remain over geologic timescales. The location of the active Denali fault and high topography, for example, is within a Mesozoic collisional zone. Rheological differences between juxtaposed crustal blocks and crustal thickening in this zone have had a significant influence on deformation and exhumation in south-central Alaska. In general, the original configuration of the collisional zone appears to set the boundary conditions for long-term and active deformation. 2) Subduction of a spreading ridge has significantly modified the convergent margin of southern Alaska. Paleocene-Eocene ridge subduction resulted in surface uplift, unconformity development and changes in deposystems in the forearc region, and magmatism that extended from the paleotrench to the retroarc region. 3) Oligocene to Recent shallow subduction of an oceanic plateau has markedly reconfigured the upper plate of the southern Alaska convergent margin. This ongoing process has prompted growth of some of the largest mountain ranges on Earth, exhumation of the forearc and backarc regions above the subducted slab, development of a regional gap in arc magmatism above the subducted slab as well as slab-edge magmatism, and displacement on the Denali fault system. In the light of these new tectonic concepts for Alaska, we will discuss targets of opportunity for future integrated geologic and geophysical studies. These targets include regional strike-slip fault systems, the newly recognized Bering plate, and the role of spreading ridge and oceanic plateau subduction on the location and pace of exhumation, sedimentary basin development, and magmatism in the upper plate.

  13. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco

    NASA Astrophysics Data System (ADS)

    Leprêtre, Rémi; Missenard, Yves; Barbarand, Jocelyn; Gautheron, Cécile; Saddiqi, Omar; Pinna-Jamme, Rosella

    2015-06-01

    The passive margin of South Morocco is a low-elevated passive margin. It constitutes one of the oldest margins of the Atlantic Ocean, with an Early Jurassic breakup, and little geological data are available concerning its postrift reactivation so far. We investigated the postrift thermal history of the onshore part of the margin with low-temperature thermochronology on apatite crystals. Fission track and (U-Th-Sm)/He ages we obtained are significantly younger than the breakup ( 190 Ma). Fission track ages range from 107 ± 8 to 175 ± 16 Ma, with mean track lengths from 10.7 ± 0.3 to 12.5 ± 0.2 µm. (U-Th-Sm)/He ages range from 14 ± 1 to 185 ± 15 Ma. Using inverse modeling of low-temperature thermochronological data, we demonstrate that the South Moroccan continental margin underwent a complex postrift history with at least two burial and exhumation phases. The first exhumation event occurred during Late Jurassic/Early Cretaceous, and we attribute this to mantle dynamics rather than to intrinsic rifting-related processes such as flexural rebound. The second event, from Late Cretaceous to early Paleogene, might record the onset of Africa/Europe convergence. We show a remarkably common behavior of the whole Moroccan passive margin during its early postrift evolution. The present-day differences result from a segmentation of the margin domains due to the Africa/Europe convergence. Finally we propose that varying retained strengths during rifting and also the specific crustal/lithospheric geometry of stretching explain the difference between the topographical expressions on the continental African margin compared to its American counterpart.

  14. Mesozoic black shales, source mixing and carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  15. Complex fold and thrust belt structural styles: Examples from the Greater Juha area of the Papuan Fold and Thrust Belt, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Mahoney, Luke; Hill, Kevin; McLaren, Sandra; Hanani, Amanda

    2017-07-01

    The remote and inhospitable Papuan Fold Belt in Papua New Guinea is one of the youngest yet least well-documented fold and thrust belts on Earth. Within the frontal Greater Juha area we have carried out >100 km of geological traverses and associated analyses that have added significantly to the contemporary geological and geophysical dataset. Our structural analysis provides evidence of major inversion, detachment and triangle zone faults within the uplifted Eastern Muller Ranges. We have used the dataset to develop a quasi-3D model for the Greater Juha area, with associated cross-sections revealing that the exposed Cenozoic Darai Limestone is well-constrained with very low shortening of 12.6-21.4% yet structures are elevated up to 7 km above regional. We suggest the inversion of pre-existing rift architecture is the primary influence on the evolution of the area and that structures link to the surface via triangle zones and detachment faults within the incompetent Mesozoic passive-margin sedimentary sequence underlying competent Darai Limestone. Arc-normal oriented structures, dominantly oblique dextral, up-to-the-southeast, are pervasive across a range of scales and are here interpreted to relate at depth to weakened pre-existing basement cross-structures. It is proposed that Palaeozoic basement fabric controlled the structural framework of the basin during Early Mesozoic rifting forming regional-scale accommodation zones and related local-scale transfer structures that are now expressed as regional-scale arc-normal lineaments and local-scale arc-normal structures, respectively. Transfer structures, including complexly breached relay ramps, utilise northeast-southwest striking weaknesses associated with the basement fabric, as a mechanism for accommodating displacement along major northwest-southeast striking normal faults. These structures have subsequently been inverted to form arc-normal oriented zones of tear faulting that accommodate laterally variable displacement along inversion faults and connected thrust structures.

  16. Onshore and offshore basins of northeast Libya: Their origin and hydrocarbon potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shegewi, O.M.

    1992-01-01

    A comprehensive data base of more than 3000 km of seismic lines, gravity and magnetic data, more than 30 subsurface well logs, and surface geology data were utilized to examine and interpret the sedimentary and tectonic history of the onshore and offshore parts of Northeast Libya and their hydrocarbon potential. The Dernah-Tobruk and Benghazi offshore basins form the northern parts of the study area. The Cyrenaica Stable Platform represents the southern parts. The Sirual Trough stretches E-W and opens into the Antelat Trough in the west. Between these elements is the uplifted areas of the Al Jabal Al Akhdar. Sixmore » principal tectonic phases were responsible for the formation and development of these structural elements: the pre-Mesozoic phase, the Triassic-Jurassic rifting phase, the Neocomian and the Aptian-Albian renewed rifting phases, the Late Cretaceous-Paleocene uplifting phase; and the Eocene-Middle Oligocene rifting phase. Oceanic crust of probable Aptian-Albian age is evident on the seismic lines north of the master fault marking the southern boundary of the rift separating the north African plate and Apulia. The western boundary of the Dernah High displayed clearly NE-SW strike-slip movement of these trajectories. Oceanic crust is also present west of the Dernah High. Positive gravity and magnetic anomalies traverse parallel to the boundary of this oceanic plate Mesogea. The prerequisites for commercial hydrocarbon production are present in abundance. Reservoirs ranging in age from Paleozoic clastics in the Cyrenaica Stable Platform to Mesozoic and Tertiary carbonates throughout the rest of the region. Several deep sites for the generation of hydrocarbons were also present, including the rifted northern parts of the Dernah-Tobruk basin, the Antelat Trough and the Cyrenaica Passive Margin. The Cretaceous and Tertiary section in the study area contain several potential seal rocks. Several potential trap types are also present.« less

  17. Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin

    USGS Publications Warehouse

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.

  18. Accessory Mineral Depth-Profiling Applied to the Corsican Lower Crust: A Continuous Thermal History of Mesozoic Continental Rifting

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2015-12-01

    Despite advances in understanding the structural development of hyperextended magma-poor rift margins, the temporal and thermal evolution of lithospheric hyperextension during rifting remains only poorly understood. In contrast to classic pure-shear models, multi-stage rift models that include depth-dependent thinning predict significant lower-crustal reheating during the necking phase due to buoyant rise of the asthenosphere. The Santa Lucia nappe of NE Corsica is an ideal laboratory to test for lower-crustal reheating as it preserves Permian lower crust exhumed from granulitic conditions during Mesozoic Tethyan rifting. This study presents the first use of apatite U-Pb depth-profile thermochronology in conjunction with novel rutile U-Pb and zircon U-Pb thermo- and geochronology to reconstruct a continuous t-T path to constrain the syn-rift thermal evolution of this exposed lower-crustal section. LASS-ICP-MS depth-profile analyses of zircon reveal thin (<10 μm) ~210-180 Ma overgrowths on 300-270 Ma cores in lower-crustal lithologies, indicative of renewed thermal activity during Mesozoic rifting. Cooling due to rapid rift margin exhumation is recorded by the topology of rutile and apatite depth profiles caused by thermally-activated volume diffusion at T >400°C. Lower-crustal rutile reveal a rounded progression from core plateaus at ~170 Ma to 150-145 Ma at the outer 8-10 μm of grains while middle-crustal apatite records 170 Ma cores grading to 140-135 Ma rims. Inverse modeling of rutile profiles suggests the lower crust cooled from 700°C at 200 Ma to 425°C at 140 Ma. Middle-crustal apatite yield a two-stage history, with rapid cooling from 500°C at 200 Ma to 420°C at ~180 Ma followed by slow cooling to 400°C by 160 Ma. Combined with zircon overgrowth ages, these data indicate the Santa Lucia nappe underwent a thermal pulse in the late Triassic-early Jurassic associated with depth-dependent thinning and hyperextension of the Corsican margin.

  19. Basement - Cover decoupling and progressive exhumation of metamorphic sediments at hot rifted margin. Insights from the Northeastern Pyrenean analog

    NASA Astrophysics Data System (ADS)

    Clerc, Camille; Lagabrielle, Yves; Labaume, Pierre; Ringenbach, Jean-Claude; Vauchez, Alain; Nalpas, Thierry; Bousquet, Romain; Ballard, Jean-François; Lahfid, Abdeltif; Fourcade, Serge

    2016-08-01

    We compile field data collected along the eastern part of the North Pyrenean Zone (NPZ) to point to a tectonic evolution under peculiar thermal conditions applying to the basin sediments in relation with the opening of the Cretaceous Pyrenean rift. Based on this compilation, we show that when thinning of the continental crust increased, isotherms moved closer to the surface with the result that the brittle-ductile transition propagated upward and reached sediments deposited at the early stage of the basin opening. During the continental breakup, the pre-rift Mesozoic cover was efficiently decoupled from the Paleozoic basement along the Triassic evaporite level and underwent drastic ductile thinning and boudinage. We suggest that the upper Albian and upper Cretaceous flysches acted as a blanket allowing temperature increase in the mobile pre-rift cover. Finally, we show that continuous spreading of the basin floor triggered the exhumation of the metamorphic, ductily sheared pre-rift cover, thus contributing to the progressive thinning of the sedimentary pile. In a second step, we investigate the detailed geological records of such a hot regime evolution along a reference-section of the eastern NPZ. We propose a balanced restoration from the Mouthoumet basement massif (north) to the Boucheville Albian basin (south). This section shows a north to south increase in the HT Pyrenean imprint from almost no metamorphic recrystallization to more than 600 °C in the pre- and syn-rift sediments. From this reconstruction, we propose a scenario of tectonic thinning involving the exhumation of the pre-rift cover by the activation of various detachment surfaces at different levels in the sedimentary pile. In a third step, examination of the architecture of current distal passive margin domains provides confident comparison between the Pyrenean case and modern analogs. Finally, we propose a general evolutionary model for the pre-rift sequence of the Northeastern Pyrenean rifted margin.

  20. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  1. Late cretaceous extensional tectonics and associated igneous activity on the northern margin of the Gulf of Mexico Basin

    NASA Technical Reports Server (NTRS)

    Bowen, R. L.; Sundeen, D. A.

    1985-01-01

    Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.

  2. Physical analogs that help to better understand the modern concepts on continental stretching, hyperextension and rupturing

    NASA Astrophysics Data System (ADS)

    Zalan, Pedro

    2014-05-01

    Three facts helped to establish a revolution in the understanding of how mega-continents stretch, rupture and breakup to form new continents and related passive margins: (1) the penetration of the distal portions of the Iberia-Newfoundland conjugate margins by several ODP wells (late 70's/early 80's), with the discovery of hyperextended crust and exhumation of lower crust and mantle between typical continental and oceanic domains, (2) field works in the Alps and in the Pyrenees that re-interpreted sedimentary successions and associated "ophiolites" as remnants of old Tethyan passive margins that recorded structural domains similar to those found in Iberia-Newfoundland, and (3) the acquisition of long and ultra-deep reflection seismic sections that could image for the first time sub-crustal levels (25-40 km) in several passive margins around the world. The interpretation of such sections showed that the concepts developed in the Iberia-Newfoundland margins and in the Alps could be applied to a great extent to most passive margins, especially those surrounding the North and South Atlantic Oceans. The new concepts of (i) decoupled deformation (upper brittle X lower ductile) within the proximal domain of the continental crust, (ii) of coupled deformation (hyperextension) in the distal crust and, (iii) of exhumation of deeper levels in the outer domain, with the consequent change in the physical properties of the rising rocks, defined an end-member in the new classification of passive margins, the magma-poor type (as opposed to volcanic passive margins). These concepts, together with the new reflection seismic views of the entire crustal structure of passive margins, forced the re-interpretation of older refraction and potential field data and the re-drawing of long established models. Passive margins are prime targets for petroleum exploration, thus, the great interest raised by this subject in both the academy and in the industry. Interestingly enough, the deformation modes envisaged by Manatschal and Peron-Pinvidic in several works published in the last ten years, dealing with the development of conjugate rifted margins (stretching, thinning, hyperextension/exhumation, oceanization/breakup), can be found in physical analogs of geological nature and of mundane phenomena, in a much smaller scale than that of a continental rupture. Rocks strained and cut by normal faults, especially the brittle sedimentary rocks, display geometries and structural domains, which in turn were formed by the particular deformation modes, very similar to those published for the Norwegian, Angolan and Southeastern Brazilian margins. A non-geological and non-conventional physical analog is the everyday breakup of a chocolate bar. Given it is stuffed by a thick ductile filling and covered by a thin, brittle chocolate layer; it is incredible how such a common phenomenon can replicate the rupture and breakup of a mega-continent. Such physical analogs can be compared to ultra-deep seismic sections and raise a cloud of incertitude on the definition of hyperextension. Instead of representing the coupling of the deformation of the upper and lower crusts into a brittle mode, rather, hyperextension could correspond to their coupling into a plastic or, at least, into a semi-brittle mode, but not into an entirely brittle mode.

  3. Origin of the Blue Ridge escarpment along the passive margin of Eastern North America

    USGS Publications Warehouse

    Spotila, J.A.; Bank, G.C.; Reiners, P.W.; Naeser, C.W.; Naeser, N.D.; Henika, B.S.

    2004-01-01

    The Blue Ridge escarpment is a rugged landform situated within the ancient Appalachian orogen. While similar in some respects to the great escarpments along other passive margins, which have evolved by erosion following rifting, its youthful topographic expression has inspired proposals of Cenozoic tectonic rejuvenation in eastern North America. To better understand the post-orogenic and post-rift geomorphic evolution of passive margins, we have examined the origin of this landform using low-temperature thermochronometry and manipulation of topographic indices. Apatite (U-Th)/He and fission-track analyses along transects across the escarpment reveal a younging trend towards the coast. This pattern is consistent with other great escarpments and fits with an interpretation of having evolved by prolonged erosion, without the requirement of tectonic rejuvenation. Measured ages are also comparable specifically to those measured along other great escarpments that are as much as 100 Myr younger. This suggests that erosional mechanisms that maintain rugged escarpments in the early post-rift stages may remain active on ancient passive margins for prolonged periods. The precise erosional evolution of the escarpment is less clear, however, and several end-member models can explain the data. Our preferred model, which fits with all data, involves a significant degree of erosional escarpment retreat in the Cenozoic. Although this suggests that early onset of topographic stability is not required of passive margin evolution, more data are required to better constrain the details of the escarpment's development. ?? 2003 Blackwell Publishing Ltd.

  4. Correlation studies of passive and active microwave data in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.

    1991-01-01

    The microwave radiative and backscatter characteristics of sea ice in an Arctic marginal ice zone have been studied using near-simultaneous passive and active synthetic aperture radar microwave data. Intermediate-resolution multichannel passive microwave data were registered and analyzed. Passive and active microwave data generally complement each other as the two sensors are especially sensitive to different physical properties of the sea ice. In the inner pack, undeformed first-year ice is observed to have low backscatter values but high brightness temperatures while multiyear ice has generally high backscatter values and low brightness temperatures. However, in the marginal ice zone, the signature and backscatter for multiyear ice are considerably different and closer to those of first-year ice. Some floes identified by photography as snow-covered thick ice have backscatter similar to that of new ice or open water while brash ice has backscatter similar to or higher than that of ridged ice.

  5. Space-for-time substitution and the evolution of submarine canyons in a passive, progradational margin.

    NASA Astrophysics Data System (ADS)

    Micallef, Aaron; Ribó, Marta; Canals, Miquel; Puig, Pere; Lastras, Galderic; Tubau, Xavier

    2013-04-01

    40% of submarine canyons worldwide are located in passive margins, where they constitute preferential conduits of sediment and biodiversity hotspots. Recent studies have presented evidence that submarine canyons incising passive, progradational margins can co-evolve with the adjacent continental slope during long-term margin construction. The stages of submarine canyon initiation and their development into a mature canyon-channel system are still poorly constrained, however, which is problematic when attempting to reconstruct the development of passive continental margins. In this study we analyse multibeam echosounder and seismic reflection data from the southern Ebro margin (western Mediterranean Sea) to document the stages through which a first-order gully develops into a mature, shelf-breaching canyon and, finally, into a canyon-channel system. This morphological evolution allows the application of a space-for-time substitution approach. Initial gully growth on the continental slope takes place via incision and downslope elongation, with limited upslope head retreat. Gravity flows are the main driver of canyon evolution, whereas slope failures are the main agent of erosion; they control the extent of valley widening, promote tributary development, and their influence becomes more significant with time. Breaching of the continental shelf by a canyon results in higher water/sediment loads that enhance canyon development, particularly in the upper reaches. Connection of the canyon head with a paleo-river changes evolution dynamics significantly, promoting development of a channel and formation of depositional landforms. Morphometric analyses demonstrate that canyons develop into geometrically self-similar systems that approach steady-state and higher drainage efficiency. Canyon activity in the southern Ebro margin is pulsating and enhanced during sea level lowstands. Rapid sedimentation by extension of the palaeo-Millars River into the outermost shelf and upper slope is inferred as the source of gravity flows driving canyon evolution. Canyon morphology is shown to be maintained over the course of more than one fall and rise in sea-level. Our model of canyon evolution is applicable to other passive margins (e.g. Argentine continental margin).

  6. Isostatic and dynamic support of high topography on a North Atlantic passive margin

    NASA Astrophysics Data System (ADS)

    Pedersen, Vivi K.; Huismans, Ritske S.; Moucha, Robert

    2016-07-01

    Substantial controversy surrounds the origin of high topography along passive continental margins. Here we focus on the well-documented elevated passive margin in southwestern Scandinavia, and quantify the relative contributions of crustal isostasy and dynamic topography in controlling the present topography. We find that majority of the topography is compensated by the crustal structure, suggesting a topographic age that is in accord with the 400 Myr old Caledonian orogenesis. In addition, we propose that dynamic uplift of ∼300 m has rejuvenated existing topography locally in the coastal region over the last 10 Myr. Such uplift, combined with a general sea level fall, can help explain a variety of observations that have traditionally been interpreted in favor of a peneplain uplift model. We conclude that high topography along the Scandinavian margin cannot represent remnants of a peneplain uplifted within the last 20 Myr. The topography must have been high since the Caledonian orogeny.

  7. Elastic thickness estimates at northeast passive margin of North America and its implications

    NASA Astrophysics Data System (ADS)

    Kumar, R. T. Ratheesh; Maji, Tanmay K.; Kandpal, Suresh Ch; Sengupta, D.; Nair, Rajesh R.

    2011-06-01

    Global estimates of the elastic thickness (Te) of the structure of passive continental margins show wide and varying results owing to the use of different methodologies. Earlier estimates of the elastic thickness of the North Atlantic passive continental margins that used flexural modelling yielded a Te value of ~20-100 km. Here, we compare these estimates with the Te value obtained using orthonormalized Hermite multitaper recovered isostatic coherence functions. We discuss how Te is correlated with heat flow distribution and depth of necking. The E-W segment in the southern study region comprising Nova Scotia and the Southern Grand Banks show low Te values, while the zones comprising the NE-SW zones, viz., Western Greenland, Labrador, Orphan Basin and the Northern Grand Bank show comparatively high Te values. As expected, Te broadly reflects the depth of the 200-400°C isotherm below the weak surface sediment layer at the time of loading, and at the margins most of the loading occurred during rifting. We infer that these low Te measurements indicate Te frozen into the lithosphere. This could be due to the passive nature of the margin when the loads were emplaced during the continental break-up process at high temperature gradients.

  8. Late Cenozoic flexural deformation of the middle U.S. Atlantic passive margin

    NASA Technical Reports Server (NTRS)

    Pazzaglia, Frank J.; Gardner, Thomas, W.

    1994-01-01

    Despite the century-long recognition of regional epeirogeny along the middle Atlantic passive margin, relatively few studies have focused on understanding postrift uplift mechanisms. Here, we demonstrate that epeirogenic uplift of the central Appalachian Piedmont and subsidence of the Salisbury Embayment represent first-order, flexural isostatic processes driven by continental denudation and offshore deposition. Our results show that regional epeirogenic processes, present on all Atlantic-type passive margins, are best resolved by specific stratigraphic and geomorphic relationships, rather than topography. A simple one-dimensional geodynamic model, constrained by well-dated Baltimore Canyon trough, Coastal Plain, and lower Susquehanna River (piedmont) stratigraphy, simulates flexural deforamtion of the U.S. Atlantic margin. The model represents the passive margin lithosphree as a uniformly thick elastic plate, without horizontal compressive stresses, that deforms flexurally under the stress of strike-averaged, vertically applied line loads. Model results illustrate a complex interaction among margin stratigraphy and geomorphology, the isostatic repsonse to denudational and depositional processes, and the modulating influence of exogenic forces such as eustasy. The current elevation, with respect to modern sea level, of fluvial terraces and correlateive Coastal Plain deposits or unconformities is successfully predicted through the synthesis of paleotopography, eustatic change, and margin flexure. Results suggest that the middle U.S. Atlantic margin landward of East Coast Magnetic Anomaly is underlain by lithoshpere with an average elastic thickness of 40 km (flexural rigidity, D = 4 X 10(exp 23) N m), the margin experience an average, long-term denudation rate of approximately 10m/m.y., and the Piedmont has been flexurally upwaped between 35 and 130 meters in the last 15 m.y. Long term isostatic continental uplift resulting rom denudation and basin subsidence resulting rom sediment loading are accomodated primately by a convex-up flexural hinge, physiographically represented by the Fall Zone. Our results elucidate an inherent danger in using topography alone to constrain late-stage passive margin deformation mechanisms. Only through careful synthesis of field stratigraphic and geomorphic elements such as fluvial terraces, Coastal Plain deposits, and offshore stratigraphy can age control be extended from the offshore depositional setting to the erosionally dominated continent. This sudy demonstrates that despite a relatively subdued topography, the middle U.S. Atlantic margin experiences progressive flexural isostatic deformation similar to that proposed for high-relief margins characterized by great escarpments. Thus margin topographic diversity remains a function of other factors, such as lithospheric composition and/or structure, supracrustal stratigraphy and structure, degree of drainage integration, drainage divide migration and climate.

  9. The evolution of the passive continental margin of Norway and its adjacent mainland - using the sub-Cambrian peneplain as a reference surface.

    NASA Astrophysics Data System (ADS)

    Gabrielsen, R. H.; Faleide, J. I.; Jarsve, E. M.

    2012-04-01

    The structuring, uplift and subsidence of the passive margin and shelf of Norway and its adjacent mainland were affected by several profound geological processes, including inherited basement structural grain related to the Proterozoic and Caledonian orogens and also including the extensional collapse of the Caledonides (Gabrielsen et al. 2000). This has been followed by several stages of late Palaoezoic - Cenozoic rifting and associated thermotectonic activity, Cenozoic accelerated uplift of uncertain origin of the hinterland, creating an irregular pattern of upheaval and, finally Pleistocene - Holocene glacial loading and unloading (Gabrielsen et al. 2010). These processes have strongly influenced the topography of the hinterland, thus causing and acting in concert with climate fluctuations (Nielsen et al. 2009). The correlation of erosional surfaces of regional significance on the shelf and on the mainland is a key to the evaluating the total topography of the margin. Because of the lack of datable surfaces on the mainland, this is problematic. The so-called Paleic surface has been used in this context, but its age and nature is not well constrained and the absence of post-Caledonian rocks in the western and central mainland of southern Norway adds to this complexity. In contrast, the sub-Cambrian peneplain, which is found in larger parts of Scandinavia, is well established when it comes to dating and development (e.g. Strøm 1948). It is generally accepted that this surface had only a minor topography, if any, throughout Scandinavia at the earliest Cambrian. Hence, its present relief is the result of the accumulated vertical displacements from the Caledonian to the Present. Still, even though it was well established through regional mapping already in the late 19th century, much remains in the detailed documentation of this important surface. To improve the topographic accuracy in its characterization, fieldwork has been initiated to establish a detailed WNW-ESE-trending profile across south Norway. Simultaneously a detailed mapping to establish a full map of the sub-Cambrian peneplain for southern Norway has been initiated, using automatic correlation techniques based on digital topographic data. A WNW-ESE-oriented profile across southern Norway displays a pronounced asymmetry with an eastern flank dipping moderately to the ESE, a strikingly flat to slightly undulating central part with a minor ESE-erly dip and a steepened westerly crest, and a faulted, steep WNW-flank. The fault throw along the western flank of the Hardangervidda Plateau is in the excess of one kilometer. This fault system is associated with the collapse of the Caledonides, but bear the signs of multiple stages of rejuvenation. Even farther to the west, the sub-Cambrian peneplain is broken by the Mesozoic external fault systems of the Jurassic-Cretaceous offshore graben systems, which also offsets the peneplain (down-to-east extension) by several kilometres. Also this system bears indications of reactivation. The sub-Cambrian peneplain itself displays a variety of configurations, including an undisturbed basal conglomerate, a weathered and mineralized, undulating surface with small pockets of alun shale or siltstone, a tectonically disturbed primary contact with parauthochtonous black shale or black sandstone and a more strongly tectonized contact with mylonite and rejuvenated basement lenses. The present analysis utilized the sub-Cambrian peneplain as a reference surface, because its present topography resulted from several elements of deformation accumulated throughout the Caledonian to the Present. Hence, it can be used as a reference surface for younger erosional surfaces onland Norway, whether this are of regional or local origin. In section of southern Norway including the (present) inner shelf and the hinterland, several morphological elements can be identified, from west to east: 1) The eastern, stable platform of the Mesozoic Viking Graben, 2) the external fault complex of the graben system, 3) the strandflat, 4) the western mainland slope between the two master fault systems, the mountain platform of Hardangervidda 5) the eastern slope. Although this scheme seems to be generally valid for large parts of the western margin of Scandinavia, large elevation fluctuations are evident along the margin, having wavelengths in the order of 100 - 500 km and amplitudes in the order of 1 km.

  10. On the initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Wortel, Rinus; Vlaar, N. J.

    1989-03-01

    Analysis of the relation between intraplate stress fields and lithospheric rheology leads to greater insight into the role that initiation of subduction plays in the tectonic evolution of the lithosphere. Numerical model studies show that if after a short evolution of a passive margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favorable for transformation into an active margin. Although much geological evidence is available in supporting the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept. In general, initiation of subduction at passive margins requires the action of external plate-tectonic forces, which will be most effective for young passive margins prestressed by thick sedimentary loads. It is not clear how major subduction zones (such as those presently ringing the Pacific Basin) form but it is unlikely they form merely by aging of oceanic lithosphere. Conditions likely to exist in very young oceanic regions are quite favorable for the development of subduction zones, which might explain the lack of preservation of back-arc basins and marginal seas. Plate reorganizations probably occur predominantly by the formation of new spreading ridges, because stress relaxation in the lithosphere takes place much more efficiently through this process than through the formation of new subduction zones.

  11. Volcanic passive margins: another way to break up continents

    PubMed Central

    Geoffroy, L.; Burov, E. B.; Werner, P.

    2015-01-01

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle. PMID:26442807

  12. Volcanic passive margins: another way to break up continents.

    PubMed

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  13. Assessment of undiscovered petroleum resources of the Amerasia Basin Petroleum Province

    USGS Publications Warehouse

    Houseknecht, David W.; Bird, Kenneth J.; Garrity, Christopher P.

    2012-01-01

    The Amerasia Basin Petroleum Province encompasses the Canada Basin and the sediment prisms along the Alaska and Canada margins, outboard from basinward margins (hingelines) of the rift shoulders that formed during extensional opening of the Canada Basin. The province includes the Mackenzie delta and slope, the outer shelves and marine slopes along the Arctic margins of Alaska and Canada, and the deep Canada Basin. The province is divided into four assessment units (AUs): (1) The Canning-Mackenzie deformed margin AU is that part of the rifted margin where the Brooks Range orogenic belt has overridden the rift shoulder and is deforming the rifted-margin prism of sediment outboard of the hingeline. This is the only part of the Amerasia Basin Province that has been explored and—even though more than 3 billion barrels of oil equivalent (BBOE) of oil, gas, and condensate have been discovered—none has been commercially produced. (2) The Alaska passive margin AU is the rifted-margin prism of sediment lying beneath the Beaufort outer shelf and slope that has not been deformed by tectonism. (3) The Canada passive margin AU is the rifted-margin prism of sediment lying beneath the Arctic outer shelf and slope (also known as the polar margin) of Canada that has not been deformed by tectonism. (4) The Canada Basin AU includes the sediment wedge that lies beneath the deep Canada Basin, north of the marine slope developed along the Alaska and Canada margins. Mean estimates of risked, undiscovered, technically recoverable resources include more than 6 billion barrels of oil (BBO), more than 19 trillion cubic feet (TCF) of associated gas, and more than 16 TCF of nonassociated gas in the Canning-Mackenzie deformed margin AU; about 1 BBO, about 3 TCF of associated gas, and about 3 TCF of nonassociated gas in the Alaska passive margin AU; and more than 2 BBO, about 7 TCF of associated gas, and about 8 TCF of nonassociated gas in the Canada passive margin AU. Quantities of natural gas liquids also are assessed in each AU. The Canada Basin AU was not quantitatively assessed because it is judged to hold less than 10 percent probability of containing at least one accumulation of 50 million barrels of oil equivalent.

  14. Location of deeply buried, offshore Mesozoic transform fault along the western margin of the Gulf of Mexico inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Mann, P.; Bird, D. E.

    2013-12-01

    Several workers have proposed that a Jurassic age, 500-km-long, right-lateral transform fault along the western margin of the Gulf of Mexico, possibly extending southward and onshore for another 500 km onto the isthmus area of southern Mexico, was formed as the ocean basin opened. This proposed transform fault plays a critical role in the most widely accepted tectonic model for the Mesozoic opening of the Gulf of Mexico by a ~40 degree, CCW rotation of the Yucatan block about a pole near southern Florida. Previously proposed names for the fault include the Tamaulipas-Chiapas transform fault and the Western Main transform fault for the offshore fault and the Orizaba transform fault for the southern, onland continuation of the fault into southern Mexico. There are few direct geologic or geophysical observations on the location or characteristics of the proposed offshore transform because it is buried beneath an over 10-km-thick sedimentary wedge along the continental margin of eastern Mexico. To better define this offshore fault, we identify a 500-km-long, 40-km-wide gravity anomaly, concentric with, and located about 60-70 km off the eastern coast of Mexico. Two east-west 200/1200-km-long gravity models constructed to cross the anomaly at right angles are parallel to existing multi-channel seismic lines with age-correlated stratigraphy. Both gravity models reveal an abrupt crustal thickness change beneath the gravity anomaly: from 27 km to 12 km over a distance of 65 km in the southern profile, and from 23 km to 16 km over a distance of 30 km in northern profile. The linearity of the anomaly in map view combined with the abrupt change in thickness inferred from gravity modeling is consistent with the tectonic origin of a right-lateral transform fault separating continental rocks of Mexico from Mesozoic seafloor produced by the opening of the Gulf of Mexico. Magnetic profiles were analyzed using a Werner depth-to-magnetic source technique, coincident with the gravity models, estimate the depth to top of crystalline basement for the northern (9 km) and southern (11 km) transects. Subsidence analysis along both transects shows that sedimentation rates sharply peaked during the Laramide orogeny in the latest Cretaceous-Eocene, but otherwise conform to steady thermal subsidence of oceanic crust in the deep Gulf of Mexico that formed during the Jurassic CCW rotation of the Yucatan block. The more precisely defined offshore fault aligns well with the onland right-lateral Orizaba transform fault of southern Mexico that is thought to have been active in Mesozoic time.

  15. Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.

    2017-12-01

    Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.

  16. From hyperextended rift to convergent margin types: mapping the outer limit of the extended Continental Shelf of Spain in the Galicia area according UNCLOS Art. 76

    NASA Astrophysics Data System (ADS)

    Somoza, Luis; Medialdea, Teresa; Vázquez, Juan T.; González, Francisco J.; León, Ricardo; Palomino, Desiree; Fernández-Salas, Luis M.; Rengel, Juan

    2017-04-01

    Spain presented on 11 May 2009 a partial submission for delimiting the extended Continental Shelf in respect to the area of Galicia to the Commission on the Limits of the Continental Shelf (CLCS). The Galicia margin represents an example of the transition between two different types of continental margins (CM): a western hyperpextended margin and a northern convergent margin in the Bay of Biscay. The western Galicia Margin (wGM 41° to 43° N) corresponds to a hyper-extended rifted margin as result of the poly-phase development of the Iberian-Newfoundland conjugate margin during the Mesozoic. Otherwise, the north Galicia Margin (nGM) is the western end of the Cenozoic subduction of the Bay of Biscay along the north Iberian Margin (NIM) linked to the Pyrenean-Mediterranean collisional belt Following the procedure established by the CLCS Scientific and Technical Guidelines (CLCS/11), the points of the Foot of Slope (FoS) has to be determined as the points of maximum change in gradient in the region defined as the Base of the continental Slope (BoS). Moreover, the CLCS guidelines specify that the BoS should be contained within the continental margin (CM). In this way, a full-coverage multibeam bathymetry and an extensive dataset of up 4,736 km of multichannel seismic profiles were expressly obtained during two oceanographic surveys (Breogham-2005 and Espor-2008), aboard the Spanish research vessel Hespérides, to map the outer limit of the CM.In order to follow the criteria of the CLCS guidelines, two types of models reported in the CLCS Guidelines were applied to the Galicia Margin. In passive margins, the Commission's guidelines establish that the natural prolongation is based on that "the natural process by which a continent breaks up prior to the separation by seafloor spreading involves thinning, extension and rifting of the continental crust…" (para. 7.3, CLCS/11). The seaward extension of the wGM should include crustal continental blocks and the so-called Peridotite Ridge (PR), composed by serpentinized exhumed continental mantle. Thus, the PR should be regarded as a natural component of the continental margin since these seafloor highs were formed by hyperextension of the margin. Regarding convergent margins, the architecture of the nGM can be classified according the CLCS/11 as a "poor- or non-accretionary convergent continental margin" characterized by a poorly developed accretionary wedge, which is composed of: a large sedimentary apron mainly formed by large slumps and thrust wedges of igneous (ophiolitic/continental) body overlying subducting oceanic crust (Fig. 6.1B, CLCS/11). According to para. 6.3.6. (CLCS/11), the seaward extent of this type of continental convergent margins is defined by the seaward edge of the accretionary wedge. Applying this definition, the seaward extent of the margin is defined by the outer limit of the ophiolitic deformed body that marks the edge of the accretionary wedge. These geological criteria were strictly applied for mapping the BoS region, where the FoS were determinate by using the maximum change in gradient within this mapped region. Acknowledgments: Project for the Extension of the Spanish Continental according UNCLOS (CTM2010-09496-E) and Project CTM2016-75947-R

  17. Control of hyper-extended passive margin architecture on subduction initiation with application to the Alps and present-day North Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Candioti, Lorenzo; Bauville, Arthur; Picazo, Suzanne; Mohn, Geoffroy; Kaus, Boris

    2016-04-01

    Hyper-extended magma-poor margins are characterized by extremely thinned crust and partially serpentinized mantle exhumation. As this can act as a zone of weakness during a subsequent compression event, a hyper-extended margin can thus potentially facilitate subduction initiation. Hyper-extended margins are also found today as passive margins fringing the Atlantic and North Atlantic ocean, e.g. Iberia and New Foundland margins [1] and Porcupine, Rockwall and Hatton basins. It has been proposed in the literature that hyper-extension in the Alpine Tethys does not exceed ~600 km in width [2]. The geodynamical evolution of the Alpine and Atlantic passive margins are distinct: no subduction is yet initiated in the North Atlantic, whereas the Alpine Tethys basin has undergone subduction. Here, we investigate the control of the presence of a hyper-extended margin on subduction initiation. We perform high resolution 2D simulations considering realistic rheologies and temperature profiles for these locations. We systematically vary the length and thickness of the hyper-extended crust and serpentinized mantle, to better understand the conditions for subduction initiation. References: [1] G. Manatschal. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. Int J Earth Sci (Geol Rundsch) (2004); 432-466. [2] G. Mohn, G. Manatschal, M. Beltrando, I. Haupert. The role of rift-inherited hyper-extension in alpine-type orogens. Terra Nova (2014); 347-353.

  18. Extensive Gravity Sliding of Late Jurassic-Cretaceous Age along the Northern Yucatan Margin of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Steier, A.; Mann, P.

    2017-12-01

    Gravity slides on salt or shale detachment surfaces linking updip extension with down dip compression have been described from several margins of the Gulf of Mexico (GOM). In a region 250 km offshore from the southwestern coast of Florida, the late Jurassic section near Destin Dome and Desoto Canyon has undergone late Jurassic to Cretaceous gravity sliding and downdip dispersion of rigid blocks along the top of the underlying Louann salt. Yet there has been no previous study of similar structural styles on the slope and deep basin of its late Jurassic conjugate margin located 200 km offshore of the northern margin of the Yucatan Peninsula. This study describes an extensive area of Mesozoic gravity sliding from the northern Yucatan slope using a grid of 2D seismic data covering a 134,000 km2 area of the northern Yucatan margin tied to nine wells. These data allow the northern Yucatan margin to be divided into three slope and basinal provinces: 1) a 225 km length of the northeastern margin consisting of late Jurassic-Cretaceous section that is not underlain by salt, exhibits no gravity sliding features, and has sub-horizontal dips; 2) a 120 km length of the north-central Yucatan margin with gravity slide features characterized by an 80-km-wide updip zone of normal faults occupying the shelf edge and upper slope and a 50-km-wide downdip zone of folds and thrust faults at the base of the slope; the slide area exhibits multiple detached slide blocks composed of late Jurassic sandstones and marine mudstones separated by intervening salt rollers; growth wedges adjacent to listric, normal faults suggest a gradual and long-lived downdip motion of rigid fault blocks throughout much of the late Jurassic and Cretaceous rather than a catastrophic and instantaneous collapse of the shelf edge; the basal, normal detachment fault averages 3° in dip and is overlain by salt that varies from 0-500 ms in time thickness; by the end of the Cretaceous, most gravity sliding and vertical salt movement off the north-central Yucatan had ceased and was capped by the post-sliding Cretaceous-Paleocene boundary deposit (KPBD); and 3) a 150 km length of the southwestern margin with the largest thicknesses of salt; smaller salt rollers are less common as large diapirs are frequent and extensively deform the late Mesozoic section as well as overlying younger strata.

  19. Phanerozoic burial, uplift and denudation of the Equatorial Atlantic margin of South America

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Bonow, Johan M.; Green, Paul F.; dall'Asta, Massimo; Roig, Jean-Yves; Theveniaut, Hervé

    2017-04-01

    We have initiated a study aimed at understanding the history of burial, uplift and denudation of the South American Equatorial Atlantic Margin (SAEAM Uplift) including the Guiana Shield to provide a framework for investigating the hydrocarbon prospectivity of the offshore region. We report first results including observations from fieldwork at the northern and southern flank of the Guiana Shield. The study combines apatite fission-track analysis (AFTA) and vitrinite reflectance data from samples of outcrops and drillcores, sonic velocity data from drill holes and stratigraphic landscape analysis (mapping of peneplains) - all constrained by geological evidence, following the methods of Green et al. (2013). The study will thus combine the thermal history from AFTA data with the denudation history from stratigraphic landscape analysis to provide magnitudes and timing of vertical movements (Japsen et al. 2012, 2016). Along the Atlantic margin of Suriname and French Guiana, tilted and truncated Lower Cretaceous strata rest on Precambrian basement (Sapin et al. 2016). Our AFTA data show that the basement underwent Mesozoic exhumation prior to deposition of the Lower Cretaceous cover. Sub-horizontal peneplains define the landscape of the Guiana Shield at elevations up to 500 m a.s.l. As these sub-horizontal peneplains truncate the tilted, sub-Cretaceous surface along the Atlantic margin, these peneplains were therefore formed and uplifted in post-Cretaceous time. This interpretation is in good agreement with our AFTA data that define Paleogene exhumation along the margin and with the results of Theveniaut and Freyssinet (2002) who used palaeomagnetic data to conclude that bauxitic surfaces across basement at up to 400 m a.s.l. on the Guiana Shield formed during the Palaeogene. Integration of the results from AFTA with stratigraphic landscape analysis (currently in progress) and geological evidence will provide a robust reconstruction of the tectonic development of the onshore margin. References Green, Lidmar-Bergström, Japsen, Bonow & Chalmers 2013: Stratigraphic landscape analysis, thermochronology and the episodic development of elevated passive continental margins. GEUS Bulletin. Japsen, Green, Bonow & Erlström 2016: Episodic burial and exhumation of the southern Baltic Shield: Epeirogenic uplifts during and after break-up of Pangea. Gondwana Research. Japsen, Bonow, Green, Cobbold, Chiossi et al. 2012: Episodic burial and exhumation history of NE Brazil after opening of the South Atlantic. GSA Bulletin. Sapin, Davaux, dall'Asta et al. 2016: Post-rift subsidence of the French Guiana hyper-oblique margin: from rift-inherited subsidence to Amazon deposition effect. Geol. Soc. Spec. Publ. Theveniaut & Freyssinet 2002: Timing of lateritization on the Guiana Shield: synthesis of paleomagnetic results from French Guiana and Suriname. 3 x Palaeo.

  20. Large and giant hydrocarbon accumulations in the transitional continent-ocean zone

    NASA Astrophysics Data System (ADS)

    Khain, V. E.; Polyakova, I. D.

    2008-05-01

    The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.

  1. Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment

    DTIC Science & Technology

    1979-01-01

    nannoplankton, a sparse to rich DITIBTO OF HORIZO C I foraminiferal fauna (simple arenaceous foramin - 5S SSftB / ifera, lagenids, epistominids, and primitive...Deep Sea Pessagno, E.A., Jr., Mesozoic Planctonic Foramin - DrillingP , 11, Washington (U.S. Govern- vera and Radiolaria, in Ewing, M., Worzel, L.J. ment...Strati- B.,er, W.H., Foramin ooze: solution at graphic Micropaleontology of Atlantic Basins depths, Science, 156, 383-385, 1967. and Borderlands

  2. Uplift history of a transform continental margin revealed by the stratigraphic record: The case of the Agulhas transform margin along the Southern African Plateau

    NASA Astrophysics Data System (ADS)

    Baby, Guillaume; Guillocheau, François; Boulogne, Carl; Robin, Cécile; Dall'Asta, Massimo

    2018-04-01

    The south and southeast coast of southern Africa (from 28°S to 33°S) forms a high-elevated transform passive margin bounded to the east by the Agulhas-Falkland Fracture Zone (AFFZ). We analysed the stratigraphic record of the Outeniqua and Durban (Thekwini) Basins, located on the African side of the AFFZ, to determine the evolution of these margins from the rifting stage to present-day. The goal was to reconstruct the strike-slip evolution of the Agulhas Margin and the uplift of the inland high-elevation South African Plateau. The Agulhas transform passive margin results from four successive stages: Rifting stage, from Late Triassic to Early Cretaceous ( 200?-134 Ma), punctuated by three successive rifting episodes related to the Gondwana breakup; Wrench stage (134-131 Ma), evidenced by strike- and dip-slip deformations increasing toward the AFFZ; Active transform margin stage (131-92 Ma), during which the Falkland/Malvinas Plateau drifts away along the AFFZ, with an uplift of the northeastern part of the Outeniqua Basin progressively migrating toward the west; Thermal subsidence stage (92-0 Ma), marked by a major change in the configuration of the margin (onset of the shelf-break passive margin morphology). Two main periods of uplift were documented during the thermal subsidence stage of the Agulhas Margin: (1) a 92 Ma short-lived margin-scale uplift, followed by a second one at 76 Ma located along the Outeniqua Basin and; (2) a long-lasting uplift from 40 to 15 Ma limited to the Durban (Thekwini) Basin. This suggests that the South African Plateau is an old Upper Cretaceous relief (90-70 Ma) reactivated during Late Eocene to Early Miocene times (40-15 Ma).

  3. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt

    NASA Astrophysics Data System (ADS)

    Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan

    2017-06-01

    The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from restoration of balanced sections, corresponding to a shortening rate of 43.6-46.4%. This shortening deformation was likely related to the SE-ward intracontinental underthrust of the North China Block beneath the South China Block during the Mesozoic.

  4. Paleoclimatic and paleolatitude settings of accumulation of radiolarian siliceous-volcanogenic sequences in the middle Mesozoic Pacific: Evidence from allochthons of East Asia

    NASA Astrophysics Data System (ADS)

    Vishnevskaya, V. S.; Filatova, N. I.

    2017-09-01

    Jurassic-Cretaceous siliceous-volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk-Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk-Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal-climate settings were juxtaposed into allochthonous units.

  5. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  6. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen

    NASA Astrophysics Data System (ADS)

    Cao, Kai; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Zhang, Ke-Xin

    2015-12-01

    How and when the northwestern Tibetan Plateau originated and developed upon pre-existing crustal and topographic features is not well understood. To address this question, we present an integrated analysis of detrital zircon U-Pb and fission-track double dating of Cenozoic synorogenic sediments from the Kekeya and Sanju sections in the southwestern Tarim Basin. These data help establishing a new chronostratigraphic framework for the Sanju section and confirm a recent revision of the chronostratigraphy at Kekeya. Detrital zircon fission-track ages present prominent Triassic-Early Jurassic (∼250-170 Ma) and Early Cretaceous (∼130-100 Ma) static age peaks, and Paleocene-Early Miocene (∼60-21 Ma) to Eocene-Late Miocene (∼39-7 Ma) moving age peaks, representing source exhumation. Triassic-Early Jurassic static peak ages document unroofing of the Kunlun terrane, probably related to the subduction of Paleotethys oceanic lithosphere. In combination with the occurrence of synorogenic sediments on both flanks of the Kunlun terrane, these data suggest that an ancient West Kunlun range had emerged above sea level by Triassic-Early Jurassic times. Early Cretaceous fission-track peak ages are interpreted to document exhumation related to thrusting along the Tam Karaul fault, kinematically correlated to the Main Pamir thrust further west. Widespread Middle-Late Mesozoic crustal shortening and thickening likely enhanced the Early Mesozoic topography. Paleocene-Early Eocene fission-track peak ages are presumably partially reset. Limited regional exhumation indicates that the Early Cenozoic topographic and crustal pattern of the West Kunlun may be largely preserved from the Middle-Late Mesozoic. The Main Pamir-Tam Karaul thrust belt could be a first-order tectonic feature bounding the northwestern margin of the Middle-Late Mesozoic to Early Cenozoic Tibetan Plateau. Toward the Tarim basin, Late Oligocene-Early Miocene steady exhumation at a rate of ∼0.9 km/Myr is likely related to initial thrusting of the Tiklik fault and reactivation of the Tam Karaul thrust. Thrusting together with upper crustal shortening in the mountain front indicates basinward expansion of the West Kunlun orogen at this time. This episode of exhumation and uplift, associated with magmatism across western Tibet, is compatible with a double-sided lithospheric wedge model, primarily driven by breakoff of the Indian crustal slab. Accelerated exhumation of the mountain front at a rate of ∼1.1 km/Myr since ∼15 Ma supports active compressional deformation at the margins of the northwestern Tibetan Plateau. We thus propose that the West Kunlun Mountains are a long-lived topographic unit, dating back to Triassic-Early Jurassic times, and have experienced Middle-Late Mesozoic to Early Cenozoic rejuvenation and Late Oligocene-Miocene expansion.

  7. A tectonic reconstruction of accreted terranes along the paleo-Pacific margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Bammel, Brandon

    The southern oceanic margin of Gondwana was nearly 40,000 km long or 24,854.8 miles. The southern margin was the result of the Terra Australis orogen. Spanning 18,000 km or 11,184.7 miles and is proposed as one of the largest and longest lived orogens in Earth history. The paleo-Pacific margin of Gondwana consisted of segments of the Australian-Antarctic craton, southern South America (modern Argentina and Chile), southern South Africa, Marie Byrdland, New Zealand and its adjacent continental shelf, the Ellsworth Mountains, and the Transantarctic Mountains. The process of terrane accretion has played a substantial part in the assembly of the continents as they look today. The paleo-Pacific margin of Gondwana was an active region of terrane accretion from the Neoproterozoic to the Late Mesozoic. This research study examines the accretion of terranes across the paleo-Pacific Gondwana margin to provide a comprehensive reconstruction. A paleogeographic basemap was created using PALEOMAP Project maps and the geology data was provided by the School of Geoscience from the University of Witwatersrand of South Africa. Location and data analyzed for terranes were collected building a PDF library of journal articles across numerous geological publications.

  8. Towards a Holistic Model for the Tectonic Evolution of the North China Craton

    NASA Astrophysics Data System (ADS)

    Kusky, T. M.; Polat, A.; Windley, B. F.; Wang, J.; Deng, H.

    2016-12-01

    The North China Craton (NCC) consists of distinctly different tectonic elements assembled during the late Archean - early Proterozoic. We propose a new tectonic evolution of the NCC. The Eastern Block (EB) consists of small microblocks that resemble a collage of accreted arc-rocks from a sutured archipelago similar to the SW Pacific, accreted between 2.6 and 2.7 Ga. An Atlantic-type margin developed on the western side of the EB by 2.5 Ga, and a >1,300 km long arc/accretionary prism collided with this passive margin at 2.5 Ga, obducting ophiolites and ophiolitic mélanges, and forming a foreland basin. This was followed by arc-polarity reversal, and injection of mantle wedge-derived melts. By 2.43 Ga, the ocean behind the accreted arc closed through the collision of an oceanic plateau. Rifting of the amalgamated craton followed at 2.4-2.35 Ga, with a failed rift arm preserved in the center of the craton, and two that successfully made an ocean along the northern margin. By 2.3 Ga an arc built on older cratonic material collided with this passive margin which soon converted to an Andean-type margin. Andean margin tectonics affected much of the craton from 2.3-1.9 Ga, forming a broad E-W swath of continental margin magmas, and retro-arc sedimentary basins including a superimposed basin over the passive margin on the northern margin. From 1.88-1.79 Ga the craton experienced a craton-wide granulite facies metamorphism and basement reactivation event with high-pressure granulites and eclogites in the north, and medium-pressure granulites across the craton. Early Proterozoic granulites and anatectic melts were generated by high-grade metamorphism and partial melting at mid-crustal levels beneath a collisionally-thickened plateau. This collision of the NCC on its northern margin was with the Columbia (Nuna) Continent. The NCC broke out in the period 1753-1673 Ma, as indicated by the formation of a suite of anorthosite, mangerite, charnockite, and alkali-feldspar granites in an ENE-striking belt across the northern margin of the craton, followed by the development of rifts and graben, intrusion of mafic dike swarms, and formation of shelf sediments on the northern passive margin of the craton, which signaled the beginning of a long period of quiescence for the NCC until the Paleozoic.

  9. The Sidi Ifni transect across the rifted margin of Morocco (Central Atlantic): Vertical movements constrained by low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Charton, Rémi; Bertotti, Giovanni; Arantegui, Angel; Bulot, Luc

    2018-05-01

    The occurrence of km-scale exhumations during syn- and post-rift stages has been documented along Atlantic continental margins, which are also characterised by basins undergoing substantial subsidence. The relationship between the exhuming and subsiding domains is poorly understood. In this study, we reconstruct the evolution of a 50 km long transect across the Moroccan rifted margin from the western Anti-Atlas to the Atlantic basin offshore the city of Sidi Ifni. Low-temperature thermochronology data from the Sidi Ifni area document a ca. 8 km exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the NW. Basement rocks along the transect were subsequently buried by 1-2 km between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.

  10. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    USGS Publications Warehouse

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the polarity and kinematics of the rift segment. Locally, discrete mineral belts parallel secondary structures such as rotated crustal blocks at depth that produced sedimentary subbasins and conduits for hydrothermal fluids. Where the miogeocline was overprinted by Mesozoic and Cenozoic deformation and magmatism, igneous rock-related mineral deposits are common. ??2008 Geological Society of America.

  11. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was intruded by the 110-130 Ma massive granitoids, suggesting late Early Cretaceous accretionary event. From late Early Cretaceous to Late Cretaceous, the spatial extent of magmatisms was reduced from west to east, revealing roll-back of subducted slab. This research was financially supported by the NSFC (41330206).

  12. Tectonostratigraphic Evolution of the Levant domain since Late Palaeozoic: a Review

    NASA Astrophysics Data System (ADS)

    Barrier, Eric

    2015-04-01

    During the last 270 my, the evolution of the African/Arabian platform and margins in Levant and surroundings is controlled by a succession of regional tectonic events, starting with a rifting period in the late Paleozoic, and ending with the ongoing Arabia-Eurasia collision. The main rifting period initiated in the mid-late Permian and lasted until the early-Jurassic, as a consequence of the Pangea break up. During this period the Anatolian blocks are still attached to southern Pangea, but some of the Palmyra-Levant and East Mediterranean basins were initiating. From the Mid-Late Permian to the Early Triassic the sedimentation is clastic-dominated in the continental platforms and basins. In the Early Mesozoic, with the initiation and development of the Levant and East Mediterranean basins, the sedimentation changed from clastic to carbonate deposition. Widespread Triassic to Liassic sediments accumulated in subsiding basins (Levant, Palmyride, Sinjar) and margins (East Mediterranean Basin). The rifting aborted in the Palmyride Trough and Levant Basin in the early Jurassic, while the East Mediterranean Basin (Mesogea) the oceanic accretion probably developed during the mid-Jurassic. Then, a 60 My-long cycle lasted from the late Jurassic to the Turonian, mainly characterized by the thermal subsidence of main the basins and margins. Only the early Cretaceous is marked by an extensional tectonic event, associated with magmatism, widespread all around the East Mediterranean Basin. This event, together with the early Cretaceous eustatic regressions, originated a major stratigraphic gap with emersions at the top-Jurassic - Neocomian period, and the deposition of thick clastic sequences in grabens. The following Cenomanian - Early Turonian interval is a major transgressive period characterized by the extension of the carbonate platforms on the African platform, and subsidence of the margins. The Senonian is characterized by an increase in water depth, mainly resulting from the opening of NW- to WNW-oriented major Senonian grabens (e.g. the Sirt, Azraq and Euphrates grabens). The main pulse of rifting is Campanian in age. In the northeastern African plate this extensional tectonics is coeval with the obduction of the Neo-Tethyan ophiolites onto the Northern Arabian platform where thick flysch sequences deposited. Within the upper-most Maastrichtian to Paleocene times, some of the basins and margins were inverted, resulting in unconformities in some of the Mesozoic basins. A 1600 km long right lateral strike-slip zone developed in the southern Mesogean margin (Cyrenaica, northern Egypt, Negev). In the Eocene-Oligocene period a sub-meridian extension prevailed in the Levant area pre-dating the Arabia-Anatolia collision. Chalky deposits are widespread in the western Arabian platform, significantly thickening and deepening westward toward the Levant Basin. The Neogene period is dominated by compressive deformations following the closure of Eastern Mesogea, and related to the Arabia/Anatolia collision that initiated at the Oligocene-Miocene boundary. This period is marked by the inversion of the Mesozoic basins in the western Arabian plate (Afrin, Palmyrides, Sinjar) Finally, in the Late Miocene, a regional strike-slip fault system developed, including the Levant Fault, and the eastern and north Anatolian faults in Anatolia.

  13. Hydrogeology of the Socorro and La Jencia basins, Socorro County, New Mexico

    USGS Publications Warehouse

    Anderholm, Scott K.

    1987-01-01

    The Socorro and La Jencia Basins are located in central Socorro County, New Mexico. The principal aquifer system in the Socorro and La Jencia Basins consists of, in descending order, the shallow aquifer, the Popotosa confining bed, and the Popotosa aquifer. The minor aquifer systems, which are dominant along the basin margins, are the Socorro volcanics aquifer system and the Mesozoic-Paleozoic aquifer system. On the east side of the Socorro Basin, water enters the principal aquifer system from the Mesozoic-Paleozoic aquifer system. On the west side of the Socorro Basin, groundwater flows from the principal aquifer system in La Jencia Basin eastward to the principal aquifer system in the Socorro Basin. The volume of this flow is limited by the permeability of the minor aquifer systems and the Popotosa confining bed. A water budget indicates that if no change in groundwater storage occurs in the Socorro Basin, groundwater inflow to the basin is about 53,000 acre-feet per year greater than groundwater outflow. Dissolution of gypsum, calcite, and dolomite seems to control water quality in the Mesozoic-Paleozoic aquifer. Water with a chloride concentration of as much as 1,000 milligrams per liter and a specific conductance of as much as 6,700 microsiemens per centimeter at 25 C is present in the northern and southern parts of the Socorro Basin. These large chloride concentrations may indicate upward movement of water from deeper in the basin in these areas. The water with the large chloride concentration in the southern part of the basin also may be caused by leakage of geothermal waters along the Capitan Lineament. In the central part of the Socorro Basin, infiltration of excess irrigation water and inflow of groundwater from the basin margins control water quality. In this area, specific conductance generally is less than 1,000 microsiemens per centimeter. Water in La Jencia Basin generally is of the calcium sodium bicarbonate type with specific conductance less than 500 microsiemens per centimeter. (USGS)

  14. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad

    2010-09-01

    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  15. Variability of the geothermal gradient across two differently aged magma-rich continental rifted margins of the Atlantic Ocean: the Southwest African and the Norwegian margins

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.

    2018-02-01

    The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.

  16. Early Carboniferous magmatism in Lhasa generated in passive continental margin: constrained by new SIMS dating from Carboniferous arc in Qiantang terrane, Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Dan, W.; Wang, Q.; Hao, L. L.; Qi, Y.

    2016-12-01

    In today's oceans, they are rarely undergone subduction on one side and extension on the opposite side. In contrast, there are a few magmatisms in the passive continental margins in the Tethys Ocean. However, because of their long and complex evolution of the northern continental margin of the Gondwana, the geodynamics of the magmatism occurred in this area is speculative or highly depute. One of these examples is the geodynamics of the 360-350 Ma magmatism in southern Lhasa, Tibet. Many authors speculated that it was generated in back-arc setting. Our recent new high-resolution SIMS zircon U-Pb dating reveals that there is a subduction arc with ages of 370-350 Ma in the Qiangtang terrane. The arc rocks compose of andesites, plagiogranites, A-type granites and cumulated gabbros, indicating an initial subduction. This initial subduction arc is located on the north margin of the eastern Paleo-Tethys Ocean, and it was formed slightly earlier than the 360-350 Ma magmatism in southern Lhasa, located on the south margin of the eastern Paleo-Tethys Ocean. Combined with similar aged magmatism generating the back-arc basin in the Sanjiang area, the 360-350 Ma magmatism in southern Lhasa was proposed to be generated in a passive continental margin, and induced by the regional extensional setting related to the subduction in the north margin of the eastern Paleo-Tethys Ocean.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyagah, K.; Cloeter, J.J.; Maende, A.

    The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regimemore » prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.« less

  18. Chapter 34: Geology and petroleum potential of the rifted margins of the Canada Basin

    USGS Publications Warehouse

    Houseknecht, D.W.; Bird, K.J.

    2011-01-01

    Three sides of the Canada Basin are bordered by high-standing, conjugate rift shoulders of the Chukchi Borderland, Alaska and Canada. The Alaska and Canada margins are mantled with thick, growth-faulted sediment prisms, and the Chukchi Borderland contains only a thin veneer of sediment. The rift-margin strata of Alaska and Canada reflect the tectonics and sediment dispersal systems of adjacent continental regions whereas the Chukchi Borderland was tectonically isolated from these sediment dispersal systems. Along the eastern Alaska-southern Canada margin, termed herein the 'Canning-Mackenzie deformed margin', the rifted margin is deformed by ongoing Brooks Range tectonism. Additional contractional structures occur in a gravity fold belt that may be present along the entire Alaska and Canada margins of the Canada Basin. Source-rock data inboard of the rift shoulders and regional palaeogeographic reconstructions suggest three potential source-rock intervals: Lower Cretaceous (Hauterivian-Albian), Upper Cretaceous (mostly Turonian) and Lower Palaeogene. Burial history modelling indicates favourable timing for generation from all three intervals beneath the Alaska and Canada passive margins, and an active petroleum system has been documented in the Canning-Mackenzie deformed margin. Assessment of undiscovered petroleum resources indicates the greatest potential in the Canning-Mackenzie deformed margin and significant potential in the Canada and Alaska passive margins. ?? 2011 The Geological Society of London.

  19. Reconnaissance stratigraphic studies in the Susitna basin, Alaska, during the 2014 field season

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth P.; Tsigonis, Rebekah

    2015-01-01

    The Susitna basin is a poorly-understood Cenozoic successor basin immediately north of Cook Inlet in south-central Alaska (Kirschner, 1994). The basin is bounded by the Castle Mountain fault and Cook Inlet basin on the south, the Talkeetna Mountains on the east, the Alaska Range on the north, and the Alaska–Aleutian Range on the west (fig. 2-1). The Cenozoic fill of the basin includes coal-bearing nonmarine rocks that are partly correlative with Paleogene strata in the Matanuska Valley and Paleogene and Neogene formations in Cook Inlet (Stanley and others, 2013, 2014). Mesozoic sedimentary rocks are present in widely-scattered uplifts in and around the margins of the basin; these rocks differ significantly from Mesozoic rocks in the forearc basin to the south. Mesozoic strata in the Susitna region were likely part of a remnant ocean basin that preceded the nonmarine Cenozoic basin (Trop and Ridgway, 2007). The presence of coal-bearing strata similar to units that are proven source rocks for microbial gas in Cook Inlet (Claypool and others, 1980) suggests the possibility of a similar system in the Susitna basin (Decker and others, 2012). In 2011 the Alaska Division of Geological & Geophysical Surveys (DGGS) and Alaska Division of Oil and Gas, in collaboration with the U.S. Geological Survey, initiated a study of the gas potential of the Susitna basin (Gillis and others, 2013). This report presents a preliminary summary of the results from 14 days of helicopter-supported field work completed in the basin in August 2014. The goals of this work were to continue the reconnaissance stratigraphic work begun in 2011 aimed at understanding reservoir and seal potential of Tertiary strata, characterize the gas source potential of coals, and examine Mesozoic strata for source and reservoir potential

  20. Nd Isotopic Provenance of Sedimentary Rocks Along Margins of North America: ten Years of Study

    NASA Astrophysics Data System (ADS)

    Patchett, J.; Ross, G. M.

    2001-12-01

    Ten years of effort, principally employing Nd isotopes, have resulted in substantial advances in understanding of the movements of sedimentary material around North America from Cambrian to Cretaceous time. This synthesis has depended upon work of current and former students S. Samson, J. Gleason, N. Boghossian, C. Garzione, M. Roth, B. Canale and E. Rosenberg, as well as collaborators W. Dickinson and A. Embry, among others. Nd isotopes are particularly good at documenting movements of sedimentary material on the largest (continental) scale and over extended times. What has emerged is a picture of a largely exposed North America-Greenland craton from Neoproterozoic to Ordovician time, a partial to complete burial by detritus from Caledonian-Appalachian mountains starting in the Ordovician, a gradual exhumation during Late Paleozoic and Mesozoic time, followed by a partial burial with Cordilleran detritus during Late Jurassic to Tertiary time. One current question is the nature of the Mesozoic and Tertiary sedimentary material eroded from the North American Cordillera, and its relevance for Cordilleran orogenesis. Another current question is the extent to which Caledonian-Appalachian detritus covered the craton in Devonian-Carboniferous time, and the timing and manner of its removal during Mesozoic time. At first glance, available Nd isotopic data appear to suggest that the Canada-Greenland Shield was largely covered during most of Mesozoic time, a conclusion that would have profound effects on models of dynamic topography. However, this conclusion is also very dependent on the relationship between topography and erosion, because in certain situations a geographically-restricted cover sequence could dominate over low-relief cratonic terrain as a sediment source.

  1. Spatial and temporal distribution of Mesozoic adakitic rocks along the Tan-Lu fault, Eastern China: Constraints on the initiation of lithospheric thinning

    NASA Astrophysics Data System (ADS)

    Gu, Hai-Ou; Xiao, Yilin; Santosh, M.; Li, Wang-Ye; Yang, Xiaoyong; Pack, Andreas; Hou, Zhenhui

    2013-09-01

    The Mesozoic tectonics in East China is characterized by significant lithospheric thinning of the North China Craton, large-scale strike-slip movement along the Tan-Lu fault, and regional magmatism with associated metallogeny. Here we address the possible connections between these three events through a systematic investigation of the geochemistry, zircon geochronology and whole rock oxygen isotopes of the Mesozoic magmatic rocks distributed along the Tan-Lu fault in the Shandong province. The characteristic spatial and temporal distributions of high-Mg adakitic rocks along the Tan-Lu fault with emplacement ages of 134-128 Ma suggest a strong structural control for the emplacement of these intrusions, with magma generation possibly associated with the subduction of the Pacific plate in the early Cretaceous. The low-Mg adakitic rocks (127-120 Ma) in the Su-Lu orogenic belt were formed later than the high-Mg adakitic rocks, whereas in the Dabie orogenic belt, most of the low-Mg adakitic rocks (143-129 Ma) were generated earlier than the high-Mg adakitic rocks. Based on available data, we suggest that the large scale strike-slip tectonics of the Tan-Lu fault in the Mesozoic initiated cratonic destruction at the south-eastern margin of the North China Craton, significantly affecting the lower continental crust within areas near the fault. This process resulted in crustal fragments sinking into the asthenosphere and reacting with peridotites, which increased the Mg# of the adakitic melts, generating the high-Mg adakitic rocks. The gravitationally unstable lower continental crust below the Tan-Lu fault in the Su-Lu orogenic belt triggered larger volume delamination of the lower continental crust or foundering of the root.

  2. Seismic investigation on the Littoral Faults Zone in the northern continental margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xu, H.; Xia, S.; Cao, J.; Wan, K.

    2017-12-01

    The continental margin of the northern South China Sea (SCS) had experienced continuous evolution from an active continental margin in the late Mesozoic to a passive continental margin in the Cenozoic. The 1200km-long Littoral Faults Zone (LFZ) off the mainland South China was suggested to represent one of the sub-plate boundaries and play a key role during the evolution. Besides, four devastating earthquakes with magnitude over 7 and another 11 destructive events with M>6 were documented to have occurred along the LFZ. However, its approximity to the shoreline, the shallow water depth, and the heavy fishing activities make it hard to conduct a marine seismic investigation. As a result, understandings about the LFZ before 2000 were relatively poor and mostly descriptive. After two experiments of joint onshore-offshore wide-angle seismic surveys in the 1st decade of this century, several cruses aiming to unveil the deep structure of the LFZ were performed in the past few years, with five joint onshore-offshore wide-angle seismic survey profiles completed. Each of these profiles is perpendicular to the shoreline, with four to five seismometers of campaign mode deployed on the landside and over ten Ocean Bottom Seismometers (OBSs) spacing at 20km deployed on the seaside. Meanwhile, multi-channel seismic (MCS) data along these profiles were obtained simultaneously. Based on these data, velocity models from both forward modeling and inversion were obtained. According to these models, the LFZ was imaged to be a low-velocity fractured zone dipping to the SSE-SE at a high-angle and cutting through the thinned continental crust at some locations. Width of the fractured zone varies from 6km to more than 10km from site to site. With these results, it is suggested that the LFZ accommodates the stresses from both the east side, where the Eurasia/Philippine Sea plate converging and mountain building is ongoing, and the west side, where a strike-slip between the Indochina peninsular and the South China is occurring. Moreover, a low-velocity layer on the top of the lower-crust was also modeled, and its intersection with the fractured zone formed a weak zone where stresses concentrated, and led to those abovementioned earthquakes along the LFZ.

  3. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet

    NASA Astrophysics Data System (ADS)

    Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato

    2017-04-01

    The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit records the onset of arc magmatism related to the northward subduction of the Bangong-Nujiang Ocean. The Shamuluo Formation, comprising mainly lithic-feldspar-sandstone with limestone interlayers, was deposited in a post-collisional residual-sea or pre-collisional trench-slope basin, with sediments derived entirely from the Qiangtang block.

  4. Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Gouiza, Mohamed; Hall, Jeremy

    2013-04-01

    The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second model uses depth-dependent extension of a 20 km thick crust characterized by a strong upper crust and a weak lower crust. Both models raise secondary issues that are discussed around the order of rifting events and the original crustal thickness.

  5. Importance of flexure in response to sedimentation and erosion along the US Atlantic passive margin in reconciling sea level change and paleoshorelines

    NASA Astrophysics Data System (ADS)

    Moucha, R.; Ruetenik, G.; de Boer, B.

    2017-12-01

    Reconciling elevations of paleoshorelines along the US Atlantic passive margin with estimates of eustatic sea level have long posed to be a challenge. Discrepancies between shoreline elevation and sea level have been attributed to combinations of tectonics, glacial isostatic adjustment, mantle convection, gravitation and/or errors, for example, in the inference of eustatic sea level from the marine 18O record. Herein we present a numerical model of landscape evolution combined with sea level change and solid Earth deformations to demonstrate the importance of flexural effects in response to erosion and sedimentation along the US Atlantic passive margin. We quantify these effects using two different temporal models. One reconciles the Orangeburg scarp, a well-documented 3.5 million-year-old mid-Pliocene shoreline, with a 15 m mid-Pliocene sea level above present-day (Moucha and Ruetenik, 2017). The other model focuses on the evolution of the South Carolina and northern Georgia margin since MIS 11 ( 400 Ka) using a fully coupled ice sheet, sea level and solid Earth model (de Boer et al, 2014) while relating our results to a series of enigmatic sea level high stand markers. de Boer, B., Stocci, P., and van de Wal, R. (2014). A fully coupled 3-d ice-sheet-sea-level model: algorithm and applications. Geoscientific Model Development, 7:2141-2156. Moucha, R. and Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149: 72-78

  6. Modelling the role of magmatic intrusions in the post-breakup thermal evolution of Volcanic Passive Margins

    NASA Astrophysics Data System (ADS)

    Peace, Alexander; McCaffrey, Ken; Imber, Jonny; van Hunen, Jeroen; Hobbs, Richard; Gerdes, Keith

    2013-04-01

    Passive margins are produced by continental breakup and subsequent seafloor spreading, leaving a transition from continental to oceanic crust. Magmatism is associated with many passive margins and produces diagnostic criteria that include 1) abundant breakup related magmatism resulting in a thick igneous crust, 2) a high velocity zone in the lower crust and 3) seaward dipping reflectors (SDRs) in seismic studies. These Volcanic Passive Margins (VPMs) represent around 75% of the Atlantic passive margins, but beyond this high level description, these magma-rich settings remain poorly understood and present numerous challenges to petroleum exploration. In VPMs the extent to which the volume, timing, location and emplacement history of magma has played a role in controlling heat flow and thermal evolution during margin development remains poorly constrained. Reasons for this include; 1) paucity of direct heat flow and thermal gradient measurements at adequate depth ranges across the margins, 2) poor onshore exposure 3) highly eroded flood basalts and 4) poor seismic imaging beneath thick offshore basalt sequences. As a result, accurately modelling the thermal history of the basins located on VPMs is challenging, despite the obvious importance for determining the maturation history of potential source rocks in these settings. Magmatism appears to have affected the thermal history of the Vøring Basin on the Norwegian VPM, in contrast the effects on the Faeroe-Shetland Basin was minimal. The more localised effects in the Faeroe-Shetland Basin compared to Vøring Basin may be explained by the fact that the main reservoir sandstones appear to be synchronous with thermal uplift along the basin margin and pulsed volcanism, indicating that the bulk of the magmatism occurred at the basin extremities in the Faeroe-Shetland Basin, where its effect on source maturation was lessened. Our hypothesis is that source maturation occurs as a result of regional temperature and pressure increases, and the effects of even a large singular magmatic event are small beyond the immediate vicinity, therefore quantifying cumulative regional heat flow is of utmost importance. The apparently complex relationships between source rock maturation and magmatism are not limited to the north-east Atlantic margins. Other VPMs of interest include the regions between West Greenland and Eastern Canada (Labrador Sea, Davis Strait and Baffin Bay), East Greenland, NW Australia, Western India and segments of the Western African and Eastern South American margins. This project utilises 1D numerical modelling of magmatic intrusions into a sedimentary column to gain an understanding into the thermal influence of post-breakup magmatic activity on source rock maturation in representative VPMs. Considerations include the timing, periodicity of intrusions, thickness, spacing and background heat in the basin.

  7. Geophysical Mapping of the South Carolina Atlantic Offshore for Wind Energy Development

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Brantley, D.; Battista, B.; Gayes, P. T.; Knapp, J. H.; White, S. M.

    2016-12-01

    The submerged continental margin of the southeastern United States records a geologic history of continental collision during Paleozoic time (500-300 Mya), and subsequent continental rifting and break-up with associated magmatism during early Mesozoic time (230-180 Mya). Subsequent development as a passive continental margin has resulted in accumulation of a thick sedimentary cover deposited through numerous cycles of sea level change on the margin. Themost recent phase of deposition (Pleistocene; <1.8 Ma) took place during repeated, large-scale (120 m) sea-level changes which resulted in extensive exposure and inundation of the shelf. The shallow subsurface of the near-shore environment under consideration for wind energy development requires thorough analysis of seabed bottom type, seafloor roughness and geomorphology, potential sites of cultural resources and features such as active and inactive faults, filled channels, and potential slope instabilities which would have a considerable potential impact on siting of installations for wind energy. To this end, a geophysical survey has been conducted to further refine future wind farm locations. The study is focused on the inner shelf from 18 to 26 km offshore of North Myrtle Beach, SC and a second smaller area offshore of Georgetown, SC. The collaborative effort is generating multibeam, side scan sonar, chirp sub-bottom and magnetometer data. Seafloor acoustic backscatter is derived from the same instrument acquiring the bathymetry. Bathymetry shows a radial distribution of coast-perpendicular features that transition between two coastal processes: 1) there is the sediment distribution caused by longshore currents and wave energy, and 2) there are areas related to the coastal inlets that disrupt the primary sedimentation patterns and impose patterns of terrestrial sedimentation such as those from rivers, deltas and estuaries. There are numerous systems tracts and channels acting on the seafloor over time in the region. All the data collected as part of this project will be interpreted and integrated in the same domain using Schlumberger's Petrel™ software package in order to create high resolution images including 1) seabed morphology and bathymetry, and 2) high resolution models of the subsurface structure and stratigraphy.

  8. Mantle-derived peridotites in southwestern Oregon: relation to plate tectonics.

    PubMed

    Medaris, L G; Dott, R H

    1970-09-04

    A group of peridotites in southwestern Oregon contains high-pressure mineral assemblages reflecting recrystallization at high temperatures (1100 degrees to 1200 degrees C) over a range of pressure decreasing from 19 to 5 kilobars. It is proposed that the peridotites represent upper-mantle material brought from depth along the ancestral Gorda-Juan de Fuca ridge system, transported eastward by the spreading Gorda lithosphere plate, and then emplaced by thrust-faulting in the western margin of the Cordillera during late Mesozoic time.

  9. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study area includes three stages,that is Eogene,middle stage of lately Oligocene to early Miocene and middle Miocene to Present.Result shows that there are a good association of petroleum source rocks,reservoir rocks and seal rocks and structural traps in the Cenozoic and Mesozoic strata,as well as good conditions for the generation-migration-accumulation-preservation of petroleum in the lower continatal slope of Southern Chaoshan Sag.So the region has good petroleum prospect. Key words:Northern South China Sea;Chaoshan Sag; lower continental slope; deposition.

  10. Plume type ophiolites in Japan, East Russia and Mongolia: Peculiarity of the Late Jurassic examples

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Akira; Ichiyama, Yuji; Ganbat, Erdenesaikhan

    2013-04-01

    Dilek and Furnes (2011; GSAB) provided a new comprehensive classification of ophiolites. In addition to the mid-ocean ridge (MOR) and supra-subduction zone (SSZ) types that are known for decades, they introduced rift-zone (passive margin) type, volcanic arc (active margin) type, and plume type. The last type is thought to be originated in oceanic large igneous provinces (LIPs; oceanic plateaus), and is preserved in the subduction-accretion complexes in the Pacific margins. The LIP-origin greenstones occur in the Middle Paleozoic (Devonian) accretionary complex (AC) in central Mongolia (Ganbat et al. 2012; AGU abst.). The Late Paleozoic and Mesozoic plume-type ophiolites are abundant in Japan. They are Carboniferous greenstones covered by thick limestone in the Akiyoshi belt (Permian AC, SW Japan; Tatsumi et al., 2000; Geology), Permian greenstones in the Mino-Tamba belt (Jurassic AC, SW Japan; Ichiyama et al. 2008; Lithos), and Late Jurassic-Early Cretaceous greenstone in the Sorachi (Hokkaido; Ichiyama et al, 2012; Geology) and Mikabu (SW Japan; this study) belts. The LIP origin of these greenstones is indicated by abundance of picrite (partly komatiite and meimechite), geochemical features resembling HIMU basalts (e.g. high Nb/Y and Zr/Y) and Mg-rich (up to Fo93) picritic olivines following the "mantle array", suggesting very high (>1600oC) temperature of the source mantle plume. The Sorachi-Mikabu greenstones are characterized by the shorter time interval between magmatism and accretion than the previous ones, and are coeval with the meimechite lavas and Alaskan-type ultramafic intrusions in the Jurassic AC in Sikhote-Alin Mountains of Primorye (E. Russia), that suggest a superplume activity in the subduction zone (Ishiwatari and Ichiyama, 2004; IGR). The Mikabu greenstones extend for 800 km along the Pacific coast of SW Japan, and are characterized by the fragmented "olistostrome" occurrence of the basalts, gabbros and ultramafic cumulate rocks (but no mantle peridotite), suggesting tectonism in a sediment-starved subduction zone or a transform fault zone that transected the thick oceanic LIP crust. The Sorachi greenstones are associated with depleted mantle peridotite, and are covered by the thick Cretaceous turbidite formation (Yezo Group), and Takashima et al. (2002; JAES) concluded the marginal basin origin for the "Sorachi ophiolite". We know that some oceanic LIPs were developed into marginal basins (e.g. Caribbean basin). The Late Jurassic-Early Cretaceous greenstone belts of Japan and eastern Russia may represent relics of a 2000 km-size superplume activity that hit the subduction zone and the adjacent ocean floor in NW Pacific.

  11. Annual monsoon rains recorded by Jurassic dunes.

    PubMed

    Loope, D B; Rowe, C M; Joeckel, R M

    2001-07-05

    Pangaea, the largest landmass in the Earth's history, was nearly bisected by the Equator during the late Palaeozoic and early Mesozoic eras. Modelling experiments and stratigraphic studies have suggested that the supercontinent generated a monsoonal atmospheric circulation that led to extreme seasonality, but direct evidence for annual rainfall periodicity has been lacking. In the Mesozoic era, about 190 million years ago, thick deposits of wind-blown sand accumulated in dunes of a vast, low-latitude desert at Pangaea's western margin. These deposits are now situated in the southwestern USA. Here we analyse slump masses in the annual depositional cycles within these deposits, which have been described for some outcrops of the Navajo Sandstone. Twenty-four slumps, which were generated by heavy rainfall, appear within one interval representing 36 years of dune migration. We interpret the positions of 20 of these masses to indicate slumping during summer monsoon rains, with the other four having been the result of winter storms. The slumped lee faces of these Jurassic dunes therefore represent a prehistoric record of yearly rain events.

  12. Structural evidence for northeastward movement on the Chocolate Mountains Thrust, southeasternmost California

    USGS Publications Warehouse

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-01-01

    The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors

  13. The geology and Mesozoic collisional history of the Cordillera Real, Ecuador

    NASA Astrophysics Data System (ADS)

    Aspden, John A.; Litherland, Martin

    1992-04-01

    The geology of the metamorphic rocks of the Cordillera Real of Ecuador is described in terms of five informal lithotectonic divisions. We deduce that during the Mesozoic repeated accretionary events occurred and that dextral transpression has been of fundamental importance in determining the tectonic evolution of this part of the Northern Andes. The oldest event recognised, of probable Late Triassic age, may be related to the break-up of western Gondwana and generated a regional belt of 'S-type' plutons. During the Jurassic, major calc-alkaline batholiths were intruded. Following this, in latest Jurassic to Early Cretaceous time, a volcano-sedimentary terrane, of possible oceanic or marginal basin origin (the Alao division), and the most westerly, gneissic Chaucha-Arenillas terrane, were accreted to continental South America. The accretion of the oceanic Western Cordillera took place in latest Cretaceous to earliest Tertiary time. This latter event coincided with widespread thermal disturbance, as evidenced by the large number of young K-Ar mineral ages recorded from the Cordillera Real.

  14. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution of Campos Basin, offshore Brazil: Evidence from 3D seismic analysis and section restoration. Marine and Petroleum Geology 26, 873-886. Tommasi, A., Vauchez, A., 2001. Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle. Earth and Planetary Science Letters 185, 199-210.

  15. Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM

    NASA Astrophysics Data System (ADS)

    Reynolds, P.; Planke, S.; Millett, J. M.; Jerram, D. A.; Trulsvik, M.; Schofield, N.; Myklebust, R.

    2017-06-01

    Continental rifting is often associated with voluminous magmatism and perturbations in the Earth's climate. In this study, we use 2D seismic data from the northeast Greenland margin to document two Paleogene-aged sill complexes ≥ 18 000 and ≥ 10 000 km2 in size. Intrusion of the sills resulted in the contact metamorphism of carbon-rich shales, producing thermogenic methane which was released via 52 newly discovered hydrothermal vent complexes, some of which reach up to 11 km in diameter. Mass balance calculations indicate that the volume of methane produced by these intrusive complexes is comparable to that required to have caused the negative δ13 C isotope excursion associated with the PETM. Combined with data from the conjugate Norwegian margin, our study provides evidence for margin-scale, volcanically-induced greenhouse gas release during the late Paleocene/early Eocene. Given the abundance of similar-aged sill complexes in Upper Paleozoic-Mesozoic and Cretaceous-Tertiary basins elsewhere along the northeast Atlantic continental margin, our findings support a major role for volcanism in driving global climate change.

  16. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  17. Deep mantle structure as a reference frame for movements in and on the Earth

    PubMed Central

    Torsvik, Trond H.; van der Voo, Rob; Doubrovine, Pavel V.; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D.; Trønnes, Reidar G.; Webb, Susan J.; Bull, Abigail L.

    2014-01-01

    Earth’s residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core–mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth’s surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core–mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth’s axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth’s mantle may have operated throughout the entire Phanerozoic. PMID:24889632

  18. Deep mantle structure as a reference frame for movements in and on the Earth.

    PubMed

    Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L

    2014-06-17

    Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.

  19. Challenge for Mesozoic hydrocarbon exploration in the Eastern Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, S.; Rukmiati, M.G.; Sitompul, N.

    1996-12-31

    The eastern part of Indonesia covers approximately 3 million square kilometers, 35 percent being landmass and 65 percent covered by ocean. Only three of 38 sedimentary basins are producing hydrocarbon (Salawati, Bintuni, and Seram Basins). Oil and gas have discovered in the Lariang, Bone, Timor, Banggai, Sula and Biak Basins, however the discoveries have not developed yet. Hydrocarbon systems in Northern Australia and Papua New Guinea give the major contributions to the geological idea of Pre-Tertiary section in the less explored area in the Eastern Indonesia. The Triassic-Middle Jurassic marine carbonaceous shale sequences are the main hydrocarbon source rock inmore » the Irian Jaya and surrounding area (Buton, gula and Seram basins). The main Mesozoic reservoir are the Kembelangan Formation in the Bintuni Basin of Irian Jaya and Bobong Formation in the North Sula Region. Exploration play types in the Eastern Indonesia can be divided into five types: 1 - Peri Cratonic, 2 - Marginal Rift Graben, 3 - Thrust Fold Belt Island Arc, 4 - Early Collision and 5 -Microcontinental Block - Advanced Collision. Recent discoveries through Mesozoic section in Eastern Indonesia are: Roabiba-1 (1990) in Bintuni Basin-Irian Jaya (Kambelangan Formation); Loku- 1 (1990) in North Sula region (Pre-Tertiary sediments); Oseil-1 (1993/94) in Bula-Seram Basin (Jurassic Manusela Formation); Elang-1 (1 994); Kakaktua-1 (1994) and Laminaria-1 in North Bonaparte Basin (Upper Jurassic Sands).« less

  20. New Insights into Passive Margin Development from a Global Deep Seismic Reflection Dataset

    NASA Astrophysics Data System (ADS)

    Bellingham, Paul; Pindell, James; Graham, Rod; Horn, Brian

    2014-05-01

    The kinematic and dynamic evolution of the world's passive margins is still poorly understood. Yet the need to replace reserves, a high oil price and advances in drilling technology have pushed the international oil and gas industry to explore in the deep and ultra-deep waters of the continental margins. To support this exploration and help understand these margins, ION-GXT has acquired, processed and interpreted BasinSPAN surveys across many of the world's passive margins. Observations from these data lead us to consider the modes of subsidence and uplift at both volcanic and non-volcanic margins. At non-volcanic margins, it appears that frequently much of the subsidence post-dates major rifting and is not thermal in origin. Rather the subsidence is associated with extensional displacement on a major fault or shear zone running at least as deep as the continental Moho. We believe that the subsidence is structural and is probably associated with the pinching out (boudinage) of the Lower Crust so that the Upper crust effectively collapses onto the mantle. Eventually this will lead to the exhumation of the sub-continental mantle at the sea bed. Volcanic margins present more complex challenges both in terms of imaging and interpretation. The addition of volcanic and plutonic material into the system and dynamic effects all impact subsidence and uplift. However, we will show some fundamental observations regarding the kinematic development of volcanic margins and especially SDRs which demonstate that the process of collapse and the development of shear zones within and below the crust are also in existence at this type of margin. A model is presented of 'magma welds' whereby packages of SDRs collapse onto an emerging sub-crustal shear zone and it is this collapse which creates the commonly observed SDR geometry. Examples will be shown from East India, Newfoundland, Brazil, Argentina and the Gulf of Mexico.

  1. Influence of Passive Stiffness of Hamstrings on Postural Stability

    PubMed Central

    Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej

    2015-01-01

    The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability. PMID:25964809

  2. Influence of passive stiffness of hamstrings on postural stability.

    PubMed

    Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej

    2015-03-29

    The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability.

  3. Upper mantle structure at Walvis Ridge from Pn tomography

    NASA Astrophysics Data System (ADS)

    Ryberg, Trond; Braeuer, Benjamin; Weber, Michael

    2017-10-01

    Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.

  4. Erosion of Terrestrial Rift Flank Topography: A Quantitative Study

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.

    1999-01-01

    Many rifted or passive continental margins feature a seaward-facing erosional escarpment which abruptly demarcates deeply weathered, low relief, interior uplands from a deeply incised, high relief coastal zone. It is generally accepted that these escarpments originate at the time of continental rifting and propagate inland through the elevated rift flank topography at rates on the order of 1 km/Myr over the course of a margin's history. Considering the length of passive margins worldwide and an average rift flank plateau height of several hundred meters, it is clear that sediment eroded from passive margins is an important component of the mass flux from continents to oceans through geologic time. The overall goal of the research reported here is to develop a quantitative understanding of the kinematics of escarpment propagation across passive margins and the underlying geological processes responsible for this behavior. Plateau-bounding escarpments in general exhibit two basic forms depending on the direction of surface water drainage on the plateau interior relative to the escarpment. Where surface water flows away from the escarpment, the escarpment takes the form of subdued embayments and promontories, such that its overall trend remains fairly straight as it evolves with time. Where upland streams flow across the escarpment, it takes the form of dramatic, narrow gorges whose heads appear to propagate up the plateau drainage systems as large-scale knickpoints. From work on the Colorado Plateau, Schmidt (1987) noted that the Colorado River is located much closer to the Grand Canyon's south rim, a drainage divide escarpment, than to the north rim, which is a gorge-like escarpment. The main implication is that the gorge-like form might be associated with higher long-term average erosion rates compared to the drainage divide escarpment type.

  5. Ductile extension of syn-magmatic lower crusts, with application to volcanic passive margins: the Ivrea Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles

    2017-04-01

    Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.

  6. Architecture of the Distal Piedmont-Ligurian Rifted Margin in NW Italy: Hints for a Flip of the Rift System Polarity

    NASA Astrophysics Data System (ADS)

    Decarlis, Alessandro; Beltrando, Marco; Manatschal, Gianreto; Ferrando, Simona; Carosi, Rodolfo

    2017-11-01

    The Alpine Tethys rifted margins were generated by a Mesozoic polyphase magma-poor rifting leading to the opening of the Piedmont-Ligurian "Ocean." This latter developed through different phases of rifting that terminated with the exhumation of subcontinental mantle along an extensional detachment system. At the onset of simple shear detachment faulting, two margin types were generated: an upper and a lower plate corresponding to the hanging wall and footwall of the final detachment system, respectively. The two margin architectures were markedly different and characterized by a specific asymmetry. In this study the detailed analysis of the Adriatic margin, exposed in the Serie dei Laghi, Ivrea-Verbano, and Canavese Zone, enabled to recognize the diagnostic elements of an upper plate rifted margin. This thesis contrasts with the classic interpretation of the Southalpine units, previously compared with the adjacent fossil margin preserved in the Austroalpine nappes and considered as part of a lower plate. The proposed scenario suggests the segmentation and flip of the Alpine rifting system along strike and the passage from a lower to an upper plate. Following this interpretation, the European and Southern Adria margins are coevally developed upper plate margins, respectively resting NE and SW of a major transform zone that accommodates a flip in the polarity of the rift system. This new explanation has important implications for the study of the pre-Alpine rift-related structures, for the comprehension of their role during the reactivation of the margin and for the paleogeographic evolution of the Alpine orogen.

  7. Terrestrial heat flow in east and southern Africa

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Pollack, Henry N.; Jones, D. L.; Podmore, Francis; Mushayandebvu, Martin

    1990-10-01

    We report 26 new heat flow and 13 radiogenic heat production measurements from Zimbabwe, Zambia and Tanzania, together with details and some revisions of 18 previous heat flow measurements by other investigators from Kenya and Tanzania. These measurements come from Archean cratons, Proterozoic mobile belts, and Mesozoic and Cenozoic rifts. Heat flow data from eight new sites in the Archean Zimbabwe Craton are consistent with previous measurements in the Archean Kaapvaal-Zimbabwe Craton and Limpopo Belt (Kalahari Craton) and do not change the mean heat flow of 47±2 mW m-2 (standard error of the mean) in the Kalahari Craton based on 53 previous measurements. Eight new sites in the Archean Tanzania Craton give a mean heat flow of 34±4 mW m-2. The mean heat flow from nine sites in the Proterozoic Mozambique Belt to the east of the Tanzania Craton in Kenya and Tanzania is 47±4 mW m-2. Twelve measurements in the Mesozoic rifted continental margin in east Africa give a mean heat flow of 68±4 mW m-2; four measurements in the Mesozoic Luangwa and Zambezi Rifts range from 44 to 110 mW m-2 with a mean of 76±14 mW m-2. In comparing heat flow in east and southern Africa, we observe a common heat flow pattern of increasing heat flow away from the centers of the Archean cratons. This pattern suggests a fundamental difference in lithospheric thermal structure between the Archean cratons and the Proterozoic and early Paleozoic mobile belts which surround them. Superimposed on this common pattern are two regional variations in heat flow. Heat flow in the Tanzania Craton is lower by about 13 mW m-2 than in the Kalahari Craton, and in the Mozambique Belt in east Africa heat flow is somewhat lower than in the southern African mobile belts at similar distances from the Archean cratonic margin. The two regional variations can be explained in several ways, none of which can as yet be elevated to a preferred status: (1) by variations in crustal heat production, (2) by thin-skinned thrusting of the Mozambique Belt over the Tanzania Cratonic margin, (3) by lateral heat transfer from beneath the rift flanks into the rifts, or (4) by lower mantle heat flow beneath all of eastern Africa prior to the Cenozoic development of the East African rift system.

  8. Florida: A Jurassic transform plate boundary

    USGS Publications Warehouse

    Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans

    1984-01-01

    Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our plate reconstructions combined with chronostratigraphic and lithostratigraphic information for the Gulf of Mexico, southern Florida, and the Bahamas indicate that the gulf was sealed off from the Atlantic waters until Callovian time by an elevated Florida-Bahamas region. Restricted influx of waters started in Callovian as a plate reorganization, and increased plate separation between North America and South America/Africa produced waterways into the Gulf of Mexico from the Pacific and possibly from the Atlantic.

  9. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental Terrane is interpreted to have been attached to the South China margin from the Cretaceous until the Oligocene oceanization of the South China Sea. In our preferred paleogeographic scenario, the sediment provenance in the northeastern South China Sea region changed from dominantly nearby Cretaceous continental arcs of the South China margin to more distal southeastern South China in the Eocene.

  10. Albian salt-tectonics in Central Tunisia: Evidences for an Atlantic-type passive margin

    NASA Astrophysics Data System (ADS)

    Jaillard, Etienne; Bouillin, Jean-Pierre; Ouali, Jamel; Dumont, Thierry; Latil, Jean-Louis; Chihaoui, Abir

    2017-11-01

    Tunisia is part of the south-Tethyan margin, which comprises Triassic evaporites and a thick series of Jurassic and Cretaceous, mainly marine deposits, related to the Tethyan rifting evolution. A survey of various Cretaceous outcrops of central Tunisia (Kasserine-El Kef area), combined with literature descriptions, shows that the style of Albian deformation changes from the proximal (South) to the distal part (North) of the margin. The southern part is dominated by tilted blocks and growth faults, which evolve to the north to turtle-back and roll-over structures. Farther North, deformation is dominated by the extrusion of diapirs and salt walls. Such a distribution of deformation strongly suggests that the whole sedimentary cover glided northward on the Triassic evaporites during Albian times, as described for the Atlantic passive margin or for the Gulf of Mexico. Subsequently, these halokinetic structures have been folded during Alpine compressional tectonics.

  11. Rare earth element deposits in China

    USGS Publications Warehouse

    Xie, Yu-Ling; Hou, Zeng-qian; Goldfarb, Richard J.; Guo, Xiang; Wang, Lei

    2016-01-01

    China is the world’s leading rare earth element (REE) producer and hosts a variety of deposit types. Carbonatite- related REE deposits, the most significant deposit type, include two giant deposits presently being mined in China, Bayan Obo and Maoniuping, the first and third largest deposits of this type in the world, respectively. The carbonatite-related deposits host the majority of China’s REE resource and are the primary supplier of the world’s light REE. The REE-bearing clay deposits, or ion adsorption-type deposits, are second in importance and are the main source in China for heavy REE resources. Other REE resources include those within monazite or xenotime placers, beach placers, alkaline granites, pegmatites, and hydrothermal veins, as well as some additional deposit types in which REE are recovered as by-products. Carbonatite-related REE deposits in China occur along craton margins, both in rifts (e.g., Bayan Obo) and in reactivated transpressional margins (e.g., Maoniuping). They comprise those along the northern, eastern, and southern margins of the North China block, and along the western margin of the Yangtze block. Major structural features along the craton margins provide first-order controls for REE-related Proterozoic to Cenozoic carbonatite alkaline complexes; these are emplaced in continental margin rifts or strike-slip faults. The ion adsorption-type REE deposits, mainly situated in the South China block, are genetically linked to the weathering of granite and, less commonly, volcanic rocks and lamprophyres. Indosinian (early Mesozoic) and Yanshanian (late Mesozoic) granites are the most important parent rocks for these REE deposits, although Caledonian (early Paleozoic) granites are also of local importance. The primary REE enrichment is hosted in various mineral phases in the igneous rocks and, during the weathering process, the REE are released and adsorbed by clay minerals in the weathering profile. Currently, these REE-rich clays are primarily mined from open-pit operations in southern China. The complex geologic evolution of China’s Precambrian blocks, particularly the long-term subduction of ocean crust below the North and South China blocks, enabled recycling of REE-rich pelagic sediments into mantle lithosphere. This resulted in the REE-enriched nature of the mantle below the Precambrian cratons, which were reactivated and thus essentially decratonized during various tectonic episodes throughout the Proterozoic and Phanerozoic. Deep fault zones within and along the edges of the blocks, including continental rifts and strike-slip faults, provided pathways for upwelling of mantle material.

  12. Interaction of tectonic and depositional processes that control the evolution of the Iberian Gulf of Cadiz margin

    USGS Publications Warehouse

    Maldonado, A.; Nelson, C.H.

    1999-01-01

    This study provides an integrated view of the growth patterns and factors that controlled the evolution of the Gulf of Cadiz continental margin based on studies of the tectonic, sedimentologic and oceanographic history of the area. Seven sedimentary regimes are identified, but there are more extensive descriptions of the late Cenozoic regimes because of the larger data base. The regimes of the Mesozoic passive margin include carbonate platforms, which become mixed calcareous-terrigenous deposits during the Late Cretaceous-early Tertiary. The Oligocene and Early Miocene terrigenous regimes developed, in contrast, over the active and transcurrent margins near the African-Iberian plate boundary. The top of the Gulf of Cadiz olistostrome, emplaced in the Late Miocene, is used as a key horizon to define the 'post-orogenic' depositional regimes. The Late Miocene progradational margin regime is characterized by a large terrigenous sediment supply to the margin and coincides with the closing of the Miocene Atlantic-Mediterranean gateways. The terrigenous drift depositional regime of the Early Pliocene resulted from the occurrence of high eustatic sea level and the characteristics of the Mediterranean outflow currents that developed after the opening of the Strait of Gibraltar. The Late Pliocene and Quaternary regimes are dominated by sequences of deposits related to cycles of high and low sea levels. Deposition of shelf-margin deltas and slope wedges correlate with regressive and low sea level regimes caused by eustasy and subsidence. During the highstand regimes of the Holocene, inner shelf prograding deltas and deep-water sediment drifts were developed under the influence of the Atlantic inflow and Mediterranean outflow currents, respectively. A modern human cultural regime began 2000 years ago with the Roman occupation of Iberia; human cultural effects on sedimentary regimes may have equalled natural factors such as climate change. Interplay of tectonic and oceanographic controls dominated the evolution of the Cadiz margin during the Cenozoic. Depositional sequences formed where the tectonic setting provided the accommodation space and the shape of the deposits has been greatly influenced by the strong unidirectional Atlantic inflow currents on the shelf and Mediterranean outflow currents on the slope. The entire cycle of the inflow and outflow deposition along the margin has been controlled first by the tectonic evolution of the Betic and Rif gateways, which become closed during the Late Miocene, and after the Messinian by the opening of the Strait of Gibraltar. Strong current development during eustatic sea level highstands of the Pliocene and Quaternary has controlled deposition because of maximum sill depths at Gibraltar for water circulation. Lowstand sea levels slowed circulation and resulted in mud drapes over the slope and regressive stratigraphic sequences over the shelf. More recently, the human industrial revolution has caused heavy metal contamination of sediment and water over the Cadiz margin. Human activity also has affected sedimentation rates because of deforestation that caused increased depositional rates near undammed rivers and decreased rates where rivers have been dammed. Future research efforts will need to focus on: (1) the effect of increased Mediterranean outflow caused by river damming plus global warming and the increased outflow as a potential trigger for new ice ages; (2) assessments of geologic hazards for planning man-made shoreline structures, developing offshore petroleum resources and maintaining undersea communications cables; and (3) confirmation of the general geologic history of the Cadiz margin.

  13. Geodynamics and synchronous filling of rift-type basin evolved through compression tectonics

    NASA Astrophysics Data System (ADS)

    Papdimitriou, Nikolas; Nader, Fadi; Gorini, Christian; Deschamps, Remy

    2016-04-01

    The Levant Basin falls in the category of frontier basins, and is bounded by the Eratosthenes seamount to the West, the Nile cone delta to the south, Cyprus to the north and Lebanon to the east. The Levant Basin was initially a rift type basin, which is located at a major plate boundary since the Late Triassic. It evolved later on through compression tectonics. The post-rift phase prevailed since the Late Jurassic and is expressed by the gradual initiation of a passive margin. A thick infill, mostly of deep water sediments (about 12 km thick) is accounted for the Levant Basin. The post-rift sediments are pinching-out along the slope of the well preserved (and imaged) eastern margin of the Eratosthenes seamount, which is essentially made up of Mesozoic platform carbonates (about 5 km). Thus, the Eratosthenes carbonate platform was adjacent to the deep marine facies of the Levant Basin until the late Cretaceous/Cenozoic. At that time, both the Eratosthenes seamount and the Levant Basin became part of a foreland basin along the Cyprus Arc zone as a result of the collision of the African and Eurasian plates. The objective of this contribution is to investigate the timing and the mechanisms of flexural subsidence as well as the sedimentary filling of Levant Basin (through a source-to-sink approach) in a well-deformed tectonic region. The interpretation of twenty-four 2D seismic profiles coupled with the available ODP wells, offshore Cyprus, aims to define the primary reflectors and seismic packages. Then, concepts of seismic stratigraphy and sequence stratigraphy are applied to achieve a better understanding of the tectonostratigraphy and sedimentary architecture of the Eratosthenes seamount (as an isolated carbonate platform) and its surroundings. Recent offshore discoveries south of the Eratosthenes seamount (e.g., Zhor) have confirmed the presence of gas accumulations exceeding 30Tcf in subsalt Lower Miocene carbonate buildups, making out the understanding of the evolution of this new frontier hydrocarbon province of great importance.

  14. Seismostratigraphic model of the Sines Contourite Drift (SW Portuguese Margin) - depositional evolution, structural control and paleoceanographic implications

    NASA Astrophysics Data System (ADS)

    Rodrigues, Sara; Roque, Cristina; Terrinha, Pedro; Hernández-Molina, Francisco J.; Llave, Estefania; Ercilla, Gemma; Casas, David; Farran, Marcelli

    2017-04-01

    The Sines Contourite Drift, located in the Southwest Portuguese margin, is a distal drift of the Contourite Depositional System of the Gulf of Cadiz, built by the influence of the Mediterranean Outflow Water (MOW). This drift is located between 1000 and 2000 m water depth on the Alentejo margin continental slope. The Sines Drift is bounded by four major morphologic features, the 1.4 km high Pereira de Sousa Fault escarpment to the west, the upper continental slope to the east and the Setúbal and São Vicente canyons to the north and south, respectively. This work presents a seismic stratigraphic analysis and proposes an evolutionary model for the Sines Drift, as well as the identification of its main driving mechanisms and constraints. We used new seismic reflection lines acquired during the MOWER/CONDRIBER cruise in September-October 2014, pre-existent multichannel seismic lines and lithostratigraphic and chronological data from Site U1391 of IODP Expedition 339 carried out in 2011-2012. Three evolutionary phases are identified for the Sines Drift development: 1) a sheeted-contourite-drift phase (<5.3-3.2 Ma) built since the Late Miocene by an initially weak flowing MOW; 2) a mounded-contourite-drift phase (3.2-0.7 Ma) from Late Pliocene to Early Quaternary times characterized by a mounded drift in the north and sheeted in the south, with a succession of sinuous N-S paleomoats in the east built as a result of a MOW enhancement; and 3) a plastered-contourite-drift phase from Mid-Pleistocene (0.7 Ma) till the present day, characterized by the present depositional (sandy-muddy drifts) and erosional (moats) contourite features associated with two major events of MOW intensification. The growth of the Sines Drift was constrained, in a long-term, by seafloor morphologies that resulted from the Mesozoic rifting processes of the Southwest Portuguese margin, inherited from the Mesozoic rifting phases. The paleomorphology provided accommodation space for drift growth and conditioned its overall architecture. The N-S horsts built during the Mesozoic rifting confined drift formation and did not allow lateral migration. The formation of the Sines Drift has also been influenced, in short-term, by climatic fluctuations and sea-level changes especially during the Quaternary. The succession of sinuous paleomoats beneath the present-day moat suggests a persistent and northward flowing MOW with several phases of enhancement. It was also perceived that the São Vicente and Setúbal canyons took most of the downslope sediment supply, as well as the occurrence of mass-movement processes in the west associated with the steep gradient of the Pereira de Sousa escarpment. All these results suggest the Sines Drift had a complex evolution controlled by several and varied factors at different scales.

  15. Asymmetry and polarity of the South Atlantic conjugated margins related to the presence of cratons: a numerical study

    NASA Astrophysics Data System (ADS)

    Andrés-Martínez, Miguel; Pérez-Gussinyé, Marta; de Monserrat Navarro, Albert; Morgan, Jason P.

    2015-04-01

    Tectonic asymmetry of conjugated passive margins, where one margin is much narrower than the conjugate one, is commonly observed at many passive margins world-wide. Conjugate margin asymmetry has been suggested to be a consequence of lateral changes in rheology, composition, temperature gradient or geometries of the crust and lithosphere. Here we use the South Atlantic margins (from Camamu/Gabon to North Santos/South Kwanza) as a natural laboratory to understand conjugate margin asymmetry. Along this margin sector the polarity of the asymmetry changes. To the North, the Brazilian margin developed in the strong Sao Francisco craton, and this constitutes the narrow side of the conjugate pair. To the South, the Brazilian margin developed in the Ribeira fold belt, and the margin is wide. The opposite is true for the African side. We have thus numerically analysed how the relative distance between the initial location of extension and the craton influences the symmetry/asymmetry and polarity of the conjugate margin system. Our numerical model is 2D visco-elasto-plastic and has a free surface, strain weakening and shear heating. The initial set-up includes a cratonic domain, a mobile belt and a transition area between both. We have run tests with different rheologies, thickness of the lithosphere, and weak seeds at different distances from the craton. Results show asymmetric conjugated margins, where the narrower margin is generally the closest to the craton. Our models also allow us to study how the polarity is controlled by the distance between the initial weakness and the craton, and help to understand how the presence of cratonic domains affects the final architecture of the conjugated margins.

  16. Sedimentary record of late Paleozoic to Recent tectonism in central Asia — analysis of subsurface data from the Turan and south Kazak domains

    NASA Astrophysics Data System (ADS)

    Thomas, J. C.; Cobbold, P. R.; Shein, V. S.; Le Douaran, S.

    1999-11-01

    The Turan and south Kazak domains (TSK) are in central Asia, between the Caspian Sea and the Tien Shan. The area is covered by sediments, deposited since the Late Permian during a series of tectonic events closely related to the history of two oceanic domains, Paleotethys and Neotethys. Sedimentary basins on the TSK therefore provide constraints on the tectonic development of the southern margin of Eurasia since the Late Permian. Our study is based on structure-contour maps and isopach maps of five key stratigraphic markers, of Late Permian to Tertiary age. Isopach maps help locate major faults and delimit sedimentary basins, providing information on vertical motions and, in some instances, horizontal motions. Subsidence associated with extension appears to have dominated the TSK, from the Late Permian to the Eocene. The extension may have been of back-arc type in southern Eurasia, next to the active margin, where the Paleotethys and Neotethys successively subducted toward the north. Here, sedimentary basins are both wide and deep (up to 15 km). During the Mesozoic, two compressional events of regional significance occurred in association with accretion of continental blocks at the southern margin of Eurasia. The first one, at the end of the Triassic, led to strong selective inversion of basins over the Turan domain. The second one, during the Late Jurassic-Early Cretaceous, had weaker effects. Since the Oligocene, following collision of both India and Arabia with Eurasia, inversion has become more generalized and compressional basins have formed on the TSK. Throughout the entire history of development of the TSK, from the Late Permian to the Tertiary, structures of Paleozoic and early Mesozoic age have exerted a strong control on sedimentation and especially on the location of depocenters. The south Kazak domain has registered little subsidence, in comparison with the Turan domain, where some basins have become very deep.

  17. Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-06-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.

  18. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2007-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both sides of the South Atlantic, western India, eastern Australia, and possibly in Antarctica. Our results show that we cannot simply assume that these elevations were produced either at the time of rifting or as underplating at the time of plume impact. There is, however, no general agreement as to what caused them and we suggest that the history of these margins need to be re-assessed in the light of our results.

  19. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2004-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both sides of the South Atlantic, western India, eastern Australia, and possibly in Antarctica. Our results show that we cannot simply assume that these elevations were produced either at the time of rifting or as underplating at the time of plume impact. There is, however, no general agreement as to what caused them and we suggest that the history of these margins need to be re-assessed in the light of our results.

  20. Massive sulfide metallogenesis at a late Mesozoic sediment-covered spreading axis: Evidence from the Franciscan complex and contemporary analogues

    USGS Publications Warehouse

    Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.

    1993-01-01

    The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.

  1. Massive sulfide metallogenesis at a late Mesozoic sediment-covered spreading axis: Evidence from the Franciscan complex and contemporary analogues

    NASA Astrophysics Data System (ADS)

    Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.

    1993-02-01

    The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.

  2. Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Vázquez-Vílchez, Mercedes; Jabaloy-Sánchez, Antonio; Azor, Antonio; Stuart, Finlay; Persano, Cristina; Alonso-Chaves, Francisco M.; Martín-Parra, Luis Miguel; Matas, Jerónimo; García-Navarro, Encarnación

    2015-11-01

    The post-Paleozoic tectonothermal evolution of the SW Iberian Variscides is poorly known mainly due to the scarce low-temperature geochronological data available. We have obtained new apatite fission-tracks and apatite (U-Th)/He ages to constrain the Mesozoic and Cenozoic tectonic evolution of this portion of the Iberian Massif located just north of the Betic-Rif Alpine orogen. We have obtained nine apatite fission-track ages on samples from Variscan and pre-Variscan granitoids. These ages range from 174.4 (± 10.8) to 54.1 (± 4.9) Ma, with mean track lengths between 10.3 and 13.9 μm. We have also performed 5 (U-Th)/He datings on some of the same samples, obtaining ages between 74.6 (± 1.6) and 18.5 (± 1.4) Ma. Time-temperature path modeling of these low-temperature geochronological data leads us to envisage four post-Paleozoic tectonically controlled exhumation episodes in the SW Iberian Variscides. Three of these episodes occurred in Mesozoic times (Middle Triassic to Early Jurassic, Early Cretaceous, and Late Cretaceous) at rates of ≈ 1.1 to 2.5 °C Ma- 1, separated by periods with almost no cooling. We relate these Mesozoic cooling events to the formation of important marginal reliefs during the rifting and opening of the central and northern Atlantic realm. The fourth exhumation episode occurred in Cenozoic times at rates of ≈ 3.2 to 3.6 °C Ma- 1, being only recorded in samples next to faults with topographic escarpments. These samples cooled below 80 °C at ≈ 20 Ma at rates of 3-13 °C Ma- 1 due to roughly N-S oriented compressional stresses affecting the whole Iberian plate, which, in the particular case of SW Iberia, reactivated some of the previous Late Paleozoic thrusts.

  3. Geological history of the west Libyan offshore and adjoining regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.

    1988-08-01

    The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic.more » From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.« less

  4. The Lamu Basin deepwater fold-and-thrust belt: An example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa

    NASA Astrophysics Data System (ADS)

    Cruciani, Francesco; Barchi, Massimiliano R.

    2016-03-01

    In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.

  5. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  6. Characteristics and features of the submarine landslides in passive and active margin southwestern offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, Y. C.

    2016-12-01

    In the past decade, numerous multi-channel seismic surveys as well as near seafloor high resolution geophysical investigations were conducted in order to explore and estimate the reserves of gas hydrate southwestern offshore Taiwan. The previous object was focused on searching substitute energy (i.e. gas hydrate) rather than geo-hazards. However, it is suggested that most of the gas hydrate is generally distributed at slope area southwestern offshore Taiwan, which indicates the slope may be failed when steady state was disturbed by some factors, such as sea level or climate change. In addition, once gas hydrate was dissociated, this may induce submarine landslide that further cause devastated tsunami. Thus, it is of great urgency to investigate potential landslide area, particularly, the hydrate-rich continental slope (active and passive margins) in adjacent to populous city like Kaohsiung. In this study, we collected several high resolution multi-channel seismic data with ten seconds shooting rate and 3.125 meters group interval streamer by using R/V ORI and R/V ORV. The seismic data were processed in conventional data processing strategy: bad trace clean, geometry settings, band-pass filter, de-convolution, surface-related multiple rejection, radon filter, stacking,kirchhoff migration and time to depth conversion. Combine the results obtained from the MCS data and subbottom profiles, two major results could be raised in the active margin as followed: (1) Most of the surface creeping and landslide was occurred shallower than 500 meters in water depth, which should be related to the inter-bedded fluid activities. (2) The landslide distribution is lagly affected by the presence of diaper, suggesting the subsequent mud diapirism may destruct slope stability; (3) The submarine landslide deeper than 800 meters in water depth distributes in the thrust fold area, that is probably referred to active thrusting. In the passive margin, large volume mass transportation deposits (MTDs) were identified in deeper stratigraphic section below BSR. This indicated several big former submarine landslide events occurred. In summary, the passive margin often show typical submarine landslide features than active margin, which driven by gravity force.

  7. Comparative Riftology: Insights into the Evolution of Passive Continental Margins and Continental Rifts from the Failed Midcontinent Rift (MCR)

    NASA Astrophysics Data System (ADS)

    Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.

    2017-12-01

    Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed and inverted rifts without upwelling mantle and positive gravity anomalies.

  8. Neogene to recent contraction and basin inversion along the Nubia-Iberia boundary in SW Iberia

    NASA Astrophysics Data System (ADS)

    Ramos, Adrià; Fernández, Oscar; Terrinha, Pedro; Muñoz, Josep Anton

    2017-02-01

    The SW of Iberia is currently undergoing compression related to the convergence between Nubia and Iberia. Multiple compressive structures, and their related seismic activity, have been documented along the diffuse Nubia-Iberia plate boundary, including the Gorringe bank west of the Gulf of Cadiz, and the Betic-Rif orogen to the east. Despite seismic activity indicating a dominant compressive stress along the Algarve margin in the Gulf of Cadiz, the structures at the origin of this seismicity remain elusive. This paper documents the contractional structures that provide linkage across the Gulf of Cadiz and play a major role in defining the present-day seismicity and bathymetry of this area. The structures described in this paper caused the Neogene inversion of the Jurassic oblique passive margin that formed between the central Atlantic and the Ligurian Tethys. This example of a partially inverted margin provides insights into the factors that condition the inversion of passive margins.

  9. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.

  10. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    USGS Publications Warehouse

    Stewart, John H.

    2009-01-01

    Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily extensional in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia and outlines the major continental masses that, prior to the breakup, formed the supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces together. Evidence for Neoproterozoic margins is fragmentary. The most apparent margins are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-floor rocks, or by the presence of continent-ward extending aulacogens. Most of the continental margins described here are Neoproterozoic, and some had an older history suggesting that they were major, long-lived lithospheric flaws. In particular, the western margin of North America appears to have existed for at least 1,470 Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly evident along the eastern United States, where a similarity of Mesoproterozoic (Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is evident. The model of Rodinia presented here is based on both geologic and paleomagnetic information. Geologic evidence is based on the distribution and shape of Neoproterozoic continents and on assembling these continents so as to match the shape, history, and scale of adjoining margins. The proposed model places the Laurasian continents?Baltica, Greenland, and Laurentia?west of the South American continents (Amazonia, Rio de La Plata, and Sa? Francisco). This assembly is indicated by conjugate pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the trend of the Grenville rocks. The boundary between South America and Africa is interpreted as the site of a Wilson cycle

  11. Lower plate serpentinite diapirism in the Calabrian Arc subduction complex.

    PubMed

    Polonia, A; Torelli, L; Gasperini, L; Cocchi, L; Muccini, F; Bonatti, E; Hensen, C; Schmidt, M; Romano, S; Artoni, A; Carlini, M

    2017-12-19

    Mantle-derived serpentinites have been detected at magma-poor rifted margins and above subduction zones, where they are usually produced by fluids released from the slab to the mantle wedge. Here we show evidence of a new class of serpentinite diapirs within the external subduction system of the Calabrian Arc, derived directly from the lower plate. Mantle serpentinites rise through lithospheric faults caused by incipient rifting and the collapse of the accretionary wedge. Mantle-derived diapirism is not linked directly to subduction processes. The serpentinites, formed probably during Mesozoic Tethyan rifting, were carried below the subduction system by plate convergence; lithospheric faults driving margin segmentation act as windows through which inherited serpentinites rise to the sub-seafloor. The discovery of deep-seated seismogenic features coupled with inherited lower plate serpentinite diapirs, provides constraints on mechanisms exposing altered products of mantle peridotite at the seafloor long time after their formation.

  12. Time constraints on post-rift evolution of the Southwest Indian passive margin from ^{40}Ar-^{39Ar dating of supergene K-Mn oxides

    NASA Astrophysics Data System (ADS)

    Bonnet, Nicolas; Arnaud, Nicolas; Beauvais, Anicet; Chardon, Dominique

    2013-04-01

    The high-elevation passive margin of Southwest India is marked by the Western Ghats escarpment, which separates the coastal domain from the low-relief East-dipping Mysore plateau. The escarpment has evolved from the Seychelles rifting at ~ 63 Ma following the Deccan traps volcanic event at ~ 65-63 Ma. This escarpment results from differential erosion processes across the passive margin, the rate and timing of which depend upon whether the margin has evolved according to a model of downwarped or rising flank topography. We explore the post-rift evolution of the South Indian passive margin through the characterisation of stepped relicts of lateritic paleosurfaces across that margin, and notably by 40Ar-39Ar dating of in-situ formed K-Mn oxides in supergene Mn-ore deposits carried by these paleosurfaces. The genesis and maturation of Mn-ore deposits are generally linked to progressive weathering processes of the paleosurfaces, which expose them. Dating of K-Mn oxides thus document the timing of these processes [1], and potentially the ages of the altered paleosurface. Moreover, the elevation differences between successive lateritic paleosurfaces of different ages may provide denudation rates for the considered time spans. Previous work (e.g., [2]) and our own field investigations, allow identifying three main lateritic paleosurfaces on the plateau at altitude ranges of 1000-900 m (S2), 900-800 m (S3) and 800-700 m (S3d), and a lower paleosurface in the coastal domain at 150-50 m (S4). K-Mn oxides (cryptomelane) were sampled in Mn ore deposits from different paleosurfaces, particularly in the coastal area around Goa on S4 and in Sandur and Shimoga Mn-ore deposits exposed on S2 and S3. The 40Ar-39Ar ages obtained from carefully characterised mineralogical assemblages range from ~ 26 to ~ 36 Ma in the Sandur Mn-ore deposit indicating intense lateritic weathering processes at the Eocene-Oligocene transition underneath paleosurface S2. Similar ages of ~ 24 and ~ 32 Ma are obtained in two Shimoga Mn ore deposits carried by S3 and S2, respectively. A younger age (~ 21 Ma) is also obtained in a Goa deposit carried by S4. These first results suggest that the Western Ghats passive margin escarpment was established at the latest by early Miocene and that at least part of the inland Mysore plateau morphogenesis was achieved at that time. [1] Beauvais A. et al., Journal of Geophysical Research 113, F04007, 2008. [2] Gunnell, Y., Basin Research 10, 281-310, 1998.

  13. Turbiditic systems on passive margins: fifteen years of fruitful industry-academic exchanges.

    NASA Astrophysics Data System (ADS)

    Guillocheau, F.

    2012-04-01

    During the last fifteen years, with the oil discovery in deep offshore plays, new tools have been developed that deeply modified our knowledge on sedimentary gravity processes on passive margins: geometry, physical processes, but also the importance of the topography and the quantification of the stratigraphic parameters of control. The major breakthrough was of course the extensive 3D seismic data available around most of the world margins with a focus on gravity-tectonics dominated margins. The first major progress was the characterization of the sinuous channels infilling, their diversity and different models for their origin. This also was a better knowledge of the different types of slopes (graded vs. above-graded) and the extension of the concept of accommodation to deep-water environments (ponded, healed-slope, incised submarine valley and slope accommodation). The second step was the understanding of the synsedimentary deformations for the location and the growth of turbiditic systems on margins dominated by gravity tectonics, with the importance of the sedimentary flux and its variation through time and space. The third step is now the integration of the sedimentary system, from the upstream erosional catchment to the abyssal plain (source to sink approach), with the question of the sediment routing system. During the last 100 Ma, continents experienced major changes of both topography and climate. In the case of Africa, those are (1) the growth of the plateaus (and mainly the South African one) around 90-80 Ma (Late Cretaceous) and 40-20 Ma (Late Eocene-Early Miocene) and (2) a climate evolution from hot humid (50-40 Ma) to hot dry conditions since 20-15 Ma. This evolution changed the topography, the processes of erosion and the volume and nature (weathered vs. non weathered rocks) materials. Those are primary processes for controlling the deposition of turbiditic systems, and then to predict the location of sands. This will be discussed along the Atlantic margin of Africa. Keywords: Turbidite, Passive margins, Topography, Deformation, Source to sink

  14. New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    NASA Astrophysics Data System (ADS)

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter

    2017-04-01

    New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data Krob, F.C.1, Stippich, C. 1, Glasmacher, U.A.1, Hackspacher, P.C.2 (1) Institute of Earth Sciences, Research Group Thermochronology and Archaeometry, Heidelberg University, INF 234, 69120, Heidelberg, Germany (2) Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Av. 24-A, 1515 Rio Claro, SP, 13506-900, Brazil Passive continental margins are important geoarchives related to mantle dynamics, the breakup of continents, lithospheric dynamics, and other processes. The main concern yields the quantifying long-term lithospheric evolution of the continental margin between São Paulo and Laguna in southeastern Brazil since the Neoproterozoic. We put special emphasis on the reactivation of old fracture zones running into the continent and their constrains on the landscape evolution. In this contribution, we represent already consisting thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4) Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 427.6 (1.8) Ma whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0) Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.52) and 92.0 (1.86) Ma. These thermochronological ages from metamorphic, sedimentary and intrusive rocks show six distinct blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos) with different evolution cut by old fracture zones. Furthermore, models of time-temperature evolution illustrate the differences in Pre- to post-rift exhumation histories of these blocks. The presented data will provide an insight into the complex exhumation history of the continental margin based on the existing literature data on the evolution of the Paraná basin in Brazil and the latest thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic (Cretaceous time). This enables a possible interpretation of the southeastern Brazilian margin being an outer part of the Paraná basin and even the possible source area for the Ordovician to Carboniferous sediments. Further on, we try to research the newly gained exhumation history models for indications on the evolution and movement of the lithosphere of the southeastern Brazilian mantle.

  15. Paleogeography, Paleo-drainage Systems, and Tectonic Reconstructions of Eocene Northern South America Constrained by U-Pb Detrital Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Xie, X.; Mann, P.; Escalona, A.

    2008-12-01

    Thick, Eocene to Miocene clastic sedimentary basins are widespread across on- and offshore northern South America and have been identified using seismic reflection data in offshore basins of the Leeward Antilles, the Lesser Antilles arc and forearc, and the Barbados accretionary prism. Several 3 to12-km-thick Paleogene depocenters occur in shelf to deep basinal settings along the offshore margins of Venezuela, Trinidad and Tobago, and Barbados. Previous studies proposed that the proto-Orinoco River has been the single fluvial source for these distal, continentally-derived sandstone units along northern Venezuela as part of the early Eocene to Miocene, proto-Maracaibo fluvial-deltaic system that emanated from the northern Andes of western Venezuela and Colombia. Those distal sandstones were displaced eastward with the movement of the Caribbean plate by several hundred kilometers and are now found in basins and islands of the southeastern Caribbean region. We collected nine Eocene age sandstone samples from well cores and outcrops along the northern South America margin, including Lake Maracaibo, Trinidad and Tobago, and Barbados Island. In total, 945 single detrital zircon grains were analyzed using LA-ICP-MS. The objective is to reconstruct the paleogeography, paleo-drainage system, and tectonic history during Eocene time. New data show that the Eocene Misoa Formation of Lake Maracaibo was characterized by a mixture of Precambrian, Paleozoic, and Mesozoic ages matching age provinces from eastern Cordillera and the Guayana Shield, which is consistent with previous proto-Orinoco River model flowing from the western Amazonian region of Colombia and Brazil through the Maracaibo basin into the area of western Falcon basin. However, coeval Eocene samples from Barbados and Trinidad show a much different age population dominated by Precambrian matching the eastern part of the Guyana shield to the south, which suggests that the western onland system and eastern offshore units belong to different systems. We postulate that a series of smaller, north-flowing drainages provided a line of sediment source dispersal of Eocene sandstone from the north central and eastern edge of the Guyana shield onto the Eocene passive margin that extended from central Venezuela to Trinidad instead of being tectonically transported to their present locations suggested by earlier studies.

  16. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  17. Pre-, syn-, and postcollisional stratigraphic framework and provenance of upper triassic-upper cretaceous strata in the northwestern talkeetna mountains, alaska

    USGS Publications Warehouse

    Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.

    2007-01-01

    Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain by previously unrecognized nonmarine strata informally referred to here as the Caribou Pass formation. This unit is at least 250 m thick and has been tentatively assigned an Albian-Cenomanian-to-younger age based on limited palynomorphs and fossil leaves. Sandstone composition (Q-65% F-9% L-26%-Lv-28% Lm-52% Ls-20%) from this unit suggests a quartz-rich metamorphic source terrane that we interpret as having been the Yukon-Tanana terrane. Collectively, provenance data indicate that there was a fundamental shift from mainly arc-related sediment derivation from sources located south of the study area during Jurassic-Early Cretaceous (Aptian) time (Kahiltna assemblage) to mainly continental margin-derived sediment from sources located north and east of the study area by Albian-Cenomanian time (Caribou Pass formation). We interpret the threepart stratigraphy defined for the northwestern Talkeetna Mountains to represent pre- (the Honolulu Pass formation), syn- (the Kahiltna assemblage), and post- (the Caribou Pass formation) collision of the Wrangellia composite terrane with the Mesozoic continental margin. A similar Mesozoic stratigraphy appears to exist in other parts of south-central and southwestern Alaska along the suture zone based on previous regional mapping studies. New geologic mapping utilizing the three-part stratigraphy interprets the northwestern Talkeetna Mountains as consisting of two northwest-verging thrust sheets. Our structural interpretation is that of more localized thrust-fault imbrication of the three-part stratigraphy in contrast to previous interpretations of nappe emplacement or terrane translation that require large-scale displacements. Copyright ?? 2007 The Geological Society of America.

  18. An Intracratonic Record of North American Tectonics

    NASA Astrophysics Data System (ADS)

    Lovell, Thomas Rudolph

    Investigating how continents change throughout geologic time provides insight into the underlying plate tectonic process that shapes our world. Researchers aiming to understand plate tectonics typically investigate records exposed at plate margins, as these areas contain direct structural and stratigraphic information relating to tectonic plate interaction. However, these margins are also susceptible to destruction, as orogenic processes tend to punctuate records of plate tectonics. In contrast, intracratonic basins are long-lived depressions located inside cratons, shielded from the destructive forces associated with the plate tectonic process. The ability of cratonic basins to preserve sedimentological records for extended periods of geologic time makes them candidates for recording long term changes in continents driven by tectonics and eustacy. This research utilizes an intracratonic basin to better understand how the North American continent has changed throughout Phanerozoic time. This research resolves geochronologic, thermochronologic, and sedimentologic changes throughout Phanerozoic time (>500 Ma) within the intracratonic Illinois Basin detrital record. Core and outcrop sampling provide the bulk of material upon which detrital zircon geochronologic, detrital apatite thermochronologic, and thin section petrographic analyses were performed. Geochronologic evidence presented in Chapters 2 and 3 reveal the Precambrian - Cretaceous strata of the intracratonic Illinois Basin yield three detrital zircon U-Pb age assemblages. Lower Paleozoic strata yield ages corresponding to predominantly cratonic sources (Archean - Mesoproterozoic). In contrast, Middle - Upper Paleozoic strata have a dominant Appalachian orogen (Neoproterozoic - Paleozoic) signal. Cretaceous strata yield similar ages to underlying Upper Paleozoic strata. We conclude that changes in the provenance of Illinois Basin strata result from eustatic events and tectonic forcings. This evidence demonstrates that changes in the detrital record of the Illinois Basin coincide with well-documented, major tectonic and eustatic events that altered and shaped North American plate margins. Chapter 4 presents 24 apatite (U-Th)/He (AHe) ages (3 - 423 Ma) taken from subsurface Cambrian and Pennsylvanian sandstones in the Illinois Basin. Time-temperature simulations used to reproduce these ages predict a basin thermal history with a maximum temperature of 170°C in post-Pennsylvanian time followed by Mesozoic cooling at 0.3°C/Myr. These thermal simulations suggest 3 km of additional post-Pennsylvanian burial (assuming 30°C/km geotherm) followed by subsequent Mesozoic - Cenozoic removal. This burial-exhumation history is concurrent with Late Mesozoic tectoniceustatic fluctuations, including Atlantic and Gulf of Mexico opening, rejuvenation of the Appalachian region, and Gulf of Mexico sediment influx, and the Cretaceous high sea level stand. The Geochronologic and thermochronologic evidence presented in the following chapters suggests the Illinois Basin potentially contains a more robust record of North American tectonics than previously thought. These observations provide a new perspective on the utility of intracratonic basins in understanding long term changes to continental bodies.

  19. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    NASA Astrophysics Data System (ADS)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    The Alpine-Mediterranean mobile belt is, tectonically, one of the most complicated and active regions in the world. Since the Mesozoic, collisions between Gondwana-derived continental blocks and Eurasia, due to the closure of a number of rather small ocean basins, have shaped the Mediterranean geology. During the late Mesozoic, it was dominated by subduction zones (e.g., in Anatolia, the Dinarides, the Carpathians, the Alps, the Apennines, and the Betics), which inverted the extensional regime, consuming the previously formed oceanic lithosphere, the adjacent passive continental margins and presumably partly also continental lithosphere. The location, distribution, and evolution of these subduction zones were mainly controlled by the continental or oceanic nature, density, and thickness of the lithosphere inherited from the Mesozoic rift after the European Variscan Orogeny. Despite the numerous studies that have attempted to characterize the lithosphere-asthenosphere structure in that area, details of the lithospheric structure and dynamics, as well as flow in the asthenosphere are, however, poorly known. A 3D shear-wave velocity structure of the lithosphere-asthenosphere system in the Mediterranean is investigated using new tomographic images obtained from surface wave tomography. An automated algorithm for inter-station phase velocity measurements is applied here to obtain both Rayleigh and Love fundamental mode phase velocities. We utilize a database consisting of more than 4000 seismic events recorded by more than 2000 broadband seismic stations within the area, provided by the European Integrated Data Archive (WebDc/EIDA) and IRIS. Moreover, for the first time, data from the Egyptian National Seismological Network (ENSN), recorded by up to 25 broad band seismic stations, are also included in the analysis. For each station pair, approximately located on the same great circle path, the recorded waveforms are cross correlated and the dispersion curves of fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.

  20. Paleogeographic constraints on continental-scale source-to-sink systems: Northern South America and its Atlantic margins

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Chardon, Dominique; Rouby, Delphine; Dall'Asta, Massimo; Roig, Jean-Yves; Loparev, Artiom; Coueffe, Renaud

    2017-04-01

    Our work aims at setting the evolving boundary conditions of erosion and sediments transfer, transit, and onshore-offshore accumulations on northern South America and along its Atlantic margins. Since the Early Mesozoic, the source-to-sink system evolved under the interplay of four main processes, which are (i) volcanism and arc building along the proto-Andes, (ii) long-term dynamics of the Amazon incratonic basin, (iii) rifting, relaxation and rejuvenation of the Atlantic margins and (iv) building of the Andes. We compiled information available from geological maps and the literature regarding tectonics, plate kinematics, magmatism, stratigraphy, sedimentology (including paleoenvironments and currents) and thermochronology to produce a series of paleogeographic maps showing the tectonic and kinematic framework of continental areas under erosion (sources), by-pass and accumulation (sinks) over the Amazonian craton, its adjacent regions and along its Atlantic margins. The maps also allow assessing the relative impact of (i) ongoing Pacific subduction, (ii) Atlantic rifting and its aftermath, and (iii) Atlantic slab retreat from under the Caribbean domain on the distribution and activity of onshore/offshore sedimentary basins. Stratigraphic and thermochronology data are also used to assess denudation / vertical motions due to sediment transfers and lithosphere-asthenosphere interactions. This study ultimately aims at linking the sediment routing system to long-wavelength deformation of northern South America under the influence of mountain building, intracratonic geodynamics, divergent margin systems and mantle dynamics.

  1. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  2. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  3. Young People Speaking Back from the Margins

    ERIC Educational Resources Information Center

    Smyth, John

    2010-01-01

    The diminished educational opportunities and subsequent life chances of many marginalized young people have been dramatic, even to the point of being catastrophic. But they are not hapless victims, nor are they passive recipients of deficit categories like "at riskness", placed upon them by the media, politicians, agencies, and some…

  4. Tectonic evolution of the Anadyr Basin, northeastern Eurasia, and its petroleum resource potential

    NASA Astrophysics Data System (ADS)

    Antipov, M. P.; Bondarenko, G. E.; Bordovskaya, T. O.; Shipilov, E. V.

    2009-09-01

    The published data on the sedimentation conditions, structure, and tectonic evolution of the Anadyr Basin in the Mesozoic and Cenozoic are reviewed. These data are re-examined in the context of modern tectonic concepts concerning the evolution of the northwestern Circum-Pacific Belt. The re-examination allows us not only to specify the regional geology and tectonic history, but also to forecast of the petroleum resource potential of the sedimentary cover based on a new concept. The sedimentary cover formation in the Anadyr Basin is inseparably linked with the regional tectonic evolution. The considered portion of the Chukchi Peninsula developed in the Late Mesozoic at the junction of the ocean-type South Anyui Basin, the Asian continental margin, and convergent zones of various ages extending along the Asia-Pacific interface. Strike-slip faulting and pulses of extension dominated in the Cenozoic largely in connection with oroclinal bending of structural elements pertaining to northeastern Eurasia and northwestern North America against the background of accretion of terranes along the zone of convergence with the Pacific oceanic plates. Three main stages are recognized in the formation of the sedimentary cover in the Anadyr Basin. (1) The lower portion of the cover was formed in the Late Cretaceous-Early Eocene under conditions of alternating settings of passive and active continental margins. The Cenomanian-lower Eocene transitional sedimentary complex is located largely in the southern Anadyr Basin (Main River and Lagoonal troughs). (2) In the middle Eocene and Oligocene, sedimentation proceeded against the background of extension and rifting in the northern part of the paleobasin and compression in its southern part. The compression was caused by northward migration of the foredeep in front of the accretionary Koryak Orogen. The maximum thickness of the Eocene-Oligocene sedimentary complex is noted mainly in the southern part of the basin and in the Central and East Anadyr troughs. (3) The middle Miocene resumption of sedimentation was largely related to strike-slip faulting and rifting. In the Miocene to Quaternary, sedimentation was the most intense in the central and northern parts of the Anadyr Basin, as well as in local strike-slip fault-line depressions of the Central Trough. Geological and geophysical data corroborate thrusting in the southern Anadyr Basin. The amplitude of thrusting over the Main River Trough reaches a few tens of kilometers. The vertical thickness of the tectonically screened Paleogene and Neogene rocks in the southern Main River Trough exceeds 10 km. The quantitative forecast of hydrocarbon emigration from Cretaceous and Paleogene source rocks testifies to the disbalance between hydrocarbons emigrated and accumulated in traps of petroleum fields discovered in the Anadyr Basin. The southern portion of the Anadyr Basin is the most promising for the discovery of new petroleum fields in the Upper Cretaceous, Eocene, and Upper Oligocene-Miocene porous and fracture-porous reservoir rocks in subthrust structural and lithological traps.

  5. Rift-Related Sediments of the Passive Continental Margin of the Paleo-Asian Ocean (Baikal Segment)

    NASA Astrophysics Data System (ADS)

    Mazukabzov, A. M.; Stanevich, A. M.; Gladkochub, D. P.; Donskaya, T. V.; Khubanov, V. B.; Motova, Z. L.; Kornilova, T. A.

    2018-02-01

    The geological position, composition, and age of detrital zircons of sedimentary deposits of the Nugan Formation of the Western Baikal region underlying the Golousta Formation of the Baikal series of Ediacaran age have been studied. The formation of both stratigraphic units due to the same sources of detrital material, located within the southern flank of the Siberian Craton, has been proved. The deposits of the Nugan Formation have been demonstrated to mark the rifting stage of the formation of the passive margin of the Paleo-Asiatic Ocean: their accumulation occurred in the Late Cryogenian during the interval 720-640 Ma.

  6. Passive microwave characteristics of the Bering Sea ice cover during Marginal Ice Zone Experiment (MIZEX) West

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T.; Calhoon, C.

    1984-01-01

    Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year sea ice types.

  7. Preface

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster; Talwani, Manik

    In compiling this volume, we have aimed to develop and enhance our current understanding of the structural evolution and sedimentation processes along divergent continental margins. To counteract the unfortunate situation of a lack of modem seismic and potential fields data on circum-Atlantic passive margins in the literature, we have linked new data from oil companies with that of research institutions. To update the data offered in most volumes used as reference works for the study of continental margins, now upwards of 20 years old, and to remedy the dispersal of important, more recent contributions in specialized journals, we present a current synthesis of materials in one volume focused on the deeper geology of the sedimentary basins along continental margins. In the early 1990s, as oil companies and other institutions developed tools to probe deeper into the architecture of passive margin sedimentary basins, a great amount of data based on regional deep seismic profiles evolved rapidly from its specialized niche as geophysical interpretation of the Earth's interior to widespread use by those same companies and institutions. At the same time, these findings demonstrated that some breakthroughs in data acquisition, processing and interpretation initially achieved by research institutions could almost instantaneously be globalized throughout different research groups, thereby influencing the thinking of geoscientists worldwide.

  8. Microwave and physical properties of sea ice in the winter marginal ice zone

    NASA Technical Reports Server (NTRS)

    Tucker, W. B., III; Perovich, D. K.; Gow, A. J.; Grenfell, T. C.; Onstott, R. G.

    1991-01-01

    Surface-based active and passive microwave measurements were made in conjunction with ice property measurements for several distinct ice types in the Fram Strait during March and April 1987. Synthesis aperture radar imagery downlinked from an aircraft was used to select study sites. The surface-based radar scattering cross section and emissivity spectra generally support previously inferred qualitative relationships between ice types, exhibiting expected separation between young, first-year and multiyear ice. Gradient ratios, calculated for both active and passive data, appear to allow clear separation of ice types when used jointly. Surface flooding of multiyear floes, resulting from excessive loading and perhaps wave action, causes both active and passive signatures to resemble those of first-year ice. This effect could possibly cause estimates of ice type percentages in the marginal ice zone to be in error when derived from aircraft- or satellite-born sensors.

  9. Chapter 27: Geology and petroleum potential of the north and east margins of the Siberian Craton, north of the Arctic Circle

    USGS Publications Warehouse

    Klett, T.R.; Wandrey, C.J.; Pitman, Janet K.

    2011-01-01

    The Siberian Craton consists of crystalline rocks and superimposed Precambrian sedimentary rocks deposited in rift basins. Palaeozoic rocks, mainly carbonates, were deposited along the margins of the craton to form an outwardly younger concentric pattern that underlies an outward-thickening Mesozoic sedimentary section. The north and east margins of the Siberian Craton subsequently became foreland basins created by compressional deformation during collision with other tectonic plates. The Tunguska Basin developed as a Palaeozoic rift/sag basin over Proterozoic rifts. The geological provinces along the north and east margins of the Siberian Craton are immature with respect to exploration, so exploration-history analysis alone cannot be used for assessing undiscovered petroleum resources. Therefore, other areas from around the world having greater petroleum exploration maturity and similar geological characteristics, and which have been previously assessed, were used as analogues to aid in this assessment. The analogues included those of foreland basins and rift/sag basins that were later subjected to compression. The US Geological Survey estimated the mean undiscovered, technically recoverable conventional petroleum resources to be approximately 28 billion barrels of oil equivalent, including approximately 8 billion barrels of crude oil, 103 trillion cubic feet of natural gas and 3 billion barrels of natural gas liquids. ?? 2011 The Geological Society of London.

  10. Mesozoic arc magmatism along the southern Peruvian margin during Gondwana breakup and dispersal

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Spikings, Richard; Sempere, Thierry; Chiaradia, Massimo; Ulianov, Alexey; Schaltegger, Urs

    2012-08-01

    A high-resolution U-Pb zircon geochronological study of plutonic units along the south Peruvian margin between 17° and 18°S allows the integration of the geochemical, geodynamic and tectonic evolution of this part of the Andean margin. This study focuses on the composite Jurassic-early Cretaceous Ilo Batholith that was emplaced along the southern Peruvian coast during two episodes of intrusive magmatism; a first period between 173 and 152 Ma (with a peak in magmatic activity between roughly 168 and 162 Ma) and a second period between 110 and 106 Ma. Emplacement of the Jurassic part of the composite Ilo Batholith shortly post-dated the accumulation of the volcanosedimentary succession it intruded (Chocolate formation), which allows to estimate a subsidence rate for this unit of ~ 3.5 km/Ma. The emplacement of the main peak of Jurassic plutonism of the Ilo Batholith was also closely coeval with widespread and repeated slumping (during deposition of the Cachíos Formation) in the back-arc region, suggesting a common causal link between these phenomena, which is discussed in the context of an observed 100 km trenchward arc migration at ~ 175 Ma, and the relation with extensional tectonics that prevailed along the Central Andean margin during Pangaea break-up.

  11. Constraints Imposed by Rift Inheritance on the Compressional Reactivation of a Hyperextended Margin: Mapping Rift Domains in the North Iberian Margin and in the Cantabrian Mountains

    NASA Astrophysics Data System (ADS)

    Cadenas, P.; Fernández-Viejo, G.; Pulgar, J. A.; Tugend, J.; Manatschal, G.; Minshull, T. A.

    2018-03-01

    The Alpine Pyrenean-Cantabrian orogen developed along the plate boundary between Iberia and Europe, involving the inversion of Mesozoic hyperextended basins along the southern Biscay margin. Thus, this margin represents a natural laboratory to analyze the control of structural rift inheritance on the compressional reactivation of a continental margin. With the aim to identify former rift domains and investigate their role during the subsequent compression, we performed a structural analysis of the central and western North Iberian margin, based on the interpretation of seismic reflection profiles and local constraints from drill-hole data. Seismic interpretations and published seismic velocity models enabled the development of crustal thickness maps that helped to constrain further the offshore and onshore segmentation. Based on all these constraints, we present a rift domain map across the central and western North Iberian margin, as far as the adjacent western Cantabrian Mountains. Furthermore, we provide a first-order description of the margin segmentation resulting from its polyphase tectonic evolution. The most striking result is the presence of a hyperthinned domain (e.g., Asturian Basin) along the central continental platform that is bounded to the north by the Le Danois High, interpreted as a rift-related continental block separating two distinctive hyperextended domains. From the analysis of the rift domain map and the distribution of reactivation structures, we conclude that the landward limit of the necking domain and the hyperextended domains, respectively, guide and localize the compressional overprint. The Le Danois block acted as a local buttress, conditioning the inversion of the Asturian Basin.

  12. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  13. Earthquakes at North Atlantic passive margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, S.; Basham, P.W.

    1989-01-01

    The main focus of this volume is the earthquakes that occur at and near the continental margins on both sides of the North Atlantic. The book, which contains the proceedings of the NATO workshop on Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on Both Sides of the North Atlantic, draws together the fields of geophysics, geology and geodesy to address the stress and strain in the Earth's crust. The resulting earthquakes produced on ancient geological fault zones and the associated seismic hazards these pose to man are also addressed. Postglacial rebound in Northmore » America and Fennoscandia is a minor source of earthquakes today, during the interglacial period, but evidence is presented to suggest that the ice sheets suppressed earthquake strain while they were in place, and released this strain as a pulse of significant earthquakes after the ice melted about 9000 years ago.« less

  14. Passive Fit in Screw Retained Multi-unit Implant Prosthesis Understanding and Achieving: A Review of the Literature.

    PubMed

    Buzayan, Muaiyed Mahmoud; Yunus, Norsiah Binti

    2014-03-01

    One of the considerable challenges for screw-retained multi-unit implant prosthesis is achieving a passive fit of the prosthesis' superstructure to the implants. This passive fit is supposed to be one of the most vital requirements for the maintenance of the osseointegration. On the other hand, the misfit of the implant supported superstructure may lead to unfavourable complications, which can be mechanical or biological in nature. The manifestations of these complications may range from fracture of various components in the implant system, pain, marginal bone loss, and even loss of osseointegration. Thus, minimizing the misfit and optimizing the passive fit should be a prerequisite for implant survival and success. The purpose of this article is to present and summarize some aspects of the passive fit achieving and improving methods. The literature review was performed through Science Direct, Pubmed, and Google database. They were searched in English using the following combinations of keywords: passive fit, implant misfit and framework misfit. Articles were selected on the basis of whether they had sufficient information related to framework misfit's related factors, passive fit and its achievement techniques, marginal bone changes relation with the misfit, implant impression techniques and splinting concept. The related references were selected in order to emphasize the importance of the passive fit achievement and the misfit minimizing. Despite the fact that the literature presents considerable information regarding the framework's misfit, there was not consistency in literature on a specified number or even a range to be the acceptable level of misfit. On the other hand, a review of the literature revealed that the complete passive fit still remains a tricky goal to be achieved by the prosthodontist.

  15. The northern slope of South China Sea: an ideal site for studying passive margin extension and breakup

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Sun, Z.; Pang, X.; Wu, X.; Xu, H.; Qiu, N.

    2011-12-01

    With the advance of hydrocarbon exploration into deep waters of the northern SCS, structural details from continental slope to deepsea basin have been revealed. A striking feature is the dramatic change in Cenozoic extension along and across the strike as well as with the time. Along strike the slope is seperated by lithospheric faults into segments with different amount of Cenozoic extension. The breakup occurred in the no-extension eastern segment (the Chaoshan depression), the most strongly extended central segment (the Baiyun sag) but failed in the western segment of intermediate extension (the Qingdongnan basin). This pattern violates the expectation that breakup occurs at first where the extension reached the maximum. In the central segment, the style of extension varies significantly in dip direction. Differing from the belts of half grabens in the shelf, the extension is expressed as a large downwarp (the Baiyun sag) in the slope, and as irregularly shaped sags (the Liwan sag) near the continental-oceanic boundary (COB). The Baiyun sag (BYS) is the largest and deepest sag in the Pearl River Mouth basin (PRMB). Long-cable MCS revealed that at the center of the BYS the crust thinned to <7 km. Grabens and half-grabens are seen only along the SW border of the BYS in Paleogene and did not control the main subsidence of the sag. In Neogene, swarms of NWW-striking small faults developed in the SW and NE flanks of the sag. These features indicate that ductile extension had dominated the formation of the BYS. Suppose the SCS started opening at 30 Ma (although no breakup unconformity found at 30 Ma in the ODP#1148 well adjacent to the COB), the anomalous post-breakup subsidence in the BYS exceeds that predicted by classical model by 1~2 km and occurred most strongly in several periods. Similar anomalous post-breakup subsidence has been observed also in the shelf. The Liwan sag (LWS) SE of the BYS is an aggregate of NS-, NW-, EW-, and NE-elongated narrow and short sags. Its complex shape differs from that of any other sag in the northern SCS, also differs from that of the lower slope of SE Atlantic margin and the Gulf of Mexico where thrust belts developed by gravitational sliding. Multi-staged magmatic activities have contributed to but could not fully explain the structural complexities of the LWS. Perhaps basement structures have played an important role as the sag might be developed upon the relict Mesozoic West Pacific subduction system. In addition, two horizons of deep-seated waving reflectors are identified beneath the LWS, which are suspected to be respectively a detachment surface and the intra-crustal shear zones related to lower-crust flow. A good understanding of these features may help answering the fundamental question on what controls the style, magnitude, and segmentation of passive margin extension and breakup, what is the mechanism, and what differences between marginal sea and open oceans in their evolution and dynamics. Preliminary attempt has been made taking into account basement structure, kinematics of bounding blocks, lithospheric rheology, lower crustal flow, as well as enhanced sediment supply by monsoon strengthening. This study is funded by CNSF40976033.

  16. Phanerozoic polycyclic evolution of the southwestern Angola margin: New insights for apatite fission track and (U-Th)/He methodologies

    NASA Astrophysics Data System (ADS)

    Venancio da Silva, Bruno; Hackspacher, Peter; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton

    2016-04-01

    The low-temperature thermochronology has been an important tool to quantify geological process in passive continental margins. In this context, the Angolan margin shows evidence of a polycyclic post-rift evolution marked by different events of uplift, basin inversion and changes in sedimentation rates to the marginal basins, which have controlled the salt tectonics and the hydrocarbon deposits (1,2,3,4). To understand the post break-up evolution of the southwestern Angola margin, it were collected outcrop samples for apatite fission track (AFT) and (U-Th)/He analysis ranging in elevation from 79 m to 1675 m from the coast toward the interior plateau in a profile between Namibe and Lubango cities. The area lies on the edge of Central and Southern Atlantic segments a few kilometers northward the Walvis ridge and encompasses the Archean and Proterozoic basement rocks of the Congo craton. The AFT ages ranging from 120.6 ± 8.9 Ma to 328.8 ± 28.5 Ma and they show a trend of increasing age toward the Great Escarpment with some exceptions. The partial mean track lengths (MTLs) vary between 11.77 ± 1.82 μm to 12.34 ± 1.13 μm with unimodal track length distributions (TDLs). The partial (U-Th)/He ages ranging from 104.85 ± 3.15 Ma to 146.95 ± 4.41 Ma and show the same trend of increasing ages landward, little younger than the AFT ages, which could be interpreted as a fast exhumation episode in Late Jurassic - Early Cretaceous times. The thermal histories modelling has been constrained with the kinetic parameters Dpar (5) and c-axis angle (6) by the software Hefty (7). Both AFT and (U-Th)/He thermal histories modelling indicate three episodes of denudation/uplift driven cooling: (a) from Late Jurassic to Early Cretaceous, (b) a smallest one in the Late Cretaceous and (c) from Oligocene-Miocene to recent, which are compatible with geophysical data of the offshore Namibe basin that estimate the greater thickness of sediments formed in the first and third episodes, respectively (8,9). Our preliminary data suggest a polycyclic evolution of the southewestern Angola margin and support the importance of the Cenozoic event in the area which has been widely reported along the Angolan margin (2,4,10,11) but has not been evident in other regions of southern Africa where it has been documented mean Cretaceous events (12,13,14,15). Differences in magnitude of Late Cretaceous events between southern Angola and northern Namibia (16,17) suggest a likely basement control linked to different tectonic-denudation episodes, with the Neoproterozoic shear zones absorbing more deformation than the Congo craton during the shortening events of the margin during Late Cretaceous times. Acknowledgments: Capes /AULP 2012 (Proc. 28/13). Professor Antonio Olimpio Gonçalves, FCT/Univ. Agostinho Neto, Angola References 1. Giresse, P., Hoang, C. T., & Kouyoumontzakis, G., 1984. Analysis of vertical movements deduced from a geochronological study of marine Pleistocene deposits, southern coast of Angola. Journal of African Earth Sciences (1983), 2(2), 177-187. 2. Guiraud, M., Buta-Neto, A., & Quesne, D., 2010. Segmentation and differential post-rift uplift at the Angola margin as recorded by the transform-rifted Benguela and oblique-to-orthogonal-rifted Kwanza basins. Marine and Petroleum Geology, 27(5), 1040-1068. 3 Hudec, M. R., & Jackson, M. P., 2002. Structural segmentation, inversion, and salt tectonics on a passive margin: Evolution of the Inner Kwanza Basin, Angola. Geological Society of America Bulletin, 114(10), 1222-1244. 4. Jackson, M. P. A., Hudec, M. R., & Hegarty, K. A., 2005. The great West African Tertiary coastal uplift: Fact or fiction? A perspective from the Angolan divergent margin. Tectonics, 24(6). 5. Donelick, R. A., O'Sullivan, P. B., & Ketcham, R. A., 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49-94. 6. Ketcham, R. A., 2003. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. American Mineralogist, 88(5-6), 817-829. 7. Ketcham, R. A., 2013. HeFTy Version 1.8.0 User Manual. Department of Geological Sciences, The University of Texas Austin. p 3-10. 8. Maslanyj, M. P., Light, M. P. R., Greenwood, R. J., & Banks, N. L., 1992. Extension tectonics offshore Namibia and evidence for passive rifting in the South Atlantic. Marine and Petroleum Geology, 9(6), 590-601. 9. Maystrenko, Y. P., Scheck-Wenderoth, M., Hartwig, A., Anka, Z., Watts, A. B., Hirsch, K. K., & Fishwick, S., 2013. Structural features of the Southwest African continental margin according to results of lithosphere-scale 3D gravity and thermal modelling. Tectonophysics, 604, 104-121. 10. Green, P. F., & Machado, V., 2015. Pre-rift and synrift exhumation, post-rift subsidence and exhumation of the onshore Namibe Margin of Angola revealed from apatite fission track analysis. Geological Society, London, Special Publications, 438, SP438-2. 11. Rosante, K., 2013. Evolução Termocronológica do sudoeste de Angola e correlação com sudeste brasileiro: Termocronologia por traços de fissão em apatita. Master - Thesis Pós-Grad. Em Geol. Regional- IGCE/UNESP. 12. Wildman, M., Brown, R., Watkins, R., Carter, A., Gleadow, A., & Summerfield, M., 2015. Post break-up tectonic inversion across the southwestern cape of South Africa: new insights from apatite and zircon fission track thermochronometry. Tectonophysics. 654, 30-55. 13. Tinker, J., de Wit, M., & Brown, R., 2008. Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, 455(1), 77-93. 14. Brown, R. W., Summerfield, M. A., & Gleadow, A. J., 2002. Denudational history along a transect across the Drakensberg Escarpment of southern Africa derived from apatite fission track thermochronology. Journal of Geophysical Research: Solid Earth (1978-2012), 107(B12), ETG-10. 15. Flowers, R. M., & Schoene, B., 2010). (U-Th)/He thermochronometry constraints on unroofing of the eastern Kaapvaal craton and significance for uplift of the southern African Plateau. Geology, 38(9), 827-830. 16. Luft, F. F., 2004. Evolução tectono-termal das porções norte e central da Namíbia através da análise por traços de fissão em apatita. Dissertação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 117p. 17. Menges, D., Karl, M., & Glasmacher, U. A., 2013. Thermal history and evolution of the South Atlantic passive continental margin in northern Namibia. Geophysical Research Abstracts Vol. 15, EGU.

  17. Late Pan-African and early Mesozoic brittle compressions in East and Central Africa: lithospheric deformation within the Congo-Tanzania Cratonic area

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kipata, M. L.; Macheyeki, A. S.

    2012-04-01

    Tectonic reconstructions leading to the formation of the Central-African part of Gondwana have so far not much taken into account constraints provided by the evolution of brittle structures and related stress field. This is largely because little is known on continental brittle deformation in Equatorial Africa before the onset of the Mesozoic Central-African and Late Cenozoic East-African rifts. We present a synthesis of fault-kinematic data and paleostress inversion results from field surveys covering parts of Tanzania, Zambia and the Democratic Republic of Congo. It is based on investigations along the eastern margin of the Tanzanian craton, in the Ubendian belt between the Tanzanian craton and Bangweulu block, in the Lufilian Arc between the Kalahari and Congo cratons and along the Congo intracratonic basin. Paleostress tensors were computed for a substantial database by interactive stress tensor inversion and data subset separation, and the relative succession of major brittle events established. Two of them appear to be of regional importance and could be traced from one region to the other. The oldest one is the first brittle event recorded after the paroxysm of the Terminal Pan-African event that led to the amalgamation Gondwana at the Precambrian-Cambrian transition. It is related to compressional deformation with horizontal stress trajectories fluctuating from an E-W compression in Central Tanzania to NE-SW in the Ubende belt and Lufilian Arc. The second event is a transpressional inversion with a consistent NW-SE compression that we relate to the far-field effects of the active margin south of Gondwana during the late Triassic - early Jurassic.

  18. Basin formation and Neogene sedimentation in a backarc setting, Halmahera, eastern Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, R.; Nichols, G.J.

    1991-03-01

    It has been proposed that basins in backarc setting form in association with subduction by thinning of continental crust, backarc spreading in oceanic crust, compression, or trapping of pieces of oceanic plate behind an arc. The Halmahera basin in eastern Indonesia developed in a backarc setting but does not fall into these categories; it formed by subsidence of thickened crust made up of imbricated Mesozoic-Paleogene arc and ophiolite rocks. Halmahera lies at the western edge of the Philippine Sea Plate in a complex zone of convergence between the Eurasian margin, the oceanic plates of the West Pacific, and the Australian/Indianmore » Plate to the south. The basement is an imbricated complex of Mesozoic to Paleogene ophiolite, arc, and arc-related rocks. During the Miocene this basement complex formed an area of thickened crust upon which carbonate reef and reef-associated sediments were deposited. The authors interpret this shallow marine region to be similar to many of the oceanic plateaus and ridges found within the Philippine Sea Plate today. In the Late Miocene, convergence between the Philippine Sea Plate and the Eurasian margin resulted in the formation of the Halmahera Trench to the west of this region of thickened crust. Subduction of the Molucca Sea Plate caused the development of a volcanic island arc. Subsidence in the backarc area produced a broad sedimentary basin filled by clastics eroded from the arc and from uplifted basement and cover rocks. The basin was asymmetric with the thickest sedimentary fill on the western side, against the volcanic arc. The Halmahera basin was modified in the Plio-Pleistocene by east-west compression as the Molucca Sea Plate was eliminated by subduction.« less

  19. Geology and tectonic development of the continental margin north of Alaska

    USGS Publications Warehouse

    Grantz, A.; Eittreim, S.; Dinter, D.A.

    1979-01-01

    The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.

  20. Relict basin closure accommodates continental convergence with minimal crustal shortening or deceleration of plate motion as inferred from detrital zircon provenance in the Caucasus

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Forte, A. M.; Niemi, N. A.; Avdeev, B.; Tye, A. R.; Trexler, C. C.; Javakhishvili, Z.; Elashvili, M.; Godoladze, T.

    2016-12-01

    Comparison of plate convergence with the timing and magnitude of upper-crustal shortening in collisional orogens indicates both shortening deficits (200-1700 km) and significant (30-40%) plate deceleration during collision, the cause(s) for which remain debated. The Greater Caucasus Mountains, which result from post-collisional Cenozoic closure of a relict Mesozoic back-arc basin on the northern margin of the Arabia-Eurasia collision zone, help reconcile these debates. Here we use U-Pb detrital zircon provenance data and the regional geology of the Caucasus to investigate the width of the now-consumed Mesozoic back-arc basin and its closure history. The provenance data record distinct southern and northern provenance domains that persisted until at least the Miocene; maximum basin width was likely 350-400 km. We propose that closure of the back-arc basin initiated at 35 Ma, coincident with initial (soft) Arabia-Eurasia collision along the Bitlis suture, eventually leading to 5 Ma (hard) collision between the Lesser Caucasus arc and the Scythian platform to form the Greater Caucasus Mountains. Final basin closure triggered deceleration of plate convergence and tectonic reorganization throughout the collision. Post-collisional subduction of such small (500-1000 km wide) relict ocean basins can account for both shortening deficits and delays in plate deceleration by accommodating convergence via subduction/underthrusting, although such shortening is easily missed if it occurs along structures hidden within flysch/slate belts. Relict-basin closure is likely typical early in continental collision at the end of a Wilson cycle due to the irregularity of colliding margins and extensive back-arc basin development during closure of long-lived ocean basins.

  1. Petroleum source-rock potentials of the cretaceous transgressive-regressive sedimentary sequences of the Cauvery Basin

    NASA Astrophysics Data System (ADS)

    Chandra, Kuldeep; Philip, P. C.; Sridharan, P.; Chopra, V. S.; Rao, Brahmaji; Saha, P. K.

    The present work is an attempt to contribute to knowledge on the petroleum source-rock potentials of the marine claystones and shales of basins associated with passive continental margins where the source-rock developments are known to have been associated with the anoxic events in the Mesozoic era. Data on three key exploratory wells from three major depressions Ariyallur-Pondicherry, Thanjavur and Nagapattinam of the Cauvery Basin are described and discussed. The average total organic carbon contents of the transgressive Pre-Albian-Cinomanian and Coniacian/Santonian claystones/shales range from 1.44 and 1.16%, respectively. The transgressive/regressive Campanian/Maastrichtian claystones contain average total organic carbon varying from 0.62 to 1.19%. The kerogens in all the studied stratigraphic sequences are classified as type-III with Rock-Eval hydrogen indices varying from 30 to 275. The nearness of land masses to the depositional basin and the mainly clastic sedimentation resulted in accumulation and preservation of dominantly type-III kerogens. The Pre-Albian to Cinomanian sequences of peak transgressive zone deposited in deep marine environments have kerogens with a relatively greater proportion of type-II components with likely greater contribution of planktonic organic matters. The global anoxic event associated with the Albian-Cinomanian marine transgression, like in many other parts of the world, has pervaded the Cauvery Basin and favoured development of good source-rocks with type-III kerogens. The Coniacian-Campanian-Maastrichtian transgressive/regressive phase is identified to be relatively of lesser significance for development of good quality source-rocks.

  2. Geology of the Harpers Ferry Quadrangle, Virginia, Maryland, and West Virginia

    USGS Publications Warehouse

    Southworth, Scott; Brezinski, David K.

    1996-01-01

    The Harpers Ferry quadrangle covers a portion of the northeast-plunging Blue Ridge-South Mountain anticlinorium, a west-verging allochthonous fold complex of the late Paleozoic Alleghanian orogeny. The core of the anticlinorium consists of high-grade paragneisses and granitic gneisses that are related to the Grenville orogeny. These rocks are intruded by Late Proterozoic metadiabase and metarhyolite dikes and are unconformably overlain by Late Proterozoic metasedimentary rocks of the Swift Run Formation and metavolcanic rocks of the Catoctin Formation, which accumulated during continental rifting of Laurentia (native North America) that resulted in the opening of the Iapetus Ocean. Lower Cambrian metasedimentary rocks of the Loudoun, Weverton, Harpers, and Antietam Formations and carbonate rocks of the Tomstown Formation were deposited in the rift-to-drift transition as the early Paleozoic passive continental margin evolved. The Short Hill fault is an early Paleozoic normal fault that was contractionally reactivated as a thrust fault and folded in the late Paleozoic. The Keedysville detachment is a folded thrust fault at the contact of the Antietam and Tomstown Formations. Late Paleozoic shear zones and thrust faults are common. These rocks were deformed and metamorphosed to greenschist-facies during the formation of the anticlinorium. The Alleghanian deformation was accompanied by a main fold phase and a regional penetrative axial plane cleavage, which was followed by a minor fold phase with crenulation cleavage. Early Jurassic diabase dikes transected the anticlinorium during Mesozoic continental rifting that resulted in the opening of the Atlantic Ocean. Cenozoic deposits that overlie the bedrock include bedrock landslides, terraces, colluvium, and alluvium.

  3. Geological probability calculation of new gas discoveries in wider area of Ivana and Ika Gas Fields, Northern Adriatic, Croatia

    NASA Astrophysics Data System (ADS)

    Tomislav, Malvić; Josipa, Velić; Režić, Mate

    2016-09-01

    There are eleven reservoirs in Ivana Gas Field and they are composed of Pleistocene sands, silt sands and siltstones, developed in dominant clays and marls depositional sequences. Ika Gas Field is the only field in Adriatic with gas accumulated in carbonate rocks, which are the deepest reservoir of the total four reservoirs. A carbonate reservoir is defined with tectonical and erosional unconformity, which is placed between Mesozoic and Pliocene rocks. The three younger Ika reservoirs are composed of Pleistocene sands, silt sands and siltstones that are laminated into clays and marls. The goal of our study was to assess the `Probability Of Success' (POS) of finding new gas accumulations within the marginal area of those two fields, either in the form of Mesozoic rocks or Pleistocene deposits. The assessment was successfully completed using the Microsoft Excel POS table for the analyzed areas in the Croatian part of the Po Depression, namely, Northern Adriatic. The methodology was derived and adapted from a similar POS calculation, which was originally used to calculate the geological probability of hydrocarbon discoveries in the Croatian part of the Pannonian Basin System (CPBS).

  4. The Pennsylvanian-early permian bird spring carbonate shelf, Southeastern California: Fusulinid biostratigraphy, paleogeographic evolution, and tectonic implications

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2007-01-01

    The Bird Spring Shelf in southeastern California, along with coeval turbidite basins to the west, records a complex history of late Paleozoic sedimentation, sea-level changes, and deformation along the western North American continental margin. We herein establish detailed correlations between deposits of the shelf and the flanking basins, which we then use to reconstruct the depositional history, paleogeography, and deformational history, including Early Permian emplacement of the regionally significant Last Chance allochthon. These correlations are based on fusulinid faunas, which are numerous both on the shelf and in the adjoining basins. Study of 69 fusulinid species representing all major fusulinid-bearing Pennsylvanian and Lower Permian limestone outcrops of the Bird Spring Shelf in southeastern California, including ten new species of the genera Triticites, Leptotriticites, Stewartina, Pseudochusenella, and Cuniculinella, forms the basis for our correlations. We group these species into six fusulinid zones that we correlate with fusulinid-bearing strata in east-central and southern Nevada, Kansas, and West Texas, and we propose some regional correlations not previously suggested. In addition, we utilize recent conodont data from these areas to correlate our Early Permian fusulinid zones with the standard Global Permian Stages, strengthening their chronostratigraphic value. Our detailed correlations between the fusulinid-bearing rocks of the Bird Spring Shelf and deep-water deposits to the northwest reveal relationships between the history of shelf sedimentation and evolution of basins closer to the continental margin. In Virgilian to early Asselian (early Wolfcampian) time (Fusulinid Zones 1 and 2), the Bird Spring Shelf was flanked on the west by the deep-water Keeler Basin in which calcareous turbidites derived from the shelf were deposited. In early Sakmarian (early middle Wolfcampian) time (Fusulinid Zone 3), the Keeler Basin deposits were uplifted and transported eastward on the Last Chance thrust. By middle Sakmarian (middle middle Wolfcampian) time (within Fusulinid Zone 4), emplacement of the Last Chance allochthon was complete, and subsidence caused by thrust loading had resulted in development of a new turbidite basin (Darwin Basin) along the former western part of the Bird Spring Shelf. At the same time, farther east into the craton, paralic facies began prograding westward, so that the youngest fusulinid-bearing limestones on the shelf in this area become progressively younger to the west. Eventually, in Artinskian to Kungurian (late Wolfcampian to Leonardian) time (Fusulinid Zones 5 and 6), deposition of fusulinid-bearing limestone on the shelf was restricted to a marginal belt between the prograding paralic facies to the east and the Darwin Basin to the west. Development of the Keeler Basin in Pennsylvanian to earliest Permian time was approximately coeval with collision between South America-Africa (Gondwana) and North America (Laurentia) on the Ouachita-Marathon orogenic belt. This basin developed inboard of a northwest-trending, sinistral fault zone that truncated the continental margin. Later, in the Early Permian, the Last Chance allochthon, which was part of a northeast-trending belt of deformation that extended into northeastern Nevada, was emplaced. This orogenic belt probably was driven by convergence at the continental margin to the northwest. This work adds significant detail to existing interpretations of the late Paleozoic as a time of major tectonic instability on the continental margin of southeastern California as it changed from a relatively passive margin that had characterized most of the Paleozoic to an active convergent margin that would characterize the Mesozoic. ?? 2007 The Geological Society of America. All rights reserved.

  5. Extensional crustal tectonics and crust-mantle coupling, a view from the geological record

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Menant, Armel; Clerc, Camille; Sternai, Pietro; Ringenbach, Jean-Claude; Bellahsen, Nicolas; Leroy, Sylvie; Faccenna, Claudio; Gorini, Christian

    2017-04-01

    In passive margins or back-arc regions, extensional deformation is often asymmetric, i.e. normal faults or extensional ductile shear zones dip in the same direction over large distances. We examine a number of geological examples in convergent or divergent contexts suggesting that this asymmetry results from a coupling between asthenospheric flow and crustal deformation. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea, the Alboran domain or the Gulf of Lion passive margin. Similar types of observation can be made on some of the Atlantic volcanic passive margins and the Afar region, which were all formed above a mantle plume. We discuss these contexts and search for the main controlling parameters for this asymmetric distributed deformation that imply a simple shear component at the scale of the lithosphere. The different geodynamic settings and tectonic histories of these different examples provide natural case-studies of the different controlling parameters, including a pre-existing heterogeneity of the crust and lithosphere (tectonic heritage) and the possible contribution of the underlying asthenospheric flow through basal drag or basal push. We show that mantle flow can induce deformation in the overlying crust in case of high heat flow and thin lithosphere. In back-arc regions, the cause of asymmetry resides in the relative motion between the asthenosphere below the overriding plate and the crust. When convergence and slab retreat work concurrently the asthenosphere flows faster than the crust toward the trench and the sense of shear is toward the upper plate. When slab retreat is the only cause of subduction, the sense of shear is opposite. In both cases, mantle flow is mostly the consequence of slab retreat and convergence. Mantle flow can however result also from larger-scale convection, controlling rifting dynamics prior to the formation of oceanic crust. In volcanic passive margins, in most cases normal faults dip toward the continent. This asymmetry may either result from the mantle flowing underneath regions evolving above a migrating plume, such as the Afar, when an asymmetry is observed at the scale of the rift, or from necking of the lithosphere when the conjugate margins show an opposite asymmetry. We summarize the various observed situations with normal faults dipping toward the continent ("hot" margins) or toward the ocean ("cold" margins) and discuss whether mantle flow is responsible for the observed asymmetry of deformation or not. Slipping along pre-existing heterogeneities seems a second-order phenomenon at lithospheric or crustal scale, except at the initiation of rifting.

  6. The crustal structure of the north-eastern Gulf of Aden continental margin: insights from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Watremez, L.; Leroy, S.; Rouzo, S.; D'Acremont, E.; Unternehr, P.; Ebinger, C.; Lucazeau, F.; Al-Lazki, A.

    2011-02-01

    The wide-angle seismic (WAS) and gravity data of the Encens survey allow us to determine the deep crustal structure of the north-eastern Gulf of Aden non-volcanic passive margin. The Gulf of Aden is a young oceanic basin that began to open at least 17.6 Ma ago. Its current geometry shows first- and second-order segmentation: our study focusses on the Ashawq-Salalah second-order segment, between Alula-Fartak and Socotra-Hadbeen fracture zones. Modelling of the WAS and gravity data (three profiles across and three along the margin) gives insights into the first- and second-order structures. (1) Continental thinning is abrupt (15-20 km thinning across 50-100 km distance). It is accommodated by several tilted blocks. (2) The ocean-continent transition (OCT) is narrow (15 km wide). The velocity modelling provides indications on its geometry: oceanic-type upper-crust (4.5 km s-1) and continental-type lower crust (>6.5 km s-1). (3) The thickness of the oceanic crust decreases from West (10 km) to the East (5.5 km). This pattern is probably linked to a variation of magma supply along the nascent slow-spreading ridge axis. (4) A 5 km thick intermediate velocity body (7.6 to 7.8 km s-1) exists at the crust-mantle interface below the thinned margin, the OCT and the oceanic crust. We interpret it as an underplated mafic body, or partly intruded mafic material emplaced during a `post-rift' event, according to the presence of a young volcano evidenced by heat-flow measurement (Encens-Flux survey) and multichannel seismic reflection (Encens survey). We propose that the non-volcanic passive margin is affected by post-rift volcanism suggesting that post-rift melting anomalies may influence the late evolution of non-volcanic passive margins.

  7. Tectono-sedimentary evolution of the eastern Gulf of Aden conjugate passive margins: Narrowness and asymmetry in oblique rifting context

    NASA Astrophysics Data System (ADS)

    Nonn, Chloé; Leroy, Sylvie; Khanbari, Khaled; Ahmed, Abdulhakim

    2017-11-01

    Here, we focus on the yet unexplored eastern Gulf of Aden, on Socotra Island (Yemen), Southeastern Oman and offshore conjugate passive margins between the Socotra-Hadbeen (SHFZ) and the eastern Gulf of Aden fracture zones. Our interpretation leads to onshore-offshore stratigraphic correlation between the passive margins. We present a new map reflecting the boundaries between the crustal domains (proximal, necking, hyper-extended, exhumed mantle, proto-oceanic and oceanic domains) and structures using bathymetry, magnetic surveys and seismic reflection data. The most striking result is that the magma-poor conjugate margins exhibit asymmetrical architecture since the thinning phase (Upper Rupelian-Burdigalian). Their necking domains are sharp ( 40-10 km wide) and their hyper-extended domains are narrow and asymmetric ( 10-40 km wide on the Socotra margin and 50-80 km wide on the Omani margin). We suggest that this asymmetry is related to the migration of the rift center producing significant lower crustal flow and sequential faulting in the hyper-extended domain. Throughout the Oligo-Miocene rifting, far-field forces dominate and the deformation is accommodated along EW to N110°E northward-dipping low angle normal faults. Convection in the mantle near the SHFZ may be responsible of change in fault dip polarity in the Omani hyper-extended domain. We show the existence of a northward-dipping detachment fault formed at the beginning of the exhumation phase (Burdigalien). It separates the northern upper plate (Oman) from southern lower plate (Socotra Island) and may have generated rift-induced decompression melting and volcanism affecting the upper plate. We highlight multiple generations of detachment faults exhuming serpentinized subcontinental mantle in the ocean-continent transition. Associated to significant decompression melting, final detachment fault may have triggered the formation of a proto-oceanic crust at 17.6 Ma and induced late volcanism up to 10 Ma. Finally, the setting up of a steady-state oceanic spreading center occurs at 17 Ma.

  8. Linking Observations of Dynamic Topography from Oceanic and Continental Realms around Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, K.; Hoggard, M. J.; White, N.; Winterbourne, J.

    2012-04-01

    In the last decade, there has been growing interest in predicting the spatial and temporal evolution of dynamic topography (i.e. the surface manifestation of mantle convection). By directly measuring Neogene and Quaternary dynamic topography around Australia's passive margins we assess the veracity of these predictions and the interplay between mantle convection and plate motion. We mapped the present dynamic topography by carefully measuring residual topography of oceanic lithosphere adjacent to passive margins. This map provides a reference with respect to which the relative record of vertical motions, preserved within the stratigraphic architecture of the margins, can be interpreted. We carefully constrained the temporal record of vertical motions along Australia's Northwest Shelf by backstripping Neogene carbonate clinoform rollover trajectories in order to minimise paleobathymetric errors. Elsewhere, we compile temporal constraints from published literature. Three principal insights emerge from our analysis. First, the present-day drawn-down residual topography of Australia, cannot be approximated by a regional tilt down towards the northeast, as previously hypothesised. The south-western and south-eastern corners of Australia are at negligible to slightly positive residual topography which slopes down towards Australia's northern margin and the Great Australian Bight. Secondly, the record of passive margin subsidence suggests drawdown across northern Australia commenced synchronously at 8±2 Ma. The amplitude of this synchronous drawdown corresponds to the amplitude of oceanic residual topography, indicating northern Australia was at an unperturbed dynamic elevation until drawdown commenced. The synchronicity of this subsidence suggests that the Australian plate has not been affected by a southward propagating wave of drawdown, despite Australia's rapid northward motion towards the subduction realm in south-east Asia. In contrast, it appears the mantle anomaly responsible for this drawdown is a relatively young, long-wavelength feature. Thirdly, there is an apparent mismatch between the current drawdown of oceanic lithosphere observed along Australia's southern margin and the onshore record of Cenozoic uplift. This disparity we attribute to the region undergoing recent uplift from a position of dynamic drawdown.

  9. One Dimensional Backstripping Results from IODP Expedition 318, Site U1356: Tectonic Implications for the Wilkes Land Margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Hayden, T. G.; Kominz, M. A.; González, J. J.; Escutia, C.; Brinkhuis, H.; Scientific Party of IODP Expedition 318

    2011-12-01

    The Wilkes Land margin of Antarctica is the conjugate margin of the Great Australian Bight, which underwent extension, thinning and rifting from ~160 Ma until breakup at ~83 Ma. Both Wilkes Land and the Great Australian Bight are considered passive margins, and were thought to be tectonically inactive since breakup at 83 Ma. We have backstripped the U1356 Core recovered from the continental rise off Wilkes Land, Antarctica by IODP Expedition 318. Backstripping input included lithological and sedimentary analysis, paleo-environmental indicators, combined paleomagnetic and biostratigraphic chronologies, and physical properties measurements. Tectonic subsidence shows a major event between 50 and 33.6 Ma, a time represented by a hiatus in the U1356 core. The magnitude of subsidence requires it to be tectonic in origin, and the timing matches with a reorganization of plate motions that represents the transition from slow spreading to fast spreading between Antarctica and Australia, which occurred at approximately 43 Ma. Coupled with a regional seismic framework, and using other Expedition 318 site analyses, the Wilkes Land margin is shown to be far more complex then the simple passive margin currently assumed. We explore several possible mechanisms for the subsidence and erosion observed; including thermal uplift due to continental insulation of the asthenosphere and it's interaction with a recently rifted margin, asthenospheric convection, transtensional or transpressional basin development and loading, and edge-driven asthenospheric convection.

  10. Quantifying the thermal evolution of early passive margins formation and its consequences on the structure of passive margins

    NASA Astrophysics Data System (ADS)

    Bousquet, Romain; Nalpas, Thierry

    2017-04-01

    Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the ocean. - A Pyrenean type basin in which temperature changes are synchronous with basin formation, leading to a crustal boudignage and to the formation of a "anomalous" geophysical layer at the OCT

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

  12. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  13. Episodes of subsidence and uplift of the conjugate margins of Greenland and Norway after opening of the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.

    2016-04-01

    We have undertaken a regional study of the thermo-tectonic development of East Greenland (68-75°N; Bonow et al. 2014; Japsen et al. 2014) and of southern Norway (58-64°N) based on integration of apatite fission-track analysis (AFTA), stratigraphic landscape analysis and the geological record onshore and offshore. Volcanic and sedimentary rocks accumulated on the subsiding, East Greenland margin during and following breakup and then began to be exhumed during late Eocene uplift that preceded a major, early Oligocene plate reorganization in the NE Atlantic. The Norwegian margin also experienced Eocene subsidence and burial; there are hemipelagic, deep-marine sediments of Eocene age along the coast of southern Norway. End-Eocene uplift of the NW European margin led to the formation of a major unconformity along the entire margin and to progradation of clastic wedges from Norway towards the south. Our AFTA data from East Greenland and southern Norway reveal a long history of Mesozoic burial and exhumation across the region, with a number of broadly synchronous events being recorded on both margins. AFTA data from East Greenland show clear evidence for uplift at the Eocene-Oligocene transition whereas the data from Norway do not resolve any effects of exhumation related to this event. AFTA data from the East Greenland margin show evidence of two Neogene events of uplift and incision of the in the late Miocene and Pliocene whereas results from southern Norway define Neogene uplift and erosion which began in the early Miocene. A Pliocene uplift phase in southern Norway is evident from the stratigraphic landscape analysis and from the sedimentary sequences offshore. In East Greenland, a late Eocene phase of uplift led to formation of a regional erosion surface near sea level (the Upper Planation Surface, UPS). Uplift of the UPS in the late Miocene led to formation of the Lower Planation Surface (LPS) by incision below the uplifted UPS, and a Pliocene phase led to incision of valleys and fjords below the uplifted LPS, leaving mountain peaks reaching 3.7 km above sea level. In southern Norway (as also in southern Sweden), the sub-horizontal Palaeic surfaces truncate the tilted, sub-Mesozoic erosion surface along the coasts. Lidmar-Bergström et al. (2013) used this relationship to conclude that the Palaeic relief is of Cenozoic age. In Greenland, definition of the chronology of events benefits from the availability of AFTA data from boreholes onshore where the plateau surfaces truncate Palaeogene basalts, and thus make it possible to date formation of these surfaces and correlate them with offshore unconformities. In Norway, the absence of post-rift rocks onshore precludes such integrated analysis. However, the presence of offshore unconformities, coupled with similar onshore landscapes and Cenozoic cooling history suggest a similar overall style of evolution. The similarities between the two margins lead us to us suggest that these margins developed in broadly similar fashion, and that the mountains of Norway also reached their present elevation long after Atlantic breakup. Bonow, Japsen, Nielsen 2014. Global and Planetary Change 116. Japsen, Green, Bonow, Nielsen, Chalmers 2014. Global and Planetary Change 116. Lidmar-Bergström, Bonow, Japsen 2013. Global and Planetary Change 100.

  14. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material therefore accumulates in the proximal rift and rift margin, thickening them and lifting them by isostatic response to the thickening. Flow into the rift margin is opposed by uplift and folding of the upper, strong crust, which imposes an additional normal stress, until crust thickens no more. However, flow continues through this thickened crust, thickening and uplifting the area "downstream", so widening the thickened area. Flow and uplift can continue until a reduction in imposed far-field compressive stress causes a consequent large reduction in inflow, thereby 'freezing' the thickened crust in place. Erosion of the uplifted area will lead to further uplift of the uneroded material because of the isostatic response to the erosion. Reference Cloetingh, S. & Burov, E. 2010: Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms. Basin Research 22, 1365-2117. doi:10.1111/j.1365-2117.2010.00490.x.

  15. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less

  16. An early bird from Gondwana: Paleomagnetism of Lower Permian lavas from northern Qiangtang (Tibet) and the geography of the Paleo-Tethys

    NASA Astrophysics Data System (ADS)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yue, Yahui

    2017-10-01

    The origin of the northern Qiangtang block and its Late Paleozoic-Early Mesozoic drift history remain controversial, largely because paleomagnetic constraints from pre-Mesozoic units are sparse and of poor quality. In this paper, we provide a robust and well-dated paleomagnetic pole from the Lower Permian Kaixinling Group lavas on the northern Qiangtang block. This pole suggests that the northern Qiangtang block had a paleolatitude of 21.9 ± 4.7 °S at ca. 296.9 ± 1.9 Ma. These are the first volcanic-based paleomagnetic results from pre-Mesozoic rocks of the Qiangtang block that appear to average secular variation accurately enough to yield a well-determined paleolatitude estimate. This new pole corroborates the hypothesis, first noted on the basis of less rigorous paleomagnetic data, the presence of diamictites, detrital zircon provenance records, and faunal assemblages, that the northern Qiangtang block rifted away from Gondwana prior to the Permian. Previous studies have documented that the northern Qiangtang block accreted to the Tarim-North China continent by Norian time. We calculate a total northward drift of ca. 7000 km over ca. 100 myr, which corresponds to an average south-north plate velocities of ∼7.0 cm/yr. Our results do not support the conclusion that northern Qiangtang has a Laurasian affinity, nor that the central Qiangtang metamorphic belt is an in situ Paleo-Tethys suture. Our analysis, however, does not preclude paleogeographies that interpret the central Qiangtang metamorphic belt as an intra-Qiangtang suture that developed at southernly latitudes outboard of the Gondwanan margin. We emphasize that rigorous paleomagnetic data from Carboniferous units of northern Qiangtang and especially upper Paleozoic units from southern Qiangtang can test and further refine these paleogeographic interpretations.

  17. Corrected Paleolatitudes for Pangea in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Kent, D.; Tauxe, L.

    2004-12-01

    A series of continental basins that developed during rifting of the Pangea supercontinent in the early Mesozoic are now distributed along the margins of the North Atlantic and their preserved contents (mainly redbeds and CAMP basalts) have often been targets of paleomagnetic studies. A continuous record of paleolatitudinal drift and a geomagnetic polarity time scale for ~35 Myr of the Late Triassic and earliest Jurassic have been derived from several of the basins in eastern North America and provide a precise spatio-temporal framework for detailed paleogeographic analysis. However, reported paleomagnetic directions from Jameson Land in East Greenland are anomalously shallow with respect to coeval sections in North America, a discrepancy that is too large to be explained by uncertainties in the reconstruction of Greenland to North America. Therefore, either the magnetizations of the Jameson Land (and perhaps other early Mesozoic rift basin) sediments are biased by inclination error or the Late Triassic time-averaged field included significant nondipole (axial octupole) contributions. According to a new statistical geomagnetic field model (Tauxe and Kent, 2004) constrained by paleomagnetic data from young lava flows, these two phenomena result in very different distributions of paleomagnetic directions, providing a basis to diagnose and correct for inclination error in sufficiently large paleomagnetic datasets. The resulting congruence of independent data from sedimentary and igneous rocks ranging over thousands of kilometers and 10s of millions of years can be taken as strong support that a geocentric axial dipole field similar to the last 5 Myr was operative more than 200 Myr ago. The corrected paleolatitudes indicate a faster rate of poleward motion of this sector of Pangea and broader continental climate belts in the Late Triassic and earliest Jurassic.

  18. Late differentiation of proximal and distal margins in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Bache, F.; Leroy, S.; D'Acremont, E.; Autin, J.; Watremez, L.; Rouzo, S.

    2009-04-01

    Non-volcanic passive margins are usually described in three different domains (Boillot et al., 1988), namely (1) the continental domain, where the basement is structured in a series of basins and basement rises, (2) the true oceanic domain, where the bathymetry is relatively smooth, and (3) in between them, a transitional domain referred to as the oceanic-continental transition (OCT), where the basement is partly composed of exhumed mantle. The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. The distal margin and particularly the OCT domain were previously studied considering a large set of data (Leroy et al., 2004; d'Acremont et al., 2005; d'Acremont et al., 2006; Autin, 2008). This study focalises on the sedimentary cover identified on seismic reflexion profiles acquired during Encens-Sheba (2000) and Encens (2006) cruises. Sedimentary stratal pattern and seismic facies succession suggest that the differentiation between the proximal and the distal margins occurred very late in the formation of the margin, after the deposition of ~2 km of "syn-OCT" sediments which filled the distal margin grabens. A high position of the proximal and distal margins during rifting and "syn-OCT" sediments deposition could be proposed. The major implication of this evolution should be a shallow nature of "syn-OCT" deposits. The lack of boreholes doesn't permit to affirm this last point. Comparable observations have been described on other passive margins (Moulin, 2003; Moulin et al., 2005; Labails, 2007; Aslanian et al., 2008; Bache, 2008). For some authors, it shows the persistence of a deep thermal anomaly during the early history of the margin (Steckler et al., 1988; Dupré et al., 2007). These observations could be a common characteristic of passive margins evolution and are of major interest for petroleum exploration. Aslanian, D., M. Moulin, O. J.L., P. Unternehr, F. Bache, I. Contrucci, F. Klingelhoefer, C. Labails, L. Matias, H. Nouzé, and M. Rabineau, 2008, Brazilian and African Passive Margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints: Tectonophysics, v. doi: 10.1016/j.tecto.2008.12.016. Autin, J., 2008, Déchirure continentale et segmentation du Golfe d'Aden oriental en contexte de rifting oblique: Ph. D. thesis, Université Pierre et Marie Curie, Paris VI, 310 p. Bache, F., 2008, Evolution Oligo-Miocène des marges du micro océan Liguro Provençal.: Ph. D. thesis, Université de Bretagne Occidentale/CNRS/IFREMER. http://www.ifremer.fr/docelec/notice/2008/notice4768-EN.htm, Brest, 328 p. Boillot, G., J. Girardeau, and J. Kornprobst, 1988, The rifting of the Galicia margin: crustal thinning and emplacement of mantle rocks on the seafloor (ODP Leg 103). In Boillot, G., Winterer, E.L., et al., Proc. ODP, Sci. Results, v. 103, College Station, TX (Ocean Drilling Program), p. 741-756. d'Acremont, E., S. Leroy, M. O. Beslier, N. bellahsen, M. Fournier, C. Robin, M. Maia, and P. Gente, 2005, Structure and evolution of the eastern Gulf of Aden conjugate margins from seismic reflection data: Geophys. J. Int., v. 160, p. 869-890. d'Acremont, E., S. Leroy, M. Maia, P. Patriat, M. O. Beslier, N. Bellahsen, M. Fournier, and P. Gente, 2006, Structure and evolution of the eastern Gulf of Aden: insights from magnetic and gravity data (Encens-Sheba MD117 cruise): Geophys. J. Int., v. 165, p. 786-803. Dupré, S., G. Bertotti, and S. Cloetingh, 2007, Tectonic history along the South Gabon Basin: Anomalous early post-rift subsidence: Mar. Pet. Geol., v. 24, p. 151-172. Labails, C., 2007, La marge sud-marocaine et les premières phases d'ouverture de l'océan Atlantique Central: Ph. D. thesis, Université de Bretagne Occidentale, Brest. Leroy, S., P. Gente, M. Fournier, E. d'Acremont, P. Patriat, M. O. Beslier, N. Bellahsen, M. Maia, A. Blais, J. Perrot, A. Al-Kathiri, S. Merkouriev, J. M. Fleury, P. Y. Ruellan, C. Lepvrier, and P. Huchon, 2004, From rifting to spreading in the Gulf of Aden: a geophysical survey of a young oceanic basin from margin to margin: Terra Nova, v. 16, p. 185-192. Moulin, M., 2003, Etude géologique et géophysique des marges continentales passive: exemple de l'Angola et du Zaire: Ph. D. thesis, Université de Bretagne Occidentale/IFREMER. http://www.ifremer.fr/docelec/doc/2003/these-82.pdf., Brest, 320 p. Moulin, M., D. Aslanian, J. L. Olivet, I. Contrucci, L. Matias, L. Géli, F. Klingelhoefer, H. Nouzé, J. P. Réhault, and P. Unternehr, 2005, Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (Zaïango project): Geophys. J. Int., v. 162, p. 793-810. Steckler, M., A. B. Watts, and J. A. Thorne, 1988, Subsidence and basin modeling at the U.S. Atlantic passive margin, in R. E. Sheridan, and J. A. Grow, eds., The Atlantic Continental Margin: U.S., v. The Geology of Noth America, V1-2, Geological Society of America, p. 399-416.

  19. Deep continental margin reflectors

    USGS Publications Warehouse

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  20. Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia)

    NASA Astrophysics Data System (ADS)

    Sheldrick, Thomas C.; Barry, Tiffany L.; Van Hinsbergen, Douwe J. J.; Kempton, Pamela D.

    2018-01-01

    Throughout northeast China, eastern and southern Mongolia, and eastern Russia there is widespread Mesozoic intracontinental magmatism. Extensive studies on the Chinese magmatic rocks have suggested lithospheric mantle removal was a driver of the magmatism. The timing, distribution and potential diachroneity of such lithospheric mantle removal remains poorly constrained. Here, we examine successions of Mesozoic lavas and shallow intrusive volcanic plugs from the Gobi Altai in southern Mongolia that appear to be unrelated to regional, relatively small-scale deformation; at the time of magmatism, the area was 200 km from any active margin, or, after its Late Jurassic-Early Cretaceous closure, from the suture of the Mongol-Okhotsk Ocean. 40Ar/39Ar radiometric age data place magmatic events in the Gobi Altai between 220 to 99.2 Ma. This succession overlaps Chinese successions and therefore provides an opportunity to constrain whether Mesozoic lithosphere removal may provide an explanation for the magmatism here too, and if so, when. We show that Triassic to Lower Cretaceous lavas in the Gobi Altai (from Dulaan Bogd, Noyon Uul, Bulgantiin Uul, Jaran Bogd and Tsagaan Tsav) are all light rare-earth element (LREE) and large-ion lithophile element (LILE)-enriched, with negative Nb and Ta anomalies (Nb/La and Ta/La ≤ 1). Geochemical data suggest that these lavas formed by low degrees of partial melting of a metasomatised lithospheric mantle that may have been modified by melts derived from recycled rutile-bearing eclogite. A gradual reduction in the involvement of garnet in the source of these lavas points towards a shallowing of the depth of melting after 125 Ma. By contrast, geochemical and isotope data from the youngest magmatic rocks in the area - 107-99 Ma old volcanic plugs from Tsost Magmatic Field - have OIB-like trace element patterns and are interpreted to have formed by low degrees of partial melting of a garnet-bearing lherzolite mantle source. These rocks did not undergo significant crustal contamination, and were derived from asthenospheric mantle. The evidence of a gradual shallowing of melting in the Gobi lava provinces, culminating in an asthenospheric source signature in the youngest magmatic rocks is similar to examples from neighboring China, emphasising the wide-scale effect of a regional Mesozoic magmatic event during similar time periods. We suggest that Mongolia underwent lithospheric thinning/delamination during the Mesozoic (between 125 and 107 Ma) with patchy areas thinning sufficiently to enable the generation of relatively small-scale asthenospheric-derived magmatism to predominate in the late Cretaceous.

  1. Significance of zircon U-Pb ages from the Pescadero felsite, west-central California coast ranges

    USGS Publications Warehouse

    McLaughlin, Robert J.; Moore, Diane E.; ,; Martens, UWE C.; Clark, J.C.

    2011-01-01

    Weathered felsite is associated with the late Campanian–Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio–Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ∼185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ± prehnite ± laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefly Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86–90 Ma. Reflecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio–Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ∼100 km to the east in the Diablo Range–San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous forearc units of the Transverse Ranges. Based on zircon U-Pb ages, geologic and petrographic relations, the Pescadero felsite and a capping, sheared metaconglomerate underlie the Pigeon Point Formation. We infer that the magma formed by anatexis of Franciscan or Great Valley clastic sedimentary rocks originating from a parental Mesozoic Sierran-Mojave-Salinian calc-alkaline arc. The felsite erupted during Late Cretaceous time, was metamorphosed to pumpellyite-prehnite grade within the subduction zone, and then was rapidly exhumed, weakly zeolitized, and exposed before Pigeon Point forearc deposition. Pescadero volcanism apparently reflects a previously unrecognized ca. 86–90 Ma felsic igneous event in the accretionary margin.

  2. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    USGS Publications Warehouse

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous forearc units of the Transverse Ranges. Based on zircon U-Pb ages, geologic and petrographic relations, the Pescadero felsite and a capping, sheared metaconglomerate underlie the Pigeon Point Formation. We infer that the magma formed by anatexis of Franciscan or Great Valley clastic sedimentary rocks originating from a parental Mesozoic Sierran-Mojave-Salinian calcalkaline arc. The felsite erupted during Late Cretaceous time, was metamorphosed to pumpellyite-prehnite grade within the subduction zone, and then was rapidly exhumed, weakly zeolitized, and exposed before Pigeon Point forearc deposition. Pescadero vol canism apparently reflects a previously unrecognized ca. 86-90 Ma felsic igneous event in the accretionary margin. ?? 2011 Geological Society of America.

  3. Evolution of the stress field in the southern Scotia Arc from the late Mesozoic to the present-day

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Galindo-Zaldívar, Jesús; Bohoyo, Fernando; Mink, Sandra

    2014-12-01

    The geological evolution of the Scotia Arc, which developed between Antarctica and South America, has facilitated the connection between the Pacific and Atlantic oceans and, has important global implications. To improve the knowledge of the late Mesozoic evolution of the southern Scotia Arc, over 6000 brittle mesostructures were measured over the last 20 years at different outcrops from the northern Antarctic Peninsula and the South Shetland Islands as well as the James Ross and South Orkney archipelagos. This dataset covers a length of more than 1000 km of the arc. Fault data were analysed using the Etchecopar, y-R, Right Dihedra, Stress Inversion and Search Grid Inversion Palaeostress Determination methods. A total of 275 stress tensors were obtained. The results showed that the maximum horizontal stress was in the ENE-WSW and the NW-SE orientations and that the horizontal extension tensors were oriented NE-SW and NW-SE. In addition, seismic activity and focal mechanism solutions were analysed using the Gephart method to establish the present-day stress field and characterise the active tectonics. The results obtained suggest that there is a regional NE-SW compression and a NW-SE extension regime at the present day. The Southern Scotia Arc has a complex geological history due to the different tectonic settings (transform, convergent and divergent) that have affected this sector during its geological evolution from the late Mesozoic until the present day. Six stress fields were obtained from the brittle mesostructure population analysis in the region. The NW-SE and N-S maximum horizontal stresses were related to a combination of Mesozoic oceanic subduction of the former Phoenix Plate under the Pacific margin of the Antarctic Plate, Mesozoic-Cenozoic subduction of the northern Weddell Sea and the Oligocene to the Middle Miocene dextral strike-slip movement between the Scotia and Antarctic plates along the South Scotia Ridge. The NE-SW compression was related to late Miocene to present-day sinistral transcurrent movement along the South Scotia Ridge. Finally, the NW-SE extensional stress field may be related to the development of the following back-arc basins: the Late Cretaceous-Eocene Larsen Basin, the Lower to Middle Miocene Jane Basin and the Pliocene to present-day Bransfield Basin. In addition, the NE-SW and the E-W tensional stress fields were related to the Oligocene opening of the Powell Basin.

  4. The Quest for Carbon Sequestration in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Akintunde, O. M.; Knapp, J. H.; Brantley, D.; Lakshmi, V.

    2016-12-01

    Eighty percent of the world's energy relies on fossil fuel and under increasingly stricter national and international regulations on greenhouse gas emissions, storage of CO2 in geologic repositories is a feasible and vital solution for near- and mid-term reduction of carbon emissions in any climate change mitigation strategy. The U.S. Environmental Protection Agency estimates that about 40% of anthropogenic CO2 emissions in the U.S. are generated in the southeastern United States, mostly from point sources. The Earth Sciences and Resources Institute and the Department of Earth and Ocean Sciences at the University of South Carolina have received $11M in Department of Energy funding to evaluate the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift basin (SGR; 2009-2014), and (2) Cretaceous and Cenozoic formations along the Mid- and South Atlantic seaboard (2015-2018). ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. Our analyses have included integration of 2- and 3-D seismic surveys with core samples and geophysical well logs leading to a detailed stratigraphic, structural, petrophysical, and injection simulation model showing the heterogeneity and highly complex tectonic evolution of the target reservoirs. Our study shows that (1) the SGR basin manifests distinct porosity-permeability regimes; (2) CAMP is much more limited spatially than previously thought; (3) fractured igneous rocks hold promise for CO2 storage in the SGR basin; (4) the Tr section was buried 2.8 km deeper than present depth, (5) transfer fault zones represent major conduit for leakage; (6) the South Atlantic seaboard is a major frontier area for CO2 sequestration based on extensive 2-D seismic data with limited well control.

  5. Crustal and upper mantle structure of the north-east of Egypt and the Afro-Arabian plate boundary region from Rayleigh-wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.; Chourak, M.; Hussein, H. M.; Atiya, K.; Timoulali, Y.

    2017-05-01

    The crustal and mantle structure of the north-eastern part of Egypt and the surrounding area is shown by means of S-velocity maps for depths ranging from zero to 45 km, determined by the regionalization and inversion of Rayleigh-wave dispersion. This analysis shows several types of crust with an average S-velocity ranging from 2.5 to 3.9 km/s. The values of S-velocity range from 2.5 km/s at the surface to 3.4 km/s at 10 km depth for the Sinai Peninsula, Gulf of Aqaba, Gulf of Suez, Red Sea, Dead Sea, western part of Dead sea and Arabian Plate. In the lower crust, the values of the S-velocity reach 4.0 km/s. In the uppermost mantle, the S-velocities range from 4.4 to 4.7 km/s. The crustal thickness ranges from the oceanic thin crust (around 15-20 km of thickness), for Red Sea and the extended continental margins, to 35-45 km of thickness for the Arabian plate. A gradual increasing crustal thickness is observed from north-east to south-west. While the Moho is located at 30-35 km of depth under the Sinai Peninsula, Gulf of Aqaba, Dead Sea Fault (DSF) and Dead Sea, a thinner crust (20-25 km of thickness) is found at the east of DSF and under the northern and the southern part of the Gulf of Suez. The crustal thickness varies within Sinai from the southern edge to the north, which provided an evidence for the presence of an Early Mesozoic passive margin with thinned continental crust in the north of Sinai. The change of crustal structure between the Gulf of Aqaba and the Gulf of Suez is due to the different tectonic and geodynamic processes affecting Sinai. In general, our results are consistent with surface geology and the Moho depth inferred from reflection and refraction data, receiver function, surface-wave analysis and P-S tomography. The strong variations in the base of the Moho reflect the complex evolution of the African and Arabian plate boundary region.

  6. Mesozoic tectonic history and geochronology of the Kular Dome, Russia and Bendeleben Mountains, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Harris, Daniel B.

    The tectonic history responsible for formation of the major basins of the Arctic and movement of landmasses surrounding these basins remains unclear despite multidisciplinary efforts. Most studies focus on one of four potential movement pathways of the Arctic Alaska-Chukotka microplate during the Mesozoic and the relationship between this movement and formation of the Amerasian Basin. Due to difficulty in access and harsh climate of the Arctic Ocean, most geological studies focus on landmasses surrounding the Amerasian Basin. For this reason, we have conducted research in the Kular Dome of northern Russia and the Bendeleben Mountain Range of the Seward Peninsula, Alaska in an attempt to better constrain timing of emplacement of plutons in these areas and their associated tectonic conditions. For both areas, U-Pb zircon crystallization geochronology was performed on several samples collected from plutons responsible for gneiss dome formation during the Mesozoic. Dating of these plutons in tandem with field observation and thin section analysis of deformation suggests an extensional emplacement setting for both areas during the Middle to Late Cretaceous. In the Kular Dome, intrusion of the Kular pluton occurred from approximately 111-103 Ma along with extensional development of the nearby Yana fault, which was previously interpreted as a regional suture between deposits of the Kolyma-Omolon superterrane and passive-margin sequences of the Verkhoyansk Fold-Thrust Belt. Evidence for extensional emplacement of the Kular pluton includes top-down shear around mantled porphyroblasts plunging along gentle foliation away from the pluton and abundant low-offset normal faults in the area. The Kular Dome also falls into a north-south oriented belt of Late Cretaceous plutons interpreted to have been emplaced under regional extensional conditions based on geochemical discrimination diagrams. Detrital zircon geochronology was also performed on seven samples collected from Triassic sandstones and Jurassic greywackes near the Kular Dome and compared to results from previously studied surrounding regions in Russia and the Arctic Alaska-Chukotka microplate in order to better define the relationship between the Arctic Alaska-Chukotka microplate and northern Russia during the Mesozoic. Results suggest that though the Chukotkan portion of the Arctic Alaska-Chukotka microplate was separated from the Kular Dome area during the Triassic, by the Tithonian it shared similar source regions for detrital zircon populations. Based on detrital zircon data from Chukotka, the Kular Dome, and the In’Yali Debin area, a new tectonic model for the formation of the Amerasian Basin and structures within is proposed. In this new model, Chukotka separated from and moved independently of the North Slope of Alaska during the Late Triassic-Early Jurassic, experiencing strike-slip emplacement along the northern coast of paleo-Russia and closed the South Anyui Ocean via transpression to form the South Anyui suture. Geochronologic and geochemical results from the Bendeleben and Windy Creek plutons of the southeastern Seward Peninsula were also studied to better describe Arctic tectonic conditions during the Late Mesozoic. In this area, six samples were collected from the multiple lithologies seen within the Bendeleben and Windy Creek plutons and were also dated by zircon U-Pb geochronology and analyzed for their major and trace element geochemistry. Results suggest that the Bendeleben and Windy Creek plutons were emplaced during multiple extensionally driven pulses of magmatism above a southward-retreating, northward-subducting slab causing extension in the overlying crust from about 104 Ma to 83 Ma. The magma chamber at depth was experiencing continuous replenishment and liquid segregation causing stratification of the Bendeleben pluton. Magmas of the felsic cap, which now form the outer region of the Bendeleben pluton, were emplaced first, followed by subsequent intrusion of younger, mafic magma from below. Evidence for north-south directed extension during emplacement of the Bendeleben pluton was in the form of consistent east-west dike orientation in the Seward Peninsula, top-down shear in mantled garnet porphyroblasts from country rock surrounding the Bendeleben pluton, gentle foliation dip away from the pluton and stretching lineations around the pluton. Discrimination diagrams based on Rb, Nb and Y concentrations from bulk rock samples supports a collisional or volcanic arc province and is consistent with emplacement in an extensional environment above a subducting plate.

  7. The Ebro margin study, northwestern Mediterranean Sea - an introduction

    USGS Publications Warehouse

    Maldonado, A.; Hans, Nelson C.

    1990-01-01

    The Ebro continental margin from the coast to the deep sea off northeastern Spain was selected for a multidisciplinary project because of the abundant Ebro River sediment supply, Pliocene and Quaternary progradation, and margin development in a restricted basin where a variety of controlling factors could be evaluated. The nature of this young passive margin for the last 5 m.y. was investigated with particular emphasis on marine circulation, sediment dynamics, sediment geochemistry, depositional facies, seismic stratigraphy, geotechnical properties, geological hazards and human influences. These studies show the importance of marine circulation, variation in sediment supply, sea-level oscillation and tectonic setting for the understanding of modern and ancient margin depositional processes and growth patterns. ?? 1990.

  8. Geochronology, geochemistry, and tectonic environment of porphyry mineralization in the central Alaska Peninsula

    USGS Publications Warehouse

    Wilson, Frederic H.; Cox, Dennis P.

    1983-01-01

    Porphyry type sulfide systems on the central Alaska Peninsula occupy a transition zone between the Aleutian island magmatic arc and the continental magmatic arc of southern Alaska. Mineralization occurs associated with early and late Tertiary magmatic centers emplaced through a thick section of Mesozoic continental margin clastic sedimentary rocks. The systems are of the molybdenum-rich as opposed to gold-rich type and have anomalous tungsten, bismuth, and tin, attributes of continental-margin deposits, yet gravity data suggest that at least part of the study area is underlain by oceanic or transitional crust. Potassium-argon age determinations indicate a variable time span of up to 2 million years between emplacement and mineralization in a sulfide system with mineralization usually followed by postmineral intrusive events. Finally, mineralization in the study area occurred at many times during the time span of igneous activity and should be an expected stage in the history of a subduction related magmatic center.

  9. Sea-level-induced seismicity and submarine landslide occurrence

    USGS Publications Warehouse

    Brothers, Daniel S.; Luttrell, Karen M.; Chaytor, Jason D.

    2013-01-01

    The temporal coincidence between rapid late Pleistocene sea-level rise and large-scale slope failures is widely documented. Nevertheless, the physical mechanisms that link these phenomena are poorly understood, particularly along nonglaciated margins. Here we investigate the causal relationships between rapid sea-level rise, flexural stress loading, and increased seismicity rates along passive margins. We find that Coulomb failure stress across fault systems of passive continental margins may have increased more than 1 MPa during rapid late Pleistocene–early Holocene sea-level rise, an amount sufficient to trigger fault reactivation and rupture. These results suggest that sea-level–modulated seismicity may have contributed to a number of poorly understood but widely observed phenomena, including (1) increased frequency of large-scale submarine landslides during rapid, late Pleistocene sea-level rise; (2) emplacement of coarse-grained mass transport deposits on deep-sea fans during the early stages of marine transgression; and (3) the unroofing and release of methane gas sequestered in continental slope sediments.

  10. Hydrocarbon gas seeps of the convergent Hikurangi margin, North Island, New Zealand

    USGS Publications Warehouse

    Kvenvolden, K.A.; Pettinga, J.R.

    1989-01-01

    Two hydrocarbon gas seeps, located about 13 km apart, have distinctive molecular and isotopic compositions. These seeps occur within separate tectonic melange units of narrow parallel trending and structurally complex zones with incorporated upper Cretaceous and Palaeogene passive continental margin deposits which are now compressively deformed and imbricated along the convergent Hikurangi margin of North Island, New Zealand. At Brookby Station within the Coastal High, the seeping hydrocarbon gas has a methane/ethane ratio of 48 and ??13C and ??D values of methane of -45.7 and -188???, respectively (relative to the PDB and SMOW standards). Within the complex core of the Elsthorpe Anticline at Campbell Station seep, gas has a methane/ethane ratio of about 12000, and the methane has ??13C and ??D values of -37.4 and -170???, respectively. The source of the gases cannot be positively identified, but the gases probably originate from the thermal decomposition of organic matter in tectonically disturbed upper Cretaceous and/or lower Tertiary sedimentary rocks of passive margin affinity and reach the surface by migration along thrust faults associated with tectonic melange. The geochemical differences between the two gases may result from differences in burial depths of similar source sediment. ?? 1989.

  11. The Tintina Gold Belt - A global perspective

    USGS Publications Warehouse

    Goldfarb, Richard J.; Hart, Craig J.R.; Miller, Marti L.; Miller, Lance D.; Farmer, G. Lang; Groves, David I.; Tucker, Terry L.; Smith, Moira T.

    2000-01-01

    The so-called Tintina Gold Belt extends for more than 1000 km along the length of the northern North American Cordillera. Middle to Late Cretaceous Au deposits within the belt have various similar characteristics, among which are a spatial and temporal association with magmatism; Bi-W-Te signatures in deposits hosted by granitod stocks and As-Sb signatures where hosted by sedimentary rocks and dyke systems; and δ180 values consistently > 12 per mil for Au-bearing quartz. Nevertheless significant differences in structural styles, levels of deposit emplacement, ore-fluid chemistry, and Au grades suggest that the characteristics represent a broad range of deposit types. Many of these are best classified as orogenic Au deposits in the Yukon-Tanana terrane, as epithermal and porphyry-style Au deposits in the Kuskokwim region, and as Au-bearing, granite-related veins and stockworks, replacements, and skarns, as well as associated polymetallic lodes, in central Yukon. The diverse types of Au deposits and associated plutons of the Tintina Gold Belt collectively define a 45-m.y.-long period of arc magmatism that migrated northwesterly, for about 1000 km, across the active collisional margin of Cretaceous northwestern North America. The initiation of fluid flow and plutonism in Albian time seems to correlate with the onset of oblique subduction and dextral strike-slip on the Denali-Farewell, Tintina-Kaltag, and related fault systems. Initial Au-vein formation and subduction-related magmatism at about 115-110 Ma (e.g., including the Goodpaster and Fortymile districts), within the seaward side of the Yukon-Tanana terrane, correlate with the arrival of the Wrangellia superterrane off the continental margin. Dextral translation of the allochthonous Wrangellia block was associated with the migration of the thermal pulse to the northwest at about 95-90 Ma. Orogenic (or so­ called mesotherrnal) and granitoid-related Au deposits formed across the width of the Yukon-Tanana terrane (e.g., Fort Knox, True North, Ryan Lode, Kantishna district) and inland into the passive-margin rocks of the Selwyn basin ( e.g., Scheelite Dome, Brewery Creek, Dublin Gulch), respectively. By 70 Ma, the arc had migrated to the vicinity of present-day southwestern Alaska, where it was associated with the formation of additional orogenic Au deposits (e.g., Willow Creek district) and, within still-preserved shallow crustal levels, epithermal Au systems (e.g., Donlin Creek). The Au-bearing deposits of the Tintina Gold Belt are typical of those found in most well-preserved, moderate- to high-temperature Phanerozoic collisional orogens. Around the circum-Pacific region, these would include large areas of Mesozoic tectonism along the Cordilleran orogen, throughout the Russian Far East, and along the margins of the North China craton. Favorable terrain for such Au belts of Paleozoic age worldwide include the active Gondwana margins (e.g., Tasman orogenic system, northern Africa, Telfer district), and the northern margins ( e.g., Caledonian Kazakhstania, Uralian orogen, Baikal orogen, Tian Shan orogenic system) and western margins ( e.g., southern European massifs) to the Paleo-Tethys Ocean. Gold lodes in all of the Phanerozoic belts are dominated by orogenic Au-deposit types; other deposit types are concentrated where relatively shallow levels to the orogens are locally preserved. A significant percentage of the lode-gold resource in many areas was lost to placer accumulation that began forming approximately 100 m.y. after hypogene ore formation, except where continent-continent collision "cratonized" highly mineralized terranes in central Asia.

  12. The continent-ocean transition at the mid-northern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Jinwei; Wu, Shiguo; McIntosh, Kirk; Mi, Lijun; Yao, Bochu; Chen, Zeman; Jia, Liankai

    2015-07-01

    The northern margin of the South China Sea (SCS) has particular structural and stratigraphic characteristics that are somewhat different from those described in typical passive margin models. The differences are attributable to poly-phase tectonic movements and magmatic activity resulting from the interaction among the Eurasian, Philippine Sea and Indo-Australian plates. Based on several crustal-scale multi-channel seismic reflection profiles and satellite gravity data across the northern SCS margin, this paper analyzes the structures, volcanoes and deep crust of the continent-ocean transition zone (COT) at the mid-northern margin of the SCS to study the patterns and model of extension there. The results indicate that the COT is limited landward by basin-bounding faults near Baiyun sag and is bounded by seaward-dipping normal faults near the oceanic basin in our seismic lines. The shallow anatomy of the COT is characterized by rift depression, structural highs with igneous rock and/or a volcanic zone or a zone of tilted fault blocks at the distal edge. Gravity modeling revealed that a high velocity layer (HVL) with a 0.8-6-km thickness is frequently present in the slope below the lower crust. Our study shows that the HVL is only located in the eastern portion of the northern SCS margin based on the available geophysical data. We infer from this that the presence of an HVL is not required in the COT at the northern SCS margin. The magmatic intrusions and HVL may be related to partial melting caused by the decompression of a passive, upwelling asthenosphere, which resulted primarily in post-rifting underplating and magmatic emplacement or modification of the crust. Based on this study, we propose that an intermediate mode of rifting was active in the mid-northern margin of the SCS with characteristics that are closer to those of the magma-poor margins than those of volcanic margins.

  13. Potential links between onshore tectonics and terrestrial organic carbon delivery to distal submarine fan environments: IODP Site U1417, Surveyor Fan, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Ridgway, K. D.; Blair, N. E.; Bahlburg, H.; Berbel, G.; Cowan, E. A.; Forwick, M.; Gulick, S. P.; Jaeger, J. M.; Maerz, C.; McClymont, E.; Moy, C. M.; Müller, J.; Nakamura, A.; Ribeiro, F.

    2013-12-01

    The sedimentary record at Integrated Ocean Drilling Program (IODP) Site U1417 is particularly well preserved and permits delineation of Neogene tectonic, climatic, and terrestrial organic carbon signals. Lithofacies in the 708 m-long, cored interval can be divided into 3 sedimentary packages that we interpret as linked to the tectonic convergence of the Yakutat Terrane with, and onset of tidewater glaciation along, the continental margin of northwestern Canada and southern Alaska. Previous studies have shown that development of the Surveyor Fan system was closely linked to transport of the Yakutat Terrane and development of the Cordilleran Ice Sheet. Initial shipboard measurements of total organic carbon and observed plant and coal fragments imply good preservation of terrestrial organic matter. Furthermore, documented preservation of terrestrial organic matter in modern sediment along the southern Alaskan continental margin and sediment routing through the Surveyor Channel from the Pleistocene to modern time implies a long-term conduit for this organic material to reach the distal portion of the Surveyor Fan system. We interpret the lower units of U1417 (late Miocene) to have been deposited when the Yakutat Terrane was located offshore of northern British Columbia and/or southeastern Alaska. Northward transport of the Yakutat Terrane during the late Miocene is interpreted to have resulted in uplift and erosion of the Eocene coal-bearing Kulthieth Formation. We infer that eroded rock carbon from this formation was transported from the shelf to the earliest, or precursor to, the Surveyor Fan with depocenters infilling between seamounts. Detailed geochemical/biomarker analysis of Kulthieth Formation coals will provide a chemical fingerprint by which to identify this source of late Miocene sediment at U1417. Continued Pliocene - early Pleistocene northward convergence resulted in recycling of organic carbon from the onshore Neogene thrust belt of the Yakutat Terrane and the older uplifted parts of the Mesozoic continental margin to the distal submarine fan system. Since the early Pleistocene, the distal fan has been sourced from tidewater glaciers transporting sediment from the continental margin of south-central Alaska through the Surveyor Channel and related sediment pathways, levees, and overbank systems. We hypothesize that tectonic transport of the Yakutat Terrane and the onset of tidewater glaciation resulted in variation of the geochemical signature of ancient carbon delivered to the distal parts of the Surveyor Fan. Biomarker differences between the Neogene coal-bearing Kulthieth Formation and the Mesozoic continental strata material will allow us to confirm source material to the fan over the last ~ 10 Ma.

  14. A synthesis of Jurassic and Early Cretaceous crustal evolution along the southern margin of the Arctic Alaska–Chukotka microplate and implications for defining tectonic boundaries active during opening of Arctic Ocean basins

    USGS Publications Warehouse

    Till, Alison B.

    2016-01-01

    A synthesis of Late Jurassic and Early Cretaceous collision-related metamorphic events in the Arctic Alaska–Chukotka microplate clarifies its likely movement history during opening of the Amerasian and Canada basins. Comprehensive tectonic reconstructions of basin opening have been problematic, in part, because of the large size of the microplate, uncertainties in the location and kinematics of structures bounding the microplate, and lack of information on its internal deformation history. Many reconstructions have treated Arctic Alaska and Chukotka as a single crustal entity largely on the basis of similarities in their Mesozoic structural trends and similar late Proterozoic and early Paleozoic histories. Others have located Chukotka near Siberia during the Triassic and Jurassic, on the basis of detrital zircon age populations, and suggested that it was Arctic Alaska alone that rotated. The Mesozoic metamorphic histories of Arctic Alaska and Chukotka can be used to test the validity of these two approaches.A synthesis of the distribution, character, and timing of metamorphic events reveals substantial differences in the histories of the southern margin of the microplate in Chukotka in comparison to Arctic Alaska and places specific limitations on tectonic reconstructions. During the Late Jurassic and earliest Cretaceous, the Arctic Alaska margin was subducted to the south, while the Chukotka margin was the upper plate of a north-dipping subduction zone or a zone of transpression. An early Aptian blueschist- and greenschist-facies belt records the most profound crustal thickening event in the evolution of the orogen. It may have resulted in thicknesses of 50–60 km and was likely the cause of flexural subsidence in the foredeep of the Brooks Range. This event involved northern Alaska and northeasternmost Chukotka; it did not involve central and western Chukotka. Arctic Alaska and Chukotka evolved separately until the Aptian thickening event, which was likely a result of the rotation of Arctic Alaska into central and western Chukotka. In northeastern Chukotka, the thickened rocks are separated from the relatively little thickened continental crust of the remainder of Chukotka by the oceanic rocks of the Kolyuchin-Mechigmen zone. The zone is a candidate for an Early Cretaceous suture that separated most of Chukotka from northeast Chukotka and Alaska. Albian patterns of magmatism, metamorphism, and deformation in Chukotka and the Seward Peninsula may represent an example of escape tectonics that developed in response to final amalgamation of Chukotka with Eurasia.

  15. Asymmetric rifting, breakup and magmatism across conjugate margin pairs: insights from Newfoundland to Ireland

    NASA Astrophysics Data System (ADS)

    Peace, Alexander L.; Welford, J. Kim; Foulger, Gillian R.; McCaffrey, Ken J. W.

    2017-04-01

    Continental extension, subsequent rifting and eventual breakup result in the development of passive margins with transitional crust between extended continental crust and newly created oceanic crust. Globally, passive margins are typically classified as either magma-rich or magma-poor. Despite this simple classification, magma-poor margins like the West Orphan Basin, offshore Newfoundland, do exhibit some evidence of localized magmatism, as magmatism to some extent invariably accompanies all continental breakup. For example, on the Newfoundland margin, a small volcanic province has been interpreted near the termination of the Charlie Gibbs Fracture Zone, whereas on the conjugate Irish margin within the Rockall Basin, magmatism appears to be more widespread and has been documented both in the north and in the south. The broader region over which volcanism has been identified on the Irish margin is suggestive of magmatic asymmetry across this conjugate margin pair and this may have direct implications for the mechanisms governing the nature of rifting and breakup. Possible causes of the magmatic asymmetry include asymmetric rifting (simple shear), post-breakup thermal anomalies in the mantle, or pre-existing compositional zones in the crust that predispose one of the margins to more melting than its conjugate. A greater understanding of the mechanisms leading to conjugate margin asymmetry will enhance our fundamental understanding of rifting processes and will also reduce hydrocarbon exploration risk by better characterizing the structural and thermal evolution of hydrocarbon bearing basins on magma-poor margins where evidence of localized magmatism exists. Here, the latest results of a conjugate margin study of the Newfoundland-Ireland pair utilizing seismic interpretation integrated with other geological and geophysical datasets are presented. Our analysis has begun to reveal the nature and timing of rift-related magmatism and the degree to which magmatic asymmetry exists between these conjugate margins. The main implications from this work are that different processes may have operated during and after rifting on these conjugate margins. This concept should be carried forward when conducting conjugate margin studies elsewhere, particularly when exploring for hydrocarbons as prospectivity on one margin may not be predictive for its conjugate as different thermal and structural regimes may have been in operation during conjugate basin evolution.

  16. Structural development of the onshore Otway passive margin (Australia): the interaction of rotating syn-sedimentary faults

    NASA Astrophysics Data System (ADS)

    Tanner, David C.; Ziesch, Jennifer; Krawczyk, Charlotte M.

    2017-04-01

    Within the context of long-term CO2 storage integrity, we interpreted the faults within the 2.2 km thick, syn-rift, Late Cretaceous to Recent sediments below the CO2CRC Otway Project site in Australia using a detailed interpretation of a 3-D reflection seismic cube (32.3 km×14.35 km × 4100 ms TWT). All the faults in the onshore Otway passive margin basin in this area were active to varying degrees during sedimentation, between ca. 120 and 50 Ma, before they died out. From analysis of fault juxtaposition and fault tip-line propagation maps, as well as analysis of individual stratigraphic thickness maps, we determine the direction and incremental amount of syn-sedimentary movement on each fault. Thickening of the hanging-walls of the faults occurred, as is typical for syn-sedimentary faults. However, we also determine that substantial local footwall thinning took place. Although the syn-sedimentary behaviour of the faults was constantly maintained until 50 Ma, there were two main phases of footwall thinning, separated by a quiescent phase. We postulate that these phases of footwall thinning represent rotation of the fault blocks that correlate with prograding sediment pulses within the passive margin. The rotation of the fault blocks occurred simultaneously, i.e., they could only rotate if they interacted.

  17. Testing thin-skinned inversion of a prerift salt-bearing passive margin (Eastern Prebetic Zone, SE Iberia)

    NASA Astrophysics Data System (ADS)

    Escosa, Frederic O.; Roca, Eduard; Ferrer, Oriol

    2018-04-01

    Detailed geologic mapping combined with well and seismic data from the Eastern Prebetic Zone (SE Iberia) reveal extensional and contractional structures that permit characterization of passive margin development and its incorporation into a thin-skinned fold-and-thrust belt. The study area is represented by NW-directed, ENE-trending folds and thrusts faults locally disrupted by the NW-trending Matamoros Basin and the active Jumilla and La Rosa diapirs. These structures resulted from the thin-skinned inversion of the proximal part of the Eastern South Iberian passive margin containing prerift salt. Here, Upper Jurassic to Santonian thick-skinned extension controlled the accumulation of sediment over mobile prerift salt. This in turn defined the style of salt tectonics characterized by monoclinal drape folds, suprasalt extensional faults and diapirs. The structural and sedimentological analysis suggests that during extension, salt localizes strain thus decoupling sub- and suprasalt deformation. Thick-skinned extension controls suprasalt deformation as well as its location and distribution which changes over time. Salt also localizes strain during inversion. The preexisting salt structures, weaker than adjacent areas, preferentially absorb the contractional deformation. In addition, the stepped subsalt geometry that results from thick-skinned extension also controls the shortening propagation. Therefore, the degree of strain localization depends on the thickness of the suprasalt cover and on the dip of subsalt faults relative to the thin-skinned transport direction.

  18. Investigating the Relationship Between Dynamic Topography and Sediment Flux in Africa

    NASA Astrophysics Data System (ADS)

    Walford, H. L.; White, N. J.

    2002-12-01

    It is generally accepted that the `basin and swell' topography of Africa is maintained by circulation within the mantle. Many swells are volcano-capped, and their topographic expression shows a close correlation with the long wavelength (>1000 km) free-air gravity anomaly, which can be regarded as a proxy for the convective pattern. Tomographic studies have revealed a region of slow seismic velocities in the lower mantle beneath the `African Superswell', a region of anomalously high elevation that stretches from the South Atlantic Ocean across southern Africa to the volcanic hot spot beneath Afar. Models based on gravity or seismology offer little constraint on the timing and development of dynamic topography since these observations are restricted to the present day. Recently, tomographic data has been combined with geomorphologically derived uplift rates from southern Africa, providing useful temporal constraints for dynamical modelling. Another way to investigate the history of dynamic topography is to interrogate the stratigraphic record. Africa is almost entirely surrounded by passive continental margins, formed during the break-up of Gondwana in the Mesozoic. Sediment has been accumulating on these margins throughout the Cenozoic, providing an indirect record of onshore vertical motions. The development of `basin and swell' topography together with epeirogenic uplift caused by the African Superswell would have had a profound effect on the drainage systems of the entire continent. 40% of the African continent is drained by just 6 rivers, which have formed large deltas on the continental shelf (i.e. Nile, Congo, Niger, Zambezi, Orange and Ogooue). Elevation of a catchment area is a primary control on the amount of sediment supplied to a major delta. Hence, by calculating the sediment flux to the deltas of Africa as a function of time, the history of vertical motions can be indirectly constrained. Analysis of several deltas reveals a widespread modification of African drainage at the start of the Neogene. The Miocene saw the establishment of the Eonile, enhanced progradation of the Niger Delta, major deposition along the West African margin following an Oligocene hiatus and renewed sedimentation in the Zambezi Delta. It has been proposed that Africa came to rest with respect to the mantle in the Oligocene, at ~30 Ma. The Early Neogene increase in sediment flux seen around Africa is consistent with the development of dynamic topography at this time. Earlier and later increases in sediment flux suggest that dynamic topography has waxed and waned over a longer time scale.

  19. The formation and rejuvenation of continental crust in the central North China Craton: Evidence from zircon U-Pb geochronology and Hf isotope

    NASA Astrophysics Data System (ADS)

    Li, Qing; Santosh, M.; Li, Sheng-Rong; Guo, Pu

    2014-12-01

    The Trans-North China Orogen (TNCO) along the central part of the North China Craton (NCC) is considered as a Paleoproterozoic suture along which the Eastern and Western Blocks of the NCC were amalgamated. Here we investigate the Precambrian crustal evolution history in the Fuping segment of the TNCO and the subsequent reactivation associated with extensive craton destruction during Mesozoic. We present zircon LA-ICP-MS U-Pb and Lu-Hf data on TTG (tonalite-trondhjemite-granodiorite) gneiss, felsic orthogneiss, amphibolite and granite from the Paleoproterozoic suite which show magmatic ages in the range of 2450-1900 Ma suggesting a long-lived convergent margin. The εHf(t) values of these zircons range from -11.9 to 12 and their model ages suggest magma derivation from both juvenile components and reworked Archean crust. The Mesozoic magmatic units in the Fuping area includes granite, diorite and mafic microgranular enclaves, the zircons from which define a tight range of 120-130 Ma ages suggesting a prominent Early Cretaceous magmatic event. However, the εHf(t) values of these zircons show wide a range from -30.3 to 0.2, indicating that the magmatic activity involved extensive rejuvenation of the older continental crust.

  20. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: Insights from hydrous pyrolysis experiments

    USGS Publications Warehouse

    Curtis, John B.; Kotarba, M.J.; Lewan, M.D.; Wieclaw, D.

    2004-01-01

    The Oligocene Menilite Shales in the study area in the Polish Flysch Carpathians are organic-rich and contain varying mixtures of Type-II, Type-IIS and Type-III kerogen. The kerogens are thermally immature to marginally mature based on atomic H/C ratios and Rock-Eval data. This study defined three organic facies, i.e., sedimentary strata with differing hydrocarbon-generation potentials due to varying types and concentrations of organic matter. These facies correspond to the Silesian Unit and the eastern and western portions of the Skole Unit. Analysis of oils generated by hydrous pyrolysis of outcrop samples of Menilite Shales demonstrates that natural crude oils reservoired in the flysch sediments appear to have been generated from the Menilite Shales. Natural oils reservoired in the Mesozoic basement of the Carpathian Foredeep appear to be predominantly derived and migrated from Menilite Shales, with a minor contribution from at least one other source rock most probably within Middle Jurassic strata. Definition of organic facies may have been influenced by the heterogeneous distribution of suitable Menilite Shales outcrops and producing wells, and subsequent sample selection during the analytical phases of the study. ?? 2004 Elsevier Ltd. All rights reserved.

  1. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  2. Preliminary results from combined wide-angle and reflection seismic data in the Natal Valley, South Mozambique margin across the Almirante Leite volcanic ridge : MZ2 profile (MOZ3/5 cruise).

    NASA Astrophysics Data System (ADS)

    Verrier, Fanny; Leprêtre, Angélique; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; De Clarens, Philippe; Afonso Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The study of South Mozambique passive margin is essential to understand its rifting evolution and better constrain kinematic reconstructions model of the Indian Ocean. MOZ3-5 oceanographic cruises (2016) is part of the PAMELA project (PAssive Margin Exploration LAboratory), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN. These campaigns allowed the acquisition of wide-angle and multichannel seismic data as well as high resolution bathymetric data, dredges, magnetic and gravimetric data. This work focuses on the deep structure of the northern segment of the Natal Valley which was investigated along a 300 km long E-W seismic transect cross-cutting the Almirante Leite volcanic ridge (MZ2 profile). The wide-angle data set is composed of 23 OBS (Ocean Bottom Seismometers) and 19 LSS (Land Seismic Station) spaced by about 12 km and 4-5 km respectively. Forward modelling of the wide-angle data led to a preliminary 2D P-waves velocity model revealing the sedimentary architecture, crustal and lithospherical structures and shallow high velocity material at the volcanic ridge. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along the profile MZ2, in order to discuss the sedimentary sequences, the geometry and nature of the crust (oceanic or continental) as well as structures associated with volcanism, and to better understand the margin's evolution. The post-doc of Fanny Verrier is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Moulin, M., Aslanian, D., 2016. PAMELA-MOZ03 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16001600 Moulin, M., Evain, M., 2016. PAMELA-MOZ05 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16009500

  3. Tectonic evolution of the Paranoá basin: New evidence from gravimetric and stratigraphic data

    NASA Astrophysics Data System (ADS)

    Martins-Ferreira, Marco Antonio Caçador; Campos, José Eloi Guimarães; Von Huelsen, Monica Giannoccaro

    2018-06-01

    Field gravimetric and stratigraphic surveys were conducted with the aim to constraint the mechanisms responsible for the initiation of the Stenian-Tonian Paranoá basin, central Brazil, a subject not yet studied in detail. The Paranoá Group crops out in the external zone of the Brasília Belt, a Neoproterozoic orogen in the western margin of the São Francisco Craton. Detailed geological mapping confirmed the existence of a regional scale fault that controlled sedimentation of the Paranoá Group during the deposition of its basal formations, revealing important details about basin initiation and early evolution. Gravimetric modeling indicates the existence of paleorift structures beneath the Paranoá sequence in the study area. Results from both stratigraphic and gravimetric surveys show strong evidence of mechanical subsidence by faulting during basin initiation. Unsorted, angular, clasts cut by quartz veins and brecciated boulders present in the basal conglomerate, support this hypothesis. Basin initiation faults coincide with deeper paleorift faults and are thus interpreted as reactivations of the older Statherian Araí Rift. The reactivations favored an initial regime of mechanical subsidence, dominated by the development of epirogenic arches subsiding at different rates. Apart from faulting activity, the post-basal sequence presents no evidence of rift environment in the strict sense. Besides, the great lateral continuity and relatively constant thickness of facies, indicate that an initial mechanic subsidence rapidly gave way to flexural subsidence during subsequent stages of basin evolution. The Paranoá Group do not present reliable characteristics that would allow its strict classification as a passive margin. Its main stratigraphic characteristics, tectonic location and basement architecture, indicate that the Paranoá Group was deposited in a cratonic margin basin, and may have been either connected to a passive margin basin at times of sea level rise, or evolved to a passive margin later in time.

  4. The Dauki Fault and its Shillong-Sylhet Thrust Anticline-Foredeep Pair: A Footwall Reactivation along the Progressive Burma-India Collision

    NASA Astrophysics Data System (ADS)

    Seeber, L.; Ferguson, E. K.; Grall, C.; Steckler, M. S.; Betka, P. M.; Akhter, S. H.

    2016-12-01

    The Shillong Massif and the Sylhet basin form a south-verging anticline-foredeep pair associated with the E-W striking Dauki fault. Fold geometry and receiver-functions identify it as a blind thrust fault dipping north into the craton. This contractional structure may represent an incipient forward jump of the Himalayan front to the trailing margin of India. The Shillong Massif is one of the largest known basement-cored anticlines and is delineated by a relict erosional surface and folded strata. Where best exposed in the central segment, it has a steep southern limb and a gentle northern limb. This asymmetry is mirrored in the Sylhet foredeep, with a steep north flank and low dip south flank. The combined structure has 5 km of relief, most of which developed during the Quaternary. This foredeep overprints a thicker sequence that records the progradation of the Brahmaputra delta. These older strata thicken southward as expected at a passive margin. The Sylhet Traps, which are coeval with India-Antarctica rifting, outcrop along the southern limb of the anticline. Associated basalt dikes are also parallel to the E-W Dauki structure. The basal Cretaceous-Paleogene shallow marine strata onlap northward the regional unconformity above the cratonic and trap rocks. This suggests that the Dauki thrust front traces an E-W segment of the passive margin and former rift. The IndoBurma forearc overrides the Dauki structure 200 km farther west on the foredeep (south) side than on the massif (north) side of the Dauki fault. Much of this differential advance of the Burma deformation front predates the Dauki foredeep and was a response to the shape of the passive margin of India. This deformation front, known locally as the Haflong Fault, crosses obliquely the Dauki thrust front. Evidence includes contractional structures verging up-dip onto the forelimb of the Shillong anticline. The Shillong Massif-Sylhet Foredeep pair has a strong gravity signature that can be traced eastward across most of the IndoBurma Ranges. Correlated topography and drainage features, including the Imphal intramountain basin, and a drainage switch from northward to southward across this basin suggest that this entire gravity anomaly reflects differential uplift along the eastward continuation of the buried Dauki fault and not just a buried passive margin.

  5. Metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera

    USGS Publications Warehouse

    Nokleberg, Warren J.; Bundtzen, Thomas K.; Eremin, Roman A.; Ratkin, Vladimir V.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Goryachev, Nikolai A.; Byalobzhesky, Stanislav G.; Frolov, Yuri F.; Khanchuk, Alexander I.; Koch, Richard D.; Monger, James W.H.; Pozdeev, Anany I.; Rozenblum, Ilya S.; Rodionov, Sergey M.; Parfenov, Leonid M.; Scotese, Christopher R.; Sidorov, Anatoly A.

    2005-01-01

    The Proterozoic and Phanerozoic metallogenic and tectonic evolution of the Russian Far East, Alaska, and the Canadian Cordillera is recorded in the cratons, craton margins, and orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern North Asian and western North American Cratons. The collages consist of tectonostratigraphic terranes and contained metallogenic belts, which are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons. The terranes are overlapped by continental-margin-arc and sedimentary-basin assemblages and contained metallogenic belts. The metallogenic and geologic history of terranes, overlap assemblages, cratons, and craton margins has been complicated by postaccretion dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins. Seven processes overlapping in time were responsible for most of metallogenic and geologic complexities of the region (1) In the Early and Middle Proterozoic, marine sedimentary basins developed on major cratons and were the loci for ironstone (Superior Fe) deposits and sediment-hosted Cu deposits that occur along both the North Asia Craton and North American Craton Margin. (2) In the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in fragmentation of each continent, and formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. The rifting also resulted in formation of various massive-sulfide metallogenic belts. (3) From about the late Paleozoic through the mid-Cretaceous, a succession of island arcs and contained igneous-arc-related metallogenic belts and tectonically paired subduction zones formed near continental margins. (4) From about mainly the mid-Cretaceous through the present, a succession of continental-margin igneous arcs (some extending offshore into island arcs) and contained metallogenic belts, and tectonically paired subduction zones formed along the continental margins. (5) From about the Jurassic to the present, oblique convergence and rotations caused orogen-parallel sinistral, and then dextral displacements within the plate margins of the Northeast Asian and North American Cratons. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more continuous arcs, subduction zones, passive continental margins, and contained metallogenic belts. These fragments were subsequently accreted along the margins of the expanding continental margins. (6) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs, subduction zones, and contained metallogenic belts to continental margins. In this region, the multiple arc accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, formation of collision-related metallogenic belts, and uplift; this resulted in the substantial growth of the North Asian and North American continents. (7) In the middle and late Cenozoic, oblique to orthogonal convergence of the Pacific Plate with present-day Alaska and Northeast Asia resulted in formation of the present ring of volcanoes and contained metallogenic belts around the Circum-North Pacific. Oblique convergence between the Pacific Plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western part of the Aleutian- Wrangell arc. Associated with dextral-slip faulting was crustal extrusion of terranes from western Alaska into the Bering Sea.

  6. Soil moisture in relation to geologic structure and lithology, northern California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Structural features in the Norther California Coast Ranges are clearly discernable on Nite-IR images and some of the structural linears may results in an extension of known faults within the region. The Late Mesozoic marine sedimentary rocks along the western margin of the Sacramento Valley are clearly defined on the Nite-IR images and in a gross way individual layers of sandstone can be differentiated from shale. Late Pleistocene alluvial fans are clearly differentiated from second generation Holocene fans on the basis of tonal characteristics. Although the tonal characteristics change with the seasons, the differentiation of the two sets of fans is still possible.

  7. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the field defined by the Huetamo Sequence, suggesting that these ores may also contain metals from the sedimentary rocks. The Pb isotope ratios of ore samples from the Zimapan deposit (206Pb/204Pb = 18.771-18.848) are substantially higher than the whole-rock Pb isotope compositions of the basement rocks. The similarity of ore Pb to igneous rock Pb in the Zimapan district (206Pb/204Pb = 18.800-18.968) may indicate that the proximal source of ore metals in the hydrothermal system was the igneous activity.

  8. Window into the Caledonian orogen: Structure of the crust beneath the East Shetland platform, United Kingdom

    USGS Publications Warehouse

    McBride, J.H.; England, R.W.

    1999-01-01

    Reprocessing and interpretation of commercial and deep seismic reflection data across the East Shetland platform and its North Sea margin provide a new view of crustal subbasement structure beneath a poorly known region of the British Caledonian orogen. The East Shetland platform, east of the Great Glen strike-slip fault system, is one of the few areas of the offshore British Caledonides that remained relatively insulated from the Mesozoic and later rifting that involved much of the area around the British Isles, thus providing an "acoustic window" into the deep structure of the orogen. Interpretation of the reflection data suggests that the crust beneath the platform retains a significant amount of its original Caledonian and older architecture. The upper to middle crust is typically poorly reflective except for individual prominent dipping reflectors with complex orientations that decrease in dip with depth and merge with a lower crustal layer of high reflectivity. The three-dimensional structural orientation of the reflectors beneath the East Shetland platform is at variance with Caledonian reflector trends observed elsewhere in the Caledonian orogen (e.g., north of the Scottish mainland), emphasizing the unique tectonic character of this part of the orogen. Upper to middle crustal reflectors are interpreted as Caledonian or older thrust surfaces that were possibly reactivated by Devonian extension associated with post-Caledonian orogenic collapse. The appearance of two levels of uneven and diffractive (i.e., corrugated) reflectivity in the lower crust, best developed on east-west-oriented profiles, is characteristic of the East Shetland platform. However, a north-south-oriented profile reveals an interpreted south-vergent folded and imbricated thrust structure in the lower crust that appears to be tied to the two levels of corrugated reflectivity on the east-west profiles. A thrust-belt origin for lower crustal reflectivity would explain its corrugated appearance. Regional seismic velocity models derived from refraction data suggest that this reflectivity correlates with a continuous lower crustal layer that has an intermediate seismic velocity. The lower crustal reflectivity is determined to be older than Mesozoic age by the bending down and truncation of the two reflectivity levels at the western margin of the North Sea Viking graben by a major mantle reflector inferred to be associated with Mesozoic rifting. The results of this study are thus in contrast with orthodox interpretations of the reflective layered lower crust as being caused by mantle-derived igneous intrusion or by deformation fabrics associated with stretching in response to continental rifting.

  9. Geographic information system (GIS) compilation of geophysical, geologic, and tectonic data for the Circum-North Pacific

    USGS Publications Warehouse

    Greninger, Mark L.; Klemperer, Simon L.; Nokleberg, Warren J.

    1999-01-01

    The accompanying directory structure contains a Geographic Information Systems (GIS) compilation of geophysical, geological, and tectonic data for the Circum-North Pacific. This area includes the Russian Far East, Alaska, the Canadian Cordillera, linking continental shelves, and adjacent oceans. This GIS compilation extends from 120?E to 115?W, and from 40?N to 80?N. This area encompasses: (1) to the south, the modern Pacific plate boundary of the Japan-Kuril and Aleutian subduction zones, the Queen Charlotte transform fault, and the Cascadia subduction zone; (2) to the north, the continent-ocean transition from the Eurasian and North American continents to the Arctic Ocean; (3) to the west, the diffuse Eurasian-North American plate boundary, including the probable Okhotsk plate; and (4) to the east, the Alaskan-Canadian Cordilleran fold belt. This compilation should be useful for: (1) studying the Mesozoic and Cenozoic collisional and accretionary tectonics that assembled this continental crust of this region; (2) studying the neotectonics of active and passive plate margins in this region; and (3) constructing and interpreting geophysical, geologic, and tectonic models of the region. Geographic Information Systems (GIS) programs provide powerful tools for managing and analyzing spatial databases. Geological applications include regional tectonics, geophysics, mineral and petroleum exploration, resource management, and land-use planning. This CD-ROM contains thematic layers of spatial data-sets for geology, gravity field, magnetic field, oceanic plates, overlap assemblages, seismology (earthquakes), tectonostratigraphic terranes, topography, and volcanoes. The GIS compilation can be viewed, manipulated, and plotted with commercial software (ArcView and ArcInfo) or through a freeware program (ArcExplorer) that can be downloaded from http://www.esri.com for both Unix and Windows computers using the button below.

  10. Detrital Record of Phanerozoic Tectonics in Iran: Evidence From U-Pb Zircon Geochronology

    NASA Astrophysics Data System (ADS)

    Horton, B. K.; Gillis, R. J.; Stockli, D. F.; Hassanzadeh, J.; Axen, G. J.; Grove, M.

    2004-12-01

    Ion-microprobe U-Pb ages of 91 detrital zircon grains supplement ongoing investigations of the tectonic history of Iran, a critical region bridging the gap between the Alpine and Himalayan orogenic belts. These data improve understanding of the distribution of continental blocks during a complex history of Late Proterozoic (Pan-African) crustal growth, Paleozoic passive-margin sedimentation, early Mesozoic collision with Eurasia, and Cenozoic collision with Arabia. U-Pb analyses of detrital zircon grains from four sandstone samples (two Lower Cambrian, one uppermost Triassic-Lower Jurassic, one Neogene) collected from the Alborz mountains of northern Iran reveal a spectrum of ages ranging from 50 to 2900 Ma. Most analyses yield concordant to moderately discordant ages. The Lower Cambrian Lalun and Barut sandstones yield age distribution peaks at approximately 550-650, 1000, and 2500 Ma, consistent with a Gondwanan source area presently to the south and west in parts of Iran and the Arabian-Nubian shield (Saudi Arabia and northwestern Africa). The uppermost Triassic-Lower Jurassic Shemshak Formation exhibits a broad range of U-Pb ages, including peaks of approximately 200-260, 330, 430, 600, and 1900 Ma, requiring a Eurasian source area presently to the north and east in the Turan plate (Turkmenistan and southwestern Asia). Neogene strata display both the youngest and oldest ages (approximately 50 and 2900 Ma) of any samples, a result of substantial sedimentary recycling of older Phanerozoic cover rocks. Because the youngest zircon ages for three of the four samples are indistinguishable from their stratigraphic (depositional) ages, these data suggest rapid exhumation and help constrain the termination age of Late Proterozoic-Early Cambrian (Pan-African) orogenesis and the timing of the Iran-Eurasia collision.

  11. Impact effects and regional tectonic insights: Backstripping the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Hayden, T.; Kominz, M.; Powars, D.S.; Edwards, L.E.; Miller, K.G.; Browning, J.V.; Kulpecz, A.A.

    2008-01-01

    The Chesapeake Bay impact structure is a ca. 35.4 Ma crater located on the eastern seaboard of North America. Deposition returned to normal shortly after impact, resulting in a unique record of both impact-related and subsequent passive margin sedimentation. We use backstripping to show that the impact strongly affected sedimentation for 7 m.y. through impact-derived crustal-scale tectonics, dominated by the effects of sediment compaction and the introduction and subsequent removal of a negative thermal anomaly instead of the expected positive thermal anomaly. After this, the area was dominated by passive margin thermal subsidence overprinted by periods of regional-scale vertical tectonic events, on the order of tens of meters. Loading due to prograding sediment bodies may have generated these events. ?? 2008 The Geological Society of America.

  12. NRC Continental Margins Workshop

    NASA Astrophysics Data System (ADS)

    Katsouros, Mary Hope

    The Ocean Studies Board of the National Research Council is organizing a workshop, “Continental Margins: Evolution of Passive Continental Margins and Active Marginal Processes,” to stimulate discussion and longterm planning in the scientific community about the evolution of all types of continental margins. We want to coordinate academic, industry, and government agency efforts in this field, and to enhance communication between sea-based and land-based research programs.The continental margins constitute the only available record of the long-term dynamic interaction of oceanic and continental lithosphere. Of great interest are the unique structures and thick sedimentary sequences associated with this interaction. A major focus of the workshop will be to define strategies for exploring and understanding the continental margins in three dimensions and through geologic time. The workshop will be divided into 7 working groups, each concentrating on a major issue in continental margins research. A background document is being prepared summarizing recent research in specific continental margin fields and identifying key scientific and technical issues.

  13. Maximum magnitude (Mmax) in the central and eastern United States for the 2014 U.S. Geological Survey Hazard Model

    USGS Publications Warehouse

    Wheeler, Russell L.

    2016-01-01

    Probabilistic seismic‐hazard assessment (PSHA) requires an estimate of Mmax, the moment magnitude M of the largest earthquake that could occur within a specified area. Sparse seismicity hinders Mmax estimation in the central and eastern United States (CEUS) and tectonically similar regions worldwide (stable continental regions [SCRs]). A new global catalog of moderate‐to‐large SCR earthquakes is analyzed with minimal assumptions about enigmatic geologic controls on SCR Mmax. An earlier observation that SCR earthquakes of M 7.0 and larger occur in young (250–23 Ma) passive continental margins and associated rifts but not in cratons is not strongly supported by the new catalog. SCR earthquakes of M 7.5 and larger are slightly more numerous and reach slightly higher M in young passive margins and rifts than in cratons. However, overall histograms of M from young margins and rifts and from cratons are statistically indistinguishable. This conclusion is robust under uncertainties inM, the locations of SCR boundaries, and which of two available global SCR catalogs is used. The conclusion stems largely from recent findings that (1) large southeast Asian earthquakes once thought to be SCR were in actively deforming crust and (2) long escarpments in cratonic Australia were formed by prehistoric faulting. The 2014 seismic‐hazard model of the U.S. Geological Survey represents CEUS Mmax as four‐point probability distributions. The distributions have weighted averages of M 7.0 in cratons and M 7.4 in passive margins and rifts. These weighted averages are consistent with Mmax estimates of other SCR PSHAs of the CEUS, southeastern Canada, Australia, and India.

  14. Crustal geometry of the northeastern Gulf of Aden passive margin: localization of the deformation inferred from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Tiberi, C.; Leroy, S.; d'Acremont, E.; Bellahsen, N.; Ebinger, C.; Al-Lazki, A.; Pointu, A.

    2007-03-01

    Here we use receiver function analysis to retrieve crustal thickness and crustal composition along the 35-My-old passive margin of the eastern Gulf of Aden. Our aims are to use results from the 3-D seismic array to map crustal stretching across and along the Aden margin in southern Oman. The array recorded local and teleseismic events between 2003 March and 2004 March. Seventy-eight events were used in our joint inversions for Vp/Vs ratio and depth. The major results are: (1) Crustal thickness decreases from the uplifted rift flank of the margin towards the Sheba mid-ocean ridge. We found a crustal thickness of about 35 km beneath the northern rift flank. This value decreases sharply to 26 km beneath the post-rift subsidence zone on the Salalah coastal plain. This 10 km of crustal thinning occurs across a horizontal distance of less than 30 km showing a localization of the crustal thinning below the first known rifted block of the margin. (2) A second rift margin transect located about 50 km to the east shows no thinning from the coast to 50 km onshore. The lack of crustal thickness variation indicates that the maximum crustal stretching could be restricted to offshore regions. (3) The along-strike variations in crustal structure demonstrate the scale and longevity of the regular along-axis rift segmentation. (4) Extension is still observed north of the rifted domain, 70 km onshore from the coast, making the width of margin larger than first expected from geology. (5) The crust has a felsic to normal composition with a probably strong effect of the sedimentary layer on the Vp/Vs ratio (comprised between 1.67 and 1.91).

  15. Passive recording of an active transform, an example from the Levant continental margin and the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Lang, Guy; Lazar, Michael; Schattner, Uri

    2017-04-01

    Transform faults accommodate lateral motion between two adjacent plates. Records of plate motion and consequent boundary development on land is, at times, scarce and limited to structures along the fault axis. Investigation of a passive continental margin adjacent to the plate boundary might broaden the scope and provide estimates for its structural development. To examine this hypothesis, we analyzed depth and time migrated 3D seismic data together with four boreholes located along the southern Levant continental margin, ca. 100 Km from the continental Dead Sea fault (DSF). The analysis focus on the Plio-Pleistocene sequence, a key period in the development of the DSF. It includes formation of structural maps, stacking pattern investigation and calculation of sedimentation rates based on decompacted 3D depth data. These, in turn, enabled the reconstruction of margin development. This includes Messinian-earliest Zanclean NNE-SSW sinistral strike-slip faulting followed by Zanclean-Late Gelasian syn-depositional folding striking in the same direction. Abrupt change is marked by the Top Gelasian surface that shows indications of regional mass slumping. Successive Mid-Late Pleistocene progradation marks a basinward shift of the depocenter. Progradation controls margin sedimentation rates during the mid-late Pleistocene. These were found to increase throughout the whole Plio-Pleistocene, in contrast to reported sediment discharge from the Nile, which was shown to decrease after the Gelasian. Correlations to onshore findings, suggest that the continental margin records strain localization on the DSF during the Pliocene-Gelasian. This trend peaked at 1.8 Ma when short wavelength strain ceased along the margin, and differential subsidence commenced basinwards. This is attributed to consequent deepening of the DSF plate boundary.

  16. The Links Between the Formation of the Gulf of Mexico and the Late Proterozoic to Mesozoic Tectonic Evolution of Southern North America

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Mickus, K. L.; Gurrola, H.; Harry, D. L.; Pulliam, J.

    2016-12-01

    A full understanding of the Gulf of Mexico's geologic history depends on understanding the tectonic framework along the southern margin of North America. The first step in establishing this framework was the breakup of Laurentia during the Early Paleozoic. At least one tectonic block rifted away from Laurentia's southern margin at this time, and is interpreted to be presently located in Argentina. Rifting resulted in a sinuous margin consisting of alternating ridge and transform segments extending from the southeastern U.S. across Texas into northern Mexico. The Paleozoic margin is associated with a clearly defined gravity high, and ends in the trend of this high are associated with intersections of ridge and transform segments along the margin. By the end of the Paleozoic, continental assembly via the Appalachian-Ouachita orogeny added new terranes to the eastern and southern margins of Laurentia and the assembly of the supercontinent Pangea was complete. Triassic through Late Jurassic opening of the Gulf of Mexico (GOM) created a complex margin, initially mobilizing several crustal blocks that were eventually left behind on the North American margin as seafloor spreading developed within the Gulf and the Yucatan block separated and rotated into its current position. Recent deep seismic reflection profiles along the northern margin of the GOM show that rifted continental crust extends offshore for 250 km before the oceanic crust of the Gulf of Mexico is encountered. Our group has worked to produce four integrated models of the lithospheric structure based upon reflection, refraction, and teleseismic data acquired across this margin integrated with gravity, magnetic, geologic and drilling data. These models define a complex zone of crustal thinning along the Gulf Coastal plain of Texas that is covered by up to 10km of primarily Cretaceous and younger sedimentary rocks. To the east along the coastal plain region, we have defined two large crustal blocks that were essentially left behind by the opening of the Gulf of Mexico.

  17. Late Albian dinosaur tracks from the cratonic (eastern) margin of the Western Interior Seaway, Nebraska, USA

    USGS Publications Warehouse

    Joeckel, R.M.; Cunningham, J.M.; Corner, R.G.; Brown, G.W.; Phillips, P.L.; Ludvigson, Greg A.

    2004-01-01

    At least 22 tridactyl dinosaur tracks, poorly preserved in various degrees of expression, have recently been found at an exposure in the Dakota Formation (Lower Cretaceous, Albian) in Jefferson County, Nebraska. These tracks generally have broad, blunt digits and a broad posterior margin. The largest of the tracks measures 57 cm in length and 58 cm in width. All of the tracks lie within a stratigraphic horizon of 40 cm or less, but they do not form a single trackway. We interpret the trackmakers to have been ornithopods.The Jefferson County tracks are in a well-cemented sandstone with oscillation ripples, at a stratigraphic level between two well-established sequence boundaries. Channel forms and lateral accretion units are common in the stratigraphic interval enclosing the tracks, and the site is interpreted as a bar or sand flat in a tidally influenced river.The Jefferson County tracks are only the second known occurrence of large Mesozoic tetrapod tracks east of the Rocky Mountain Front-High Plains Margin, including the Black Hills of South Dakota, west of the Atlantic Coastal Plain, and north of the Gulf Coastal Plain. Further, this paper is the first documentation of in situdinosaur fossils from the Nebraska-Iowa area.

  18. U-Pb and Hf isotope analysis of detrital zircons from Mesozoic strata of the Gravina belt, southeast Alaska

    NASA Astrophysics Data System (ADS)

    Yokelson, Intan; Gehrels, George E.; Pecha, Mark; Giesler, Dominique; White, Chelsi; McClelland, William C.

    2015-10-01

    The Gravina belt consists of Upper Jurassic through Lower Cretaceous marine clastic strata and mafic-intermediate volcanic rocks that occur along the western flank of the Coast Mountains in southeast Alaska and coastal British Columbia. This report presents U-Pb ages and Hf isotope determinations of detrital zircons that have been recovered from samples collected from various stratigraphic levels and from along the length of the belt. The results support previous interpretations that strata in the western portion of the Gravina belt accumulated along the inboard margin of the Alexander-Wrangellia terrane and in a back-arc position with respect to the western Coast Mountains batholith. Our results are also consistent with previous suggestions that eastern strata accumulated along the western margin of the inboard Stikine, Yukon-Tanana, and Taku terranes and in a fore-arc position with respect to the eastern Coast Mountains batholith. The history of juxtaposition of western and eastern assemblages is obscured by subsequent plutonism, deformation, and metamorphism within the Coast Mountains orogen, but may have occurred along an Early Cretaceous sinistral transform system. Our results are inconsistent with models in which an east-facing subduction zone existed along the inboard margin of the Alexander-Wrangellia terrane during Late Jurassic-Early Cretaceous time.

  19. Diversity of ophiolites and obduction processes: examples from Eastern Tethyan regions and New Caledonia.

    NASA Astrophysics Data System (ADS)

    Whitechurch, Hubert; Agard, Philippe; Ulrich, Marc

    2015-04-01

    Diversity of ophiolites and obduction processes: examples from Eastern Tethyan regions and New Caledonia. Whitechurch H.(1) Agard P.(2), Ulrich M.(1) (1) EOST - University of Strasbourg (France) (2) ISTeP - University Pierre et Marie Curie, Paris (France) Ophiolites are considered as pieces of oceanic lithosphere that escaped subduction to be obducted on continental margins. After the Penrose Conference in 1972, they have all been regarded as issued from mid-ocean ridges of large oceans. Subsequently, most of ophiolites have been considered as generated in supra-subduction zone (SSZ) environment, mainly on the basis of geochemical arguments. However, this characterization encompasses very different geological situations, somewhat in contradiction with a univocal geochemical interpretation, both in terms of where ophiolite formed (i.e., ocean-continent transition zones, ocean ridges, marginal basins) and were obducted (contrasting nature of the margins). Examples from eastern Mesozoic Tethyan ophiolites (Cyprus, Turkey, Syria, Iran, Oman) and tertiary New Caledonia ophiolites all show this diversity, both in their internal structures and geological setting of obduction. Several questions will be addressed in this debate: the relationships and paradoxes between the nature of ophiolites, their geodynamic environment of formation, their geochemistry, their modality of obduction and ultimately the mountain range style where they are found.

  20. Frequency-Magnitude relationships for Underwater Landslides of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Urgeles, R.; Gràcia, E.; Lo Iacono, C.; Sànchez-Serra, C.; Løvholt, F.

    2017-12-01

    An updated version of the submarine landslide database of the Mediterranean Sea contains 955 MTDs and 2608 failure scars showing that submarine landslides are ubiquitous features along Mediterranean continental margins. Their distribution reveals that major deltaic wedges display the larger submarine landslides, while seismically active margins are characterized by relatively small failures. In all regions, landslide size distributions display power law scaling for landslides > 1 km3. We find consistent differences on the exponent of the power law depending on the geodynamic setting. Active margins present steep slopes of the frequency-magnitude relationship whereas passive margins tend to display gentler slopes. This pattern likely responds to the common view that tectonically active margins have numerous but small failures, while passive margins have larger but fewer failures. Available age information suggests that failures exceeding 1000 km3 are infrequent and may recur every 40 kyr. Smaller failures that can still cause significant damage might be relatively frequent, with failures > 1 km3 likely recurring every 40 years. The database highlights that our knowledge of submarine landslide activity with time is limited to a few tens of thousand years. Available data suggest that submarine landslides may preferentially occur during lowstand periods, but no firm conclusion can be made on this respect, as only 149 landslides (out of 955 included in the database) have relatively accurate age determinations. The timing and regional changes in the frequency-magnitude distribution suggest that sedimentation patterns and pore pressure development have had a major role in triggering slope failures and control the sediment flux from mass wasting to the deep basin.

  1. Late Mesozoic tectonics of the Southern-Thai Peninsula: from transpression to basins opening

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2015-04-01

    The petroleum basins of the Southern Thailand Peninsula are poorly known and their final geometry is controlled by the Tertiary stress variations applied on pre-existing Paleozoic and Mesozoic basement structures. From the end of Mesozoic times, the arrival of Indian plate was accomodated by transpressionnal deformation along the Western Margin of Sunda Plate. Evidences of this strain are the motions along several regional strike Slip Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults) as well as compressional features (folds and thrusts) evidenced onshore. Due to changes in the boundary forces, these structures were reactivated during the Tertiary, leading to the opening of basins in this part of Sundaland. We present a structural analysis based on geomorphology, fieldwork and seismic interpretation of the Southern Thai Peninsula with emphasis on the deformation's style onshore from Ranong to Satun and offshore from Eastern Mergui to Songhkla. By analyzing morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), we highlight a predominance of N-S structures in the Southern Thai Peninsula: both in the granitic belt and in the sedimentary cover. The Triassic-Jurassic (Indosinian) post-collision granitic belt is intensely fractured, with 2 penetrative directions: N140 and N50. On both sides, the sedimentary units appear folded at a large wavelength (~20km). On most of the studied outcrops, Triassic to Early Cretaceous series are gently tilted and weakly fractured whereas the Paleozoic ones shows intense fracturation and steep dipping beds. Moreover, all the Paleozoic stratas display a constant N-S S1 which does not appear in the Mezosoic sediments. Althought most of the post-Mesozoic sediments do not crop out due to thick vegetal cover, several Tertiary basins can be easily seen from seismic data both onshore and offshore. These data suggest that rifting started in the Eocene and was accommodated by large crust-scale Low Angle Normal Faults reactivating basement fabrics including intrusive edges and folds hinges. We propose a tectonic scenario for the southern Thai Peninsula according to which the northward motion of giant morphostructures (the Wharton Ridge followed by the Indian Plate) induced first right-lateral transpressionnal tectonics at the End of the Mesozoics. This system is illustrated by the 2 sets of fractures of the Indosinian Belt, the large-scale folds of Early Cretaceous Strata and the strike slip motions of the Ranong and Klong Marui Faults. Following the path of Indian Plate, a collapse of this hot and thin crust occurred accommodated via LANF's along the granitic belts and the sedimentary basement morpho-structures.

  2. Cambrian-lower Middle Ordovician passive carbonate margin, southern Appalachians: Chapter 14

    USGS Publications Warehouse

    Read, J. Fred; Repetski, John E.

    2012-01-01

    The southern Appalachian part of the Cambrian–Ordovician passive margin succession of the great American carbonate bank extends from the Lower Cambrian to the lower Middle Ordovician, is as much as 3.5 km (2.2 mi) thick, and has long-term subsidence rates exceeding 5 cm (2 in.)/k.y. Subsiding depocenters separated by arches controlled sediment thickness. The succession consists of five supersequences, each of which contains several third-order sequences, and numerous meter-scale parasequences. Siliciclastic-prone supersequence 1 (Lower Cambrian Chilhowee Group fluvial rift clastics grading up into shelf siliciclastics) underlies the passive margin carbonates. Supersequence 2 consists of the Lower Cambrian Shady Dolomite–Rome-Waynesboro Formations. This is a shallowing-upward ramp succession of thinly bedded to nodular lime mudstones up into carbonate mud-mound facies, overlain by lowstand quartzose carbonates, and then a rimmed shelf succession capped by highly cyclic regressive carbonates and red beds (Rome-Waynesboro Formations). Foreslope facies include megabreccias, grainstone, and thin-bedded carbonate turbidites and deep-water rhythmites. Supersequence 3 rests on a major unconformity and consists of a Middle Cambrian differentiated rimmed shelf carbonate with highly cyclic facies (Elbrook Formation) extending in from the rim and passing via an oolitic ramp into a large structurally controlled intrashelf basin (Conasauga Shale). Filling of the intrashelf basin caused widespread deposition of thin quartz sandstones at the base of supersequence 4, overlain by widespread cyclic carbonates (Upper Cambrian lower Knox Group Copper Ridge Dolomite in the south; Conococheague Formation in the north). Supersequence 5 (Lower Ordovician upper Knox in the south; Lower to Middle Ordovician Beekmantown Group in the north) has a basal quartz sandstone-prone unit, overlain by cyclic ramp carbonates, that grade downdip into thrombolite grainstone and then storm-deposited deep-ramp carbonates. Passive margin deposition was terminated by arc-continent collision when the shelf was uplifted over a peripheral bulge while global sea levels were falling, resulting in the major 0- to 10-m.y. Knox–Beekmantown unconformity. The supersequences and sequences appear to relate to regionally traceable eustatic sea level cycles on which were superimposed high-frequency Milankovitch sea level cycles that formed the parasequences under global greenhouse conditions.

  3. Crustal seismic structure beneath the Deccan Traps area (Gujarat, India), from local travel-time tomography

    NASA Astrophysics Data System (ADS)

    Prajapati, Srichand; Kukarina, Ekaterina; Mishra, Santosh

    2016-03-01

    The Gujarat region in western India is known for its intra-plate seismic activity, including the Mw 7.7 Bhuj earthquake, a reverse-faulting event that reactivated normal faults of the Mesozoic Kachchh rift zone. The Late Cretaceous Deccan Traps, one of the largest igneous provinces on the Earth, cover the southern part of Gujarat. This study is aimed at bringing light to the crustal rift zone structure and likely origin of the Traps based on the velocity structure of the crust beneath Gujarat. Tomographic inversion of the Gujarat region was done using the non-linear, passive-source tomographic algorithm, LOTOS. We use high-quality arrival times of 22,280 P and 22,040 S waves from 3555 events recorded from August 2006 to May 2011 at 83 permanent and temporary stations installed in Gujarat state by the Institute of Seismological Research (ISR). We conclude that the resulting high-velocity anomalies, which reach down to the Moho, are most likely related to intrusives associated with the Deccan Traps. Low velocity anomalies are found in sediment-filled Mesozoic rift basins and are related to weakened zones of faults and fracturing. A low-velocity anomaly in the north of the region coincides with the seismogenic zone of the reactivated Kachchh rift system, which is apparently associated with the channel of the outpouring of Deccan basalt.

  4. Tectonics of the North American Cordillera near the Fortieth Parallel

    USGS Publications Warehouse

    King, P.B.

    1978-01-01

    The North American Cordillera near the Fortieth Parallel consists of the following tectonic units: 1. (A) To the east is a reactivated cratonic area, in the Southern Rocky Mountains and Colorado Plateau, in which the supracrustal rocks (Cambrian to Cretaceous) were broadly deformed during the late Cretaceous-Paleocene Laramide orogeny, and the Precambrian basement was raised in folds of wide amplitude. 2. (B) West of it is a miogeosynclinal belt, in the eastern Great Basin, in which a thick sequence of Paleozoic carbonates and related deposits was thrust eastward along low-angle faults during the middle to late Cretaceous Sevier orogeny. The miogeosyncline is the downwarped western margin of the original North American continent, and its rocks accumulated on Precambrian basement. 3. (C) Beyond is a eugeosynclinal belt, in the western Great Basin, in which Paleozoic graywackes, cherts, and volcanics were thrust easteastward along low-angle faults during several Paleozoic orogenies - the mid-Paleozoic Antler orogeny which produced the Roberts thrust on the east, and the end-Paleozoic Sonoma orogeny which produced the Golconda thrust farther west. The Paleozoic eugeosynclinal rocks accumulated on oceanic basement. They are overlapped from the west by Triassic and Jurassic shelf deposits, which pass westward into eugeosynclinal deposits. 4. (D) A volcanic island-arc belt existed on the sites of the Sierra Nevada in Paleozoic and early Mesozoic time, which produced thick bodies of sediments and volcanics. During the mid-Mesozoic Nevadan orogeny these were steeply deformed and thrust westward over subduction zones, and were intruded by granitic rocks that rose from the upper mantle to form great batholiths. 5. (E) West of the Sierra Nevada, in the Great Valley, is a great sedimentary embankment of later Mesozoic flysch or turbidite, largely younger than the supracrustal rocks of the Sierra Nevada and the Nevadan orogeny. It was formed of the erosional products of the supracrustal and granitic rocks of the Sierra Nevada. 6. (F) This sequence is, in turn, thrust westward over the Mesozoic Franciscan terrane of the Coast Ranges, which forms the westernmost belt of the Cordillera, and which is being treated in other papers in this symposium. The net effect of the prolonged events that produced the Cordillera in this segment has been the addition of successive tectonic belts to the North American continent at the expense of the Pacific Ocean basin during Phanerozoic time. ?? 1978.

  5. Crustal structure and tectonic history of the Kermadec arc inferred from MANGO seismic refraction profiles

    NASA Astrophysics Data System (ADS)

    Bassett, D.; Kopp, H.; Sutherland, R.; Henrys, S.; Watts, A. B.; Timm, C.; Scherwath, M.; Grevemeyer, I.; de Ronde, C. E. J.

    2016-12-01

    We have analyzed three wide-angle seismic reflection and refraction profiles and applied spectral averaging techniques to regional grids of bathymetry and free-air gravity anomaly to place the first regional constraints on the crustal structure of the Kermadec arc. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure, across which, 1) the remnant Lau-Colville and active Kermadec arc ridges narrow by >50%; 2) the backarc and forearc deepen by 1 km, and 3) the active volcanic arc is deflected west into the deepest known backarc basin. We use residual bathymetric anomalies to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5-7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110±20 km) and strike ( 005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7-7.3 km s-1. Lower crustal velocities are similar to the northern Kermadec forearc, but there is no seismic or gravimetric evidence for an extinct arc ridge within the forearc. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. The northern Kermadec/Tonga arc preserves a substrate of the Eocene arc, the southern Kermadec forearc preserves Mesozoic forearc rocks accreted at the Gondwana margin, and the central Kermadec arc may have fomed in the Kupe Abyssal Plain. The oldest arc related rocks recovered north and south of the CKD are 52 Ma and 16.7 Ma respectively, and plate tectonic reconstruction suggest the Eocene arc was originally conjoined with the Three Kings Ridge. The separation of these ridges during the early Oligocene likely formed the CKD. In contrast to previous interpretations, we suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin, and along-strike variations in the duration of arc volcanism.

  6. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling mountains, central China

    USGS Publications Warehouse

    Mao, J.; Goldfarb, R.J.; Zhang, Z.; Xu, W.; Qiu, Yumin; Deng, J.

    2002-01-01

    The gold-rich Xiaoqinling-Xiong'ershan region in eastern Shaanxi and western Henan provinces, central China, lies about 30-50 km inland of the southern margin of the North China craton. More than 100 gold deposits and occurrences are concentrated in the Xiaoqinling (west), Xiaoshan (middle), and Xiong'ershan (east) areas. Late Archean gneiss of the Taihua Group, and Middle Proterozoic metavolcanic rocks of the Xiong'er Group are the main host rocks for the deposits. Mesozoic granitoids (ca. 178-104 Ma) are present in most gold districts, but deposits are typically hosted in the Precambrian basement rocks hundreds of meters to as far as 10 km from the intrusions and related hornfels zones. Deposits in the Xiaoqinling and Xiaoshan areas are best classified as orogenic gold deposits, with ores occurring in a number of distinct belts both in quartz veins and disseminated in altered metamorphic rocks. Alteration assemblages are dominated by quartz, sericite, pyrite, and carbonate minerals. The ore-forming fluids were low salinity, CO2-rich, and characterized by isotopically heavy ??18O. Four deposits (Dongchuang, Wenyu, Yangzhaiyu, and Dahu) in the Xiaoqinling area each contain resources of about 1 Moz Au. Some of the gold deposits in the Xiong'ershan area represent more shallowly emplaced tellurium-enriched orogenic systems, which include resources of approximately 1-1.5 Moz Au at Shanggong and Beiling (or Tantou). Others are epithermal deposits (e.g., Qiyugou and Dianfang) that are hosted in volcanic breccia pipes. Isotopic dates for all gold deposits, although often contradictory, generally cluster between 172-99 Ma and are coeval with emplacement of the post-kinematic granitoids. The gold deposits formed during a period of relaxation of far-field compressional stresses, clearly subsequent to the extensive Paleozoic-early Mesozoic accretion of are terranes and the Yangtze craton onto the southern margin of the North China craton. Hydrothermal and magmatic events occurred locally where extension-related Precambrian basement uplifting took place along the craton margin. Fluids for the orogenic gold deposits in the Xiaoqinling, Xiaoshan, and Xiong'ershan areas may have been released from evolving magmas or resulted from prograde metamorphic reactions within the uplift zones. Alternatively, for the epithermal gold deposits at shallower levels in the Xiong'ershan area, gold-transporting fluids were mainly exsolved from coeval magmas, although meteoric water was also involved in these hydrothermal systems.

  7. Episodes of subsidence and uplift of the conjugate margins of Greenland and Norway after opening of the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.

    2015-04-01

    We have undertaken a regional study of the thermo-­tectonic development of East Greenland (68-75°N) and of southern Norway (58-64°N). We take advantage of the general observation that that the effects of uplift often are reflected more clearly onshore than offshore, and of the specific condition that the mountains of southern East Greenland expose thick basalts that were extruded onto a largely horizontal lava plain near sea level during breakup of the NE Atlantic at the Paleocene-Eocene transition. It is thus clear that the present-­day elevation of these basalts up to 3.7 km a.s.l. were reached after breakup. Our results based on apatite fission-­track analysis (AFTA) data from East Greenland reveal a long history of post-­Palaeozoic burial and exhumation across the region and show that the terrains of Palaeozoic and older rocks were buried below a 2-3 km­-thick cover prior to a series of Mesozoic events of uplift and exhumation. The AFTA results from southern Norway reveal events of Mesozoic uplift and exhumation that are broadly simultaneous with those in Greenland. Volcanic and sedimentary rocks accumulated on the subsiding, East Greenland margin during and following breakup and then began to be exhumed during late Eocene uplift that preceded a major, early Oligocene plate reorganization in the NE Atlantic. The Norwegian margin also experienced Eocene subsidence and burial. Our AFTA data from southern Norway show evidence of an event of mid­Cenozoic uplift and exhumation that overlap with the early Oligocene onset of progradation of clastic wedges towards the south and with the formation of a major, late Eocene unconformity along the NW European margin. The uplift event at the Eocene-Oligocene transition that affected wide areas in the NE Atlantic domain was followed by two regional events of uplift and incision of the East Greenland margin in the late Miocene and Pliocene whereas the Neogene uplift of southern Norway began in the early Miocene and was followed by the Pliocene phase that also affected East Greenland. In East Greenland, the end-­result of the three events of Cenozoic uplift and exhumation are two elevated erosion surfaces of Palaeogene and Neogene age. In southern Norway, a similar stepped landscape (the Palaeic relief) is also of Cenozoic age. In Greenland, definition of the chronology of events benefits from the availability of AFTA data from boreholes onshore where the plateau surfaces truncate Palaeogene basalts, and thus make it possible to date these surfaces and correlate them with offshore unconformities. In Norway, these factors are lacking, but the overall similarity of the onshore landscapes and Cenozoic cooling history and of the offshore sedimentary section to those in Greenland, suggests that the landscapes along these conjugate margins developed in similar fashion. This implies that the mountains of Norway also reached their present elevation in the late Cenozoic, long after Atlantic breakup.

  8. Magma-poor and magma-rich segments along the hyperextended, pre-Caledonian passive margin of Baltica

    NASA Astrophysics Data System (ADS)

    Andersen, Torgeir B.; Alsaif, Manar; Corfu, Fernando; Jakob, Johannes; Planke, Sverre; Tegner, Christian

    2015-04-01

    The Scandinavian Caledonides constitute a more than 1850 km long 'Himalayan-type' orogen, formed by collision between Baltica-Avalonia and Laurentia. Subduction-related magmatism in the Iapetus ended at ~430 Ma and continental convergence continued for ~30 Myr until ~400 Ma. The collision produced a thick orogenic wedge comprising the stacked remnants of the rifted to hyperextended passive Baltican margin (Andersen et al. 2012), as well as suspect, composite and outboard terranes, which were successively emplaced as large-scale nappe complexes onto Baltica during the Scandian collision (see Corfu et al. 2014 for a recent review). Large parts (~800 km) of the mountain-belt in central Scandinavia, particularly in the Särv and Seve Nappes and their counterparts in Troms, are characterised by spectacular dyke complexes emplaced into continental sediments (e.g. Svenningsen 2001, Hollocher et al. 2007). These constitute a magma-rich segment formed along the margin of Baltica or within hyperextended continental slivers outboard of Baltica. The intensity of the pre-Caledonian magmatism is comparable to that of the present NE-Atlantic and other volcanic passive margins. The volumes and available U-Pb ages of 610-597 Ma (Baird et al. 2014 and refs therein) suggest that the magmatism was short lived, intense and therefore compatible with a large igneous province (LIP). By analogy with present-day margins this LIP may have been associated with continental break-up and onset of sea-floor spreading. The remnants of the passive margin both north and south of the magma-rich segment have different architectures, and are almost devoid of rift/drift related magmatic rocks. Instead, these magma-poor segments are dominated by heterogeneous sediment-filled basins characterised by the abundant presence of solitary bodies of variably altered mantle peridotites, also commonly present as detrital serpentinites. These basins are interpreted to have formed by hyperextension. We suggest that the pre-Caledonian margin of Baltica underwent hyperextension until break-up, which was associated with emplacement of a LIP at ~600 Ma in the central segment. Andersen, T.B., Labrousse, L., Corfu, F. and Osmundsen, P.T., 2012: Evidence for hyperextension along the pre-Caledonian margin of Baltica. Jl. Geol. Soc. London, 601-612 Baird, G.B., Figg, SA. and Chamberlain, K.R., 2014: Intrusive age and geochemistry of the Kebne Dyke Complex in the Seve Nappe Complex, Kebnekaise Massif, arctic Sweden Caledonides, GFF, doi: 10.1080/11035897.2014.924553 Corfu, F., Andersen, T.B. and Gasser, D., 2014: The Scandinavian Caledonides: main features, conceptual advances and critical questions. Geol. Soc. London Spec. Publ. 390 doi:10.1144/SP390.25 Hollocher. K, Robinson, P., Walsh, E. and Terry M.P., 2007:The Neoproterozoic Ottfjellet dike swarm of the Middle Allochthon, traced geochemically into the hinterland, Western Gneiss Region, Norway. Am. Jl. Sci. 307, 901-953 Svenningsen, O., 2001: Onset of seafloor spreading in the Iapetus Ocean at 608Ma: precise age of the Sarek Dyke Swarm, northern Swedish Caledonides. Precambrian Res., 110, 241-254.

  9. Plutonism in the central part of the Sierra Nevada Batholith, California

    USGS Publications Warehouse

    Bateman, Paul C.

    1992-01-01

    The Sierra Nevada batholith comprises the plutonic rocks of Mesozoic age that underlie most of the Sierra Nevada, a magnificent mountain range that originated in the Cenozoic by the westward tilting of a huge block of the Earth's crust. Scattered intrusions west of the batholith in the western metamorphic belt of the Sierra Nevada and east of the Sierra Nevada in the Benton Range and the White and Inyo Mountains are satellitic to but not strictly parts of the Sierra Nevada batholith. Nevertheless, all the plutonic rocks are related in origin. The batholith lies along the west edge of the Paleozoic North American craton, and Paleozoic and early Mesozoic oceanic crust underlies its western margin. It was emplaced in strongly deformed but weakly metamorphosed strata ranging in age from Proterozoic to Cretaceous. Sedimentary rocks of Proterozoic and Paleozoic age crop out east of the batholith in the White and Inyo Mountains, and metamorphosed sedimentary and volcanic rocks of Paleozoic and Mesozoic age crop out west of the batholith in the western metamorphic belt. A few large and many small, generally elongate remnants of metamorphic rocks lie within the batholith. Sparse fossils from metasedimentary rocks and isotopic ages for metavolcanic rocks indicate that the metamorphic rocks in the remnants range in age from Early Cambrian to Early Cretaceous. Within the map area (the Mariposa 1 0 by 2 0 quadrangle), the bedding, cleavage, and axial surfaces of folds generally trend about N. 35 0 W., parallel to the long axis of the Sierra Nevada. The country rocks comprise strongly deformed but generally coherent sequences; however, some units in the western metamorphic belt may partly consist of melanges. Most sequences are in contact with other sequences, at least for short distances, but some sequences within the batholith are bounded on one or more sides by plutonic rocks. Proterozoic and Paleozoic sedimentary strata east of the Sierra Nevada and Paleozoic strata in remnants of country rocks within the eastern part of the batholith, although strongly deformed, are autochthonous or have been displaced only short distances, whereas some Mesozoic strata in the western metamorphic belt may be allochthonous. Probably the strata in the western metamorphic belt were deposited in marginal basins and island arcs, but the possibility that they were transported from distant places has not been disproved. All the country rocks have been strongly deformed, most of them more than once. Tectonic disturbances occurred during the Devonian and Mississippian (Antler? orogeny), the Permian and (or) Early Triassic (Sonoman? orogeny), the Late Jurassic (Nevadan orogeny), and at various other times during emplacement of the batholith and uplift that accompanied and followed its emplacement. The strata in the western metamorphic belt probably were deformed in an early Mesozoic subduction complex. The plutonic rocks range in composition from gabbro to leucogranite, but tonalite, granodiorite, and granite are the most common rock types. Most are medium to coarse grained, but some small rock masses are fine grained. Most have hypidiomorphic-granular textures and are equigranular, but some having compositions close to the boundary between granite and granodiorite contain large crystals of alkali feldspar. Serpentinized ultramafic rocks are present locally in the western metamorphic belt within and adjacent to the Melones fault zone. Except for serpentinized ultramafic rocks, trondhjemite, and most granites, all the plutonic rocks contain significant amounts of hornblende. Most of the granitoids are metaluminous or weakly peraluminous; strongly peraluminous granites are present only in the White Mountains. Most of the granitoids are assigned to units of lithodemic rank, and most of these units are assigned to intrusive suites. Plutons assigned to the same lithodeme are composed of rock of similar composition, fabric, and age and are presumed to h

  10. Deep Sea Drilling Project

    ERIC Educational Resources Information Center

    Kaneps, Ansis

    1977-01-01

    Discusses the goals of the ocean drilling under the International Phase of Ocean Drilling, which include sampling of the ocean crust at great depths and sampling of the sedimentary sequence of active and passive continental margins. (MLH)

  11. Taconic plate kinematics as revealed by foredeep stratigraphy, Appalachian Orogen

    USGS Publications Warehouse

    Bradley, D.C.

    1989-01-01

    Destruction of the Ordovician passive margin of eastern North America is recorded by an upward deepening succession of carbonates, shales, and flysch. Shelf drowning occurred first at the northern end of the orogen in Newfoundland, then at the southern end of the orogen in Georgia, and finally in Quebec. Diachronism is attributed to oblique collision between an irregular passive margin, that had a deep embayment in Quebec, and at least one east dipping subduction complex. The rate of plate convergence during collision is estimated at 1 to 2 cm/yr, and the minimum width of the ocean that closed is estimated at 500 to 900 km. The drowning isochron map provides a new basis for estimating tectonic transport distances of four of these allochthons (about 165 to 450 km), results not readily obtained by conventional structural analysis. -Author

  12. Investigating the 3-D Subduction Initiation Processes at Transform Faults and Passive Margins

    NASA Astrophysics Data System (ADS)

    Peng, H.; Leng, W.

    2017-12-01

    Studying the processes of subduction initiation is a key for understanding the Wilson cycle and improving the theory of plate tectonics. Previous studies investigated subduction initiation with geological synthesis and geodynamic modeling methods, discovering that subduction intends to initiate at the transform faults close to oceanic arcs, and that its evolutionary processes and surface volcanic expressions are controlled by plate strength. However, these studies are mainly conducted with 2-D models, which cannot deal with lateral heterogeneities of crustal thickness and strength along the plate interfaces. Here we extend the 2-D model to a 3-D parallel subduction model with high computational efficiency. With the new model, we study the dynamic controlling factors, morphology evolutionary processes and surface expressions for subduction initiation with lateral heterogeneities of material properties along transform faults and passive margins. We find that lateral lithospheric heterogeneities control the starting point of the subduction initiation along the newly formed trenches and the propagation speed for the trench formation. New subduction tends to firstly initiate at the property changing point along the transform faults or passive margins. Such finds may be applied to explain the formation process of the Izu-Bonin-Mariana (IBM) subduction zone in the western Pacific and the Scotia subduction zone at the south end of the South America. Our results enhance our understanding for the formation of new trenches and help to provide geodynamic modeling explanations for the observed remnant slabs in the upper mantle and the surface volcanic expressions.

  13. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexicomore » shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.« less

  14. Submarine landslide and tsunami hazards offshore southern Alaska: Seismic strengthening versus rapid sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, Derek E.; Reece, Robert S.; Gulick, Sean P. S.; Lenz, Brandi L.

    2017-08-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure. This conclusion is supported by shear strength outside of the fan that follow an active margin trend. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking.

  15. Geologic Assessment of Undiscovered Oil and Gas Resources of the West Greenland-East Canada Province

    USGS Publications Warehouse

    Schenk, Christopher J.

    2010-01-01

    The U.S. Geological Survey (USGS) recently assessed the potential for undiscovered oil and gas resources of the West Greenland-East Canada Province as part of the USGS Circum-Arctic Resource Appraisal program. The province lies in the offshore area between western Greenland and eastern Canada and includes Baffin Bay, Davis Strait, Lancaster Sound, and Nares Strait west of and including part of Kane Basin. A series of major tectonic events led to the formation of several distinct structural domains that are the geologic basis for defining five assessment units (AU) in the province, all of which are within the Mesozoic-Cenozoic Composite Total Petroleum System (TPS). Potential petroleum source rocks within the TPS include strata of Ordovician, Early and Late Cretaceous, and Paleogene ages. The five AUs defined for this study-the Eurekan Structures AU, Northwest Greenland Rifted Margin AU, Northeast Canada Rifted Margin AU, Baffin Bay Basin AU, and the Greater Ungava Fault Zone AU-encompass the entire province and were assessed for undiscovered, technically recoverable resources.

  16. Detrital Zircon Provenance Record of Pre-Andean to Modern Tectonics in the Northern Andes: Examples from Peru, Ecuador, and Colombia

    NASA Astrophysics Data System (ADS)

    George, S. W. M.; Jackson, L. J.; Horton, B. K.

    2015-12-01

    Detrital zircon U-Pb age distributions from modern rivers and Mesozoic-Cenozoic basin fill in the northern Andes provide insights into pre-Andean, Andean, and active uplift and exhumation of distinctive sediment source regions. Diagnostic age signatures enable straightforward discrimination of competing sediment sources within the Andean magmatic arc (Western Cordillera-Central Cordillera), retroarc fold-thrust belt (Eastern Cordillera-Subandean Zone), and Amazonian craton (composed of several basement provinces). More complex, however, are the mid/late Cenozoic provenance records generated by recycling of basin fill originally deposited during early/mid Mesozoic extension, late Mesozoic thermal subsidence, and early Cenozoic shortening. Although subject to time-transgressive trends, regionally significant provenance patterns in Peru, Ecuador, and Colombia reveal: (1) Triassic-Jurassic growth of extensional subbasins fed by local block uplifts (with commonly unimodal 300­-150 Ma age peaks); (2) Cretaceous deposition in an extensive postrift setting fed by principally cratonic sources (with common 1800-900 Ma ages); and (3) Cenozoic growth of a broad flexural basin fed initially fed by magmatic-arc rocks (100-0 Ma), then later dominance by thrust-belt sedimentary rocks with progressively greater degrees of basin recycling (yielding diverse and variable age populations from the aforementioned source regions). U-Pb results from modern rivers and smaller subbasins prove useful in evaluating source-to-sink relationships, downstream mixing relationships, hinterland-foreland basin connectivity, paleodrainage integration, and tectonic/paleotopographic reconstructions. Most but not all of the elevated intermontane basins in the modern hinterland of the northern Andes contain provenance records consistent with genesis in a broader foreland basin developed at low elevation. Downstream variations within modern axial rivers and Cenozoic axial basins inform predictive models of Andean contributions from the >1500 km Marañon river to the broader Amazon drainage system, and help pinpoint the late Miocene birth of the >1500 km Magdalena river and associated submarine fan along the southern Caribbean margin.

  17. Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite and Pb-Zn deposits in the MVT province of northeastern Mexico

    NASA Astrophysics Data System (ADS)

    González-Sánchez, Francisco; Camprubí, Antoni; González-Partida, Eduardo; Puente-Solís, Rafael; Canet, Carles; Centeno-García, Elena; Atudorei, Viorel

    2009-04-01

    Northeastern Mexico hosts numerous epigenetic stratabound carbonate-hosted low-temperature hydrothermal deposits of celestine, fluorite, barite and zinc-lead, which formed by replacement of Mesozoic evaporites or carbonate rocks. Such deposits can be permissively catalogued as Mississippi Valley-type (MVT) deposits. The deposits studied in the state of Coahuila are associated with granitic and metasedimentary basement highs (horsts) marginal or central to the Mesozoic Sabinas Basin. These horsts controlled the stratigraphy of the Mesozoic basins and subsequently influenced the Laramide structural pattern. The Sabinas Basin consists of ~6,000-m-thick Jurassic to Cretaceous siliciclastic, carbonate and evaporitic series. The MVT deposits are mostly in Barremian and in Aptian-Albian to Cenomanian formations and likely formed from basinal brines that were mobilized during the Laramide orogeny, although earlier diagenetic replacement of evaporite layers (barite and celestine deposits) and lining of paleokarstic cavities in reef carbonates (Zn-Pb deposits) is observed. Fluid inclusion microthermometry and isotopic studies suggest ore formation due to mixing of basinal brines and meteoric water. Homogenization temperatures of fluid inclusions range from 45°C to 210°C; salinities range from 0 to 26 wt.% NaCl equiv., and some inclusions contain hydrocarbons or bitumen. Sulfur isotope data suggest that most of the sulfur in barite and celestine is derived from Barremian to Cenomanian evaporites. Regional geology and a compilation of metallogenic features define the new MVT province of northeastern Mexico, which comprises most of the state of Coahuila and portions of the neighboring states of Nuevo León, Durango and, perhaps extends into Zacatecas and southern Texas. This province exhibits a regional metal zonation, with celestine deposits to the south, fluorite deposits to the north and barite and Zn-Pb deposits mostly in the central part.

  18. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  19. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  20. Continental margin sedimentation: From sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A.; Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P. M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins.- Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes- Explores timescales ranging from particle transport at one extreme, to deep burial at the other- Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy- Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation- Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  1. An inter-sensor comparison of the microwave signatures of Arctic sea ice

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.

    1986-01-01

    Active and passive microwave and physical properties of Arctic sea ice in the marginal ice zone were measured during the summer. Results of an intercomparison of data acquired by an aircraft synthetic aperture radar, a passive microwave imager and a helicopter-mounted scatterometer indicate that early-to-mid summer sea ice microwave signatures are dominated by snowpack characteristics. Measurements show that the greatest contrast between thin first-year and multiyear sea ice occurs when operating actively between 5 and 10 GHz. Significant information about the state of melt of snow and ice is contained in the active and passive microwave signatures.

  2. Inter-Labeler and Intra-Labeler Variability of Condition Severity Classification Models Using Active and Passive Learning Methods

    PubMed Central

    Nissim, Nir; Shahar, Yuval; Boland, Mary Regina; Tatonetti, Nicholas P; Elovici, Yuval; Hripcsak, George; Moskovitch, Robert

    2018-01-01

    Background and Objectives Labeling instances by domain experts for classification is often time consuming and expensive. To reduce such labeling efforts, we had proposed the application of active learning (AL) methods, introduced our CAESAR-ALE framework for classifying the severity of clinical conditions, and shown its significant reduction of labeling efforts. The use of any of three AL methods (one well known [SVM-Margin], and two that we introduced [Exploitation and Combination_XA]) significantly reduced (by 48% to 64%) condition labeling efforts, compared to standard passive (random instance-selection) SVM learning. Furthermore, our new AL methods achieved maximal accuracy using 12% fewer labeled cases than the SVM-Margin AL method. However, because labelers have varying levels of expertise, a major issue associated with learning methods, and AL methods in particular, is how to best to use the labeling provided by a committee of labelers. First, we wanted to know, based on the labelers’ learning curves, whether using AL methods (versus standard passive learning methods) has an effect on the Intra-labeler variability (within the learning curve of each labeler) and inter-labeler variability (among the learning curves of different labelers). Then, we wanted to examine the effect of learning (either passively or actively) from the labels created by the majority consensus of a group of labelers. Methods We used our CAESAR-ALE framework for classifying the severity of clinical conditions, the three AL methods and the passive learning method, as mentioned above, to induce the classifications models. We used a dataset of 516 clinical conditions and their severity labeling, represented by features aggregated from the medical records of 1.9 million patients treated at Columbia University Medical Center. We analyzed the variance of the classification performance within (intra-labeler), and especially among (inter-labeler) the classification models that were induced by using the labels provided by seven labelers. We also compared the performance of the passive and active learning models when using the consensus label. Results The AL methods produced, for the models induced from each labeler, smoother Intra-labeler learning curves during the training phase, compared to the models produced when using the passive learning method. The mean standard deviation of the learning curves of the three AL methods over all labelers (mean: 0.0379; range: [0.0182 to 0.0496]), was significantly lower (p = 0.049) than the Intra-labeler standard deviation when using the passive learning method (mean: 0.0484; range: [0.0275 to 0.0724). Using the AL methods resulted in a lower mean Inter-labeler AUC standard deviation among the AUC values of the labelers’ different models during the training phase, compared to the variance of the induced models’ AUC values when using passive learning. The Inter-labeler AUC standard deviation, using the passive learning method (0.039), was almost twice as high as the Inter-labeler standard deviation using our two new AL methods (0.02 and 0.019, respectively). The SVM-Margin AL method resulted in an Inter-labeler standard deviation (0.029) that was higher by almost 50% than that of our two AL methods. The difference in the inter-labeler standard deviation between the passive learning method and the SVM-Margin learning method was significant (p = 0.042). The difference between the SVM-Margin and Exploitation method was insignificant (p = 0.29), as was the difference between the Combination_XA and Exploitation methods (p = 0.67). Finally, using the consensus label led to a learning curve that had a higher mean intra-labeler variance, but resulted eventually in an AUC that was at least as high as the AUC achieved using the gold standard label and that was always higher than the expected mean AUC of a randomly selected labeler, regardless of the choice of learning method (including a passive learning method). Using a paired t-test, the difference between the intra-labeler AUC standard deviation when using the consensus label, versus that value when using the other two labeling strategies, was significant only when using the passive learning method (p = 0.014), but not when using any of the three AL methods. Conclusions The use of AL methods, (a) reduces intra-labeler variability in the performance of the induced models during the training phase, and thus reduces the risk of halting the process at a local minimum that is significantly different in performance from the rest of the learned models; and (b) reduces Inter-labeler performance variance, and thus reduces the dependence on the use of a particular labeler. In addition, the use of a consensus label, agreed upon by a rather uneven group of labelers, might be at least as good as using the gold standard labeler, who might not be available, and certainly better than randomly selecting one of the group’s individual labelers. Finally, using the AL methods when provided by the consensus label reduced the intra-labeler AUC variance during the learning phase, compared to using passive learning. PMID:28456512

  3. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods.

    PubMed

    Nissim, Nir; Shahar, Yuval; Elovici, Yuval; Hripcsak, George; Moskovitch, Robert

    2017-09-01

    Labeling instances by domain experts for classification is often time consuming and expensive. To reduce such labeling efforts, we had proposed the application of active learning (AL) methods, introduced our CAESAR-ALE framework for classifying the severity of clinical conditions, and shown its significant reduction of labeling efforts. The use of any of three AL methods (one well known [SVM-Margin], and two that we introduced [Exploitation and Combination_XA]) significantly reduced (by 48% to 64%) condition labeling efforts, compared to standard passive (random instance-selection) SVM learning. Furthermore, our new AL methods achieved maximal accuracy using 12% fewer labeled cases than the SVM-Margin AL method. However, because labelers have varying levels of expertise, a major issue associated with learning methods, and AL methods in particular, is how to best to use the labeling provided by a committee of labelers. First, we wanted to know, based on the labelers' learning curves, whether using AL methods (versus standard passive learning methods) has an effect on the Intra-labeler variability (within the learning curve of each labeler) and inter-labeler variability (among the learning curves of different labelers). Then, we wanted to examine the effect of learning (either passively or actively) from the labels created by the majority consensus of a group of labelers. We used our CAESAR-ALE framework for classifying the severity of clinical conditions, the three AL methods and the passive learning method, as mentioned above, to induce the classifications models. We used a dataset of 516 clinical conditions and their severity labeling, represented by features aggregated from the medical records of 1.9 million patients treated at Columbia University Medical Center. We analyzed the variance of the classification performance within (intra-labeler), and especially among (inter-labeler) the classification models that were induced by using the labels provided by seven labelers. We also compared the performance of the passive and active learning models when using the consensus label. The AL methods: produced, for the models induced from each labeler, smoother Intra-labeler learning curves during the training phase, compared to the models produced when using the passive learning method. The mean standard deviation of the learning curves of the three AL methods over all labelers (mean: 0.0379; range: [0.0182 to 0.0496]), was significantly lower (p=0.049) than the Intra-labeler standard deviation when using the passive learning method (mean: 0.0484; range: [0.0275-0.0724). Using the AL methods resulted in a lower mean Inter-labeler AUC standard deviation among the AUC values of the labelers' different models during the training phase, compared to the variance of the induced models' AUC values when using passive learning. The Inter-labeler AUC standard deviation, using the passive learning method (0.039), was almost twice as high as the Inter-labeler standard deviation using our two new AL methods (0.02 and 0.019, respectively). The SVM-Margin AL method resulted in an Inter-labeler standard deviation (0.029) that was higher by almost 50% than that of our two AL methods The difference in the inter-labeler standard deviation between the passive learning method and the SVM-Margin learning method was significant (p=0.042). The difference between the SVM-Margin and Exploitation method was insignificant (p=0.29), as was the difference between the Combination_XA and Exploitation methods (p=0.67). Finally, using the consensus label led to a learning curve that had a higher mean intra-labeler variance, but resulted eventually in an AUC that was at least as high as the AUC achieved using the gold standard label and that was always higher than the expected mean AUC of a randomly selected labeler, regardless of the choice of learning method (including a passive learning method). Using a paired t-test, the difference between the intra-labeler AUC standard deviation when using the consensus label, versus that value when using the other two labeling strategies, was significant only when using the passive learning method (p=0.014), but not when using any of the three AL methods. The use of AL methods, (a) reduces intra-labeler variability in the performance of the induced models during the training phase, and thus reduces the risk of halting the process at a local minimum that is significantly different in performance from the rest of the learned models; and (b) reduces Inter-labeler performance variance, and thus reduces the dependence on the use of a particular labeler. In addition, the use of a consensus label, agreed upon by a rather uneven group of labelers, might be at least as good as using the gold standard labeler, who might not be available, and certainly better than randomly selecting one of the group's individual labelers. Finally, using the AL methods: when provided by the consensus label reduced the intra-labeler AUC variance during the learning phase, compared to using passive learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In the east, affected by the later volcanic activities, Xingning-Jinghai sag deformed complicatedly and developed a series of landward dipping faults, showing the compound graben structure. Combined with the fault activity quantitative calculation, basin subsidence history and other advanced technology, the basin tectonic evolution has been divided into rift stage and post-rift stage. Considering the extension development evolution of Xingning-Jinghai sag and the extension and thinning of lithosphere under the background of spreading of the South China Sea, we argue that the northern margin of the South China lithosphere experienced an intense stretching and thinning stage. At this period, the subsidence of the Xingning-Jinghai sag was controlled by the detachment faults, indicating a rifting stage. With the development of the detachment faults, the thickness of crust was extremely thinned. After the spreading of the South China Sea the whole sag entered into the depression period which was characterized by thermal subsidence.

  5. The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin

    NASA Astrophysics Data System (ADS)

    Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen

    2018-04-01

    Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.

  6. Paleogeographic atlas project-Mesozoic-Cenozoic tectonic map of the world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, D.B.; Ziegler, A.M.; Hulver, M.

    1985-01-01

    A Mesozoic-Cenozoic tectonic map of the world has been compiled in order to provide the basis for detailed paleogeographic, first-order palin-spastic and paleo-tectonic reconstructions. The map is plotted from a digital database on two polar stereographic projections that depict both time and type of tectonic activity. Time of activity is shown using six colors, with each color representing approximately 40 m.y. intervals. The time divisions correspond with, and are defined on the basis of times of major changes in plate motions. Tectonic activity is divided into 7 major types: (1) Platformal regions unaffected by major tectonism; (2) Region as underlainmore » by oceanic lithosphere; (3) Regions affected by extensional tectonism-characterized by thinning and stretching of the crust, including Atlantic-type margins, Basin and Range, back-arc and pull-apart basin development; (4) Regions of crustal shortening and thickening, as in collisional orogens and Andean-type foreland-fold systems; (5) Strike-slip systems associated with little or no change in crustal thickness; (6) Subduction accretion prisms, associated with tectonic outbuilding of continental crust, and marking sutures within continents; and (7) Large scale oceanic volcanic/magmatic arcs and plateaus characterized by increased crustal thickness and buoyancy of the lithosphere. The map provides a basis for understanding the assembly of Asia, the Circum-Pacific, and the disaggregation of Pangea.« less

  7. Petrology and tectonics of Phanerozoic continent formation: From island arcs to accretion and continental arc magmatism

    USGS Publications Warehouse

    Lee, C.-T.A.; Morton, D.M.; Kistler, R.W.; Baird, A.K.

    2007-01-01

    Mesozoic continental arcs in the North American Cordillera were examined here to establish a baseline model for Phanerozoic continent formation. We combine new trace-element data on lower crustal xenoliths from the Mesozoic Sierra Nevada Batholith with an extensive grid-based geochemical map of the Peninsular Ranges Batholith, the southern equivalent of the Sierras. Collectively, these observations give a three-dimensional view of the crust, which permits the petrogenesis and tectonics of Phanerozoic crust formation to be linked in space and time. Subduction of the Farallon plate beneath North America during the Triassic to early Cretaceous was characterized by trench retreat and slab rollback because old and cold oceanic lithosphere was being subducted. This generated an extensional subduction zone, which created fringing island arcs just off the Paleozoic continental margin. However, as the age of the Farallon plate at the time of subduction decreased, the extensional environment waned, allowing the fringing island arc to accrete onto the continental margin. With continued subduction, a continental arc was born and a progressively more compressional environment developed as the age of subducting slab continued to young. Refinement into a felsic crust occurred after accretion, that is, during the continental arc stage, wherein a thickened crustal and lithospheric column permitted a longer differentiation column. New basaltic arc magmas underplate and intrude the accreted terrane, suture, and former continental margin. Interaction of these basaltic magmas with pre-existing crust and lithospheric mantle created garnet pyroxenitic mafic cumulates by fractional crystallization at depth as well as gabbroic and garnet pyroxenitic restites at shallower levels by melting of pre-existing lower crust. The complementary felsic plutons formed by these deep-seated differentiation processes rose into the upper crust, stitching together the accreted terrane, suture and former continental margin. The mafic cumulates and restites, owing to their high densities, eventually foundered into the mantle, leaving behind a more felsic crust. Our grid-based sampling allows us to estimate an unbiased average upper crustal composition for the Peninsular Ranges Batholith. Major and trace-element compositions are very similar to global continental crust averaged over space and time, but in detail, the Peninsular Ranges are slightly lower in compatible to mildly incompatible elements, MgO, Mg#, V, Sc, Co, and Cr. The compositional similarities suggest a strong arc component in global continental crust, but the slight discrepancies suggest that additional crust formation processes are also important in continent formation as a whole. Finally, the delaminated Sierran garnet pyroxenites have some of the lowest U/Pb ratios ever measured for silicate rocks. Such material, if recycled and stored in the deep mantle, would generate a reservoir with very unradiogenic Pb, providing one solution to the global Pb isotope paradox. ?? 2007 Elsevier B.V. All rights reserved.

  8. Numerical experiments of volcanic dominated rifts and passive margins

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Teyssier, Christian; Rey, Patrice; Whitney, Donna; Mondy, Luke

    2017-04-01

    Continental rifting is driven by plate tectonic forces (passive rifting), thermal thinning of the lithosphere over a hotspot (active rifting), or a combination of the two. Successful rifts develop into passive margins where pre-drift stretching is accompanied by normal faulting, clastic sedimentation, and various degrees of magmatism. The structure of volcanic passive margins (VPM) differs substantially from margins that are dominated by sedimentation. VPMs are typically narrow, with a lower continental crust that is intruded by magma and can flow as a low-viscosity layer. To investigate the role of the deep crust in the early development of VPMs, we have developed a suite of 2D thermomechanical numerical experiments (Underworld code) in which the density and viscosity of the deep crust and the density of the rift basin fill are systematically varied. Our experiments show that, for a given rifting velocity, the viscosity of the deep crust and the density of the rift basin fill exert primary controls on early VPM development. The viscosity of the deep crust controls the degree to which the shallow crust undergoes localised faulting or distributed thinning. A weak deep crust localises rifting and is efficiently exhumed to the near-surface, whereas a strong deep crust distributes shallow crust extension and remains buried. A high density rift basin fill results in gravitational loading and increased subsidence rate in cases in which the viscosity of the deep crust is sufficiently low to allow that layer to be displaced by the sinking basin fill. At the limit, a low viscosity deep crust overlain by a thick basalt-dominated fill generates a gravitational instability, with a drip of cool basalt that sinks and ponds at the Moho. Experiment results indicate that the deep crust plays a critical role in the dynamic development of volcanic dominated rifts and passive margins. During rifting, the deep continental crust is heated and readily responds to solicitations of the shallow crust (rooting of normal faults, exhumation of the deep crust in normal fault footwalls). Gravitational instabilities caused by high density rift infill similar to those observed in our numerical experiments may be present in the Mesoproterozoic ( 1100 Ma) North American Midcontinent Rift System (MRS). The MRS is a failed rift that is filled with >20 km of dominantly basaltic volcanic deposits, and therefore represents an end member VPM (high density basin fill) where the initial structure of a pre-drift VPM is preserved. Magmatism occurred in two pulses over <15 Ma involving deep mantle melting first (>150 km), then shallow melting (40-70 km). Post-rift subsidence accumulated up to 10 km of clastic sediments in the center of the basin. Evidence of cool, dense rocks sinking into a low-viscosity deep crust as predicted in our numerical experiments may be present in the western arm of the MRS, where crustal density analyses suggest the presence of dense bodies (eclogite) at the base of the crust.

  9. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  10. The Role of Magma During Continent-Ocean Transition

    NASA Astrophysics Data System (ADS)

    Bastow, Ian; Keir, Derek; Rooney, Tyrone; Kendall, J.-Michael

    2010-05-01

    Passive margins worldwide are often considered magmatic because they are characterised by thick sequences of extrusive and intrusive igneous rocks emplaced around the time of continental breakup. Despite the global abundance of such margins, however, it is difficult to discriminate between different models of both extension and melt generation, since most ruptured during Gondwana breakup >100Ma and the continent-ocean transition (COT) is now hidden by thick, basaltic seaward dipping reflectors (SDRs). These margins are no longer tectonically active so the roles of faulting, stretching and magma intrusion in accommodating extension, and timing of SDRs emplacement during rift evolution have to be inferred from rifting models or from the geological record preserved at the fully developed passive margin. Similarly mantle processes during COT development have long since ceased, so whether breakup was characterized by broad thermal upwelling, small-scale convection or a fertile geoscientific mantle remains ambiguous. The East African rift in Ethiopia offers a unique opportunity to address all these problems because south-to-north it exposes subaerially the transition from continental rifting and incipient sea-floor spreading within a young flood basalt province. Here we present a suite of geophysical and geochemical observations from Ethiopia that document the significance of magma intrusion and extrusion as rifting evolves from an initially broad zone of stretching and faulting to a narrower axial graben in which magma injection dominates strain.

  11. The three scales of submarine groundwater flow and discharge across passive continental margins

    USGS Publications Warehouse

    Bratton, John F.

    2010-01-01

    Increased study of submarine groundwater systems in recent years has provided a wealth of new data and techniques, but some ambiguity has been introduced by insufficient distinguishing of the relevant spatial scales of the phenomena studied. Submarine groundwater flow and discharge on passive continental margins can be most productively studied and discussed by distinct consideration of the following three spatial scales: (1) the nearshore scale, spanning approximately 0–10 m offshore and including the unconfined surficial aquifer; (2) the embayment scale, spanning approximately 10 m to as much as 10 km offshore and including the first confined submarine aquifer and its terminus; and (3) the shelf scale, spanning the width and thickness of the aquifers of the entire continental shelf, from the base of the first confined aquifer downward to the basement, and including influences of geothermal convection and glacio-eustatic change in sea level.

  12. Multisensor comparison of ice concentration estimates in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.

    1987-01-01

    Aircraft remote sensing data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how ice surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of ice concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in ice surface signatures in the scene.

  13. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  14. Polyphase Rifting and Breakup of the Central Mozambique Margin

    NASA Astrophysics Data System (ADS)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi

    2017-04-01

    The breakup of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. The identification of magnetic anomalies in the Mozambique Basin and Riiser Larsen Sea means that post-oceanisation plate kinematics are well-constrained. Unresolved questions remain, however, regarding the initial fit, continental breakup process, and the first relative movements of Africa and Antarctica. This study uses high quality multi-channel seismic reflection profiles in an effort to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. This work is part of the integrated pluri-disciplinary PAMELA project*. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDR) in the Angoche region, as well as magmatic sills and volcanoclastic material which mark the Beira High. The Angoche region is defined by a faulted upper-continental crust, with the possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The profiles studied across the Beira high reveal an offshore continental fragment, which is overlain by a pre-rift sedimentary unit likely to belong to the Karoo Group. Faulting of the crust and overlying sedimentary unit reveals that the Beira High has recorded several phases of deformation. The combination of our seismic interpretation with existing geophysical and geological results have allowed us to propose a breakup model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The analysis of both along-dip and along-strike profiles shows that the Beira High initially experienced extension in a direction approximately parallel to the Mozambique coastline onshore of the Beira High. Our results suggest that the Beira High results from strike-slip deformation localised along a proposed crustal weakness, represented by the Lurio-Pebane shear zone. A more north-south oriented extension is recorded by the continental breakup and oceanisation. A failed rift is initially formed between the Beira High and the African continent followed by the successful rifting of its southern margin. This study proposes a segmentation of the Central Mozambique margin, with oceanisation first occurring in the Angoche segment. The formation of the first oceanic crust in the Beira segment followed, likely delayed by the formation and failure of the northern Beira High rift. *The PAMELA project (PAssive Margin Exploration Laboratories) is a scientific project led by Ifremer and TOTAL in collaboration with Université Rennes 1, Université Pierre and Marie Curie, Université de Bretagne Occidentale, CNRS and IFPEN.

  15. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens

    USGS Publications Warehouse

    Scholl, D. W.; von Huene, Roland E.

    2009-01-01

    Arc magmatism at subduction zones (SZs) most voluminously supplies juvenile igneous material to build rafts of continental and intra-oceanic or island arc (CIA) crust. Return or recycling of accumulated CIA material to the mantle is also most vigorous at SZs. Recycling is effected by the processes of sediment subduction, subduction erosion, and detachment and sinking of deeply underthrust sectors of CIA crust. Long-term (>10-20 Ma) rates of additions and losses can be estimated from observational data gathered where oceanic crust underruns modern, long-running (Cenozoic to mid-Mesozoic) ocean-margin subduction zones (OMSZs, e.g. Aleutian and South America SZs). Long-term rates can also be observationally assessed at Mesozoic and older crust-suturing subduction zone (CSSZs) where thick bodies of CIA crust collided in tectonic contact (e.g. Wopmay and Appalachian orogens, India and SE Asia). At modern OMSZs arc magmatic additions at intra-oceanic arcs and at continental margins are globally estimated at c. 1.5 AU and c. 1.0 AU, respectively (1 AU, or Armstrong Unit,= 1 km3 a-1 of solid material). During collisional suturing at fossil CSSZs, global arc magmatic addition is estimated at 0.2 AU. This assessment presumes that in the past the global length of crustal collision zones averaged c. 6000 km, which is one-half that under way since the early Tertiary. The average long-term rate of arc magmatic additions extracted from modern OMSZs and older CSSZs is thus evaluated at 2.7 AU. Crustal recycling at Mesozoic and younger OMSZs is assessed at c. 60 km3 Ma-1 km-1 (c. 60% by subduction erosion). The corresponding global recycling rate is c. 2.5 AU. At CSSZs of Mesozoic, Palaeozoic and Proterozoic age, the combined upper and lower plate losses of CIA crust via subduction erosion, sediment subduction, and lower plate crustal detachment and sinking are assessed far less securely at c. 115 km3 Ma-1 km-1. At a global length of 6000 km, recycling at CSSZs is accordingly c. 0.7 AU. The collective loss of CIA crust estimated for modern OMSZs and for older CSSZs is thus estimated at c. 3.2 AU. SZ additions (2.7 AU) and subtractions (23.2 AU) are similar. Because many uncertainties and assumptions are involved in assessing and applying them to the deep past, the net growth of CIA crust during at least Phanerozoic time is viewed as effectively nil. With increasing uncertainty, the long-term balance can be applied to the Proterozoic, but not before the initiation of the present style of subduction at c. 3 Ga. Allowing that since this time a rounded-down rate of recycling of 3 AU is applicable, a startlingly high volume of CIA crust equal to that existing now has been recycled to the mantle. Although the recycled volume (c. 9 ?? 109 km3) is small (c. 1%) compared with that of the mantle, it is large enough to impart to the mantle the signature of recycled CIA crust. Because subduction zones are not spatially fixed, and their average global lengths have episodically been less or greater than at present, recycling must have contributed significantly to creating recognized heterogeneities in mantle geochemistry. ?? The Geological Society of London 2009.

  16. Tracking small mountainous river derived terrestrial organic carbon across the active margin marine environment

    NASA Astrophysics Data System (ADS)

    Childress, L. B.; Blair, N. E.; Orpin, A. R.

    2015-12-01

    Active margins are particularly efficient in the burial of organic carbon due to the close proximity of highland sources to marine sediment sinks and high sediment transport rates. Compared with passive margins, active margins are dominated by small mountainous river systems, and play a unique role in marine and global carbon cycles. Small mountainous rivers drain only approximately 20% of land, but deliver approximately 40% of the fluvial sediment to the global ocean. Unlike large passive margin systems where riverine organic carbon is efficiently incinerated on continental shelves, small mountainous river dominated systems are highly effective in the burial and preservation of organic carbon due to the rapid and episodic delivery of organic carbon sourced from vegetation, soil, and rock. To investigate the erosion, transport, and burial of organic carbon in active margin small mountainous river systems we use the Waipaoa River, New Zealand. The Waipaoa River, and adjacent marine depositional environment, is a system of interest due to a large sediment yield (6800 tons km-2 yr-1) and extensive characterization. Previous studies have considered the biogeochemistry of the watershed and tracked the transport of terrestrially derived sediment and organics to the continental shelf and slope by biogeochemical proxies including stable carbon isotopes, lignin phenols, n-alkanes, and n-fatty acids. In this work we expand the spatial extent of investigation to include deep sea sediments of the Hikurangi Trough. Located in approximately 3000 m water depth 120 km from the mouth of the Waipaoa River, the Hikurangi Trough is the southern extension of the Tonga-Kermadec-Hikurangi subduction system. Piston core sediments collected by the National Institute of Water and Atmospheric Research (NIWA, NZ) in the Hikurangi Trough indicate the presence of terrestrially derived material (lignin phenols), and suggest a continuum of deposition, resuspension, and transport across the margin. Based on tephra beds identified within the sediments, this material was likely transported by a series of turbidite events, delivered to the Hikurangi Trough through Poverty Canyon.

  17. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  18. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  19. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.

  20. Integrated Geophysical Models Extending From The Craton Across The Gulf Coast Region Of The USA

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Mickus, K. L.; Thomas, W. A.

    2017-12-01

    In spite of decades of industry geophysical studies in the US Gulf Coast region, its crustal and uppermost mantle structure remain poorly understood. To understand the structure of this region and its variations from the southern Appalachians to northernmost Mexico, we have complied and integrated multiple data sets to produce a set of lithospheric scale transects crossing this region. These transects are presented as gravity models, but they are constrained by the available seismic reflection/refraction, passive seismic, magnetic, drilling, and geological data. The key transect is based on the PASSCAL wide-angle reflection/refraction experiment that extended from the Ouachita Mountains in Arkansas across the Sabine uplift in Louisiana and into the northernmost Gulf of Mexico. This experiment imaged the Iapetan rifted margin and showed that it was not strongly deformed. This model and one across Alabama delineated crustal blocks south of the rifted margin of Laurentia whose origin is unknown. In central Texas, the models show a crust that thins gradually from the Ouachita orogenic belt southward across the coastline to the edge of the continental margin in the Gulf of Mexico. In western Texas and adjacent northern Mexico, another crustal block has been proposed. Thus, our integrated models and geologic constraints show that the Appalachian and Ouachita orogenic belts were formed during assembly of Pangea (by 270 Ma), and were driven onto the Iapetan rifted margin by collisions with arcs, exotic terranes, and other continents. They also show that the sinuous curves of the Appalachian-Ouachita orogen mimic the shape of the Iapetan rifted margin and subsequent passive-margin shelf edge. Our results indicate that the Ouachita orogeny appears to be the result of soft collisions that have left the pre-orogenic rifted margins largely intact and reflect the complex interactions of compressional and strike-slip deformation.

  1. First results on the crustal structure of the Natal Valley from combined wide-angle and reflection seismic data (MOZ3/5 cruise), South Mozambique Margin.

    NASA Astrophysics Data System (ADS)

    Leprêtre, Angélique; Verrier, Fanny; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; de Clarens, Philippe; Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The Natal valley (South Mozambique margin) is a key area for the understanding of the SW Indian Ocean history since the Gondwana break-up, and widely, the structure of a margin system at the transition between divergent and strike-slip segments. As one part of the PAMELA project (PAssive Margins Exploration Laboratories), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN, the Natal Valley and the East Limpopo margin have been explored during the MOZ3/5 cruise (2016), conducted onboard the R/V Pourquoi Pas?, through the acquisition of 7 wide-angle profiles and coincident marine multichannel (720 traces) seismic as well as potential field data. Simultaneously, land seismometers were deployed in the Mozambique coastal plains, extending six of those profiles on land for about 100 km in order to provide information on the onshore-offshore transition. Wide-angle seismic data are of major importance as they can provide constrains on the crustal structure of the margin and the position of the continent-ocean boundary in an area where the crustal nature is poorly known and largely controversial. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along two perpendicular MZ1 & MZ7 wide-angle profiles crossing the Natal Valley in an E-W and NNW-SSE direction respectively, which reveal a crust up to 30 km thick below the Natal Valley and thus raises questions of a purely oceanic origin of the Valley. The post-doc of Angélique Leprêtre is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.

  2. Evidence for spreading in the lower Kam Group of the Yellowknife greenstone belt: Implications for Archaean basin evolution in the Slave Province

    NASA Technical Reports Server (NTRS)

    Helmstaedt, H.; Padgham, W. A.

    1986-01-01

    The Yellowknife greenstone belt is the western margin of an Archean turbidite-filled basin bordered on the east by the Cameron River and Beaulieu River volcanic belts (Henderson, 1981; Lambert, 1982). This model implies that rifting was entirely ensialic and did not proceed beyond the graben stage. Volcanism is assumed to have been restricted to the boundary faults, and the basin was floored by a downfaulted granitic basement. On the other hand, the enormous thickness of submarine volcanic rocks and the presence of a spreading complex at the base of the Kam Group suggest that volcanic rocks were much more widespread than indicated by their present distribution. Rather than resembling volcanic sequences in intracratonic graben structures, the Kam Group and its tectonic setting within the Yellowknife greenstone belt have greater affinities to the Rocas Verdes of southern Chile, Mesozoic ophiolites, that were formed in an arc-related marginal basin setting. The similarities of these ophiolites with some Archean volcanic sequences was previously recognized, and served as basis for their marginal-basin model of greenstone belts. The discovery of a multiple and sheeted dike complex in the Kam Group confirms that features typical of Phanerozoic ophiolites are indeed preserved in some greenstone belts and provides further field evidence in support of such a model.

  3. Thermochronological Record of a Jurassic Heating-Cooling Cycle Within a Distal Rifted Margin (Calizzano Massif, Ligurian Alps)

    NASA Astrophysics Data System (ADS)

    Seno, S.; Decarlis, A.; Fellin, M. G.; Maino, M.; Beltrando, M.; Ferrando, S.; Manatschal, G.; Gaggero, L.; Stuart, F. M.

    2017-12-01

    The aim of the present study is to analyse, through thermochronological investigations, the thermal evolution of a fossil distal margin owing to the Alpine Tethys rifting system. The studied distal margin section consists of a polymetamorphic basement (Calizzano basement) and of a well-developed Mesozoic sedimentary cover (Case Tuberto unit) of the Ligurian Alps (NW Italy). The incomplete reset of zircon (U-Th)/He ages and the non-reset of the zircon fission track ages during the Alpine metamorphism indicate that during the subduction and the orogenic stages these rocks were subjected to temperatures lower than 200 ºC. Thus, the Alpine metamorphic overprint occurred during a short-lived, low temperature pulse. The lack of a pervasive orogenic reset, allowed the preservation of an older heating-cooling event that occurred during Alpine Tethys rifting. Zircon fission-track data indicate, in fact, that the Calizzano basement records a cooling under 240 °C, at 156 Ma (early Upper Jurassic). This cooling followed a Middle Jurassic syn-rift heating at temperatures of about 300-350°C, typical of greenschist facies conditions occurred at few kilometres depth, as indicated by stratigraphic and petrologic constraints. Thus, in our interpretation, major crustal thinning likely promoted high geothermal gradients ( 60-90°C/km) triggering the circulation of hot, deep-seated fluids along brittle faults, causing the observed thermal anomaly at shallow crustal level.

  4. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  5. Late Mesozoic deformations of the Verkhoyansk-Kolyma orogenic belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery

    2016-04-01

    The Verkhoyansk-Kolyma orogenic belt marks the boundary between the Kolyma-Omolon superterrane (microcontinent) and the submerged eastern margin of the North Asian craton. The orogenic system is remark able for its large number of economically viable gold deposits (Natalka, Pavlik, Rodionovskoe, Drazhnoe, Bazovskoe, Badran, Malo-Tarynskoe, etc.). The Verkhoyansk - Kolyma orogenic belt is subdivided into Kular-Nera and the Polousny-Debin terranes. The Kular-Nera terrane is mainly composed of the Upper Permian, Triassic, and Lower Jurassic black shales that are metamorphosed at lower greenschist facies conditions. The Charky-Indigirka and the Chai-Yureya faults separate the Kular-Nera from the Polousny-Debin terrane that is predominantly composed of the Jurassic flyschoi dturbidites. The deformation structure of the region evolved in association with several late Mesozoic tectonic events that took place in the north-eastern part ofthe Paleo-Pacific. In Late Jurassic-Early Cretaceous several generations of fold and thrust systems were formed due to frontal accretion of the Kolyma-Omolon superterrane to the eastern margin of the North Asian craton.Thrusting and folding was accompanied by granitic magmatism, metamorphic reworking of the Late Paleozoic and the Early Mesozoic sedimentary rocks, and formation of Au-Sn-W mineralization. Three stages of deformation related to frontal accretion can be distinguished. First stage D1 has developed in the north-eastern part of the Verkhoyansk - Kolyma orogenic belt. Early tight and isoclinal folds F1 and assosiated thrusts are characteristic of D1. Major thrusts, linear concentric folds F2 and cleavage were formed during D2. The main ore-controlling structures are thrust faults forming imbricate fan systems. Frontal and oblique ramps and systems of bedding and cross thrusts forming duplexes are common. It is notable that mineralized tectonized zones commonly develop along thrusts at the contacts of rocks of contrasting competence. The superimposed structures are recognized from the early cleavage deformations. Folds F3 are often chevron type, open or tight. D1, D2 and D3 deformations are coaxial. In the Late-Neocomian-Aptian the Kolyma-Omolon superterrane started moving to the west. As a result, the thrust faults were reactivated with sinistral strike-slip motions along fault planes. At that time, granitoids of the North and Transverse belts were emplaced in the northwestern part of the Kolyma-Omolon superterrane. The strike slip faults were associated with cross open folds. The postacrettionary stage is associated with the development of the Albian-Late Cretaceous Okhotsk-Chukotka subduction zone. During this stage strike-slip faults and associated deformation structures were superimposed upon accretion-related tectonic structures of the Verkhoyansk - Kolyma orogenic belt.

  6. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the south where coal beds are preserved, and more arid in the north where evaporites and eolian deposits are common. Fluctuations in paleoclimate that caused lake levels to rise and fall in hydrologically closed basins are preserved as lacustrine cycles of various scales, including major shifts in the Late Triassic from a wet Carnian to an arid Norian. In contrast, fluvial deposits were mainly formed in response to the tectonic evolution of the basins, but to some extent also reflect climatic changes. The Newark Supergroup illustrates the complexity of rift-basin sedimentation and the problems that may arise from using a single modern analog for sedimentary deposition spanning millions of years. It also shows that a tremendous wealth of depositional, climatic, and tectonic information is preserved in ancient rift-basin deposits which can be recovered if the depositional processes of modern rift-basin deposits are understood. ?? 1991.

  7. Geologic map and digital database of the Porcupine Wash 7.5 minute Quadrangle, Riverside County, southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Porcupine Wash 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses parts of the Hexie Mountains, Cottonwood Mountains, northern Eagle Mountains, and south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle and Cottonwood Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle and Hexie Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults and an east-west trending system of high-angle dip- and left-slip faults. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Porcupine Wash database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a scanned topographic base at a scale of 1:24,000, and (5) attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  8. Thinning of heterogeneous lithosphere: insights from field observations and numerical modelling

    NASA Astrophysics Data System (ADS)

    Petri, B.; Duretz, T.; Mohn, G.; Schmalholz, S. M.

    2017-12-01

    The nature and mechanisms of formation of extremely thinned continental crust (< 10 km) and lithosphere during rifting remain debated. Observations from present-day and fossil continental passive margins document the heterogeneous nature of the lithosphere characterized, among others, by lithological variations and structural inheritance. This contribution aims at investigating the mechanisms of extreme lithospheric thinning by exploring in particular the role of initial heterogeneities by coupling field observations from fossil passive margins and numerical models of lithospheric extension. Two field examples from the Alpine Tethys margins outcropping in the Eastern Alps (E Switzerland and N Italy) and in the Southern Alps (N Italy) were selected for their exceptional level of preservation of rift-related structures. This situation enables us to characterize (1) the pre-rift architecture of the continental lithosphere, (2) the localization of rift-related deformation in distinct portion of the lithosphere and (3) the interaction between initial heterogeneities of the lithosphere and rift-related structures. In a second stage, these observations are integrated in high-resolution, two-dimensional thermo-mechanical models taking into account various patterns of initial mechanical heterogeneities. Our results show the importance of initial pre-rift architecture of the continental lithosphere during rifting. Key roles are given to high-angle and low-angle normal faults, anastomosing shear-zones and decoupling horizons. We propose that during the first stages of thinning, deformation is strongly controlled by the complex pre-rift architecture of the lithosphere, localized along major structures responsible for the lateral extrusion of mid to lower crustal levels. This extrusion juxtaposes mechanically stronger levels in the hyper-thinned continental crust, being exhumed by subsequent low-angle normal faults. Altogether, these results highlight the critical role of the extraction of mechanically strong layers of the lithosphere during the extreme thinning of the continental lithosphere and allows to propose a new model for the formation of continental passive margins.

  9. Mesozoic architecture of a tract of the European-Iberian continental margin: Insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Santantonio, Massimo; Fabbi, Simone; Aldega, Luca

    2016-01-01

    The sedimentary successions exposed in northeast Calabria document the Jurassic-Early Cretaceous tectonic-sedimentary evolution of a former segment of the European-Iberian continental margin. They are juxtaposed today to units representing the deformation of the African and Adriatic plates margins as a product of Apenninic crustal shortening. A complex pattern of unconformities reveals a multi-stage tectonic evolution during the Early Jurassic, which affected the facies and geometries of siliciclastic and carbonate successions deposited in syn- and post-rift environments ranging from fluvial to deep marine. Late Sinemurian/Early Pliensbachian normal faulting resulted in exposure of the Hercynian basement at the sea-floor, which was onlapped by marine basin-fill units. Shallow-water carbonate aprons and reefs developed in response to the production of new accommodation space, fringing the newborn islands which represent structural highs made of Paleozoic crystalline and metamorphic rock. Their drowning and fragmentation in the Toarcian led to the development of thin caps of Rosso Ammonitico facies. Coeval to these deposits, a thick (> 1 km) hemipelagic/siliciclastic succession was sedimented in neighboring hanging wall basins, which would ultimately merge with the structural high successions. Footwall blocks of the Early Jurassic rift, made of Paleozoic basement and basin-margin border faults with their onlapping basin-fill formations, are found today at the hanging wall of Miocene thrusts, overlying younger (Middle/Late Jurassic to Late Paleogene) folded basinal sediments. This paper makes use of selected case examples to describe the richly diverse set of features, ranging from paleontology to sedimentology, to structural geology, which are associated with the field identification of basin-margin unconformities. Our data provide key constraints for restoring the pre-orogenic architecture of a continental margin facing a branch of the Liguria-Piedmont ocean in the Western Tethys, and for estimating displacements and slip rates along synsedimentary faults.

  10. Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2009-01-01

    The modern Sierra Nevada and Great Basin were likely the site of a high-elevation orogenic plateau well into Cenozoic time, supported by crust thickened during Mesozoic shortening. Although crustal thickening at this scale can lead to extension, the relationship between Mesozoic shortening and subsequent formation of the Basin and Range is difficult to unravel because it is unclear which of the many documented or interpreted extensional episodes was the most significant for net widening and crustal thinning. To address this problem, we integrate geologic and geochronologic data that bear on the timing and magnitude of Cenozoic extension along an ???200km east-west transect south of Winnemucca, Battle Mountain, and Elko, Nevada. Pre-Cenozoic rocks in this region record east-west Palaeozoic and Mesozoic compression that continued into the Cretaceous. Little to no tectonism and no deposition followed until intense magmatism began in the Eocene. Eocene and Oligocene ash-flow tuffs flowed as much as 200km down palaeovalleys cut as deeply as 1.5km into underlying Palaeozoic and Mesozoic rocks in a low-relief landscape. Eocene sedimentation was otherwise limited to shallow lacustrine basins in the Elko area; extensive, thick clastic deposits are absent. Minor surface extension related to magmatism locally accompanied intense Eocene magmatism, but external drainage and little or no surface deformation apparently persisted regionally until about 16-17Ma. Major upper crustal extension began across the region ca. 16-17Ma, as determined by cross-cutting relationships, low-temperature thermochronology, and widespread deposition of clastic basin fill. Middle Miocene extension was partitioned into high-strain (50-100%) domains separated by largely unextended crustal blocks, and ended by 10-12Ma. Bimodal volcanic rocks that erupted during middle Miocene extension are present across most of the study area, but are volumetrically minor outside the northern Nevada rift. The modern physiographic basins and ranges formed during a distinctly different episode of extension that began after about 10Ma and has continued to the present. Late Miocene and younger faulting is characterized by widely spaced, high-angle normal faults that cut both older extended and unextended domains. Major widening of the Basin and Range at this latitude thus took place during a relatively brief interval in the middle Miocene, and the lack of major shortening west of the Sierra Nevada at this time suggests that the change in the plate margin from microplate subduction to lengthy transtensional strike-slip played an important role in allowing extension to occur when it did, as rapidly as it did. The onset of extension ca. 16-17Ma was coeval with both Columbia River flood-basalt volcanism and the hypothesized final delamination of the shallow Farallon slab that lay beneath the western USA in the early Tertiary. However, it is unclear if these events were necessary prerequisites for extension, simply coincidental, or themselves consequences of rapid extension and/or reorganization of the plate boundary.

  11. Evidences for the austroalpine - southalpine up-doming after the end of the variscan orogenesis (central and eastern alps)

    NASA Astrophysics Data System (ADS)

    Martin, S.; Tumiati, S.

    2003-04-01

    The structural and petrographic studies of the basement units in the Alpine region, independently from their present tectonic setting in the nappe pile, suggest that at the end of the Variscan orogenesis they were in such a position that they suffered relevant up-doming and cooling since Late Carboniferous (Thöni, 1981; Mottana et al., 1985; Martin et al., 1996; Bertotti et al., 1999). This up-doming has been interpreted as due to an isostatic rebound related to the detachment of the slab after the cessation of the subduction at the end of the Variscan orogenesis (Neubauer and Handler, 2000; Ranalli, 2003). The metamorphic setting of the Southalpine basement between the Tonale pass and Lake Maggiore in the Southern Alps, is due to processes which, by extension denudation and erosion, locally took to the surface portions of middle-to-high grade basement, within a horst-graben environment (Cassinis et al., 1997). The basements of the Orobic, Lake Como and Lake Maggiore areas are composed of kyanite-garnet or sillimanite-bearing schists (e.g., Gneiss di Morbegno, Scisti di Edolo, Scisti dei Laghi; Boriani et al., 1990; Siletto et al., 1993), or of low grade schists (e.g., Filladi di Ambria) intruded by Early Permian plutons, covered by continental and volcanic deposits of Late Carboniferous to Permian age, after a marked unconformity (Cadel et al., 1996). The thickness of this clastic cover ranges between a few hundreds to thousands of meters; the clast compositions suggest a low-grade basement as a dominant source; the structures indicate alternance of uplift and collapse and continue deformation during sedimentation (Cassinis et al., 1974). Most of the Upper Austroalpine units of the central and eastern Alps (e.g., Tonale nappe, Languard, Ortles and Campo units) have structural and lithological similarities with the Orobic, Lake Como and Lake Maggiore basement units confirming their appartenance to the same pre-Alpine paleogeographic environment which suffered up-doming and collapse (Martin et al., 1996). The Austroalpine units have a sedimentary cover including basal clastic sediments younger (Late Permian, Verrucano; Furrer, 1985), than the Orobic ones (Late Carboniferous-Permian) indicating erosion and sedimentation diachronous in respect to the Orobic and Lake Como areas. Most of the lower Austroalpine basement units are composed of middle-to-high grade rocks (e.g., Margna) and are covered by very thin Permian sediments, or directly by carbonatic sequences (Campo and Bernina units) typical of a rapid drowning of the passive margin after erosion (Froitzheim and Manatschal, 1996). In this picture, the Variscan basement of the central and eastern Alps suffered a relevant, even if diachronous, up-doming during Late Carboniferous-Permian time. This involved the basement which at present corresponds to the Lower Austroalpine (e.g., Err, Bernina and Margna) and to the Upper Austroalpine units (e.g.; Ortles, Languard and Campo). The up-doming is mostly evidenced by structural and petrographic observations rather than the geochronology because these basements have been thermally re-setted by intrusion of several Early Permian plutons which altered their cooling history. In some places the magmatic activity continued up to Trias with hydrothermal veins and pegmatites, which slowed the cooling evolution down to the Jurassic time. Rb-Sr cooling ages from high grade Austroalpine and Southalpine basements cumulate around Late Jurassic confirming this time as the end of the pre-alpine thermal evolution of the Variscan basement in the Alps (Sanders et al., 1996). References: BERTOTTI G., SEWARD D., WIJBRANS J., VOORDE M.TER, HURFORD A.J. (1999) - Crustal thermal regime prior to, during, and after rifting: A geochronological and modeling study of the Mesozoic South Alpine rifted margin. Tectonics, 18-2: 185-200 BORIANI A., GIOBBI ORIGONI E., BORGHI A., CAIRONI V. (1990) - The evolution of the "Serie dei Laghi" (Strona-Ceneri and Scisti dei Laghi): upper component of the Ivrea-Verbano crustal section; Southern Alps, North Italy and Ticino, Switzerland. Tectonophysics, 182: 103-118 CADEL G., COSI M., PENNACCHIONI G., SPALLA M.I. (1996) - A new map of the Permo-Carboniferous cover and Variscan metamorphic basement in the central Orobic Alps, Southern Alps, Italy: Structural and stratigraphical data. Mem. Sci. Geol., Padova, 48:1-53 CASSINIS G., MONTRASIO A., POTENZA R., VON RAUMER J.F., SACCHI R., ZANFERRARI A. (1974) - Tettonica ercinica nelle Alpi. Mem. Soc. Geol. Ital., Vol. XIII, suppl. 1, 289-318 CASSINIS G., PEROTTI C.R., VENTURINI C. (1997) - Examples of late Hercynian transtensional tectonics in the Southern Alps (Italy). In: Late Paleozoic and Early Mesozoic Circum Pacific Events and Their Global Correlation (Ed. Dickins J.M., Yang Z., Yin H., Lucas S.G., Acharyya S.K.), Cambridge University Press. DEL MORO A., NOTARPIETRO A. (1987) - Rb-Sr Geochemistry of some Hercynian granitoids overprinted by eo-Alpine metamorphism in the Upper Valtellina, Central Alps. Schweiz. Mineral. Petrogr. Mitt., 67: 295-306 FROITZHEIM N., MANATSCHAL G. (1996) - Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). GSA Bull., 108-9: 1120-1133 FURRER H. ed. (1985) - Field workshop on Triassic and Jurassic sediments in the Eastern Alps of Switzerland. Mitt. Geol. Inst. ETH u. Univ. Zürich, N.F., v. 248, 82 p. MARTIN S., ZATTIN M., DEL MORO A., MACERA P. (1996) - Chronologic constraints for the evolution of the Giudicarie belt (Eastern Alps, NE Italy). Annales Tectonicae, Vol. X, N. 1-2, 60-79 MOTTANA A., NICOLETTI M., PETRUCCIANI C., LIBORIO G., DE CAPITANI L., BOCCHIO R. (1985) - Pre-alpine and alpine eolution of the South-alpine basement of the Orobic Alps. Geol. Rundsch., 74-2: 353-366 NEUBAUER F., HANDLER R. (2000) - Variscan orogeny in the Eastern Alps and Bohemian Massif: How do these units correlate?. Mitt. Österr. Geol. Ges., 92:35-39 RANALLI G. (2003) - A model of Palaeozoic subduction and exhumation of continental crust: Ulten unit, Tonale Nappe, Eastern Austroalpine. Transalp workshop, Trieste 10-12 February. SANDERS C.A.E., BERTOTTI G., TOMMASINI S., DAVIES G.R., WIJBRANS J.R. (1996) - Triassic pegmatites in the Mesozoic middle crust of the Southern Alps (Italy): Fluid inclusions, radiometric dating and tectonic implications. Eclogae Geol. Helv., 89-1: 505-525 SILETTO G.B., SPALLA M.I., TUNESI A., LARDEAUX J.M., COLOMBO A. (1993) - Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy. In: Pre-Mesozoic geology in the Alps (Ed. By von Raumer J.F. &Neubauer F.), 585-598 THÖNI M. (1981) - Degree and Evolution of the Alpine Metamorphism in the Austroalpine Unit W of the Hohe Tauern in the light of K/Ar and Rb/Sr Age Determinations on Micas. Jahrb. Geol. B.-A., 124-1: 111-174

  12. Submarine Landslide Hazards Offshore Southern Alaska: Seismic Strengthening Versus Rapid Sedimentation

    NASA Astrophysics Data System (ADS)

    Sawyer, D.; Reece, R.; Gulick, S. P. S.; Lenz, B. L.

    2017-12-01

    The southern Alaskan offshore margin is prone to submarine landslides and tsunami hazards due to seismically active plate boundaries and extreme sedimentation rates from glacially enhanced mountain erosion. We examine the submarine landslide potential with new shear strength measurements acquired by Integrated Ocean Drilling Program Expedition 341 on the continental slope and Surveyor Fan. These data reveal lower than expected sediment strength. Contrary to other active margins where seismic strengthening enhances slope stability, the high-sedimentation margin offshore southern Alaska behaves like a passive margin from a shear strength perspective. We interpret that seismic strengthening occurs but is offset by high sedimentation rates and overpressure within the slope and Surveyor Fan. This conclusion is supported because shear strength follows an expected active margin profile outside of the fan, where background sedimentation rates occur. More broadly, seismically active margins with wet-based glaciers are susceptible to submarine landslide hazards because of the combination of high sedimentation rates and earthquake shaking

  13. Voices of the poor from the margins of Bengal: structural inequities and health.

    PubMed

    Dutta, Mohan J; Dutta, Uttaran

    2013-01-01

    In opposition to the traditional approaches to health communication that treat the subaltern sectors as passive recipients of messages of enlightenment configured in top-down interventions, the culture-centered approach foregrounds the importance of listening to subaltern communities at the margins through dialogue. We build on earlier culture-centered projects in rural communities of West Bengal, India, to develop participatory research strategies for understanding the local processes through which the structural marginalization of the poor plays out in rural Bengal. Study results point toward the marginalization of the poor both communicatively and economically, attending to the ways in which communicative marginalization lies at the heart of economic oppressions. Through locally articulated concepts of "health as shortage" and "communication as shortage," community members put forth alternative rationalities of health that highlight structural resources at the heart of health. These local articulations of shortage offer an alternative rationality for organizing health promotion efforts in the rural margins of Bengal through the foregrounding of discourses of shortage.

  14. The sedimentary record of India-Asia collision: an evaluation of new and existing constraints

    NASA Astrophysics Data System (ADS)

    Najman, Yani; Henderson, Alex; Boudagher-Fadel, Marcelle; Godin, Laurent; Parrish, Randy; Bown, Paul; Garzanti, Eduardo; Horstwood, Matt; Jenks, Dan

    2010-05-01

    The age and degree of diachroneity of India-Asia collision is critical to construction of models of orogenesis and to understanding the causes of spatial variations in Himalayan evolution along strike. The age of collision is quoted between ~65-34 Ma (Jaeger et al 1989; Aitchison et al 2007) and the degree of dichroneity is considered negligible (Searle et al 1997) to substantial (Rowley 1998). Such discrepancy is, to some extent, the result of the different definitions and methods used to define the collision. Here, we evaluate constraints from the sedimentary record preserved in the suture zone and Tethyan Himalaya where a minimum age to collision has been constrained by determining 1) the timing of cessation of marine facies, 2) first evidence of Asian detritus deposited on the Indian plate and 3) first evidence of mixed Indian-Asian detritus in the sedimentary record. Extensive previous work has been carried out on the Indus molasse of the Indus Suture zone in Ladakh, India. Here, cessation of marine facies is dated at 50.5 Ma (Green et al. 2008), with the underlying Chogdo Formation considered to show first evidence of mixed Indian and Asian provenance, and be the oldest Formation of Asian-derived provenance to lie in sedimentary contact with the underlying Indian plate (Clift et al 2001, 2002), thus constraining collision at >50.5 Ma. However, our new mapping and provenance analyses on these rocks show that there is no unequivocal evidence of Indian-derived material in the Chogdo Formation, nor that the Chogdo Formation lies in sedimentary contact with the underlying Indian plate (Henderson et al., in review). Thus we question the timing of Indian-Asian collision based on these evidences. South of the suture zone in India and Tibet, we carried out similar investigations of the youngest Tethyan strata. In Ladakh, Indian plate passive margin limestones of the Paleocene Dibling Fm are overlain by the youngest marine facies of the region, the marine Kong Fm and fluvio-deltaic Chulung La Fm (Garzanti et al 1987). The age of the Kong and Chulung La Formations is disputed, from P5/6 (Fuchs & Willems 1990) to P8 (Garzanti et al 1987) the discrepancy possibly the result of research at different locations. Provenance is considered to be either ophiolitic from the Indian plate (Fuchs & Willems 1990) or containing detritus from the Trans-Himalayan arc of the Asian plate (Garzanti et al 1987; Critelli & Garzanti 1994). Our samples from the Kong Fm contained planktic foraminifera indicating a Middle to Early P6 age (54-56 Ma) and larger benthic foraminifera indicating Middle SBZ8 age (53-54 Ma). U-Pb dating of detrital zircons allows discrimination between Asian provenance (dominated by Mesozoic grains from the Trans-Himalayan arc) and Indian provenance (characterized by Precambrian grains and an absence of Mesozoic grains). Our data from the Kong and Chulung La Fms shows a primary provenance from the Asian plate. Thus collision is constrained by arrival of Asian detritus on the Indian plate by 54 Ma. In Tingri, Tibet, Indian plate passive margin limestones of the Zephure Shan Fm extend to the early Eocene, overlain by marine facies of the Pengqu Fm. The youngest marine facies have been dated at 34 Ma (Wang et al. 2002), but this age is disputed by other workers who assign an age of 50 Ma (Zhu et al. 2005). Our new biostratigraphic data from the Pengqu Fm show that calcareous nannofossil species are compatible with an age corresponding to Zones NP11-12 (50.6-53.5 Ma). The dominant population of zircons have Cretaceous-Paleocene ages, derived from the Asian plate, thus indicating that contact between India and Asia had occurred by this time. We therefore conclude that although the Indus Molasse does not provide constraint to the timing of India-Asia collision as previously thought, data from the Tethyan strata show that collision occurred by 54 Ma in the west, with only extremely limited, if any diachroneity eastward.

  15. Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.

    NASA Astrophysics Data System (ADS)

    Giunta, G.

    2005-12-01

    The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American continental margins, inferred to be close to the oceanic realm, were affected by rifting and within-plate tholeiitic magmatism (WPT); this interpretation supports a near mid-America original location of the "proto-Caribbean" LIP. The MORB magmatic sections and rock blocks in the ophiolitic melanges are interpreted as exhumed tectonic sheets of the normal proto-Caribbean oceanic lithosphere, or part of a back-arc crust, both deformed in the eo-Caribbean stages. The SSZ complexes, considered as Cordilleran-type deformed ophiolites, were derived from a LIP that experienced two superimposed eo-Caribbean stages of intra-oceanic subduction. The older (Mid-Cretaceous) stage involved the eastward subduction of the un-thickened proto-Caribbean lithosphere, resulting in IAT and CA magmatism accompanied by HP-LT metamorphism and melange formation. The second, Late Cretaceous stage involved a westward dipping intra-oceanic subduction, which generated tonalitic arc magmatism. The eastward wedging of the Caribbean Plateau between the North and South American plates progressively trapped remnants of the Colombia and Venezuela Basins between the Atlantic and Pacific subduction zones and their new volcanic arcs (Aves-Lesser Antilles and Central American Isthmus). Unlike the proto-Caribbean, it appears that this LIP did not involve the main continental margins, even though the northern and southern Caribbean borders experienced different evolutionary paths. It was largely lost by superimposed accretionary and collisional events producing the marginal belts of the Caribbean Plate; its evolution has been dominated by a strongly oblique tectonic regime, constraining seafloor spreading, subduction, crustal exhumation, emplacement, and dismembering processes.

  16. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart A.; Gill, James; Coe, Robert S.; Zhao, Xixi; Liu, Zhongwei; Wang, Genxian; Yuan, Kuirong; Liu, Wenlong; Kuang, Guodun; Wu, Haoruo

    1996-07-01

    In order to better constrain the paleogeographic evolution of south China we measured Sm-Nd and Rb-Sr isotopic compositions for 23 Mesozoic granites that crop out throughout the area. Tightly grouped neodymium depleted mantle model ages (1.4 ± 0.3 Ga) suggest the region is underlain by relatively homogeneous Proterozoic crust and fail to define crustal provinces. Neither the isotopic nor geologic data suggest that a Mesozoic suture exists. However, granites possessing anomalously high Sm (>8 ppm) and Nd (>45 ppm) concentrations, relatively high initial epsilon neodymium (-4 to -8), and high but variable initial 87Sr/86Sr (0.759 to 0.713) form a northeast trending zone that coincides with two prominent Mesozoic basins. Southeast of the zone lie the majority of Mesozoic intrusives and Upper Triassic to Lower Cretaceous extensional basins found in south China. Mesozoic paleomagnetic poles are well clustered northwest of the zone. Pre-Cretaceous poles southeast of it are discordant with respect to those from the northwest. The only recognized tectonostratigraphic terrane in south China lies southeast of the zone. The terrane is bordered by a northeast trending sinistral fault that was active in the Mesozoic. Other faults in south China have similar attitudes, ages, and sense of shear. Together, the observations suggest that the Mesozoic tectonic regime in south China consisted of strike-slip activity plus concomitant rifting as terranes or fragments of similar crust were transported north along sinistral faults. The zone, defined by the granites enriched in Nd and Sm, demarcates displaced terranes to the southeast from relatively stable land to the northwest.

  17. Cretaceous to Recent Asymetrical Subsidence of South American and West African Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Kenning, J.; Mann, P.

    2017-12-01

    Two divergent interpretations have been proposed for South American rifted-passive margins: the "mirror hypothesis" proposes that the rifted margins form symmetrically from pure shear of the lithosphere while upper-plate-lower plate models propose that the rifted margins form asymmetrically by simple shear. Models based on seismic reflection and refraction imaging and comparison of conjugate, rifted margins generally invoke a hybrid stretching process involving elements of both end member processes along with the effects of mantle plumes active during the rift and passive margin phases. We use subsidence histories of 14, 1-7 km-deep exploration wells located on South American and West African conjugate pairs now separated by the South Atlantic Ocean, applying long-term subsidence to reveal the symmetry or asymmetry of the underlying, conjugate, rift processes. Conjugate pairs characterize the rifted margin over a distance of 3500 km and include: Colorado-South Orange, Punta Del Este-North Orange, South Pelotas-Lüderitz and the North Pelotas-Walvis Basins. Of the four conjugate pairs, more rapid subsidence on the South American plate is consistently observed with greater initial rift and syn-rift subsidence rates of >60m/Ma (compared to <15 m/Ma) between approximately 145-115 Ma. High rates of tectonically-induced subsidence >100 m/Ma are observed offshore South Africa between approximately 120-80 Ma, compatible with onset of the post-rift thermal sag phase. During this period the majority of burial is completed and rates remain low at <10 m/Ma during most of the late Cretaceous and Cenozoic. The conjugate margin of Argentina/Uruguay displays more gradual subsidence throughout the Cretaceous, consistently averaging a moderate 15-30m/Ma. By the end of this stage there is a subsequent increase to 25-60 m/Ma within the last 20 Ma, interpreted to reflect lithospheric loading due to increased sedimentation rates during the Cenozoic. This increase in subsidence rate is not seen in the African conjugate section where the majority of sediments bypassed the highly aggraded Cretaceous shelf. Initially greater on the Brazilian margin compared to Namibia, here both margins exhibit moderate-steep subsidence curves until 65-55 Ma where there is reduced subsidence during much of the Late Cretaceous until 20 Ma.

  18. Nurture Versus Nature: Accounting for the Differences Between the Taiwan and Timor active arc-continent collisions

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the lateral continuity of the continental margins. The northern Australian continental margin is highly irregular with many rift basins subducting parallel to their axes. This feature gives rise to irregularities in the uplift pattern of the collision and its continental margin parallel structural grain. Another major difference between Taiwan and Timor is the mechanical stratigraphy entering the trench. The Australian continental margin bears a carbonate rich pre and post rift sequence that is separated by a 1000 m thick, over pressured mudstone unit that acts as major detachment and promotes extensive mud diapirism. The post breakup Australian Passive Margin Sequence is incorporated into the orogenic wedge by frontal accretion and forms a classic imbricate thrust stack near the front of the Banda forearc. The pre breakup Gondwana Sequence below the detachment continues at least to depth of 30 km in the subduction channel beneath the Banda forearc upper plate and stacks up into a duplex zone that forms structural culminations throughout Timor. The upper plate of both collisions is similar in nature but is deformed in different ways due to the strong influence of the lower plate. However, both have extensive subduction erosion and demise of the forearc and systematic accretion of the arc.

  19. Mesozoic ash-flow caldera fragments in southeastern Arizona and their relation to porphyry copper deposits.

    USGS Publications Warehouse

    Lipman, P.W.; Sawyer, D.A.

    1985-01-01

    Jurassic and Upper Cretaceous volcanic and associated granitic rocks in SE Arizona are remnants of large composite silicic volcanic fields, characterized by voluminous ash-flow tuffs and associated calderas. Presence of 10-15 large caldera fragments is inferred primarily from 1) ash-flow deposits over 1 km thick, having features of inter-caldera ponding; 2) 'exotic-block' breccia within a tuff matrix, interpreted as caldera-collapse megabreccia; and 3) local granitic intrusion along arcuate structural boundaries of the thick volcanics. Several major porphyry copper deposits are associated with late granitic intrusions within the calderas or along their margins. Such close spatial and temporal association casts doubt on models that associate porphyry copper deposits exclusively with intermediate composition strato-volcanoes. -L.C.H.

  20. Linking craton stability and deep earth processes using thermochronology; a case study in the Superior Province of the Canadian Shield.

    NASA Astrophysics Data System (ADS)

    Sturrock, C. P.; Flowers, R. M.; Zhong, S.; Metcalf, J. R.; Kohn, B. P.

    2017-12-01

    Ancient, cratonic continental interiors are often presumed to be stable in the long term, neither accumulating nor shedding significant amounts of overlying sediment. However, recent low-temperature thermochronologic work suggests that such long term stability is an overly simplistic view and that forces besides plate tectonics, such as dynamic topography, may play a significant role. New apatite (U-Th)/He (AHe) and apatite fission track (AFT) data from Archean-Proterozoic basement rocks along a 1400km NW-SE transect in the Superior Province of the Canadian Shield record a spatially variable thermal history for the craton in Paleozoic through the end of Mesozoic time. Dates range from 600­­­­­­±60 Ma (AHe) and 529­±48 Ma (AFT) in the west to 184±14 Ma (AHe) and 174±9 Ma (AFT) in the east. Tectonic activity within the Superior Province ceased by 1.8 Ga, with the latest activity at the margins ending at 1 Ga. Widespread resetting of both AHe and AFT systems post 1 Ga is most likely due to regional scale burial at one or more times since the Cambrian. The temperature sensitivity of the AHe and AFT systems (30-90°C and 60-120°C, respectively) require at least a few km of burial across the craton that has since been stripped away. Preliminary inverse thermal history models, utilizing geologic constraints and radiation damage effects on He diffusion in apatite, indicate significant reheating in the Paleozoic-early Mesozoic (37 to >120°C) and a possible lesser reheating event since the mid Mesozoic (<100°C). Making the simplified assumption of a 25°C/km geothermal gradient and 0°C surface temperature, burial in some areas must have been at least 2-5km in the Paleozoic and was <4km in the Mesozoic. These burial and denudation patterns do not correlate with global sea level changes, making dynamic topography a good candidate for a driving mechanism. New AHe data from kimberlites emplaced in the early to mid-Jurassic will provide an important new constraint on the post-Jurassic thermal history of the Superior Province and result in better temperature/burial estimates for the earlier history. Ongoing work will compare these histories with dynamic topography predictions from geodynamic models back into the Paleozoic.

  1. Syntectonic emplacement of the Triassic biotite-syenogranite intrusions in the Taili area, western Liaoning, NE China: Insights from petrogenesis, rheology and geochronology

    NASA Astrophysics Data System (ADS)

    Li, Weimin; Liu, Yongjiang; Jin, Wei; Neubauer, Franz; Zhao, Yingli; Liang, Chenyue; Wen, Quanbo; Feng, Zhiqiang; Li, Jing; Liu, Qing

    2017-05-01

    The North China Craton (NCC) is one of the oldest cratons in the world, and it recently becomes a hot study area because of large volumes of Mesozoic intrusions associated with lithospheric thinning contributing to cratonic destruction in late Mesozoic times. However, the timing of initial thinning and destruction is still controversial. The Taili area, western Liaoning Province, in the northeastern part of the NCC well exposes the Archean basement rocks and the Mesozoic magmatic rocks with variable plastic deformation. This study focuses on the syntectonic emplacement of the Triassic biotite-syenogranite intrusions, in order to understand their petrogenesis, timing as well as the geological significance. Zircon LA-ICP-MS U-Pb ages reveal that the biotite-syenogranites formed between 246 and 191 Ma, and contain many ancient (2564-2317 Ma) zircon xenocrysts. Geochemical data suggests that the biotite-syenogranites display an adakitic affinity with high Sr/Y = 135-167 and (La/Yb)N = 48-69, as well as negligible Eu anomalies (δEu = 0.87-0.94), high negative zircon εHf(t) values (-15.5 to -21.5) and ancient TDM2 ages (2246-2598 Ma). This data suggests that the parent magmas were generated from partial melting of thickened Archean lower crustal rocks probably due to the bidirectional amalgamation of the NCC with the NE China micro-blocks and the Yangtze Craton in its north and south, respectively. In the middle part of the Taili area, magmatic fabrics are well preserved in the biotite-syenogranite intrusion characterized by the strong preferred orientation of biotite and hornblende crystals, which parallel to the intrusion margin and are slightly oblique to the gneissosity of the sheared host Neoarchean granitic gneisses. The quartz grain size piezometer suggests that the paleo-differential stresses weaken toward to the central part of the intrusion, ranging from 21.40-22.22 MPa to 16.74-19.34 MPa, during quartz crystallization in the emplacement stage. This allow deduce much higher strain rates in the center (1.26 × 10-11-2.24 × 10-9 s-1) than at the margin (9.07 × 10-12-1.31 × 10-9 s-1) of the pluton. These observations are interpreted by the rheological behavior of magma during the magmatic ;pipe; flow. The adakitic source melts ascended through the conduits along weak NE-trending sinistral shear zones, and emplaced at the shallower depth of ∼16 km before Early Jurassic (∼190 Ma). The biotite-syenogranites were still in a semisolid state, when garnet-bearing granitic aplites injected at ∼220 Ma. This stage records elongate (constrictional) strain under the sinistral shear stresses, particularly in quartz grains occurring in the margin of intrusions. In combination with previous studies, an exhumation rate of the NCC's Archean basement (from ∼25 km to ∼11 km in depth) is calculated as initial low exhumation rate of ∼4.0 mm/kyr from Neoarchean to Late Triassic, and subsequent a rapid exhumation process of ∼63 mm/kyr between Late Triassic to Early Cretaceous. All the results presented here allow us to consider the geodynamic evolution of the eastern NCC and constrain the onset of lithospheric thinning and cratonic destruction of the NCC as early as Middle Triassic (∼240 Ma) triggered by the amalgamation of adjacent blocks. It developed prosperously since Late Triassic, due to the oblique subduction of the Paleo-Pacific Plate.

  2. Deep Stucture of the Northwestern Atlantic Moroccan Margin Studied by OBS and Deep Multichannel Seismic Reflection.

    NASA Astrophysics Data System (ADS)

    MALOD, J. A.; Réhault, J.; Sahabi, M.; Géli, L.; Matias, L.; Diaz, J.; Zitellini, N.

    2001-12-01

    The Northwestern Atlantic Moroccan margin, a conjugate of the New Scotland margin, is one of the oldest passive margin of the world. Continental break up occurred at early Liassic time and the deep margin is characterized by a large salt basin. A good knowledge of this basin is of major interest to improve the initial reconstruction between Africa, North America and Iberia (Eurasia). It is also a good opportunity to study a mature passive margin and model its structure and evolution.Moreover, there is a need to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. These topics have been adressed during the SISMAR cruise carried out from April 9th to May 4th 2001.During this cruise, 3667 km of multichannel seismic reflection (360 channels, 4500 m long streamer, 4800 ci array of air guns) were recorded together with refraction records by means of 48 OBH/OBS drops. Simultaneously, some of the marine profiles have been extended onshore with 16 portable seismic land stations. We present the initial results of this study. Off El Jadida, the Moho and structures within the thinned continental crust are well imaged on both the reflection and refraction records. In the northern area, off Casablanca, we follow the deepening of the moroccan margin beneath the up to 9 sec (twtt) allochtonous series forming a prism at the front the Rif-Betic chain. Sismar cruise has been also the opportunity to record long seismic profiles making the junction between the Portuguese margin and the Moroccan one, and crossing the Iberian-African plate boundary. This allows to observe the continuity of the sedimentary sequence after the end of the large inter-plate motion in Early Cretaceous. In addition to the authors, SISMAR Group includes: AMRHAR Mostafa, BERMUDEZ VASQUEZ Antoni, CAMURRI Francesca, CONTRUCCI Isabelle, CORELA Carlos, DIAZ Jordi, DORVAL Philippe, EL ARCHI Abdelkrim, EL ATTARI Ahmed, GONZALEZ Raquel, HARMEGNIES Francois, JAFFAL Mohamed, KLINGELÖFER Fraucke, LANDURÉ Jean Yves, LEGALL Bernard, MAILLARD-LENOIR Agnès, MARTIN Christophe, MEHDI Khalid, MERCIER Eric, MOULIN Maryline, OUAJHAIN Brahim, PERROT Julie, ROLET Joël, RUELLAN Etienne, TEIXIRA Fernando, TERRINHA Pedro, ZOURARAH Bendehhou.

  3. Basins in ARC-continental collisions

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from collisional orogenesis ends up in the foreland basin that forms as a result of collision, and may be preserved largely undeformed. Compared to continent-continent collisional foreland basins, arc-continent collisional foreland basins are short-lived and may undergo partial inversion after collision as a new, active continental margin forms outboard of the collision zone and the orogen whose load forms the basin collapses in extension.

  4. The long-term evolution of the Congo deep-sea fan: A basin-wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project)

    NASA Astrophysics Data System (ADS)

    Anka, Zahie; Séranne, Michel; Lopez, Michel; Scheck-Wenderoth, Magdalena; Savoye, Bruno

    2009-05-01

    We have integrated the relatively unknown distal domains of the Lower Congo basin, where the main depocenters of the Congo submarine fan are located, with the better-constrained successions on the shelf and upper slope, through the analysis of thousands of km of 2D seismic reflection profiles off-shore the Congo-Angola passive margin. The basin architecture is depicted by two ca. 800-km-long regional cross sections through the northern (Congo) and southern (Angola) margin. A large unit deposited basinward of the Aptian salt limit is likely to be the abyssal-plain equivalent of the upper-Cretaceous carbonate shelf that characterized the first post-rift deposits in West-equatorial African margins. A latest-Turonian shelf-deepening event is recorded in the abyssal plain as a long period (Coniacian-Eocene) of condensed sedimentation and basin starvation. The onset of the giant Tertiary Congo deep-sea fan in early Oligocene following this event reactivates the abyssal plain as the main depocenter of the basin. The time-space partitioning of sedimentation within the deep-sea fan results from the interplay among increasing sediment supply, margin uplift, rise of the Angola salt ridge, and canyon incision throughout the Neogene. Oligocene-early Miocene turbidite sedimentation occurs mainly in NW-SE grabens and ponded inter-diapir basins on the southern margin (Angola). Seaward tilting of the margin and downslope salt withdrawal activates the up-building of the Angola escarpment, which leads to a northward (Congo) shift of the transfer zones during late Miocene. Around the Miocene-Pliocene boundary, the incision of the Congo submarine canyon confines the turbidite flows and drives a general basinward progradation of the submarine fan into the abyssal plain The slope deposition is dominated by fine-grained hemipelagic deposits ever since. Results from this work contribute to better understand the signature in the ultra-deep deposits of processes acting on the continental margin as well as the basin-wide sediment redistribution in areas of high river input.

  5. A Sharp Continent-Ocean Transition in the Area of the Canary Islands: Evidence From Upper Mantle and Lower Crustal Xenoliths

    NASA Astrophysics Data System (ADS)

    Neumann, E.; Vannucci, R.; Tiepolo, M.; Griffin, W. L.; Pearson, N. J.; O'Reilly, S. Y.

    2005-05-01

    Our present information on passive margins rests almost exclusively on seismic and density data. An important exception is the west Iberia margin where petrological and geochemical information on crustal and mantle rocks have been made available through drilling experiments. In order to increase our information about, and understanding of, passive margins and their mode of formation, more information on crustal and mantle rocks along different types of passive margins are needed. In the area of the Canary Islands such information has been obtained through the study of mantle and deep crustal xenoliths brought to the surface by basaltic magmas. In-situ laser ablation (LA) ICP-MS mineral analyses have enabled us to "see through" the effects of the Canary Islands event and obtain robust information about the original (pre-Canarian) chemical character of the crust and upper mantle on which these islands are built. Our studies show that the lithosphere beneath the Canary Islands originated as highly refractory N-MORB type oceanic mantle overlain by highly refractory N-MORB crust. Both the lithospheric mantle and lower crust have been metasomatized to different degrees by a variety of fluid and melts. The enriched material is commonly concentrated along grain boundaries and cracks through mineral grains, suggesting that the metasomatism is relatively recent, and is thus associated with the Canary Islands magmatism. The original, strongly depleted trace element patterns and the low 87Sr/86Sr isotopic ratios typical of the oceanic lithosphere are preserved in the minerals in the least metasomatized rocks (e.g. LaN/LuN<0.1 in orthopyroxene and 87Sr/86Sr=0.7027-0.7029 in clinopyroxene in mantle xenoliths). The compositions of the most depleted gabbro samples from the different islands are closely similar, implying that there was no significant change in chemistry during the early stages of formation of the Atlantic oceanic crust in this area. Strongly depleted gabbros similar to those collected in Fuerteventura have also been retrieved in the MARK area along the central Mid-Atlantic Ridge. Furthermore, we have found no evidence of continental material that might reflect attenuated continental lithosphere in this area. The easternmost Canary Islands, Fuerteventura and Lanzarote, appear to overlap the lower part of the continental slope of Africa. The presence of normal oceanic lithosphere beneath these islands implies that the continent-ocean transition in the Canary Islands area must be relatively sharp, in contrast to the passive non-volcanic margin further north along the coast of Morocco, along the Iberia peninsula, and in many other areas. Our data also contradict the hypothesis that a mantle plume was present in this area during the opening of the Atlantic Ocean.

  6. Comparison of authigenic carbonates formation at mud volcanoes and pockmarks in the Portuguese Margin vs. at the Yinazao serpentinite mud volcano in the Marianas forearc

    NASA Astrophysics Data System (ADS)

    Magalhaes, V. H.; Freitas, M.; Azevedo, M. R.; Pinheiro, L. M.; Salgueiro, E.; Abrantes, F. F. G.

    2017-12-01

    On the Portuguese passive continental margin, active and past seepage processes form mud volcanoes and pockmarks at the seafloor. Often associated with these structures are extensive methane-derived authigenic carbonates that form from deep-sourced methane-rich fluids that ascend from deep to the upper sedimentary column and often discharge at the seafloor. These carbonates form within the sediments and are either dominated by dolomite and high-Mg calcites, when formed under a restricted seawater circulation environment, anoxic and low sulphate conditions; or by aragonite and calcite when formed close to or at the seafloor in a high sulphate system. The δ13C values (-56.2‰ VPDB) found on the carbonate-cemented material clearly indicates methane as the major carbon source. On the Yinazao serpentinite mud volcano at an active, non-accretionary, convergent margin, sediment samples from IODP Sites U1491 and U1492 (Exp. 366) contain authigenic minerals such as aragonite, calcite, brucite, gypsum among others. Authigenic aragonite occurs predominantly within the top meters of the cores where both oxidation and seawater circulation in the sedimentary column are higher. In this system, initial results indicate that the major carbon source is most probably not methane but seawater related. This work discusses and compares the major carbon sources in both systems: sedimentary mud volcanoes and pockmarks of a passive margin vs. a serpentinite mud volcano of an active, non-accretionary, convergent margin. We acknowledge the support from the PES project - Pockmarks and fluid seepage in the Estremadura Spur: implications for regional geology, biology, and petroleum systems (PTDC/GEOFIQ/5162/2014) financed by the Portuguese Foundation for Science and Technology (FCT).

  7. Impact of Vishnu Fracture Zone on Tectono-Stratigraphy of Kerala Deepwater Basin, India

    NASA Astrophysics Data System (ADS)

    Bastia, R.; Krishna, K. S.; Nathaniel, D. M.; Tenepalli, S.

    2008-12-01

    Integration of regional seismic data extending from coast to deep water with the gravity-magnetics reveals the expression and evolution of ridge systems and fracture zones in Indian Ocean. Kerala deepwater basin, situated in the south-western tip of India, is bounded by two prominent north-south oriented ocean fracture zones viz., Vishnu (west) and Indrani (east) of the Indian Ocean. Vishnu Fracture Zone (VFZ), which extends from the Kerala shelf southward to the Carlsberg-Ridge, over a length of more than 2500 km, has a strong bearing on the sedimentation as well as structural fabric of the basin. VFZ is identified as the transform plate margin formed during Late-Cretaceous-Tertiary separation of Seychelles from India. Represented by a highly deformed structural fabric, VFZ forms an abrupt boundary between ocean floors of about 65 MY in the west and 140 MY in the east, implying a great scope for sedimentary pile on this very older ocean floor. Armed with this premise of an older sedimentary pile towards east of VFZ, congenial for petroleum hunt, the implemented modern long offset seismic program with an objective to enhance sub-basalt (Deccan) imagery, gravity-magnetic modelling and plate-tectonic reconstructions unraveled huge Mesozoic Basin, unheard earlier. Multi-episodic rifting in western continental margin of India starting during Mid Jurassic Karoo rift along the western Madagascar, Kerala deepwater basin, and western Antarctica and conjugate margins of Africa forms the main corridor for sedimentation. Subsequent Late Cretaceous dextral oblique extension of Madagascar rift reactivated pre-existing structural framework creating major accommodation zones along the southern tip of India. Followed by separation of Seychelles during KT boundary led to the formation of VFZ (an oceanic fracture zone) forming a transform boundary between newly formed Tertiary oceanic crust to the west and older basin to the east. The pulses of right-lateral movement were associated with various degrees of transpression, transtension, uplift and erosion. This activity continued in stages until Mid.Miocene, subsequent to phase of India- Seychelles separation. As a result, Mesozoic stratigraphy was inverted along VFZ's eastern border, folded in the basin centers and finally shifted the Tertiary depo-center towards east of VFZ. Plate tectonic reconstruction of Late Jurassic to Early Cretaceous demonstrates that the basin as situated in the north-east part of Proto-Mozambique Ocean, with Antarctica as the major provenance of sediment supply under favorable conditions for organic enrichment of sediments.

  8. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.

  9. Subduction Zones: Facts, Ideas, and Speculations.

    ERIC Educational Resources Information Center

    Uyeda, Seiya

    1979-01-01

    Recent research studies of both classifications of ocean margins (active or of Pacific type and passive or of Atlantic variety) have yielded a considerable amount of new information leading to some new theories. These theories regarding different kinds of tectonic activity are discussed. (BT)

  10. Sedimentary Flux to Passive Margins From Inversion of Drainage Patterns: Examples from Africa

    NASA Astrophysics Data System (ADS)

    Lodhia, Bhavik Harish; Roberts, Gareth G.; Fraser, Alastair

    2017-04-01

    We show that inversion of more than 14000 rivers from the African continent provides information about Cenozoic uplift and sedimentary flux to its passive margins. We test predicted sedimentary flux using a dense two-dimensional seismic dataset offshore northwest Africa. First, six biostratigraphically dated horizons were mapped (seabed, 5.6 Ma, 23.8 Ma, 58.40 Ma, 89.4 Ma and basement) across the Mauritanian margin and used to construct isopachs. Check-shot data were used to convert time to depth and to determine best-fitting compaction parameters. Observed solid sedimentary fluxes are ˜2x103 km3 /Ma between 58.4 and 23.8 Ma, ˜4x103 km3 /Ma between 23.8 and 5.6 Ma, and ˜28x103 km3 /Ma between 5.6 and 0 Ma. Compaction errors were propagated into our history of sedimentary flux. Secondly, we inverted our drainage inventory to explore the relationship between uplift and erosion onshore and our measured flux. The stream power erosional model was calibrated using independent observations of marine terrace elevations and ages. We integrate incision rates along best-fitting theoretical river profiles to predict sedimentary flux at mouths of the rivers draining northwest Africa (e.g. Senegal). Calculated Neogene uplift and erosion is staged. Our predicted history of sedimentary flux increases in three stages towards the present-day, which agrees with the offshore measurements. Finally, using our inverse approach we systematically tested different erosional scenarios. We find that sedimentary flux to Africa's passive margins is controlled up the history of uplift and erosional processes play a moderating role. Predicted fluxes are indistinguishable if precipitation rate varies with a period less than ˜ 1 Ma or drainage area varies by less than 50%. To investigate the geodynamic setting of the Mauritanian margin we backstripped eight commercial wells that penetrate Neogene stratigraphy. Wells in the central part of the Mauritania basin include 500-800 m of Neogene water-loaded subsidence that cannot be attributed to extension, thermal subsidence, salt-tectonics or glacio-eustasy. Stratigraphy mapped across the margin shows that this anomalous subsidence affected an area larger than 500 by 500 km. We suggest that this anomalous subsidence was caused by Neogene dynamic drawdown. Conversion of the Schaeffer & Lebedev (2013) velocity model to temperature and simple isostatic calculations indicate that negative buoyancy anomalies directly beneath the Mauritanian margin generate up to 500 m of drawdown today. Measured ocean-age depth residuals and calculated subsidence histories suggest that dynamic uplift of the Cape Verde swell and dynamic drawdown in the east generated a gradient in dynamic support during the last 25 Ma.

  11. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  12. Generation and transmission of DPSK signals using a directly modulated passive feedback laser.

    PubMed

    Karar, Abdullah S; Gao, Ying; Zhong, Kang Ping; Ke, Jian Hong; Cartledge, John C

    2012-12-10

    The generation of differential-phase-shift keying (DPSK) signals is demonstrated using a directly modulated passive feedback laser at 10.709-Gb/s, 14-Gb/s and 16-Gb/s. The quality of the DPSK signals is assessed using both noncoherent detection for a bit rate of 10.709-Gb/s and coherent detection with digital signal processing involving a look-up table pattern-dependent distortion compensator. Transmission over a passive link consisting of 100 km of single mode fiber at a bit rate of 10.709-Gb/s is achieved with a received optical power of -45 dBm at a bit-error-ratio of 3.8 × 10(-3) and a 49 dB loss margin.

  13. Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.; Duclaux, G.; May, D.

    2017-12-01

    Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.

  14. Deep structure of the Texas Gulf passive margin and its Ouachita-Precambrian basement: Results of the COCORP San Marcos arch survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culotta, R.; Latham, T.; Oliver, J.

    1992-02-01

    This COCORP deep seismic survey provides a comprehensive image of the southeast-Texas part of the Gulf passive margin and its accreted Ouachita arc foundation. Beneath the updip limit of the Cenozoic sediment wedge, a prominent antiformal structure is imaged within the interior zone of the buried late Paleozoic Ouachita orogen. The structure appears to involve Precambrian Grenville basement. The crest of the antiform is coincident with the Cretaceous-Tertiary Luling-Mexia-Talco fault zone. Some of these faults dip to the northwest, counter to the general regional pattern of down-to-the-basin faulting, and appear to sole into the top of the antiform, suggesting thatmore » the Ouachita structure has been reactivated as a hingeline to the subsiding passive margin. The antiform may be tied via this fault system and the Ouachita gravity gradient to the similar Devils River, Waco, and Benton uplifts, interpreted as Precambrian basement-cored massifs. Above the Paleozoic sequence, a possible rift-related graben is imaged near the updip limit of Jurassic salt. Paleoshelf edges of the major Tertiary depositional sequences are marked by expanded sections disrupted by growth faults and shale diapirs. Within the Wilcox Formation, the transect crosses the mouth of the 900-m-deep Yoakum Canyon, a principal pathway of sediment delivery from the Laramide belt to the Gulf. Beneath the Wilcox, the Comanchean (Lower Cretaceous) shelf edge, capped by the Stuart City reef, is imaged as a pronounced topographic break onlapped by several moundy sediment packages. Because this segment of the line parallels strike, the topographic break may be interpreted as a 2,000-m-deep embayment in the Cretaceous shelf-edge, and possibly a major submarine canyon older and deeper than the Yoakum Canyon.« less

  15. Progressive deformation and superposed fabrics related to Cretaceous crustal underthrusting in western Arizona, U.S.A.

    USGS Publications Warehouse

    Laubach, S.E.; Reynolds, S.J.; Spencer, J.E.; Marshak, S.

    1989-01-01

    In the Maria fold and thrust belt, a newly recognized E-trending Cretaceous orogenic belt in the southwestern United States, ductile thrusts, large folds and superposed cleavages record discordant emplacement of crystalline thrust sheets across previously tilted sections of crust. Style of deformation and direction of thrusting are in sharp contrast to those of the foreland fold-thrust belt in adjacent segments of the Cordillera. The net effect of polyphase deformation in the Maria belt was underthrusting of Paleozoic and Mesozoic metasedimentary rocks under the Proterozoic crystalline basement of North America. The structure of the Maria belt is illustrated by the Granite Wash Mountains in west-central Arizona, where at least four non-coaxial deformation events (D1-D4) occurred during the Cretaceous. SSE-facing D1 folds are associated with S-directed thrusts and a low-grade slaty cleavage. D1 structures are truncated by the gently-dipping Hercules thrust zone (D2), a regional SW-vergent shear zone that placed Proterozoic and Jurassic crystalline rocks over upturned Paleozoic and Mesozoic supracrustal rocks. Exposures across the footwall margin of the Hercules thrust zone show the progressive development of folds, cleavage and metamorphism related to thrusting. D3 and D4 structures include open folds and spaced cleavages that refold or transect D1 and D2 folds. The D2 Hercules thrust zone and a D3 shear zone are discordantly crosscut by late Cretaceous plutons. ?? 1989.

  16. Early Jurassic extensional inheritance in the Lurestan region of the Zagros fold-and-thrust belt, Iran.

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Parente, Mariano; Vitale, Stefano; Puzone, Francesco; Erba, Elisabetta; Bottini, Cinzia; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    It has long been recognized that the tectonic architecture of the Zagros mountain belt was strongly controlled by inherited structures previously formed within the Arabian plate. These preexisting features span in age from the pre-Cambrian to the Mesozoic, showing different trends and deformation styles. Yet, these structures are currently not fully understood. This uncertainty is partly related with the paucity of exposures, which rarely allows a direct observation of these important deformation features. The Lurestan Province of Iran provides a remarkable exception, since it is one of the few places of the Zagros mountain belt where exposures of Triassic and Jurassic rocks are widespread. In this area we carried out structural observations on Mesozoic extensional structures developed at the southern margin of the Neo-Tethyan basin. Syn-sedimentary extensional faults are hosted within the Triassic-Cretaceous succession, being particularly abundant in the Jurassic portion of the stratigraphy. Early to Middle Jurassic syn-sedimentary faults are observed in different paleogeographic domains of the area, and their occurrence is coherent with the subsequent transition from shallow-water to deep-sea basin environments, observed in a wide portion of the area. Most of the thrusts exposed in the area may indeed be interpreted as reactivated Jurassic extensional faults, or as reverse faults whose nucleation was controlled by the location of preexisting normal faults, as a result of positive inversion during crustal shortening and mountain building.

  17. Provenance analysis on detrital zircons from the back-arc Arivechi basin: Implications for the Upper Cretaceous tectonic evolution of northern Sonora and southern Arizona

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castañeda, José Luis; Ortega-Rivera, Amabel; Roldán-Quintana, Jaime; Espinoza-Maldonado, Inocente Guadalupe

    2018-07-01

    In the Arivechi region of eastern Sonora, northwestern Mexico, mountainous exposures of Upper Cretaceous rocks that contain monoliths within coarse sedimentary debris are enigmatic, in a province of largely Late Cretaceous continental-margin arc rocks. The rocks sequence in the study area are grouped in two Upper Cretaceous units: the lower Cañada de Tarachi and the younger El Potrero Grande. Detrital zircons collected from three samples of the Cañada de Tarachi and El Potrero Grande units have been analyzed for U-Pb ages to constrain their provenance. These ages constrain the age of the exposed rocks and provide new insights into the geological evolution of eastern Sonora Cretaceous rocks. The detrital zircon age populations determined for the Cañada de Tarachi and El Potrero Grande units contain distinctive Precambrian, Paleozoic, and Mesozoic zircon ages that provide probable source areas which are discussed in detail constraining the tectonic evolution of the region. Comparison of these knew ages with published data suggests that the source terranes, that supplied zircons to the Arivechi basin, correlate with Proterozoic, Paleozoic and Mesozoic domains in southern California and Baja California, northern Sonora, southern Arizona and eastern Chihuahua. The provenance variation is vital to constrain the source of the Cretaceous rocks in eastern Sonora and support a better understanding of the Permo-Triassic Cordilleran Magmatic Arc in the southwestern North America.

  18. The stretching amplitude and thermal regime of the lithosphere in the nonvolcanic passive margin of Antarctica in the Mawson Sea region

    NASA Astrophysics Data System (ADS)

    Galushkin, Yu. I.; Leitchenkov, G. L.; Guseva, Yu. B.; Dubinin, E. P.

    2018-01-01

    The burial history and thermal evolution of the lithosphere within the passive nonvolcanic Antarctic margin in the region of the Mawson Sea are numerically reconstructed for the margin areas along the seismic profile 5909 with the use of the GALO basin modeling system. The amplitudes of the lithosphere stretching at the different stages of continental rifting which took place from 160 to 90 Ma ago are calculated from the geophysical estimates of the thickness of the consolidated crust and the tectonic analysis of the variations in the thickness of the sedimentary cover and sea depths during the evolution of the basin. It is hypothesized that the formation of the recent sedimentary section sequence in the studied region of the Antarctic margin began 140 Ma ago on a basement that was thinned by a factor of 1.6 to 4.5 during the first episode of margin stretching (160-140 Ma) under a fairly high heat flux. The reconstruction of the thermal regime of the lithosphere has shown that the mantle rocks could occur within the temperature interval of serpentinization and simultaneously within the time interval of lithospheric stretching (-160 < t <-90 Ma) only within separate segments of profile 5909 in the Mawson Sea. The calculations of the rock strength distribution with depth by the example of the section of pseudowell 4 have shown that a significant part of the crust and uppermost mantle fall here in the region of brittle deformations in the most recent period of lithosphere stretching (-104 to-90 Ma ago). The younger basin segments of profile 5909 in the region of pseudowells 5 and 6 are characterized by a high heat flux, and the formation of through-thickness brittle fractures in these zones is less probable. However, serpentinization could take place in these areas as in the other margin segments at the stage of presedimentation ultra slow basement stretching.

  19. Revealing the long-term landscape evolution of the South Atlantic passive continental margin, Brazil and Namibia, by thermokinematic numerical modeling using the software code Pecube.

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Glasmacher, Ulrich Anton; Hackspacher, Peter

    2015-04-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE1,2 and FastScape3). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 2. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 3. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.

  20. Clinical Effectiveness of a Resin-modified Glass Ionomer Cement and a Mild One-step Self-etch Adhesive Applied Actively and Passively in Noncarious Cervical Lesions: An 18-Month Clinical Trial.

    PubMed

    Jassal, M; Mittal, S; Tewari, S

    2018-05-21

    To evaluate the clinical effectiveness of two methods of application of a mild one-step self-etch adhesive and composite resin as compared with a resin-modified glass ionomer cement (RMGIC) control restoration in noncarious cervical lesions (NCCLs). A total of 294 restorations were placed in 56 patients, 98 in each one of the following groups: 1) G-Bond active application combined with Solare-X composite resin (A-1SEA), 2) G-Bond passive application combined with Solare-X composite resin (P-1SEA), and 3) GC II LC RMGIC. The restorations were evaluated at baseline and after six, 12, and 18 months according to the FDI criteria for fractures/retention, marginal adaptation, marginal staining, postoperative sensitivity, and secondary caries. Cumulative failure rates were calculated for each criterion at each recall period. The effect of adhesive, method of application, and recall period were assessed. The Kruskal-Wallis test for intergroup comparison and Friedman and Wilcoxon signed ranks tests for intragroup comparison were used for each criterion ( α=0.05). The retention rates at 18 months were 93.26% for the A-1SEA group, 86.21% for the P-1SEA group, and 90.91% for the RMGIC group. The active application improved the retention rates compared with the passive application of mild one-step self-etch adhesive; however, no statistically significant difference was observed between the groups. Marginal staining was observed in 13 restorations (1 in A-1SEA, 4 in P-1SEA, and 8 in RMGIC) with no significant difference between the groups. The RMGIC group showed a significant increase in marginal staining at 12 and 18 months from the baseline. There was no significant difference between the groups for marginal adaptation, secondary caries, or postoperative sensitivity. Within the limitations of the study, we can conclude that mild one-step self-etch adhesive followed by a resin composite restoration can be an alternative to RMGIC with similar retention and improved esthetics in restoration of NCCLs. Agitation could possibly benefit the clinical performance of mild one-step self-etch adhesives, but this study did not confirm that the observed benefit was statistically significant.

  1. Methodology Development for Passive Component Reliability Modeling in a Multi-Physics Simulation Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldemir, Tunc; Denning, Richard; Catalyurek, Umit

    Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, suchmore » as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.« less

  2. Multidisciplinary scientific program of investigation of the structure and evolution of the Demerara marginal plateau

    NASA Astrophysics Data System (ADS)

    Loncke, Lies; Basile, Christophe; Roest, Walter; Graindorge, David; Mercier de Lépinay, Marion; Klinghelhoefer, Frauke; Heuret, Arnauld; Pattier, France; Tallobre, Cedric; Lebrun, Jean-Frédéric; Poetisi, Ewald; Loubrieu, Benoît; Iguanes, Dradem, Margats Scientific Parties, Plus

    2017-04-01

    Mercier de Lépinay et al. published in 2016 an updated inventory of transform passive margins in the world. This inventory shows that those margins represent 30% of continental passive margins and a cumulative length of 16% of non-convergent margins. It also highlights the fact that many submarine plateaus prolong transform continental margins, systematically at the junction of oceanic domains of different ages. In the world, we identified twenty of those continental submarine plateaus (Falklands, Voring, Demerara, Tasman, etc). Those marginal plateaus systematically experiment two phases of deformation: a first extensional phase and a second transform phase that allows the individualization of those submarine reliefs appearing on bathymetry as seaward continental-like salients. The understanding of the origin, nature, evolution of those marginal plateaus has many scientific and economic issues. The Demerara marginal plateau located off French Guiana and Surinam belongs to this category of submarine provinces. The French part of this plateau has been the locus of a first investigation in 2003 in the framework of the GUYAPLAC cruise dedicated to support French submissions about extension of the limit of the continental shelf beyond 200 nautical miles. This cruise was the starting point of a scientific program dedicated to geological investigations of the Demerara plateau that was sustained by different cruises and collaborations (1) IGUANES (2013) that completed the mapping of this plateau including off Surinam, allowed to better understand the segmentation of the Northern edge of this plateau, and to evidence the combined importance of contourite and mass-wasting processes in the recent sedimentary evolution of this domain, (2) Collaboration with TOTAL (Mercier de Lépinay's PhD thesis) that allowed to better qualify the two main phases of structural evolution of the plateau respectively during Jurassic times for its Western border, Cretaceous times for its Northern and Eastern border (2) DRADEM (2016) (see poster session) that better mapped the continental slope domain of the transform margin north of the Demerara plateau and was dedicated to the dredging of rocks outcropping on the continental slope, suspected to be Cretaceous in age and older, (3) MARGATS (2016) (see poster session) that was dedicated to the better understanding of the internal structure of the plateau and its different margins using multi-channels seismic and refraction methods. The combination of all those experiments allow us to paint an integrated portrait of the Demerara marginal plateau - that may be very useful in understanding the processes involved (1) in the individualization of such plateaus (volcanism, heritages, kinematics, …) (2) in their evolution (subsidence, mass-wasting processes, domains of deep-sea current acceleration). In the future, those scientific advances may allow to better define the natural resources associated with such marginal domains.

  3. From rifting to orogeny; using sediments to unlock the secrets of the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Vincent, Stephen; Guo, Li; Lavrishchev, Vladimir; Maynard, James; Harland, Melise

    2017-04-01

    The western Greater Caucasus formed by the tectonic inversion of the western strand of the Greater Caucasus Basin, a Mesozoic rift that opened at the southern margin of Laurasia. Facies analysis has identified fault-bounded regions of basinal, turbiditic and hemipelagic sediments. These are flanked by areas of marginal, shallow marine sediments to the north and south. Subsidence analysis derived from lithology, thickness and palaeowater depth data indicates that the main phase of rifting occurred during the Aalenian to Bajocian synchronous with that in the eastern Alborz and, possibly, the South Caspian Basin. Secondary episodes of subsidence during the late Tithonian to Berriasian and Hauterivian to early Aptian are tentatively linked to initial rifting within the western, and possibly eastern, Black Sea, and during the late Campanian to Danian to the opening of the eastern Black Sea. Initial uplift, subaerial exposure and sediment derivation from the western Greater Caucasus occurred at the Eocene-Oligocene transition. Oligocene and younger sediments on the southern margin of the former basin were derived from the inverting basin and uplifted parts of its northern margin, indicating that the western Greater Caucasus Basin had closed by this time. The previous rift flanks were converted to flexural basins that accumulated thick, typically hemipelagic and turbiditic sediments in the early, underfilled, stage of their development. A predominance of pollen representing a montane forest environment (dominated by Pinacean pollen) within these sediments suggests that the uplifting Caucasian hinterland had a paleoaltitude of around 2 km from Early Oligocene time. The closure of the western Greater Caucasus Basin and significant uplift of the range at c. 34 Ma is earlier than stated in many studies and needs to be incorporated into geodynamic models for the Arabia-Eurasia region.

  4. Evidence for an east-west regional gravity trend in northern Tunisia: Insight into the structural evolution of northern Tunisian Atlas

    NASA Astrophysics Data System (ADS)

    Jallouli, Chokri; Mogren, Saad; Mickus, Kevin; Turki, Mohamed Moncef

    2013-11-01

    The Atlas orogeny in northern Algeria and Tunisia led to the destruction of Tethys oceanic lithosphere and cumulated in a collision of microplates rifted off the European margin with the North African continental margin. The location of the boundary between African plate and Kabylian microplate is expressed in northern Algeria by a crustal wedge with double vergence of thrust sheets, whereas in northern Tunisia the geologic environment is more complex and the location of the plate boundary is ambiguous. In this study, we analyzed gravity data to constrain the crustal structure along the northern margin of Tunisia. The analysis includes a separation of regional and residual gravity anomalies and the application of gradient operators to locate density contrast boundaries. The horizontal gradient magnitude and directional gradient highlight a prominent regional E-W gravity gradient in the northern Tunisian Atlas interpreted as a deep fault (active since at least the Early Mesozoic) having a variable kinematic activity depending on the tectonic regime in the region. The main E-W gravity gradient separates two blocks having different gravitational and seismic responses. The southern block has numerous gravity lineaments trending in different directions implying several density variations within the crust, whereas the northern block shows a long-wavelength negative gravity anomaly with a few lineaments. Taking into account the geologic context of the Western Mediterranean region, we consider the E-W prominent feature as the boundary between African plate and Kabylian microplate in northern Tunisia that rifted off Europe. This hypothesis fits most previous geological and geophysical studies and has an important impact on the petroleum and mineral resource prospection as these two blocks were separated by an ocean and they did not belong to the same margin.

  5. Distinct iron isotopic signatures and supply from marine sediment dissolution.

    PubMed

    Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.

  6. Distinct iron isotopic signatures and supply from marine sediment dissolution

    PubMed Central

    Homoky, William B.; John, Seth G.; Conway, Tim M.; Mills, Rachel A.

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from ‘non-reductive’ dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean. PMID:23868399

  7. Seismic velocity structures of the transitional crust across the northeastern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xiaoli, W.; Li, C. F.

    2017-12-01

    A wide-angle OBS profile (OBS2016-2) was simulated by using forward method, in order to investigate the structures of the transition crust across the northeastern margin of the South China Sea (SCS). Reflection and refraction data recorded at 14 ocean bottom seismometers (OBS) along the NW-SE profile of 320 km long are integrated to image the Cenozoic (1.7-3.3 km/s) sediment and Mesozoic (4.2-5.3 km/s) sediment at northeastern Chaoshan Depression, the upper (5.5 km/s-6.3 km/s) and lower (6.4 km/s-6.9 km/s) crust successfully. The 2-D velocity-depth models are obtained by using the 2-D forward ray-tracing RayInvr software (Zelt and Smith, 1992). The initial model is established based on single channel seismic profile, the seismic phases of the 14 OBSs and the regional geologic and geophysical data. The velocity model reveals that the thickness of sediment (1.2-5.5 km) varies strongly from onshore to offshore due to the seafloor spreading of the SCS. Several relict volcanoes are identified in the upper crust (2.1-8.1 km) by single channel seismic data acquisited along the same profile. The depth of MOHO interface in the velocity model decreases seaward gradually from 26.8 to 10.8 km. Ocean-continent transition zone in the northeastern margin of the SCS is characterized by several volcanoes and igneous rocks in the upper crust.

  8. Geological history of the Cretaceous ophiolitic complexes of northwestern South America (Colombian Andes)

    NASA Astrophysics Data System (ADS)

    Bourgois, Jacques; Toussaint, Jean-François; Gonzalez, Humberto; Azema, Jacques; Calle, Bernardo; Desmet, Alain; Murcia, Luis A.; Acevedo, Alvaro P.; Parra, Eduardo; Tournon, Jean

    1987-12-01

    The Western Cordillera of Colombia was formed by intense alpine-type nappe-forming folding and thrusting. The Cretaceous (80-120 Ma B.P.) tholeiitic material of the Western Cordilleran nappes has been obducted onto the Paleozoic and Precambrian polymetamorphic micaschists and gneiss of the Central Cordillera. Near Yarumal, the Antioquia batholith (60-80 Ma B.P.) intrudes both obducted Cretaceous oceanic material and the polymetamorphic basement rock of the Central Cordillera. Therefore, nappe emplacement and obduction onto the Central Cordillera occurred during Late Senonian to Early Paleocene. The nappes travelled from northwest to southeast so that the highest unit, the Rio Calima nappe therefore has the most northwestern source, whereas the lowest units originated from a more southeastward direction. Sedimentological analysis of the volcanoclastic and sandy turbidite material from each unit suggests a marginal marine environment. During Cretaceous times the opening of this marginal sea, from now on called the "Colombia marginal basin", probably originated by detachment of a block from the South American continent related to the Farallon-South America plate convergence. In the Popayan area (southern Colombia), the Central Cordilleran basement exhibits glaucophane schist facies metamorphism. This high pressure low temperature metamorphism is of Early Cretaceous (125 Ma B.P.) age and is related to an undated metaophiolitic complex. The ophiolitic material originating from the Western Cordilleran is thrust over both the blueschist belt and the metaophiolitic complex. These data suggest that the "Occidente Colombiano" suffered at least two phases of ophiolitic obduction during Mesozoic time.

  9. Chirp seismic-reflection data from the Baltimore, Washington, and Norfolk Canyons, U.S. mid-Atlantic margin

    USGS Publications Warehouse

    Obelcz, Jeffrey B.; Brothers, Daniel S.; ten Brink, Uri S.; Chaytor, Jason D.; Worley, Charles R.; Moore, Eric M.

    2014-01-01

    A large number of high-resolution geophysical surveys between Cape Hatteras and Georges Bank have been conducted by federal, state, and academic institutions since the turn of the century. A major goal of these surveys is providing a continuous view of bathymetry and shallow stratigraphy at the shelf edge in order to assess levels of geological activity during the current sea level highstand. In 2012, chirp seismic-reflection data was collected by the U.S. Geologial Survey aboard the motor vessel Tiki XIV near three United States mid-Atlantic margin submarine canyons. These data can be used to further our understanding of passive continental margin processes during the Holocene, as well as providing valuable information regarding potential submarine geohazards.

  10. American Youth in the 1980s.

    ERIC Educational Resources Information Center

    Starr, Jerold M.

    1986-01-01

    Youth today remains marginal to the primary institutions of American life. They no longer have opportunities within the family to develop skills, exercise responsibilities, or learn adult roles. Youths spend long periods of the day segregated in schools; longer periods in passive entertainment. Alienation results in political apathy, mental…

  11. Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Sullivan, C. W.

    1986-01-01

    The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.

  12. Redox Effects on Organic Matter Storage in Coastal Sediments During the Holocene: A Biomarker/Proxy Perspective

    NASA Astrophysics Data System (ADS)

    Bianchi, Thomas S.; Schreiner, Kathryn M.; Smith, Richard W.; Burdige, David J.; Woodard, Stella; Conley, Daniel J.

    2016-06-01

    Coastal margins play a significant role in the burial of organic matter (OM) on Earth. These margins vary considerably with respect to their efficiency in OM burial and to the amounts and periodicity of their OM delivery, depending in large part on whether they are passive or active margins. In the context of global warming, these coastal regions are expected to experience higher water temperatures, changes in riverine inputs of OM, and sea level rise. Low-oxygen conditions continue to expand around the globe in estuarine regions (i.e., hypoxic zones) and shelf regions (i.e., oxygen minimum zones), which will impact the amounts and sources of OM stored in these regions. In this review, we explore how these changes are impacting the storage of OM and the preservation of sedimentary biomarkers, used as proxies to reconstruct environmental change, in coastal margins.

  13. Flexure from a superposition of sedimentary and structural loads: the Ganges-Brahamaputra Delta, the IndoBurma accretionary prism and the Shillong Massif

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Grall, C.; Seeber, L.; Betka, P. M.; Mondal, D. R.; Akhter, S. H.

    2016-12-01

    The Bengal Basin is the outcome of the superposition of the heavily-sedimented passive margin of India being overthrust both by the IndoBurma accretionary prism from the east and the Shillong Plateau from the north. In response to the India-Asia collision, the remnant ocean between the Lower Cretaceous passive margin of India and the advancing Sunda subduction system has received an immense load of Himalayan sediment. This influx has prograded the shelf edge of the passive margin 300-400 km from the Hinge Zone in the Eocene, prior to the collision, to its current position. The delta coevolved with the now up to 250-km wide accretionary prism of the IndoBurma subduction zone that overthrusts it. The newest element is the Late Pliocene-Quaternary rise of the Shillong anticlinorium on the north side of the Bengal Basin. Shillong overthrusts the Bengal Basin, forming the Sylhet Basin foredeep, and is overthrust by the prism. Shillong represents the beginning of a forward jump of the Himalayas to the Indian passive margin hinge zone as it approached within a flexural wavelength of the mountains. GPS indicates 7 mm/y of N-S convergence in eastern Shillong where total relief reaches 5 km. The superposition of overlapping tectonic elements makes it difficult to estimate flexural rigidity from the basin shape or gravity field. The flexural subsidence of the Sylhet foredeep has downwarped and buried the frontal part of the foldbelt in this region. We therefore estimate flexural rigidities using a thermomechanical model based on the sediment and crustal structure and available thermal data. Receiver functions, local S-to-P converted phases, and seismic reflection data provide constraints on the crustal structure, and on the dip of the Dauki Fault bounding Shillong. We also consider the possibility of volcanically-thickened crust in the basin due to the 90 East Ridge plume. We use both 2-D finite difference and 2-D finite element models (ADELI) to model the flexure associated with the loads through time. The observed gravity anomalies, along with seismic reflections profiles, are used to constrain the models. Flexural rigidities vary from high values in the Indian craton to low (<30 km) in the Bengal Basin. Relatively low sedimentation rates in the Sylhet Basin may be due to the interaction of the Shillong flexure and the foldbelt advance.

  14. High resolution 40AR/39AR chronostratigraphy of the Late Cretaceous El Gallo Formation, Baja California del Norte, Mexico

    NASA Astrophysics Data System (ADS)

    Renne, Paul R.; Fulford, Madeleine M.; Busby-Spera, Cathy

    1991-03-01

    Laser probe 40Ar/39Ar analyses of individual sanidine grains from four tuffs in the alluvial Late Cretaceous (Campanian) El Gallo Formation yield statistically distinct mean dates ranging from 74.87±0.05 Ma to 73.59±0.09 Ma. The exceptional precision of these dates permits calculation of statistically significant sediment accumulation rates that are much higher than passive sediment loading would cause, implying rapid tectonically induced subsidence. The dates bracket tightly the age of important dinosaur and mammalian faunas previously reported from the El Gallo Formation. The dates support an age less than 73 Ma for the Campanian/Maastrichtian stage boundary, younger than indicated by several currently used time scales. Further application of the single grain 40Ar/39Ar technique may be expected to greatly benefit stratigraphic studies of Mesozoic sedimentary basins and contribute to calibration of biostratigraphic and magnetostratigraphic time scales.

  15. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  16. Orogenic inheritance and continental breakup: Wilson Cycle-control on rift and passive margin evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Petersen, K. D.

    2016-12-01

    Rifts often develop along suture zones between previously collided continents, as part of the Wilson cycle. The North Atlantic is such an example, formed where Pangaea broke apart along Caledonian and Variscan sutures. Dipping upper mantle structures in E. Greenland and Scotland, have been interpreted as fossil subduction zones and the seismic signature indicates the presence of eclogite and serpentinite. We speculate that this orogenic material may impose a rheological control upon post-orogenic extension and we use thermo-mechanical modelling to explore such effects. Our model includes the following features: 1) Crustal thickness anomalies, 2) Eclogitised mafic crust emplaced in the mantle lithosphere, and 3) Hydrated mantle peridotite (serpentinite) formed in a pre-rift subduction setting. Our models indicate that the inherited structures control the location and the structural and magmatic evolution of the rift. Rifting of thin initial crust allows for relatively large amounts of serpentinite to be preserved within the uppermost mantle. This facilitates rapid continental breakup and serpentinite exhumation. Magmatism does not occur before continental breakup. Rifts in thicker crust preserve little or no serpentinite and thinning is more focused in the mantle lithosphere, rather than in the crust. Continental breakup is therefore preceded by magmatism. This implies that pre-rift orogenic properties may determine whether magma-poor or magma-rich conjugate margins are formed. Our models show that inherited orogenic eclogite and serpentinite are deformed and partially emplaced either as dipping structures within the lithospheric mantle or at the base of the thinned continental crust. The former is consistent with dipping sub-Moho reflectors often observed in passive margins. The latter provides an alternative interpretation of `lower crustal bodies' which are often regarded as igneous bodies. An additional implication of our models is that serpentinite, often observed seismically or exposed at the sea floor of passive margins, was formed prior to rifting in addition to syn-rift, fault-driven hydrothermal processes. Whether lower crustal and serpentinite bodies are produced previously or during rifting is of relevance for the estimation of thinning-factors of the pre-existing crust.

  17. The Continent-Ocean Transition in the Mid-Norwegian Margin: Insight From Seismic Data and the Onshore Caledonian Analogue in the Seve Nappe Complex

    NASA Astrophysics Data System (ADS)

    Abdelmalak, Mansour M.; Planke, Sverre; Andersen, Torgeir B.; Faleide, Jan Inge; Corfu, Fernando; Tegner, Christian; Myklebust, Reidun

    2015-04-01

    The continental breakup and initial seafloor spreading in the NE Atlantic was accompanied by widespread intrusive and extrusive magmatism and the formation of conjugate volcanic passive margins. These margins are characterized by the presence of seaward dipping reflectors (SDR), an intense network of mafic sheet intrusions of the continental crust and adjacent sedimentary basins and a high-velocity lower crustal body. Nevertheless many issues remain unclear regarding the structure of volcanic passive margins; in particular the transitional crust located beneath the SDR.New and reprocessed seismic reflection data on the Mid-Norwegian margin allow a better sub-basalt imaging of the transitional crust located beneath the SDR. Different high-amplitude reflections with abrupt termination and saucer shaped geometries are identified and interpreted as sill intrusions. Other near vertical and inclined reflections are interpreted as dykes or dyke swarms. We have mapped the extent of the dyke reflections along the volcanic margin. The mapping suggests that the dykes represent the main feeder system for the SDR. The identification of saucer shaped sills implies the presence of sediments in the transitional zone beneath the volcanic sequences. Onshore exposures of Precambrian basement of the eroded volcanic margin in East Greenland show that, locally, the transitional crust is highly intruded by dykes and intrusive complexes with an increasing intensity of the plumbing and dilatation of the continental crust ocean-ward. Another well exposed analogue for a continent-ocean transitional crust is located within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides. The best-preserved parts of SNC in the Pårte, Sarek, Kebnekaise, Abisko, and Indre Troms mountains are composed mainly of meta-sandstones and shales (now hornfelses) truncated typically by mafic dykes. At Sarek and Pårte, the dykes intrude the sedimentary rocks of the Favoritkammen Group, with a dyke density up to 70-80%. This complex was photographed in a regional helicopter survey and sampled for the study of the different dyke generations, their geochemistry and ages in 2014. Extending for at least 800 km within the SNC, the mafic igneous rocks most probably belonged to a volcanic system with the size of a large igneous province (LIP). This volcanic margin is suggested to have formed along the Caledonian margin of Baltica or within hyperextended continental slivers outboard of Baltica during the breakup of Rodinia. The intensity of the pre-Caledonian LIP-magmatism is comparable to that of the NE Atlantic volcanic margins. The SNC-LIP is considered to represent a potential onshore analogue to the deeper level of the Mid-Norwegian margin transitional crust, and permits direct observation, sampling and better understanding of deeper levels of magma-rich margins.

  18. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  19. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  20. Making working memory work: a meta-analysis of executive-control and working memory training in older adults.

    PubMed

    Karbach, Julia; Verhaeghen, Paul

    2014-11-01

    This meta-analysis examined the effects of process-based executive-function and working memory training (49 articles, 61 independent samples) in older adults (> 60 years). The interventions resulted in significant effects on performance on the trained task and near-transfer tasks; significant results were obtained for the net pretest-to-posttest gain relative to active and passive control groups and for the net effect at posttest relative to active and passive control groups. Far-transfer effects were smaller than near-transfer effects but were significant for the net pretest-to-posttest gain relative to passive control groups and for the net gain at posttest relative to both active and passive control groups. We detected marginally significant differences in training-induced improvements between working memory and executive-function training, but no differences between the training-induced improvements observed in older adults and younger adults, between the benefits associated with adaptive and nonadaptive training, or between the effects in active and passive control conditions. Gains did not vary with total training time. © The Author(s) 2014.

  1. Norwegian remote sensing experiment in a marginal ice zone

    USGS Publications Warehouse

    Farrelly, B.; Johannessen, J.A.; Svendsen, E.; Kloster, K.; Horjen, I.; Matzler, C.; Crawford, J.; Harrington, R.; Jones, L.; Swift, C.; Delnore, V.E.; Cavalieri, D.; Gloersen, P.; Hsiao, S.V.; Shemdin, O.H.; Thompson, T.W.; Ramseier, R.O.; Johannessen, O.M.; Campbell, W.J.

    1983-01-01

    The Norwegian Remote Sensing Experiment in the marginal ice zone north of Svalbard took place in fall 1979. Coordinated passive and active microwave measurements were obtained from shipborne, airborne, and satellite instruments together with in situ observations. The obtained spectra of emissivity (frequency range, 5 to 100 gigahertz) should improve identification of ice types and estimates of ice concentration. Mesoscale features along the ice edge were revealed by a 1.215-gigahertz synthetic aperture radar. Ice edge location by the Nimbus 7 scanning multichannel microwave radiometer was shown to be accurate to within 10 kilometers.

  2. The Lower Triassic Sorkh Shale Formation of the Tabas Block, east central Iran: Succesion of a failed-rift basin at the Paleotethys margin

    USGS Publications Warehouse

    Lasemi, Y.; Ghomashi, M.; Amin-Rasouli, H.; Kheradmand, A.

    2008-01-01

    The Lower Triassic Sorkh Shale Formation is a dominantly red colored marginal marine succession deposited in the north-south trending Tabas Basin of east central Iran. It is correlated with the unconformity-bounded lower limestone member of the Elika Formation of the Alborz Mountains of northern Iran. The Sorkh Shale is bounded by the pre-Triassic and post-Lower Triassic interregional unconformities and consists mainly of carbonates, sandstones, and evaporites with shale being a minor constituent. Detailed facies analysis of the Sorkh Shale Formation resulted in recognition of several genetically linked peritidal facies that are grouped into restricted subtidal, carbonate tidal flat, siliciclastic tidal flat, coastal plain and continental evaporite facies associations. These were deposited in a low energy, storm-dominated inner-ramp setting with a very gentle slope that fringed the Tabas Block of east central Iran and passed northward (present-day coordinates) into deeper water facies of the Paleotethys passive margin of northern Cimmerian Continent. Numerous carbonate storm beds containing well-rounded intraclasts, ooids and bioclasts of mixed fauna are present in the Sorkh Shale Formation of the northern Tabas Basin. The constituents of the storm beds are absent in the fair weather peritidal facies of the Sorkh Shale Formation, but are present throughout the lower limestone member of the Elika Formation. The Tabas Block, a part of the Cimmerian continent in east central Iran, is a rift basin that developed during Early Ordovician-Silurian Paleotethys rifting. Facies and sequence stratigraphic analyses of the Sorkh Shale Formation has revealed additional evidence supporting the Tabas Block as a failed rift basin related to the Paleotethys passive margin. Absence of constituents of the storm beds in the fair weather peritidal facies of the Sorkh Shale Formation, presence of the constituents of the storm beds in the fair weather facies of the Elika Formation (the Sorkh Shale equivalent in the Alborz Paleotethys margin) and southward paleocurrent directions of carbonate storm beds suggest that the low topographic gradient of the ramp in the Tabas failed rift basin was facing the Paleotethys Ocean, where the storms were generated. In addition, northward paleocurrent directions of the fair weather facies and northward increase in carbonate content of the Sorkh Shale sequence further indicate that the Tabas Basin was tectonically a part of the Paleotethys passive margin. It is apparent that relative sea level, basin geometry and tectonic movements along the bounding faults played significant roles during deposition of the Sorkh Shale Formation by controlling accommodation space and facies variations along the Tabas failed rift basin.

  3. Preliminary geologic map of the Winchester 7.5' quadrangle, Riverside County, California

    USGS Publications Warehouse

    Morton, Douglas M.

    2003-01-01

    The Winchester quadrangle is located in the northern part of the Peninsular Ranges Province within the central part of the Perris block, a relatively stable, rectangular in plan view, area located between the Elsinore and San Jacinto fault zones (see location map). The quadrangle is underlain by Cretaceous and older basement rocks. Cretaceous plutonic rocks are part of the composite Peninsular Ranges batholith, which indicates wide variety of granitic rocks, ranging from granite to gabbro. Parts of three major plutonic complexes are within the quadrangle, the Lakeview Mountains pluton, the Domenigoni Valley pluton and the Paloma Valley ring complex. In the northern part of the quadrangle is the southern part of the Lakeview Mountains pluton, a large composite body, most of which lies in the quadrangle to the north. In the center part of the quadrangle is the eastern part of the Domenigoni Valley pluton, which consists of massive biotite-hornblende granodiorite and tonalite; some tonalite in the southern part of the pluton has a relatively pronounced foliation produced by oriented biotite and hornblende. Common to abundant equant-shaped, mafic inclusions occur through out the pluton except in the outermost part where inclusions are absent. The pluton was passively emplaced by piecemeal stoping of a variety of older rocks and the eastern contact is well exposed in the quadrangle. Associated with the Domenigoni Valley pluton is a swarm of latite dikes; the majority of these dikes occur in the Winchester quadrangle, but they extend into the Romoland quadrangle to the west. The latite dikes intrude both the pluton and adjacent metamorphic rocks, most are foliated, and most have a well developed lineation defined by oriented biotite and/or hornblende crystals. Dikes intruding the pluton were emplaced in northwest striking joints; and dikes intruding the metamorphic rocks were emplaced along foliation planes. In the eastern part of the quadrangle a Cretaceous age suture juxtaposes low-metamorphic grade Mesozoic rocks against high-metamorphic grade gneissic-textured Mesozoic rocks. Juxtaposition occurred when the high-metamorphic grade rocks were at upper amphibolite grade temperatures, and produced a steep thermal gradient in the low-metamorphic grade Mesozoic rocks. Age of suturing and attendant metamorphism, based on metamorphic mineral ages, is about 100 Ma (L. Snee, personal communication, 2002). The suture zone appears to vary in thickness, and includes within it a number of metadunite bodies and related rocks. Prebatholithic rocks of Mesozoic age include a wide variety of sedimentary rocks of greenschist or lower metamorphic grade, in the western and central part of the quadrangle, and upper amphibolite grade near the eastern edge of the quadrangle. The metamorphic grade increases from greenschist to upper amphibolite grade over a distance of less than two miles; andalusite and sillimanite isograds are closely spaced near the suture. Metamorphism was Buchan type of relatively high temperature and relatively low pressure (Schwarcz, 1969). Common lithologies of the low metamorphic grade suite include phyllite, lithic greywacke, impure quartzite, meta-arkose, and interlayered quartzite and phyllite. Most of the layering and foliation in the metamorphic rocks is the result of intense structural transposition. Relic bedding appears to be restricted to very local occurrences in hinges of slip folds. The upper amphibolite grade, gneissic-textured Mesozoic rocks consist of sillimanite-biotite gneiss, black amphibolite, and impure quartzite. Anatectic gneiss containing igneous textured segregations of quartz and feldspar is commonly inter leaved with biotite gneiss.

  4. Structural evidence for northeastward movement on the Chocolate Mountains thrust, southeasternmost Calfornia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-11-10

    The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less

  5. Hydrocarbons in New Guinea, controlled by basement fabric, Mesozoic extension and Tertiary convergent margin tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.

    1996-01-01

    Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of [approx]139[degrees]E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less

  6. Hydrocarbons in New Guinea, controlled by basement fabric, Mesozoic extension and Tertiary convergent margin tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.

    1996-12-31

    Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of {approx}139{degrees}E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less

  7. Mapping rift domains within an inverted hyperextended rift system: The role of rift inheritance in controlling the present-day structure of the North Iberian margin (Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Cadenas, Patricia; Fernández-Viejo, Gabriela; Álvarez-Pulgar, Javier; Tugend, Julie; Manatschal, Gianreto; Minshull, Tim

    2017-04-01

    This study presents a new rift domain map in the central and western North Iberian margin, in the southern Bay of Biscay. This margin was structured during polyphase Triassic to Lower Cretaceous rifting events which led to hyperextension and exhumation and the formation of oceanic crust during a short-lived seafloor spreading period. Extension was halted due to the Alpine convergence between the Iberian and the European plates which led to the formation of the Cantabrian-Pyrenean orogen during the Cenozoic. In the Bay of Biscay, while the northern Biscay margin was slightly inverted, the North Iberian margin, which is at present-day part of the western branch of the Alpine belt together with the Cantabrian Mountains, exhibits several degrees of compressional reactivation. This makes this area a natural laboratory to study the influence of rift inheritance into the inversion of a passive margin. Relying on the interpretation of geological and geophysical data and the integration of wide-angle results, we have mapped five rift domains, corresponding to the proximal, necking, hyperthinned, exhumed mantle, and oceanic domains. One of the main outcomes of this work is the identification of the Asturian Basin as part of a hyperthinned domain bounded to the north by the Le Danois basement high. We interpret Le Danois High as a rift-related crustal block inherited from the margin structure. Our results suggest that the inherited rift architecture controlled the subsequent compressional reactivation. The hyperextended domains within the abyssal plain focused most of the compression resulting in the development of an accretionary wedge and the underthrusting of part of these distal domains beneath the margin. The presence of the Le Danois continental block added complexity, conditioning the inversion undergone by the Asturian Basin. This residual block of less thinned continental crust acted as a local buttress hampering further compressional reactivation within the platform and the inner basin, which were only slightly inverted and uplifted passively due to the underthrusting of the hyperextended domains beneath Le Danois High. The new inverted rift domain map adds some constraints to support kinematic reconstructions and confine palinspatic restorations of the inverted rifted margin. Furthermore, it provides more insights to comprehend the strain partitioning within the Bay of Biscay-Pyrenean inverted hyperextended rift and the broad structural variability observed in such a reduced area, arising from the strong segmentation and the obliquity between the NW-SE and WNW-ESE trending rift structures and the E-W compressional front.

  8. Two possibilities for New Siberian Islands terrane tectonic history during the Early Paleozoic based on paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Metelkin, Dmitry V.; Chernova, Anna I.; Vernikovsky, Valery A.; Matushkin, Nikolay Yu.

    2017-04-01

    The New Siberian Islands (NSI), located in the East Siberian Sea in the junction region of various structural elements, are a key target for deciphering the tectonic evolution of the Eastern Arctic. In recent years, we went on several expeditions and gathered an extensive geological material for this territory. Among other things, we could prove that the basement of the De Long and Anjou archipelagos structures is Precambrian and the overlying Paleozoic sections formed within the same terrane. The form of the boundaries of the NSI terrane are actively debated and are probably continued from the Lyakhovsky islands in the south-west to the southern parts of the submerged Mendeleev Ridge, for which there is increasing evidence of continental crust. Today there are several models that interpret the Paleozoic-Mesozoic tectonic history and structural affiliation of the NSI terrane. Some propose that the Paleozoic sedimentary section formed in a passive margin setting of the Siberian paleocontinent. Others compare its history with marginal basins of the Baltica and Laurentia continents or consider the NSI terrane as an element of the Chukotka-Alaska microplate. These models are mainly based on results of paleobiogeographical and lithological-facies analyses, including explanations of probable sources for detrital zircons. Our paleomagnetic research on sedimentary, volcanogenic-sedimentary and igneous rocks of the Anjou (Kotelny and Bel'kovsky islands) and De Long (Bennett, Jeannette and Henrietta islands) archipelagos let us calculate an apparent polar wander path for the early Paleozoic interval of geological history, which allows us to conclude that the NSI terrane could not have been a part of the continental plates listed above, but rather had active tectonic boundaries with them. Our paleomagnetic data indicate that the NSI terrane drifted slowly and steadily in the tropical and subtropical regions no higher than 40 degrees. However, the main uncertainty for the tectonic interpretation of these data is related to not knowing the true polarity and therefore the geographic hemisphere in which the terrane was located during the recording of the paleomagnetic signal. Consequently, we presented two possible tectonic histories for the Paleozoic of the NSI terrane, calculated and discussed the appropriate global reconstructions describing the paleogeography as well as probable mutual position and drift kinematics of the Eastern Arctic terranes. This study is supported by the Russian Science Foundation, grant No. 14-37-00030 and the Russian Foundation for Basic Research, grant No. 15-05-01428.

  9. Long-Term Geochemical and Geodynamic Segmentation of the Paleo-Pacific Margin of Gondwana: Insight From the Antarctic and Adjacent Sectors

    NASA Astrophysics Data System (ADS)

    Nelson, D. A.; Cottle, J. M.

    2017-12-01

    Combined zircon geochemistry and geochronology of Mesozoic volcaniclastic sediments of the central Transantarctic Mountains, Antarctica, yield a comprehensive record of both the timing and geochemical evolution of the magmatic arc along the Antarctic sector of the paleo-Pacific margin of Gondwana. Zircon age populations at 266-183 Ma, 367-328 Ma, and 550-490 Ma correspond to episodic arc activity from the Ediacaran to the Jurassic. Zircon trace element geochemistry indicates a temporal shift from granitoid-dominated source(s) during Ediacaran to Early Ordovician times to mafic sources in the Devonian through Early Jurassic. Zircon initial ɛHf shifts to more radiogenic Hf isotope compositions following the Ross Orogeny and is inferred to reflect juvenile crustal growth within an extensional arc system during progressive slab rollback. These new ages and Hf isotopic record are similar to those from the Australian sector, indicating that these regions constituted an 3,000 km laterally continuous extensional arc from at least the Carboniferous to the Permian. Conversely, the South American sector records enriched zircon Hf isotopic compositions and compressional/advancing arc tectonics during the same time period. Our new data constrain the location of this profound along-arc geochemical and geodynamic "switch" to the vicinity of the Thurston Island block of West Antarctica.

  10. Collisional emplacement history of the Naga-Andaman ophiolites and the position of the eastern Indian suture

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2007-02-01

    Dismembered late Mesozoic ophiolites occur in two parallel belts along the eastern margin of the Indian Plate. The Eastern Belt, closely following the magmatic arc of the Central Burma Basin, coincides with a zone of high gravity. It is considered to mark a zone of steeply dipping mafic-ultramafic rocks and continental metamorphic rocks, which are the locus of two closely juxtaposed sutures. In contrast, the Western Belt, which follows the eastern margin of the Indo-Burma Range and the Andaman outer-island-arc, broadly follows a zone of negative gravity anomalies. Here the ophiolites occur mainly as rootless subhorizontal bodies overlying Eocene-Oligocene flyschoid sediments. Two sets of ophiolites that were accreted during the Early Cretaceous and mid-Eocene are juxtaposed in this belt. These are inferred to be westward propagated nappes from the Eastern Belt, emplaced during the late Oligocene collision between the Burmese and Indo-Burma-Andaman microcontinents. Ophiolite occurrences in the Andaman Islands belong to the Western Belt and are generally interpreted as upthrust oceanic crust, accreted due to prolonged subduction activity to the west of the island arc. This phase of subduction began only in the late Miocene and thus could not have produced the ophiolitic rocks, which were accreted in the late Early Eocene.

  11. Rodinia: Supercontinent's poster child or problem child?

    NASA Astrophysics Data System (ADS)

    Cawood, Peter; Hawkesworth, Chris

    2014-05-01

    Earth's rock record extending from 1.7 to 0.75 Ga, that period encompassing the entire Rodinian supercontinent cycle and the latter part of Nuna cycle, and corresponding with Earth's Middle Age, is characterized by environmental, evolutionary and lithospheric stability that contrasts with the dramatic changes in preceding and succeeding eras. The period is marked by a paucity of passive margins, an absence of a significant Sr anomaly in the paleoseawater record or in the epsilon Hf(t) in detrital zircon, a lack of orogenic gold and volcanic-hosted massive sulfide deposits, and an absence of glacial deposits and of iron formations. In contrast, anorthosites and kindred bodies are well developed and major pulses of Mo and Cu mineralization, including the world's largest examples of these deposits, are features of this period. These trends are attributed to the combined effects of lithospheric behavior related to secular cooling of the mantle and a relatively stable continental assemblage that was initiated during assembly of the Nuna supercontinent by ~1.7 Ga and continued until breakup of its closely related successor, Rodinia, around 0.75 Ga. The overall low abundance of passive margins within this timeframe is consistent with a stable continental configuration, which also provided a framework for environmental and evolutionary stability. A series of convergent margin accretionary orogens developed along the margin of the supercontinent as evidenced by rock sequences preserved in dispersed fragments in Australia, Antarctica, Amazonia, Baltica and Laurentia. Abundant anorthosites and related rocks developed inboard of the plate margin. Their temporal distribution appears to link with the secular cooling of the mantle in which the overlying continental lithosphere was then strong enough to be thickened, during either low angle subduction or post-subduction collision, and to support the emplacement of large plutons into the crust, yet the underlying mantle was still warm enough to result in widespread melting of the lower thickened crust.

  12. Spatial variations in fluvial incision across the eastern margin of Tibet reveal locus of deformation in the deep crust

    NASA Astrophysics Data System (ADS)

    Kirby, Eric

    2017-04-01

    The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing and vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here I revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (10^4-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, I employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, I present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace formation and abandonment based on radiocarbon and OSL dating of fluvial deposits reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since at least 80 ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is 80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.

  13. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2017-08-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia Palaeo-uplift also was developed in the Early Permian to Middle Triassic (277-236 Ma), related to the final closure of the Paleo-Asian Ocean. Furthermore, we advocate that the tectonic setting of Inner Mongolia Palaeo-uplift probably belonged to the plate marginal orogenic belt during Early Permian-Middle Triassic.

  14. Spatial variations in fluvial incision across the eastern margin of Tibet reveal locus of thickening in the deep crust

    NASA Astrophysics Data System (ADS)

    Kirby, Eric; Zhang, Huiping; Chen, Jie

    2016-04-01

    The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing an vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here we revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (104-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, we employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, we present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace tread deposits based on radiocarbon and OSL samples reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since ca. 80ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is ˜80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.

  15. Geochronological and sedimentological evidences of Panyangshan foreland basin for tectonic control on the Late Paleozoic plate marginal orogenic belt along the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Li, Jialiang; Zhou, Zhiguang; He, Yingfu; Wang, Guosheng; Wu, Chen; Liu, Changfeng; Yao, Guang; Xu, Wentao; Zhao, Xiaoqi; Dai, Pengfei

    2018-06-01

    There is a wide support that the Inner Mongolia Palaeo-uplift on the northern margin of the North China Craton has undergone an uplifting history. However, when and how did the uplift occurred keeps controversial. Extensive field-based structural, metamorphic, geochemical, geochronological and geophysical investigations on the Inner Mongolia Palaeo-uplift, which suggested that the Inner Mongolia Palaeo-uplift was an uplifted region since the Early Precambrian or range from Late Carboniferous-Early Jurassic. The geochemical characteristics of the Late Paleozoic to Early Mesozoic intrusive rocks indicated that the Inner Mongolia Palaeo-uplift was an Andean-type continental margin that is the extensional tectonic setting. To address the spatial and temporal development of the Inner Mongolia Palaeo-uplift, we have carried out provenance analysis of Permian sedimentary rocks which collected from the Panyangshan basin along the northern margin of the North China Craton. The QFL diagram revealed a dissected arc-recycled orogenic tectonic setting. Moreover, the framework grains are abundant with feldspar (36-50%), indicating the short transport distance and unstable tectonic setting. Detrital zircon U-Pb analysis ascertained possible provenance information: the Precambrian basement ( 2490 and 1840 Ma) and continental arc magmatic action ( 279 and 295 Ma) along the northern margin of the North China Craton. The projection in rose diagrams of the mean palaeocurrent direction, revealing the SSW and SSE palaeoflow direction, also shows the provenance of the Panyangshan basin sources mainly from the Inner Mongolia Palaeo-uplift. The andesite overlying the Naobaogou Formation has yielded U-Pb age of 277.3 ± 1.4 Ma. The additional dioritic porphyry dike intruded the Naobaogou and Laowopu Formations, which has an emplacement age of 236 ± 1 Ma. The above data identify that the basin formed ranges from Early Permian to Middle Triassic (277-236 Ma). Accordingly, the Inner Mongolia Palaeo-uplift also was developed in the Early Permian to Middle Triassic (277-236 Ma), related to the final closure of the Paleo-Asian Ocean. Furthermore, we advocate that the tectonic setting of Inner Mongolia Palaeo-uplift probably belonged to the plate marginal orogenic belt during Early Permian-Middle Triassic.

  16. Something's Wrong Here and It's Not Me: Challenging the Dilemmas that Block Girls' Success.

    ERIC Educational Resources Information Center

    Bell, Lee Anne

    1989-01-01

    A group of high-potential girls in grades three-six met with researchers to discuss internal barriers to female achievement. Dilemmas identified as blocking girls' success in school included: smart versus social, silence versus bragging, failure versus perfection, media beauty versus marginality, passive versus aggressive, conforming versus being…

  17. Structure and evolution of the NE Atlantic conjugate margins off Norway and Greenland (Invited)

    NASA Astrophysics Data System (ADS)

    Faleide, J.; Planke, S.; Theissen-Krah, S.; Abdelmalak, M.; Zastrozhnov, D.; Tsikalas, F.; Breivik, A. J.; Torsvik, T. H.; Gaina, C.; Schmid, D. W.; Myklebust, R.; Mjelde, R.

    2013-12-01

    The continental margins off Norway and NE Greenland evolved in response to the Cenozoic opening of the NE Atlantic. The margins exhibit a distinct along-margin segmentation reflecting structural inheritance extending back to a complex pre-breakup geological history. The sedimentary basins at the conjugate margins developed as a result of multiple phases of post-Caledonian rifting from Late Paleozoic time to final NE Atlantic breakup at the Paleocene-Eocene transition. The >200 million years of repeated extension caused comprehensive crustal thinning and formation of deep sedimentary basins. The main rift phases span the following time intervals: Late Permian, late Middle Jurassic-earliest Cretaceous, Early-mid Cretaceous and Late Cretaceous-Paleocene. The late Mesozoic-early Cenozoic rifting was related to the northward propagation of North Atlantic sea floor spreading, but also linked to important tectonic events in the Arctic. The pre-drift extension is quantified based on observed geometries of crustal thinning and stretching factors derived from tectonic modeling. The total (cumulative) pre-drift extension amounts to in the order of 300 km which correlates well with estimates from plate reconstructions based on paleomagnetic data. Final lithospheric breakup at the Paleocene-Eocene transition culminated in a 3-6 m.y. period of massive magmatic activity during breakup and onset of early sea-floor spreading, forming a part of the North Atlantic Volcanic Province. At the outer parts of the conjugate margins, the lavas form characteristic seaward dipping reflector sequences and lava deltas that drilling has demonstrated to be subaerially and/or neritically erupted basalts. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower-crustal levels. Maximum igneous crustal thickness of about 18 km is found across the outer Vøring Plateau on the Norwegian Margin, and lower-crustal P-wave velocities of up to 7.3 km/s are found at the bottom of the igneous crust here. The igneous crust, including the characteristic 7+ km/s lower crustal body, is even thicker on the East Greenland Margin. During the main igneous episode, sills intruded into the thick Cretaceous successions throughout the NE Atlantic margins. Strong crustal reflections can be mapped widespread on both conjugate margins. In some areas they are associated with the top of the high-velocity lower crustal body, in other areas they may represent deeply buried sedimentary sequence boundaries or moho at the base of the crust. Following breakup, the subsiding margins experienced modest sedimentation until the late Pliocene when large wedges of glacial sediments prograded into the deep ocean from uplifted areas along the continental margins. The outbuilding was probably initiated in Miocene time indicating pre-glacial tectonic uplift of Greenland, Fennoscandia and the Barents Shelf. The NE Atlantic margins also reveal evidence of widespread Cenozoic compressional deformation.

  18. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili

    2018-01-01

    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and cooling stages during 200-160 Ma, 90-120 Ma, 20-40 Ma and 10 Ma as evidenced by the apatite fission track data and the thermal history modeling. According to the regional background, we conclude that these stages are as follows, from oldest to youngest: the E-W extrusion across the entire Chinese mainland at the beginning of the Yanshanian period (200-160 Ma), the interaction among the North China, Yangtze and India plates during the Late Jurassic-Early Cretaceous, the collision between the Indian and Eurasian plates since the Paleogene, and the rapid uplift simultaneous with the formation of the Tibetan Plateau since 10 Ma.

  19. The Importance of Actualistic Source-to-Sink Sand Provenance Studies in Illuminating the Nature of Ancient Fluvial Systems From the Deep-Marine Clastic Successions They Sourced

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Parra, J. G.; Dawson, S.

    2006-12-01

    Successions of gravity-flow deposits in deep-marine fan systems have the potential to record the evolution of their fluvial source region as well as specific tectonic, climatic, eustatic and anthropogenic events. Deciphering these signals involves the description and quantification of key sediment attributes such as fan volume, the rate of sediment accumulation, the frequency of depositional events, sediment texture, and sediment composition. Sediment composition/provenance provides insight into the nature of the fluvial source, including drainage basin geology and drainage development. For example, Marsaglia et al. (1995) demonstrated a connection between source river lengthening owing to eustatic change and sand composition in Quaternary turbidite successions of the Santa Barbara Basin at Ocean Drilling Program (ODP) Site 893. In contrast, longer-term compositional trends recognized in the Mesozoic to Cenozoic rift-to-drift successions cored by various ODP legs on the North Atlantic margins are more likely associated with continental margin drainage development and fluvial system evolution (Marsaglia et al., in press). These two connections between sink and source were made possible by well-documented petrologic data sets for both modern onshore fluvial systems and older offshore deep-marine successions, but in each case different workers collected the onshore and offshore data sets. In the Waipaoa River Sedimentary System of North Island, New Zealand we have taken a different, more holistic approach, with a limited and linked group of researchers and sample data base covering the complete system. The study area is an active forearc margin characterized by uplifted and deformed sedimentary successions and periodic input of arc-derived ash. Recently, the modern onshore system has been thoroughly documented via studies of the petrology of outcropping Mesozoic to Cenozoic units, fluvial terrace deposits, and modern fluvial sediments (e.g., James et al., in press). Now we are building on that data set and moving from source-to-sink to trace sandy sediment through the system out onto the shelf and slope where it has been encountered in shallow cores. Lessons learned onshore, such as a distinct compositional dependence on grain size and the relationships of bedrock geology to certain sand grain types, also apply to these offshore core samples. Many of the sandy intervals are largely composed of reworked tephra from Taupo eruptions, whereas quartz and feldspar dominate finer sand samples. Lithic-dominated sands are less common and coarser grained. Isolated greywacke gravel clasts indicate that at some point coarse sediment "leaked" into the basin from the south. The volumetric importance of this extrabasinal input can be assessed by looking at the types and proportions of lithic fragments within the finer sand fraction.

  20. Gold deposits of the northern margin of the North China craton: Multiple late Paleozoic-Mesozoic mineralizing events

    USGS Publications Warehouse

    Hart, C.J.R.; Goldfarb, R.J.; Qiu, Yumin; Snee, L.; Miller, L.D.; Miller, M.L.

    2002-01-01

    The northern margin of the North China craton is well-endowed with lode gold deposits hosting a resource of approximately 900 tonnes (t) of gold. The ???1,500-km-long region is characterized by east-trending blocks of metamorphosed Archean and Proterozoic strata that were episodically uplifted during Variscan, Indosinian, and Yanshanian deformational and magmatic events. At least 12 gold deposits from the Daqinshan, Yan-Liao (includes the Zhangjiakou, Yanshan, and Chifeng gold districts), and Changbaishan gold provinces contain resources of 20-100 t Au each. Most deposits are hosted in uplifted blocks of Precambrian metamorphic rocks, although felsic Paleozoic and Mesozoic plutons are typically proximal and host ???30% of the deposits. The lodes are characterized by sulfide-poor quartz veins in brittle structures with low base metal values and high Au:Ag ratios. Although phyllic alteration is most common, intensive alkali feldspar metasomatism characterizes the Wulashan, Dongping, and Zhongshangou deposits, but is apparently coeval with Variscan alkalic magmatism only at Wulashan. Stepwise 40Ar-39Ar geochronology on 16 samples from gangue and alteration phases, combined with unpublished SHRIMP U-Pb dates on associated granitoids, suggest that gold mineralizing events occured during Variscan, Indosinian, and Yanshanian orogenies at circa 350, 250, 200, 180, 150, and 129 Ma. However, widespread Permo-Triassic (???250 Ma) and Early Jurassic (???180 Ma) thermal events caused variable resetting of most of the white mica and K-feldspar argon spectra, as well as previously reported K-Ar determinations. Compiled and new stable isotope and fluid inclusion data show that most ??18O values for ore-stage veins range from 8 to 14???, indicating a fluid in equilibrium with the Precambrian metamorphic basement rocks; ??D values from fluid inclysions range widely from -64 to -154???, which is indicative of a local meteoric component in some veins; and highly variable ??34S data (+ 7 to -17???), even within individual deposits, indicate various local country-rock sources for sulfur. Fluid inclusions from all districts show variable homogenization temperatures between 240 and 400 ??C, and are consistently characterized by low salinity, H2O-CO2 ?? CH4, N2 solutions. Although the data are largely consistent with that from orogenic gold veins, intrusion-related veins and epithermal veins are also recognized. The multiple episodes of mineralization are coincident with episodic tectonic reactivations and associated magmatism along the northern margin of the North China craton. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/ 10.1007/s00126-001-0239-2.

  1. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which results in a margin stratigraphy of minor MTDs compared to the turbidite-system deposits. In contrast, the MTDs and turbidites are equally intermixed on basin floors along passive margins with a mud-rich continental slope, such as the northern Gulf of Mexico. Great earthquakes also result in characteristic seismo-turbidite lithology. Along the Cascadia margin, the number and character of multiple coarse pulses for correlative individual turbidites generally remain constant both upstream and downstream in different channel systems for 600 km along the margin. This suggests that the earthquake shaking or aftershock signature is normally preserved, for the stronger (Mw ≥ 9) Cascadia earthquakes. In contrast, the generally weaker (Mw = or <8) California earthquakes result in upstream simple fining-up turbidites in single tributary canyons and channels; however, downstream mainly stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Consequently, both downstream channel confluences and the strongest (Mw ≥ 9) great earthquakes contribute to multi-pulsed and stacked turbidites that are typical for seismo-turbidites generated by a single great earthquake. Earthquake triggering and multi-pulsed or stacked turbidites also become an alternative explanation for amalgamated turbidite beds in active tectonic margins, in addition to other classic explanations. The sedimentologic characteristics of turbidites triggered by great earthquakes along the Cascadia and northern California margins provide criteria to help distinguish seismo-turbidites in other active tectonic margins.

  2. Global tectonic reconstructions with continuously deforming and evolving rigid plates

    NASA Astrophysics Data System (ADS)

    Gurnis, Michael; Yang, Ting; Cannon, John; Turner, Mark; Williams, Simon; Flament, Nicolas; Müller, R. Dietmar

    2018-07-01

    Traditional plate reconstruction methodologies do not allow for plate deformation to be considered. Here we present software to construct and visualize global tectonic reconstructions with deforming plates within the context of rigid plates. Both deforming and rigid plates are defined by continuously evolving polygons. The deforming regions are tessellated with triangular meshes such that either strain rate or cumulative strain can be followed. The finite strain history, crustal thickness and stretching factor of points within the deformation zones are tracked as Lagrangian points. Integrating these tools within the interactive platform GPlates enables specialized users to build and refine deforming plate models and integrate them with other models in time and space. We demonstrate the integrated platform with regional reconstructions of Cenozoic western North America, the Mesozoic South American Atlantic margin, and Cenozoic southeast Asia, embedded within global reconstructions, using different data and reconstruction strategies.

  3. Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.

    2016-01-08

    The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.

  4. Seismic transect across the Lomonosov and Mendeleev Ridges: Constraints on the geological evolution of the Amerasia Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Jokat, Wilfried; Ickrath, Michele; O'Connor, John

    2013-10-01

    We report on seismic and petrological data that provide new constraints on the geological evolution of the Amerasia Basin. A seismic reflection transect across the Makarov Basin, located between the Mendeleev and Lomonosov Ridges, shows a complete undisturbed sedimentary section of Mesozoic/Cenozoic age. In contrast to the Mendeleev Ridge, the margin of the Lomonosov Ridge is wide and shows horst and graben structures. We suggest that the Mendeleev Ridge is most likely volcanic in origin and support this finding with a 40Ar/39Ar isotopic age for a tholeiitic basalt sampled from the central Alpha/Mendeleev Ridge. Seismic reflection data for the Makarov Basin show no evidence of compressional features, consistent with the Lomonosov Ridge moving as a microplate in the Cenozoic. We propose that the Amerasia Basin moved as a single tectonic plate during the opening of the Eurasia Basin.

  5. Adakites from collision-modified lithosphere

    NASA Astrophysics Data System (ADS)

    Haschke, M.; Ben-Avraham, Z.

    2005-08-01

    Adakitic melts from Papua New Guinea (PNG) show adakitic geochemical characteristics, yet their geodynamic context is unclear. Modern adakites are associated with hot-slab melting and/or remelting of orogenic mafic underplate at convergent margins. Rift-propagation over collision-modified lithosphere may explain the PNG adakite enigma, as PNG was influenced by rapid creation and subduction of oceanic microplates since Mesozoic times. In a new (rift) tectonic regime, decompressional rift melts encountered and melted remnant mafic eclogite and/or garnet-amphibolite slab fragments in arc collisional-modified mantle, and partially equilibrated with metasomatized mantle. Alternatively, hot-slab melting in a proposed newborn subduction zone along the Trobriand Trough could generate adakitic melts, but recent seismic P-wave tomographic models lack evidence for subducting oceanic lithosphere in the adakite melt region; however they do show deep subduction zone remnants as a number of high P-wave anomalies at lithospheric depths, which supports our proposed scenario.

  6. The Pan-African nappe tectonics in the Shackleton Range

    USGS Publications Warehouse

    Buggisch, W.; Kleinschmidt, G.

    2007-01-01

    In memory of Campbell Craddock: When J. Campbell Craddock (1972) published his famous 1:5 000 000 map of the Geology of Antarctica, he established major units such as the East Antarctic Craton, the early Palaeozoic Ross, the Mesozoic Ellsworth, and the Cenozoic Andean orogens. It is already evident from this map, that the strike of the Ellsworth Mountains and the Shackleton Range is perpendicular to palaeo-Pacific and modern Pacific margins. While the Ellsworth-Whitmore block is classified as a rotated terrane, the Ross-aged orogen of the Shackleton Range requires another interpretation. The discovery of extended tectonic nappes with south directed transport in the southern Shackleton Range and west transport in the north established a plate tectonic scenery with a subduction dominated Ross Orogen in the Transantarctic Mountains and a transpressive tectonic regime in the Shackleton Range during the final closing of the Mozambique Ocean.

  7. Seismo-turbidite Sedimentology: Implications for Active Tectonic Margin Stratigraphy and Sediment Facies Patterns

    NASA Astrophysics Data System (ADS)

    Nelson, C. H.; Goldfinger, C.; Gutierrez Pastor, J.; Polonia, A.; Van Daele, M. E.

    2014-12-01

    Earthquakes generate mass transport deposits (MTDs); megaturbidites (MTD overlain by coeval turbidite); multi-pulsed, stacked, and mud homogenite seismo-turbidites; tsunamites; and seiche deposits. The strongest (Mw 9) earthquake shaking signatures appear to create multi-pulsed individual turbidites, where the number and character of multiple coarse-grained pulses for correlative turbidites generally remain constant both upstream and downstream in different channel systems. Multiple turbidite pulses, that correlate with multiple ruptures shown in seismograms of historic earthquakes (e.g. Chile 1960, Sumatra 2004 and Japan 2011), support this hypothesis. The weaker (Mw = or < 8) (e.g. northern California San Andreas) earthquakes generate dominantly upstream simple fining-up (uni-pulsed) turbidites in single tributary canyons and channels; however, downstream stacked turbidites result from synchronously triggered multiple turbidity currents that deposit in channels below confluences of the tributaries. Proven tsunamites, which result from tsunami waves sweeping onshore and shallow water debris into deeper water, are a fine-grained turbidite cap over other seismo-turbidites. In contrast, MTDs and seismo-turbidites result from slope failures. Multiple great earthquakes cause seismic strengthening of slope sediment, which results in minor MTDs in basin floor turbidite system deposits (e.g. maximum run-out distances of MTDs across basin floors along active margins are up to an order of magnitude less than on passive margins). In contrast, the MTDs and turbidites are equally intermixed in turbidite systems of passive margins (e.g. Gulf of Mexico). In confined basin settings, earthquake triggering results in a common facies pattern of coeval megaturbidites in proximal settings, thick stacked turbidites downstream, and ponded muddy homogenite turbidites in basin or sub-basin centers, sometimes with a cap of seiche deposits showing bi-directional flow patterns.

  8. Vestiges of the proto-Caribbean seaway: Origin of the San Souci Volcanic Group, Trinidad

    NASA Astrophysics Data System (ADS)

    Neill, Iain; Kerr, Andrew C.; Chamberlain, Kevin R.; Schmitt, Axel K.; Urbani, Franco; Hastie, Alan R.; Pindell, James L.; Barry, Tiffany L.; Millar, Ian L.

    2014-06-01

    Outcrops of volcanic-hypabyssal rocks in Trinidad document the opening of the proto-Caribbean seaway during Jurassic-Cretaceous break-up of the Americas. The San Souci Group on the northern coast of Trinidad comprises the San Souci Volcanic Formation (SSVF) and passive margin sediments of the ~ 130-125 Ma Toco Formation. The Group was trapped at the leading edge of the Pacific-derived Caribbean Plate during the Cretaceous-Palaeogene, colliding with the para-autochthonous margin of Trinidad during the Oligocene-Miocene. In-situ U-Pb ion probe dating of micro-zircons from a mafic volcanic breccia reveal the SSVF crystallised at 135.0 ± 7.3 Ma. The age of the SSVF is within error of the age of the Toco Formation. Assuming a conformable contact, geodynamic models indicate a likely origin for the SSVF on the passive margin close to the northern tip of South America. Immobile element and Nd-Hf radiogenic isotope signatures of the mafic rocks indicate the SSVF was formed by ≪10% partial melting of a heterogeneous spinel peridotite source with no subduction or continental lithospheric mantle component. Felsic breccias within the SSVF are more enriched in incompatible elements, with isotope signatures that are less radiogenic than the mafic rocks of the SSVF. The felsic rocks may be derived from re-melting of mafic crust. Although geochemical comparisons are drawn here with proto-Caribbean igneous outcrops in Venezuela and elsewhere in the Caribbean more work is needed to elucidate the development of the proto-Caribbean seaway and its rifted margins. In particular, ion probe dating of micro-zircons may yield valuable insights into magmatism and metamorphism in the Caribbean, and in altered basaltic terranes more generally.

  9. Sediment budget on African passive margins: a record of margin bulges and far field very long wavelength deformations

    NASA Astrophysics Data System (ADS)

    Guillocheau, Francois; Robin, Cécile; Baby, Guillaume; Simon, Brendan; Rouby, Delphine; Loparev, Artiom

    2017-04-01

    The post-rift siliciclastic sediment budget of passive margins is a function of (1) the deformation (uplift) of the upstream catchment, of (2) the climate (precipitation) regime and of (3) the oceanic circulation (mainly since Miocene times). The main questions in source to sink studies are (1) to quantify the relative importance of the erosion due to uplifts or to precipitation changes and (2) to characterize the source of the sediments. A source to sink study was carried out in Western, Central and Austral Africa, characterized by anorogenic relief (plains and plateaus) that record long (several 100 km) to very long (several 1000 km) wavelength deformations respectively of lithospheric and mantle origin. The sink measurement was based on seismic lines and wells (industrial - IODP) using the VolumeEstimator software including the calculation of the uncertainties (Guillocheau et al., 2013, Basin Research). The source study was performed using dated stepped planation surfaces (etchplains and pediplains), mappable at catchments-scale (Guillocheau et al., in press, Gondwana Research). Results: (1) Deformation (uplift) is the dominant control of the sediment budget. Climate (precipitation) changes only enhance or inhibit a deformation-controlled flux. (2) The sources of siliciclastic sediments are either closed marginal bulges or far field domes due to mantle dynamics with river by-passing over long-lasting polygenic surfaces located between the bulges and domes. Two main periods of African-scale deformations (contemporaneous with an increase of the sedimentary flux) are confirmed, one during Late Cretaceous (Turonian-Coniacian) and the second around the Eocene-Oligocene boundary with a gap and intense chemical erosion from 75 Ma and mainly from 65 to 40 Ma.

  10. Aircraft and satellite passive microwave observations of the Bering Sea ice cover during MIZEX West

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T., Jr.

    1986-01-01

    Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year ice types.

  11. Physical Processes Contributing To Small-scale Vertical Movements During Changing Inplane Stresses In Rift Basins and At Passive Continental Margins

    NASA Astrophysics Data System (ADS)

    Paulsen, G. E.; Nielsen, S. B.; Hansen, D. L.

    The vertical movements during a regional stress reversal in a rifted basin or on a passive continental margin are examined using a numerical 2D thermo-mechanical finite element model with a visco-elastic-plastic rheology. Three different physical mechanisms are recognized in small-scale vertical movements at small inplane force variations: elastic dilatation, elastic flexure, and permanent deformation. Their rela- tive importance depend on the applied force, the duration of the force, and the thermal structure of the lithosphere. Elastic material dilatation occurs whenever the stress state changes. A reversal from extension to compression therefore immediately leads to elastic dilatation, and re- sults in an overall subsidence of the entire profile. Simultaneously with dilatation the lithosphere reacts with flexure. The significance of the flexural component strongly depends on the thermal structure of the lithosphere. The polarity and amplitude of the flexure depends on the initial (before compression) loading of the lithosphere. Gener- ally, the flexural effects lead to subsidence of the overdeep in the landward part of the basin and a small amount of uplift at the basin flanks. The amplitudes of the flexural response are small and comparable with the amplitudes of the elastic dilatation. With continuing compression permanent deformation and lithospheric thickening becomes increasingly important. Ultimately, the thickened part of the lithosphere stands out as an inverted zone. The amount of permanent deformation is directly connected with the size and duration of the applied force, but even a relatively small force leads to inversion tectonics in the landward part of the basin. The conclusions are: 1) small stress induced vertical movements in rift basins and at passive continental margins are the result of a complex interaction of at least three different processes, 2) the total sediment loaded amplitudes resulting from these pro- cesses are small (2-300 m) for inplane forces up to 1.5·1012 N/m.

  12. Inheritance vs ongoing evolution of the passive margin lithosphere in the southeastern United States: A comparison of <50Ma tectonism with tomographically imaged lithospheric structures.

    NASA Astrophysics Data System (ADS)

    Wagner, L. S.; Fischer, K. M.; Hawman, R. B.; Hopper, E.; Howell, D.

    2017-12-01

    The southeastern United States is an archetypical passive margin, and yet significant evidence exists that this region, separated from the nearest plate boundary by thousands of kilometers and over 170 Ma, has experienced significant tectonism since the Eocene. This tectonism includes volcanism, uplift/deformation, and ongoing seismicity such as the 2011 Mw = 5.8 Mineral, VA earthquake and the 1886 M=7 Charleston, SC event. For each of these examples, numerous theories exist on their respective causes. However, there are two common themes that span all of these types of events: first, their proximity to regional terrane boundaries whose inherited structures could play a role; second, the nature of the mantle lithosphere underlying them. We present a recently completed inversion of seismic Rayleigh waves for the shear wave velocity structure of the uppermost 150 - 200 km beneath the southeastern United States. This inversion includes not only EarthScope Transportable Array data, but also the data from the 85 broadband stations installed as part of the Flex Array SouthEastern Suture of the Appalachian Mountains Experiment (SESAME). We find some evidence for structures inherited from previous episodes of rifting, accretion, and orogenesis. However, we also find several examples of mantle lithospheric structures that spatially correlate strongly with Eocene to recent tectonic activity, but do not correlate to any known inherited geometries. These examples include a small but pronounced sub-crustal low velocity anomaly beneath the Eocene volcanoes in western Virginia and eastern West Virginia, as well as evidence for mantle delamination beneath the Cape Fear Arch and uplifted portions of the Orangeburg Escarpment. We will discuss these, along with instances of recent tectonism in our study area that do not bear any obvious relationship to lithospheric structures, in order to shed light on the causes of ongoing tectonic activity in this supposedly "passive" margin setting.

  13. 2D Geodynamic models of Microcontinent Formation

    NASA Astrophysics Data System (ADS)

    Tetreault, Joya; Buiter, Susanne

    2013-04-01

    Continental fragments (microcontinents and continental ribbons) are rifted-off blocks of relatively unthinned continental crust situated among the severely thinned crust of passive margins. The existence of these large crustal blocks would suggest that the passive margin containing them either underwent simultaneous differential rifting or multi-stage rifting in order to produce continental breakup and seafloor spreading in more than one location in the span of approximately 100 km. Also, because continental fragments do not occur on every passive margin, there must be something particular about the crust and/or lithosphere that led to the production of these features. Some proposed mechanisms for microcontinent and continental ribbon formation include (1) structural inheritance, (2) strain localization by serpentinized mantle or magmatic underplating, and (3) plume interaction with an active rift. Pre-existing weakness and inherited structural fabrics in typical continental crust from past tectonic events, such as varying rheology of accreted terranes and collisional suture zones, could be reactivated and serve as foci for deformation. The second theory is that strain is localized in certain regions by large amounts of weakened material that are either serpentinized mantle or mafic bodies underplating the thinned crust. Another possible process that could lead to continental fragment formation is magmatic influence of hot plume material that focuses in various regions, producing rifts in separate areas. The Jan Mayen and Seychelles microcontinents both have geological and plate reconstruction evidence to support the plume interaction theory. We use 2-D geodynamic experiments to assess the importance of structural inheritance, strain localization by regions of weakened mantle material, and contributions to rifting from plume material on producing crustal blocks surrounded by seafloor or thinned/hyperextended crust. Our preliminary results suggest that each of these three mechanisms, working alone, cannot produce concurrent or multi-stage differential thinning and continental break-up. We infer that multistage extension produced by a combination of these mechanisms could be necessary to produce microcontinents and continental ribbons.

  14. Comparative analysis of different joining techniques to improve the passive fit of cobalt-chromium superstructures.

    PubMed

    Barbi, Francisco C L; Camarini, Edevaldo T; Silva, Rafael S; Endo, Eliana H; Pereira, Jefferson R

    2012-12-01

    The influence of different joining techniques on passive fit at the interface structure/abutment of cobalt-chromium (Co-Cr) superstructures has not yet been clearly established. The purpose of this study was to compare 3 different techniques of joining Co-Cr superstructures by measuring the resulting marginal misfit in a simulated prosthetic assembly. A specially designed metal model was used for casting, sectioning, joining, and measuring marginal misfit. Forty-five cast bar-type superstructures were fabricated in a Co-Cr alloy and randomly assigned by drawing lots to 3 groups (n=15) according to the joining method used: conventional gas-torch brazing (G-TB), laser welding (LW), and tungsten inert gas welding (TIG). Joined specimens were assembled onto abutment analogs in the metal model with the 1-screw method. The resulting marginal misfit was measured with scanning electron microscopy (SEM) at 3 different points: distal (D), central (C), and mesial (M) along the buccal aspect of both abutments: A (tightened) and B (without screw). The Levene test was used to evaluate variance homogeneity and then the Welsch ANOVA for heteroscedastic data (α=.05). Significant differences were found on abutment A between groups G-TB and LW (P=.013) measured mesially and between groups G-TB and TIG (P=.037) measured centrally. On abutment B, significant differences were found between groups G-TB and LW (P<.001) and groups LW and TIG (P<.001) measured mesially; groups G-TB and TIG (P=.007) measured distally; and groups G-TB and TIG (P=.001) and LW and TIG (P=.007) measured centrally. The method used for joining Co-Cr prosthetic structures had an influence on the level of resulting passive fit. Structures joined by the tungsten inert gas method produced better mean results than did the brazing or laser method. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs.

    PubMed

    Charles Deeming, D; Mayr, Gerald

    2018-05-01

    Numerous new fossils have driven an interest in reproduction of early birds, but direct evidence remains elusive. No Mesozoic avian eggs can be unambiguously assigned to a species, which hampers our understanding of the evolution of contact incubation, which is a defining feature of extant birds. Compared to living species, eggs of Mesozoic birds are relatively small, but whether the eggs of Mesozoic birds could actually have borne the weight of a breeding adult has not yet been investigated. We estimated maximal egg breadth for a range of Mesozoic avian taxa from the width of the pelvic canal defined by the pubic symphysis. Known elongation ratios of Mesozoic bird eggs allowed us to predict egg mass and hence the load mass an egg could endure before cracking. These values were compared to the predicted body masses of the adult birds based on skeletal remains. Based on 21 fossil species, we show that for nonornithothoracine birds body mass was 187% of the load mass of the eggs. For Enantiornithes, body mass was 127% greater than the egg load mass, but some early Cretaceous ornithuromorphs were 179% heavier than their eggs could support. Our indirect approach provides the best evidence yet that early birds could not have sat on their eggs without running the risk of causing damage. We suggest that contact incubation evolved comparatively late in birds. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  16. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  17. Major Paleostress Field Differences on Complementary Margins of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Salomon, E.; Koehn, D.; Passchier, C. W.; Hackspacher, P. C.; Glasmacher, P. A.

    2013-12-01

    We present a detailed study of paleostress fields of the Namibian and Brazilian passive continental margins of the South Atlantic to address a general debate on whether or not these complementary margins experienced similar tectonic histories (e.g. Cobbold et al., 2001; Al-Hajri et al., 2009; Japsen et al., 2012). In our study, we compare the NW of Namibia and the SE of Brazil with each other. These areas are largely covered by the flood basalts of the Paraná-Etendeka-Large Igneous Province overlying Neo-Proterozoic basement of the Pan-African orogeny. With an age of ~133 Ma the basalts were emplaced just before or during the onset of the South Atlantic opening and thus serve as a good time marker for rift- and post-rift-related tectonics. We studied mainly fault planes and associated striations within the flood basalts and compared the resulting stress patterns of both margins. Results reveal remarkable differences in the stress patterns for SE Brazil and NW Namibia. In NW Namibia, a WSW-ENE directed extensional stress field dominates and fits well with extension of the original continental rift and the passive margin. A second extensional stress field (σ3 SSW oriented) and a strike-slip system (σ1 NW oriented) appear only subdued. In contrast, the SE of Brazil is mainly characterized by two strike-slip systems (σ1 oriented SW and E, respectively) whereas an extensional stress field is almost non-existent. The strike-slip faulting of the Brazilian study area occur widespread across SE Brazil as they are also evident in other paleostress studies of the region and might thus be the result of far-field stresses. Margin-parallel faults are scarce, so it appears that rift-related extension was restricted to a narrower strip along the continent-ocean boundary, now lying offshore. In NW Namibia, the faults of the extensional stress regime run parallel to the sub-margin-parallel basement structure (i.e. shear zones and foliation) and hence indicate a reactivation of the Neo-Proterozoic basement during the Atlantic rifting. The stress fields of NW Namibia stand in contrast to observations in other parts of southern Africa, where also compression is evident. We relate these variations to a strong influence of the basement structure on younger faulting in southern Africa. Our results indicate that different mechanisms may have produced the present-day high topography on both sides of the Southern Atlantic, the Brazilian margin being under compression in a strike-slip regime whereas the Namibian margin mainly under margin perpendicular extension. References Al-Hajri, Y. et al., 2009. Geology, 37, 883-886. Cobbold, P. R. et al., 2001. AAPG Bull., 85, 1925-1944. Japsen, P. et al., 2012. Geol. Soc. Am. Bull., 124, 800-816.

  18. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  19. Mesozoic cyclostratigraphy, the 405-kyr orbital eccentricity metronome, and the Astronomical Time Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Hinnov, L.; Ogg, J. G.

    2009-12-01

    Mesozoic cyclostratigraphy from around the world is being assessed to construct a continuous Astronomical Time Scale (ATS) based on Earth’s cyclic orbital parameters. The recognition of a prevalent sedimentary cycling with a ~400-kyr period associated with forcing by the stable 405-kyr orbital eccentricity variation is an important development. Numerous formations spanning 10 to 20 myr (and longer) intervals in the Cretaceous, Jurassic and Triassic clearly express this dominant cycle and provide a robust basis for 405-kyr-scale calibration of the ATS. This 405-kyr metronome will enable extension of the well-defined Cenozoic ATS for scaling of the past quarter-billion years of Earth history. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS have already provided new insights into long-standing geologic problems of seafloor spreading, tectonics, eustasy, and paleoclimate change. Ongoing work is focused on closing gaps in coverage and on collecting duplicate cyclostratigraphic records for the entire Mesozoic Era.

  20. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity

    PubMed Central

    2016-01-01

    During the Mesozoic (242–66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species–area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. PMID:27651536

  1. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity.

    PubMed

    Vavrek, Matthew J

    2016-09-01

    During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. © 2016 The Author(s).

  2. Satellite and aircraft passive microwave observations during the Marginal Ice Zone Experiment in 1984

    NASA Technical Reports Server (NTRS)

    Gloersen, Per; Campbell, William J.

    1988-01-01

    This paper compares satellite data on the marginal ice zone obtained during the Marginal Ice Zone Experiment in 1984 by Nimbus 7 with simultaneous mesoscale aircraft (in particular, the NASA CV-990 airborne laboratory) and surface observations. Total and multiyear sea ice concentrations calculated from the airborne multichannel microwave radiometer were found to agree well with similar calculations using the Nimbus SMMR data. The temperature dependence of the determination of multiyear sea-ice concentration near the melting point was found to be the same for both airborne and satellite data. It was found that low total ice concentrations and open-water storm effects near the ice edge could be reliably distinguished by means of spectral gradient ratio, using data from the 0.33-cm and the 1.55-cm radiometers.

  3. A new, well-preserved genus and species of fossil Glaphyridae (Coleoptera, Scarabaeoidea) from the Mesozoic Yixian Formation of Inner Mongolia, China

    PubMed Central

    Yan, Zhuo; Nikolajev, Georgiy V.; Ren, Dong

    2012-01-01

    Abstract A new genus and species of fossil Glaphyridae, Cretohypna cristata gen. et sp. n., is described and illustrated from the Mesozoic Yixian Formation. This new genus is characterized by the large body; large and strong mandibles; short labrum; elytra without longitudinal carina; and male meso- and possible metatibia apically modified. A list of described fossil glaphyrids of the world is provided. This significant finding broadens the known diversity of Glaphyridae in the Mesozoic China. PMID:23372414

  4. Biomechanical Effect of Margin Convergence Techniques: Quantitative Assessment of Supraspinatus Muscle Stiffness.

    PubMed

    Hatta, Taku; Giambini, Hugo; Zhao, Chunfeng; Sperling, John W; Steinmann, Scott P; Itoi, Eiji; An, Kai-Nan

    2016-01-01

    Although the margin convergence (MC) technique has been recognized as an option for rotator cuff repair, little is known about the biomechanical effect on repaired rotator cuff muscle, especially after supplemented footprint repair. The purpose of this study was to assess the passive stiffness changes of the supraspinatus (SSP) muscle after MC techniques using shear wave elastography (SWE). A 30 × 40-mm U-shaped rotator cuff tear was created in 8 cadaveric shoulders. Each specimen was repaired with 6 types of MC technique (1-, 2-, 3-suture MC with/without footprint repair, in a random order) at 30° glenohumeral abduction. Passive stiffness of four anatomical regions in the SSP muscle was measured based on an established SWE method. Data were obtained from the SSP muscle at 0° abduction under 8 different conditions: intact (before making a tear), torn, and postoperative conditions with 6 techniques. MC techniques using 1-, or 2-suture combined with footprint repair showed significantly higher stiffness values than the intact condition. Passive stiffness of the SSP muscle was highest after a 1-suture MC with footprint repair for all regions when compared among all repair procedures. There was no significant difference between the intact condition and a 3-suture MC with footprint repair. MC techniques with single stitch and subsequent footprint repair may have adverse effects on muscle properties and tensile loading on repair, increasing the risk of retear of repairs. Adding more MC stitches could reverse these adverse effects.

  5. Passive bookshelf faulting driven by gravitational spreading as the cause of the tiger-stripe-fracture formation and development in the South Polar Terrain of Enceladus

    NASA Astrophysics Data System (ADS)

    Yin, A.; Pappalardo, R. T.

    2013-12-01

    Detailed photogeologic mapping of the tiger-stripe fractures in the South Polar Terrain (SPT) of Enceladus indicates that these structures are left-slip faults and terminate at hook-shaped fold-thrust zones and/or Y-shaped horsetail splay-fault zones. The semi-square-shaped tectonic domain that hosts the tiger-stripe faults is bounded by right-slip and left-slip faults on the north and south edges and fold-thrust and extensional zones on the western and eastern edges. We explain the above observations by a passive bookshelf-faulting model in which individual tiger-stripe faults are bounded by deformable wall rocks accommodating distributed deformation. Based on topographic data, we suggest that gravitational spreading had caused the SPT to spread unevenly from west to east. This process was accommodated by right-slip and left-slip faulting on the north and south sides and thrusting and extension along the eastern and southern margins of the tiger-stripe tectonic domain. The uneven spreading, expressed by a gradual northward increase in the number of extensional faults and thrusts/folds along the western and eastern margins, was accommodated by distributed right-slip simple shear across the whole tiger-stripe tectonic domain. This mode of deformation in turn resulted in the development of a passive bookshelf-fault system characterized by left-slip faulting on individual tiger-stripe fractures.

  6. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust

    NASA Astrophysics Data System (ADS)

    Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan

    2017-11-01

    The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late Paleoproterozoic and Mesozoic related to magmatic underplating. The integrated analyses of lithological, geochemical and age data for a suite of deep-seated xenoliths show that the lower crust in the Nangaoya area is temporally and compositionally zoned. The upper part of the lower crust mainly comprises Neoarchean to Paleoproterozoic intermediate-felsic rocks with intercalated hornblendites, the majority of which record 1950 and 1850 Ma metamorphism; the middle part is dominated by a Paleoproterozoic and Mesozoic intermediate garnet-bearing granulite-facies hybrid layer; and the lowermost crust is represented by a Mesozoic mafic granulite layer, which was significantly modified by episodic magmatic underplating. Such a modification induced by crust-mantle interaction can result in Mesozoic ages and more mafic components for xenolith granulites, and thus is an effective mechanism to explain the differences between exposed and xenolithic granulites.

  7. Long-term evolution of the western South Atlantic passive continental margin in a key area of SE Brazil revealed by thermokinematic numerical modeling using the software code Pecube

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244. 2. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 3. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 4. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.

  8. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

    NASA Astrophysics Data System (ADS)

    Lallemand, Serge

    2016-12-01

    We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite initially accreted to the PSP. The result was exposure of the FABs, boninites, and early volcanics that are near the trench today. (7) Serpentinite mud volcanoes observed in the Mariana fore-arc may have formed above the remnants of the paleo-transform boundary between the proto-PSP and the Pacific Plate.

  9. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao

    2017-05-01

    The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.

  10. Apatite fission-track thermochronometric constraints on the exhumation and evolution of the southeastern Indian (Tamil Nadu) passive margin and the role of structural inheritance

    NASA Astrophysics Data System (ADS)

    De Grave, Johan; Glorie, Stijn; Singh, Tejpal; Van Ranst, Gerben; Nachtergaele, Simon

    2017-04-01

    After rifting from Gondwana in the Late Jurassic - Early Cretaceous, and subsequent opening of the Indian Ocean basin, the continental margins of India developed into typical passive margins. Extensional tectonic forces and thermal subsidence gave rise to the formation of both on-shore and off-shore basins along the southeastern passive margin of the Indian continent, along the Tamil Nadu coast. There, basins such as the Cauvery and Krishna-Godavari basin, accumulated Meso- and Cenozoic (Early Cretaceous to recent) detrital sediments coming off the rifted blocks and the Tamil Nadu hinterland. In places, deep rift basins have accumulated up to over 3000 m of sediments. The continental basement of Tamil Nadu is chiefly composed of metamorphic rocks of the Archean to Palaeoproterozoic Eastern Dharwar Craton and the coeval Southern Granulite Terrane (e.g. Peucat et al., 2013). Several crustal scale shear zones crosscut this assemblage and at least some are considered to represent Gondwanan sutures (Santosh et al., 2012). Smaller, younger granitoid plutons intrude the basement at several locations and most of these are of Late Neoproterozoic age (Glorie et al., 2014). In this work metamorphic basements rocks and the younger granitoids were sampled for a apatite fission-track (AFT) thermochronometric study. A North-South profile from Chennai to Thanjavur mainly transects the Salem block of the Southern Granulite Terrane, and crosscuts several crustal scale shear zones, such as the Cauvery, Salem-Attur and Gangavalli shear zones. Apatites from over 30 samples were used in this study. AFT ages all range between about 190 and 120 Ma (Jurassic - Early Cretaceous). These mainly represent the slow, shallow exhumation of the basement during the rift and early drift phase of the Indian plate from Gondwana. AFT mean track lengths vary between 11 and 13 µm and are typical of slowly exhumed basement. Thermal history modelling (using the QTQt software by Gallagher, 2012) confirms that internal regions of fault blocks experienced a slow and steady cooling to ambient temperatures throughout the Meso-Cenozoic, while younger samples, mainly positioned closeby or inside the shear zones, additionally record a more moderate to rapid cooling since the Early Cenozoic.

  11. Thermal history from both sides of the South Atlantic passive margin - A comparison: Argentinean pampa vs. South African escarpement.

    NASA Astrophysics Data System (ADS)

    Kollenz, Sebastian; Glasmacher, Ulrich A.

    2014-05-01

    The eastern Argentina South Atlantic passive continental margin is distinguished by a very flat topography. Out of the so called Pampean flat two mountain ranges are arising. These mountain ranges, the Sierras Australes and the Sierras Septentrionales, are located in the State of Buenos Aires south of the capital Buenos Aires. In existing literature the Sierras Australes are correlated with the South African cape fold belt (Torsvik 2009; Lopez Gamundi & Rossello 1998). Existing thermochronological data shows different post-breakup cooling histories for both areas and different AFT-ages. Published thermochronological ages (e.g. Raab et al. 2002, 2005, Gallagher et al et al. 1998)from the south African escarpement vary around 150 and 100 Ma (Gallagher et al. 1998). Only some spots in the eastern part of South Africa towards the pacific margin show older ages of 250 Ma and older than 350 Ma (Gallagher et al. 1998). New thermochronological data (AHe, AFT and ZHe) from the Sierras Australes indicate a different cooling history by revealing a range of varying ages due to younger tectonic activity. By comparing the data sets from both areas it is getting clear that the post-rift evolution of both continents is differing very strong. Gallagher, K., Brown, R. and Johnson, C. 1998. Fission track analysis and its application to geological problems. Annual review of Earth and Planetary Science, 26, 519-572. Lopez Gamundi, O.R., Rossello, E.A. (1998): Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) revisited. Geol Rundsch 86 :819-834. Raab, M.J., Brown, R.W., Gallagher, K., Carter, A. and Webber, K. 2002. late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics. 349, 75-92. Raab, M.J., Brown, R.W., Gallagher, K., Webber, K. and Gleadow, A.J.W. 2005. denudational and thermal history of the Early Cretaceous Brandberg and Okenyenya igneous complexes on Namibia's passive margin. Tectonics. 24, TC3006, doi:10.1029/2004TC001688 Torsvik, T.H., Rousse, S., Labails, C., Smethurst, M. A. (2009): A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. 177, 1315-1333.

  12. Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes

    NASA Astrophysics Data System (ADS)

    Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne

    2014-05-01

    Mantle peridotites from ocean-continent transition zones (OCT's) and ultraslow spreading ridges question the commonly held assumption of a simple link between mantle melting and MORB. 'Ancient' and partly refertilized mantle in rifts and ridges illustrates the distribution of the scale of chemical and isotopic upper mantle heterogeneity even on a local scale. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle blobs formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an (ancient?) subduction component. Upwelling of partial melts that enter the conductive lithospheric mantle inevitably leads to freezing of the melt and refertilization of the lithosphere and this process might well be at the origin of the difference between magma-poor and volcanic margins. Similar heterogeneity might be created in the oceanic lithosphere, in particular at slow to ultra-slow spreading ridges where the thermal boundary layer (TBM) is thick and may be veined with metasomatic assemblages that might be recycled in subduction zones. In this presentation, we provide a summary of mantle compositions from the European realm to show that inherited mantle signatures from previous orogenies play a key role on the evolution of rift systems and on the chemical diversity of peridotites exposed along passive margins and ultra-slow spreading ridges. Particularly striking is the abundance of plagioclase peridotites in the Alpine ophiolites that are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Another important result over the last 20 years was the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd which indicates that partial melting processes and Jurassic magmatism in the Western Thetys are decoupled. Although the isotopic variability might be explained by mantle heterogeneities, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.

  13. Airborne discrimination between ice and water - Application to the laser measurement of chlorophyll-in-water in a marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1989-01-01

    The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between ice and water in a large ice field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea ice are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with ice. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting ice compared to ice-free regions just outside the ice field.

  14. A bottom-up perspective on ecosystem change in Mesozoic oceans

    PubMed Central

    Follows, Michael J.

    2016-01-01

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. PMID:27798303

  15. A bottom-up perspective on ecosystem change in Mesozoic oceans.

    PubMed

    Knoll, Andrew H; Follows, Michael J

    2016-10-26

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. © 2016 The Authors.

  16. Geologic map and digital database of the Conejo Well 7.5 minute quadrangle, Riverside County, Southern California

    USGS Publications Warehouse

    Powell, Robert E.

    2001-01-01

    This data set maps and describes the geology of the Conejo Well 7.5 minute quadrangle, Riverside County, southern California. The quadrangle, situated in Joshua Tree National Park in the eastern Transverse Ranges physiographic and structural province, encompasses part of the northern Eagle Mountains and part of the south flank of Pinto Basin. It is underlain by a basement terrane comprising Proterozoic metamorphic rocks, Mesozoic plutonic rocks, and Mesozoic and Mesozoic or Cenozoic hypabyssal dikes. The basement terrane is capped by a widespread Tertiary erosion surface preserved in remnants in the Eagle Mountains and buried beneath Cenozoic deposits in Pinto Basin. Locally, Miocene basalt overlies the erosion surface. A sequence of at least three Quaternary pediments is planed into the north piedmont of the Eagle Mountains, each in turn overlain by successively younger residual and alluvial deposits. The Tertiary erosion surface is deformed and broken by north-northwest-trending, high-angle, dip-slip faults in the Eagle Mountains and an east-west trending system of high-angle dip- and left-slip faults. In and adjacent to the Conejo Well quadrangle, faults of the northwest-trending set displace Miocene sedimentary rocks and basalt deposited on the Tertiary erosion surface and Pliocene and (or) Pleistocene deposits that accumulated on the oldest pediment. Faults of this system appear to be overlain by Pleistocene deposits that accumulated on younger pediments. East-west trending faults are younger than and perhaps in part coeval with faults of the northwest-trending set. The Conejo Well database was created using ARCVIEW and ARC/INFO, which are geographical information system (GIS) software products of Envronmental Systems Research Institute (ESRI). The database consists of the following items: (1) a map coverage showing faults and geologic contacts and units, (2) a separate coverage showing dikes, (3) a coverage showing structural data, (4) a point coverage containing line ornamentation, and (5) a scanned topographic base at a scale of 1:24,000. The coverages include attribute tables for geologic units (polygons and regions), contacts (arcs), and site-specific data (points). The database, accompanied by a pamphlet file and this metadata file, also includes the following graphic and text products: (1) A portable document file (.pdf) containing a navigable graphic of the geologic map on a 1:24,000 topographic base. The map is accompanied by a marginal explanation consisting of a Description of Map and Database Units (DMU), a Correlation of Map and Database Units (CMU), and a key to point-and line-symbols. (2) Separate .pdf files of the DMU and CMU, individually. (3) A PostScript graphic-file containing the geologic map on a 1:24,000 topographic base accompanied by the marginal explanation. (4) A pamphlet that describes the database and how to access it. Within the database, geologic contacts , faults, and dikes are represented as lines (arcs), geologic units as polygons and regions, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.

  17. Colorado Basin Structure and Rifting, Argentine passive margin

    NASA Astrophysics Data System (ADS)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation partly supports this hypothesis and shows two main directions of faulting: margin-parallel faults (~N30°) and rift-parallel faults (~N125°). A specific distribution of the two fault sets is observed: margin-parallel faults are restrained to the most distal part of the margin. Starting with a 3D structural model of the basin fill based on seismic and well data the deeper structure of the crust beneath the Colorado Basin can be evaluate using isostatic and thermal modelling. Franke, D., et al. (2002), Deep Crustal Structure Of The Argentine Continental Margin From Seismic Wide-Angle And Multichannel Reflection Seismic Data, paper presented at AAPG Hedberg Conference "Hydrocarbon Habitat of Volcanic Rifted Passive Margins", Stavanger, Norway Franke, D., et al. (2006), Crustal structure across the Colorado Basin, offshore Argentina Geophysical Journal International 165, 850-864. Gladczenko, T. P., et al. (1997), South Atlantic volcanic margins Journal of the Geological Society, London 154, 465-470. Hinz, K., et al. (1999), The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during breakup Marine and Petroleum Geology 16(1-25). Hirsch, K. K., et al. (2009), Tectonic subsidence history and thermal evolution of the Orange Basin, Marine and Petroleum Geology, in press, doi:10.1016/j.marpetgeo.2009.1006.1009

  18. Measurement of Rayleigh wave Z/H ratio and joint inversion for a high-resolution S wave velocity model beneath the Gulf of Mexico passive margin

    NASA Astrophysics Data System (ADS)

    Miao, W.; Li, G.; Niu, F.

    2016-12-01

    Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.

  19. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  20. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Stern, Robert J.

    2015-03-01

    Iran is a mosaic of continental terranes of Cadomian (520-600 Ma) age, stitched together along sutures decorated by Paleozoic and Mesozoic ophiolites. Here we present the current understanding of the Mesozoic (and rare Cenozoic) ophiolites of Iran for the international geoscientific audience. We summarize field, chemical and geochronological data from the literature and our own unpublished data. Mesozoic ophiolites of Iran are mostly Cretaceous in age and are related to the Neotethys and associated backarc basins on the S flank of Eurasia. These ophiolites can be subdivided into five belts: 1. Late Cretaceous Zagros outer belt ophiolites (ZOB) along the Main Zagros Thrust including Late Cretaceous-Early Paleocene Maku-Khoy-Salmas ophiolites in NW Iran as well as Kermanshah-Kurdistan, Neyriz and Esfandagheh (Haji Abad) ophiolites, also Late Cretaceous-Eocene ophiolites along the Iraq-Iran border; 2. Late Cretaceous Zagros inner belt ophiolites (ZIB) including Nain, Dehshir, Shahr-e-Babak and Balvard-Baft ophiolites along the southern periphery of the Central Iranian block and bending north into it; 3. Late Cretaceous-Early Paleocene Sabzevar-Torbat-e-Heydarieh ophiolites of NE Iran; 4. Early to Late Cretaceous Birjand-Nehbandan-Tchehel-Kureh ophiolites in eastern Iran between the Lut and Afghan blocks; and 5. Late Jurassic-Cretaceous Makran ophiolites of SE Iran including Kahnuj ophiolites. Most Mesozoic ophiolites of Iran show supra-subduction zone (SSZ) geochemical signatures, indicating that SW Asia was a site of plate convergence during Late Mesozoic time, but also include a significant proportion showing ocean-island basalt affinities, perhaps indicating the involvement of subcontinental lithospheric mantle.

  1. Detrital zircon age patterns from turbidites of the Balagne and Piedmont nappes of Alpine Corsica (France): Evidence for an European margin source

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Rossi, Philippe; Faure, Michel; Li, Xian-Hua; Ji, Wenbin; Chu, Yang

    2018-01-01

    At the front of metamorphic Cenozoic Alpine nappe of Schistes Lustrés, Western Alpine Corsica (France) exposes non- to very low grade metamorphic nappes, such as the Piedmont nappes, Upper nappes, and the Balagne nappe. The provenance of the Balagne nappe remains still opened: an origin close to the Corsican continental margin; or an origin far East from the Corsican margin toward the "Apenninic" oceanic domain. This would constrain that the Balagne ophiolite be derived from the opposite OCT (Ocean - Continent transition), close to a microcontinent located to the East of the Mesozoic Corsican margin. A systematic U-Pb dating of 586 detrital zircon grains collected from the turbidites in the Balagne and Piedmont nappes has been performed to constrain the source of sediments. The zircon grains yield U-Pb age spectra ranging from Neoarchean to Late Paleozoic with age peaks at 2600 Ma, 2080 Ma, 1830 Ma, 910 Ma, 600 Ma, 560 Ma, 450 Ma, 330 Ma and 280 Ma with different continental model ages (TDM2) from 3.5 Ga to 1.0 Ga. The variety of composition of the Corsican batholith, unique in its present Mediterranean environment, and in spite of Alpine transcurrent movements, provide a key to analyze the detrital zircon age distribution patterns of sedimentary rocks. These new results i) confirm the lack of any Cretaceous zircon that validates absence of a magmatic arc of this age, at least in the surroundings of the turbiditic formations from the Balagne and the Piedmont nappes; ii) fully support an European provenance of detritus of the Balagne nappe, iii) put forward evidence that no ophiolitic zircon was contained neither in the Cretaceous nor in the Eocene turbidites samples, and iv) question both the deposition of the Piedmont Narbinco flysch within the ocean continent transition and its possible relationships with the Late Cretaceous Pyrenean basins.

  2. Southeast Offshore Storage Resource Assessment (SOSRA): Evaluation of CO2 Storage Potential on the Continental Shelf from North Carolina to Florida

    NASA Astrophysics Data System (ADS)

    Knapp, J. H.; Knapp, C. C.; Brantley, D.; Lakshmi, V.; Howard, S.

    2016-12-01

    The Southeast Offshore Storage Resource Assessment (SOSRA) project is part of a major new program, funded by the U.S. Department of Energy for the next two and a half years, to evaluate the Atlantic and Gulf of Mexico offshore margins of the United States for geologic storage capacity of CO2. Collaborating organizations include the Southern States Energy Board, Virginia Polytechnic Institute, University of South Carolina, Oklahoma State University, Virginia Department of Mines, Minerals, and Energy, South Carolina Geological Survey, and Geological Survey of Alabama. Team members from South Carolina are focused on the Atlantic offshore, from North Carolina to Florida. Geologic sequestration of CO2 is a major research focus globally, and requires robust knowledge of the porosity and permeability distribution in upper crustal sediments. Using legacy seismic reflection, refraction, and well data from a previous phase of offshore petroleum exploration on the Atlantic margin, we are analyzing the rock physics characteristics of the offshore Mesozoic and Cenozoic stratigraphy on a regional scale from North Carolina to Florida. Major features of the margin include the Carolina Trough, the Southeast Georgia Embayment, the Blake Plateau basin, and the Blake Outer Ridge. Previous studies indicate sediment accumulations on this margin may be as thick as 12-15 km. The study will apply a diverse suite of data analysis techniques designed to meet the goal of predicting storage capacity to within ±30%. Synthetic seismograms and checkshot surveys will be used to tie well and seismic data. Seismic interpretation and geophysical log analysis will employ leading-edge software technology and state-of-the art techniques for stratigraphic and structural interpretation and the definition of storage units and their physical and chemical properties. This approach will result in a robust characterization of offshore CO2 storage opportunities, as well as a volumetric analysis that is consistent with established procedures.

  3. Trace fossil analysis of lacustrine facies and basins

    USGS Publications Warehouse

    Buatois, L.A.; Mangano, M.G.

    1998-01-01

    Two ichnofacies are typical of lacustrine depositional systems. The Scoyenia ichnofacies characterizes transitional terrestrial/nonmarine aquatic substrates, periodically inundated or desiccated, and therefore is commonly present in lake margin facies. The Mermia ichnofacies is associated with well oxygenated, permanent subaqueous, fine-grained substrates of hydrologically open, perennial lakes. Bathymetric zonations within the Mermia ichnofacies are complicated by the wide variability of lacustrine systems. Detected proximal-distal trends are useful within particular lake basins, but commonly difficult to extrapolate to other lakes. Other potential ichnofacies include the typically marine Skolithos ichnofacies for high-energy zones of lakes and substrate-controlled, still unnamed ichnofacies, associated to lake margin deposits. Trace fossils are useful for sedimentologic analysis of event beds. Lacustrine turbidites are characterized by low-diversity suites, reflecting colonization by opportunistic organisms after the turbidite event. Underflow current beds record animal activity contemporaneous with nearly continuous sedimentation. Ichnologic studies may also help to distinguish between marine and lacustrine turbidites. Deep-marine turbidites host the Nereites ichnofacies that consists of high diversity of ornate grazing traces and graphoglyptids, recording highly specialized feeding strategies developed to solve the problem of the scarcity of food in the deep sea. Deep lacustrine environments contain the Mermia ichnofacies, which is dominated by unspecialized grazing and feeding traces probably related to the abundance and accessibility of food in lacustrine systems. The lower diversity of lacustrine ichnofaunas in comparison with deep-sea assemblages more likely reflects lower species diversity as a consequence of less stable conditions. Increase of depth and extent of bioturbation through geologic time produced a clear signature in the ichnofabric record of lacustrine facies. Paleozoic lacustrine ichnofaunas are typically dominated by surface trails with little associated bioturbation. During the Mesozoic, bioturbation depth was higher in lake margin facies than in fully lacustrine deposits. While significant degrees of bioturbation were attained in lake margin facies during the Triassic, major biogenic disruption of primary bedding in subaqueous lacustrine deposits did not occur until the Cretaceous.

  4. Lower Badenian coarse-grained Gilbert deltas in the southern margin of the Western Carpathian Foredeep basin

    NASA Astrophysics Data System (ADS)

    Nehyba, Slavomír

    2018-02-01

    Two coarse-grained Gilbert-type deltas in the Lower Badenian deposits along the southern margin of the Western Carpathian Foredeep (peripheral foreland basin) were newly interpreted. Facies characterizing a range of depositional processes are assigned to four facies associations — topset, foreset, bottomset and offshore marine pelagic deposits. The evidence of Gilbert deltas within open marine deposits reflects the formation of a basin with relatively steep margins connected with a relative sea level fall, erosion and incision. Formation, progradation and aggradation of the thick coarse-grained Gilbert delta piles generally indicate a dramatic increase of sediment supply from the hinterland, followed by both relatively continuous sediment delivery and an increase in accommodation space. Deltaic deposition is terminated by relatively rapid and extended drowning and is explained as a transgressive event. The lower Gilbert delta was significantly larger, more areally extended and reveals a more complicated stratigraphic architecture than the upper one. Its basal surface represents a sequence boundary and occurs around the Karpatian/Badenian stratigraphic limit. Two coeval deltaic branches were recognized in the lower delta with partly different stratigraphic arrangements. This different stratigraphic architecture is mostly explained by variations in the sediment delivery and /or predisposed paleotopography and paleobathymetry of the basin floor. The upper delta was recognized only in a restricted area. Its basal surface represents a sequence boundary probably reflecting a higher order cycle of a relative sea level rise and fall within the Lower Badenian. Evidence of two laterally and stratigraphically separated coarse-grained Gilbert deltas indicates two regional/basin wide transgressive/regressive cycles, but not necessarily of the same order. Provenance analysis reveals similar sources of both deltas. Several partial source areas were identified (Mesozoic carbonates of the Northern Calcareous Alps and the Western Carpathians, crystalline rocks of the eastern margin of the Bohemian Massif, older sedimentary infill of the Carpathian Foredeep and/or the North Alpine Foreland Basin, sedimentary rocks of the Western Carpathian/Alpine Flysch Zone).

  5. Late Cretaceous-Cenozoic subduction-collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey

    NASA Astrophysics Data System (ADS)

    Akıncı, Ahmet Can; Robertson, Alastair H. F.; Ünlügenç, Ulvi Can

    2016-01-01

    Evidence of the subduction-collision history of the S Neotethys is well exposed in the frontal part of the SE Anatolian thrust belt and the adjacent Arabian continental margin. The foreland succession in the study area begins with Eocene shelf carbonates, ranging from shallow marine to deeper marine, without sedimentary input from the Tauride continent to the north. After a regional hiatus (Oligocene), sedimentation resumed during the Early Miocene with terrigenous gravity-flow deposition in the north (Lice Formation) and shallow-marine carbonates further south. Clastic detritus was derived from the Tauride continent and oceanic accretionary material. The base of the overriding Tauride allochthon comprises ophiolite-derived debris flows, ophiolite-related mélange and dismembered ophiolitic rocks. Above this, the regional-scale Bulgurkaya sedimentary mélange (an olistostrome) includes blocks and dismembered thrust sheets of metamorphic rocks, limestone and sandstone, which include Late Cretaceous and Eocene foraminifera. The matrix is mainly strongly deformed Eocene-Oligocene mudrocks, hemipelagic marl and sandstone turbidites. The thrust stack is topped by a regionally extensive thrust sheet (Malatya metamorphic unit), which includes greenschist facies marble, calcschist, schist and phyllite, representing Tauride continental crust. Beginning during the Late Mesozoic, the S Neotethys subducted northwards beneath a backstop represented by the Tauride microcontinent (Malatya metamorphic unit). Ophiolites formed within the S Neotethys and accreted to the Tauride active margin. Large-scale sedimentary mélange developed along the Tauride active margin during Eocene-Oligocene. On the Arabian margin, a sedimentary hiatus and tilting (Oligocene) is interpreted to record initial continental collision. The Early Miocene terrigenous gravity flows represent a collision-related flexural foreland basin. Southward overthrusting of the Tauride allochthon took place during Early-Middle Miocene. Associated regional uplift triggered large-scale alluvial deposition. The foreland folded and faulted in response to suture zone tightening (Late Miocene). Left-lateral strike slip characterised the Plio-Pleistocene.

  6. Tectonostratigraphic reconstruction Cretaceous volcano-sedimentary in the northwestern Andes: from extensional tectonics to arc accretion.

    NASA Astrophysics Data System (ADS)

    Zapata, S.; Patino, A. M.; Cardona, A.; Mejia, D.; Leon, S.; Jaramillo, J. S.; Valencia, V.; Parra, M.; Hincapie, S.

    2014-12-01

    Active continental margins characterized by continuous convergence experienced overimposed tectonic configurations that allowed the formation of volcanic arcs, back arc basins, transtensional divergent tectonics or the accretion of exotic volcanic terranes. Such record, particularly the extensional phases, can be partially destroyed and obscure by multiple deformational events, the accretion of exotic terranes and strike slip fragmentation along the margin. The tectonic evolution of the northern Andes during the Mesozoic is the result of post Pangea extension followed by the installation of a long-lived Jurassic volcanic arc (209 - 136 ma) that apparently stops between 136 Ma and 110 Ma. The Quebradagrande Complex has been define as a single Lower Cretaceous volcano-sedimentary unit exposed in the western flank of the Central Cordillera of the Colombian Andes that growth after the Late Jurassic to Early Cretaceous magmatic hiatus. The origin of this unit have been related either to an oceanic volcanic arc or a marginal basin environment. The existence of such contrasting models reflect the regional perspective followed in published studies and the paucity of detail analysis of the volcano-sedimentary sequences.We integrate multiple approaches including structural mapping, stratigraphy, geochemistry, U-Pb provenance and geochronology to improve the understanding of this unit and track the earlier phases of accumulation that are mask on the overimposed tectonic history. Our preliminary results suggest the existence of different volcano-sedimentary units that accumulated between 100 Ma and 82 Ma.The older Lower Cretaceous sequences was deposited over Triassic metamorphic continental crust and include a upward basin deepening record characterized by thick fan delta conglomerates, followed by distal turbidites and a syn-sedimentary volcanic record at 100 ma. The other sequence include a 85 - 82 Ma fringing arc that was also formed close to the continental margin or associated with a continental terrane.This two volcano-sedimentary domains were finally juxtaposed due to the collision with an allochthonous oceanic arc that collide with the Continental margin in the Late Cretaceous marking the initiation of the Andean Orogeny.

  7. Phanerozoic geological evolution of Northern and Central Africa: An overview

    NASA Astrophysics Data System (ADS)

    Guiraud, R.; Bosworth, W.; Thierry, J.; Delplanque, A.

    2005-10-01

    The principal paleogeographic characteristics of North and Central Africa during the Paleozoic were the permanency of large exposed lands over central Africa, surrounded by northerly and northwesterly dipping pediplanes episodically flooded by epicontinental seas related to the Paleotethys Ocean. The intra-continental Congo-Zaire Basin was also a long-lived feature, as well as the Somali Basin from Late Carboniferous times, in conjunction with the development of the Karoo basins of southern Africa. This configuration, in combination with eustatic sea-level fluctuations, had a strong influence on facies distributions. Significant transgressions occurred during the Early Cambrian, Tremadocian, Llandovery, Middle to Late Devonian, Early Carboniferous, and Moscovian. The Paleozoic tectonic history shows an alternation of long periods of predominantly gentle basin subsidence and short periods of gentle folding and occasionally basin inversion. Some local rift basins developed episodically, located mainly along the northern African-Arabian plate margin and near the West African Craton/Pan-African Belt suture. Several arches or spurs, mainly N-S to NE-SW trending and inherited from late Pan-African fault swarms, played an important role. The Nubia Province was the site of numerous alkaline anorogenic intrusions, starting in Ordovician times, and subsequently formed a large swell. Paleozoic compressional events occurred in the latest Early Cambrian ("Iskelian"), Medial Ordovician to earliest Silurian ("pre-Caradoc" and "Taconian"), the end Silurian ("Early Acadian" or "Ardennian"), mid-Devonian ("Mid-Acadian"), the end Devonian ("Late Acadian" or "Bretonnian"), the earliest Serpukhovian ("Sudetic"), and the latest Carboniferous-earliest Permian ("Alleghanian" or "Asturian"). The strongest deformations, including folding, thrusting, and active strike-slip faulting, were registered in Northwestern Africa during the last stage of the Pan-African Belt development around the West African Craton (end Early Cambrian) and during the polyphased Hercynian-Variscan Orogeny that extended the final closure of the Paleotethys Ocean and resulted in the formation of the Maghrebian and Mauritanides belts. Only gentle deformation affected central and northeastern African during the Paleozoic, the latter remaining a passive margin of the Paleotethys Ocean up to the Early Permian when the development of the Neotethys initiated along the Eastern Mediterranean Basins. The Mesozoic-Cenozoic sedimentary sequence similarly consists of a succession of eustatically and tectonically controlled depositional cycles. Through time, progressive southwards shift of the basin margins occurred, related to the opening of the Neotethys Ocean and to the transgressions resulting from warming of the global climate and associated rise of the global sea level. The Guinean-Nigerian Shield, the Hoggar, Tibesti-Central Cyrenaica, Nubia, western Saudi Arabia, Central African Republic, and other long-lived arches delimited the principal basins. The main tectonic events were the polyphased extension, inversion, and folding of the northern African-Arabian shelf margin resulting in the development of the Alpine Maghrebian and Syrian Arc belts, rifting and drifting along the Central Atlantic, Somali Basins, and Gulf of Aden-Red Sea domains, inversion of the Murzuq-Djado Basin, and rifting and partial inversion along the Central African Rift System. Two major compressional events occurred in the Late Santonian and early Late Eocene. The former entailed folding and strike-slip faulting along the northeastern African-northern Arabian margin (Syrian Arc) and the Central African Fold Belt System (from Benue to Ogaden), and thrusting in Oman. The latter ("Pyrenean-Atlasic") resulted in folding, thrusting, and local metamorphism of the northern African-Arabian plate margin, and rejuvenation of intra-plate fault zones. Minor or more localized compressional deformations took place in the end Cretaceous, the Burdigalian, the Tortonian and Early Quaternary. Recent tectonic activity is mainly concentrated along the Maghrebian Alpine Belt, the offshore Nile Delta, the Red Sea-East African Rifts Province, the Aqaba-Dead Sea-Bekaa sinistral strike-slip fault zone, and some major intra-plate fault zones including the Guinean-Nubian, Aswa, and central Sinai lineaments. Large, long-lived magmatic provinces developed in the Egypt-Sudan confines (Nubia), in the Hoggar-Air massifs, along the Cameroon Line and Nigerian Jos Plateau, and along the Levant margin, resulting in uplifts that influenced the paleogeography. Extensive tholeiitic basaltic magmatism at ˜200 Ma preceded continental break-up in the Central Atlantic domain, while extensive alkaline to transitional basaltic magmatism accompanied the Oligocene to Recent rifting along the Red Sea-Gulf of Aden-East African rift province.

  8. Erosional history of the Appalachians as recordeed in detrital zircon fission-track ages and lithic detritus in Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Naeser, C.W.; Naeser, N.D.; Edwards, Lucy E.; Weems, Robert E.; Southworth, C. Scott; Newell, Wayne L.

    2016-01-01

    Comparison of fission-track (FT) ages of detrital zircons recovered from Atlantic Coastal Plain sediments to FT ages of zircons from bedrock in source terranes in the Appalachians provides a key to understanding the provenance of the sediments and, in turn, the erosional and depositional history of the Atlantic passive margin.In Appalachian source terranes, the oldest zircon fission-track (ZFT) ages from bedrock in the western Appalachians (defined for this paper as the Appalachian Plateau, Valley and Ridge, and far western Blue Ridge) are notably older than the oldest ages from bedrock in the eastern Appalachians (Piedmont and main part of the Blue Ridge). The age difference is seen both in ZFT sample ages and in individual zircon grain ages and reflects differences in the thermotectonic history of the rocks. In the east, ZFT data indicate that the rocks cooled from temperatures high enough to partially or totally reset ZFT ages during the Paleozoic and (or) Mesozoic. The majority of the rocks are interpreted to have cooled through the ZFT closure temperature (∼235 °C) at various times during the late Paleozoic Alleghanian orogeny. In contrast, most of the rocks sampled in the western Appalachians have never been heated to temperatures high enough to totally reset their ZFT ages. Reflecting their contrasting thermotectonic histories, nearly 80 percent of the sampled western rocks yield one or more zircon grains with very old FT ages, in excess of 800 Ma; zircon grains yielding FT ages this old have not been found in rocks in the Piedmont and main part of the Blue Ridge. The ZFT data suggest that the asymmetry of zircon ages of exposed bedrock in the eastern and western Appalachians was in evidence by no later than the Early Cretaceous and probably by the Late Triassic.Detrital zircon suites from sands collected in the Atlantic Coastal Plain provide a record of detritus eroded from source terranes in the Appalachians during the Mesozoic and Cenozoic. In Virginia and Maryland, sands of Early Cretaceous through late early Oligocene age do not yield any old zircons comparable in age to the old zircons found in bedrock in the western Appalachians. Very old zircons yielding FT ages >800 Ma are only encountered in Coastal Plain sands of middle early Miocene and younger age.Miocene and younger fluvial-deltaic deposits associated with the major mid-Atlantic Coastal Plain rivers that now head in the western Appalachians (the Hudson, Delaware, Susquehanna, Potomac, James, and Roanoke) contain abundant clasts of fossiliferous chert and quartzite and other distinctive rock types derived from Paleozoic rocks of the western Appalachians. These distinctive clasts have not been reported in older Coastal Plain sediments.The ZFT and lithic detritus data indicate that the drainage divide for one or more east-flowing mid-Atlantic rivers migrated west into the western Appalachians, and the river(s) began transporting western Appalachian detritus to the Atlantic Coastal Plain, sometime between the late early Oligocene and middle early Miocene. By no later than late middle Miocene most if not all of the major rivers that now head west of the Blue Ridge were transporting western Appalachian detritus to the Coastal Plain. Prior to the drainage divide migrating into the western Appalachians, the ZFT data are consistent with the dominant source of Atlantic Coastal Plain sediments being detritus from the Piedmont and main part of the Blue Ridge, with possible input from distant volcanic sources.The ZFT data suggest that the rapid increase in the rate of siliciclastic sediment accumulation in middle Atlantic margin offshore basins that peaked in the middle Miocene and produced almost 30 percent of the total volume of post-rift siliciclastic sediments in the offshore basins began in the early Miocene when Atlantic river(s) gained access to the relatively easily eroded Paleozoic sedimentary rocks of the western Appalachians.

  9. A new model for the development of the active Afar volcanic margin

    NASA Astrophysics Data System (ADS)

    Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie

    2016-04-01

    Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in response to the deformation of the lithosphere, through a petrological and geochemical study of the pre- to syn-rift lavas and concluded that the lithospheric mantle experienced the combined effect of post-plume cooling, but also thinning during the Miocene. This is accompanied by the early channelization of the plume head into narrower zones, which helped focus extension at the future volcanic margins location. The anomalous mantle potential temperature increased during the very last localization phase (< 1 Ma), which leads us to argue in favor of the focussed activity of a plume stem below the volcanic margin, instead of purely passive adiabatic decompression. Our new interpretation of the regional isotopic signatures of lavas depicts a clear framework of the Afar plume and lithospheric mantle relationships to on going extension and segmentation of these margins, and allow us to propose new contrasted models for their development.

  10. IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) - basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution

    NASA Astrophysics Data System (ADS)

    Flood, Roger D.; Violante, Roberto A.; Gorgas, Thomas; Schwarz, Ernesto; Grützner, Jens; Uenzelmann-Neben, Gabriele; Hernández-Molina, F. Javier; Biddle, Jennifer; St-Onge, Guillaume; Workshop Participants, Apvcm

    2017-05-01

    The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic-Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8-11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.

  11. Transformation and diversification in early mammal evolution.

    PubMed

    Luo, Zhe-Xi

    2007-12-13

    Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.

  12. Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth

    NASA Astrophysics Data System (ADS)

    Insel, N.; Grove, M.; Haschke, M.; Barnes, J. B.; Schmitt, A. K.; Strecker, M. R.

    2012-12-01

    Constraining the pre-Neogene history of the Puna plateau is crucial for establishing the initial conditions that attended the early stage evolution of the southern extent of the Andean plateau. We apply high- to low-temperature thermochronology data from plutonic rocks in northwestern Argentina to quantify the Paleozoic, Mesozoic and early Tertiary cooling history of the Andean crust. U-Pb crystallization ages of zircons indicate that pluton intrusion occurred during the early mid-Ordovician (490-470 Ma) and the late Jurassic (160-150 Ma). Lower-temperature cooling histories from 40Ar/39Ar analyses of K-feldspar vary substantially. Basement rocks underlying the western Puna resided at temperatures below 200°C (<6 km depth) since the Devonian (˜400 Ma). In contrast, basement rocks underlying the southeastern Puna were hotter (˜200-300°C) throughout the Paleozoic and Jurassic and cooled to temperatures of <200°C by ˜120 Ma. The southeastern Puna basement records a rapid cooling phase coeval with active extension of the Cretaceous Salta rift at ˜160-100 Ma that we associate with tectonic faulting and lithospheric thinning. The northeastern Puna experienced protracted cooling until the late Cretaceous with temperatures <200°C during the Paleocene. Higher cooling rates between 78 and 55 Ma are associated with thermal subsidence during the postrift stage of the Salta rift and/or shortening-related flexural subsidence. Accelerated cooling and deformation during the Eocene was focused within a narrow zone along the eastern Puna/Eastern Cordillera transition that coincides with Paleozoic/Mesozoic structural and thermal boundaries. Our results constrain regional erosion-induced cooling throughout the Cenozoic to have been less than ˜150°C, which implies total Cenozoic denudation of <6-4 km.

  13. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights From Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling

    NASA Astrophysics Data System (ADS)

    Xue, Zhenhua; Martelet, Guillaume; Lin, Wei; Faure, Michel; Chen, Yan; Wei, Wei; Li, Shuangjian; Wang, Qingchen

    2017-12-01

    This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS) measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular gravity models not only support the imbricated shape of the Pengguan complex but also reveal an imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally, this suggests a basement-slice-imbricated structure that developed along the margin of the Yangtze Block, as shown by the regional gravity anomaly map, together with the published nearby seismic profile and the distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.

  14. Record of Cyclical Massive Upwellings from the Pacific Large Low Shear Velocity Province in the Mesozoic

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Madrigal, P.; Flores, K. E.; Bizimis, M.; Jicha, B. R.

    2016-12-01

    Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins of the large low shear velocity provinces (LLSVPs). In these locations the ascent of material from the core-mantle boundary connects the deep Earth with surface processes through mantle plume activity, forming large igneous provinces (LIPs) and some of the modern hotspot volcanoes. Petrological and geodynamic evidence suggest a link between the formation of oceanic plateaus and the interactions of mantle plumes and mid-ocean ridges (MOR). Therefore, it is possible to trace the potential interactions between MORs and deep mantle plume upwellings by referencing the tectonic and magmatic evolution of the Pacific Plate in time to the current location of the LLSVP, considering the long-lived ( 500 Ma) existence of these thermochemical anomalies. We identified episodic upwellings of the Pacific LLSVP during the Mesozoic separated by 10 to 20 Ma, by reconstructing the kinematic evolution of the Pacific Plate in the last 170 Ma. The fact that the bulk emplacement of LIPs ( 120-80 Ma) in the Pacific coincides with the timing of the Cretaceous Normal Superchron, that can be related to fluctuations of mantle-core heat fluxes further supports the hypothesis of deep mantle origin for LIPs. The potential cyclicity of LIP emplacement could be tied to core heat fluctuations interacting with the lower mantle, the rheology contrast of material crossing the transition zone (either upwelling hot material or downgoing dense slabs as mantle avalanches), the rate of entrainment of recycled materials, or a combination of the processes mentioned. Recognizing patterns and possible cycles is crucial to the link between deep processes and life as these pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.

  15. Hells Canyon to the Bitterroot front: A transect from the accretionary margin eastward across the Idaho batholith

    USGS Publications Warehouse

    Lewis, Reed S.; Smith, Keegan L.; Gaschnig, Richard M.; LaMaskin, Todd A.; Lund, Karen; Gray, Keith D.; Tikoff, Basil; Stetson-Lee, Tor; Moore, Nicholas

    2014-01-01

    This field guide covers geology across north-central Idaho from the Snake River in the west across the Bitterroot Mountains to the east to near Missoula, Montana. The regional geology includes a much-modified Mesozoic accretionary boundary along the western side of Idaho across which allochthonous Permian to Cretaceous arc complexes of the Blue Mountains province to the west are juxtaposed against autochthonous Mesoproterozoic and Neoproterozoic North American metasedimentary assemblages intruded by Cretaceous and Paleogene plutons to the east. The accretionary boundary turns sharply near Orofino, Idaho, from north-trending in the south to west-trending, forming the Syringa embayment, then disappears westward under Miocene cover rocks of the Columbia River Basalt Group. The Coolwater culmination east of the Syringa embayment exposes allochthonous rocks well east of an ideal steep suture. North and east of it is the Bitterroot lobe of the Idaho batholith, which intruded Precambrian continental crust in the Cretaceous and Paleocene to form one of the classical North American Cordilleran batholiths. Eocene Challis plutons, products of the Tertiary western U.S. ignimbrite flare-up, intrude those batholith rocks. This guide describes the geology in three separate road logs: (1) The Wallowa terrane of the Blue Mountains province from White Bird, Idaho, west into Hells Canyon and faults that complicate the story; (2) the Mesozoic accretionary boundary from White Bird to the South Fork Clearwater River east of Grangeville and then north to Kooskia, Idaho; and (3) the bend in the accretionary boundary, the Coolwater culmination, and the Bitterroot lobe of the Idaho batholith along Highway 12 east from near Lewiston, Idaho, to Lolo, Montana.

  16. Geologic map of the Skykomish River 30- by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Frizzell, D.A.; Booth, D.B.; Waitt, R.B.; Whetten, J.T.; Zartman, R.E.

    1993-01-01

    From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The Straight Creek Fault, a major Pacific Northwest structure which almost bisects the quadrangle, mostly separates unmetamorphosed and low-grade metamorphic Paleozoic and Mesozoic oceanic rocks on the west from medium- to high-grade metamorphic rocks on the east. Within the quadrangle the lower grade rocks are mostly Mesozoic melange units. To the east, the higher-grade terrane is mostly the Chiwaukum Schist and related gneisses of the Nason terrane and invading mid-Cretaceous stitching plutons. The Early Cretaceous Easton Metamorphic Suite crops out on both sides of the Straight Creek fault and records it's dextral displacement. On the south margin of the quadrangle, the fault separates the lower Eocene Swauk Formation on the east from the upper Eocene and Oligocene(?) Naches Formation and, farther north, it's correlative Barlow Pass Volcanics the west. Stratigraphically equivalent rocks ot the Puget Group crop out farther to the west. Rocks of the Cascade magmatic arc are mostly represented by Miocene and Oligocene plutons, including the Grotto, Snoqualmie, and Index batholiths. Alpine river valleys in the quadrangle record multiple advances and retreats of alpine glaciers. Multiple advances of the Cordilleran ice sheet, originating in the mountains of British Columbia, Canada, have left an even more complex sequence of outwash and till along the western mountain front, up these same alpine river valleys, and over the Puget Lowland.

  17. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. Amore » second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.« less

  18. Epithermal gold-siver deposits in the western United States: time-space products of evolving plutonic, volcanic and tectonic environments

    USGS Publications Warehouse

    Berger, Byron R.; Bonham, Harold F.

    1990-01-01

    The western United States has been the locus of considerable subaerial volcanic and plutonic igneous activity since the mid-Mesozoic. After the destruction of the Jurassic-Cretaceous magmatic arc-trench system, subduction was re-established in the Late Mesozoic with low-angle underthrusting of the oceanic plate beneath western North America. This resulted in crustal shortening during the Late Cretaceous to Early Tertiary and removal of the mantle lithosphere west of the Rocky Mountains. Commencing in the Eocene, flat subduction ceased, the volcanic arc began to re-establish itself along the continental margin, and the hingeline along the steepening subducting plate migrated from east to west. The crust east of the migrating hingeline was exposed to hot asthenosphere, and widespread tectonics and volcanic activity resulted. Hydrothermal activity accompanied the volcanism resulting in numerous epithermal gold-silver deposits. The temporal and spatial distributions of epithermal deposits in the region are therefore systematic and can be subdivided into discrete time intervals which are related to widespread changes in magmatic activity. Time intervals selected for discussion are Pre-Cenozoic, 66-55 Ma, 54-43 Ma, 42-34 Ma, 33-24 Ma, 23-17 Ma, and <17 Ma. Many of these intervals contain both sedimentary-rock and two varieties of volcanic-rock hosted deposits (adularia-sericite and alunite-kaolinite ± pyrophyllite). Continental rifting is important to the formation of deposits, and, within any given region, it is at the initiation of deep rifting that alunite-kaolinite ± pyrophyllite type epithermal deposits are formed. Adularia-sericite type deposits are most common, being related to all compositions and styles of volcanic activity. Therefore, the volcano-tectonic context of the western United States provides a unified framework in which to understand and explore for epithermal type deposits.

  19. Polar continental margins: Studies off East Greenland

    NASA Astrophysics Data System (ADS)

    Mienert, J.; Thiede, J.; Kenyon, N. H.; Hollender, F.-J.

    The passive continental margin off east Greenland has been shaped by tectonic and sedimentary processes, and typical physiographic patterns have evolved over the past few million years under the influence of the late Cenozoic Northern Hemisphere glaciations. The Greenland ice shield has been particularly affected.GLORIA (Geological Long Range Inclined Asdic), the Institute of Oceanographic Sciences' (IOS) long-range, side-scan sonar, was used on a 1992 RV Livonia cruise to map large-scale changes in sedimentary patterns along the east Greenland continental margin. The overall objective of this research program was to determine the variety of large-scale seafloor processes to improve our understanding of the interaction between ice sheets, current regimes, and sedimentary processes. In cooperation with IOS and the RV Livonia, a high-quality set of seafloor data has been produced. GLORIA'S first survey of east Greenland's continental margin covered several 1000- × 50-km-wide swaths (Figure 1) and yielded an impressive sidescan sonar image of the complete Greenland Basin and margin (about 250,000 km2). A mosaic of the data was made at a scale of 1:375,000. The base map was prepared with a polar stereographic projection having a standard parallel of 71°.

  20. Tectonic evolution and extension at the Møre Margin - Offshore mid-Norway

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, S.; Zastrozhnov, D.; Abdelmalak, M. M.; Schmid, D. W.; Faleide, J. I.; Gernigon, L.

    2017-11-01

    Lithospheric stretching is the key process in forming extensional sedimentary basins at passive rifted margins. This study explores the stretching factors, resulting extension, and structural evolution of the Møre segment on the Mid-Norwegian continental margin. Based on the interpretation of new and reprocessed high-quality seismic, we present updated structural maps of the Møre margin that show very thick post-rift sediments in the central Møre Basin and extensive sill intrusion into the Cretaceous sediments. A major shift in subsidence and deposition occurred during mid-Cretaceous. One transect across the Møre continental margin from the Slørebotn Subbasin to the continent-ocean boundary is reconstructed using the basin modelling software TecMod. We test different initial crustal configurations and rifting events and compare our structural reconstruction results to stretching factors derived both from crustal thinning and the classical backstripping/decompaction approach. Seismic interpretation in combination with structural reconstruction modelling does not support the lower crustal bodies as exhumed and serpentinised mantle. Our extension estimate along this transect is 188 ± 28 km for initial crustal thickness varying between 30 and 40 km.

  1. A passive gust alleviation system for a light aircraft

    NASA Technical Reports Server (NTRS)

    Roesch, P.; Harlan, R. B.

    1975-01-01

    A passive aeromechanical gust alleviation system was examined for application to a Cessna 172. The system employs small auxiliary wings to sense changes in angle of attack and to drive the wing flaps to compensate the resulting incremental lift. The flaps also can be spring loaded to neutralize the effects of variations in dynamic pressure. Conditions for gust alleviation are developed and shown to introduce marginal stability if both vertical and horizontal gusts are compensated. Satisfactory behavior is realized if only vertical gusts are absorbed; however, elevator control is effectively negated by the system. Techniques to couple the elevator and flaps are demonstrated to restore full controllability without sacrifice of gust alleviation.

  2. The Norwegian remote sensing experiment (Norsex) in a marginal ice zone

    NASA Technical Reports Server (NTRS)

    Farrelly, B.; Johannessen, J.; Johannessen, O. M.; Svendson, E.; Kloster, K.; Horjen, I.; Campbell, W. J.; Crawford, J.; Harrington, R.; Jones, L.

    1981-01-01

    Passive and active microwave measurements from surface based, airborne, and satellite instruments were obtained together with surface observations northwest of Svalbard. Emissivities of different ice patches in the ice edge region over the spectral range from 4.9 to 94 GHz are presented. The combination of a 6.6 GHz microwave radiometer with a 14.6 GHz scatterometer demonstrates the usefulness of an active/passive system in ice classification. A variety of mesoscale features under different meteorological conditions is revealed by a 1.36 GHz synthetic aperture radar. Ice edge location by Nimbus 7 scanning multifrequency microwave radiometer is shown accurate to 10 km when the 37 GHz horizontal polarized channel is used.

  3. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225-185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158-100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.

  4. Variations of mesoscale and large-scale sea ice morphology in the 1984 Marginal Ice Zone Experiment as observed by microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.

    1987-01-01

    The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.

  5. Shelf-geometry response to changes in relative sea level on a mixed carbonate siliciclastic shelf in the Guyana Basin

    NASA Astrophysics Data System (ADS)

    Campbell, A. Ewan

    2005-04-01

    Differences in the shelf-margin geometry for various depositional regimes show how siliciclastic and carbonate margins respond differently to changes in accommodation space. During the Cenozoic, sequences of carbonate and siliciclastic sediment were deposited in the Guyana Basin on the passive continental margin of NE South America. Study of the sequence geometries reveal significantly different geometric responses to changes in relative sea level of intervals dominated by carbonates to intervals dominated by siliciclastics. Using the geometrical shelf break as a reference point, aggradation and progradation rates for the carbonate and siliciclastic depositional systems were measured. In siliciclastics, the lateral position of the margin remains roughly stationary with relative sea-level rises in the order of 30 m/My. At higher rates the margin retreats at lower rates it progrades. Carbonate margins remain stationary or slightly progradational even with relative sea-level rises of up to 100 m/My, the fastest rates observed in this study. This illustrates the strong tendency of carbonate platforms to stack their margins and keep up with relative rises in sea level, rather than gradually retreat landward as do siliciclastics. This observation may explain why carbonate platforms preferentially try to defend a margin prior to ultimate backstepping. The high aggradation potential of carbonate margins also gives onlap and downlap termination patterns on seismic profiles where carbonate platforms develop on sloping siliciclastic shelves. The resulting unconformities are a result of differences in sediment dispersal between the two systems and not necessarily from changes of relative sea level.

  6. Seismic stratigraphy of the Mianwali and Bannu depressions, north-western Indus foreland basin

    NASA Astrophysics Data System (ADS)

    Farid, Asam; Khalid, Perveiz; Ali, Muhammad Y.; Iqbal, Muhammad Asim; Jadoon, Khan Zaib

    2017-11-01

    Regional seismic reflection profiles, deep exploratory wells, and outcrop data have been used to study the structure and stratigraphic architecture of the Mianwali and Bannu depressions, north-western Indus foreland basin. Synthetic seismograms have been used to identify and tie the seismic horizons to the well data. Nine mappable seismic sequences are identified within the passive and active margin sediments. In general, the Mianwali and Bannu depressions deepens towards north due to the flexure generated by the loading and southward shifting of the thrust sheets of the North-western Himalayan Fold and Thrust Belt. The seismic profiles show a classic wedge shaped foreland basin with a prominent angular unconformity which clearly differentiates the active and passive margin sediments. The onlap patterns in the Late Cretaceous sediments suggest the initial onset of foreland basin formation when the Indian Plate collided with Eurasian Plate. As the collision progressed, the lithospheric flexure caused an uplift along the flexural bulge which resulted in onlaps within the Paleocene and Eocene sequences. The tectonic activity reached to its maximum during Oligocene with the formation of a prominent unconformity, which caused extensive erosion that increases towards the flexural bulge.

  7. Reworked crustal of early Paleozoic WuYi Orogen revealed by receiver function data

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Duan, Y.; Tian, X.; Zhao, Y.

    2017-12-01

    Intraplate orogenic belt, which occurs at the rigid and undeformable plate interiors, is a distinct new type of orogen rather than an interplate or plate marginal orogenic belt, whose deformation occurs exclusively at plate margins. Therefore, intraplate orogenic belts are the most obvious exception to the plate-tectonic paradigm, they are uncommon in Earth's history. The early Paleozoic Wuyi orogen in South China is one of the few examples of intraplate orogen, and is a key to understanding the process of intraplate orogenesis and global early Paleozoic geodynamics. In this study, we select teleseismic records from 45 mobile linear seismic stations deployed in Wuyi Mountain and 58 permanent stations setting in Jiangxi and Fujian provinces, from January 2011 to December 2012, and calculate the crustal thickness and average crustal Vp/Vs ratio using the H-κ stacking method. The main results include the following: 1) the crustal average Poission's ratio shows an increase tendency from land to sea, the interior of Wuyi orogen belt with an low ration less than 0.23, and the coastline with high ration which is up to 0.28, which indicate a very heterogeneous crustal structure and composition in Wuyi orogen and coast belt. 2) the crustal thickness ranges 28-34 km and shows a tendency of thinning from inland to coast in the region of SE China margin, which maight mean the eastern Eurasia lithospheric is extension and thinning induced by the subducted paleo-Pacific slab. To conclusion, we assume that Wuyi orogen experienced upper crustal thickening, lower crust and lithosphere delamination during the early Paleozoic orogeny, and lithosphere extension in Mesozoic. This research is founded by the Natural Science Foundation of China (41174052 and 41604048).

  8. Plate tectonic model for the oligo-miocene evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Cohen, Curtis R.

    1980-10-01

    This paper outlines a plate tectonic model for the Oligo-Miocene evolution of the western Mediterranean which incorporates recent data from several tectonic domains (Corsica, Sardinia, the Kabylies, Balearic promontory, Iberia, Algero-Provençal Basin and Tunisian Atlas). Following late Mesozoic anticlockwise rotation of the Iberian peninsula (including the Balearic promontory and Sardinia), late Eocene collision occurred between the Kabylies and Balearic promontory forming a NE-trending suture with NW-tectonic polarity. As a result of continued convergence between the African and European plates, a polarity flip occurred and a southward-facing trench formed south of the Kabylie—Balearic promontory suture. During late Oligocene time an E-W-trending arc and marginal basin developed behind the southward-facing trench in the area of the present-day Gulf of Lion. Opening of this basin moved the Corsica—Sardinia—Calabria—Petit Kabylie—Menorca plate southward, relative to the African plate. Early Miocene back-arc spreading in the area between the Balearic promontory and Grand Kabylie emplaced the latter in northern Algeria and formed the South Balearic Basin. Coeval with early Miocene back-arc basin development, the N-S-extension in the Gulf of Lion marginal basin changed to a more NW-SE direction causing short-lived extension in the area of the present-day Valencia trough and a 30° anticlockwise rotation of the Corsica-Sardinia-Calabria—Petit Kabylie plate away from the European plate. Early—middle Miocene deformation along the western Italian and northeastern African continental margins resulted from this rotation. During the early late Miocene (Tortonian), spreading within a sphenochasm to the southwest of Sardinia resulted in the emplacement of Petit Kabylie in northeastern Algeria.

  9. Fractionation of palladium and platinum in a Mesozoic diabase sheet, Gettysburg basin, Pennsyvania: implications for mineral exploration

    USGS Publications Warehouse

    Gottfried, D.; Froelich, A.J.; Rait, N.; Aruscavage, P. J.

    1990-01-01

    The York Haven diabase sheet displays clear-cut evidence of fractionation of Pd and Pt during differentiation of a high-Ti (about 1.1%) quartz-normative tholeiitic magma (York Haven type). At York Haven the sheet is about 750 m thick. It is characterized by abundant cumulus MgO-rich orthopyroxene (bronzite), and is markedly depleted in incompatible elements relative to the chilled margins. In contrast, at Reesers Summit, 16 km to the northwest, the sheet is about 500 m thick and consists of evolved rocks that have contents of incompatible elements two to three times greater than in the enclosing chilled margins. These evolved rocks represent complementary fractions to the cumulate rocks at York Haven. Mineralogic, petrologic and geochemical variations suggest considerable lateral migration and fractionation of the initial magma. Chilled margins of both sections have essentially the same Pd and Pt contents (10 ppb each) and similar Pd to Pt ratios (1.2). During differentiation, the cumulate rocks at York Haven were enriched in Pt and depleted in Pd, whereas at Reesers Summit, the low-MgO diabase and ferrogabbro zone were enriched in Pd relative to Pt. Anomalously high contents of Pd (to 165 ppb), Au (to 54 ppb), and Te (to 26 ppb) were found in an iron- (to 18%) and chlorine- (to 0.44%) rich ferrogabbro at Reesers Summit, suggesting possible late or post-magmatic enrichment of precious metals. Field relations, geochemical and petrographic data provide guides for further exploration for Pd and Pt in differentiated high-Ti quartz-normative diabase sheets. Based on present information, the most favorable sites for economic deposits are late-stage differentiates enriched in Fe and Cl. ?? 1990.

  10. Evolution of Devonian carbonate-shelf margin, Nevada

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.

    2008-01-01

    The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of America.

  11. Geologic implications of new zircon U-Pb ages from the White Mountain Peak Metavolcanic Complex, eastern California

    NASA Astrophysics Data System (ADS)

    Scherer, Hannah H.; Ernst, W. G.; Brooks Hanson, R.

    2008-04-01

    The NNW-trending White-Inyo Range includes intrusive and volcanic rocks on the eastern flank of the Sierran volcano-plutonic arc. The NE-striking, steeply SE-dipping Barcroft reverse fault separates folded, metamorphosed Mesozoic White Mountain Peak mafic and felsic volcanic flows, volcanogenic sedimentary rocks, and minor hypabyssal plugs on the north from folded, well-bedded Neoproterozoic-Cambrian marble and siliciclastic strata on the south. The 163 ± 2 Ma Barcroft Granodiorite rose along this fault, and thermally recrystallized its wall rocks. However, new SHRIMP-RG ages of magmatic zircons from three White Mountain Peak volcanogenic metasedimentary rocks and a metafelsite document stages of effusion at ˜115-120 Ma as well as at ˜155-170 Ma. The U-Pb data confirm the interpretation by Hanson et al. (1987) that part of the metasedimentary-metavolcanic pile was laid down after Late Jurassic intrusion of the Barcroft pluton. The Lower Cretaceous, largely volcanogenic metasedimentary section lies beneath a low-angle thrust fault, the upper plate of which includes interlayered Late Jurassic mafic and felsic metavolcanic rocks and the roughly coeval Barcroft pluton. Late Jurassic and Early Cretaceous volcanism in this sector of the Californian continental margin, combined with earlier petrologic, structural, and geochronologic studies, indicates that there was no gap in igneous activity at this latitude of the North American continental margin.

  12. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Dong, Shuwen; Cawood, Peter A.; Zhao, Guochun; Johnston, Stephen T.; Zhang, Yueqiao; Xin, Yujia

    2018-05-01

    In the Mesozoic, South China was situated along the convergent margin between the Asian and Pacific plates, providing an excellent laboratory to understand the interactions between deformation, sedimentation and magmatism in a retroarc environment. The crustal architecture of northwest South China is displayed along the ∼600-km-long SINOPROBE deep seismic reflection profiles and reveals from east to west: (1) highly folded and truncated reflectors in the upper crust of the Yangtze Fold Zone, which correspond to thin- and thick-skinned thrust systems, and document large-scale intraplate structural imbrication and shortening; (2) a crustal-scale flat-ramp-flat structure, termed the Main Yangtze decollement, which forms a weak, viscous layer to accommodate strain decoupling and material transport in the thin- and thick-skinned systems; and (3) nearly flat-lying reflectors in the Sichuan Basin, which support interpretation of the basin as a weakly deformed depocentre. The Yangtze Fold Zone and the Sichuan Basin represent a retro-arc foreland basin system that is >800 km away from the continental-margin magmatic arc. We suggest that tectonic processes across the arc and retro-arc systems, including arc magma flare-up, basin sedimentation, retroarc thrust propagation, lithosphere underthrusting, root foundering, and extension-related magmatism were interrelated and governed mass transfer. Age data and geological relations link the tectonic processes to evolving geodynamics of the subducting Paleo-Pacific plate.

  13. Passive and active vibration isolation systems using inerter

    NASA Astrophysics Data System (ADS)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  14. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber

    PubMed Central

    Giribet, Gonzalo; Dunlop, Jason A

    2005-01-01

    Two inclusions in a piece of Upper Cretaceous (Albian) Burmese amber from Myanmar are described as a harvestman (Arachnida: Opiliones), Halitherses grimaldii new genus and species. The first Mesozoic harvestman to be named can be referred to the suborder Dyspnoi for the following reasons: prosoma divided into two regions, the posterior formed by the fusion of the meso- and metapeltidium; palp lacking a terminal claw, with clavate setae, and tarsus considerably shorter than the tibia. The bilobed, anteriorly projecting ocular tubercle is reminiscent of that of ortholasmatine nemastomatids. The status of other Mesozoic fossils referred to Opiliones is briefly reviewed. PMID:16024358

  15. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC affords to operate the radiometer component away from the problematic temperature zone. A simple ThermXL model (10 nodes) was developed to exercise quick trade studies among various proposed control algorithms: Modified P control vs. PI control. The ThermXL results were then compared with the detailed Thermal Desktop (TD) model for corroboration. Once done, the simple ThermXL model was used to evaluate parameter effects such as temperature digitization, heater size and gain margin, time step, and voltage variation of power supply on the ATC performance. A Modified P control algorithm was implemented into the instrument flight electronics based on the ThermXL results. The thermal short-term stability margin decreased by 10 percent with ATC and a wide temperature error band (plus or minus 0.1 degrees Centigrade) compared to the original passive thermal design. However, a tighter temperature error band (plus or minus 0.1 degrees Centigrade) increased the thermal short-term stability margin by a factor of three over the passive thermal design. The current ATC design provides robust thermal control, tighter stability, and greater in-flight flexibility even though its implementation was prompted by non-thermal performance concerns.

  16. Neoproterozoic fragmentation of the Scottish Sector of Laurentia - an ancient analogue for the Iberian and UK/Irish ocean-continent transition zones

    NASA Astrophysics Data System (ADS)

    Leslie, G.; Krabbendam, M.

    2009-04-01

    The Neoproterozoic Dalradian Supergroup of Scotland and Ireland is intensively deformed and metamorphosed by mid-Ordovician arc-accretion (c. 460 Ma) during the Caledonian Orogeny. Emplacement of an extensive suite of Siluro-Devonian Caledonian granitoids further complicates reading the sedimentary record. Nevertheless we can determine a history of stretching and break-up affecting the Neoproterozoic supercontinent of Rodinia and leading to creation of the Iapetus Ocean. Three key intervals of late-Neoproterozoic sediment accumulation are recognised - new geological mapping, isotopic datasets (Sr, O and C, U/Pb zircon, Sm/Nd WR), and sequence stratigraphical approaches are refining constraints on the lithostratigraphical architecture and basin evolution of the Dalradian Supergroup. Thick siliciclastic deposits accumulated (pre-800 Ma?) during an early stretching phase (distributed high angle faulting) that led to crustal thinning (low angle shearing). Three major limestone - pelite - quartzite depositional cycles succeeded these earlier siliciclastic deposits, recording episodic subsidence in an intracratonic but largely marine environment; the second cycle overlaps the late Precambrian (Cryogenian) glaciation and concludes with the distinctive Marinoan tillite succession (c. 635Ma). The last of the three cycles is terminated, in some parts of the Dalradian, by deposition of serpentinitic muds and conglomerates and volcaniclastic sediments; pods and lenses of both massive and serpentinised ultramafic rock also interrupt the sedimentary record at this level (thus possibly indicating mantle exhumation). In other areas, a major part of the ‘type' Dalradian succession is absent and we now recognise a major overstep unconformity at this level. From this level onwards across the Dalradian, rapid foundering of the margin, and the transition from rift- to drift-dominated processes, resulted in an overstepping accumulation of laterally and vertically variable, increasingly immature clastic sediments and volcanic rocks. Within 30-40 Ma of the end of Marinoan glaciation, an Iapetan oceanic rift was generating MORB rocks in a localised 600 my old (proto-) rift in the SW part of the Grampian Terrane. Rapid foundering thus pre-dated the first appearance of MORB basalts. Turbidite deposition then persisted after this first emergence of oceanic rocks until the early-Ordovician when convergence began to record arc-accretion and collision. During rift-drift transition, continental fragments apparently separated from the passive margin; the architecture of the Scotland-Greenland sector of Laurentia possibly resembled the present-day configuration of troughs and highs on the UK/Irish sector of the Atlantic continental shelf. Marginal plateaux analogous to the Rockall platform would have been separated from the intact continental margin by sub-basins analogous to the Rockall Trough. Such features would have channelled sediment outboard of, and along, the new passive margin in submarine fan systems. The extensional geometries of the various components of this architecture exerted control on the collisional geometry and acted as nuclei for deformation structures during Grampian orogenesis. Compound collisions in the mid-Ordovician stacked much of the original continental fragments into the complex pattern observed today. The challenge is thus to see through that later deformation and read the record of continental separation. There is much in the depositional architecture of the Dalradian Supergroup that suggests that a magma-poor passive margin is a viable model for this sector of the Laurentian margin.

  17. International Project - Atlas of Geological Maps of Central Asia and Adjacent Territories 1:2 500 000 Scale - the Status and the Development Prospects

    NASA Astrophysics Data System (ADS)

    Leonov, Y.; Petrov, O. V.; Dong, S.; Morozov, A.; Shokalsky, S.; Pospelov, I.; Erinchek, Y.; Milshteyn, E.

    2011-12-01

    This project is launched by geological surveys of Russia, China, Mongolia, Kazakhstan and the Republic of Korea with participation of National Academies of Sciences under the aegis of the Commission for the Geological Map of the World since 2004. The project goal is the compilation and subsequent monitoring of the set of digital geological maps for the large part of the Asian continent (20 million km2). Each country finances its own part of the project while all the issues concerning methods and technologies are discussed collectively during annual meetings and joint filed excursions. At the 33d IGC, were shown 4 digital maps of the Atlas at 1: 2,5M - geological, tectonic, metallogenic and energy resources. Geological and energy resources maps were compiled and published by the Chinese part while tectonic and metallogenic maps by Russian side (VSEGEI, Saint-Petersburg). The geological map was also used as the base for the compilation of the other maps of the Atlas. On the tectonic map colours indicate several stages of the continental crust consolidation within fold belts, their tectonic reworking and rifting. The map also shows rock complexes-indicators of geodynamic settings. In the platform areas, the colour reflects the time of beginning of the sedimentary cover formation while its shades reflect the thickness of the sediments. The metallogenic map of the Atlas depicts 1380 objects of metallogenic zoning (from super-provinces to ore clusters) and is accompanied with a database (more than 5000 ore deposits). The map of energy resources with the database contains information on the of coal- and oil-and-gas-bearing basins and main coal and hydrocarbon deposits. In 2009 the study area was extended to the North, East and South in order to embrace bigger territory with ore-bearing Mesozoic-Cenozoic volcanic belts of the Asian continent's Pacific margin. According to nearest plans, discussed with the head of Rosnedra Dr. Anatoliy Ledovskikh and the director of the geological survey of China Dr. Wang Min, in two last years we are going to put into practice the following directions: 1. Study of deep processes and metallogeny of the northern passive and eastern active continental margins of Asia with using of new isotopic data along geotransects and the reprocessing of 3-component seismic data and 3D modeling of the region deep structure. 2. Correlation of the tectonic evolution of the Tibetan Plateau and Baikal rift system in Cenozoic, which is of great importance for understanding the geodynamic evolution of the Central Asia and seismic predictions. 3. Comparison of Siberian and Emeishan major volcanic provinces, accompanied with unique ore deposits. Last VSEGEI isotopic studies revealed the significant role of assimilation of metasedimentary upper crust rocks by mantle magma in the formation of unique Norilsk copper-nickel deposits. The results of the next stage of joint studies under the project will be presented at the 34th IGC, at which a scientific symposium "Geological and Metallogenic Responses to Deep Processes in Eastern Asia and Continental Margins" is to be held.

  18. Geochronology and Structural Studies in the Northern Ritter Range: Implications for the Tectonic History of Mesozoic Sierra Nevada Arc

    NASA Astrophysics Data System (ADS)

    Black, C. J.; Whitesides, A. S.; Anderson, J. L.; Culbert, K. N.; Vandeveer, M.; Cox, I. V.; Cardamone, J.; Torrez, G.; Quirk, M.; Memeti, V.; Cao, W.; Paterson, S. R.

    2010-12-01

    Field mapping in the Northern Ritter Range pendant, central Sierra Nevada reveals four different lithotectonic units. Unit 1, east of Gem Lake, consists of Paleozoic passive margin metasedimentary rocks. Unit 2 lies unconformably above and west and is composed of Late Triassic to Middle Jurassic rhyolitic to andesitic, clast-rich, metavolcanic rocks that are typically massive, thick bedded, relatively homogeneous. Breccias and millimeter sized plagioclase phenocrysts are common in these beds. Unit 3 west of and structurally higher than unit 2 and is composed of thinly bedded metavolcanic and metasedimentary rocks of same age. Unit 2 and Unit 3 both steeply dipping and NW striking bedding and bedding parallel foliations. Unit 4 is composed of less deformed, Cretaceous, rhyolitic to andesitic breccias and rare volcaniclastic units that are west of and unconformably above unit 3. All units are now separated by faults. The Cretaceous dextral, oblique Gem Lake shear zone reactivated the uncomformity between units 1 and 2. West of the shear zone, both the shearing and strain intensity gradually decrease, the later from >60% to 40% shortening. Unit 2 and 3 are separated by a thrust fault, with local pseudotachelite now overprinted by ductile deformation. Unit 3 and 4 are now juxtaposed along a deformed unconformity west of which strain decreases to shortening values > 30%. These host rocks are intruded by granitic to dioritic plutons preserving a wide range of internal characteristics and emplacement styles. The oldest pluton is the 100 Ma Rush Creek Granodiorite, which intruded into unit 2. The Kuna Crest (KC, 94.6 Ma), the Waugh Lake (WL, 93.6 Ma), and the Thousand Island Lake leucogranodiorites (TIL) (~94 Ma) all intrude into the unit 3. The TIL cut the unconformity between units 3 and 4. The WL pluton is possibly cut by movement between units 2 and 3. The typically NW striking steeply dipping bedding in host rock units is dramatically deflected to EW orientations along the SW margin of the KC lobe. Within the nearby WL Granodiorite, hundreds of andesitic host rock blocks, some up to hundred meter lengths suggest that stoping was an important emplacement process. Migmatitic zones occur along several pluton margins. Our observations are consistent with aspects of the Tobisch et al. (2000) paper suggesting early brittle thrusting led to rotation of beds to steep dips. However our results indicate that beds were already at near vertical dips prior to ductile shortening and well before pluton emplacement. And although regional downward flow of extrusive volcanics has certainly occurred we see evidence against previous suggestions that this downward flow was localized in pluton aureoles as plutons typically cut discordantly across already steeply dipping beds and in turn are deformed by the younger ductile deformation. Although ductile shortening may play a minor role in rotation of beds, much of the ductile deformation had to occur after beds were steeply dipping as the 100-93.5 m.y. plutons have fabrics that are continuous with ductile deformation in the host rocks.

  19. Structures, microfabrics and textures of the Cordilleran-type Rechnitz metamorphic core complex, Eastern Alps☆

    PubMed Central

    Cao, Shuyun; Neubauer, Franz; Bernroider, Manfred; Liu, Junlai; Genser, Johann

    2013-01-01

    Rechnitz window group represents a Cordilleran-style metamorphic core complex, which is almost entirely located within nearly contemporaneous Neogene sediments at the transition zone between the Eastern Alps and the Neogene Pannonian basin. Two tectonic units are distinguished within the Rechnitz metamorphic core complex (RMCC): (1) a lower unit mainly composed of Mesozoic metasediments, and (2) an upper unit mainly composed of ophiolite remnants. Both units are metamorphosed within greenschist facies conditions during earliest Miocene followed by exhumation and cooling. The internal structure of the RMCC is characterized by the following succession of structure-forming events: (1) blueschist relics of Paleocene/Eocene age formed as a result of subduction (D1), (2) ductile nappe stacking (D2) of an ophiolite nappe over a distant passive margin succession (ca. E–W to WNW–ESE oriented stretching lineation), (3) greenschist facies-grade metamorphism annealing dominant in the lower unit, and (4) ductile low-angle normal faulting (D3) (with mainly NE–SW oriented stretching lineation), and (5) ca. E to NE-vergent folding (D4). The microfabrics are related to mostly ductile nappe stacking to ductile low-angle normal faulting. Paleopiezometry in conjunction with P–T estimates yield high strain rates of 10− 11 to 10− 13 s− 1, depending on the temperature (400–350 °C) and choice of piezometer and flow law calibration. Progressive microstructures and texture analysis indicate an overprint of the high-temperature fabrics (D2) by the low-temperature deformation (D3). Phengitic mica from the Paleocene/Eocene high-pressure metamorphism remained stable during D2 ductile deformation as well as preserved within late stages of final sub-greenschist facies shearing. Chlorite geothermometry yields two temperature groups, 376–328 °C, and 306–132 °C. Chlorite is seemingly accessible to late-stage resetting. The RMCC underwent an earlier large-scale coaxial deformation accommodated by a late non-coaxial shear with ductile low-angle normal faulting, resulting in subvertical thinning in the extensional deformation regime. The RMCC was rapidly exhumed during ca. 23–18 Ma. PMID:27065502

  20. Ambient noise tomography of the East African Rift in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Silveira, Graça; Ferreira, Ana M. G.; Chang, Sung-Joon; Custódio, Susana; Fonseca, João F. B. D.

    2016-03-01

    Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5-40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction parallel to the eastern limit of the Kaapvaal craton. We conclude that these two extensional structures herald the southward continuation of the EAR, and infer a structural control of the transition between the two types of crust on the ongoing deformation.

Top