Science.gov

Sample records for mesozoic-paleozoic hydrocarbon resource-rocks

  1. Hydrocarbon pneumonia

    MedlinePlus

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  2. Apparatus for hydrocarbon extraction

    DOEpatents

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  3. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  4. Oxygenated Derivatives of Hydrocarbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  5. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOEpatents

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  6. Plant hydrocarbon recovery process

    SciTech Connect

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  7. Subsea hydrocarbon sensor system

    SciTech Connect

    Marosko, R.J.; Warren, W.B.

    1981-08-04

    A hydrocarbon detection system is provided for use in a subsea hydrocarbon production installation which includes production tree assemblies, an electro-hydraulic control module located on the sea floor and remote from the production trees, cable assemblies interconnecting the control module with the production trees through magnetic coupling devices. A pair of inductive elements are electrically coupled by the surrounding sea water. Displacement of the conductive sea water by escaping hydrocarbons affects the coupling between the inductive elements to produce a hydrocarbon-presence-responsive output signal. The inductive elements are resonated within a selected frequency range by capacitors coupled with a primary inductor coil by auxiliary windings on a common core element. An excitation signal sweeps over the selected frequency range at a rate effective to produce a peak detected signal at the resonant frequency. The peak output signal is then monitored to form a control signal functionally related to the presence or absence of hydrocarbons in the sea water.

  8. Plasma Processing Of Hydrocarbon

    SciTech Connect

    Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

    2007-05-01

    The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

  9. Process for preparing hydrocarbons

    SciTech Connect

    Breuker, J.H.; De H.H.; Kwant, P.B.

    1980-01-15

    A process for preparing light distillate fractions and medicinal oil from heavy hydrocarbon oils comprises two-stage hydrocracking, fractionation distillation and catalytic hydrotreatment of at least part of the fractionation residue.

  10. Membrane separation of hydrocarbons

    DOEpatents

    Funk, Edward W.; Kulkarni, Sudhir S.; Chang, Y. Alice

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture over a polymeric membrane which comprises a polymer capable of maintaining its integrity in the presence of hydrocarbon compounds at temperature ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psi. The membranes which possess pore sizes ranging from about 10 to about 500 Angstroms are cast from a solvent solution and recovered.

  11. Superconductivity in aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kubozono, Yoshihiro; Goto, Hidenori; Jabuchi, Taihei; Yokoya, Takayoshi; Kambe, Takashi; Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L. T.; Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya

    2015-07-01

    'Aromatic hydrocarbon' implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (Kxpicene, five benzene rings). Its superconducting transition temperatures (Tc's) were 7 and 18 K. Recently, we found a new superconducting Kxpicene phase with a Tc as high as 14 K, so we now know that Kxpicene possesses multiple superconducting phases. Besides Kxpicene, we discovered new superconductors such as Rbxpicene and Caxpicene. A most serious problem is that the shielding fraction is ⩽15% for Kxpicene and Rbxpicene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of Tc that is clearly observed in some phases of aromatic hydrocarbon superconductors, suggesting behavior not explained by the standard BCS picture of superconductivity. In this article, we describe the present status of this research field, and discuss its future prospects.

  12. Quantitative Hydrocarbon Surface Analysis

    NASA Technical Reports Server (NTRS)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  13. Hydrocarbon fuel detergent

    SciTech Connect

    Meyer, G.R.; Lyons, W.R.

    1990-01-23

    This patent describes a hydrocarbon fuel composition comprising: a hydrocarbon fuel; and a detergent amount of a detergent comprising an alkenylsuccinimide prepared by reacting an alkenylsuccinic acid or anhydride with a mixture of amines, wherein at least 90 weight percent of the alkenyl substituent is derived from an olefin having a carbon chain of from 10 to 30 carbons or mixtures thereof, and wherein the alkenylsuccinic acid or anhydride is reacted with the mixture of amines at a mole ratio of 0.8 to 1.5 moles of the amines per mole of the alkenylsuccinic acid or anhydride.

  14. Zeroing in on hydrocarbons

    SciTech Connect

    Roest, I.P.B. van der; Brasser, D.J.S.; Wagebaert, A.P.J.; Stam, P.H.

    1997-05-01

    The increasing costs of remediating contaminated sites has stimulated research for cost-reducing techniques in soil investigation and cleanup techniques. MAP Environmental Research has developed a technology using ground penetrating radar in combination with in house developed software to locate and define the extent of hydrocarbon contamination. This article discusses the new technology. 2 figs.

  15. Hydrocarbon options emerge

    SciTech Connect

    Fairley, P.

    1995-11-01

    Europe stole the scene at last week`s International Chlorofluorocarbon (CFC) and Halon Alternatives Conference in Washington as attendees learned more about an accelerating shift to low-cost hydrocarbon refrigerants by European equipment manufacturers. Udo Wenning, representing German refrigerator market leader Bosch-Siemens, told the conference that hydrocarbons-isobutane as refrigerant and cyclopentane to blow the insulating foam-are now used in 90% of German production. Wenning says that in all performance parameters, hydrocarbons match the hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) replacements favored in the U.S. and Japan and that, unlike HCFCs and HFCs they have low global warming potential. Their Achille`s heel is flammability, Wenning says. American equipment manufacturers aiming to sell a new generation of equipment designed for the new HFC refrigerants sought to amplify concern over flammability at the conference. {open_quotes}In a society as litigious as ours, we do not see a future for flammable refrigerants,{close_quotes} says a representative of air conditioner manufacturer Carrier. Hydrocarbon supporters such as Greenpeace say the risks are mananageable.

  16. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1988-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  17. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  18. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1987-05-19

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.

  19. Optrode for sensing hydrocarbons

    DOEpatents

    Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.

    1988-09-13

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.

  20. Polycyclic hydrocarbons and cancer

    SciTech Connect

    Gelboin, H.V.P; Ts'o, P.O.P.

    1981-01-01

    This book is Volume 3 of a three-volume series. It discusses polynuclear aromatic hydrocarbons (PAHs) in the marine environment, various PAH dihydrodiols, certain enzyme reactions, carcinogenesis modifications, and tumor promotion. PAH epidemiology for quantifying cigarette smoking and air pollution risks is also covered. (JMT)

  1. Apparatus and methods for hydrocarbon extraction

    DOEpatents

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  2. Hydrocarbonization research: completion report

    SciTech Connect

    Youngblood, E.L.; Cochran, H.D. Jr.; Westmoreland, P.R.; Brown, C.H. Jr.; Oswald, G.E.; Barker, R.E.

    1981-01-01

    Hydrocarbonization is a relatively simple process used for producing oil, substitute natural gas, and char by heating coal under a hydrogen-rich atmosphere. This report describes studies that were performed in a bench-scale hydrocarbonization system at Oak Ridge National Laboratory (ORNL) during the period 1975 to 1978. The results of mock-up studies, coal metering valve and flowmeter development, and supporting work in an atmospheric hydrocarbonization system are also described. Oil, gas, and char yields were determined by hydrocarbonization of coal in a 0.1-m-diam fluidized-bed reactor operated at a pressure of 2170 kPa and at temperatures ranging from 694 to 854 K. The nominal coal feed rate was 4.5 kg/h. Wyodak subbituminous coal was used for most of the experiments. A maximum oil yield of approx. 21% based on moisture- and ash-free (maf) coal was achieved in the temperature range of 810 to 840 K. Recirculating fluidized-bed, uniformly fluidized-bed, and rapid hydropyrolysis reactors were used. A series of operability tests was made with Illinois No. 6 coal to determine whether caking coal could be processed in the recirculating fluidized-bed reactor. These tests were generally unsuccessful because of agglomeration and caking problems; however, these problems were eliminated by the use of chemically pretreated coal. Hydrocarbonization experiments were carried out with Illinois No. 6 coal that had been pretreated with CaO-NaOH, Na/sub 2/CO/sub 3/, and CaO-Na/sub 2/CO/sub 3/. Oil yields of 14, 24, and 21%, respectively, were obtained from the runs with treated coal. Gas and char yield data and the composition of the oil, gas, and char products are presented.

  3. Mantle hydrocarbons: Abiotic or biotic?

    SciTech Connect

    Sugisaki, Ryuichi; Mimura, Koichi

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) and peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro and granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from field contamination; these compounds found in the mantle-derived rocks are called here {open_quotes}mantle hydrocarbons.{close_quotes} The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) {delta}{sup 13}C of the mantle hydrocarbons is uniform (about {minus}27{per_thousand}). Possible origins for the mantle hydrocarbons are as follows. (1) They were inorganically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH{sub 4} at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C{sub 4}H{sub 10}. 76 refs., 5 figs., 3 tabs.

  4. Mantle hydrocarbons: abiotic or biotic?

    PubMed

    Sugisaki, R; Mimura, K

    1994-06-01

    Analyses of 227 rocks from fifty localities throughout the world showed that mantle derived rocks such as tectonized peridotites in ophiolite sequences (tectonites) arid peridotite xenoliths in alkali basalts contain heavier hydrocarbons (n-alkanes), whereas igneous rocks produced by magmas such as gabbro arid granite lack them. The occurrence of hydrocarbons indicates that they were not derived either from laboratory contamination or from held contamination; these compounds found in the mantle-derived rocks are called here "mantle hydrocarbons." The existence of hydrocarbons correlates with petrogenesis. For example, peridotite cumulates produced by magmatic differentiation lack hydrocarbons whereas peridotite xenoliths derived from the mantle contain them. Gas chromatographic-mass spectrometric records of the mantle hydrocarbons resemble those of aliphatics in meteorites and in petroleum. Features of the hydrocarbons are that (a) the mantle hydrocarbons reside mainly along grain boundaries and in fluid inclusions of minerals; (b) heavier isoprenoids such as pristane and phytane are present; and (c) delta 13C of the mantle hydrocarbons is uniform (about -27%). Possible origins for the mantle hydrocarbons are as follows. (1) They were in organically synthesized by Fischer-Tropsch type reaction in the mantle. (2) They were delivered by meteorites and comets to the early Earth. (3) They were recycled by subduction. The mantle hydrocarbons in the cases of (1) and (2) are abiogenic and those in (3) are mainly biogenic. It appears that hydrocarbons may survive high pressures and temperatures in the mantle, but they are decomposed into lighter hydrocarbon gases such as CH4 at lower pressures when magmas intrude into the crust; consequently, peridotite cumulates do not contain heavier hydrocarbons but possess hydrocarbon gases up to C4H10.

  5. Microbial degradation of petroleum hydrocarbons.

    PubMed

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years.

  6. Membrane separation of hydrocarbons

    DOEpatents

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  7. Hydrocarbon bioremediation -- An overview

    SciTech Connect

    Reisinger, H.J.

    1995-12-31

    Bioremediation is the process that transforms xenobiotics introduced into the environment to a less toxic or innocuous form, or mineralizes them to inorganic species. The processes can be carried out through either aerobic or anaerobic pathways by indigenous heterotrophs or by specially engineered organisms. For some xenobiotics, the process can also be carried out by cometabolic processes, which use another compound as the carbon and energy source. This technique can be applied either in situ or ex situ. An overview is presented of real-world applications of a variety of hydrocarbon bioremediation approaches, including biopiling, bioventing, bioslurping, landfarming, electrobioreclamation, and biovertical circulation wells. Problems in translating laboratory and field-scale pilot test data to full-scale operating systems are discussed. Such issues include biodegradation enhancement, nutrient and electron acceptor delivery, alternative electron acceptors, and integration of biological, chemical, and physical approaches to hydrocarbon remediation.

  8. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  9. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    SciTech Connect

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  10. Radical scavengers from heavy hydrocarbons

    SciTech Connect

    Kubo, Junichi

    1996-10-01

    The hydrogen-donating properties of some hydrocarbons form the basis for processes such as coal liquefaction and heavy oil upgrading. However, these hydrocarbons have seldom been used for other purposes, because their potential applications have not been well recognized. Research has indicated that these hydrogen-donating hydrocarbons can be used in important reactions as radical scavengers and have properties particular to those of pure hydrocarbons without functional groups containing heteroatoms. Over years of study researchers have found that pure hydrocarbons with radical-scavenging effects nearly as high as those in conventional hindered phenolic antioxidants can be produced from petroleum, and these hydrogen-donating hydrocarbons exhibit such effects even in oxidative atmospheres (i.e., they function as antioxidants). He has also shown that these mixtures have some properties particular to pure hydrocarbons without functional groups containing heteroatoms, and they`ve seen that a mechanism based on the steric effects appears when these hydrocarbons are used in heavy oil hydroprocessing. Hydrogen-donating hydrocarbons should be a viable resource in many applications. In this article, he presents radical-scavenging abilities, characteristics as pure hydrocarbons, and applications on the basis of the studies.

  11. Hydrocarbon Fuels Optimization

    DTIC Science & Technology

    2007-11-02

    P.A.A 󈧄r𔃺 Masters, "High Density Propellants for Single Stage to Orbit Vehicles," Technical Memorandum, No. NASA/TM X -73503, Lewis Research Center...by interpolation. Optimum Hydrocarbon IP vs. LOX Sea-Level Expansion (14.7 psi, Pc’- 1000 psi) Z X .(299.6 sec) ---- 330 see. 310 see. 0...alkenes all lie along a vertical hne reflective of their common C.H2n molecular. formula. The positions of specific molecules are denoted by an X along with

  12. Volatile Hydrocarbon Pheromones from Beetles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews literature about hydrocarbons from beetles that serve as long-range pheromones. The most thoroughly studied beetles that use volatile hydrocarbon pheromones belong to the family Nitidulidae in the genera Carpophilus and Colopterus. Published pheromone research deals with behav...

  13. Enhanced liquid hydrocarbon recovery process

    SciTech Connect

    Sydansk, R.D.

    1992-07-14

    This patent describes a process for recovering liquid hydrocarbons. It comprises: injecting into a fractured subterranean formation a polymer enhanced foam comprising a polymer selected from a synthetic polymer or a biopolymer, a surfactant, an aqueous solvent and a gas, recovering liquid hydrocarbons from the formation.

  14. Thermophysical Properties of Hydrocarbon Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  15. Hydrocarbon sensors and materials therefor

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2000-01-01

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  16. Catalytic cracking of hydrocarbons

    SciTech Connect

    Absil, R.P.L.; Bowes, E.; Green, G.J.; Marler, D.O.; Shihabi, D.S.; Socha, R.F.

    1992-02-04

    This patent describes an improvement in a catalytic cracking process in which a hydrocarbon feed is cracked in a cracking zone in the absence of added hydrogen and in the presence of a circulating inventory of solid acidic cracking a catalyst which acquires a deposit of coke that contains chemically bound nitrogen while the cracking catalyst is in the cracking zone, the coke catalyst being circulated to t regeneration zone to convert the coke catalyst to a regenerated catalyst with the formation of a flue gas comprising nitrogen oxides: the improvement comprises incorporating into the circulating catalyst inventory an amount of additive particles comprising a synthetic porous crystalline material containing copper metal or cations, to reduce the content of nitrogen oxides in the flue gas.

  17. Carbon neutral hydrocarbons.

    PubMed

    Zeman, Frank S; Keith, David W

    2008-11-13

    Reducing greenhouse gas emissions from the transportation sector may be the most difficult aspect of climate change mitigation. We suggest that carbon neutral hydrocarbons (CNHCs) offer an alternative pathway for deep emission cuts that complement the use of decarbonized energy carriers. Such fuels are synthesized from atmospheric carbon dioxide (CO2) and carbon neutral hydrogen. The result is a liquid fuel compatible with the existing transportation infrastructure and therefore capable of a gradual deployment with minimum supply disruption. Capturing the atmospheric CO2 can be accomplished using biomass or industrial methods referred to as air capture. The viability of biomass fuels is strongly dependent on the environmental impacts of biomass production. Strong constraints on land use may favour the use of air capture. We conclude that CNHCs may be a viable alternative to hydrogen or conventional biofuels and warrant a comparable level of research effort and support.

  18. Process for recovering hydrocarbons from a hydrocarbon-bearing formation

    SciTech Connect

    Alston, R.B.; Braden, W.B.; Flournoy, K.H.

    1980-03-11

    A method is described for transporting heavy crude oil through a pipeline which involves introducing into a pipeline or well-bore with the viscous hydrocarbons an aqueous solution containing (1) a sulfonate surfactant, (2) a rosin soap or a naphthenic acid soap and, optionally (3) coupling agent whereby there is spontaneously formed a low viscosity, salt tolerant, oil-in-water emulsion. Also disclosed is a method of recovery of hydrocarbons from a hydrocarbon bearing formation employing an aqueous solution containing (1) a sulfonate surfactant, (2) a rosin soap or a naphthenic acid soap and, optionally (3) a coupling agent.

  19. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    DTIC Science & Technology

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  20. Bioassay of polycyclic aromatic hydrocarbons

    SciTech Connect

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  1. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  2. Hydrocarbon potential of Morocco

    SciTech Connect

    Achnin, H.; Nairn, A.E.M.

    1988-08-01

    Morocco lies at the junction of the African and Eurasian plates and carries a record of their movements since the end of the Precambrian. Four structural regions with basins and troughs can be identified: Saharan (Tarfaya-Ayoun and Tindouf basins); Anti-Atlas (Souss and Ouarzazate troughs and Boudnib basin); the Essaouria, Doukkala, Tadla, Missour, High Plateau, and Guercif basins; and Meseta and Rif (Rharb and Pre-Rif basins). The targets in the Tindouf basin are Paleozoic, Cambrian, Ordovician (clastics), Devonian (limestones), and Carboniferous reservoirs sourced primarily by Silurian shales. In the remaining basins, excluding the Rharb, the reservoirs are Triassic detritals, limestones at the base of the Lias and Dogger, Malm detritals, and sandy horizons in the Cretaceous. In addition to the Silurian, potential source rocks include the Carboniferous and Permo-Carboniferous shales and clays; Jurassic shales, marls, and carbonates; and Cretaceous clays. In the Rharb basin, the objectives are sand lenses within the Miocene marls. The maturation level of the organic matter generally corresponds to oil and gas. The traps are stratigraphic (lenses and reefs) and structural (horsts and folds). The seals in the pre-Jurassic rocks are shales and evaporites; in the younger rocks, shales and marl. Hydrocarbon accumulations have been found in Paleozoic, Triassic, Liassic, Malm, and Miocene rocks.

  3. Evaluation of hydrocarbon potential

    SciTech Connect

    Cashman, P.H.; Trexler, J.H. Jr.

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.

  4. Illite and hydrocarbon exploration

    PubMed Central

    Pevear, David R.

    1999-01-01

    Illite is a general term for the dioctahedral mica-like clay mineral common in sedimentary rocks, especially shales. Illite is of interest to the petroleum industry because it can provide a K-Ar isotope date that constrains the timing of basin heating events. It is critical to establish that hydrocarbon formation and migration occurred after the formation of the trap (anticline, etc.) that is to hold the oil. Illite also may precipitate in the pores of sandstone reservoirs, impeding fluid flow. Illite in shales is a mixture of detrital mica and its weathering products with diagenetic illite formed by reaction with pore fluids during burial. K-Ar ages are apparent ages of mixtures of detrital and diagenetic end members, and what we need are the ages of the end members themselves. This paper describes a methodology, based on mineralogy and crystallography, for interpreting the K-Ar ages from illites in sedimentary rocks and for estimating the ages of the end members. PMID:10097055

  5. Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  6. Enrichment of light hydrocarbon mixture

    SciTech Connect

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  7. Enrichment of light hydrocarbon mixture

    SciTech Connect

    Yang, Dali; Devlin, David; Barbero, Robert S; Carrera, Martin E; Colling, Craig W

    2011-11-29

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  8. Saturated hydrocarbons in bovine liver

    PubMed Central

    Nagy, Bartholomew; Modzeleski, Vincent E.; Scott, Ward M.

    1969-01-01

    A homologous series of n-alkanes (C14–C33) and two isoprenoid hydrocarbons, 2,6,10,14-tetramethylhexadecane (phytane) and 2,6,10,14-tetramethylpentadecane (pristane) have been identified in bovine liver. Another branched but non-isoprenoid alkane and three isomers of molecular formula C20H40 were partially identified. Phytane and the C18–C22 and C29–C33 n-alkanes were found to be the major components in liver, suggesting that at least the main hydrocarbon components were derived from various plants in the diet. The hydrocarbons were separated and identified by a series of steps involving solvent extraction, saponification, elution chromatography on alumina and silica gel columns, molecular sieving and by infrared and ultraviolet spectroscopy, followed by combined capillary gas chromatography–mass spectrometry. PMID:5820649

  9. Method for producing viscous hydrocarbons

    DOEpatents

    Poston, Robert S.

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  10. Biological enhancement of hydrocarbon extraction

    DOEpatents

    Brigmon, Robin L.; Berry, Christopher J.

    2009-01-06

    A method of microbial enhanced oil recovery for recovering oil from an oil-bearing rock formation is provided. The methodology uses a consortium of bacteria including a mixture of surfactant producing bacteria and non-surfactant enzyme producing bacteria which may release hydrocarbons from bitumen containing sands. The described bioprocess can work with existing petroleum recovery protocols. The consortium microorganisms are also useful for treatment of above oil sands, ground waste tailings, subsurface oil recovery, and similar materials to enhance remediation and/or recovery of additional hydrocarbons from the materials.

  11. Hydrocarbon and chlorinated hydrocarbon-soluble magnesium dialkoxides

    SciTech Connect

    Kamienski, C.W.

    1988-05-31

    This patent describes a process for the preparation of hydrocarbon or chlorinated hydrocarbon solvent solutions of magnesium dialkoxides, which comprises reacting a suspension of magnesium metal or magnesium amide, or a solution of a dialkyimagnesium compound, in a volatile hydrocarbon or chlorinated hydrocarbon solvent with an alcohol selected from the group of (a) aliphatic, cycloaliphatic and acyclic C/sub 5/-C/sub 18/ beta- and gamma-alkyl-substituted secondary and tertiary monohydric alcohols; or (b) mixtures of the (a) alcohols with C/sub 3/-C/sub 18/ aliphatic or cycloaliphatic beta- and gamma-alkyl-unsubstituted secondary or tertiary alcohols; or (c) mixtures of the (a) alcohols with C/sub 1/-C/sub 18/ aliphatic primary unsubstituted and 2-alkyl-substituted alcohols; the mole ratios of the (a) to the (b), and the (a) to the (c), alcohols being 1 of the (a) alcohols to 0.1 to 2 of the (b) and/or the (c) alcohols.

  12. THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...

  13. Measurement of Hydrocarbon Transport in Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrocarbon uptake by bacteria has not been extensively studied, and strong evidence for active transport of hydrocarbons is lacking. The volatile nature of hydrocarbons, their hydrophobicity, and their relatively low aqueous solubilities can complicate transport assays. Here we present a detailed...

  14. 33 CFR 157.166 - Hydrocarbon emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  15. 33 CFR 157.166 - Hydrocarbon emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  16. 33 CFR 157.166 - Hydrocarbon emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  17. 33 CFR 157.166 - Hydrocarbon emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  18. 33 CFR 157.166 - Hydrocarbon emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Hydrocarbon emissions. 157.166... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.166 Hydrocarbon emissions. If the... ballasted in that port the hydrocarbon vapors in each tank are contained by a means under § 157.132....

  19. Hydrophobic encapsulation of hydrocarbon gases.

    PubMed

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  20. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  1. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  2. Biodegradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-01-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review. PMID:24031900

  3. Biodegradation of petroleum hydrocarbons in hypersaline environments.

    PubMed

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-07-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  4. Hydrocarbon Rocket Technology Impact Forecasting

    NASA Technical Reports Server (NTRS)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact

  5. Deep desulfurization of hydrocarbon fuels

    DOEpatents

    Song, Chunshan [State College, PA; Ma, Xiaoliang [State College, PA; Sprague, Michael J [Calgary, CA; Subramani, Velu [State College, PA

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  6. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  7. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  8. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  9. Comparing hydrogen and hydrocarbon booster fuels

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1988-01-01

    The present evaluation of the consequences of hydrogen and hydrocarbon fuels as the basis of launch vehicle booster rocket-stage performance notes that hydrocarbon fuels lead to lower vehicle dry mass, for low-velocity requirements, while hydrogen fuel furnishes lower dry mass. Vehicles employing both types of fuel attempt to take advantage of the low intercept and slope of hydrocarbon fuel at low velocity, and subsequently, of the slope of the hydrogen curves at higher velocities.

  10. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  11. 40 CFR 91.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 91....316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon analyzer as described... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  12. 40 CFR 91.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 91....316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon analyzer as described... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  13. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 89... Equipment Provisions § 89.319 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall... and at least annually thereafter, adjust the FID hydrocarbon analyzer for optimum hydrocarbon...

  14. 40 CFR 91.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Hydrocarbon analyzer calibration. 91....316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon analyzer as described... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  15. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 89... Equipment Provisions § 89.319 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall... and at least annually thereafter, adjust the FID hydrocarbon analyzer for optimum hydrocarbon...

  16. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Hydrocarbon analyzer calibration. 89... Equipment Provisions § 89.319 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall... and at least annually thereafter, adjust the FID hydrocarbon analyzer for optimum hydrocarbon...

  17. 40 CFR 86.121-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Hydrocarbon analyzer calibration. 86... Complete Heavy-Duty Vehicles; Test Procedures § 86.121-90 Hydrocarbon analyzer calibration. The hydrocarbon... FID and HFID hydrocarbon analyzers shall be adjusted for optimum hydrocarbon response....

  18. 40 CFR 86.121-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 86... Complete Heavy-Duty Vehicles; Test Procedures § 86.121-90 Hydrocarbon analyzer calibration. The hydrocarbon... FID and HFID hydrocarbon analyzers shall be adjusted for optimum hydrocarbon response....

  19. 40 CFR 91.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 91....316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon analyzer as described... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  20. 40 CFR 90.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 90... Equipment Provisions § 90.316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  1. 40 CFR 86.121-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86... Complete Heavy-Duty Vehicles; Test Procedures § 86.121-90 Hydrocarbon analyzer calibration. The hydrocarbon... FID and HFID hydrocarbon analyzers shall be adjusted for optimum hydrocarbon response....

  2. 40 CFR 90.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 90... Equipment Provisions § 90.316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  3. 40 CFR 86.121-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 86... Complete Heavy-Duty Vehicles; Test Procedures § 86.121-90 Hydrocarbon analyzer calibration. The hydrocarbon... FID and HFID hydrocarbon analyzers shall be adjusted for optimum hydrocarbon response....

  4. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 89... Equipment Provisions § 89.319 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall... and at least annually thereafter, adjust the FID hydrocarbon analyzer for optimum hydrocarbon...

  5. 40 CFR 90.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 90... Equipment Provisions § 90.316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  6. 40 CFR 89.319 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 89... Equipment Provisions § 89.319 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall... and at least annually thereafter, adjust the FID hydrocarbon analyzer for optimum hydrocarbon...

  7. 40 CFR 86.121-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 86... Complete Heavy-Duty Vehicles; Test Procedures § 86.121-90 Hydrocarbon analyzer calibration. The hydrocarbon... FID and HFID hydrocarbon analyzers shall be adjusted for optimum hydrocarbon response....

  8. 40 CFR 91.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 91....316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon analyzer as described... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  9. 40 CFR 90.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 90... Equipment Provisions § 90.316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  10. 40 CFR 90.316 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Hydrocarbon analyzer calibration. 90... Equipment Provisions § 90.316 Hydrocarbon analyzer calibration. (a) Calibrate the FID and HFID hydrocarbon... thereafter, adjust the FID and HFID hydrocarbon analyzer for optimum hydrocarbon response as specified...

  11. Hydrocarbon exposure, pancreatitis, and bile acids.

    PubMed Central

    Hotz, P; Pilliod, J; Bourgeois, R; Boillat, M A

    1990-01-01

    The data on hydrocarbon induced pancreatitis are conflicting. This question was therefore studied in a non-selected population exposed to hydrocarbons and in "formerly" exposed workers. Neither the past clinical history nor the pancreatic tests provided any evidence for a causal relation between exposure and pancreatitis. No signs of hydrocarbon induced liver damage were seen either. As a healthy worker effect cannot be totally excluded, however, a case-control study in a group of patients suffering from non-alcohol induced pancreatitis could give useful indications for finally excluding the possibility of pancreatitis being induced by hydrocarbons. PMID:2271391

  12. Nox reduction system utilizing pulsed hydrocarbon injection

    DOEpatents

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Vogtlin, George E.; Merritt, Bernard T.

    2001-01-01

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  13. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOEpatents

    Kulkarni, Sudhir S.; Chang, Y. Alice; Gatsis, John G.; Funk, Edward W.

    1988-01-01

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  14. New technique for calibrating hydrocarbon gas flowmeters

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Puster, R. L.

    1984-01-01

    A technique for measuring calibration correction factors for hydrocarbon mass flowmeters is described. It is based on the Nernst theorem for matching the partial pressure of oxygen in the combustion products of the test hydrocarbon, burned in oxygen-enriched air, with that in normal air. It is applied to a widely used type of commercial thermal mass flowmeter for a number of hydrocarbons. The calibration correction factors measured using this technique are in good agreement with the values obtained by other independent procedures. The technique is successfully applied to the measurement of differences as low as one percent of the effective hydrocarbon content of the natural gas test samples.

  15. Membrane separation of hydrocarbons using cycloparaffinic solvents

    DOEpatents

    Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

    1988-06-14

    Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

  16. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  17. VUV Photoionisation of hydrocarbon radicals

    NASA Astrophysics Data System (ADS)

    Alcaraz, C.; Noller, Bastian; Hemberger, Patrick; Fischer, Ingo; Gans, Bérenger; Boyé-Peronne, Séverine; Douin, Stéphane; Gauyacq, Dolorès; Soldi-Lose, Héloïse; Garcia, Gustavo

    2008-09-01

    Hydrocarbon radicals CxHy are constituents of various planetary atmospheres, in particular Titan, as a result of the methane photochemistry induced by the solar radiation. They contribute to the neutral chemistry, but are also important for the ionosphere through their photoionisation leading to their cations CxHy +. These cations are also produced by ion-molecule reactions starting from the reaction of the primary ions CH4 + and CH3 + which are created in the non-dissociative and dissociative photoionisation of CH4. This work aims at caracterizing the VUV photoionisation of small hydrocarbon radicals as a function of photon energy. The objective is to provide laboratory data for modelers on the spectroscopy, the thermochemistry, and the reactivity of the radicals and their cations. The hydrocarbon radicals are much less caracterized than stable molecules since they have to be produced in situ in the laboratory experiment. We have adapted at Orsay [1-3] a pyrolysis source (Figure 1) well suited to produce cold beams of hydrocarbon radicals to our experimental setups. Available now at Orsay, we have two new sources of VUV radiation, complementary in terms of tunability and resolution, that can be used for these studies. The first one is the DESIRS beamline [4] at the new french synchrotron, SOLEIL. The second one is the VUV laser developped at the Centre Laser de l'Université Paris-Sud (CLUPS) [5]. At SOLEIL, a photoelectron-photoion coincidence spectrometer is used to monitor the photoionisation on a large photon energy range. At the CLUPS, a pulsedfield ionisation (PFI-ZEKE) spectrometer allows studies at higher resolution on selected photon energies. The first results obtained with these new setups will be presented. References [1] Fischer, I., Schussler, T., Deyerl, H.J., Elhanine, M. & Alcaraz, C., Photoionization and dissociative photoionization of the allyl radical, C3H5. Int. J. Mass Spectrom., 261 (2-3), 227-233 (2007) [2] Schüßler, T., Roth, W., Gerber

  18. Hydrocarbon release investigations in Missouri

    SciTech Connect

    Fels, J.B.

    1996-09-01

    Hydrocarbon releases are among the most common environmental problems in Missouri, as well as across the country. Old, unprotected underground storage tanks and buried piping from the tanks to pumps are notorious sources of petroleum contamination at LUST (leaking underground storage tank) sites. Missouri has an estimated 5000 LUST sites across the state with the majority being simple spills into clay-rich soils or into a shallow perched water system. However, in the southern half of the state, where residual soils and karst bedrock are not conducive to trapping such releases, significant groundwater supplies are at risk. This article discusses the process used to identify the source of contamination.

  19. Hydrocarbon bioremediation 2(2)

    SciTech Connect

    Hinchee, R.E.; Alleman, B.C.; Hoeppel, R.E.; Miller, R.N.

    1993-12-31

    Hydrocarbon contamination of soil and groundwater, although less visible, is even more widespread than oil spills and is the background for a number of studies presented in this book, in addition to those devoted to shoreline spills. Chapters address a wide variety of theory and practice and cover important subjects such as biofiltration, natural attenuation, surfactants, and the use of in situ bioventing compared to soil venting. This book represents the collective experience of practitioners and researchers in North America, Europe, Africa, and Asia.

  20. 40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati...

  1. 40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati...

  2. 40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati...

  3. 40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati...

  4. 40 CFR 52.1877 - Control strategy: Photochemical oxidants (hydrocarbons).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oxidants (hydrocarbons). 52.1877 Section 52.1877 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....1877 Control strategy: Photochemical oxidants (hydrocarbons). (a) The requirements of Subpart G of this... national standard for photochemical oxidants (hydrocarbons) in the Metropolitan Cincinnati...

  5. Hydrocarbon degradation by antarctic bacteria

    SciTech Connect

    Cavanagh, J.A.E.; Nichols, P.D.; McMeekin, T.A.; Franzmann, P.D.

    1996-12-31

    Bacterial cultures obtained from sediment samples collected during a trial oil spill experiment conducted at Airport beach, Eastern Antarctica were selectively enriched for n-alkane-degrading and phenanthrenedegrading bacteria. Samples were collected from a control site and sites treated with different hydrocarbon mixtures - Special Antarctic blend (SAB), BP-Visco and orange roughy oils. One set of replicate sites was also treated with water from Organic Lake which had previously been shown to contain hydrocarbon-degrading bacteria. No viable bacteria were obtained from samples collected from sites treated with orange roughy oil. Extensive degradation of n-alkanes by enrichment cultures obtained from sites treated with SAB and BP-Visco occurred at both 25{degrees}C and 10{degrees}C. Extensive degradation of phenanthrene also occurred in enrichment cultures from these sites grown at 25{degrees}C. Concurrent increases of polar lipid in these cultures were also observed. The presence of 1,4-naphthaquinone and 1-naphthol during the growth of the cultures on phenanthrene is unusual and warrants further investigation of the mechanism of phenanthrene-degradation by these Antarctic bacteria.

  6. Heavy hydrocarbon main injector technology

    NASA Technical Reports Server (NTRS)

    Fisher, S. C.; Arbit, H. A.

    1988-01-01

    One of the key components of the Advanced Launch System (ALS) is a large liquid rocket, booster engine. To keep the overall vehicle size and cost down, this engine will probably use liquid oxygen (LOX) and a heavy hydrocarbon, such as RP-1, as propellants and operate at relatively high chamber pressures to increase overall performance. A technology program (Heavy Hydrocarbon Main Injector Technology) is being studied. The main objective of this effort is to develop a logic plan and supporting experimental data base to reduce the risk of developing a large scale (approximately 750,000 lb thrust), high performance main injector system. The overall approach and program plan, from initial analyses to large scale, two dimensional combustor design and test, and the current status of the program are discussed. Progress includes performance and stability analyses, cold flow tests of injector model, design and fabrication of subscale injectors and calorimeter combustors for performance, heat transfer, and dynamic stability tests, and preparation of hot fire test plans. Related, current, high pressure, LOX/RP-1 injector technology efforts are also briefly discussed.

  7. Biological sources for phenylalkane hydrocarbons

    SciTech Connect

    Ellis, L.; Winans, R.E.; Langworthy, T.A.; Langworthy, T.A.

    1996-12-31

    Linear alkylbenzenes (phenylalkanes) represent an important class of molecular compounds used widely in today`s society as building blocks for detergent manufacture, indeed, the almost universal widespread use and acceptance of detergents has been reflected by the fact that detergent chemical components can be found in and around almost every location around the globe where human settlements exist. This being the case, detergent chemical components represent a well recognized indicator of pollution in the lakes, rivers, and coastal water systems of the world. The identification of phenylalkane hydrocarbons in ancient sedimentary organic matter has been the subject of much controversy and concern, owing to the ubiquitous presence of phenylalkanes in today`s society. The finding of these components in the trace analytical analyses of petroleum sediments and crude oils has always implied {open_quotes}detergent contamination{close_quotes}. New evidence, however, suggests that the finding of phenylalkanes in ancient geological materials may actually represent an input from ancient algae and/or bacteria which contributed to the organic biomass from which the sediment or crude oil was derived. Moreover, the finding also of phenylalkane hydrocarbons in the lipids extracts of thermophilic bacteria still living today has revealed the first evidence of a natural system producing these compounds.

  8. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOEpatents

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  9. Microbial degradation of hydrocarbons in the environment.

    PubMed Central

    Leahy, J G; Colwell, R R

    1990-01-01

    The ecology of hydrocarbon degradation by microbial populations in the natural environment is reviewed, emphasizing the physical, chemical, and biological factors that contribute to the biodegradation of petroleum and individual hydrocarbons. Rates of biodegradation depend greatly on the composition, state, and concentration of the oil or hydrocarbons, with dispersion and emulsification enhancing rates in aquatic systems and absorption by soil particulates being the key feature of terrestrial ecosystems. Temperature and oxygen and nutrient concentrations are important variables in both types of environments. Salinity and pressure may also affect biodegradation rates in some aquatic environments, and moisture and pH may limit biodegradation in soils. Hydrocarbons are degraded primarily by bacteria and fungi. Adaptation by prior exposure of microbial communities to hydrocarbons increases hydrocarbon degradation rates. Adaptation is brought about by selective enrichment of hydrocarbon-utilizing microorganisms and amplification of the pool of hydrocarbon-catabolizing genes. The latter phenomenon can now be monitored through the use of DNA probes. Increases in plasmid frequency may also be associated with genetic adaptation. Seeding to accelerate rates of biodegradation has been shown to be effective in some cases, particularly when used under controlled conditions, such as in fermentors or chemostats. PMID:2215423

  10. Versatility of hydrocarbon production in cyanobacteria.

    PubMed

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H2O, and CO2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  11. Part A: Hydrocarbon Suspension in Slush Hydrogen

    NASA Technical Reports Server (NTRS)

    Sindt, C. F.

    1972-01-01

    Methods of preparing suspensions of a hydrocarbon in slush hydrogen for nuclear fuel element corrosion inhibition in rocket engines were investigated. Suspensions were prepared using approximately 5000 ppm by mass of methane, ethane, or cyclopropane in slush hydrogen. The suspensions were stable in the slush, but the hydrocarbons settled out of the liquid melt.

  12. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  13. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, Elias

    1995-01-01

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  14. An Easy Synthesis of Two Cage Hydrocarbons.

    ERIC Educational Resources Information Center

    Dong, Dao Cong

    1982-01-01

    Describes a simple, three-step synthesis of two cage molecules, birdcage hydrocarbon (VIII) and its homologue, the homobirdcage hydrocarbon IX. Indicates that all products are easily purified and formed in high yields in this activity suitable for advanced undergraduate laboratory courses. (Author/JN)

  15. Detection and quantification of hydrocarbons in sediments

    USGS Publications Warehouse

    Wynn, Jeff; Williamson, Mike; Frank, Jeff

    2016-01-01

    A new technology developed by the US Geological Survey now allows for fast, direct detection of hydrocarbon plumes both in rivers and drifting in the deep ocean. Recent experiments show that the method can also detect and quantify hydrocarbons buried in river sediments and estuaries. This approach uses a variant of induced polarization, a surface-sensitive physical property of certain polarizable materials immersed in an electrolyte that can accept and adsorb charge under an inducing voltage. Known polarizable materials include most sulfides, ilmenite (FeTiO3), metallic objects such as buried wrecks and pipelines, and now hydrocarbons. The hydrocarbon-in-water response to induced polarization is in fact nearly two orders of magnitude greater than the IP response of any of the hard minerals. The oil:water detection limit for hydrocarbons so far is down to 0.0002% in the laboratory.

  16. Hydrocarbonates in precipitation of Moscow

    NASA Astrophysics Data System (ADS)

    Larin, Igor; Eremina, Iren; Aloyan, Artash; Arutunan, Vardan; Chubarova, Natalia; Yermakov, Alexandr

    2016-04-01

    According to monitoring of the atmospheric precipitation of Moscow a number of episodes is revealed, the content of hydrocarbonates in which repeatedly surpasses equilibrium level. Facts of their registration are linked to complex structure of precipitation which is caused by a different chemical composition of condensation nucleus. As a result on the underlying surface two groups of drops with acidity of the different nature are transferred. The acidity of the first, "metal" group of droplets, is determined by a carbonate equilibrium with atmospheric CO2 and with dissolved carbonates of alkali and alkaline earth metals. The acidity of the second, "ammonium" group droplets, is characterized by the balance between an ammonia absorbed from the air and atmospheric acids. Regulation of acidity of the deposits measured in a course of monitoring, occurs for this reason not only in the air, but also in the condensate receiver. A mixing "metal" and "ammonium" groups precipitation accompanied by only a partial transfer of hydrocarbonates in the dissolved CO2. The process is braked as a result of a practical stop of exit of CO2 into the atmosphere because of a mass transfer deceleration. In turn it leads to excess of equilibrium level of hydrocarbonates in the receiver. Estimates show that the acidity of "ammonia" component of precipitation should be much higher than the reported monitoring data. In other words, real acidity of rain drops can essentially exceed that is measured by standard procedures of monitoring of deposits, that it is necessary to take into consideration at calculations of so-called critical levels of acid loading on people and environment. In other words, the actual acidity of raindrops could greatly exceed that is measured by the standard procedures for monitoring rainfall, which should be taken into account when calculating the so-called critical levels of acid loads on people and the environment. It follows that the true level of hazard of acid rain

  17. Polycyclic aromatic hydrocarbons in carcinogenesis.

    PubMed Central

    Warshawsky, D

    1999-01-01

    A symposium on "Polycyclic Aromatic Hydrocarbons (PAHs) in Carcinogenesis" was presented at the third International Congress of Pathophysiology held in Lathi, Finland, 28 June-3 July 1998. The congress was also sponsored by the International Union of Biological Sciences and the International Society of Free Radical Research. Institutional support for the symposium included the Electric Power Research Institute, National Center for Toxicological Research, and EPA/National Health and Environmental Effects Research Laboratory and the Office of Solid Waste and Emergency Response. The symposium focused on the sources, carcinogenicity, genotoxicity, and risk assessment of individual and mixtures of PAHs that are found in solid wastes, Superfund sites, and other hazardous waste sites. Based on the occurrence of PAHs at numerous Superfund sites and the significant data gaps on the toxic potential of certain PAHs, the information developed during this symposium would be of value in assessing health risks of these chemicals at Superfund and other hazardous waste sites. PMID:10090712

  18. Carbon fibers from aromatic hydrocarbons

    SciTech Connect

    Mochida, Isao; Yoon, S.H.; Korai, Yozo; Kanno, Koichi; Sakai, Yukio; Komatsu, Makoto

    1995-02-01

    Carbon filter is widely used as a lightweight and high-strength material for composite structures. Its uses are expected to expand in the next century. Currently the best precursor for making these fibers is polyacrylonitrile (PAN). This is a relatively expensive feedstock. Carbon fibers also have been made starting with so-called mesophase pitch fractions derived from low-cost hydrocarbons such as petroleum residuum. But these fibers suffer from low mechanical strength. In the past few years, significant advances have been made in understanding the mechanism of formation of mesophase pitch, which may lead to improved performance for carbon fibers and other specialty carbons. This article introduces such advances, based principally on the authors` recent results.

  19. Soviet Arctic yields big hydrocarbons

    SciTech Connect

    Not Available

    1983-01-10

    Despite the huge hydrocarbon resources lying in Arctic areas of the USSR, the Soviets are expected to postpone offshore development there until the 1990s, focusing primarily on more accessible onshore Arctic reserves. They have already shown impressive ability to develop Arctic gas fields - such as the Urengoi and Yamburg fields - drilling through thick permafrost into pay zones with abnormally high pressures. The key to continued gains in Arctic production lies in the development of high-capacity, large-diameter pipe that would greatly reduce the number of pipelines required to carry the gas to western markets. The USSR recently reported successful tests on a 56-in. laminar pipe designed for operating pressures of 1500-1800 psi instead of the conventional 1100 psi.

  20. A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets.

    PubMed

    Zoueki, Caroline Warne; Tufenkji, Nathalie; Ghoshal, Subhasis

    2010-04-15

    The microbial adhesion to hydrocarbons (MATH) assay has been used widely to characterize microbial cell hydrophobicity and/or the extent of cell adhesion to hydrophobic liquids. The classical MATH assay involves spectrophotometric absorbance measurements of the initial and final cell concentrations in an aqueous cell suspension that has been contacted with a hydrocarbon liquid. In this study, microscopic examination of the aqueous cell suspension after contact with hexadecane or a hexadecane/toluene mixture revealed the presence of hydrocarbon droplets. The hydrocarbon droplets contributed to the absorbance values during spectrophotometric measurements and caused erroneous estimates of cell concentrations and extents of microbial adhesion. A modified MATH assay that avoids such artefacts is proposed here. In this modified assay, microscopic examination of the aqueous suspension and direct cell counts provides cell concentrations that are free of interference from hydrocarbon droplets. The presence of hydrocarbon droplets was noted in MATH assays performed with three bacterial strains, and two different hydrocarbons, at ionic strengths of 0.2 mM and 20 mM and pH 6. In these experiments, the formation of quasi-stable hydrocarbon droplets cannot be attributed to the presence of biosurfactants, or stabilization by biocolloids. The presence of surface potential at the hydrocarbon-water interface that was characterized by electrophoretic mobility of up to -1 and -2 microm cm/Vs, likely caused the formation of the quasi-stable hydrocarbon droplets that provided erroneous results using the classical MATH assay.

  1. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  2. Emulsification of hydrocarbons by subsurface bacteria

    USGS Publications Warehouse

    Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

    1991-01-01

    Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been

  3. Plasma Assisted Combustion Mechanism for Small Hydrocarbons

    DTIC Science & Technology

    2015-01-01

    Andrey Starikovskiy Nickolay Aleksandrov PRINCETON University Plasma Assisted Combustion  Mechanism for Small  Hydrocarbons Report Documentation Page...COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Plasma Assisted Combustion Mechanism for Small Hydrocarbons 5a. CONTRACT NUMBER 5b...Kinetics of ignition of saturated  hydrocarbons  by nonequilibrium plasma: C2H6‐ to C5H12‐containing mixtures. Combustion and Flame 156  (2009) 221–233

  4. 40 CFR 86.1321-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86... Procedures § 86.1321-94 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the... into service and at least annually thereafter, the FID hydrocarbon analyzer shall be adjusted...

  5. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Hydrocarbon analyzer specifications....317-79 Hydrocarbon analyzer specifications. (a) Hydrocarbon measurements are to be made with a heated... measures hydrocarbon emissions on a dry basis is permitted for gasoline-fueled testing; Provided,...

  6. 40 CFR 92.119 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 92... Hydrocarbon analyzer calibration. The HFID hydrocarbon analyzer shall receive the following initial and... into service and at least annually thereafter, the HFID hydrocarbon analyzer shall be adjusted...

  7. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Hydrocarbon analyzer specifications....317-79 Hydrocarbon analyzer specifications. (a) Hydrocarbon measurements are to be made with a heated... measures hydrocarbon emissions on a dry basis is permitted for gasoline-fueled testing; Provided,...

  8. 40 CFR 92.119 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 92... Hydrocarbon analyzer calibration. The HFID hydrocarbon analyzer shall receive the following initial and... into service and at least annually thereafter, the HFID hydrocarbon analyzer shall be adjusted...

  9. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Hydrocarbon analyzer specifications....317-79 Hydrocarbon analyzer specifications. (a) Hydrocarbon measurements are to be made with a heated... measures hydrocarbon emissions on a dry basis is permitted for gasoline-fueled testing; Provided,...

  10. 40 CFR 92.119 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Hydrocarbon analyzer calibration. 92... Hydrocarbon analyzer calibration. The HFID hydrocarbon analyzer shall receive the following initial and... into service and at least annually thereafter, the HFID hydrocarbon analyzer shall be adjusted...

  11. 40 CFR 86.1321-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 86... Procedures § 86.1321-94 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the... into service and at least annually thereafter, the FID hydrocarbon analyzer shall be adjusted...

  12. 40 CFR 86.1321-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 86... Procedures § 86.1321-94 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the... into service and at least annually thereafter, the FID hydrocarbon analyzer shall be adjusted...

  13. 40 CFR 86.1321-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 86... Procedures § 86.1321-94 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the... into service and at least annually thereafter, the FID hydrocarbon analyzer shall be adjusted...

  14. 40 CFR 92.119 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 92... Hydrocarbon analyzer calibration. The HFID hydrocarbon analyzer shall receive the following initial and... into service and at least annually thereafter, the HFID hydrocarbon analyzer shall be adjusted...

  15. 40 CFR 86.317-79 - Hydrocarbon analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer specifications....317-79 Hydrocarbon analyzer specifications. (a) Hydrocarbon measurements are to be made with a heated... measures hydrocarbon emissions on a dry basis is permitted for gasoline-fueled testing; Provided,...

  16. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  17. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Odorless light petroleum hydrocarbons. 172.884... § 172.884 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely... liquid hydrocarbons derived from petroleum or synthesized from petroleum gases. The additive is...

  18. Geochemical methods of prospecting for hydrocarbons

    SciTech Connect

    Duchscherer, W. Jr.

    1980-12-01

    Because the commonly used reflection-seismograph exploration technique misses many marginal low-relief structural prospects and regardless of its electronic computer sophistication, overlooks almost all stratigraphic traps, the hydrocarbon exploration industry should take a look at geochemical prospecting methods, which detect geochemical anomalies in the near-surface soils by measuring the thermal dissociation of the soil carbonates that are found overlying hydrocarbon accumulations. To promote understanding of such prospecting techniques, Geochemical Surveys reviews the methods used, the soil-alteration patterns, the lateral and vertical migration of hydrocarbon gases, the halo phenomenon (a ring or annual anomaly), the geochemical modification of sediments, and the data-interpretation and exploration procedures involved in a carbonate ..delta.. C analysis, which measures the residual, stable, cumulative effect of hydrocarbon migration.

  19. Maximum hydrocarbon window determination in South Louisiana

    SciTech Connect

    Leach, W.G. )

    1993-03-29

    This is the third and final part of a three part article about the distribution of hydrocarbons in the Tertiary sands of South Louisiana. Based on many individual plots, it was found that hydrocarbon distribution will vary according to the depth of abnormal pressure and lithology. The relation of maximum hydrocarbon distribution to formation fracture strength or depth opens the door to the use of a maximum hydrocarbon window (MHW) technique. This MHW technique can be used as a decision making tool on how deep to drill a well, particularly how deep to drill a well below the top of abnormal pressure. The paper describes the benefits of the MHW technique and its future potential for exploration and development operations.

  20. Liquid hydrocarbons probable under Ross Sea

    USGS Publications Warehouse

    Cooper, A. K.; Davey, F.J.; Hinz, K.

    1988-01-01

    Thick glacial strata, which have no source-rock potential, cover the Ross Sea. If these strata persist to great depths, then hydrocarbon-generation prospects will be poor. Deeply buried strata within Ross Sea rift-grabens, if like other Gondwana rift-deposits, could have good potential for hydrocarbon generation. Current hydrocarbon assessments of the Ross Sea and adjacent areas must be considered highly speculative because the deeply buried rift(?) strata have not been sampled in situ. The assessment of the Ross Sea relies on geophysical/geologic data, two-stage rift models, and data from formerly nearby Gondwana rift-basins. We conclude that conditions favorable for hydrocarbon generation and entrapment are likely throughout the Ross Sea, and especially in the Victoria Land basin, if adequate source beds exist. -Authors

  1. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium

    EPA Science Inventory

    The ability of the white rot fungus Phanerochaete chrysosporium to degrade polycyclic aromatic hydrocarbons (PAHs) that are present in anthracene oil (a distillation product obtained from coal tar) was demonstrated. Analysis by capillary gas chromatography and high-performance li...

  2. Quantitative Hydrocarbon Energies from the PMO Method.

    ERIC Educational Resources Information Center

    Cooper, Charles F.

    1979-01-01

    Details a procedure for accurately calculating the quantum mechanical energies of hydrocarbons using the perturbational molecular orbital (PMO) method, which does not require the use of a computer. (BT)

  3. An Acid Hydrocarbon: A Chemical Paradox

    ERIC Educational Resources Information Center

    Burke, Jeffrey T.

    2004-01-01

    The chemical paradox of cyclopentadiene, a hydrocarbon, producing bubbles like a Bronsted acid is observed. The explanation that it is the comparative thermodynamic constancy of the fragrant cyclopentadienyl anion, which produces the powerful effect, resolves the paradox.

  4. Hydrocarbon and nonhydrocarbon derivatives of cyclopropane

    NASA Technical Reports Server (NTRS)

    Slabey, Vernon A; Wise, Paul H; Gibbons, Louis C

    1953-01-01

    The methods used to prepare and purify 19 hydrocarbon derivatives of cyclopropane are discussed. Of these hydrocarbons, 13 were synthesized for the first time. In addition to the hydrocarbons, six cyclopropylcarbinols, five alkyl cyclopropyl ketones, three cyclopropyl chlorides, and one cyclopropanedicarboxylate were prepared as synthesis intermediates. The melting points, boiling points, refractive indices, densities, and, in some instances, heats of combustion of both the hydrocarbon and nonhydrocarbon derivatives of cyclopropane were determined. These data and the infrared spectrum of each of the 34 cyclopropane compounds are presented in this report. The infrared absorption bands characteristic of the cyclopropyl ring are discussed, and some observations are made on the contribution of the cyclopropyl ring to the molecular refractions of cyclopropane compounds.

  5. DEVELOPMENT OF HIGH TEMPERATURE HYDROCARBON JET FUELS

    DTIC Science & Technology

    AIRCRAFT ENGINE OILS, *AVIATION FUELS, *HYDROCARBONS, *JET ENGINE FUELS, *LUBRICANTS, *POLYCYCLIC COMPOUNDS, ALKYL RADICALS, BENZENE, CATALYSIS...CHEMICAL REACTIONS , COMBUSTION, CUMENES, DECOMPOSITION, ETHYLENES, FORMALDEHYDE, FRAGMENTATION, HIGH TEMPERATURE, HYDROGENATION, NAPHTHALENES, PHYSICAL

  6. Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Bakes, E. L. O.

    2000-01-01

    We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.

  7. Antifoulant additive for light end hydrocarbons

    SciTech Connect

    Dickakian, G.B.

    1990-06-05

    This patent describes a method of treating a highly paraffinic hydrocarbon liquid containing not more than 5 wt% aromatics and from 10 to 10,000 ppm high molecular weight asphaltenes to prevent asphaltene fouling of equipment at temperatures below 400{degrees} F. It comprises: adding to the hydrocarbon liquid not less than 10 ppm and not more than 200 ppm of an oil soluble overbased magnesium alkyl aromatic sulfonate to inhibit asphaltene fouling.

  8. Process for Photochemical Chlorination of Hydrocarbons

    DOEpatents

    Beanblossom, W S

    1951-08-28

    A process for chlorination of a major portion of the hydrogen atoms of paraffinic hydrocarbons of five or more carbon atoms may be replaced by subjecting the hydrocarbon to the action of chlorine under active light. The initial chlorination is begun at 25 to 30 deg C with the chlorine diluted with HCl. The later stages may be carried out with undiluted chlorine and the temperature gradually raised to about 129 deg C.

  9. Formation of hydrocarbons by bacteria and algae

    SciTech Connect

    Tornabene, T.G.

    1980-12-01

    A literature review has been performed summarizing studies on hydrocarbon synthesis by microorganisms. Certain algal and bacterial species produce hydrocarbons in large quantities, 70 to 80% of dry cell mass, when in a controlled environment. The nutritional requirements of these organisms are simple: CO/sub 2/ and mineral salts. The studies were initiated to determine whether or not microorganisms played a role in petroleum formation. 90 references. (DMC)

  10. Zeolitic catalytic conversion of alochols to hydrocarbons

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2017-01-03

    A method for converting an alcohol to a hydrocarbon, the method comprising contacting said alcohol with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein said alcohol can be produced by a fermentation process, said metal is a positively-charged metal ion, and said metal-loaded zeolite catalyst is catalytically active for converting said alcohol to said hydrocarbon.

  11. Microbial biodegradation of polyaromatic hydrocarbons.

    PubMed

    Peng, Ri-He; Xiong, Ai-Sheng; Xue, Yong; Fu, Xiao-Yan; Gao, Feng; Zhao, Wei; Tian, Yong-Sheng; Yao, Quan-Hong

    2008-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites.

  12. The origin of light hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mango, Frank D.

    2000-04-01

    The light hydrocarbons (LHs) are probably intermediates in the catalytic decomposition of oil to gas: Oil→LHs→Gas Two lines of evidence support this possibility. First, the reaction was duplicated experimentally under moderate conditions. Second, natural LHs exhibit the characteristics of catalytic products, in particular a proportionality between isomers: (xyi)/(xiy)=α (where x and xi are isomers; y and yi are isomers that are structurally similar to x and xi; and α is a constant). All oils exhibit this relationship with coefficients of correlation reaching 0.99. Isomer ratios change systematically with concentrations, some approaching thermodynamic equilibrium, others not. The correlations reported are the strongest yet disclosed for the LHs. Isomers are related in triads (e.g., n-hexane ↔ 2-methylpentane ↔ 3-methylpentane), consistent with cyclopropane precursors. The LHs obtained experimentally are indistinguishable from natural LHs in (xyi)/(xiy). These relationships are not explained by physical fractionations, equilibrium control, or noncatalytic modes of origin. A catalytic origin, on the other hand, has precedence, economy and experimental support.

  13. Gaseous hydrocarbon-air detonations

    SciTech Connect

    Tieszen, S.R.; Stamps, D.W. ); Westbrook, C.K.; Pitz, W.J. )

    1991-04-01

    Detonation cell width measurements were made on mixtures of air and methane, ethane, dimethyl-ether, nitroethane, ethylene, acetylene, propane, 1,2-epoxypropane, n-hexane, 1-nitrohexane, mixed primary hexylnitrate, n-octane, 2,2,4-trimethylpentane, cyclooctane, 1-octene, cis-cyclooctene, 1,7-octadiene, 1-octyne, n-decane, 1,2-epoxydecane, pentyl-ether, and JP4. Cell width measurements were carried out at 25 and 100 {degrees} C for some of these fuel-air mixtures. For the stoichiometric alkanes, alkenes, and alkynes, there is a very slight decrease in the detonation cell width with increasing initial temperature from 25 {degrees} C to 100 {degrees} C, although the differences are within the experimentally uncertainties in cell width measurements. Also within the uncertainty limits of the measurements, there is no variation in detonation cell width with increase fuel molecular weight for n-alkanes from ethane to n-decane. Molecular structure is found to affect detonability for C{sub 8} hydrocarbons, where the saturated ring structure is more sensitive than the straight-chain alkane, which is more sensitive than the branched-chain alkane. Unsaturated alkenes and alkynes are more sensitive to detonation than saturated alkanes.

  14. Gaseous hydrocarbon-air detonations

    SciTech Connect

    Tieszen, S.R.; Stamps, D.W.; Westbrook, C.K.; Pitz, W.J.

    1988-01-01

    Detonation cell width measurements are made on mixtures of air and methane, ethane, dimethyl-ether, nitroethane, ethylene, acetylene, propane, 1,2-epoxypropane, n-hexane, 1-nitrohexane, mixed primary hexylnitrate, n-octane, 2,2,4-trimethylpentane, cyclooctane, 1-octene, cis-cyclooctene, 1-7-octadiene, 1-octyne, n-decane, 1,2-epoxydecane, pentyl-ether, and JP4. There is a slight decrease in detonation cell width that is within the uncertainty of the data for stoichiometric alkanes, alkenes, and alkynes with increasing temperature between 25 and 100/degree/C. Also there appears to be no effect of molecular weight from ethane to decane, on detonation cell width for stoichiometric alkanes. Molecular structure is found to affect detonability for C/sub 8/ hydrocarbons, where the saturated ring structure is more sensitive than the straight-chain alkane. Unsaturated alkenes and alkynes are more sensitive to detonation than saturated alkanes. However, the degree of sensitization decreases with increasing molecular weight. Addition of functional groups such as nitro, nitrate, epoxy, and ethers are found to significantly reduce the detonation cell width from the parent n-alkane. Nitrated n-alkanes can be more sensitive than hydrogen-air mixtures. The increase in sensitivity of epoxy groups appears to be related to the oxygen to carbon ratio of the molecule. Good results are obtained between the data and predictions from a ZND model with detailed chemical kinetics. 46 refs., 8 figs., 4 tabs.

  15. Birds and polycyclic aromatic hydrocarbons

    USGS Publications Warehouse

    Albers, P.H.

    2006-01-01

    Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.

  16. Hydrocarbon Biodegradation in Hypersaline Environments

    PubMed Central

    Ward, David M.; Brock, T. D.

    1978-01-01

    When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-14C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-14C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments. PMID:16345276

  17. PROTONATED POLYCYCLIC AROMATIC HYDROCARBONS REVISITED

    SciTech Connect

    Ricca, Alessandra; Bauschlicher, Charles W. Jr; Allamandola, Louis J. E-mail: Charles.W.Bauschlicher@nasa.gov

    2011-02-01

    We reconsider the contribution that singly protonated polycyclic aromatic hydrocarbons (PAHs; HPAH{sup +}s) might make to the Class A component of the 6.2 {mu}m interstellar emission feature in light of the recent experimental measurements of protonated naphthalene and coronene. Our calculations on the small HPAH{sup +}s have a band near 6.2 {mu}m, as found in experiment. While the larger HPAH{sup +}s still have emission near 6.2 {mu}m, the much larger intensity of the band near 6.3 {mu}m overwhelms the weaker band at 6.2 {mu}m, so that the 6.2 {mu}m band is barely visible. Since the large PAHs are more representative of those in the interstellar medium, our work suggests that large HPAH{sup +}s cannot be major contributors to the observed emission at 6.2 {mu}m (i.e., Class A species). Saturating large PAH cations with hydrogen atoms retains the 6.2 {mu}m Class A band position, but the rest of the spectrum is inconsistent with observed spectra.

  18. The kinetics of hydrocarbon cracking

    SciTech Connect

    Groten, W.A.; Wojciechowski, B.W. )

    1993-03-01

    A general kinetic model which describes the catalytic cracking of pure hydrocarbons is presented. The model includes a monomolecular cracking path based on the Langmuir adsorption isotherm as well as a bimolecular path, following Rideal kinetics, which accounts for the possibility of a chain cracking mechanism being involved. Catalyst decay is accounted for using the time-on-stream-decay function. Fitting of experimental data from n-nonane cracking on USHY at 673 K, combined with Monte Carlo simulations indicates that, in that case, the total catalytic activity could include between 0 and 90% of activity due to chain processes. This large margin of error stems from the combined effects of a large decay rate, forcing the experimenter to use average conversion data, and of experimental error. Fitting of the model to previously published cracking data for 2-methylpentane on USHY showed that the model lacks a suitable parameter to account for thermal reactions which were not accounted for in the original data set. This observation supports the impression that the model is sensitive to departures from the postulated mechanism. The above kinetic model has also been fitted to the results of n-nonane cracking at three temperatures as well as to previously published data for various other linear paraffins. 32 refs., 17 figs., 6 tabs.

  19. Hydrocarbon associations in evaporite basins

    SciTech Connect

    Warren, J.

    1988-02-01

    Evaporite deposition today is not representative of the diversity or scale of evaporites of the past. Ancient evaporites were deposited in two main settings: platform wide or basin wide. Platform evaporites were composed of relatively thin stratiform units (usually <5-10 m thick) deposited on either ramps or behind rimmed shelves. Basinal evaporites were deposited as thick bedded units 10s to 100s of m thick, and laid down in 4 main tectonic settings - rift, collision, transform, and intracratonic. Basins could be further subdivided into three main depositional settings: deep basin-shallow water, deep basin-deep water, and shallow basin-shallow water. Thick basinal salts were remobilized into salt structures in all tectonic settings except intracratonic. Salt flow was due to inherent instability and differential loading in tectonically active settings. Hydrocarbon accumulations associated with these various platforms and basins followed a predictable, but not mutually exclusive, pattern related to the classification of evaporite settings presented in this paper. Reservoirs in platform and ramp settings tended to be of two types - depositional and diagenetic - with most of the diagenesis following patterns predicted by the porosity and plumbing established at or soon after evaporite emplacement.

  20. Polycyclic Aromatic Hydrocarbons with SPICA

    NASA Astrophysics Data System (ADS)

    Berné, O.; Joblin, C.; Mulas, G.; Tielens, A. G. G. M.; Goicoechea, J. R.

    2009-12-01

    Thanks to high sensitivity, high angular resolution and broad spectral coverage, SPICA will offer a unique opportunity to better characterize the nature of polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs), to better use them as probes of astrophysical environments. The angular resolution will enable to probe the chemical frontiers in the evolution process from VSGs to neutral PAHs, to ionized PAHs and to "Grand-PAHs" in photodissotiation regions and HII regions, as a function of G0 /n (UV radiation field / density). High sensitivity will favor the detection of the far-IR skeletal emission bands of PAHs, which provide specific fingerprints and could lead to the identification of individual PAHs. This overall characterization will allow to use PAH and VSG populations as tracers of physical conditions in spatially resolved protoplanetary disks and nearby galaxies (using mid-IR instruments), and in high redshift galaxies (using the far-IR instrument), thanks to the broad spectral coverage SPICA provides. Based on our previous experience with ISO and Spitzer we discuss how these goals can be reached.

  1. The origin of light hydrocarbons

    SciTech Connect

    Mango, F.D.

    2000-04-01

    The light hydrocarbons (LHs) are probably intermediates in the catalytic decomposition of oil to gas. Two lines of evidence support this possibility. First, the reaction was duplicated experimentally under moderate conditions. Second, natural LHs exhibit the characteristics of catalytic products, in particular a proportionality between isomers: (xy{sub i})/(x{sub i}y) = {alpha} (where x and x{sub i} are isomers; y and y{sub i} are isomers that are structurally similar to x and x{sub i}; and {alpha} is a constant). All oils exhibit this relationship with coefficients of correlation reaching 0.99. Isomer ratios change systematically with concentrations, some approaching thermodynamic equilibrium, others not. The correlations reported are the strongest yet disclosed for the LHs. Isomers are related in triads (e.g., n-hexane {leftrightarrow} 2-methylpentane {leftrightarrow} 3-methylpentane), consistent with cyclopropane precursors. The LHs obtained experimentally are indistinguishable from natural LHs in (xy{sub i})/(x{sub i}y). These relationships are not explained by physical fractionations, equilibrium control, or noncatalytic modes of origin. A catalytic origin, on the other hand, has precedence, economy and experimental support.

  2. Total hydrocarbon analyzer evaluation study

    SciTech Connect

    Shamat, N. ); Crumpler, E. ); Roddan, A. )

    1991-10-01

    Measuring and controlling organic emissions from incineration processes has become a major environmental concern in recent years. The US Environmental Protection Agency (EPA) recently proposed a regulation for sewage sludge incinerators under section 405(d) of the Clean Water Act that will require all sludge incinerators to monitor total hydrocarbon emissions (THCs) on a continuous basis. Such a requirement would be part of National Pollutant Discharge Elimination (NPDES) permits and site-specific THC limits would be established for facilities based on a risk assessment of organic emissions. Before EPA can finalize the proposed requirement, THC monitoring must be successfully conducted in a plant environment and the system required by any final regulation must be kept in operation so that facilities can comply with their permits. The Metropolitan Waste Control Commission (MWCC) in St. Paul, Minn., and Rosemount Analytical Division in La Habre, Calif., entered into a joint agreement with EPA to demonstrate a hot' THC monitoring system to detect THCs in stack gases. The objectives of the study are to determine the feasibility of THC monitoring of sludge incinerator emissions; evaluate the long term reliability, cost of operation, and consistency of a continuous THC monitoring system in an incinerator environment; and determine the correlation of THC stack concentration to incinerator and scrubber operating conditions, carbon monoxide concentration, and specific VOC emissions.

  3. Methanol conversion to higher hydrocarbons

    SciTech Connect

    Tabak, S.A.

    1994-12-31

    Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

  4. Aircraft hydrocarbon emissions at Oakland International Airport.

    PubMed

    Herndon, Scott C; Wood, Ezra C; Northway, Megan J; Miake-Lye, Richard; Thornhill, Lee; Beyersdorf, Andreas; Anderson, Bruce E; Dowlin, Renee; Dodds, Willard; Knighton, W Berk

    2009-03-15

    To help airports improve emission inventory data, speciated hydrocarbon emission indices have been measured from in-use commercial, airfreight, and general aviation aircraft at Oakland International Airport. The compounds reported here include formaldehyde, acetaldehyde, ethene, propene, and benzene. At idle, the magnitude of hydrocarbon emission indices was variable and reflected differences in engine technology, actual throttle setting, and ambient temperature. Scaling the measured emission indices to the simultaneously measured formaldehyde (HCHO) emission index eliminated most of the observed variability. This result supports a uniform hydrocarbon emissions profile across engine types when the engine is operating near idle, which can greatly simplify how speciated hydrocarbons are handled in emission inventories. The magnitude of the measured hydrocarbon emission index observed in these measurements (ambient temperature range 12-22 degrees C) is a factor of 1.5-2.2 times larger than the certification benchmarks. Using estimates of operational fuel flow rates at idle, this analysis suggests that current emission inventories at the temperatures encountered at this airport underestimate hydrocarbon emissions from the idle phase of operation by 16-45%.

  5. Fatal intoxication with hydrocarbons in deltamethrin preparation.

    PubMed

    Magdalan, Jan; Zawadzki, Marcin; Merwid-Lad, Anna

    2009-12-01

    Pyrethroid insecticides are very widely used in agriculture and household due to high effectiveness and low toxicity to humans. We have described a case of a fatal oral intoxication with decis, the insecticide containing pyrethroid (deltamethrin) in a hydrocarbon base. Pyrethroids, including deltamethrin, undergo rapid biotransformation by liver enzymes, which limit their systemic toxicity. Thus, we assume that in the presented case, fatal outcome of poisoning with decis was rather connected with toxic effects of hydrocarbon base (solvent naphtha) than with deltamethrin action. In the described case, detection of aromatic hydrocarbons in blood and lung tissue and their metabolites in urine confirms that these substances were absorbed from gastrointestinal tract to the systemic circulation. Predominant among the clinical outcomes in our patient was profound depression of CNS with apnea, which could be connected with narcotic action of organic solvents. The cardiac arrest was in mechanism of asystolia with prior non-responsive to catecholamines bradycardia and vascular collapse. We connect it with hydrocarbon-induced cardiotoxicity. It is worth remembering that many pyrethroid-containing insecticides are formulated in a hydrocarbon base. Intoxication with such preparations should always be considered not only as poisoning with pyrethroid alone but also as intoxication with hydrocarbons.

  6. Hydrocarbon associations in evaporite basins

    SciTech Connect

    Warren, J.

    1988-01-01

    Evaporite deposition today is not representative of the diversity of scale of evaporites of the past. Ancient evaporites were deposited in two main settings: platform wide or basin wide. Platform evaporites were composed of relatively thin stratiform units (usually <5-10 m thick) deposited on either ramps or behind rimmed shelves. Basinal evaporites were deposited as thick bedded units 10s to 100s of m thick, and laid down in 4 main tectonic settings--rift, collision, transform, and intracratonic. Basins could be further subdivided into three main depositional settings: deep basin-shallow water, deep basin-deep water, and shallow basin-shallow water. Thick basinal salts were remobilized into salt structures in all tectonic settings except intracratonic. Salt flow was due to inherent instability and differential loading in tectonically active settings. Hydrocarbon accumulations associated with these various platforms and basins followed a predictable, but not mutually exclusive, pattern related to the classification of evaporite settings presented in this paper. Reservoirs in platform and ramp settings tended to be of two types--depositional and diagenetic--with most of the diagenesis following patterns predicted by the porosity and plumbing established at or soon after evaporite emplacement. Ramp reservoirs were almost always found in Zone Y, while shelf reservoirs were most common in the grainstone shoals associated with rim or island-crest facies, or their dolomitized equivalents. Reservoirs associated with basinal evaporites were also depositional or diagenetic. Depositional reservoirs were almost all related to topography present during deposition of the carbonates in the basin, often immediately preceding or just beginning evaporitic conditions in the basin.

  7. Determination of the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants.

    PubMed

    Uematsu, Yoko; Suzuki, Kumi; Ogimoto, Mami

    2016-01-01

    A method was developed to determine the aromatic hydrocarbon to total hydrocarbon ratio of mineral oil in commercial lubricants; a survey was also conducted of commercial lubricants. Hydrocarbons in lubricants were separated from the matrix components of lubricants using a silica gel solid phase extraction (SPE) column. Normal-phase liquid chromatography (NPLC) coupled with an evaporative light-scattering detector (ELSD) was used to determine the aromatic hydrocarbon to total hydrocarbon ratio. Size exclusion chromatography (SEC) coupled with a diode array detector (DAD) and a refractive index detector (RID) was used to estimate carbon numbers and the presence of aromatic hydrocarbons, which supplemented the results obtained by NPLC/ELSD. Aromatic hydrocarbons were not detected in 12 lubricants specified for use for incidental food contact, but were detected in 13 out of 22 lubricants non-specified for incidental food contact at a ratio up to 18%. They were also detected in 10 out of 12 lubricants collected at food factories at a ratio up to 13%. The centre carbon numbers of hydrocarbons in commercial lubricants were estimated to be between C16 and C50.

  8. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  9. Hydrocarbons in soils: Origin, composition, and behavior (Review)

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Pikovskii, Yu. I.; Tsibart, A. S.; Smirnova, M. A.

    2015-10-01

    It has been shown that a large body of evidence on the sources, transformation, and migration of hydrocarbons in soils has been acquired by different researchers. Available data about the origin and behavior of hydrocarbon gases, total petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkanes, and other compounds have been considered successively. A wide range of natural and anthropogenic factors affecting the transformation and migration of hydrocarbons in soils have been analyzed. The indicative value of these compounds has been explained. At the same time, many problems related to hydrocarbons in soils are still insufficiently understood. Sparse and fragmentary data are available in the literature on the interaction of different hydrocarbon groups in the soil. Few data refer to the features of hydrocarbons in background zonal soils; there are almost no interzonal comparisons. The behavior of hydrocarbons in soils of different landscape-geographical positions is characterized in isolated publications. The hydrocarbon status of soils as an integral complex of interrelated hydrocarbons is almost not analyzed. Hydrocarbons of a single class (polycyclic aromatic hydrocarbons, hydrocarbon gases, n-alkanes, etc.) are usually characterized in each publication.

  10. Foaming of mixtures of pure hydrocarbons

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.; Woods, W. W.

    1950-01-01

    Mixtures of pure liquid hydrocarbons are capable of foaming. Nine hydrocarbons were mixed in pairs, in all possible combinations, and four proportions of each combination. These mixtures were sealed in glass tubes, and the foaming was tested by shaking. Mixtures of aliphatic with other aliphatic hydrocarbons, or of alkyl benzenes with other alkyl benzenes, did not foam. Mixtures of aliphatic hydrocarbons with alkyl benzenes did foam. The proportions of the mixtures greatly affected the foaming, the maximum foaming of 12 of 20 pairs being at the composition 20 percent aliphatic hydrocarbon, 80 percent alkyl benzene. Six seconds was the maximum foam lifetime of any of these mixtures. Aeroshell 120 lubricating oil was fractionated into 52 fractions and a residue by extraction with acetone in a fractionating extractor. The index of refraction, foam lifetime, color, and viscosity of these fractions were measured. Low viscosity and high index fractions were extracted first. The viscosity of the fractions extracted rose and the index decreased as fractionation proceeded. Foam lifetimes and color were lowest in the middle fractions. Significance is attached to the observation that none of the foam lifetimes of the fractions or residue is as high as the foam lifetime of the original Aeroshell, indicating that the foaming is not due to a particular foaming constituent, but rather to the entire mixture.

  11. Serum laminin, hydrocarbon exposure, and glomerular damage.

    PubMed Central

    Hotz, P; Thielemans, N; Bernard, A; Gutzwiller, F; Lauwerys, R

    1993-01-01

    It has been postulated that occupational exposure to hydrocarbons may damage the kidney and lead to glomerulonephritis and chronic renal failure. As laminin is a ubiquitous basement membrane component that seems to play a central part in the structure and function of basement membranes and as the normal renal filtration process is highly dependent on an intact glomerular basement membrane, the serum laminin concentration was examined in a population of workers exposed to hydrocarbons. The hydrocarbon exposure was assessed by exposure surrogates (exposure duration and exposure score). An interaction between occupational exposure to hydrocarbons and hypertension increased the laminin concentration whereas the laminin concentration decreased in workers exposed for a long time probably because of a selection effect. In a subgroup of printers exposed to toluene whose hippuric acid excretion had been recorded for several years this interaction was confirmed when the hippuric acid excretion was substituted for the other exposure indices. In the exposed group, the age-related decline in creatinine clearance was accelerated. These results seem to confirm that occupational exposure to hydrocarbons is a non-specific factor that may promote a deterioration of renal function. PMID:8280641

  12. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  13. Method for collecting and analyzing hydrocarbons

    SciTech Connect

    Ouellette, G.P.; Larter, S.R.; Fox, J.R.

    1988-12-20

    This patent describes a method for separating and collecting hydrocarbons which include methane from a gas obtained from the vicinity of an earth formation and obtaining information from such a gas which is useful in predicting the hydrocarbon potential of such an earth formation, the method comprising the steps of: obtaining a sample of a gas from the vicinity of an earth formation, the sample including methane; removing any water, carbon dioxide, and carbon monoxide from the sample and passing the sample through a cryogenic trap to separate and collect any interfering gases and hydrocarbons having at least two carbon atoms from the sample into the cryogenic trap. The removing and passing steps produce a first gas which contains the methane from the sample but which is free of water, carbon dioxide, carbon monoxide, interfering gases, and hydrocarbons having at least two carbon atoms; converting the methane in the first gas to form a condensed carbon dioxide sample; carrying out the removing, passing, and converting steps under a continuous subatmospheric pressure in such a manner as to prevent condensation of any oxygen in the cryogenic trap and to prevent any atmospheric carbon dioxide from entering into the sample, the first gas, the cryogenic trap, and the condensed carbon dioxide sample; determining the stable carbon isotope ratio of the condensed carbon dioxide sample which can be then be used to predict the hydrocarbon potential of the earth formation.

  14. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  15. Profiling refined hydrocarbon fuels using polar components

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2007-01-01

    Identification of a fuel released into the environment can be difficult due to biodegradation or weathering. Negative electrospray ionization/mass spectrometry was used to screen for unique polar components in a wide variety of commercial hydrocarbon products and mixtures. These fuels produced unique and relatively simple spectra. When applied to hydrocarbon samples from a large, long-term fuel spill in a relatively cool climate in which the alkane, isoprenoid, and alkylcyclohexane portions had begun to biodegrade or weather, the polar components in these samples had changed little over time. This technique provided rapid fuel identification on hydrocarbons released into the environment, without sample preparation, fractionation, or chromatography. Copyright ?? Taylor & Francis Group, LLC.

  16. Using supercritical fluids to refine hydrocarbons

    SciTech Connect

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  17. Transpiration cooled throat for hydrocarbon rocket engines

    NASA Technical Reports Server (NTRS)

    May, Lee R.; Burkhardt, Wendel M.

    1991-01-01

    The objective for the Transpiration Cooled Throat for Hydrocarbon Rocket Engines Program was to characterize the use of hydrocarbon fuels as transpiration coolants for rocket nozzle throats. The hydrocarbon fuels investigated in this program were RP-1 and methane. To adequately characterize the above transpiration coolants, a program was planned which would (1) predict engine system performance and life enhancements due to transpiration cooling of the throat region using analytical models, anchored with available data; (2) a versatile transpiration cooled subscale rocket thrust chamber was designed and fabricated; (3) the subscale thrust chamber was tested over a limited range of conditions, e.g., coolant type, chamber pressure, transpiration cooled length, and coolant flow rate; and (4) detailed data analyses were conducted to determine the relationship between the key performance and life enhancement variables.

  18. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  19. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  20. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    SciTech Connect

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  1. Mathematics of Periodic Tables for Benzenoid Hydrocarbons.

    PubMed

    Dias, Jerry Ray

    2007-01-01

    The upper and lower bounds for invariants of polyhex systems based on the Harary and Harborth inequalities are studied. It is shown that these invariants are uniquely correlated by the Periodic Table for Benzenoid Hydrocarbons. A modified periodic table for total resonant sextet (TRS) benzenoids based on the invariants of Ds and r(empty) is presented; Ds is the number of disconnections among the empty rings for fused TRS benzenoid hydrocarbons. This work represents a contribution toward deciphering the topological information content of benzenoid formulas.

  2. Process for hydrogenation of hydrocarbon tars

    DOEpatents

    Dolbear, Geoffrey E.

    1978-07-18

    Hydrocarbon tars of high asphaltene content such as tars obtained from pyrolysis of coal are dissolved in a solvent formed from the hydrogenation of the coal tars, and the resultant mixture hydrogenated in the presence of a catalyst at a pressure from about 1500 to 5000 psig at a temperature from about 500.degree. F to about the critical temperature of the solvent to form a light hydrocarbon as a solvent for the tars. Hydrogen content is at least three times the amount of hydrogen consumed.

  3. Aryl Hydrocarbon Receptor and Lung Cancer

    PubMed Central

    Tsay, Junchieh J.; Tchou-Wong, Kam-Meng; Greenberg, Alissa K.; Pass, Harvey; Rom, William N.

    2013-01-01

    The leading cause of lung cancer is exposure to cigarette smoke and other environmental pollutants, which include formaldehyde, acrolein, benzene, dioxin, and polycyclic aromatic hydrocarbons (PAHs). PAHs and dioxins are exogenous ligands that directly bind to the aryl hydrocarbon receptor (AhR), a transcription factor that activates xenobiotic metabolism, histone modification (an important step in DNA methylation), and, ultimately, tumorigenesis. Here we summarize the current understanding of AhR and its role in the development of lung cancer, including its influence on cell proliferation, angiogenesis, inflammation, and apoptosis. PMID:23564762

  4. Arabian plate hydrocarbon geology and potential

    SciTech Connect

    Beydoun, Z.R.

    1991-01-01

    This book provides a thought-provoking, succinct presentation of the geologic evolution and hydrocarbon potential of the world's most prolific petroleum province. The fascinating subjects discussed and documented include: What are the unique geologic factors that make the Middle East such a prolific province Where are the future Mesozoic and Tertiary plays What is the virtually untapped potential of the Paleozoic section What are the play potentials for underexplored areas such as Jordan, Syria, Yemen How are deeper drilling results shaping and modifying concepts of the Arabian plate history and pointing the way to future hydrocarbon targets

  5. Detonability of hydrocarbon fuels in air

    NASA Technical Reports Server (NTRS)

    Beeson, H. D.; Mcclenagan, R. D.; Bishop, C. V.; Benz, F. J.; Pitz, W. J.; Westbrook, C. K.; Lee, J. H. S.

    1991-01-01

    Studies were conducted of the detonation of gas-phase mixtures of n-hexane and JP-4, with oxidizers as varied as air and pure oxygen, measuring detonation velocities and cell sizes as a function of stoichiometry and diluent concentration. The induction length of a one-dimensional Zeldovich-von Neumann-Doering detonation was calculated on the basis of a theoretical model that employed the reaction kinetics of the hydrocarbon fuels used. Critical energy and critical tube diameter are compared for a relative measure of the heavy hydrocarbon fuels studied; detonation sensitivity appears to increase slightly with increasing carbon number.

  6. Prediction of flame velocities of hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Simon, Dorothy M

    1954-01-01

    The laminar-flame-velocity data previously reported by the Lewis Laboratory are surveyed with respect to the correspondence between experimental flame velocities and values predicted by semitheoretical and empirical methods. The combustible mixture variables covered are hydrocarbon structure (56 hydrocarbons), equivalence ratio of fuel-air mixture, mole fraction of oxygen in the primary oxygen-nitrogen mixture (0.17 to 0.50), and initial mixture temperature (200 degrees to 615 degrees k). The semitheoretical method of prediction considered are based on three approximate theoretical equations for flame velocity: the Semenov equation, the Tanford-Pease equation, and the Manson equation.

  7. Catalysts for synthesizing various short chain hydrocarbons

    DOEpatents

    Colmenares, Carlos

    1991-01-01

    Method and apparatus (10), including novel photocatalysts, are disclosed for the synthesis of various short chain hydrocarbons. Light-transparent SiO.sub.2 aerogels doped with photochemically active uranyl ions (18) are fluidized in a fluidized-bed reactor (12) having a transparent window (16), by hydrogen and CO, C.sub.2 H.sub.4 or C.sub.2 H.sub.6 gas mixtures (20), and exposed to radiation (34) from a light source (32) external to the reactor (12), to produce the short chain hydrocarbons (36).

  8. Activation of hydrocarbons and the octane number

    NASA Technical Reports Server (NTRS)

    Peschard, Marcel

    1939-01-01

    This report presents an examination of the history of research on engine knocking and the various types of fuels used in the investigations of this phenomenon. According to this report, the spontaneous ignition of hydrocarbons doped with oxygen follows the logarithmic law within a certain temperature range, but not above 920 degrees K. Having extended the scope of investigations to prove hydrocarbons, the curves of the mixtures burned by air should then be established by progressive replacement of pure iso-octane with heptane. Pentane was also examined in this report.

  9. Aliphatic hydrocarbons of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1990-01-01

    Hydrocarbon fractions from the Murchison meteorite were prepared using benzene-methanol as the extraction solvent, fractionated on silica gel columns, and analyzed using gas chromatography combined with mass spectrometry and IR and NMR techniques. Results indicate that the most abundant aliphatic hydrocarbon components of the Murchison meteorite are C15 to C30 branched-alkyl-substituted mono-, di-, and tricyclic alkanes. It is shown that the n-alkanes, methyl alkanes, and isoprenoid alkanes that are sometimes found in extracts of the Murchison meteorite are terrestrial contaminants.

  10. Effect of surface derived hydrocarbon impurities on Ar plasma properties

    SciTech Connect

    Fox-Lyon, Nick; Oehrlein, Gottlieb S.; Godyak, Valery

    2014-05-15

    The authors report on Langmuir probe measurements that show that hydrocarbon surfaces in contact with Ar plasma cause changes of electron energy distribution functions due to the flux of hydrogen and carbon atoms released by the surfaces. The authors compare the impact on plasma properties of hydrocarbon species gasified from an etching hydrocarbon surface with injection of gaseous hydrocarbons into Ar plasma. They find that both kinds of hydrocarbon injections decrease electron density and slightly increase electron temperatures of low pressure Ar plasma. For low percentages of impurities (∼1% impurity in Ar plasma explored here), surface-derived hydrocarbon species and gas phase injected hydrocarbon molecules cause similar changes of plasma properties for the same number of hydrocarbon molecules injected into Ar with a decrease in electron density of ∼4%.

  11. Method and apparatus for low temperature destruction of halogenated hydrocarbons

    DOEpatents

    Reagen, William Kevin; Janikowski, Stuart Kevin

    1999-01-01

    A method and apparatus for decomposing halogenated hydrocarbons are provided. The halogenated hydrocarbon is mixed with solvating agents and maintained in a predetermined atmosphere and at a predetermined temperature. The mixture is contacted with recyclable reactive material for chemically reacting with the recyclable material to create dehalogenated hydrocarbons and halogenated inorganic compounds. A feature of the invention is that the process enables low temperature destruction of halogenated hydrocarbons.

  12. Method for removing chlorine compounds from hydrocarbon mixtures

    DOEpatents

    Janoski, Edward J.; Hollstein, Elmer J.

    1985-12-31

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  13. Method for removing chlorine compounds from hydrocarbon mixtures

    DOEpatents

    Janoski, E.J.; Hollstein, E.J.

    1984-09-29

    A process for removing halide ions from a hydrocarbon feedstream containing halogenated hydrocarbons wherein the contaminated feedstock is contacted with a solution of a suitable oxidizing acid containing a lanthanide oxide, the acid being present in a concentration of at least about 50 weight percent for a time sufficient to remove substantially all of the halide ion from the hydrocarbon feedstock.

  14. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 86....331-79 Hydrocarbon analyzer calibration. The following steps are followed in sequence to calibrate the hydrocarbon analyzer. It is suggested, but not required, that efforts be made to minimize relative...

  15. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Liquid hydrocarbon measurement. 250.1202... Measurement, Surface Commingling, and Security § 250.1202 Liquid hydrocarbon measurement. (a) What are the requirements for measuring liquid hydrocarbons? You must: (1) Submit a written application to, and...

  16. Cuticular hydrocarbons from the bed bug Cimex lectularius L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pentane extracts of male and female bed bugs were analyzed by gas chromatography and mass spectrometry in an effort to identify cuticular hydrocarbons. Seventeen hydrocarbons accounting for nearly 99% of the compounds eluting in the cuticular hydrocarbon region were identified. The sample contained ...

  17. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  18. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  19. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  20. 40 CFR 503.44 - Operational standard-total hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrocarbons. 503.44 Section 503.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... standard—total hydrocarbons. (a) The total hydrocarbons concentration in the exit gas from a sewage sludge incinerator shall be corrected for zero percent moisture by multiplying the measured total...

  1. 40 CFR 503.44 - Operational standard-total hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. 503.44 Section 503.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... standard—total hydrocarbons. (a) The total hydrocarbons concentration in the exit gas from a sewage sludge incinerator shall be corrected for zero percent moisture by multiplying the measured total...

  2. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 86....331-79 Hydrocarbon analyzer calibration. The following steps are followed in sequence to calibrate the hydrocarbon analyzer. It is suggested, but not required, that efforts be made to minimize relative...

  3. 40 CFR 503.44 - Operational standard-total hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrocarbons. 503.44 Section 503.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... standard—total hydrocarbons. (a) The total hydrocarbons concentration in the exit gas from a sewage sludge incinerator shall be corrected for zero percent moisture by multiplying the measured total...

  4. 40 CFR 721.4365 - Substituted ethoxylated hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted ethoxylated hydrocarbon... Specific Chemical Substances § 721.4365 Substituted ethoxylated hydrocarbon (generic). (a) Chemical... as Substituted ethoxylated hydrocarbon (PMN P-99-0313) is subject to reporting under this section...

  5. 40 CFR 86.521-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 86... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.521-90 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall receive the following initial and periodic calibration....

  6. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative....

  7. 40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1221-90 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the following initial and periodic calibrations. (a) Initial and...

  8. 40 CFR 721.4365 - Substituted ethoxylated hydrocarbon (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted ethoxylated hydrocarbon... Specific Chemical Substances § 721.4365 Substituted ethoxylated hydrocarbon (generic). (a) Chemical... as Substituted ethoxylated hydrocarbon (PMN P-99-0313) is subject to reporting under this section...

  9. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to...

  10. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  11. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Liquid hydrocarbon measurement. 250.1202... Measurement, Surface Commingling, and Security § 250.1202 Liquid hydrocarbon measurement. (a) What are the requirements for measuring liquid hydrocarbons? You must: (1) Submit a written application to, and...

  12. 40 CFR 86.521-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 86... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.521-90 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall receive the following initial and periodic calibration....

  13. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to...

  14. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to...

  15. 40 CFR 86.521-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 86... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.521-90 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall receive the following initial and periodic calibration....

  16. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 86....331-79 Hydrocarbon analyzer calibration. The following steps are followed in sequence to calibrate the hydrocarbon analyzer. It is suggested, but not required, that efforts be made to minimize relative...

  17. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  18. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  19. 40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 86...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1221-90 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the following initial and periodic calibrations. (a) Initial and...

  20. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  1. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative....

  2. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  3. 40 CFR 503.44 - Operational standard-total hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons. 503.44 Section 503.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... standard—total hydrocarbons. (a) The total hydrocarbons concentration in the exit gas from a sewage sludge incinerator shall be corrected for zero percent moisture by multiplying the measured total...

  4. 40 CFR 503.44 - Operational standard-total hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrocarbons. 503.44 Section 503.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... standard—total hydrocarbons. (a) The total hydrocarbons concentration in the exit gas from a sewage sludge incinerator shall be corrected for zero percent moisture by multiplying the measured total...

  5. 40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 86...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1221-90 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the following initial and periodic calibrations. (a) Initial and...

  6. 40 CFR 86.1221-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 86...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1221-90 Hydrocarbon analyzer calibration. The FID hydrocarbon analyzer shall receive the following initial and periodic calibrations. (a) Initial and...

  7. 40 CFR 86.521-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.521-90 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall receive the following initial and periodic calibration....

  8. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Liquid hydrocarbon measurement. 250.1202... Measurement, Surface Commingling, and Security § 250.1202 Liquid hydrocarbon measurement. (a) What are the requirements for measuring liquid hydrocarbons? You must: (1) Submit a written application to, and...

  9. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  10. 40 CFR 721.4365 - Substituted ethoxylated hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted ethoxylated hydrocarbon... Specific Chemical Substances § 721.4365 Substituted ethoxylated hydrocarbon (generic). (a) Chemical... as Substituted ethoxylated hydrocarbon (PMN P-99-0313) is subject to reporting under this section...

  11. Production of hydrocarbons from hydrates. [DOE patent application

    DOEpatents

    McGuire, P.L.

    1981-09-08

    An economical and safe method of producing hydrocarbons (or natural gas) from in situ hydrocarbon-containing hydrates is given. Once started, the method will be self-driven and will continue producing hydrocarbons over an extended period of time (i.e., many days).

  12. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN...

  13. 40 CFR 86.521-90 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Hydrocarbon analyzer calibration. 86... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.521-90 Hydrocarbon analyzer calibration. (a) The FID hydrocarbon analyzer shall receive the following initial and periodic calibration....

  14. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this...

  15. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Liquid hydrocarbon measurement. 250.1202... Gas Production Measurement, Surface Commingling, and Security § 250.1202 Liquid hydrocarbon measurement. (a) What are the requirements for measuring liquid hydrocarbons? You must: (1) Submit a...

  16. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative....

  17. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to...

  18. 33 CFR 157.132 - Cargo tanks: Hydrocarbon vapor emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Cargo tanks: Hydrocarbon vapor... § 157.132 Cargo tanks: Hydrocarbon vapor emissions. Each tank vessel having a COW system under § 157.10a... must have— (a) A means to discharge hydrocarbon vapors from each cargo tank that is ballasted to...

  19. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  20. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  1. 40 CFR 721.4365 - Substituted ethoxylated hydrocarbon (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted ethoxylated hydrocarbon... Specific Chemical Substances § 721.4365 Substituted ethoxylated hydrocarbon (generic). (a) Chemical... as Substituted ethoxylated hydrocarbon (PMN P-99-0313) is subject to reporting under this section...

  2. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  3. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  4. 30 CFR 250.1202 - Liquid hydrocarbon measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Liquid hydrocarbon measurement. 250.1202..., Surface Commingling, and Security § 250.1202 Liquid hydrocarbon measurement. (a) What are the requirements for measuring liquid hydrocarbons? You must: (1) Submit a written application to, and obtain...

  5. 40 CFR 721.10259 - Halogenated aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated aromatic hydrocarbon... Specific Chemical Substances § 721.10259 Halogenated aromatic hydrocarbon (generic). (a) Chemical substance... halogenated aromatic hydrocarbon (PMN P-09-540) is subject to reporting under this section for the...

  6. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN...

  7. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  8. 40 CFR 721.10676 - Aromatic hydrocarbon mixture (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic hydrocarbon mixture (generic... Specific Chemical Substances § 721.10676 Aromatic hydrocarbon mixture (generic). (a) Chemical substance and... hydrocarbon mixture (PMN P-12-551) is subject to reporting under this section for the significant new...

  9. 40 CFR 721.10258 - Aromatic hydrocarbon (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic hydrocarbon (generic). 721... Substances § 721.10258 Aromatic hydrocarbon (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic hydrocarbon (PMN...

  10. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  11. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86....331-79 Hydrocarbon analyzer calibration. The following steps are followed in sequence to calibrate the hydrocarbon analyzer. It is suggested, but not required, that efforts be made to minimize relative...

  12. 40 CFR 721.4380 - Modified hydrocarbon resin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified hydrocarbon resin. 721.4380... Substances § 721.4380 Modified hydrocarbon resin. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a modified hydrocarbon resin (P-91-1418)...

  13. 40 CFR 52.987 - Control of hydrocarbon emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control of hydrocarbon emissions. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Louisiana § 52.987 Control of hydrocarbon... compliance date of January 1, 1980. This shall result in an estimated hydrocarbon emission reduction of...

  14. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative....

  15. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative....

  16. 40 CFR 721.4365 - Substituted ethoxylated hydrocarbon (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted ethoxylated hydrocarbon... Specific Chemical Substances § 721.4365 Substituted ethoxylated hydrocarbon (generic). (a) Chemical... as Substituted ethoxylated hydrocarbon (PMN P-99-0313) is subject to reporting under this section...

  17. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 172.884... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used in food, in accordance with the following prescribed...

  18. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with...

  19. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with...

  20. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with...

  1. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  2. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 172.884... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used in food, in accordance with the following prescribed...

  3. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the...

  4. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic isoparaffinic petroleum hydrocarbons. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with...

  5. 21 CFR 172.882 - Synthetic isoparaffinic petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Synthetic isoparaffinic petroleum hydrocarbons... Multipurpose Additives § 172.882 Synthetic isoparaffinic petroleum hydrocarbons. Synthetic isoparaffinic petroleum hydrocarbons may be safely used in food, in accordance with the following conditions: (a) They...

  6. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Odorless light petroleum hydrocarbons. 172.884... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used in food, in accordance with the following prescribed...

  7. 21 CFR 172.884 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 172.884... HUMAN CONSUMPTION Multipurpose Additives § 172.884 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used in food, in accordance with the following prescribed...

  8. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the production of nonfood articles intended for...

  9. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  10. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the...

  11. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the...

  12. 21 CFR 178.3530 - Isoparaffinic petroleum hydrocarbons, synthetic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Isoparaffinic petroleum hydrocarbons, synthetic... AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3530 Isoparaffinic petroleum hydrocarbons, synthetic. Isoparaffinic petroleum hydrocarbons, synthetic, may be safely used in the...

  13. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Odorless light petroleum hydrocarbons. 178.3650... Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may... derived from petroleum or synthesized from petroleum gases. The additive is chiefly...

  14. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  15. 21 CFR 178.3650 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 178.3650... SANITIZERS Certain Adjuvants and Production Aids § 178.3650 Odorless light petroleum hydrocarbons. Odorless light petroleum hydrocarbons may be safely used, as a component of nonfood articles intended for use...

  16. Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates

    DOEpatents

    Elliott, Guy R. B.; Barraclough, Bruce L.; Vanderborgh, Nicholas E.

    1983-01-01

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  17. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates

    DOEpatents

    Elliott, Guy R. B.; Barraclough, Bruce L.; Vanderborgh, Nicholas E.

    1984-01-01

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus, carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  18. Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates

    DOEpatents

    Elliott, G.R.B.; Barraclough, B.L.; Vanderborgh, N.E.

    1981-02-19

    A method and apparatus are provided for producing gaseous hydrocarbons from formations comprising solid hydrocarbon hydrates located under either a body of land or a body of water. The vast natural resources of such hydrocarbon hydrates can thus now be economically mined. Relatively warm brine or water is brought down from an elevation above that of the hydrates through a portion of the apparatus, and passes in contact with the hydrates, thus melting them. The liquid then continues up another portion of the apparatus carrying entrained hydrocarbon vapors in the form of bubbles, which can easily be separated from the liquid. After a short startup procedure, the process and apparatus are substantially self-powered.

  19. Task 8: Evaluation of hydrocarbon potential

    SciTech Connect

    Cashman, P.H.; Trexler, J.H. Jr.

    1994-12-31

    Our studies focus on the stratigraphy of Late Devonian to early Pennsylvanian rocks at the NTS, because these are the best potential hydrocarbon source rocks in the vicinity of Yucca Mountain. In the last year, our stratigraphic studies have broadened to include the regional context for both the Chainman and the Eleana formations. New age data based on biostratigraphy constrain the age ranges of both Chainman and Eleana; accurate and reliable ages are essential for regional correlation and for regional paleogeographic reconstructions. Source rock analyses throughout the Chainman establish whether these rocks contained adequate organic material to generate hydrocarbons. Maturation analyses of samples from the Chainman determine whether the temperature history has been suitable for the generation of liquid hydrocarbons. Structural studies are aimed at defining the deformation histories and present position of the different packages of Devonian - Pennsylvanian rocks. This report summarizes new results of our structural, stratigraphic and hydrocarbon source rock potential studies at the Nevada Test Site and vicinity. Stratigraphy is considered first, with the Chainman Shale and Eleana Formation discussed separately. New biostratigraphic results are included in this section. New results from our structural studies are summarized next, followed by source rock and maturation analyses of the Chainman Shale. Directions for future work are included where appropriate.

  20. Volatile hydrocarbons and fuel oxygenates: Chapter 12

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.

    2014-01-01

    Petroleum hydrocarbons and fuel oxygenates are among the most commonly occurring and widely distributed contaminants in the environment. This chapter presents a summary of the sources, transport, fate, and remediation of volatile fuel hydrocarbons and fuel additives in the environment. Much research has focused on the transport and transformation processes of petroleum hydrocarbons and fuel oxygenates, such as benzene, toluene, ethylbenzene, and xylenes and methyl tert‐butyl ether, in groundwater following release from underground storage tanks. Natural attenuation from biodegradation limits the movement of these contaminants and has received considerable attention as an environmental restoration option. This chapter summarizes approaches to environmental restoration, including those that rely on natural attenuation, and also engineered or enhanced remediation. Researchers are increasingly combining several microbial and molecular-based methods to give a complete picture of biodegradation potential and occurrence at contaminated field sites. New insights into the fate of petroleum hydrocarbons and fuel additives have been gained by recent advances in analytical tools and approaches, including stable isotope fractionation, analysis of metabolic intermediates, and direct microbial evidence. However, development of long-term detailed monitoring programs is required to further develop conceptual models of natural attenuation and increase our understanding of the behavior of contaminant mixtures in the subsurface.

  1. Extracting hydrocarbons from water using a centrifuge

    NASA Astrophysics Data System (ADS)

    Ryabov, A. Yu.; Ilyina, A. A.; Chuikin, A. V.; Velikov, A. A.

    2014-09-01

    An original method for the solid-phase microextraction of hydrocarbons from water using a centrifuge is proposed. Comparative results from the chromatographic elution of substances after liquid-phase and solid-phase microextraction are presented. The percentage of the extraction of substances from aqueous solutions and the minimum detection limit for aromatic and aliphatic compounds are calculated.

  2. Reduction of hydrocarbon emissions can be costly

    SciTech Connect

    Menke, T.R.

    1997-12-31

    The purpose of this paper is to share the Lone Star Greencastle Indiana Plant`s, experiences with changing raw materials in the kiln feed to reduce hydrocarbons emissions. The original change of the plant`s kiln feed composition was made in July of 1995. The plant changed the kiln feed composition for the first time since the plant opened. Shale was replaced in the kiln feed composition with clay, mill scale, and foundry sand, solely to reduce hydrocarbon emissions. At the time it was something that had to be done to keep burning liquid waste, in order to comply with the BIF Tier II limit of 20 ppm of hydrocarbon emissions. The change of raw materials did accomplish what it was supposed to by reducing the hydrocarbon emissions under the allowable limit. Plant personnel did not want to change raw materials, but did not have much of a choice, and had no idea of the repercussions that would follow. I will discuss the positives and negatives of the different raw mix compositions. 3 figs., 13 tabs.

  3. Planar tetracoordinate carbons in cyclic hydrocarbons.

    PubMed

    Perez, Nancy; Heine, Thomas; Barthel, Robert; Seifert, Gotthard; Vela, Alberto; Mendez-Rojas, Miguel Angel; Merino, Gabriel

    2005-04-14

    [structure: see text] A series of cyclic hydrocarbons containing a planar tetracoordinate carbon atom is proposed. To rationalize the electronic factors contributing to the stability of these molecules, an analysis of the molecular orbitals and the induced magnetic field is presented.

  4. Hydrocarbon exposure and chronic renal disease.

    PubMed

    Asal, N R; Cleveland, H L; Kaufman, C; Nsa, W; Nelson, D I; Nelson, R Y; Lee, E T; Kingsley, B

    1996-01-01

    The study objective was to investigate further the potential role of long-term exposure to hydrocarbons (HCs) in the development of idiopathic chronic glomerulopathy (ICG) using a more refined measurement of HC exposure. A total of 321 pairs of cases and controls, matched by age, gender, and geographical area, were assembled. A detailed questionnaire was blindly administered to cases and controls to collect information on occupational and medical history and sociodemographic data. By integrating quantified measurements of HC exposure from a variety of sources with each subject's occupational history, a lifetime HC exposure score could be estimated and expressed in parts per million (ppm). Cases had an hydrocarbon exposure mean score of 165 ppm (median 48 ppm) as compared to 162 ppm (median 43 ppm) for controls (P = 0.757). When using hydrocarbon exposure as a dichotomous variable with a cutoff point at 100 ppm, cases had a higher proportion of exposed than controls, but the difference was not statistically significant at the 0.05 level, even after controlling for possible confounders through logistic regression. Subgroup analyses showed mixed results. In most subgroups differences between cases and controls tended to become significant when hydrocarbon was used as a dichotomous variable. Results from this study do not sufficiently support the hypothesized association of HC exposure and ICG in general. Subgroup analyses need further investigations. Efforts to generate accurate estimates of lifetime HC exposure should be emphasized for future investigations.

  5. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    PubMed Central

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT) and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms. PMID:27829840

  6. Air Pollution: Where Do Hydrocarbons Come From?

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1975-01-01

    Describes the controversy surrounding a report which concluded that, in certain areas and under certain conditions, hydrocarbons released from trees and other vegetation may be more important in the initiation of smog than those released from automobiles. Discusses relevant research which has not been able to support or refute this conclusion.…

  7. Site characterization and petroleum hydrocarbon plume mapping

    SciTech Connect

    Ravishankar, K.

    1996-12-31

    This paper presents a case study of site characterization and hydrocarbon contamination plume mapping/delineation in a gas processing plant in southern Mexico. The paper describes innovative and cost-effective use of passive (non-intrusive) and active (intrusive) techniques, including the use of compound-specific analytical methods for site characterization. The techniques used, on a demonstrative basis, include geophysical, geochemical, and borehole drilling. Geochemical techniques used to delineate the horizontal extent of hydrocarbon contamination at the site include soil gas surveys. The borehole drilling technique used to assess the vertical extent of contamination and confirm geophysical and geochemical data combines conventional hollow-stem auguring with direct push-probe using Geoprobe. Compound-specific analytical methods, such as hydrocarbon fingerprinting and a modified method for gasoline range organics, demonstrate the inherent merit and need for such analyses to properly characterize a site, while revealing the limitations of noncompound-specific total petroleum hydrocarbon analysis. The results indicate that the techniques used in tandem can properly delineate the nature and extent of contamination at a site; often supplement or complement data, while reducing the risk of errors and omissions during the assessment phase; and provide data constructively to focus site-specific remediation efforts. 7 figs.

  8. Electrolytes for Hydrocarbon Air Fuel Cells.

    DTIC Science & Technology

    1981-01-01

    performed on four commercially available electrolytes; namely, -methanedisulfonic acid - sulfoacetic acid -10-dl-camphorsulfonic acid -and...hydrocarbon chain can increase the stability of aliphatic sulfonic acids . Sulfoacetic and dl-10-camphorsulfonic acids were tested and found to decompose...thermally. 0 Sulfoacetic acid thermally decomposes at 180 C apparently due to decarboxylation. This is substantially below the 245 C reported by previous

  9. Electrolytes for Hydrocarbon Air Fuel Cells.

    DTIC Science & Technology

    1980-04-01

    available electrolytes; namely, -methanedisulfonic acid - sulfoacetic acid -10-dl-camphorsulfonic acid -and pentadecafluorooctanoic acid . These four...in the hydrocarbon chain can increase the stability of aliphatic sulfonic acids . Sulfoacetic and dl-10-camphorsulfonic acids were tested and found to...decompose thermally. 6 Sulfoacetic acid thermally decomposes at 180 C apparently due to decarboxylation. This is substantially 6 below the 245 C

  10. Method of dispersing a hydrocarbon using bacteria

    DOEpatents

    Tyndall, R.L.

    1996-09-24

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  11. Method of dispersing a hydrocarbon using bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  12. Bioremediation of hydrocarbon-contaminated polar soils.

    PubMed

    Aislabie, Jackie; Saul, David J; Foght, Julia M

    2006-06-01

    Bioremediation is increasingly viewed as an appropriate remediation technology for hydrocarbon-contaminated polar soils. As for all soils, the successful application of bioremediation depends on appropriate biodegradative microbes and environmental conditions in situ. Laboratory studies have confirmed that hydrocarbon-degrading bacteria typically assigned to the genera Rhodococcus, Sphingomonas or Pseudomonas are present in contaminated polar soils. However, as indicated by the persistence of spilled hydrocarbons, environmental conditions in situ are suboptimal for biodegradation in polar soils. Therefore, it is likely that ex situ bioremediation will be the method of choice for ameliorating and controlling the factors limiting microbial activity, i.e. low and fluctuating soil temperatures, low levels of nutrients, and possible alkalinity and low moisture. Care must be taken when adding nutrients to the coarse-textured, low-moisture soils prevalent in continental Antarctica and the high Arctic because excess levels can inhibit hydrocarbon biodegradation by decreasing soil water potentials. Bioremediation experiments conducted on site in the Arctic indicate that land farming and biopiles may be useful approaches for bioremediation of polar soils.

  13. Reappraisal of hydrocarbon biomarkers in Archean rocks.

    PubMed

    French, Katherine L; Hallmann, Christian; Hope, Janet M; Schoon, Petra L; Zumberge, J Alex; Hoshino, Yosuke; Peters, Carl A; George, Simon C; Love, Gordon D; Brocks, Jochen J; Buick, Roger; Summons, Roger E

    2015-05-12

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  14. Reappraisal of hydrocarbon biomarkers in Archean rocks

    PubMed Central

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-01-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories. PMID:25918387

  15. Reappraisal of hydrocarbon biomarkers in Archean rocks

    NASA Astrophysics Data System (ADS)

    French, Katherine L.; Hallmann, Christian; Hope, Janet M.; Schoon, Petra L.; Zumberge, J. Alex; Hoshino, Yosuke; Peters, Carl A.; George, Simon C.; Love, Gordon D.; Brocks, Jochen J.; Buick, Roger; Summons, Roger E.

    2015-05-01

    Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.

  16. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Mallavarapu, Megharaj; Naidu, Ravi

    2015-06-01

    Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

  17. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  18. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    SciTech Connect

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  19. Plasma-assisted conversion of solid hydrocarbon to diamond

    DOEpatents

    Valone, Steven M.; Pattillo, Stevan G.; Trkula, Mitchell; Coates, Don M.; Shah, S. Ismat

    1996-01-01

    A process of preparing diamond, e.g., diamond fiber, by subjecting a hydrocarbon material, e.g., a hydrocarbon fiber, to a plasma treatment in a gaseous feedstream for a sufficient period of time to form diamond, e.g., a diamond fiber is disclosed. The method generally further involves pretreating the hydrocarbon material prior to treatment with the plasma by heating within an oxygen-containing atmosphere at temperatures sufficient to increase crosslinking within said hydrocarbon material, but at temperatures insufficient to melt or decompose said hydrocarbon material, followed by heating at temperatures sufficient to promote outgassing of said crosslinked hydrocarbon material, but at temperatures insufficient to convert said hydrocarbon material to carbon.

  20. Production of hydrocarbons by Aspergillus carbonarius ITEM 5010.

    PubMed

    Sinha, Malavika; Sørensen, Annette; Ahamed, Aftab; Ahring, Birgitte Kiær

    2015-04-01

    The filamentous fungus, Asperigillus carbonarius, is able to produce a series of hydrocarbons in liquid culture using lignocellulosic biomasses, such as corn stover and switch grass as carbon source. The hydrocarbons produced by the fungus show similarity to jet fuel composition and might have industrial application. The production of hydrocarbons was found to be dependent on type of media used. Therefore, ten different carbon sources (oat meal, wheat bran, glucose, carboxymethyl cellulose, avicel, xylan, corn stover, switch grass, pretreated corn stover, and pretreated switch grass) were tested to identify the maximum number and quantity of hydrocarbons produced. Several hydrocarbons were produced include undecane, dodecane, tetradecane, hexadecane 2,4-dimethylhexane, 4-methylheptane, 3-methyl-1-butanol, ethyl benzene, o-xylene. Oatmeal was found to be the carbon source resulting in the largest amounts of hydrocarbon products. The production of fungal hydrocarbons, especially from lignocellulosic biomasses, holds a great potential for future biofuel production whenever our knowledge on regulators and pathways increases.

  1. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  2. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  3. Natural hydrocarbons, urbanization, and urban ozone

    NASA Technical Reports Server (NTRS)

    Cardelino, C. A.; Chameides, W. L.

    1990-01-01

    The combined effects of emission control and urbanization, with its concomitant intensification of the urban heat island, on urban ozone concentrations are studied. The effect of temperature on ozone is considered, and attention is given to the temperature effect on ozone photochemistry. Model calculations suggest that ozone concentration enhancements are caused by the effect of temperature on the atmospheric chemistry of peroxyacetyl nitrate, as well as the temperature dependence of natural and anthropogenic hydrocarbon emissions. It is pointed out that, because of the sensitivity of urban ozone to local climatic conditions and the ability of trees to moderate summertime temperatures, the inadvertent removal of trees from urbanization can have an adverse effect on urban ozone concentration, while a temperature increase in the urban heat island caused by urbanization can essentially cancel out the ozone-reducing benefits obtained from a 50-percent reduction in anthropogenic hydrocarbon emissions.

  4. Viability of Selected Microorganisms in Hydrocarbon Fuels.

    PubMed

    Hedrick, H G; Carroll, M T; Owen, H P; Pritchard, D J

    1963-11-01

    A laboratory study of the viability of selected microorganisms in a hydrocarbon fuel medium was carried out on 19 species of microorganisms, representative of the types found as natural contaminants in aircraft fuels. More species remained viable when inoculated in pure cultures than when inoculated in mixed (composite) cultures. Of the 19 species selected, 10 were still viable after 3 months and 5 were viable after 4 months in the pure culture inoculants. In the complete composite culture inoculant, the bacterial species which were viable at the end of 4 months were the same as those found in the pure culture inoculant. No fungi remained viable in the complete composite cultures after a 3-week period. The microorganisms which remain viable in a hydrocarbon fuel medium are considered indicative of a satisfactory inoculum to be used as a test culture in laboratory analysis of mechanical control techniques.

  5. Biological monitoring of chlorinated hydrocarbon solvents

    SciTech Connect

    Monster, A.C.

    1986-08-01

    The possibility of biological monitoring of exposure to some volatile, halogenated hydrocarbons will be discussed. Most of these agents are widely used as solvents. All agents act on the nervous system as narcotics and differ widely in toxicity. Most of the solvents undergo biotransformation to metabolites. This allows biological assessment of exposure by measurement of the solvent and/or metabolites in exhaled air, blood, and/or urine. However, the same metabolites may occur with exposure to different chlorinated hydrocarbons, eg, trichloroethanol and trichloroacetic acid from exposure to trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane. On the other hand, these agents differ widely in the percentage that is metabolized. There are large gaps in our knowledge, however, and much research will have to be carried out before even tentative data can be established for most of the solvents.

  6. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons.

    PubMed Central

    Evangelista de Duffard, A M; Duffard, R

    1996-01-01

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone,dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or changes in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. PMID:9182042

  7. Effect of hydrocarbon fuel type on fuel

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Bittker, D. A.

    1982-01-01

    A modified jet fuel thermal oxidation tester (JFTOT) procedure was used to evaluate deposit and sediment formation for four pure hydrocarbon fuels over the temperature range 150 to 450 C in 316-stainless-steel heater tubes. Fuel types were a normal alkane, an alkene, a naphthene, and an aromatic. Each fuel exhibited certain distinctive deposit and sediment formation characteristics. The effect of aluminum and 316-stainless-steel heater tube surfaces on deposit formation for the fuel n-decane over the same temperature range was investigated. Results showed that an aluminum surface had lower deposit formation rates at all temperatures investigated. By using a modified JFTOT procedure the thermal stability of four pure hydrocarbon fuels and two practical fuels (Jet A and home heating oil no. 2) was rated on the basis of their breakpoint temperatures. Results indicate that this method could be used to rate thermal stability for a series of fuels.

  8. Behavioral toxicology, risk assessment, and chlorinated hydrocarbons

    SciTech Connect

    Evangelista de Duffard, A.M.; Duffard, R.

    1996-04-01

    Behavioral end points are being used with greater frequency in neurotoxicology to detect and characterize the adverse effects of chemicals on the nervous system. Behavioral measures are particularly important for neurotoxicity risk assessment since many known neurotoxicants do not result in neuropathology. The chlorinated hydrocarbon class consists of a wide variety of chemicals including polychlorinated biphenyls, clioquinol, trichloroethylene, hexachlorophene, organochlorine insecticides (DDT, dicofol, chlordecone, dieldrin, and lindane), and phenoxyherbicides. Each of these chemicals has effects on motor, sensory, or cognitive function that are detectable using functional measures such as behavior. Furthermore, there is evidence that if exposure occurs during critical periods of development, many of the chlorinated hydrocarbons are developmental neurotoxicants. Developmental neurotoxicity is frequently expressed as alterations in motor function or cognitive abilities or charges in the ontogeny of sensorimotor reflexes. Neurotoxicity risk assessment should include assessments of the full range of possible neurotoxicological effects, including both structural and functional indicators of neurotoxicity. 121 refs., 1 tab.

  9. Macroporous polymer foams by hydrocarbon templating.

    PubMed

    Shastri, V P; Martin, I; Langer, R

    2000-02-29

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control over pore structure, porosity, and other structural and bulk characteristics of the polymer foam. Polymer foams with densities as low as 120 mg/cc, porosity as high as 87%, and high surface areas (20 m(2)/g) have been produced. Foams of poly(l-lactic acid), a biodegradable polymer, produced by this process have been used to engineer a variety of different structures, including tissues with complex geometries such as in the likeness of a human nose.

  10. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21

    A method and apparatus for synthesizing a mixture of hydrocarbons having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further includes Na present as a substitutional cation in an amount of about 5 to 10 atom %. At a temperature of about 340 to 360/sup 0/C, and at pressures of about 20 to 50 atm, CH/sub 3/OH is produced in an amount of about 90 wt % of the total hydrocarbon mixture, and comprised 1 mole % of the effluent gas.

  11. Conversion method for gas streams containing hydrocarbons

    DOEpatents

    Mallinson, Richard G.; Lobban, Lance; Liu, Chang-jun

    2000-01-01

    An apparatus and a method of using the apparatus are provided for converting a gas stream containing hydrocarbons to a reaction product containing effluent molecules having at least one carbon atom, having at least one interior surface and at least one exterior surface, a first electrode and a second electrode with the first and second electrodes being selectively movable in relation to each other and positioned within the housing so as to be spatially disposed a predetermined distance from each other, a plasma discharge generator between the first and second electrodes, gas stream introducer and a collector for collecting the reaction product effluent produced by the reaction of the gas stream containing hydrocarbons with the plasma discharge between the first and second electrodes.

  12. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOEpatents

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  13. Macroporous polymer foams by hydrocarbon templating

    PubMed Central

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control over pore structure, porosity, and other structural and bulk characteristics of the polymer foam. Polymer foams with densities as low as 120 mg/cc, porosity as high as 87%, and high surface areas (20 m2/g) have been produced. Foams of poly(l-lactic acid), a biodegradable polymer, produced by this process have been used to engineer a variety of different structures, including tissues with complex geometries such as in the likeness of a human nose. PMID:10696111

  14. LOX/hydrocarbon auxiliary propulsion system study

    NASA Technical Reports Server (NTRS)

    Orton, G. F.; Mark, T. D.; Weber, D. D.

    1982-01-01

    Liquid oxygen (LOX)/hydrocarbon propulsion concepts for a "second generation' orbiter auxiliary propulsion system was evaluated. The most attractive fuel and system design approach identified, and the technology advancements that are needed to provide high confidence for a subsequent system development were determined. The fuel candidates were ethanol, methane, propane, and ammonia. Even though ammonia is not a hydrocarbon, it was included for evaluation because it is clean burning and has a good technology base. The major system design options were pump versus pressure feed, cryogenic versus ambient temperature RCS propellant feed, and the degree of OMS-RCS integration. Ethanol was determined to be the best fuel candidate. It is an earth-storable fuel with a vapor pressure slightly higher than monomethyl hydrazine. A pump-fed OMS was recommended because of its high specific impulse, enabling greater velocity change and greater payload capability than a pressure fed system.

  15. Density functional calculations on hydrocarbon isodesmic reactions

    NASA Astrophysics Data System (ADS)

    Fortunelli, Alessandro; Selmi, Massimo

    1994-06-01

    Hartree—Fock, Hartree—Fock-plus-correlation and self-consistent Kohn—Sham calculations are performed on a set of hydrocarbon isodesmic reactions, i.e. reactions among hydrocarbons in which the number and type of carbon—carbon and carbon—hydrogen bonds is conserved. It is found that neither Hartree—Fock nor Kohn—Sham methods correctly predict standard enthalpies, Δ Hr(298 K), of these reactions, even though — for reactions involving molecules containing strained double bonds — the agreement between the theoretical estimates and the experimental values of Δ Hr seems to be improved by the self-consistent solution of the Kohn—Sham equations. The remaining discrepancies are attributed to intramolecular dispersion effects, that are not described by ordinary exchange—correlation functionals, and are eliminated by introducing corrections based on a simple semi-empirical model.

  16. HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY

    SciTech Connect

    Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

    2006-08-15

    Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

  17. Hydrocarbons from plants: Analytical methods and observations

    SciTech Connect

    Calvin, Melvin

    1980-11-01

    We have suggested that certain plants rich in hydrocarbon-like materials might be cultivated for renewable photosynthetic products. Two species were selected for experimental plantations: Euphorbia lathyris, an annual from seed and Euphorbia tirucalli, a perennial from cuttings, The yield from each species is over 10 barrels of oil/acre/year without genetic or agronomic improvement. In addition to plants, there are trees, such as species of Copaifera in Brazil and other tropical areas, which produce a diesel-like oil upon tapping. Each tree produces approximately 40 liters of hydrocarbon per year, and this material can be used directly by a diesel-powered car. Further efforts to develop plants as alternate energy sources are underway, as well as a continuing search for additional plant species throughout the world which have a similar capability.

  18. Zeolite membrane application in hydrocarbon processing

    SciTech Connect

    Suzuki, H.

    1988-06-01

    Zeolites are of great importance in hydrocarbon processing either as adsorbents or catalysts. This paper presents a research since 1973 about the transformation of zeolite into membrane zeolite, that dramatically contributes to the free world of peace and prosperity. Commercial and organic membranes are of two categories: anisotropic membrane, e.g. cellulose acetate, and composite membrane, e.g. plasma {und in}-{und situ} polymerization on polysulfone support. Zeolite membrane belongs to the latter category, zeolite {und in}-{und situ} hydrothermalization on porous glass. Basically zeolite membrane is consisted of three groups: (1) eight-oxygen ring window, zeolite A, (2) ten-oxygen ring window, Pentasil, and (3) twelve-oxygen ring window, Faujasite. The technology of zeolite membrane synthesis and subsequent treatment is almost transferred from the one applied to powder zeolites. Zeolite membrane is expected to play a major role in the field of hydrocarbon processing, that is, PSA, Distillation/Extraction, and Catalytic Reactions.

  19. Hydrogen Production from Liquid Hydrocarbons Demonstration Program.

    DTIC Science & Technology

    1986-09-01

    to naphtha . These hydrogen plant feedstocks have nil sulfur content. End uses for hydrogen include ammonia and methanol manufacture, hydrocracking...steam reformer (HTSR) to convert approximately 55% of the carbon content of the feed logistic fuel to oxides of carbon (carbon monoxide and carbon dioxide...and (2), an autothermal reformer (ATR) to convert the remainder of the hydrocarbon feedstock to a mixture of hydrogen and carbon oxides. Other

  20. Atmospheric distribution and sources of nonmethane hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Zimmerman, Patrick B.

    1992-01-01

    The paper discusses the atmospheric distribution of natural and man-made nonmethane hydrocarbons (NMHCs), the major species of airborne NMHCs, and their sources and sinks. Particular attention is given to the techniques for measuring atmospheric NMHCs; diurnal and seasonal variations of atmospheric NMHCs and differences between rural, urban, and marine environments; latitudinal and vertical distributions; and available stratospheric NMHC measurements. A formula defining the atmospheric lifetime of a NMHC from its reaction rates with OH and O3 is presented.

  1. Synthesis of Synthetic Hydrocarbons Via Alpha Olefins.

    DTIC Science & Technology

    1985-05-01

    lubricants include both homopolymers and copolymers. The patented homopolymers are based on isobutylene, octene or decene. The copolymers include ethylene ...erse if necessary and identify by block number) 1108 07 3 0704synthetic hydrocarbon, polyalphaolefin, alkyl benzene, I ethylene propylene, NMR 10, A...telomerization) of ethylene to mesitylene and meta xylene yields straight chain alkyl, aromatic oils in which the chain length, structure and point

  2. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  3. Supercritical Hydrocarbon Impinging Injector Simulation Facility

    DTIC Science & Technology

    2006-04-01

    PC Beowulf cluster that was purchased under a previous AFOSR Grant (F49620-01-1-0432) managed by Dr. Mitat Birkan. The cluster consists of 22 Intel...computing cluster allows simulations to be conducted in a sufficiently short time period to allow investigation of the effects of operating conditions...hydrocarbon propellants are of interest to the next generation of liquid propellant rocket engines. The procured high performance computing cluster allows

  4. PRODUCTION OF FLUORINE-CONTAINING HYDROCARBON

    DOEpatents

    Sarsfield, N.F.

    1949-08-01

    This patent relates to improvements in the production of fluorine- containing hydrocarbon derivatives. The process for increasing the degree of fluorination of a fluorochlorohydrocarbon comprises subjecting a highly fluorinated fluorochlorohydrocarbon to the action of a dehydrochlorinating agent, and treating the resulting unsaturated body with fluorine, cobalt trifluoride, or silver difluoride. A number of reagents are known as dehydrochlorinaling agents, including, for example, the caustic alkalies, either in an anhydrous condition or dissolved in water or a lower aliphatic alcohol.

  5. Acquired and innate immunity to polyaromatic hydrocarbons

    SciTech Connect

    Yusuf, Nabiha Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-11-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8{sup +} T cells are effector cells in the response, whereas CD4{sup +} T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents.

  6. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Salkeld, R.

    1980-01-01

    The advantages and disadvantages, system performance and operating limits, engine parametric data, and technology requirements for candidate high pressure LO2/Hydrocarbon engine systems are summarized. These summaries of parametric analysis and design provide a consistent engine system data base. Power balance data were generated for the eleven engine cycles. Engine cycle rating parameters were established and the desired condition and the effect of the parameter on the engine and/or vehicle are described.

  7. Getter pump for hydrogen and hydrocarbon gases

    DOEpatents

    Hsu, Wen Ling

    1987-10-14

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm/sup 2/. The graphite may be heated to a temperature greater than 1000/degree/C. The new device offers high capacity, low noise, and gas species selectivity. 2 figs.

  8. Hydrocarbon content of geopressured brines. Final report

    SciTech Connect

    Osif, T.L.

    1985-08-01

    Design Well data (bottomhole pressure minus wellhead pressure, GWR, and hydrocarbon composition) is presented as a function of producing conditions. These are examined in conjunction with the following models to attempt to deduce the reservoir brine saturation level: (1) reservoir contains gas dispersed in the pores and the gas saturation is greater than critical; (2) reservoir brine is gas-saturated; (3) bubble point below hydrostatic pressure; and (4) bubble point between hydrostatic pressure and reservoir pressure. 24 figs., 10 tabs. (ACR)

  9. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, Harold H.; Chaar, Mohamed A.

    1988-01-01

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M.sub.3 (VO.sub.4).sub.2 and MV.sub.2 O.sub.6, M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  10. Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons

    DOEpatents

    Kung, H.H.; Chaar, M.A.

    1988-10-11

    Oxidative dehydrogenation of alkanes to unsaturated hydrocarbons is carried out over metal vanadate catalysts under oxidizing conditions. The vanadate catalysts are represented by the formulas M[sub 3](VO[sub 4])[sub 2] and MV[sub 2]O[sub 6], M representing Mg, Zn, Ca, Pb, or Cd. The reaction is carried out in the presence of oxygen, but the formation of oxygenate by-products is suppressed.

  11. Exciton properties of selected aromatic hydrocarbon systems

    NASA Astrophysics Data System (ADS)

    Roth, Friedrich; Mahns, Benjamin; Hampel, Silke; Nohr, Markus; Berger, Helmuth; Büchner, Bernd; Knupfer, Martin

    2013-02-01

    We have examined the singlet excitons in two representatives of acene-type (tetracene and pentacene) and phenacene-type (chrysene and picene) molecular crystals, respectively, using electron energy-loss spectroscopy at low temperatures. We show that the excitation spectra of the two hydrocarbon families significantly differ. Moreover, close inspection of the data indicates that there is an increasing importance of charge-transfer excitons at lowest excitation energy with increasing length of the molecules.

  12. Mechanisms of membrane toxicity of hydrocarbons.

    PubMed Central

    Sikkema, J; de Bont, J A; Poolman, B

    1995-01-01

    Microbial transformations of cyclic hydrocarbons have received much attention during the past three decades. Interest in the degradation of environmental pollutants as well as in applications of microorganisms in the catalysis of chemical reactions has stimulated research in this area. The metabolic pathways of various aromatics, cycloalkanes, and terpenes in different microorganisms have been elucidated, and the genetics of several of these routes have been clarified. The toxicity of these compounds to microorganisms is very important in the microbial degradation of hydrocarbons, but not many researchers have studied the mechanism of this toxic action. In this review, we present general ideas derived from the various reports mentioning toxic effects. Most importantly, lipophilic hydrocarbons accumulate in the membrane lipid bilayer, affecting the structural and functional properties of these membranes. As a result of accumulated hydrocarbon molecules, the membrane loses its integrity, and an increase in permeability to protons and ions has been observed in several instances. Consequently, dissipation of the proton motive force and impairment of intracellular pH homeostasis occur. In addition to the effects of lipophilic compounds on the lipid part of the membrane, proteins embedded in the membrane are affected. The effects on the membrane-embedded proteins probably result to a large extent from changes in the lipid environment; however, direct effects of lipophilic compounds on membrane proteins have also been observed. Finally, the effectiveness of changes in membrane lipid composition, modification of outer membrane lipopolysaccharide, altered cell wall constituents, and active excretion systems in reducing the membrane concentrations of lipophilic compounds is discussed. Also, the adaptations (e.g., increase in lipid ordering, change in lipid/protein ratio) that compensate for the changes in membrane structure are treated. PMID:7603409

  13. Getter pump for hydrogen and hydrocarbon gases

    DOEpatents

    Hsu, Wen L.

    1989-01-01

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm.sup.2. The graphite may be heated to a temperature greater than 1000.degree. C. The new device offers high capacity, low noise, and gas species selectivity.

  14. Hydrocarbon Constituents of T-56 Combustor Exhaust

    DTIC Science & Technology

    1975-04-01

    May 1973 to determine feasibility of exhaust cryotrapping and to establish analytical methodology for identifying individual hydrocarbon compounds (3...midtemperature setting was at about 166°C, and 33 psig, corresponding to the conditions of many moderate-pressure ratio engines (1). Finally the high -temperature...condition of 2040C and 50 psig simulates many newer high -pressure-ratio engines, like the F-101 and F-100. Table 2 lists typical military engines and

  15. Dihydrodiol dehydrogenase and polycyclic aromatic hydrocarbon metabolism

    SciTech Connect

    Smithgall, T.E.

    1986-01-01

    Carcinogenic activation of polycyclic aromatic hydrocarbons by microsomal monoxygenases proceeds through trans-dihydrodiol metabolites to diol-epoxide ultimate carcinogens. This thesis directly investigated the role of dihydrodiol dehydrogenase, a cytosolic NAD(P)-linked oxidoreductase, in the detoxification of polycyclic aromatic trans-dihydrodiols. A wide variety of non-K-region trans-dihydrodiols were synthesized and shown to be substrates for the homogeneous rat liver dehydrogenase, including several potent proximate carcinogens derived from 7,12-dimethylbenz(a)anthracene, 5-methylchrysene, and benzo(a)pyrene. Since microsomal activation of polycyclic aromatic hydrocarbons is highly stereospecific, the stereochemical course of enzymatic trans-dihydrodiol oxidation was monitored using circular dichroism spectropolarimetry. The major product formed from the dehydrogenase-catalyzed oxidation of the trans-1,2-dihydrodiol of naphthalene was characterized using UV, IR, NMR, and mass spectroscopy, and appears to be 4-hydroxy-1,2-naphthoquinone. Mass spectral analysis suggests that an analogous hydroxylated o-quinone is formed as the major product of benzo(a)pyrene-7,8-dihydrodiol oxidation. Enzymatic oxidation of trans-dihydrodiols was shown to be potently inhibited by all of the major classes of the nonsteroidal antiinflammatory drugs. Enhancement of trans-dihydrodiol proximate carcinogen oxidation may protect against possible adverse effects of the aspirin-like drugs, and help maintain the balance between activation and detoxification of polycyclic aromatic hydrocarbons.

  16. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    PubMed

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  17. Bioremediation of Petroleum Hydrocarbons in Heterogeneous Soils

    SciTech Connect

    Song Jin; Paul Fallgren; Terry Brown

    2006-03-02

    Western Research Institute (WRI) in conjunction with the University of Wyoming, Department of Renewable Resources and the U.S. Department of Energy, under Task 35, conducted a laboratory-scale study of hydrocarbon biodegradation rates versus a variety of physical and chemical parameters to develop a base model. By using this model, biodegradation of Petroleum hydrocarbons in heterogeneous soils can be predicted. The base model, as developed in this study, have been tested by both field and laboratory data. Temperature, pH, and nutrients appear to be the key parameters that can be incorporate into the model to predict biodegradation rates. Results to date show the effect of soil texture and source on the role of each parameter in the rates of hydrocarbon biodegradation. Derived from the existing study, an alternative approach of using CO{sub 2} accumulation data has been attempted by our collaborators at the University of Wyoming. The model has been modified and fine tuned by incorporating these data to provide more information on biodegradation.

  18. Effectiveness of chemically enhanced solubilization of hydrocarbons

    SciTech Connect

    Kan, A.T.; Fu, G.; Tomson, M.B.; Hunter, M.A.

    1997-08-01

    Hydrocarbon spills and leaks are a major source of groundwater pollution for urban and industrial regions of the US. Cleanup is most often attempted using pump-and-treat methods with numerous wells and a central treatment facility. Such procedures are notoriously inefficient when hydrocarbons are trapped in oil ganglia or capillaries, or are irreversibly sorbed. The residual hydrocarbons cannot be displaced under reasonable hydraulic gradients. Therefore, it is important to develop a more efficient method of removing such a pollutant source. Miscible solvents and surfactants are often proposed as the chemical enhancer for pump and treat. Several researches have applied the surfactant flush in both the laboratory soil columns and field-test plots. The efficiency of surfactants usually diminished within 20 pore volumes and a significant fraction of contaminant was not mobilized. Some thermodynamic or kinetic limitations may exist in surfactant flush. Research has shown that surfactant often adsorbed to soil and altered the adsorption/desorption properties of soil. These processes may be reversed by controlling the pH and ionic strength. Miscible solvent has been shown very effective in laboratory tests. There are strong reasons to believe that a combination of several enhancement regimes will have substantial performance advantages. Just as with bioremediation, different chemical-enhancement methods will probably be better suited to particular combinations of contaminant types and aquifer characteristics. This paper discusses the effectiveness of chemical-enhancement treatments and possible limitations.

  19. Light color, low softening point hydrocarbon resins

    SciTech Connect

    Evans, M.L.; Hentges, S.G.

    1990-06-12

    This patent describes a hydrocarbon resin having a softening point of from 0{degrees} C to about 40{degrees} C, a Gardner color of about 7 or less, a number average molecular weight (Mn) of from about 100 to about 600, and a M{sub {ital w}}/M{sub {ital n}} ratio of from about 1.1 to about 2.7, prepared by Friedel Crafts polymerization of a hydrocarbon feed. It comprises: from about 5% to about 75% by weight of a C{sub 8} to C{sub 10} vinyl aromatic hydrocarbon stream; up to about 35% by weight of a piperylene stream; and from about 25% to about 70% by weight of a stream containing C{sub 4} to C{sub 8} monoolefin chain transfer agent of the formula RR{prime}C {double bond} CR{double prime}R triple{prime} where R and R{prime} are C{sub 1} to C{sub 5} alkyl, R{double prime} and R triple{prime} are independently selected from H and a C{sub 1} to C{sub 4} alkyl group.

  20. Aged refinery hydrocarbon biodegradation in soil

    SciTech Connect

    Drake, E.N.; Stokley, K.E.; Calcavecchio, P.

    1995-12-31

    Aged hydrocarbon biodegradation was investigated as a potential cleanup technology for refinery soil. Well-mixed field soil was amended with water and nutrients and tilled weekly for one year in laboratory mesocosms to stimulate biodegradation. Freon infrared analysis of total petroleum hydrocarbons (TPH), and gas chromatography/mass spectrometry (GC/MS) analysis of polynuclear aromatic hydrocarbons (PAHs) and triterpane biomarkers were used to determine the extent of biodegradation. Significant reductions in TPH (up to 68%) and methylene chloride extractable material (up to 55%) were observed. The combined trimethylated phenanthrene/anthracenes (C3P/A) were even more highly depleted than TPH. Nutrient amendment increased TPH, methylene chloride, and C3P/A removal, but not biomarker concentrations. Significant reduction of two to five ring PAHs occurred. Expected depletion patterns for PAHs were observed except in the case of naphthalene and derivatives, phenanthrene/anthracene and derivatives, and chrysene. A possible explanation is that the more readily degradable PAHs were already highly biodegraded before the study and the remaining portions were less available for biodegradation. These results are consistent with reports on the effects of aging on PAH biodegradation in soil. Biodegradation was influenced by PAH structure and molecular weight.

  1. Hydrocarbon Fouling of SCR during PCCI combustion

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2012-01-01

    The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

  2. Biodegradation and bioremediation of hydrocarbons in extreme environments.

    PubMed

    Margesin, R; Schinner, F

    2001-09-01

    Many hydrocarbon-contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, high salt concentrations, or high pressure, Hydrocarbon-degrading microorganisms, adapted to grow and thrive in these environments, play an important role in the biological treatment of polluted extreme habitats. The biodegradation (transformation or mineralization) of a wide range of hydrocarbons, including aliphatic, aromatic, halogenated and nitrated compounds, has been shown to occur in various extreme habitats. The biodegradation of many components of petroleum hydrocarbons has been reported in a variety of terrestrial and marine cold ecosystems. Cold-adapted hydrocarbon degraders are also useful for wastewater treatment. The use of thermophiles for biodegradation of hydrocarbons with low water solubility is of interest, as solubility and thus bioavailability, are enhanced at elevated temperatures. Thermophiles, predominantly bacilli, possess a substantial potential for the degradation of environmental pollutants, including all major classes. Indigenous thermophilic hydrocarbon degraders are of special significance for the bioremediation of oil-polluted desert soil. Some studies have investigated composting as a bioremediation process. Hydrocarbon biodegradation in the presence of high salt concentrations is of interest for the bioremediation of oil-polluted salt marshes and industrial wastewaters, contaminated with aromatic hydrocarbons or with chlorinated hydrocarbons. Our knowledge of the biodegradation potential of acidophilic, alkaliphilic, or barophilic microorganisms is limited.

  3. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle.

    PubMed

    Lea-Smith, David J; Biller, Steven J; Davey, Matthew P; Cotton, Charles A R; Perez Sepulveda, Blanca M; Turchyn, Alexandra V; Scanlan, David J; Smith, Alison G; Chisholm, Sallie W; Howe, Christopher J

    2015-11-03

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2-540 pg alkanes per mL per day, which translates into a global ocean yield of ∼ 308-771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities.

  4. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle

    PubMed Central

    Lea-Smith, David J.; Biller, Steven J.; Davey, Matthew P.; Cotton, Charles A. R.; Perez Sepulveda, Blanca M.; Turchyn, Alexandra V.; Scanlan, David J.; Smith, Alison G.; Chisholm, Sallie W.; Howe, Christopher J.

    2015-01-01

    Hydrocarbons are ubiquitous in the ocean, where alkanes such as pentadecane and heptadecane can be found even in waters minimally polluted with crude oil. Populations of hydrocarbon-degrading bacteria, which are responsible for the turnover of these compounds, are also found throughout marine systems, including in unpolluted waters. These observations suggest the existence of an unknown and widespread source of hydrocarbons in the oceans. Here, we report that strains of the two most abundant marine cyanobacteria, Prochlorococcus and Synechococcus, produce and accumulate hydrocarbons, predominantly C15 and C17 alkanes, between 0.022 and 0.368% of dry cell weight. Based on global population sizes and turnover rates, we estimate that these species have the capacity to produce 2–540 pg alkanes per mL per day, which translates into a global ocean yield of ∼308–771 million tons of hydrocarbons annually. We also demonstrate that both obligate and facultative marine hydrocarbon-degrading bacteria can consume cyanobacterial alkanes, which likely prevents these hydrocarbons from accumulating in the environment. Our findings implicate cyanobacteria and hydrocarbon degraders as key players in a notable internal hydrocarbon cycle within the upper ocean, where alkanes are continually produced and subsequently consumed within days. Furthermore we show that cyanobacterial alkane production is likely sufficient to sustain populations of hydrocarbon-degrading bacteria, whose abundances can rapidly expand upon localized release of crude oil from natural seepage and human activities. PMID:26438854

  5. Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils.

    PubMed

    Adetutu, Eric; Weber, John; Aleer, Sam; Dandie, Catherine E; Aburto-Medina, Arturo; Ball, Andrew S; Juhasz, Albert L

    2013-10-15

    In this study, impediments to hydrocarbon biodegradation in contaminated soils were assessed using chemical and molecular methodologies. Two long-term hydrocarbon contaminated soils were utilised which were similar in physico-chemical properties but differed in the extent of hydrocarbon (C10-C40) contamination (S1: 16.5 g kg(-1); S2: 68.9 g kg(-1)). Under enhanced natural attenuation (ENA) conditions, hydrocarbon biodegradation was observed in S1 microcosms (26.4% reduction in C10-C40 hydrocarbons), however, ENA was unable to stimulate degradation in S2. Although eubacterial communities (PCR-DGGE analysis) were similar for both soils, the alkB bacterial community was less diverse in S2 presumably due to impacts associated with elevated hydrocarbons. When hydrocarbon bioaccessibility was assessed using HP-β-CD extraction, large residual concentrations remained in the soil following the extraction procedure. However, when linear regression models were used to predict the endpoints of hydrocarbon degradation, there was no significant difference (P>0.05) between HP-β-CD predicted and microcosm measured biodegradation endpoints. This data suggested that the lack of hydrocarbon degradation in S2 resulted primarily from limited hydrocarbon bioavailability.

  6. Detection of new hydrocarbon reservoir using hydrocarbon microtremor combined attribute analysis

    NASA Astrophysics Data System (ADS)

    Ramadhan, Dimmas; Nugraha, Andri Dian; Afnimar, Akbar, Muhammad Fadhillah; Mulyanagara, Guntur

    2013-09-01

    An increasing demand for oil and gas production undoubtedly triggered innovation in exploration studies to find new hydrocarbon reservoir. Low-frequency passive seismic method named Hy MAS (Hydrocarbon Microtremor Analysis) is a new method invented and developed recently by Spectraseis which provide a quick look to find new hydrocarbon reservoir prospect area. This method based on empirical study which investigated an increasing of spectra anomaly between 2 - 4 Hz above reservoir but missing from the measurement distant from the reservoir. This method is quite promising because it has been used as another DHI (Direct Hydrocarbon Indicator) instead of active seismic survey which has some problem when applied in sensitive biomes. Another advantage is this method is completely passive and does not require seismic artificial excitation sources. In this study, by utilizing many attributes mentioned in the latest publication of this method, we try to localize new hydrocarbon prospect area outside from the proven production field. We deployed 63 stations of measurement with two of them are located above the known reservoir production site. We measured every single attribute for each data acquired from all station and mapped it spatially for better understanding and interpretation. The analysis has been made by considering noise identification from the measurement location and controlled by the attribute values from the data acquired by two stations above the reservoir. As the result, we combined each attribute analysis and mapped it in weighted-scoring map which provide the level of consistency for every single attribute calculated in each station. Finally, the new reservoir location can be suggested by the station which has a weighted-score around the values from the two production reservoir stations. We successfully identified 5 new stations which expected to have good prospect of hydrocarbon reservoir.

  7. Method for producing hydrocarbon and alcohol mixtures. [Patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1980-12-01

    It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  8. The chemistry of hydrocarbon ions in the Jovian ionosphere

    NASA Technical Reports Server (NTRS)

    Kim, Y. H.; Fox, J. L.

    1994-01-01

    We have modeled the chemistry of hydrocarbon ions in the jovian ionosphere. We find that a layer of hydrocarbon ions is formed in the altitude range 300-400 km above the ammonia cloud tops, due largely to direct ionization of hydrocarbons by photons in the wings of the H2 absorption lines in the 912- to 1100-A region that penetrate to below the methane homopause. We have explicitly included in the model 156 ion-neutral reactions involving hydrocaron ions with up to two carbon atoms. Larger hydrocarbon ions are included as two pseudoions, C3Hn(+) and C4Hn(+). The model shows that 15 reactions of H(+), CH3(+), CH5(+), C2H3(+), C2H5(+), and C2H6(+) with hydrocarbon neutrals are the major processes that are responsible for the production and growth of C1-, C2- and C3- or C4-ions in the hydrocarbon ion layer. The model also shows that ions initially produced in the hydrocarbon ion layer are converted into hydrocarbon ions with more than two carbon atoms with very little loss by recombination. It is likely that successive hydrocarbon ion-neutral reactions continue to produce even larger hydrocarbon ions, so the terminal ions probably have more than three or four carbon atoms. In the auroral regions, the chemistry of hydrocarbon ions may modify the densities of neutral hydrocarbons, especially C2H2 in the upper mesosphere, and may play a major role in the production of polar haze particles.

  9. Assessment of undiscovered hydrocarbon resources of sub-Saharan Africa

    USGS Publications Warehouse

    Brownfield, Michael E.

    2016-01-01

    The assessment was geology-based and used the total petroleum system (TPS) concept. The geologic elements of a TPS are hydrocarbon source rocks (source rock maturation and hydrocarbon generation and migration), reservoir rocks (quality and distribution), and traps where hydrocarbon accumulates. Using these geologic criteria, 16 conventional total petroleum systems and 18 assessment units in the 13 provinces were defined. The undiscovered, technically recoverable oil and gas resources were assessed for all assessment units.

  10. 30 CFR 250.1162 - When may I burn produced liquid hydrocarbons?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may I burn produced liquid hydrocarbons... Requirements Flaring, Venting, and Burning Hydrocarbons § 250.1162 When may I burn produced liquid hydrocarbons... hydrocarbons. The Regional Supervisor may allow you to burn liquid hydrocarbons if you demonstrate...

  11. Bacterial adhesion to hydrocarbons: role of asphaltenes and resins.

    PubMed

    Warne Zoueki, Caroline; Ghoshal, Subhasis; Tufenkji, Nathalie

    2010-08-01

    The influence of asphaltenes and resins on bacterial adhesion to model crude oils was examined using a modified microbial adhesion to hydrocarbons assay. Well-controlled bacterial adhesion experiments were conducted at three solution pHs (4, 6 and 7) using Pseudomonas aeruginosa and Pseudomonas putida and four model crude oil systems containing up to four representative hydrocarbon compounds found in crude oils. The model crude oils were designed to independently evaluate the influence of asphaltenes and resins on hydrocarbon surface charge (i.e., electrophoretic mobility) and on bacterial adhesion to the liquid hydrocarbon phase. Asphaltenes and resins were found to make the hydrocarbon droplet surface charge less negative (or more positive) and to generally decrease microbial adhesion to the hydrocarbon. The experimental results were not in qualitative agreement with theoretical predictions of bacteria-hydrocarbon interactions based on the classical or extended Derjaguin-Landau-Verwey-Overbeek interaction energy profiles calculated from measured physicochemical properties of the microorganisms and hydrocarbons. Model calculations considering the role of steric repulsion in bacteria-hydrocarbon interactions suggest that the decreased adhesion behavior in the presence of asphaltenes and resins may be linked to a mechanism of steric hindrance.

  12. Principal conversions of hydrocarbons in hydrotreating distillate lube raffinate

    SciTech Connect

    Chesnokov, A.A.; Kogan, L.O.; Kozlova, N.M.; Muchinskii, Ya.D.

    1983-01-01

    This article reports on a study of the principal conversions of hydrocarbons in hydrotreating a raffinate from phenol treating, obtained from a mixture of Volga-Ural and West Siberian crudes. It examines naphthenic hydrocarbons, alkylbenzenes, naphthalene hydrocarbons, and phenanthrenes. The degree of conversion of all groups of the aromatic hydrocarbons is considerably greater than the degree of conversion of the naphthenes. The greater the conversion of aromatics, the more significant are the changes in their physicochemical properties. Substantial decreases in the viscosity, density, and refractive index, and increases in the viscosity index are observed.

  13. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  14. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    PubMed

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  15. Hydrocarbon gas in sediment of the Southern Pacific Ocean

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1988-01-01

    Methane, ethane, ethene, propane, and propene are common hydrocarbon gases in near-surface sediment from offshore areas in the southern Pacific Ocean near Papua New Guinea, the Solomon Islands, Vanuatu, Tonga, New Zealand, and Antarctica. Sea floor sites for sampling of sediment were selected on the basis of anomalies in marine seismic records, and the samples were intentionally biased toward finding possible thermogenic hydrocarbon gases. In none of the areas, however, were thermogenic hydrocarbons clearly identified. The hydrocarbon gases that were found appear to be mainly the products of in situ microbial processes. ?? 1988 Springer-Verlag New York Inc.

  16. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOEpatents

    Senum, Gunnar I.; Dietz, Russell N.

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  17. Methods for natural gas and heavy hydrocarbon co-conversion

    DOEpatents

    Kong, Peter C.; Nelson, Lee O.; Detering, Brent A.

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  18. A silica gel based method for extracting insect surface hydrocarbons.

    PubMed

    Choe, Dong-Hwan; Ramírez, Santiago R; Tsutsui, Neil D

    2012-02-01

    Here, we describe a novel method for the extraction of insect cuticular hydrocarbons using silica gel, herein referred to as "silica-rubbing". This method permits the selective sampling of external hydrocarbons from insect cuticle surfaces for subsequent analysis using gas chromatography-mass spectrometry (GC-MS). The cuticular hydrocarbons are first adsorbed to silica gel particles by rubbing the cuticle of insect specimens with the materials, and then are subsequently eluted using organic solvents. We compared the cuticular hydrocarbon profiles that resulted from extractions using silica-rubbing and solvent-soaking methods in four ant and one bee species: Linepithema humile, Azteca instabilis, Camponotus floridanus, Pogonomyrmex barbatus (Hymenoptera: Formicidae), and Euglossa dilemma (Hymenoptera: Apidae). We also compared the hydrocarbon profiles of Euglossa dilemma obtained via silica-rubbing and solid phase microextraction (SPME). Comparison of hydrocarbon profiles obtained by different extraction methods indicates that silica rubbing selectively extracts the hydrocarbons that are present on the surface of the cuticular wax layer, without extracting hydrocarbons from internal glands and tissues. Due to its surface specificity, efficiency, and low cost, this new method may be useful for studying the biology of insect cuticular hydrocarbons.

  19. Process for making unsaturated hydrocarbons using microchannel process technology

    DOEpatents

    Tonkovich, Anna Lee; Yuschak, Thomas; LaPlante, Timothy J.; Rankin, Scott; Perry, Steven T.; Fitzgerald, Sean Patrick; Simmons, Wayne W.; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  20. Hydrocarbons on Saturn's satellites Iapetus and Phoebe

    USGS Publications Warehouse

    Cruikshank, D.P.; Wegryn, E.; Dalle, Ore C.M.; Brown, R.H.; Bibring, J.-P.; Buratti, B.J.; Clark, R.N.; McCord, T.B.; Nicholson, P.D.; Pendleton, Y.J.; Owen, T.C.; Filacchione, G.; Coradini, A.; Cerroni, P.; Capaccioni, F.; Jaumann, R.; Nelson, R.M.; Baines, K.H.; Sotin, C.; Bellucci, G.; Combes, M.; Langevin, Y.; Sicardy, B.; Matson, D.L.; Formisano, V.; Drossart, P.; Mennella, V.

    2008-01-01

    Material of low geometric albedo (pV ??? 0.1) is found on many objects in the outer Solar System, but its distribution in the saturnian satellite system is of special interest because of its juxtaposition with high-albedo ice. In the absence of clear, diagnostic spectral features, the composition of this low-albedo (or "dark") material is generally inferred to be carbon-rich, but the form(s) of the carbon is unknown. Near-infrared spectra of the low-albedo hemisphere of Saturn's satellite Iapetus were obtained with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft at the fly-by of that satellite of 31 December 2004, yielding a maximum spatial resolution on the satellite's surface of ???65 km. The spectral region 3-3.6 ??m reveals a broad absorption band, centered at 3.29 ??m, and concentrated in a region comprising about 15% of the low-albedo surface area. This is identified as the C{single bond}H stretching mode vibration in polycyclic aromatic hydrocarbon (PAH) molecules. Two weaker bands attributed to {single bond}CH2{single bond} stretching modes in aliphatic hydrocarbons are found in association with the aromatic band. The bands most likely arise from aromatic and aliphatic units in complex macromolecular carbonaceous material with a kerogen- or coal-like structure, similar to that in carbonaceous meteorites. VIMS spectra of Phoebe, encountered by Cassini on 11 June 2004, also show the aromatic hydrocarbon band, although somewhat weaker than on Iapetus. The origin of the PAH molecular material on these two satellites is unknown, but PAHs are found in carbonaceous meteorites, cometary dust particles, circumstellar dust, and interstellar dust. ?? 2007 Elsevier Inc. All rights reserved.

  1. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  2. Opalescent Diamonds Enriched in Hydrocarbon Fluids

    NASA Astrophysics Data System (ADS)

    Leung, I.; Tsao, C.

    2006-05-01

    We studied a large number of diamonds from Liaoning, China. These diamonds are not gem-quality, do not have sharp corners and sharp edges, they are not suitable for making cutting tools. Such industrial diamonds are usually crushed to form abrasives, thus, they might escape the scrutiny of researchers. In China, diamonds were routinely soaked in HF overnight to remove mud and other substances, and no oil and grease were used in the processing. It is not uncommon to see iridescence in pink, pale yellow and grey diamonds. The most common opalescent colors are alternating sharp bands of intense pink and indigo blue, and, less frequently, bands of yellow and blue-green, all may appear in the same diamond. As the bands have uniform thickness, their colors might not be due simply to optical effects, but rather, might be chemically related. We had chosen 10 diamonds to study their FT-IR spectra. Six of the crystals exhibited a group of hydrocarbons (HCs) peaks located just below 3000 cm-1, while all but one had a C-H stretch peak at 3107 cm-1. Two other diamonds had weak HCs peaks, but a very strong peak at 3107 cm-1. Two more diamonds had very weak HCs and C-H stretch peaks. To sum up, when a spectrum has strong HCs peaks, the C-H stretch peak is weak, and vice versa. There seems to be a chemical relationship between the substances represented by these peaks. Our observations indicate that hydrocarbon fluids might have been trapped during crystallization, but subsequently unmixed into well- organized thin bands. If fluids observed in the opalescent diamonds were soaked up in the mantle, then the amount of hydrocarbons existing in Earth's mantle might be quite appreciable in some environment.

  3. The stability and utility of diagnostic ratio hydrocarbon fingerprinting for soils contaminated with petroleum hydrocarbons

    SciTech Connect

    Douglas, G.S.; Sara McMillen

    1996-12-31

    In order to recover costs for oil spill cleanup and restoration regulatory agencies and trustees of natural resources are interested in identifying parties responsible for hydrocarbon releases, and for associated environmental damages. Chemical analyses of contaminated soil and groundwater samples are currently used to identify the sources of contamination in soil and groundwater systems. However, conventional hydrocarbon fingerprinting approaches such as EPA Method 8015, EPA Method 8270, and ASTM Method 3328-91 afford a low resolution fingerprint that is easily degraded in the environment. The challenge to the hydrocarbon chemist is to develop an analytical approach that minimizes the impact of environmental weathering and biodegradation on the oil signature and improves the accuracy of oil source identification. An advanced chemical fingerprinting strategy is presented that combines sensitive and hydrocarbon specific analytical methods with a detailed interpretive strategy designed to minimize the impacts of environmental weathering and biodegradation. Data will be presented from a series of oil biodegradation studies in soil that clearly demonstrate the utility and stability of source ratio analysis over a wide range of oil degradation states and oil types. Using principal component analysis, stable source ratios of C{sub 3}-dibenzothiophenes/C{sub 3}-phenanthrenes, and C{sub 2}-dibenzothiophenes/C{sub 2}-phenanthrenes were identified and evaluated. These source ratios retain their characteristic source ratio signature even after 95 percent of the PAH and dibenzothiophene target analytes and 70 percent of the total oil has been biodegraded.

  4. The stability and utility of diagnostic ratio hydrocarbon fingerprinting for soils contaminated with petroleum hydrocarbons

    SciTech Connect

    Douglas, G.S.; Sara McMillen

    1996-01-01

    In order to recover costs for oil spill cleanup and restoration regulatory agencies and trustees of natural resources are interested in identifying parties responsible for hydrocarbon releases, and for associated environmental damages. Chemical analyses of contaminated soil and groundwater samples are currently used to identify the sources of contamination in soil and groundwater systems. However, conventional hydrocarbon fingerprinting approaches such as EPA Method 8015, EPA Method 8270, and ASTM Method 3328-91 afford a low resolution fingerprint that is easily degraded in the environment. The challenge to the hydrocarbon chemist is to develop an analytical approach that minimizes the impact of environmental weathering and biodegradation on the oil signature and improves the accuracy of oil source identification. An advanced chemical fingerprinting strategy is presented that combines sensitive and hydrocarbon specific analytical methods with a detailed interpretive strategy designed to minimize the impacts of environmental weathering and biodegradation. Data will be presented from a series of oil biodegradation studies in soil that clearly demonstrate the utility and stability of source ratio analysis over a wide range of oil degradation states and oil types. Using principal component analysis, stable source ratios of C[sub 3]-dibenzothiophenes/C[sub 3]-phenanthrenes, and C[sub 2]-dibenzothiophenes/C[sub 2]-phenanthrenes were identified and evaluated. These source ratios retain their characteristic source ratio signature even after 95 percent of the PAH and dibenzothiophene target analytes and 70 percent of the total oil has been biodegraded.

  5. Double photoionization of hydrocarbons and aromatic molecules

    NASA Astrophysics Data System (ADS)

    Wehlitz, R.

    2016-11-01

    This article reviews the recent progress in the field of double photoionization of hydrocarbons and aromatic molecules using synchrotron radiation. First I will describe the importance of carbon-based molecules, which are all around us and are literally part of our life. They exhibit intriguing properties some of which can be probed via double photoionization, i.e., the simultaneous emission of two electrons. Furthermore, I will discuss the different mechanisms that can lead to a doubly charged organic molecule and will highlight those findings by comparing them with the results for atoms and other (simple) molecules. Finally, I will give an outlook on future directions on this subject.

  6. Visualization of complex hydrocarbon reaction systems

    SciTech Connect

    Shinn, J.H.

    1996-10-01

    Many hydrocarbon reactions of interest involve either poorly characterized reactants and products and/or large numbers of simultaneous reactions. An important step in understanding the behavior of such systems is to develop quantitative pictures of the feeds and products and the transformations which connect them. The processes for constructing these reaction visualizations is illustrated by examining the construction of a molecular model for coal liquefaction and subsequent conversion to distillate products, and the construction of a video simulation of catalytic petroleum naphtha reforming. New techniques which are permitting advances in these visualizations are discussed.

  7. Visualization of complex hydrocarbon reaction systems

    SciTech Connect

    Shinn, J.H.

    1996-12-31

    Many hydrocarbon reactions of interest involve either poorly characterized reactants and products and/or large numbers of simultaneous reactions. An important step in understanding the behavior of such systems is to develop quantitative pictures of the feeds and products and the transformations which connect them. The processes for constructing these reaction visualizations is illustrated by examining the construction of a molecular model for coal liquefaction and subsequent conversion to distillate products, and the construction of a video simulation of catalytic petroleum naphtha reforming. New technique which are permitting advances in these visualizations are discussed.

  8. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint. 9 figs.

  9. Hydrocarbon synthesis catalyst and method of preparation

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1983-08-02

    A catalyst for the synthesis of hydrocarbons from carbon monoxide and hydrogen composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants. The catalyst is preferably used in dilute slurry form, which is desirable from a heat transfer standpoint.

  10. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-12-31

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed ``cyclodehydrogenation reactions`` which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  11. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-01-01

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed cyclodehydrogenation reactions'' which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  12. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  13. LOX/hydrocarbon auxiliary propulsion system study

    NASA Technical Reports Server (NTRS)

    Orton, G. F.; Mark, T. D.; Weber, D. D.

    1982-01-01

    Liquid oxygen/hydrocarbon propulsion systems applicable to a second generation orbiter OMS/RCS were compared, and major system/component options were evaluated. A large number of propellant combinations and system concepts were evaluated. The ground rules were defined in terms of candidate propellants, system/component design options, and design requirements. System and engine component math models were incorporated into existing computer codes for system evaluations. The detailed system evaluations and comparisons were performed to identify the recommended propellant combination and system approach.

  14. Determining Heats of Combustion of Gaseous Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Puster, Richard L.

    1987-01-01

    Enrichment-oxygen flow rate-ratio related to heat of combustion. Technique developed for determining heats of combustion of natural-gas samples. Based on measuring ratio m/n, where m is (volmetric) flow rate of oxygen required to enrich carrier air in which test gas flowing at rate n is burned, such that mole fraction of oxygen in combustion-product gases equals that in carrier air. The m/n ratio directly related to heats of combustion of saturated hydrocarbons present in natural gas.

  15. Hydrogen Abstraction from Hydrocarbons by NH2.

    PubMed

    Siddique, Kamal; Altarawneh, Mohammednoor; Gore, Jeff; Westmoreland, Phillip R; Dlugogorski, Bogdan Z

    2017-03-23

    This contribution investigates thermokinetic parameters of bimolecular gas-phase reactions involving the amine (NH2) radical and a large number of saturated and unsaturated hydrocarbons. These reactions play an important role in combustion and pyrolysis of nitrogen-rich fuels, most notably biomass. Computations performed at the CBS-QB3 level and based on the conventional transition-state theory yield potential-energy surfaces and reaction rate constants, accounting for tunnelling effects and the presence of hindered rotors. In an analogy to other H abstraction systems, we demonstrate only a small influence of variational effects on the rate constants for selected reaction. The studied reactions cover the abstraction of hydrogen atoms by the NH2 radical from the C-H bonds in C1-C4 species, and four C5 hydrocarbons of 2-methylbutane, 2-methyl-1-butene, 3-methyl-1-butene, 3-methyl-2-butene, and 3-methyl-1-butyne. For the abstraction of H from methane, in the temperature windows 300-500 and 1600-2000 K, the calculated reaction rate constants concur with the available experimental measurements, i.e., kcalculated/kexperimetal = 0.3-2.5 and 1.1-1.4, and the previous theoretical estimates. Abstraction of H atom from ethane attains the ratio of kcalculated/kexperimetal equal to 0.10-1.2 and 1.3-1.5 over the temperature windows of available experimental measurements, i.e., 300-900 K and 1500-2000 K, respectively. For the remaining alkanes (propane and n-butane), the average kexperimental/kcalculated ratio remains 2.6 and 1.3 over the temperature range of experimental data. Also, comparing the calculated standard enthalpy of reaction (ΔrH°298) with the available experimental measurements for alkanes, we found the mean unsigned error of computations as 3.7 kJ mol(-1). This agreement provides an accuracy benchmark of our methodology, affording the estimation of the unreported kinetic parameters for H abstractions from alkenes and alkynes. On the basis of the Evans

  16. Bioremediation technologies for polycyclic aromatic hydrocarbon compounds

    SciTech Connect

    Alleman, B.C.; Leeson, A.

    1999-11-01

    Polycyclic aromatic hydrocarbon compounds (PAHs) are common and challenging contaminants that affect soil and sediments. Methods for treating PAHs have undergone change and refinement in the recent past, and this volume presents the latest trends in PAH remediation theory and practice. The papers in this volume cover topics ranging from the remediation of manufactured gas plant (MGP) sites to the remediation of sediments. The papers present lab and field studies, characterization studies, comparison studies, and descriptions of technologies ranging from composting to thermally enhanced bioremediation to fungal technologies and other innovative approaches.

  17. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  18. Hydrocarbon fuel cooling technologies for advanced propulsion

    SciTech Connect

    Sobel, D.R.; Spadaccini, L.J.

    1997-04-01

    Storable hydrocarbon fuels that undergo endothermic reaction provide an attractive heat sink for future high-speed aircraft. An investigation was conducted to explore the endothermic potential of practical fuels, with inexpensive and readily available catalysts, under operating conditions simulative of high-speed flight applications. High heat sink capacities and desirable reaction products have been demonstrated for n-heptane and Norpar 12 fuels using zeolite catalysts in coated tube reactor configurations. The effects of fuel composition and operating condition on extent of fuel conversion, product composition, and the corresponding endotherm have been examined. The results obtained in this study provide a basis for catalytic-reactor/heat-exchanger design and analysis.

  19. Nucleate pool boiling of hydrocarbon mixtures

    SciTech Connect

    Sardesai, R.G.; Palen, J.W.; Thome, J.

    1986-01-01

    The Schlunder method can be correctly used to predict boiling heat transfer coefficient of multicomponent hydrocarbon mixtures. The method was tested against experimental mixtures containing up to five components. The Stephan-Abdelsalam correlation can be used to calculate a ''pseudo-single component'' boiling heat transfer coefficient for a mixture using weighted properties. The effective temperature driving force term and the high mass flux correction term in the Schlunder formulation are empirically adjusted to improve the accuracy of prediction. Predictions of the Schlunder method are sensitive to the VLE calculations. The UNIFAC method is used in this study for reasons discussed in the paper.

  20. Syntheses of Synthetic Hydrocarbons Via Alpha Olefins.

    DTIC Science & Technology

    1981-10-01

    Chem. Educ., 42, 502 (1965). 4. A. Priola, C. Corna , and S. Cesca, Macromolecules, 13, 1110 (1980). 5. R. F . Brown, Organic Chemistry, Wadsworth...AD-A110 380 GULF RESEARCH AND DEVELOPENT Co PITTSBURGH PA F /G T/A 1 SYNTHESES OF SYNTHETIC HYDROCARBONS VIA ALPHA OLEFINS.(U) OCT 81 B L CUPPLES, A...FOR THE COMMANDER F . D. CHERRY, Chief Nonmetallic Materials Division "If your address has changed, if you wish to be removed from our mailing list

  1. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  2. Chlorinated hydrocarbons in women with repeated miscarriages.

    PubMed Central

    Gerhard, I; Daniel, V; Link, S; Monga, B; Runnebaum, B

    1998-01-01

    This study was conducted to investigate a possible etiological role of chlorinated hydrocarbons in the pathogenesis of repeated miscarriages. The blood levels of chlorinated hydrocarbons [CHCs: pentachlorophenol, hexachlorocyclohexane, hexachlorobenzene, the dichlorodiphenyltrichloroethane (DDT) group, polychlorinated biphenyls] were determined in 89 women with repeated miscarriages, who were referred to the University Hospital of Obstetrics and Gynecology of Heidelberg for investigations between 1989 and 1993, and compared to a previously investigated reference population. In more than 20% of the women, at least one of the CHC levels exceeded the reference range. CHC levels did not differ significantly between women with primary or secondary and early or late miscarriages; neither did they differ between women with hormonal or immunological disorders as causes of repeated miscarriages or women with idiopathic repeated miscarriages. No significant associations were detected between CHC levels and further conceptions or the outcome of further pregnancies. As significant associations were found between increasing CHC blood concentrations and immunological and hormonal changes, CHCs may have an impact on the pregnancy course in certain cases. PMID:9755145

  3. Hydrocarbon source potential in Brazilian margin basins

    SciTech Connect

    Mello, M.R.; Estrella, G.D.O.; Gaglianone, P.C.

    1984-04-01

    Twenty thousand samples from the Brazilian continental shelf basins were analyzed to characterize and evaluate the hydrocarbon source potential of the areas. The geochemical evaluation of the rock and oil samples was performed by organic carbon determinations, Rock-Eval pyrolysis, vitrinite reflectance, thermal alteration index, liquid and gas chromatographies, gas chromatography-mass spectrometry, and carbon isotope analyses. Three source rock systems have been identified: lower Neocomian shales deposited in a continental environment, upper Neocomian shales grading from continental to lagoonal environment, and Aptian shales related to evaporitic and lacustrine sequences. Upper Cretaceous and Tertiary open marine slope sediments are not considered as source rocks. Locally, these sediments present high organic carbon content but show an extremely poor hydrocarbon yield. Anoxic depositional conditions, nevertheless, can be traced locally along some levels of the Santonian to Cenomanian shales and marls. These sediments are generally immature in the Brazilian margin basins and no oil was generated from this section. Three oil families were distinguished through oil-to-oil and oil-to-source rock correlations: the lower Neocomian continental type, the upper Neocomian continental to lagoonal type, and the Aptian evaporitic to lacustrine related sequences. The geochemical studies, together with geologic and geophysical data, provided the basis to display some models for the migration pathways and habitat of oils in the Brazilian margin basins.

  4. Process for the production of liquid hydrocarbons

    DOEpatents

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  5. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  6. Evaporation of Liquid Hydrocarbon Mixtures on Titan

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Chevrier, V. F.; Rivera-Valentin, E. G.; Singh, S.; Roe, L. A.; Wagner, A.

    2013-10-01

    Besides Earth, Titan is the only other known planetary body with proven stable liquids on its surface. The hydrological cycle of these liquid hydrocarbon mixtures is critical in understanding Titan’s atmosphere and surface features. Evaporation of liquid surface bodies has been indirectly observed as shoreline changes from measurements by Cassini ISS and RADAR (Hayes et al. 2011, Icarus 211, 655-671; Turtle et al. 2011, Science 18, 1414-1417.), but the long seasons of Saturn strongly limit the time span of these observations and their validity over the course of an entire Titan year. Using a novel Titan simulation chamber, the evaporation rate of liquid methane and dissolved nitrogen mixture under Titan surface conditions was derived (Luspay-Kuti et al. 2012, GRL 39, L23203), which is especially applicable to low latitude transient liquids. Polar lakes, though, are expected to be composed of a variety of hydrocarbons, primarily a mixture of ethane and methane (e.g. Cordier et al. 2009, ApJL 707, L128-L131). Here we performed laboratory simulations of ethane-methane mixtures with varying mole fraction under conditions suitable for the polar regions of Titan. We will discuss results specifically addressing the evaporation behavior as the solution becomes increasingly ethane dominated, providing quantitative values for the evaporation rate at every step. These laboratory results are relevant to polar lakes, such as Ontario Lacus, and can shed light on their stability.

  7. Characterization and analysis of polycyclic aromatic hydrocarbons

    SciTech Connect

    Breuer, G.M.; Smith, J.P.

    1984-01-01

    Sampling and analytical procedures were developed for determining the concentrations of polycyclic aromatic hydrocarbons in animal-exposure chambers during studies on exposure to diesel exhaust, coal dust, or mixtures of these two pollutants. Fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(k)fluoranthene, and benzo(a)pyrene were used as representative polycyclic aromatic hydrocarbons. High-pressure liquid chromatography with fluorescence detection was used for analysis. Coal-dust only samples revealed a broad, rising background in the chromatogram with small peaks superimposed corresponding to fluoranthene, pyrene, and benzo(a)anthracene, diesel exhaust only samples showed many peaks on a flat baseline including those corresponding to fluoranthene, pyrene, benzo(a)anthracene, benzo(k)fluoranthene, and benzo(a)pyrene. In general, no polynuclear aromatics were noted in the clean air samples. The authors note that relatively minor changes in air/fuel ratio, lubricant, fuel, and load may have substantial effects on very minor components of the exhaust emission.

  8. Hydrocarbon potential of lower Magdalena basin

    SciTech Connect

    Torres, E.; Valderrama, R. )

    1989-03-01

    The Lower Magdalena basin complex of Colombia has an areal extent of more than 87,000 km{sup 2}. The geologic setting of the different subbasins of the Lower Magdalena presents attractive play concepts for the generation, entrapment, and production of hydrocarbons. The sedimentary sequence within the basin attains a thickness in excess of 12,200 m, with the preponderance of this section being of Tertiary age. This major thickness of section contains good source and reservoir rocks and seals and an abundance of structural and stratigraphic traps, which make the basin attractive for new interpretation and evaluation. The Plato, San Jorge, and Sinu subbasins lie within the Lower Magdalena complex. Each of these presents different geological conditions, thereby offering a variety of play concepts for hydrocarbon exploration. Previous exploration in the Lower Magdalena has resulted in the discovery of 10 small to moderate-size fields, which have produced nearly 200 million bbl of oil. The density of exploration drilling within the basin is one well/435 km{sup 2}, thereby allowing the opportunity for more discoveries to be realized. The existence of a thick Tertiary section with excellent source beds and a tectonic history that allows for both structural and stratigraphic traps presents an excellent opportunity for the application of modern exploration techniques to reevaluate the potential of a basin that has not been thoroughly evaluated due to complex exploration problems.

  9. Recent developments in hydrocarbon separator interface imaging

    NASA Astrophysics Data System (ADS)

    Hjertaker, Bjorn T.; Johansen, Geir A.; Jackson, Peter

    2001-02-01

    Level monitoring instrumentation is an essential part of hydrocarbon processing facilities, and has together with separator technology been widely addressed over the last decade. Key issues are production capacity, product enhancement and well-flow control. The reliability and accuracy of the level instrumentation, and its ability to monitor the thickness of the foam and the oil-water emulsion, are particularly important when considering the level instrumentation as the main sensing element in the automatic control of the separation vessel. Lately industry focus has been placed on optimal automatic control to improve the quality of the production output, and to minimize the use of expensive and environmentally undesirable separation enhancing chemicals. Recent developments in hydrocarbon production includes subsea separation stations, where the constraints placed on the reliability and accuracy of the level instrumentation are especially severe. This paper discuss the most common existing level monitoring technologies, and present some recent level monitoring developments for three-phase separators. In order to clarify the issue of cross sectional metering the notion tomometry is introduced in this paper. Tomometry denotes multipoint cross sectional metering aiming to acquire cross sectional information on the distribution of the substances in the process vessel for control purposes, not mainly to create a cross sectional reconstructed image of the process in question.

  10. LOX/Hydrocarbon Combustion Instability Investigation

    NASA Technical Reports Server (NTRS)

    Jensen, R. J.; Dodson, H. C.; Claflin, S. E.

    1989-01-01

    The LOX/Hydrocarbon Combustion Instability Investigation Program was structured to determine if the use of light hydrocarbon combustion fuels with liquid oxygen (LOX) produces combustion performance and stability behavior similar to the LOX/hydrogen propellant combination. In particular methane was investigated to determine if that fuel can be rated for combustion instability using the same techniques as previously used for LOX/hydrogen. These techniques included fuel temperature ramping and stability bomb tests. The hot fire program probed the combustion behavior of methane from ambient to subambient temperatures. Very interesting results were obtained from this program that have potential importance to future LOX/methane development programs. A very thorough and carefully reasoned documentation of the experimental data obtained is contained. The hot fire test logic and the associated tests are discussed. Subscale performance and stability rating testing was accomplished using 40,000 lb. thrust class hardware. Stability rating tests used both bombs and fuel temperature ramping techniques. The test program was successful in generating data for the evaluation of the methane stability characteristics relative to hydrogen and to anchor stability models. Data correlations, performance analysis, stability analyses, and key stability margin enhancement parameters are discussed.

  11. Isotopic signatures of CH 4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Lacrampe-Couloume, G.; Voglesonger, K.; Onstott, T. C.; Pratt, L. M.; Slater, G. F.

    2008-10-01

    Previous studies of methane and higher hydrocarbon gases in Precambrian Shield rocks in Canada and the Witwatersrand Basin of South Africa identified two major gas types. Paleometeoric waters were dominated by hydrocarbon gases with compositional and isotopic characteristics consistent with production by methanogens utilizing the CO 2 reduction pathway. In contrast the deepest, most saline fracture waters contained gases that did not resemble the products of microbial methanogenesis and were dominated by both high concentrations of H 2 gas, and CH 4 and higher hydrocarbon gases with isotopic signatures attributed to abiogenic processes of water-rock reaction in these high rock/water ratio, hydrogeologically-isolated fracture waters. Based on new data obtained for the higher hydrocarbon gases in particular, a model is proposed to account for carbon isotope variation between CH 4 and the higher hydrocarbon gases (specifically ethane, propane, butane, and pentane) consistent with abiogenic polymerization. Values of δ 13C for CH 4 and the higher hydrocarbon gases predicted by the model are shown to match proposed abiogenic hydrocarbon gas end-members identified at five field sites (two in Canada and three in South Africa) suggesting that the carbon isotope patterns between the hydrocarbon homologs reflect the reaction mechanism. In addition, the δ 2H isotope data for these gases are shown to be out of isotopic equilibrium, suggesting the consistent apparent fractionation observed between the hydrocarbon homologs may also reflect reaction mechanisms involved in the formation of the gases. Recent experimental and field studies of proposed abiogenic hydrocarbons such as those found at mid-ocean spreading centers and off-axis hydrothermal fields such as Lost City have begun to focus not only on the origin of CH 4, but on the compositional and isotopic information contained in the higher hydrocarbon gases. The model explored in this paper suggests that while the extent of

  12. Plasma Chemical Aspects Of Dust Formation In Hydrocarbon Plasmas

    SciTech Connect

    Berndt, J.; Kovacevic, E.; Stepanovic, O.; Stefanovic, I.; Winter, J.

    2008-09-07

    This contribution deals with some plasma chemical aspects of dust formation in hydrocarbon plasmas. The interplay between dust formation and plasma chemistry will be discussed by means of different experimental results. One specific example concerns the formation of benzene and the role of atomic hydrogen for plasma chemical processes and dust formation in hydrocarbon discharges.

  13. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    SciTech Connect

    Ervin, Kent M.

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  14. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photosynthetic terpene production[ED1] represents an energy and carbon-efficient route for hydrocarbon fuel production. Diverse terpene structures also provide the potential to produce next-generation 'drop-in' hydrocarbon fuel molecules. However, it is highly challenging to achieve efficient redire...

  15. BIODEGRADATION OF HYDROCARBON VAPORS IN THE UNSATURATED ZONE

    EPA Science Inventory

    The time-averaged concentration of hydrocarbon and oxygen vapors were measured in the unsaturated zone above the residually contaminated capillary fringe at the U.S. Coast Guard Air Station in Traverse City, Michigan. Total hydrocarbon and oxygen vapor concentrations were observe...

  16. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    occurring in hydrocarbon combustion at normal and extreme conditions. We are developing efficient, robust methods for automatically generating ...practical objective of the research was to address some of the challenges to developing improved hydrocarbon combustion models . This requires new...SECURITY CLASSIFICATION OF: This research addresses some of the challenges to developing improved combustion models for the discovery of alternative

  17. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  18. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  19. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  20. 40 CFR 86.221-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Hydrocarbon analyzer calibration. 86.221-94 Section 86.221-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.221-94 Hydrocarbon...

  1. Mixture including hydrogen and hydrocarbon having pressure-temperature stability

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2009-01-01

    The invention relates to a method of storing hydrogen that employs a mixture of hydrogen and a hydrocarbon that can both be used as fuel. In one embodiment, the method involves maintaining a mixture including hydrogen and a hydrocarbon in the solid state at ambient pressure and a temperature in excess of about 10 K.

  2. Going Beyond, Going Further: Chemical Properties of Commonly Available Hydrocarbons.

    ERIC Educational Resources Information Center

    Perina, Ivo

    1985-01-01

    Background information, procedures used, and safety considerations are provided for experiments using natural gas. They include: (1) exploding a mixture of natural gas and oxygen; (2) testing for unsaturated hydrocarbons in natural gas; (3) substituting higher saturated hydrocarbons contained in kerosene with bromine; and (4) the pyrolysis of…

  3. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  4. 40 CFR 86.221-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Hydrocarbon analyzer calibration. 86.221-94 Section 86.221-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.221-94 Hydrocarbon...

  5. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  6. 40 CFR 86.221-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Hydrocarbon analyzer calibration. 86.221-94 Section 86.221-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.221-94 Hydrocarbon...

  7. 40 CFR 86.221-94 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86.221-94 Section 86.221-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.221-94 Hydrocarbon...

  8. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  9. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Donchin, J. H.; Nehring, N. L.; Truesdell, A. H.

    1981-01-01

    Isotopic measurements of individual geothermal hydrocarbons that are, as a group, of higher molecular weight than methane are reported. It is believed in light of this data that the principal source of hydrocarbons in four geothermal areas in western North America is the thermal decomposition of sedimentary or groundwater organic matter.

  10. Conversion of oligomeric starch, cellulose, or sugars to hydrocarbons

    SciTech Connect

    Silks, Louis A.; Sutton, Andrew; Kim, Jin Kyung; Gordon, John Cameron; Wu, Ruilian; Kimball, David B.

    2016-10-18

    The present invention is directed to the one step selective conversion of starch, cellulose, or glucose to molecules containing 7 to 26 contiguous carbon atoms. The invention is also directed to the conversion of those intermediates to saturated hydrocarbons. Such saturated hydrocarbons are useful as, for example, fuels.

  11. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  12. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  13. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  14. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  15. 21 CFR 573.740 - Odorless light petroleum hydrocarbons.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Odorless light petroleum hydrocarbons. 573.740 Section 573.740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... ANIMALS Food Additive Listing § 573.740 Odorless light petroleum hydrocarbons. Odorless light...

  16. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  17. Electrogenerative cell for the oxidation or halogenation of hydrocarbons

    SciTech Connect

    McIntyre, J.M.

    1988-03-15

    A process for producing electric power by the electrogenerative halogenation or oxidation of at least one unsaturated hydrocarbon in an electrochemical cell having an anode and cathode separated by a permselective membrane or electrolyte permeable diaphragm is described comprising: (A) flowing a first liquid electrolyte and the unsaturated hydrocarbon to an anolyte compartment of the cell containing a porous anode; (B) flowing a second liquid electrolyte and a halogen or oxygen gas to a catholyte compartment of the cell containing a porous cathode; (C) reacting the unsaturated hydrocarbon with the halogen or the oxygen at ambient or elevated temperatures and pressures; (D) recovering a halogenated or oxygenated hydrocarbon; (E) recycling the electrolytes, unsaturated hydrocarbon, and halogen or oxygen gas to the cell.

  18. Climatically driven emissions of hydrocarbons from marine sediments during deglaciation

    PubMed Central

    Hill, T. M.; Kennett, J. P.; Valentine, D. L.; Yang, Z.; Reddy, C. M.; Nelson, R. K.; Behl, R. J.; Robert, C.; Beaufort, L.

    2006-01-01

    Marine hydrocarbon seepage emits oil and gas, including methane (≈30 Tg of CH4 per year), to the ocean and atmosphere. Sediments from the California margin contain preserved tar, primarily formed through hydrocarbon weathering at the sea surface. We present a record of variation in the abundance of tar in sediments for the past 32,000 years, providing evidence for increases in hydrocarbon emissions before and during Termination IA [16,000 years ago (16 ka) to 14 ka] and again over Termination IB (11–10 ka). Our study provides direct evidence for increased hydrocarbon seepage associated with deglacial warming through tar abundance in marine sediments, independent of previous geochemical proxies. Climate-sensitive gas hydrates may modulate thermogenic hydrocarbon seepage during deglaciation. PMID:16945904

  19. Aspects of petroleum hydrocarbon metabolism in marine animals

    NASA Astrophysics Data System (ADS)

    Mironov, O. G.

    1980-03-01

    Studies on hydrocarbon composition of Black Sea mussels Mytilus galloprovincialis sampled from different habitats indicate that the quantity and composition of hydrocarbons distributed in the molluscs depend on season and sea-water quality. The data obtained under experimental conditions testify to the possibility of hydrocarbon concentration in mussel tissues after death. During filtration in sea water containing oil and oil products, these pollutants are bound into faeces and pseudofaeces which contain a greater percentage of aromatic compounds than the oil initially present in sea water. Quantitative data are presented on hydrocarbon changes in mussel excretory products during transfer from oil-polluted to clean sea water. When Black Sea crabs Eriphia verrucosa are fed with mussels containing fuel-oil components accumulated from sea water, the pollutants concentrate in the whole body of the crab. This is in contrast to parenteral oil uptake, which leads to a concentration of most of the hydrocarbon in the muscles.

  20. Heating hydrocarbon containing formations in a line drive staged process

    DOEpatents

    Miller, David Scott

    2009-07-21

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to a first section of the formation with one or more first heaters in the first section. First hydrocarbons may be heated in the first section such that at least some of the first hydrocarbons are mobilized. At least some of the mobilized first hydrocarbons may be produced through a production well located in a second section of the formation. The second section may be located substantially adjacent to the first section. A portion of the second section may be provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second section with one or more second heaters in the second section to further heat the second section.

  1. Cogeneration systems and processes for treating hydrocarbon containing formations

    DOEpatents

    Vinegar, Harold J.; Fowler, Thomas David; Karanikas, John Michael

    2009-12-29

    A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.

  2. Imaging fluid/solid interactions in hydrocarbon reservoir rocks

    SciTech Connect

    Uwins, P.J.R.; Baker, J.C.; Mackinnon, I.D.R. . Centre for Microscopy and Microanalysis)

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoir, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programs. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  3. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    PubMed

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  4. Biogenic hydrocarbon contribution to the ambient air of selected areas

    NASA Astrophysics Data System (ADS)

    Arnts, Robert R.; Meeks, Sarah A.

    In response to suggestions that biogenic emissions are responsible for high hydrocarbon concentrations described in several reports, a short-term sampling program was initiated in the reported areas to test this hypothesis. Limited numbers of whole-air samples were collected in Tedlar bags and analyzed by gas chromatography (GC) with flame ionization detection. Tulsa air was found to contain an average of 0.2% isoprene of the total nonmethane hydrocarbon (TNMHC) load. Rio Blanco County, Colorado, and Smoky Mountain air, respectively, averaged about 2 % and 4 % biogenic hydrocarbon of the total nonmethane hydrocarbon loads. Isoprene appears to be a dominant olefin in rural and remote areas. Although the tests were of short duration, results suggest monoterpenes and isoprene constitute only minor components in these areas relative to anthropogenic hydrocarbons.

  5. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis.

    PubMed

    Wise, Courtney E; Grant, Job L; Amaya, Jose A; Ratigan, Steven C; Hsieh, Chun H; Manley, Olivia M; Makris, Thomas M

    2017-04-01

    Increasing levels of energy consumption, dwindling resources, and environmental considerations have served as compelling motivations to explore renewable alternatives to petroleum-based fuels, including enzymatic routes for hydrocarbon synthesis. Phylogenetically diverse species have long been recognized to produce hydrocarbons, but many of the enzymes responsible have been identified within the past decade. The enzymatic conversion of Cn chain length fatty aldehydes (or acids) to Cn-1 hydrocarbons, alkanes or alkenes, involves a C-C scission reaction. Surprisingly, the enzymes involved in hydrocarbon synthesis utilize non-heme mononuclear iron, dinuclear iron, and thiolate-ligated heme cofactors that are most often associated with monooxygenation reactions. In this review, we examine the mechanisms of several enzymes involved in hydrocarbon biosynthesis, with specific emphasis on the structural and electronic changes that enable this functional switch.

  6. AN EQUIVALENT ELECTRIC CIRCUIT APPROACH TO THE STUDY OF HYDROCARBON OXIDATION KINETICS.

    DTIC Science & Technology

    HYDROCARBONS, *OXIDATION), (*PROPANE, OXIDATION), (*FUEL CELLS, ELECTROCHEMISTRY), ELECTRIC DOUBLE LAYER, PLATINUM, ELECTRODES, REACTION KINETICS, ACETIC ACID , ELECTROLYTES, HALOGENATED HYDROCARBONS, FLUORINE COMPOUNDS

  7. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species.

    PubMed

    Etges, W J; Jackson, L L

    2001-10-01

    Epicuticular hydrocarbon variation was investigated among the three species of the Drosophila mojavensis cluster (D. mojavensis, D. arizonae, and D. navojoa) within the large D. repleta group. Because these hydrocarbons serve as contact pheromones in adult D. mojavensis, the chemical characteristics and differences in hydrocarbon profiles in populations of these three sibling species were further investigated. Twenty-seven hydrocarbon components with chain lengths ranging from C28 to C40, including n-alkanes, methyl-branched alkanes, n-alkenes, methyl-branched alkenes, and alkadienes were observed. Hydrocarbon profiles among the three species reared on different cactus hosts were easily aligned with previously identified components in D. mojavensis. Male and female D. navojoa possessed a 31-methyldotricont-6-ene absent in both D. arizonae and D. mojavensis, while lacking the 8,24-tritricontadiene present in these two species. D. navojoa adults had far less 2-methyloctacosane than these sibling species, but the significance of this difference was obscured by the degree of variation among populations in amounts of this hydrocarbon. Mainland and Baja California populations of D. mojavensis were fixed for differences in the amounts 8,24-tritricontadiene, 9,25-pentatricontadiene, and 9,27-heptatricontadiene, consistent with all previous studies. Amounts of 18 of the 27 hydrocarbon components were greater in flies reared on Opuntia cactus. Canonical discriminant function analysis resolved all three species into distinct, nonoverlapping groups, suggesting that epicuticular hydrocarbon profiles are species-specific in the D. mojavensis cluster. Based on the amounts of interpopulation variation in hydrocarbon profiles in these three species, we hypothesize that epicuticular hydrocarbon differences may evolve early during the formation of new species.

  8. Advanced fuel hydrocarbon remediation national test location. Demonstration of hot air vapor extraction for fuel hydrocarbon cleanup

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    Hot air vapor extration (HAVE) is a fast track, innovative environmental cleanup technolgy that uses a combination of thermal, heap pile, and vapor extraction techniques to remove and destroy hydrocarbon contamination in soil. This technology is very effective in cleaning soils contaminated with gasoline, diesel, heavy oil, and polycyclic aromatic hydrocarbons (PAH).

  9. Middle America - Regional Geological Integrity, Hydrocarbon Implications.

    NASA Astrophysics Data System (ADS)

    James, K. H.

    2008-05-01

    Dogma holds that the Caribbean Plate and its islands formed in the Pacific and comprise oceanic crust and intra- oceanic arc rocks. Middle America, between N and S America, manifests a regional, N35°E and N60°W tectonic fabric. The NE trend results from Triassic-Jurassic reactivation of Palaeozoic convergent structures as extensional faults during Pangean rifting and commencement of N America drift. The NW trend parallels major inter-continental faults and oceanic fractures along which extension and drift occurred. Triassic-Jurassic red beds accumulated in the NE trending, intra-continental rifts of N, S and Central America. Proximal extended continental margins subsided to accommodate thick Cretaceous carbonate sections (Florida - Bahamas, Campeche, Nicaragua Rise). Distal margins formed continental blocks flanked by seaward-dipping wedges. Seismic and drilling in basins along the eastern seaboard of N America (Baltimore Canyon to Blake Plateau) document Triassic-Jurassic red beds overlain by salt and carbonates. Hydrocarbons are present. In Middle America the Gulf of Mexico remained "intra-continental", surrounded by continental blocks (N America, Maya, Florida). The area further south experienced greater extension, manifest by diverging oceanic fracture patterns to the east and west. Seismic data over the Caribbean Plateau reveal deep architecture of NE trending highs flanked by dipping wedges of reflections, similar to eastern N America distal basins. DSDP drilling calibrated the overlying smooth seismic Horizon B" as recording Cenomanian basalts. Smoothness, great lateral extent and coeval exposed sections with palaeosols followed by shallow marine carbonates suggest they were sub-aerial. Adjacent, rough seismic Horizon B" probably records top of submarine, serpentinized mantle. Seismic over the plateau also reveals features identical to drilled Sigsbee salt diapirs of the Gulf of Mexico. The regional tectonic fabric demonstrates a shared geological history

  10. Simplified Modeling of Oxidation of Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2008-01-01

    A method of simplified computational modeling of oxidation of hydrocarbons is undergoing development. This is one of several developments needed to enable accurate computational simulation of turbulent, chemically reacting flows. At present, accurate computational simulation of such flows is difficult or impossible in most cases because (1) the numbers of grid points needed for adequate spatial resolution of turbulent flows in realistically complex geometries are beyond the capabilities of typical supercomputers now in use and (2) the combustion of typical hydrocarbons proceeds through decomposition into hundreds of molecular species interacting through thousands of reactions. Hence, the combination of detailed reaction- rate models with the fundamental flow equations yields flow models that are computationally prohibitive. Hence, further, a reduction of at least an order of magnitude in the dimension of reaction kinetics is one of the prerequisites for feasibility of computational simulation of turbulent, chemically reacting flows. In the present method of simplified modeling, all molecular species involved in the oxidation of hydrocarbons are classified as either light or heavy; heavy molecules are those having 3 or more carbon atoms. The light molecules are not subject to meaningful decomposition, and the heavy molecules are considered to decompose into only 13 specified constituent radicals, a few of which are listed in the table. One constructs a reduced-order model, suitable for use in estimating the release of heat and the evolution of temperature in combustion, from a base comprising the 13 constituent radicals plus a total of 26 other species that include the light molecules and related light free radicals. Then rather than following all possible species through their reaction coordinates, one follows only the reduced set of reaction coordinates of the base. The behavior of the base was examined in test computational simulations of the combustion of

  11. In vitro toxicity of polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons to cetacean cells and tissues

    SciTech Connect

    Carvan, M.J. III.

    1993-01-01

    Cetaceans bioaccumulate high aromatic hydrocarbon tissue residues, and elevated levels of PCB residues in tissues are proposed to have occurred concurrently with recent epizootic deaths of dolphins. The objectives of this study were: (1) to develop and characterize an epithelial cell line derived from dolphin tissues, (2) to investigate the effects of hydrocarbon pollutants on those cells, and (3) to analyze the toxicity of hydrocarbon pollutants on cetacean tissues in vitro. An epithelial cell line, Carvan dolphin kidney (CDK), isolated from a spontaneously aborted female bottlenose dolphin, Tursiops truncatus, grew rapidly. These cells were neither transformed nor immortal. Velocity sedimentation analysis showed CDK cells contained nuclear aryl hydrocarbon receptor, suggestive of cytochrome P450 inducibility. BaP inhibited mitosis in CDK cells in a dose-dependent manner. Data indicate that CDK cells metabolize BaP, that BaP metabolites bind to cellular DNA initiating unscheduled DNA synthesis, and that the inhibition of cytochrome P450 metabolism decrease the BaP-associated inhibition of mitosis in dolphin cells. The data also suggest that TCDD acts synergistically to increase the levels of DNA damage by the procarcinogen BaP. Cetacean liver microsomes was isolated and evaluated for the presence of cytochrome P450 proteins by SDS-PAGE, apparent minimum molecular weight determination, and immunoblot analysis. P450 activity was induced in cetacean tissue samples and CDK cells by exposure in vitro to one of several cytochrome P450-inducing chemicals. The data suggest that cetacean tissues and cells can be utilized to study the in vitro induction of cytochrome P450, resultant metabolism of xenobiotic contaminants, and the subsequent cellular and molecular responses. However, the identity of specific P450 isozymes involved in this process will remain undetermined until monoclonal antibodies that recognize cetacean P450s can be generated.

  12. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  13. Microbial hydrocarbons: back to the future

    SciTech Connect

    Work, Victoria H.; Beliaev, Alex S.; Konopka, Allan; Posewitz, Matthew C.

    2012-03-01

    The defining challenge of energy research in the 21st century is the development and deployment of technologies for large-scale reconfiguration of global energy infrastructure. Modern society is built upon a concentrated yet finite reservoir of diverse hydrocarbons formed through the photosynthetic transformation of several hundred million years of solar energy. In human history, the fossil energy era will be short lived and never repeated. Although the timing of peak oil is extensively debated, it is an eventuality. It is, therefore, imperative that projections for both when it will occur and the degree to which supply will fall short of demand be taken into serious consideration, especially in the sectors of energy technology development, political and economic decision making, and societal energy usage. The requirement for renewable energy systems is no longer a point for discussion, and swift advances on many fronts are vital to counteract current and impending crises in both energy and the environment.

  14. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples.

    PubMed

    Battisti, Chiara; Girelli, Anna Maria; Tarola, Anna Maria

    2015-01-01

    The concentrations and distributions of major polycyclic aromatic hydrocarbons (PAHs) were determined in 20 kinds of yogurt specimens collected from Italian supermarkets using reversed phase high-performance liquid chromatography equipped with fluorescence detection. The method was validated by determination of recovery percentages, precision (repeatability) and sensitivity (limits of detection) with yogurt samples fortified at 0.25, 0.5 and 1 µg/kg concentration levels. The recovery of 13 PAHs, with the exception of naphthalene and acenaphthene, ranged from 61% to 130% and from 60% to 97% at all the levels for yogurts with low (0.1%) and high (3.9%) fat content, respectively. The method is repeatable with relative standard deviation values <20% for all analytes. The results obtained demonstrate that acenaphthene, fluorantene, phenanthrene, anthracene, fluoranthene and pyrene were found in all samples with a similar distribution, but different content when yogurts with low and high fats were compared.

  15. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor)

    1972-01-01

    A series of DEAB initiated isoprene polymerizations were run in the 5-gallon stirred autoclave reactor. Polymerization run parameters such as initiator concentration and feed rate were correlated with the molecular weight to provide a basis for molecular weight control in future runs. Synthetic methods were developed for the preparation of n-1,3-alkadienes. By these methods, 1,3-nonadiene was polymerized using DEAB initiator to give an ester-telechelic polynonadiene. This was subsequently hydrogenated with copper chromite catalyst to give a hydroxyl terminated saturated liquid hydrocarbon prepolymer having greatly improved viscosity characteristics and a Tg 18 degrees lower than that of the hydrogenated polyisoprenes. The hydroxyl-telechelic saturated polymers prepared by the hydrogenolysis of ester-telechelic polyisoprene were reached with diisocyanates under conditions favoring linear chain extension gel permeation chromatography was used to monitor this condensation polymerization. Fractions having molecular weights above one million were produced.

  16. Prediction of Thermodynamic Properties for Halogenated Hydrocarbon

    NASA Astrophysics Data System (ADS)

    Higashi, Yukihiro

    The predictive methods of thermodynamic properties are discussed with respect to the halogenated hydrocarbons using as working fluids for refrigeration and heat pump cycles. The methods introduced into this paper can be calculated by the limited information; critical properties, normal boiling point and acentric factor. The results of prediction are compared with the experimental values of PVT property, vapor pressure and saturated liquid density. On the basis of these comparisons, Lydersen's method for predicting the critical properties, the generalized vapor pressure correlation by Ashizawa et, al., and Hankinson-Thomson's method for predicting saturated liquid density can be recommended. With respect to the equation of state, either Soave equation or Peng-Robinson equation is effective in calculating the thermodynamic properties except high density region.

  17. Heavy hydrocarbon main injector technology program

    NASA Technical Reports Server (NTRS)

    Arbit, H. A.; Tuegel, L. M.; Dodd, F. E.

    1991-01-01

    The Heavy Hydrocarbon Main Injector Program was an analytical, design, and test program to demonstrate an injection concept applicable to an Isolated Combustion Compartment of a full-scale, high pressure, LOX/RP-1 engine. Several injector patterns were tested in a 3.4-in. combustor. Based on these results, features of the most promising injector design were incorporated into a 5.7-in. injector which was then hot-fire tested. In turn, a preliminary design of a 5-compartment 2D combustor was based on this pattern. Also the additional subscale injector testing and analysis was performed with an emphasis on improving analytical techniques and acoustic cavity design methodology. Several of the existing 3.5-in. diameter injectors were hot-fire tested with and without acoustic cavities for spontaneous and dynamic stability characteristics.

  18. Unsaturated hydrocarbons with fruity and floral odors.

    PubMed

    Anselmi, C; Centini, M; Fedeli, P; Paoli, M L; Sega, A; Scesa, C; Pelosi, P

    2000-04-01

    Hydrocarbons usually do not exhibit odors of interest or well-defined character. However, certain cyclic alkenes have been associated with typical and pleasant notes, such as fruity, green, and floral. One of the best known examples is represented by the isomeric megastigmatrienes, endowed with a pleasant smell of tropical fruits. From the structures of these odorants, 24 analogues and homologues, most of them cyclic alkenes, but including also some open-chain alkenes, have been synthesized to define structural parameters related to the characteristic odors of these compounds. The number and position of double bonds, the substitution on the ring, and the size of the ring are the variables taken into account. Most of the new compounds present a mainly fruity character, associated in several cases with floral and green notes, producing an overall sensation described as "tropical fruit".

  19. Method and apparatus for detecting halogenated hydrocarbons

    DOEpatents

    Monagle, Matthew; Coogan, John J.

    1997-01-01

    A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.

  20. Strained Hydrocarbons as Potential Hypergolic Fuels

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A storable combination of high-energy hypergolic fuel and oxidizer is advantageous to the future of reusable launch vehicles (RLVs). The combination will allow an increase in energy per unit volume of fuel and eliminate the need for an external ignition system. Strained systems have been studied as potential high-density fuels. Adding hypergolic functional groups, such as amino groups, to these hydrocarbons will potentially allow auto ignition of strained systems with hydrogen peroxide. Several straight chain amines and their strained counterparts containing an equivalent number of carbon atoms have been purchased and synthesized. These amines provide initial studies to determine the effects of fuel vapor pressure, strain energy, fuel miscibility, and amine substitution upon fuel ignition time and hypergolicity with hydrogen peroxide as an oxidizer.

  1. Hydrocarbons on the Icy Satellites of Saturn

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    2010-01-01

    The Visible-Infrared Mapping Spectrometer on the Cassini Spacecraft has obtained spectral reflectance maps of the satellites of Saturn in the wavelength region 0.4-5.1 micrometers since its insertion into Saturn orbit in late 2004. We have detected the spectral signature of the C-H stretching molecular mode of aromatic and aliphatic hydrocarbons in the low albedo material covering parts of several of Saturn's satellites, notably Iapetus and Phoebe (Cruikshank et al. 2008). The distribution of this material is complex, and in the case of Iapetus we are seeking to determine if it is related to the native grey-colored materials left as lag deposits upon evaporation of the ices, or represents in-fall from an external source, notably the newly discovered large dust ring originating at Phoebe. This report covers our latest exploration of the nature and source of this organic material.

  2. Simulation of a hydrocarbon fueled scramjet exhaust

    NASA Technical Reports Server (NTRS)

    Leng, J.

    1982-01-01

    Exhaust nozzle flow fields for a fully integrated, hydrocarbon burning scramjet were calculated for flight conditions of M (undisturbed free stream) = 4 at 6.1 km altitude and M (undisturbed free stream) = 6 at 30.5 km altitude. Equilibrium flow, frozen flow, and finite rate chemistry effects are considered. All flow fields were calculated by method of characteristics. Finite rate chemistry results were evaluated by a one dimensional code (Bittker) using streamtube area distributions extracted from the equilibrium flow field, and compared to very slow artificial rate cases for the same streamtube area distribution. Several candidate substitute gas mixtures, designed to simulate the gas dynamics of the real engine exhaust flow, were examined. Two mixtures are found to give excellent simulations of the specified exhaust flow fields when evaluated by the same method of characteristics computer code.

  3. Polycyclic aromatic hydrocarbons and cancer in man

    SciTech Connect

    Mastrangelo, G.; Marzia, V.; Fadda, E.

    1996-11-01

    Various substances and industrial processes, surrogates of exposure to polycyclic aromatic hydrocarbons (PAHs), are currently classified as human carcinogens. This paper reviews recent epidemiological studies reporting direct evidence of the carcinogenic effects of PAHs in occupationally exposed subjects. Risks of lung and bladder cancer were dose dependent when PAHs were measured quantitatively and truly nonexposed groups were chosen for comparison. These new findings suggest that the current threshold limit value of 0.2 mg/m{sup 3} of benzene soluble matter (which indicates PAH exposure) is unacceptable because, after 40 years of exposure, it involves a relative risk of 1.2-1.4 for lung cancer and 2.2 for bladder cancer. 33 refs., 2 tabs.

  4. Used lubricating oil recycling using hydrocarbon solvents.

    PubMed

    Hamad, Ahmad; Al-Zubaidy, Essam; Fayed, Muhammad E

    2005-01-01

    A solvent extraction process using new hydrocarbon solvents was employed to treat used lubricant oil. The solvents used were liquefied petroleum gas (LPG) condensate and stabilized condensate. A demulsifier was used to enhance the treatment process. The extraction process using stabilized condensate demonstrated characteristics that make it competitive with existing used oil treatment technologies. The process is able to reduce the asphaltene content of the treated lubricating oil to 0.106% (w/w), the ash content to 0.108%, and the carbon residue to 0.315% with very low levels of contaminant metals. The overall yield of oil is 79%. The treated used oil can be recycled as base lubricating oil. The major disadvantage of this work is the high temperature of solvent recovery. Experimental work and results are presented in detail.

  5. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOEpatents

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  6. System and process for upgrading hydrocarbons

    SciTech Connect

    Bingham, Dennis N.; Klingler, Kerry M.; Smith, Joseph D.; Turner, Terry D.; Wilding, Bruce M.

    2015-08-25

    In one embodiment, a system for upgrading a hydrocarbon material may include a black wax upgrade subsystem and a molten salt gasification (MSG) subsystem. The black wax upgrade subsystem and the MSG subsystem may be located within a common pressure boundary, such as within a pressure vessel. Gaseous materials produced by the MSG subsystem may be used in the process carried out within the black wax upgrade subsystem. For example, hydrogen may pass through a gaseous transfer interface to interact with black wax feed material to hydrogenate such material during a cracking process. In one embodiment, the gaseous transfer interface may include one or more openings in a tube or conduit which is carrying the black wax material. A pressure differential may control the flow of hydrogen within the tube or conduit. Related methods are also disclosed.

  7. Cold-start hydrocarbon emissions control

    SciTech Connect

    1995-10-01

    This article describes an effective, energy-efficient strategy for dealing with this problem using HC traps and heat-exchange related catalyst beds that have been successfully tested. The worldwide regulatory climate for continued and dramatic reductions in vehicle exhaust emissions will continue unabated for some time. The best known of these mandates includes California Air Resources Board`s Low Emission Vehicle (CARB LEV) program, the Ozone Transport Commission`s recent petition to the EPA for partial adoption of CARB`s LEV program, and the European Economic Community`s proposed staged multi-tier approach to reduce auto exhaust pollution. Since up to 70% of hydrocarbon tailpipe emissions occur during the cold-start portion of the Federal Test Procedure (FTP), significant reductions in total FTP HC emissions must include a cold-start HC abatement strategy.

  8. Aryl Hydrocarbon Receptor: linking environment to immunity

    PubMed Central

    Cella, Marina; Colonna, Marco

    2015-01-01

    Mucosal and barrier tissues are unique in that they mediate crosstalk between the host and the surrounding environment, which contains many potentially harmful factors. Therefore, it is critical that cell types present at barrier and mucosal surfaces are equipped with mechanisms to sense changes in the environment and to calibrate their responses accordingly. Aryl Hydrocarbon Receptor (AHR) is a ligand dependent transcription factor well known to generate biological responses to environmental pollutants, such as benzo{a}pyrene and halogenated dioxins. Surprisingly, in the last few years a large body of evidence has shown that AHR is also involved in maintaining homeostasis or in triggering pathology by modulating the biological responses of critical cell types at the barrier and mucosal interfaces. Here, we will review progresses in this field and discuss how targeting AHR activation may impact disease. PMID:26561251

  9. Hydrocarbon characterization experiments in fully turbulent fires.

    SciTech Connect

    Ricks, Allen; Blanchat, Thomas K.

    2007-05-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  10. Combustion characteristics of thermally stressed hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Curtis, Colin William

    Liquid propelled propulsion systems, which range from rocket systems to hypersonic scramjet and ramjet engines, require active cooling in order to prevent additional payload requirements. In these systems, the liquid fuel is used as a coolant and is delivered through micro-channels that surround the combustion chambers, nozzles, as well as the exterior surfaces in order to extract heat from these affected areas. During this process, heat exchange occurs through phase change, sensible heat extraction, and endothermic reactions experienced by the liquid fuel. Previous research has demonstrated the significant modifications in fuel composition and changes to the fuel's physical properties that can result from these endothermic reactions. As a next step, we are experimentally investigating the effect that endothermic reactions have on fundamental flame behavior for real hydrocarbon fuels that are used as rocket and jet propellants. To achieve this goal, we have developed a counter-flow flame burner to measure extinction limits of the thermally stressed fuels. The counter-flow flame system is to be coupled with a high pressure reactor, capable of subjecting the fuel to 170 atm and 873 K, effectively simulating the extreme environment that cause the liquid fuel to experience endothermic reactions. The fundamental flame properties of the reacted fuels will be compared to those of unreacted fuels, allowing us to determine the role of endothermic reactions on the combustion behavior of current hydrocarbon jet and rocket propellants. To quantify the change in transport properties and chemical kinetics of the reacting mixture, simultaneous numerical simulations of the reactor portion of the experiment coupled with a counterflow flame simulation are performed using n-heptane and n-dodecane.

  11. Deposit formation in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811 K. Results indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. Results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, lating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  12. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    SciTech Connect

    Missallati, A.A. Ltd., Tripoli )

    1988-08-01

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

  13. Hydrocarbon flux from natural deepwater Gulf of Mexico vents

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J.; Flemings, Peter B.; Fulton, Patrick M.

    2014-06-01

    High salinities and high temperatures at the seafloor record the upward flow of water and hydrocarbons from depth at natural vents in the deepwater Gulf of Mexico. We present a multiphase heat- and solute-transport model, in which water supplied from depth transports heat and salt, and hydrocarbon transports heat. We show that there is a unique water and hydrocarbon flux that simulates the observed salinity and temperature. We estimate the hydrocarbon flux to be 3.2-15×104 t yr and 1.8-8.0×104 t yr from two vents at lease blocks MC852/853 and GB425. These fluxes are 1-4 orders of magnitude greater than previous estimates from individual deepwater vents. If these results are extrapolated to the entire Gulf of Mexico, then we estimate the regional hydrocarbon flux to be at least 100× greater than previous estimates and 14-120% of the hydrocarbon flux from the Macondo oil spill. Large natural seepage may inoculate marine basins such as the Gulf of Mexico from oil spills like the 2010 Deepwater Horizon blowout by sustaining populations of hydrocarbon-degrading bacteria.

  14. Microbial degradation of crude oil hydrocarbons on organoclay minerals.

    PubMed

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-11-01

    The role of organoclays in hydrocarbon removal during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The clays used for this study were Na-montmorillonite and saponite. These two clays were treated with didecyldimethylammonium bromide to produce organoclays which were used in this study. The study indicated that clays with high cation exchange capacity (CEC) such as Na-montmorillonite produced an organomontmorillonite that was inhibitory to biodegradation of the crude oil hydrocarbons. Extensive hydrophobic interaction between the organic phase of the organoclay and the crude oil hydrocarbons is suggested to render the hydrocarbons unavailable for biodegradation. However, untreated Na-montmorillonite was stimulatory to biodegradation of the hydrocarbons and is believed to have done so because of its high surface area for the accumulation of microbes and nutrients making it easy for the microbes to access the nutrients. This study indicates that unlike unmodified montmorillonites, organomontmorillonite may not serve any useful purpose in the bioremediation of crude oil spill sites where hydrocarbon removal by biodegradation is desired within a rapid time period.

  15. Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence.

    PubMed

    Almeida, Raquel; Mucha, Ana P; Teixeira, Catarina; Bordalo, Adriano A; Almeida, C Marisa R

    2013-02-01

    In this work, the potential effect of metals, such as Cd, Cu and Pb, on the biodegradation of petroleum hydrocarbons in estuarine sediments was investigated under laboratory conditions. Sandy and muddy non-vegetated sediments were collected in the Lima River estuary (NW Portugal) and spiked with crude oil and each of the metals. Spiked sediments were left in the dark under constant shaking for 15 days, after which crude oil biodegradation was evaluated. To estimate microbial abundance, total cell counts were obtained by DAPI staining and microbial community structure was characterized by ARISA. Culturable hydrocarbon degraders were determined using a modified most probable number protocol. Total petroleum hydrocarbons concentrations were analysed by Fourier Transform Infrared Spectroscopy after their extraction by sonication, and metal contents were determined by atomic absorption spectrometry. The results obtained showed that microbial communities had the potential to degrade petroleum hydrocarbons, with a maximum of 32 % degradation obtained for sandy sediments. Both crude oil and metals changed the microbial community structure, being the higher effect observed for Cu. Also, among the studied metals, only Cu displayed measurable deleterious effect on the hydrocarbons degradation process, as shown by a decrease in the hydrocarbon degrading microorganisms abundance and in the hydrocarbon degradation rates. Both degradation potential and metal influence varied with sediment characteristics probably due to differences in contaminant bioavailability, a feature that should be taken into account in developing bioremediation strategies for co-contaminated estuarine sites.

  16. Chemical contamination and transformation of soils in hydrocarbon production regions

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Nikonova, A. N.

    2015-12-01

    The current concepts of soil pollution and transformation in the regions of hydrocarbon production have been reviewed. The development of an oil field creates extreme conditions for pedogenesis. Tendencies in the radial migration, spatial distribution, metabolism, and accumulation of pollutants (oil, oil products, and attendant heavy metals) in soils of different bioclimatic zones have been analyzed. The radial and lateral mobility of pollution halos is a universal tendency in the technogenic transformation of soils and soil cover in the regions of hydrocarbon production. The biodegradation time of different hydrocarbon compounds strongly varies under different landscape conditions, from several months to several tens of years. The transformation of original (mineral and organic) soils to their technogenic modifications (mechanically disturbed, chemically contaminated, and chemo soils and chemozems) occurs in the impact zone of technogenic hydrocarbon fluxes under any physiographical conditions. The integrated use of the existing methods for the determination of the total content and qualitative composition of bituminous substances and polyaromatic hydrocarbons in combination with the chromatographic determination of normal alkanes and hydrocarbon gases, as well as innovative methods of studies, allows revealing new processes and genetic relationships in soils and studying the functioning of soils and soil cover. The study of the hydrocarbon contamination of soils is important for development of restoration measures and lays the groundwork for the ecological and hygienic regulation based on the zonation of soil and landscape resistance to different pollutants.

  17. Respirometry for assessing the biodegradation of petroleum hydrocarbons.

    PubMed

    Plaza, G; Ulfig, K; Worsztynowicz, A; Malina, G; Krzeminska, B; Brigmon, R L

    2005-02-01

    The respiration method using the Micro-Oxymax respirometer was applied to evaluate the bioremediation potential of hydrocarbon-contaminated soils in two biopiles at the oil refinery in Czechowice-Dziedzice, Poland. In biopiles 1 and 2, two different technologies, i.e., enhanced (engineered) bioremediation and monitored natural attenuation (MNA) were used, respectively. In biopiles 1 and 2, the bioremediation process lasted 6 years and 8 months, respectively. The biodegradation of petroleum hydrocarbons was evaluated on the basis of CO2 production and O2 uptake. The CO2 production and O2 consumption rates during hydrocarbon biodegradation were calculated from the slopes of cumulative curve linear regressions. The results confirmed the hydrocarbon biodegradation process in both biopiles. However, in biopile 2 the process was more effective compared to biopile 1. In biopile 2, the O2 consumption and CO2 production means were 3.37 and 2.4 milliliters per kilogram of soil (dry weight) per minute, respectively. Whereas, in biopile 1, the O2 consumption and CO2 production means were 1.52 and 1.07 milliliters per kilogram of soil (dry weight) per minute, respectively. The mean biodegradation rate for biopile 2 was two times higher--67 mg hydrocarbons kg d.w.(-1)day(-1) compared with biopile 1, where the mean was 30 mg hydrocarbons kg d.w.(-1)day(-l). The results were correlated with petroleum hydrocarbon concentrations and microbial activity measured by dehydrogenase assay.

  18. Composition and concentrations of semi-volatile hydrocarbons. Final report

    SciTech Connect

    Zielinska, B.; Fung, K.; Sheetz, L.

    1992-08-01

    Nonmethane hydrocarbons (NMHC) in ambient air are routinely analyzed for C2 to C10 species. The Caldecott Tunnel, located in the San Francisco area, was selected as a site dominated by motor vehicle emissions. The remaining sampling sites were: Los Angeles as a typical urban site, and Oildale as a site dominated by oil production. Whole air samples, analyzed for C2 through C12 hydrocarbons, were collected using the stainless steel canisters. Semi-volatile hydrocarbons, in the range of C8 to C18, were collected using Tenax-TA solid adsorbent. The samples were analyzed using high resolution gas chromatographic separation and Fourier transform infrared/mass spectrometric detection (GC/IRD/MSD) or flame ionization detection (FID) of individual hydrocarbons. The comparison of hydrocarbon concentrations found in the Tenax and canister samples and the assessment of the levels of semivolatile hydrocarbons (C10-C18 range) relative to total non-methane hydrocarbons (C2-C10 or C2-C12), as measured by the canister method, is presented. The results showed that the percent contribution of SVHC to TNMHC ranged from approximately 1 to approximately 18% depending on the carbon number arbitrarily selected as a starting point of SVHC range.

  19. A review of the neurotoxicity risk of selected hydrocarbon fuels.

    PubMed

    Ritchie, G D; Still, K R; Alexander, W K; Nordholm, A F; Wilson, C L; Rossi, J; Mattie, D R

    2001-01-01

    Over 1.3 million civilian and military personnel are occupationally exposed to hydrocarbon fuels, emphasizing gasoline, jet fuel, diesel fuel, or kerosene. These exposures may occur acutely or chronically to raw fuel, vapor, aerosol, or fuel combustion exhaust by dermal, respiratory inhalation, or oral ingestion routes, and commonly occur concurrently with exposure to other chemicals and stressors. Hydrocarbon fuels are complex mixtures of 150-260+ aliphatic and aromatic hydrocarbon compounds containing varying concentrations of potential neurotoxicants including benzene, n-hexane, toluene, xylenes, naphthalene, and certain n-C9-C12 fractions (n-propylbenzene, trimethylbenzene isomers). Due to their natural petroleum base, the chemical composition of different hydrocarbon fuels is not defined, and the fuels are classified according to broad performance criteria such as flash and boiling points, complicating toxicological comparisons. While hydrocarbon fuel exposures occur typically at concentrations below permissible exposure limits for their constituent chemicals, it is unknown whether additive or synergistic interactions may result in unpredicted neurotoxicity. The inclusion of up to six performance additives in existing fuel formulations presents additional neurotoxicity challenge. Additionally, exposures to hydrocarbon fuels, typically with minimal respiratory or dermal protection, range from weekly fueling of personal automobiles to waist-deep immersion of personnel in raw fuel during maintenance of aircraft fuel tanks. Occupational exposures may occur on a near daily basis for from several months to over 20 yr. A number of published studies have reported acute or persisting neurotoxic effects from acute, subchronic, or chronic exposure of humans or animals to hydrocarbon fuels, or to certain constituent chemicals of these fuels. This review summarizes human and animal studies of hydrocarbon fuel-induced neurotoxicity and neurobehavioral consequences. It is

  20. Organic geochemistry of the Vindhyan sediments: Implications for hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dayal, A. M.; Mani, Devleena; Madhavi, T.; Kavitha, S.; Kalpana, M. S.; Patil, D. J.; Sharma, Mukund

    2014-09-01

    The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01-0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between -45.7‰ to -25.2‰ and -35.3‰ to -20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1-C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1-2547 ppb, 1-558 ppb, 1-181 ppb, 1-37 ppb and 1-32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar

  1. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, M.; Ahmed, S.; Kumar, R.; Doshi, R.

    1999-07-27

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400 C for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide. 4 figs.

  2. Radiation-induced volatile hydrocarbon production in platelets

    SciTech Connect

    Radha, E.; Vaishnav, Y.N.; Kumar, K.S.; Weiss, J.F.

    1989-01-01

    Generation of volatile hydrocarbons (ethane, pentane) as a measure of lipid peroxidation was followed in preparations from platelet-rich plasma irradiated in vitro. The hydrocarbons in the headspace of sealed vials containing irradiated and nonirradiated washed platelets, platelet-rich plasma, or platelet-poor plasma increased with time. The major hydrocarbon, pentane, increased linearly and significantly with increasing log radiation dose, suggesting that reactive oxygen species induced by ionizing radiation result in lipid peroxidation. Measurements of lipid peroxidation products may give an indication of suboptimal quality of stored and/or irradiated platelets.

  3. Process for scavenging hydrogen sulfide from hydrocarbon gases

    SciTech Connect

    Fox, I.

    1981-01-20

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe/sub 2/O/sub 3/ containing a crystalline phase of Fe/sub 2/O/sub 3/, Fe/sub 3/O/sub 4/ and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected.

  4. Method and apparatus for detecting gem-polyhalogenated hydrocarbons

    DOEpatents

    Anderson, deceased, William G.; Anderson, legal representative, Johanna S.

    1990-01-01

    A method and optrode for detecting gem polyhalogenated hydrocarbons in a sample fluid based on a single phase Fujiwara reaction as provided. The method comprises contacting a reaction mixture with a sample fluid which contains the gem-polyhalogenated hydrocarbons. The reaction mixture comprises an aqueous solution of pyridine or derivative thereof and a hindered nitrogen base. Upon contact a fluorescent and/or chromgenic reaction product forms whose fluorescence and/or absorbance is related to the concentration of gem-polyhalogenated hydrocarbons in the sample fluid.

  5. Method for making hydrogen rich gas from hydrocarbon fuel

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    1999-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  6. Catalysts for converting syngas into liquid hydrocarbons and methods thereof

    DOEpatents

    Yu, Fei; Yan, Qiangu; Batchelor, William

    2016-03-15

    The presently-disclosed subject matter includes methods for producing liquid hydrocarbons from syngas. In some embodiments the syngas is obtained from biomass and/or comprises a relatively high amount of nitrogen and/or carbon dioxide. In some embodiments the present methods can convert syngas into liquid hydrocarbons through a one-stage process. Also provided are catalysts for producing liquid hydrocarbons from syngas, wherein the catalysts include a base material, a transition metal, and a promoter. In some embodiments the base material includes a zeolite-iron material or a cobalt-molybdenum carbide material. In still further embodiments the promoter can include an alkali metal.

  7. Non-sticking of helium buffer gas to hydrocarbons

    NASA Astrophysics Data System (ADS)

    Croft, James F. E.; Bohn, John L.

    2015-03-01

    Lifetimes of complexes formed during helium-hydrocarbon collisions at low temperature are estimated for symmetric-top hydrocarbons. The lifetimes are obtained using a density-of-states approach. In general the lifetimes are less than 10-100 ns and are found to decrease with increasing hydrocarbon size. This suggests that clustering will not limit precision spectroscopy in helium-buffer-gas experiments. Lifetimes are computed for noble-gas benzene collisions and are found to be in reasonable agreement with lifetimes obtained from classical trajectories as reported by J. Cui et al. [J. Chem. Phys. 141, 164315 (2014), 10.1063/1.4898796].

  8. Biological treatment of waste gas containing volatile hydrocarbons

    SciTech Connect

    Lei, J.; Lord, D.; Arneberg, R.; Cyr, B.; Rho, D.; Greer, C.

    1995-12-31

    A biological system to treat volatile hydrocarbon-contaminated gases generated during in situ bioventing and air sparging of subsurfaces contaminated with gasoline was field-tested. The system consisted of an air/water separator, a trickling filter, and a biofilter in series. During the field test, extensive monitoring was carried out to evaluate system performance, including the measurement of physical, chemical, biochemical, and microbiological parameters. Degradation and mineralization of volatile hydrocarbons such as benzene and toluene were demonstrated by gene probing and mineralization assays. Data collected showed an average removal of 90% of the BTX (benzene, toluene, and xylenes) and 72% for total hydrocarbons.

  9. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect

    Kaplan, R.D.; Foral, M.J.

    1992-05-16

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  10. Detection of hydrocarbons and hydrocarbon microseepage in the Bighorn Basin, Wyoming using isotopic, biogeochemical, and spectral reflectance techniques

    SciTech Connect

    Bammel, B.H.

    1992-01-01

    A stable isotope, biogeochemical, and gebotanical reflectance study was conducted at five areas in the Bighorn Basin of Wyoming. Three of the areas are active hydrocarbon producing fields, including Little Buffalo Basin, Bonanza, and Enigma oil fields. One area contains no surface or subsurface hydrocarbons, the Cody Base area. One area, Trapper Canyon, is a surface tar sand deposit. In each area numerous reflectance spectra were measured and leaf samples collected from sagebrush over and surrounding the fields. At Bonanza and Trapper Canyon, sagebrush plants were also growing directly in hydrocarbon impregnated formations. Unusually low [delta][sup 13]C values of calcite were found in calcite-bearing samples over the Little Buffalo Basin Field. The systematic distribution of these low [delta][sup 13]C values is correlated with the subsurface oil and gas production axis. Significant distinctions between the surface hydrocarbon occurrences at Trapper Canyon and Bonanza Seeps are highlighted by chemical differences in sagebrush leaves. At Trapper Canyon relatively high concentrations of aluminum and iron are found. Sagebrush leaves at the Bonanza Seeps contain relatively low concentrations of calcium and potassium, and a relatively high amount of organic material. Analyses from sagebrush growing over subsurface commercial hydrocarbon deposits tend to be relatively low in magnesium and relatively high in sodium. The increase in sodium may indicate subsurface reservoirs without regard to their hydrocarbon content. The results of the geobotanical reflectance study shows that a significant blue shift of the green peak and red trough positions is the most reliable indicator of hydrocarbon-induced stress in sagebrush plants, and can only be detected where the sage is actually growing in visible surface or near-surface hydrocarbons. Spectral reflectance intensity data have no significant correlation with the presence of surface or subsurface hydrocarbons.

  11. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

    1999-05-25

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

  12. Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream

    DOEpatents

    Kansa, Edward J.; Anderson, Brian L.; Wijesinghe, Ananda M.; Viani, Brian E.

    1999-01-01

    This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

  13. Phytoremediation of polyaromatic hydrocarbons, anilines and phenols.

    PubMed

    Harvey, Patricia J; Campanella, Bruno F; Castro, Paula M L; Harms, Hans; Lichtfouse, Eric; Schäffner, Anton R; Smrcek, Stanislav; Werck-Reichhart, Daniele

    2002-01-01

    Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an

  14. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  15. Process for conversion of lignin to reformulated hydrocarbon gasoline

    DOEpatents

    Shabtai, Joseph S.; Zmierczak, Wlodzimierz W.; Chornet, Esteban

    1999-09-28

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  16. Silicon Carbide-Based Hydrogen and Hydrocarbon Gas Detection

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, D.; Liu, C. C.; Wu, Q. H.R

    1995-01-01

    Hydrogen and hydrocarbon detection in aeronautical applications is important for reasons of safety and emissions control. The use of silicon carbide as a semiconductor in a metal-semiconductor or metal-insulator-semiconductor structure opens opportunities to measure hydrogen and hydrocarbons in high temperature environments beyond the capabilities of silicon-based devices. The purpose of this paper is to explore the response and stability of Pd-SiC Schottky diodes as gas sensors in the temperature range from 100 to 400 C. The effect of heat treating on the diode properties as measured at 100 C is explored. Subsequent operation at 400 C demonstrates the diodes' sensitivity to hydrogen and hydrocarbons. It is concluded that the Pd-SiC Schottky diode has potential as a hydrogen and hydrocarbon sensor over a wide range of temperatures but further studies are necessary to determine the diodes' long term stability.

  17. ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AGED HARBOR SEDIMENTS

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) are a group of hydrophobic organic contaminants which have low aqueous solubilities and are common pollutants in harbor sediments. Adsorption and desorption isotherms for PAHs are conducted to study the abiotic sorption of PAHs in uncontami...

  18. Reef mounds indicate timing of hydrocarbon charge off Seychelles

    SciTech Connect

    Plummer, P.

    1998-07-06

    Carbonate mounds developed on Coetivy Bank and the northern Seychelles Plateau appear to have formed in response to pulses of hydrocarbon fluid migration along underlying faults during the late Paleocene and late Eocene. Gas chimneys emanating from these mounds are evident on seismic data, while gas sniffer and/or UV fluorescence anomalies have been recorded in the overlying waters. Such a combination of hydrocarbon anomalies is indicative of minor active gas seepage and confirms the prospectivity of these features and their underlying sequences. Recently it has also been realized that both authigenic and biogenic carbonates proliferate above faults from which hydrocarbon seepage occurs, forming chemosynthetic reefs. When identified on seismic data, such reef/fault associations constitute seismic hydrocarbon indicators (SHIs), and the reefs/faults off Seychelles have been interpreted as SHIs. This paper discusses the geology, source rocks, thermal history, and chemosynthetic reefs.

  19. Heating hydrocarbon containing formations in a checkerboard pattern staged process

    SciTech Connect

    de Rouffignac, Eric Pierre; Pingo-Almada, Monica M; Miller, David Scott

    2009-06-02

    Method for treating a hydrocarbon containing formation are described herein. Methods may include providing heat to two or more first sections of the formation with one or more first heaters in two or more of the first sections. The provided heat may mobilize first hydrocarbons in two or more of the first sections. At least some of the mobilized first hydrocarbons are produced through production wells located in two or more second sections of the formation. The first sections and the second sections are arranged in a checkerboard pattern. A portion of at least one of the second sections proximate at least one production well is provided some heat from the mobilized first hydrocarbons, but is not conductively heated by heat from the first heaters. Heat may be provided to the second sections with one or more second heaters in the second sections to further heat the second sections.

  20. Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry.

    PubMed

    Olah, George A; Mathew, Thomas; Prakash, G K Surya

    2016-06-08

    Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed.

  1. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    SciTech Connect

    Allen, Wesley D.; Schaefer, III, Henry F.

    2015-11-14

    This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.

  2. Hydrocarbon phytoremediation in the family Fabaceae--a review.

    PubMed

    Hall, Jessica; Soole, Kathleen; Bentham, Richard

    2011-04-01

    Currently, studies often focus on the use of Poaceae species (grasses) for phytoremediation of hydrocarbon-contaminated soils. Research into the use of Fabaceae species (legumes) to remediate hydrocarbons in soils has been conducted, but these plants are commonly overlooked due to slower recorded rates of degradation compared with many grass species. Evidence in the literature suggests that in some cases Fabaceae species may increase total degradation of hydrocarbons and stimulate degradative capacity of the soil microbial community, particularly for contaminants which are normally more recalcitrant to degradation. As many recalcitrant hydrocarbons have negative impacts on human and ecosystem health, development of remediation options is crucial. Reconsideration of Fabaceae species for removal of such contaminants may lead to environmentally and economically sustainable technologies for remediation of contaminated sites.

  3. FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

  4. Process for converting light alkanes to higher hydrocarbons

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.

    1988-01-01

    A process is disclosed for the production of aromatic-rich, gasoline boiling range hydrocarbons from the lower alkanes, particularly from methane. The process is carried out in two stages. In the first, alkane is reacted with oxygen and hydrogen chloride over an oxyhydrochlorination catalyst such as copper chloride with minor proportions of potassium chloride and rare earth chloride. This produces an intermediate gaseous mixture containing water and chlorinated alkanes. The chlorinated alkanes are contacted with a crystalline aluminosilicate catalyst in the hydrogen or metal promoted form to produce gasoline range hydrocarbons with a high proportion of aromatics and a small percentage of light hydrocarbons (C.sub.2 -C.sub.4). The light hydrocarbons can be recycled for further processing over the oxyhydrochlorination catalyst.

  5. PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS

    EPA Science Inventory

    Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...

  6. NATURAL BIOLOGICAL ATTENUATION OF AROMATIC HYDROCARBONS UNDER ANAEROBIC CONDITIONS

    EPA Science Inventory

    There is little consistent difference in the calculated half-lives of aromatic hydrocarbons in different anaerobic environments, but methanogenic environments might be generally the least supportive of rapid biotransformation. Toluene was usually the most rapidly biotransformed...

  7. Assessment of plant-derived hydrocarbons. Final report

    SciTech Connect

    McFadden, K.; Nelson, S.H.

    1981-09-30

    A number of hydrocarbon producing plants are evaluated as possible sources of rubber, liquid fuels, and industrial lubricants. The plants considered are Euphorbia lathyris or gopher plant, milkweeds, guayule, rabbit brush, jojoba, and meadow foam. (ACR)

  8. GEOELECTRICAL STRATIGRAPHY AND ANALYSIS OF A HYDROCARBON IMPACTED AQUIFER

    EPA Science Inventory

    A recently proposed geoelectrical model for hydrocarbon impacted sites predicts anomalously high conductivities coincident with aged contaminated zones. These high conductivities are attributed to an enhancement of mineral weathering resulting from byproducts of microbial redox p...

  9. HOMOGENEOUS CATALYTIC OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENTS

    EPA Science Inventory

    Homogeneous Catalytic Oxidations of Hydrocarbons in Alternative Solvent Systems

    Michael A. Gonzalez* and Thomas M. Becker, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, ...

  10. POLYCYCLIC AROMATIC HYDROCARBON (PAH) EXPOSURE OF 257 PRESCHOOL CHILDREN

    EPA Science Inventory

    We investigated the polycyclic aromatic hydrocarbon (PAH) exposure of 257 preschool children and their adult caregivers in their everyday environments. Participants were recruited randomly from eligible homes and daycare centers within six North Carolina (NC) and six Ohio (OH) c...

  11. Conversion of Pentose-Derived Furans into Hydrocarbon Fuels

    SciTech Connect

    Moens, L.; Johnson, D. K.

    2012-01-01

    We are interested in the conversion of biomass-derived hemicellulose into hydrocarbon molecules that can be used in the formulation of 'drop-in' fuels such as gasoline (C5-12), diesel (C10-20) and jet fuel (C9-16). Our focus lies on the use of furfuryl alcohol as a starting material since that is already produced commercially from hemicellulose-derived pentoses. The steps required to convert the latter into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. However, furfuryl alcohol readily polymerizes to form resins in the presence of an acid catalyst, and the exothermic oligomerization must be carried out under reaction control. This presentation will discuss our progress in the development of this sugar-to-hydrocarbon pathway.

  12. POSSIBLE MOLECULAR TARGETS OF HALOGENATED ARMOATIC HYDROCARBONS IN NEURONAL CELLS.

    EPA Science Inventory

    Halogenated aromatic hydrocarbons including polychlorinated biphenyls (PCBs) are persistent bioaccumulative toxicants. Due to these characteristics, there is considerable regulatory concern over the potential adverse health affects, especially to children, associated with exposur...

  13. U. S. EPA’S NA APPROACH FOR PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Most evaluations of NA of petroleum hydrocarbons use geochemical data to document the NA through biodegradation. The expected trends during biodegradation (plume interior vs. background concentrations) are Dissolved oxygen concentrations below background, Nitrate concentrations ...

  14. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    PubMed

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  15. BIOREMEDIATION OF PETROLEUM HYDROCARBONS: A FLEXIBLE VARIABLE SPEED TECHNOLOGY

    EPA Science Inventory

    The bioremediation of petroleum hydrocarbons has evolved into a number of different processes. These processes include in-situ aquifer bioremediation, bioventing, biosparging, passive bioremediation with oxygen release compounds, and intrinsic bioremediation. Although often viewe...

  16. Hydrocarbon-enhanced particulate filter regeneration via microwave ignition

    DOEpatents

    Gonze, Eugene V.; Brown, David B.

    2010-02-02

    A regeneration method for a particulate filter includes estimating a quantity of particulate matter trapped within the particulate filter, comparing the quantity of particulate matter to a predetermined quantity, heating at least a portion of the particulate filter to a combustion temperature of the particulate matter, and introducing hydrocarbon fuel to the particulate filter. The hydrocarbon fuel facilitates combustion of the particulate matter to regenerate the particulate filter.

  17. Process for the solvent deasphalting of asphaltene containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-04-30

    A process for the solvent deasphalting of asphaltene-containing hydrocarbons which comprising mixing asphaltene-containing hydrocarbons with a metal compound such as aluminum sulfate or titanium (IV) oxide and also with a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  18. Process for the solvent deasphalting of asphaltene-containing hydrocarbons

    SciTech Connect

    Ikematsu, M.; Honzyo, I.; Sakai, K.

    1985-06-25

    A process for the solvent deasphalting of asphaltene-containing hydrocarbons which comprising mixing asphaltene-containing hydrocarbons with a metal compound such as aluminum carbonates or titanium (IV) oxide and also with a solvent such as n-heptane, n-hexane, n-heptane or a mixed n-pentane.n-butanol solvent, to form a mixture which is then allowed to stand still to precipitate and separate the asphaltene therefrom thereby obtaining a deasphalted oil.

  19. Hydrocarbon-utilizing microorganisms naturally associated with sawdust.

    PubMed

    Ali, N; Eliyas, M; Al-Sarawi, H; Radwan, S S

    2011-05-01

    Sawdust, one of the materials used as sorbent for removing spilled oil from polluted environments was naturally colonized by hydrocarbon-utilizing fungi, 1×10(5)-2×10(5) colony forming units (CFU) g(-1), depending on the hydrocarbon substrate. This sorbent was initially free of hydrocarbon-utilizing bacteria. Incubating wet sawdust at 30°C resulted in gradually increasing the fungal counts to reach after 6months between 5×10(6) and 7×10(6)CFUg(-1), and the appearance of hydrocarbon-utilizing bacteria in numbers between 8×10(4) and 3×10(5)cellsg(-1). The fungi belonged to the genera Candida (32% of the total), Penicillium (21%), Aspergillus (15%), Rhizopus (12%), Cladosporium (9%), Mucor (7%) and Fusarium (4%). Based on their 16S rRNA gene sequences the bacteria were affiliated to Actinobacterium sp. (38%), Micrococcus luteus (30%), Rhodococcus erythropolis, (19%) and Rhodococcus opacus (13%). Individual pure fungal and bacterial isolates grew on a wide range of individual pure aliphatic (n-alkanes with chain lengths between C(9) and C(40)) and aromatic (benzene, biphenyl, anthracene, naphthalene and phenanthrene) hydrocarbons as sole sources of carbon and energy. Quantitative determinations revealed that all fungal and bacterial isolates could consume considerable proportions of crude oil, phenanthrene (an aromatic hydrocarbon) and n-hexadecane (an aliphatic hydrocarbon) in batch cultures. It was concluded that when sawdust is used as a sorbent, the associated microorganisms probably contribute to the bioremediation of oil and hydrocarbon pollutants in the environment.

  20. Anomalous dispersion due to hydrocarbons: The secret of reservoir geophysics?

    USGS Publications Warehouse

    Brown, R.L.

    2009-01-01

    When P- and S-waves travel through porous sandstone saturated with hydrocarbons, a bit of magic happens to make the velocities of these waves more frequency-dependent (dispersive) than when the formation is saturated with brine. This article explores the utility of the anomalous dispersion in finding more oil and gas, as well as giving a possible explanation about the effect of hydrocarbons upon the capillary forces in the formation. ?? 2009 Society of Exploration Geophysicists.