Mitochondrial NDUFS3 regulates the ROS-mediated onset of metabolic switch in transformed cells
Suhane, Sonal; Kanzaki, Hirotaka; Arumugaswami, Vaithilingaraja; Murali, Ramachandran; Ramanujan, V. Krishnan
2013-01-01
Summary Aerobic glycolysis in transformed cells is an unique metabolic phenotype characterized by a hyperactivated glycolytic pathway even in the presence of oxygen. It is not clear if the onset of aerobic glycolysis is regulated by mitochondrial dysfunction and, if so, what the metabolic windows of opportunity available to control this metabolic switch (mitochondrial to glycolytic) landscape are in transformed cells. Here we report a genetically-defined model system based on the gene-silencing of a mitochondrial complex I subunit, NDUFS3, where we demonstrate the onset of metabolic switch in isogenic human embryonic kidney cells by differential expression of NDUFS3. By means of extensive metabolic characterization, we demonstrate that NDUFS3 gene silencing systematically introduces mitochondrial dysfunction thereby leading to the onset of aerobic glycolysis in a manner dependent on NDUFS3 protein levels. Furthermore, we show that the sustained imbalance in free radical dynamics is a necessary condition to sustain the observed metabolic switch in cell lines with the most severe NDUFS3 suppression. Together, our data reveal a novel role for mitochondrial complex I subunit NDUFS3 in regulating the degree of mitochondrial dysfunction in living cells, thereby setting a “metabolic threshold” for the observation of aerobic glycolysis phenotype within the confines of mitochondrial dysfunction. PMID:23519235
Mechanisms of metabolic dysfunction in cancer-associated cachexia
Petruzzelli, Michele; Wagner, Erwin F.
2016-01-01
Metabolic dysfunction contributes to the clinical deterioration observed in advanced cancer patients and is characterized by weight loss, skeletal muscle wasting, and atrophy of the adipose tissue. This systemic syndrome, termed cancer-associated cachexia (CAC), is a major cause of morbidity and mortality. While once attributed solely to decreased food intake, the present description of cancer cachexia is a disorder of multiorgan energy imbalance. Here we review the molecules and pathways responsible for metabolic dysfunction in CAC and the ideas that led to the current understanding. PMID:26944676
Breast-feeding, Leptin:Adiponectin Ratio, and Metabolic Dysfunction in Adolescents with Obesity.
Mihalopoulos, Nicole L; Urban, Brittney M; Metos, Julie M; Balch, Alfred H; Young, Paul C; Jordan, Kristine C
2017-05-01
Increased adiposity increases leptin and decreases adiponectin concentrations, resulting in an increased leptin:adiponectin ratio (LAR). In adults, components of the metabolic syndrome and other cardiometabolic risk factors, what we classify here as "metabolic dysfunction," are associated with both a high LAR and a history of being breast-fed. The relation among breast-feeding, LAR, and degree of metabolic dysfunction in obese youth is unknown. The purpose of our pilot study was to explore this relation and estimate the effect size of the relations to determine the sample size needed to power future prospective studies. We obtained fasting levels of leptin, adiponectin, lipids, insulin, and glucose from obese youth (aged 8-17 years). Weight, height, waist circumference, blood pressure, and breast-feeding history also were assessed. Of 96 participants, 78 were breast-fed as infants, 54% of whom were breast-fed for >6 months. Wide variation was observed in LARs among children who were and were not breast-fed (>100% coefficient of variation). Overall, prevalence of metabolic dysfunction in the cohort was 94% and was not proven to be associated with higher LAR. In this cohort of obese youth, we found a high prevalence of breast-feeding, metabolic dysfunction, and wide variation in the LARs. Based on the effect size estimated, future studies would need to enroll >1500 patients or identify, stratify, and selectively enroll obese patients without metabolic dysfunction to accurately determine whether breast-feeding in infancy influences LARs or metabolic dysfunction among obese youth.
Breast-feeding, Leptin:Adiponectin Ratio, and Metabolic Dysfunction in Adolescents with Obesity
Mihalopoulos, Nicole L.; Urban, Brittney M.; Metos, Julie M.; Balch, Alfred H.; Young, Paul C.; Jordan, Kristine C.
2017-01-01
Objectives Increased adiposity increases leptin and decreases adiponectin concentrations, resulting in an increased leptin:adiponectin ratio (LAR). In adults, components of the metabolic syndrome and other cardiometabolic risk factors, what we classify here as “metabolic dysfunction,” are associated with both a high LAR and a history of being breast-fed. The relation among breast-feeding, LAR, and degree of metabolic dysfunction in obese youth is unknown. The purpose of our pilot study was to explore this relation and estimate the effect size of the relations to determine the sample size needed to power future prospective studies. Methods We obtained fasting levels of leptin, adiponectin, lipids, insulin, and glucose from obese youth (aged 8–17 years). Weight, height, waist circumference, blood pressure, and breast-feeding history also were assessed. Results Of 96 participants, 78 were breast-fed as infants, 54% of whom were breast-fed for >6 months. Wide variation was observed in LARs among children who were and were not breast-fed (>100% coefficient of variation). Overall, prevalence of metabolic dysfunction in the cohort was 94% and was not proven to be associated with higher LAR. Conclusions In this cohort of obese youth, we found a high prevalence of breast-feeding, metabolic dysfunction, and wide variation in the LARs. Based on the effect size estimated, future studies would need to enroll >1500 patients or identify, stratify, and selectively enroll obese patients without metabolic dysfunction to accurately determine whether breast-feeding in infancy influences LARs or metabolic dysfunction among obese youth. PMID:28464176
MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease.
Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke; O'Reilly, Michael W
2017-09-01
Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. © 2017 The authors.
MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease
Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke
2017-01-01
Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. PMID:28566439
Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages.
Neth, Bryan J; Craft, Suzanne
2017-01-01
Metabolic dysfunction is a well-established feature of Alzheimer's disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.
Bartnik-Olson, Brenda L; Ding, Daniel; Howe, John; Shah, Amul; Losey, Travis
2017-10-01
Focal metabolic dysfunction commonly observed in temporal lobe epilepsy (TLE), and is associated with the development of medical intractability and neurocognitive deficits. It has not been established if this dysfunction is due to cell loss or biochemical dysfunction in metabolic pathways. To explore this question, dynamic 1 H MRS following an infusion of [U 13 - C] glucose was performed to measure glutamate (Glu) metabolism. Subjects (n=6) showed reduced Glu levels (p<0.01) in the ipsilateral mesial temporal lobe (MTL) compared with controls (n=4). However, the rate of 13 C incorporation into Glu did not differ between those with epilepsy and controls (p=0.77). This suggests that reduced Glu concentrations in the region of the seizure focus are not due to disruptions in metabolic pathways, but may instead be due to neuronal loss or simplification. Copyright © 2017 Elsevier B.V. All rights reserved.
Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages
Neth, Bryan J.; Craft, Suzanne
2017-01-01
Metabolic dysfunction is a well-established feature of Alzheimer’s disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets. PMID:29163128
Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart
Desai, Moreshwar; Mathur, Bhoomika; Eblimit, Zeena; Vasquez, Hernan; Taegtmeyer, Heinrich; Karpen, Saul; Penny, Daniel J.; Moore, David D.; Anakk, Sayeepriyadarshini
2017-01-01
Cardiac dysfunction in patients with liver cirrhosis is strongly associated with increased serum bile acid concentrations. Here we show that excess bile acids decrease fatty acid oxidation in cardiomyocytes and can cause heart dysfunction, a cardiac syndrome that we term Cholecardia. Fxr; Shp double knockout (DKO) mice, a model for bile acid overload, display cardiac hypertrophy, bradycardia, and exercise intolerance. In addition, DKO mice exhibit an impaired cardiac response to catecholamine challenge. Consistent with this decreased cardiac function, we show that elevated serum bile acids reduce cardiac fatty acid oxidation both in vivo and ex vivo. We find that increased bile acid levels suppress expression of Pgc1α, a key regulator of fatty acid metabolism, and that Pgc1α overexpression in cardiac cells was able to rescue the bile acid-mediated reduction in fatty acid oxidation genes. Importantly, intestinal bile acid sequestration with cholestyramine was sufficient to reverse the observed heart dysfunction in the DKO mice. Conclusions Overall, we propose that decreased Pgc1α expression contributes to the metabolic dysfunction in Cholecardia, and that reducing serum bile acid concentrations will be beneficial against metabolic and pathological changes in the heart. PMID:27774647
Haro, Carmen; García-Carpintero, Sonia; Rangel-Zúñiga, Oriol A; Alcalá-Díaz, Juan F; Landa, Blanca B; Clemente, José C; Pérez-Martínez, Pablo; López-Miranda, José; Pérez-Jiménez, Francisco; Camargo, Antonio
2017-12-01
The consumption of two healthy diets (Mediterranean (MED) and low-fat (LF) diets) may restore the gut microbiome dysbiosis in obese patients depending on the degree of metabolic dysfunction. The differences in bacterial community at baseline and after 2 years of dietary intervention of 106 subjects from the CORDIOPREV study were analyzed, 33 of whom were obese patients with severe metabolic disease (5 criteria for metabolic syndrome) (MetS-OB), 32 obese patients without metabolic dysfunction (2 or less criteria for metabolic syndrome) (NonMetS-OB) and 41 non-obese subjects (NonMetS-NonOB). Our study showed a marked dysbiosis in people with severe metabolic disease (Met-OB), compared with obese people without MetS (NonMetS-OB) and non-obese people (NonMetS-NonOB). This disbiotic pattern was reversed by consumption of both MED (35% of calories as fat (22% MUFA fat, 6% PUFA fat and <10% saturated fat) or LF (<30% total fat (<10% saturated fat, 12%-14% MUFA fat and 6-8% PUFA fat) diets, whereas no significant microbiota changes were observed in NonMetS-NonOB and NonMetS-OB groups. Our results suggest that the chronic intake of two healthy dietary patterns partially restores the gut microbiome dysbiosis in obese patients with coronary heart disease, depending on the degree of metabolic dysfunction. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gopal, Keshav; Almutairi, Malak; Al Batran, Rami; Eaton, Farah; Gandhi, Manoj; Ussher, John Reyes
2018-01-01
Obesity and type 2 diabetes (T2D) increase the risk for cardiomyopathy, which is the presence of ventricular dysfunction in the absence of underlying coronary artery disease and/or hypertension. As myocardial energy metabolism is altered during obesity/T2D (increased fatty acid oxidation and decreased glucose oxidation), we hypothesized that restricting myocardial glucose oxidation in lean mice devoid of the perturbed metabolic milieu observed in obesity/T2D would produce a cardiomyopathy phenotype, characterized via diastolic dysfunction. We tested our hypothesis via producing mice with a cardiac-specific gene knockout for pyruvate dehydrogenase (PDH, gene name Pdha1 ), the rate-limiting enzyme for glucose oxidation. Cardiac-specific Pdha1 deficient ( Pdha1 Cardiac-/- ) mice were generated via crossing a tamoxifen-inducible Cre expressing mouse under the control of the alpha-myosin heavy chain (αMHC-MerCreMer) promoter with a floxed Pdha1 mouse. Energy metabolism and cardiac function were assessed via isolated working heart perfusions and ultrasound echocardiography, respectively. Tamoxifen administration produced an ~85% reduction in PDH protein expression in Pdha1 Cardiac-/- mice versus their control littermates, which resulted in a marked reduction in myocardial glucose oxidation and a corresponding increase in palmitate oxidation. This myocardial metabolism profile did not impair systolic function in Pdha1 Cardiac-/- mice, which had comparable left ventricular ejection fractions and fractional shortenings as their αMHC-MerCreMer control littermates, but did produce diastolic dysfunction as seen via the reduced mitral E/A ratio. Therefore, it does appear that forced restriction of glucose oxidation in the hearts of Pdha1 Cardiac-/- mice is sufficient to produce a cardiomyopathy-like phenotype, independent of the perturbed metabolic milieu observed in obesity and/or T2D.
Endothelial dysfunction in metabolic and vascular disorders.
Polovina, Marija M; Potpara, Tatjana S
2014-03-01
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham
2012-01-01
The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450
Ruskin, David N.; Masino, Susan A.
2012-01-01
A link between metabolism and brain function is clear. Since ancient times, epileptic seizures were noted as treatable with fasting, and historical observations of the therapeutic benefits of fasting on epilepsy were confirmed nearly 100 years ago. Shortly thereafter a high fat, low-carbohydrate ketogenic diet (KD) debuted as a therapy to reduce seizures. This strict regimen could mimic the metabolic effects of fasting while allowing adequate caloric intake for ongoing energy demands. Today, KD therapy, which forces predominantly ketone-based rather than glucose-based metabolism, is now well-established as highly successful in reducing seizures. Cellular metabolic dysfunction in the nervous system has been recognized as existing side-by-side with nervous system disorders – although often with much less obvious cause-and-effect as the relationship between fasting and seizures. Rekindled interest in metabolic and dietary therapies for brain disorders complements new insight into their mechanisms and broader implications. Here we describe the emerging relationship between a KD and adenosine as a way to reset brain metabolism and neuronal activity and disrupt a cycle of dysfunction. We also provide an overview of the effects of a KD on cognition and recent data on the effects of a KD on pain, and explore the relative time course quantified among hallmark metabolic changes, altered neuron function and altered animal behavior assessed after diet administration. We predict continued applications of metabolic therapies in treating dysfunction including and beyond the nervous system. PMID:22470316
Escobar-Morreale, Héctor F
2017-01-01
Polycystic ovary syndrome (PCOS) is characterized by the association of androgen excess with chronic oligoovulation and/or polycystic ovarian morphology, yet metabolic disorders and classic and nonclassic cardiovascular risk factors cluster in these women from very early in life. This chapter focuses on the mechanisms underlying the association of PCOS with metabolic dysfunction, focusing on the role of androgen excess on the development of visceral adiposity and adipose tissue dysfunction.
Type 2 responses at the interface between immunity and fat metabolism.
Odegaard, Justin I; Chawla, Ajay
2015-10-01
Adipose tissue resident leukocytes are often cast solely as the effectors of obesity and its attendant pathologies; however, recent observations have demonstrated that these cells support and effect 'healthy' physiologic function as well as pathologic dysfunction. Importantly, these two disparate outcomes are underpinned by similarly disparate immune programs; type 2 responses instruct and promote metabolic normalcy, while type 1 responses drive tissue dysfunction. In this Review, we summarize the literature regarding type 2 immunity's role in adipose tissue physiology and allude to its potential therapeutic implications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Epilepsy and astrocyte energy metabolism.
Boison, Detlev; Steinhäuser, Christian
2018-06-01
Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.
Aksentijević, Dunja; McAndrew, Debra J; Karlstädt, Anja; Zervou, Sevasti; Sebag-Montefiore, Liam; Cross, Rebecca; Douglas, Gillian; Regitz-Zagrosek, Vera; Lopaschuk, Gary D; Neubauer, Stefan; Lygate, Craig A
2014-10-01
Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. MCD knockout mice ((-/-)) exhibited non-Mendelian genotype ratios (31% fewer MCD(-/-)) with deaths clustered around weaning. Immediately prior to weaning (18days) MCD(-/-) mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD(-/-) plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD(-/-) hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD(-/-) converged with age, suggesting that, in surviving MCD(-/-) mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD(-/-) metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. MCD(-/-) mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates. Copyright © 2014. Published by Elsevier Ltd.
Aksentijević, Dunja; McAndrew, Debra J.; Karlstädt, Anja; Zervou, Sevasti; Sebag-Montefiore, Liam; Cross, Rebecca; Douglas, Gillian; Regitz-Zagrosek, Vera; Lopaschuk, Gary D.; Neubauer, Stefan; Lygate, Craig A.
2014-01-01
Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~ 40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. Aim To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. Methods and results MCD knockout mice (−/−) exhibited non-Mendelian genotype ratios (31% fewer MCD−/−) with deaths clustered around weaning. Immediately prior to weaning (18 days) MCD−/− mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD−/− plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD−/− hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD−/− converged with age, suggesting that, in surviving MCD−/− mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD−/− metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. Conclusions MCD−/− mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates. PMID:25066696
Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes
Petrosino, Jennifer M.; Heiss, Valerie J.; Maurya, Santosh K.; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A.; Wilson, Jacob M.; Simonetti, Orlando P.; Ziouzenkova, Ouliana
2016-01-01
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics. PMID:26859763
Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes.
Petrosino, Jennifer M; Heiss, Valerie J; Maurya, Santosh K; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A; Wilson, Jacob M; Simonetti, Orlando P; Ziouzenkova, Ouliana
2016-01-01
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.
Biolo, Gianni; Cederholm, Tommy; Muscaritoli, Maurizio
2014-10-01
Skeletal muscle is the most abundant body tissue accounting for many physiological functions. However, muscle mass and functions are not routinely assessed. Sarcopenia is defined as skeletal muscle loss and dysfunction in aging and chronic diseases. Inactivity, inflammation, age-related factors, anorexia and unbalanced nutrition affect changes in skeletal muscle. Mechanisms are difficult to distinguish in individual subjects due to the multifactorial character of the condition. Sarcopenia includes both muscle loss and dysfunction which induce contractile impairment and metabolic and endocrine abnormalities, affecting whole-body metabolism and immune/inflammatory response. There are different metabolic trajectories for muscle loss versus fat changes in aging and chronic diseases. Appetite regulation and physical activity affect energy balance and changes in body fat mass. Appetite regulation by inflammatory mediators is poorly understood. In some patients, inflammation induces anorexia and fat loss in combination with sarcopenia. In others, appetite is maintained, despite activation of systemic inflammation, leading to sarcopenia with normal or increased BMI. Inactivity contributes to sarcopenia and increased fat tissue in aging and diseases. At the end of the metabolic trajectories, cachexia and sarcopenic obesity are paradigms of the two patient categories. Pre-cachexia and cachexia are observed in patients with cancer, chronic heart failure or liver cirrhosis. Sarcopenic obesity and sarcopenia with normal/increased BMI are observed in rheumatoid arthritis, breast cancer patients with adjuvant chemotherapy and in most of patients with COPD or chronic kidney disease. In these conditions, sarcopenia is a powerful prognostic factor for morbidity and mortality, independent of BMI. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Genetics Home Reference: surfactant dysfunction
... Infant ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (4 links) SURFACTANT METABOLISM DYSFUNCTION, PULMONARY, 1 SURFACTANT METABOLISM DYSFUNCTION, PULMONARY, 2 ...
Chicken or the egg: Warburg effect and mitochondrial dysfunction
Senyilmaz, Deniz
2015-01-01
Compared with normal cells, cancer cells show alterations in many cellular processes, including energy metabolism. Studies on cancer metabolism started with Otto Warburg's observation at the beginning of the last century. According to Warburg, cancer cells rely on glycolysis more than mitochondrial respiration for energy production. Considering that glycolysis yields much less energy compared with mitochondrial respiration, Warburg hypothesized that mitochondria must be dysfunctional and this is the initiating factor for cancer formation. However, this hypothesis did not convince every scientist in the field. Some believed the opposite: the reduction in mitochondrial activity is a result of increased glycolysis. This discrepancy of opinions is ongoing. In this review, we will discuss the alterations in glycolysis, pyruvate metabolism, and the Krebs cycle in cancer cells and focus on cause and consequence. PMID:26097714
Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats
Malta, Ananda; Souza, Aline Amenencia de; Ribeiro, Tatiane Aparecida; Francisco, Flávio Andrade; Pavanello, Audrei; Prates, Kelly Valério; Tófolo, Laize Peron; Miranda, Rosiane Aparecida; Oliveira, Júlio Cezar de; Martins, Isabela Peixoto; Previate, Carina; Gomes, Rodrigo Mello; Franco, Claudinéia Conationi da Silva; Natali, Maria Raquel Marçal; Palma-Rigo, Kesia; Mathias, Paulo Cezar de Freitas
2016-01-01
We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets. PMID:27561682
Li, Xiaofei; Nong, Qingjiao; Mao, Baoyu; Pan, Xue
2017-01-01
This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure. PMID:28872622
Lipid-induced metabolic dysfunction in skeletal muscle.
Muoio, Deborah M; Koves, Timothy R
2007-01-01
Insulin resistance is a hallmark of type 2 diabetes and commonly observed in other energy-stressed settings such as obesity, starvation, inactivity and ageing. Dyslipidaemia and 'lipotoxicity'--tissue accumulation of lipid metabolites-are increasingly recognized as important drivers of insulin resistant states. Mounting evidence suggests that lipid-induced metabolic dysfunction in skeletal muscle is mediated in large part by stress-activated serine kinases that interfere with insulin signal transduction. However, the metabolic and molecular events that connect lipid oversupply to stress kinase activation and glucose intolerance are as yet unclear. Application of transcriptomics and targeted mass spectrometry-based metabolomics tools has led to our finding that insulin resistance is a condition in which muscle mitochondria are persistently burdened with a heavy lipid load. As a result, high rates of beta-oxidation outpace metabolic flux through the TCA cycle, leading to accumulation of incompletely oxidized acyl-carnitine intermediates. In contrast, exercise training enhances mitochondrial performance, favouring tighter coupling between beta-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high fat diet. The exercise-activated transcriptional co-activator, PGC1alpha, plays a key role in co-ordinating metabolic flux through these two intersecting metabolic pathways, and its suppression by overfeeding may contribute to obesity-associated mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from mitochondrial lipid stress and a resultant disconnect between beta-oxidation and TCA cycle activity. Understanding this 'disconnect' and its molecular basis may lead to new therapeutic targets for combating metabolic disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Luo, Hanwen; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071
Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected.more » Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine metabolic dysfunction than male. • There were interactions among caffeine, high-fat diet and gender.« less
Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian
2016-04-01
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mt(FVB/N) mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). At baseline conditions, C57BL/6J-mt(FVB/N) mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mt(FVB/N) mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH.
Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian
2016-01-01
Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH. PMID:27069868
Roles of GSK3 in metabolic shift toward abnormal anabolism in cell senescence.
Kim, You-Mie; Seo, Yong-Hak; Park, Chan-Bae; Yoon, Soo-Han; Yoon, Gyesoon
2010-07-01
Diverse metabolic alterations, including mitochondrial dysfunction, have often been reported as characteristic phenotypes of senescent cells. However, the overall consequence of senescent metabolic features, how they develop, and how they are linked to other senescent phenotypes, such as enlarged cell volume, increased granularity, and oxidative stress, is not clear. We investigated the potential roles of glycogen synthase kinase 3 (GSK3), a multifunctional kinase, in the development of the metabolic phenotypes in cell senescence. The inactivation of GSK3 via phosphorylation is commonly observed in diverse cell senescences. Furthermore, subcytotoxic concentration of GSK3 inhibitor was sufficient to induce cellular senescence, accompanied by augmented anabolism, such as enhanced protein synthesis, and increased glycogenesis and lipogenesis, in addition to mitochondrial dysfunction. Anabolism was accomplished through glycogen synthase, eIF2B, and SREBP1. These metabolic features seem to contribute to an increase in cellular mass by increasing glycogen granules, protein mass, and organelles. Taken together, our results suggest that GSK3 is one of the key modulators of metabolic alteration, leading the cells to senescence.
Testosterone and the metabolic syndrome.
Muraleedharan, Vakkat; Jones, T Hugh
2010-10-01
Metabolic syndrome and testosterone deficiency in men are closely Linked. Epidemiological studies have shown that Low testosterone Levels are associated with obesity, insulin resistance and an adverse Lipid profile in men. Conversely in men with metabolic syndrome and type 2 diabetes have a high prevalence of hypogonadism. Metabolic syndrome and Low testosterone status are both independently associated with increased all-cause and cardiovascular mortality. Observational and experimental data suggest that physiological replacement of testosterone produces improvement in insulin resistance, obesity, dyslipidae-mia and sexual dysfunction along with improved quality of Life. However, there are no Long-term interventional studies to assess the effect of testosterone replacement on mortality in men with Low testosterone Levels. This article reviews the observational and interventional clinical data in relation to testosterone and metabolic syndrome.
Besiroglu, Huseyin; Otunctemur, Alper; Ozbek, Emin
2015-06-01
The studies examining the association between metabolic syndrome (MetS), its components, and erectile dysfunction (ED) should be reevaluated to arrive at comprehensive results in this field. Our aim was to gather individual studies in order to achieve a more reliable conclusion regarding the relationship between MetS, its components, and ED. Three investigators searched the Pubmed-Medline and Embase databases using the key words "metabolic syndrome" and "erectile dysfunction." The individual studies were evaluated for selection of suitable studies. Eight studies that met all inclusion criteria were chosen, and a pooled analysis of odds ratio (ORs) between MetS and ED was calculated. The components of MetS to ED were also estimated. Eight observational studies with a total of 12,067 participants were examined. The overall analysis revealed a 2.6-fold increase in patients with MetS having ED (2.67[1.79-3.96]; P < 0.0001). All individual components of MetS except high-density lipoprotein level were also found to correlate with an increased prevalence of ED. Of those, fasting blood sugar was detected highest rate for ED with OR of 2.07 ([1.49-2.87]; P < 0.0001). Metabolic syndrome is associated with a high risk rate of ED, and patients with MetS should be informed about this association and encouraged to make lifestyle modifications to improve their general health and to limit cardiovascular risk as well as ED prevalence. However, manuscripts included in meta-analysis were observational studies that prohibits ascertainment of temporal associations and necessitates further prospective studies. © 2015 International Society for Sexual Medicine.
Sáenz Medina, J; Carballido Rodríguez, J
2016-06-01
Metabolic syndrome is a constellation of disorders that includes insulin resistance, central obesity, arterial hypertension and hyperlipidaemia. These disorders can have implications for the genitourinary apparatus. To conduct a review on the pathophysiological aspects that explain the relationship between metabolic syndrome and sexual dysfunction, lower urinary tract syndrome, prostate cancer and stone disease. We performed a qualitative, narrative literature review through a literature search on PubMed of articles published between 1997 and 2015, using the terms pathophysiology, metabolic syndrome, endothelial dysfunction, lipotoxicity, mitochondrial dysfunction, kidney stones, hypogonadism, erectile dysfunction, lower urinary tract syndrome and prostate cancer. Metabolic syndrome constitutes an established complex of symptoms, defined as the presence of insulin resistance, central obesity, hypertension and hyperlipidaemia. Endothelial dysfunction secondary to lipotoxicity generates an inflammatory state, which involves renal cell metabolism, vascularisation of the pelvis and androgen production. These facts explain the relationship between metabolic syndrome, nephrolithiasis, lower urinary tract syndrome, hypogonadism and erectile dysfunction in men. Strategies such as proper diet, regular exercise, insulin treatment, testosterone-replacement therapy, therapy with antioxidants and free-radical inhibitors and urological treatments classically used for lower urinary tract syndrome have shown promising results in this syndrome. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.
Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie
2014-09-01
High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet. Copyright © 2014 the American Physiological Society.
Chalvon-Demersay, Tristan; Azzout-Marniche, Dalila; Arfsten, Judith; Egli, Léonie; Gaudichon, Claire; Karagounis, Leonidas G; Tomé, Daniel
2017-03-01
Dietary protein may play an important role in the prevention of metabolic dysfunctions. However, the way in which the protein source affects these dysfunctions has not been clearly established. The aim of the current systematic review was to compare the impact of plant- and animal-sourced dietary proteins on several features of metabolic syndrome in humans. The PubMed database was searched for both chronic and acute interventional studies, as well as observational studies, in healthy humans or those with metabolic dysfunctions, in which the impact of animal and plant protein intake was compared while using the following variables: cholesterolemia and triglyceridemia, blood pressure, glucose homeostasis, and body composition. Based on data extraction, we observed that soy protein consumption (with isoflavones), but not soy protein alone (without isoflavones) or other plant proteins (pea and lupine proteins, wheat gluten), leads to a 3% greater decrease in both total and LDL cholesterol compared with animal-sourced protein ingestion, especially in individuals with high fasting cholesterol concentrations. This observation was made when animal proteins were provided as a whole diet rather than given supplementally. Some observational studies reported an inverse association between plant protein intake and systolic and diastolic blood pressure, but this was not confirmed by intervention studies. Moreover, plant protein (wheat gluten, soy protein) intake as part of a mixed meal resulted in a lower postprandial insulin response than did whey. This systematic review provides some evidence that the intake of soy protein associated with isoflavones may prevent the onset of risk factors associated with cardiovascular disease, i.e., hypercholesterolemia and hypertension, in humans. However, we were not able to draw any further conclusions from the present work on the positive effects of plant proteins relating to glucose homeostasis and body composition. © 2017 American Society for Nutrition.
Skotte, Niels H; Andersen, Jens V; Santos, Alberto; Aldana, Blanca I; Willert, Cecilie W; Nørremølle, Anne; Waagepetersen, Helle S; Nielsen, Michael L
2018-05-15
Huntington's disease is a fatal neurodegenerative disease, where dysfunction and loss of striatal and cortical neurons are central to the pathogenesis of the disease. Here, we integrated quantitative studies to investigate the underlying mechanisms behind HD pathology in a systems-wide manner. To this end, we used state-of-the-art mass spectrometry to establish a spatial brain proteome from late-stage R6/2 mice and compared this with wild-type littermates. We observed altered expression of proteins in pathways related to energy metabolism, synapse function, and neurotransmitter homeostasis. To support these findings, metabolic 13 C labeling studies confirmed a compromised astrocytic metabolism and regulation of glutamate-GABA-glutamine cycling, resulting in impaired release of glutamine and GABA synthesis. In recent years, increasing attention has been focused on the role of astrocytes in HD, and our data support that therapeutic strategies to improve astrocytic glutamine homeostasis may help ameliorate symptoms in HD. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Mitochondrial Function in Allergic Disease.
Iyer, Divyaanka; Mishra, Navya; Agrawal, Anurag
2017-05-01
The connections between allergy, asthma and metabolic syndrome are becoming increasingly clear. Recent research suggests a unifying mitochondrial link between the diverse phenotypes of these interlinked morbidities. The scope of this review is to highlight cellular mechanisms, epidemiology and environmental allergens influencing mitochondrial function and its importance in allergy and asthma. We briefly also consider the potential of mitochondria-targeted therapies in prevention and cure. Recent research has shown allergy, asthma and metabolic syndrome to be linked to mitochondrial dysfunction. Environmental pollutants and allergens are observed to cause mitochondrial dysfunction, primarily by inducing oxidative stress and ROS production. Malfunctioning mitochondria change the bioenergetics of the cell and its metabolic profile to favour systemic inflammation, which drives all three types of morbidities. Given the existing experimental evidence, approaches targeting mitochondria (e.g. antioxidant therapy and mitochondrial replacement) are being conducted in relevant disease models-with some progressing towards clinical trials, making mitochondrial function the focus of translational therapy research in asthma, allergy and linked metabolic syndrome.
Bock, J; Breuer, S; Poeggel, G; Braun, K
2017-03-01
In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.
Testosterone and the metabolic syndrome
Muraleedharan, Vakkat; Jones, T. Hugh
2010-01-01
Metabolic syndrome and testosterone deficiency in men are closely Linked. Epidemiological studies have shown that Low testosterone Levels are associated with obesity, insulin resistance and an adverse Lipid profile in men. Conversely in men with metabolic syndrome and type 2 diabetes have a high prevalence of hypogonadism. Metabolic syndrome and Low testosterone status are both independently associated with increased all-cause and cardiovascular mortality. Observational and experimental data suggest that physiological replacement of testosterone produces improvement in insulin resistance, obesity, dyslipidae-mia and sexual dysfunction along with improved quality of Life. However, there are no Long-term interventional studies to assess the effect of testosterone replacement on mortality in men with Low testosterone Levels. This article reviews the observational and interventional clinical data in relation to testosterone and metabolic syndrome. PMID:23148165
Mohseni, Michael; Silvers, Scott; McNeil, Rebecca; Diehl, Nancy; Vadeboncoeur, Tyler; Taylor, Walt; Shapiro, Shane; Roth, Jennifer; Mahoney, Sherry
2011-01-01
Background: Prior reports on metabolic derangements observed in distance running frequently have small sample sizes, lack prerace laboratory measures, and report sodium as the sole measure. Hypothesis: Metabolic abnormalities—hyponatremia, hypokalemia, renal dysfunction, hemoconcentration—are frequent after completing a full or half marathon. Clinically significant changes occur in these laboratory values after race completion. Study Design: Observational, cross-sectional study. Methods: Consenting marathon and half marathon racers completed a survey as well as finger stick blood sampling on race day of the National Marathon to Fight Breast Cancer (Jacksonville, Florida, February 2008). Parallel blood measures were obtained before and after race completion (prerace, n = 161; postrace, n = 195). Results: The prevalence of prerace and postrace hyponatremia was 8 of 161 (5.0%) and 16 of 195 (8.2%), respectively. Hypokalemia was not present prerace but was present in 1 runner postrace (1 of 195). Renal dysfunction occurred prerace in 14 of 161 (8.7%) and postrace in 83 of 195 (42.6%). Among those with postrace renal dysfunction, 45.8% (38 of 83) were classified as moderate or severe. Hemoconcentration was present in 2 of 161 (1.2%) prerace and 6 of 195 (3.1%) postrace. The mean changes in laboratory values were (postrace minus prerace): sodium, 1.6 mmol/L; potassium, −0.2 mmol/L; blood urea nitrogen, 2.8 mg/dL; creatinine, 0.2 mg/dL; and hemoglobin, 0.3 g/dL for 149 pairs (except blood urea nitrogen, n = 147 pairs). Changes were significant for all comparisons (P < 0.01) except potassium (P = 0.08) and hemoglobin (P = 0.01). Conclusions: Metabolic abnormalities are common among endurance racers, and they may be present prerace, including hyponatremia. The clinical significance of these findings is unknown. Clinical relevance: It is unclear which runners are at risk for developing clinically important metabolic derangements. Participating in prolonged endurance exercise appears to be safe in the majority of racers. PMID:23016001
Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease
Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.
2016-01-01
Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000
Toczek, Marta; Zielonka, Daniel; Zukowska, Paulina; Marcinkowski, Jerzy T; Slominska, Ewa; Isalan, Mark; Smolenski, Ryszard T; Mielcarek, Michal
2016-11-01
Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Aibin; Liu, Jingyi; Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing
Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, themore » roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process.« less
Obese dogs with and without obesity-related metabolic dysfunction - a proteomic approach.
Tvarijonaviciute, Asta; Ceron, Jose J; de Torre, Carlos; Ljubić, Blanka B; Holden, Shelley L; Queau, Yann; Morris, Penelope J; Pastor, Josep; German, Alexander J
2016-09-20
Approximately 20 % of obese dogs have metabolic disturbances similar to those observed in human metabolic syndrome, a condition known as obesity-related metabolic dysfunction. This condition is associated with insulin resistance and decreased circulating adiponectin concentrations, but clinical consequences have not been reported. In order to define better the metabolic changes associated with obesity-related metabolic dysfunction (ORMD), we compared the plasma proteomes of obese dogs with and without ORMD. A proteomic analysis was conducted on plasma samples from 8 obese male dogs, 4 with ORMD and 4 without ORMD. The samples were first treated for the depletion of high-abundance proteins and subsequently analysed by using 2-DE DIGE methodology. Using mass spectrometry, 12 proteins were identified: albumin, apoliprotein A-I, C2, C3, C5, C4BPA, A2M, Uncharacterised protein (Fragment) OS = Canis familiaris, fibrinogen, IGJ, ITIH2, and glutathione peroxidase. In obese dogs with ORMD, the relative amounts of ten proteins (albumin, apoliprotein A-I, C2, C3, C5, C4BPA, A2M, Uncharacterised protein (Fragment) OS = Canis familiaris, fibrinogen, and ITIH2) were increased and two proteins (IGJ and glutathione peroxidase) were decreased, compared with obese dogs without ORMD. Specific assays were then used to confirm differences in serum albumin, apoliprotein A-I and glutathione peroxidase in a separate group of 20 overweight dogs, 8 with ORMD and 12 without ORMD. The current study provides evidence that, in obese dogs with ORMD, there are changes in expression of proteins involved in lipid metabolism, immune response, and antioxidant status. The clinical significance of these changes remains to be defined.
Metabolic dysfunction in obstructive sleep apnea: A critical examination of underlying mechanisms
MESARWI, Omar A.; SHARMA, Ellora V.; JUN, Jonathan C.; POLOTSKY, Vsevolod Y.
2015-01-01
It has recently become clear that obstructive sleep apnea (OSA) is an independent risk factor for the development of metabolic syndrome, a disorder of defective energy storage and use. Several mechanisms have been proposed to explain this finding, drawing upon the characteristics that define OSA. In particular, intermittent hypoxia, sleep fragmentation, elevated sympathetic tone, and oxidative stress – all consequences of OSA – have been implicated in the progression of poor metabolic outcomes in OSA. In this review we examine the evidence to support each of these disease manifestations of OSA as a unique risk for metabolic dysfunction. Tissue hypoxia and sleep fragmentation are each directly connected to insulin resistance and hypertension, and each of these also may increase sympathetic tone, resulting in defective glucose homeostasis, excessive lipolysis, and elevated blood pressure. Oxidative stress further worsens insulin resistance and in turn, metabolic dysfunction also increases oxidative stress. However, despite many studies linking each of these individual components of OSA to the development of metabolic syndrome, there are very few reports that actually provide a coherent narrative about the mechanism underlying metabolic dysfunction in OSA. PMID:26412981
Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction
Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.
2017-01-01
Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293
Stoeckel, Luke E.; Arvanitakis, Zoe; Gandy, Sam; Small, Dana; Kahn, C. Ronald; Pascual-Leone, Alvaro; Pawlyk, Aaron; Sherwin, Robert; Smith, Philip
2016-01-01
Scientific evidence has established several links between metabolic and neurocognitive dysfunction, and epidemiologic evidence has revealed an increased risk of Alzheimer’s disease and vascular dementia in patients with diabetes. In July 2015, the National Institute of Diabetes, Digestive, and Kidney Diseases gathered experts from multiple clinical and scientific disciplines, in a workshop entitled “The Intersection of Metabolic and Neurocognitive Dysfunction”, to clarify the state-of-the-science on the mechanisms linking metabolic dysfunction, and insulin resistance and diabetes in particular, to neurocognitive impairment and dementia. This perspective is intended to serve as a summary of the opinions expressed at this meeting, which focused on identifying gaps and opportunities to advance research in this emerging area with important public health relevance. PMID:27303627
Rana, P; Sripathy, G; Varshney, A; Kumar, P; Devi, M Memita; Marwaha, R K; Tripathi, R P; Khushu, S
2012-02-01
Subclinical hypothyroidism (sHT) is considered to be a milder form of thyroid dysfunction. Few earlier studies have reported neuromuscular symptoms as well as impaired muscle metabolism in sHT patients. In this study we report our findings on muscle bioenergetics in sHT patients using phosphorous magnetic resonance spectroscopy (31P MRS) and look upon the possibility to use 31P MRS technique as a clinical marker for monitoring muscle function in subclinical thyroid dysfunction. Seventeen normal subjects, 15 patients with sHT, and 9 patients with hypothyroidism performed plantar flexion exercise while lying supine in 1.5 T magnetic resonance scanner using custom built exercise device. MR Spectroscopy measurements of inorganic phosphate (Pi), phosphocreatine (PCr), and ATP of the calf muscle were taken during rest, at the end of exercise and in the recovery phase. PCr recovery rate constant (kPCr) and oxidative capacity were calculated by monoexponential fit of PCr vs time (t) at the beginning of recovery. We observed that changes in some of the phosphometabolites (increased phosphodiester levels and Pi concentration) in sHT patients which were similar to those detected in patients with hypothyroidism. However, our results do not demonstrate impaired muscle oxidative metabolism in sHT patients based upon PCr dynamics as observed in hypothyroid patients. 31P MRS-based PCr recovery rate could be used as a marker for monitoring muscle oxidative metabolism in sub clinical thyroid dysfunction.
Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction.
Franz, Daniela; Syväri, Jan; Weidlich, Dominik; Baum, Thomas; Rummeny, Ernst J; Karampinos, Dimitrios C
2018-06-06
Adipose tissue has become an increasingly important tissue target in medicine. It plays a central role in the storage and release of energy throughout the human body and has recently gained interest for its endocrinologic function. Magnetic resonance imaging (MRI) is an established method for quantitative direct evaluation of adipose tissue distribution, and is used increasingly as the modality of choice for metabolic phenotyping. The purpose of this review was the identification and presentation of the currently available literature on MRI of adipose tissue in metabolic dysfunction. A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) keyword search up to August 2017 without starting date limitation was performed and reference lists of relevant articles were searched. MRI provides excellent tools for the evaluation of adipose tissue distribution and further characterization of the tissue. Standard as well as newly developed MRI techniques allow a risk stratification for the development of metabolic dysfunction and enable monitoring without the use of ionizing radiation or contrast material. · Different types of adipose tissue play a crucial role in various types of metabolic dysfunction.. · Magnetic resonance imaging (MRI) is an excellent tool for noninvasive adipose tissue evaluation with respect to distribution, composition and metabolic activity.. · Both standard and newly developed MRI techniques can be used for risk stratification for the development of metabolic dysfunction and allow monitoring without the use of ionizing radiation or contrast material.. · Franz D, Syväri J, Weidlich D et al. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0612-8006. © Georg Thieme Verlag KG Stuttgart · New York.
Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang
2018-06-01
Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Martin, A.; Haller, R. G.; Barohn, R.; Blomqvist, C. G. (Principal Investigator)
1994-01-01
Metabolic myopathies are disorders of muscle energy production that result in skeletal muscle dysfunction. Cardiac and systemic metabolic dysfunction may coexist. Symptoms are often intermittent and provoked by exercise or changes in supply of lipid and carbohydrate fuels. Specific disorders of lipid and carbohydrate metabolism in muscle are reviewed. Evaluation often requires provocative exercise testing. These tests may include ischemic forearm exercise, aerobic cycle exercise, and 31P magnetic resonance spectroscopy with exercise.
Ullevig, Sarah L.; Kim, Hong Seok; Nguyen, Huynh Nga; Hambright, William S.; Robles, Andrew J.; Tavakoli, Sina; Asmis, Reto
2014-01-01
Aims Dietary supplementation with ursolic acid (UA) prevents monocyte dysfunction in diabetic mice and protects mice against atherosclerosis and loss of renal function. The goal of this study was to determine the molecular mechanism by which UA prevents monocyte dysfunction induced by metabolic stress. Methods and results Metabolic stress sensitizes or “primes” human THP-1 monocytes and murine peritoneal macrophages to the chemoattractant MCP-1, converting these cells into a hyper-chemotactic phenotype. UA protected THP-1 monocytes and peritoneal macrophages against metabolic priming and prevented their hyper-reactivity to MCP-1. UA blocked the metabolic stress-induced increase in global protein-S-glutathionylation, a measure of cellular thiol oxidative stress, and normalized actin-S-glutathionylation. UA also restored MAPK phosphatase-1 (MKP1) protein expression and phosphatase activity, decreased by metabolic priming, and normalized p38 MAPK activation. Neither metabolic stress nor UA supplementation altered mRNA or protein levels of glutaredoxin-1, the principal enzyme responsible for the reduction of mixed disulfides between glutathione and protein thiols in these cells. However, the induction of Nox4 by metabolic stress, required for metabolic priming, was inhibited by UA in both THP-1 monocytes and peritoneal macrophages. Conclusion UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds. PMID:24494201
Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions.
Nijland, Philip G; Molenaar, Remco J; van der Pol, Susanne M A; van der Valk, Paul; van Noorden, Cornelis J F; de Vries, Helga E; van Horssen, Jack
2015-12-04
Demyelinated axons in multiple sclerosis (MS) lesions have an increased energy demand in order to maintain conduction. However, oxidative stress-induced mitochondrial dysfunction likely alters glucose metabolism and consequently impairs neuronal function in MS. Imaging and pathological studies indicate that glucose metabolism is altered in MS, although the underlying mechanisms and its role in neurodegeneration remain elusive. We investigated expression patterns of key enzymes involved in glycolysis, tricarboxylic acid (TCA) cycle and lactate metabolism in well-characterized MS tissue to establish which regulators of glucose metabolism are involved in MS and to identify underlying mechanisms. Expression levels of glycolytic enzymes were increased in active and inactive MS lesions, whereas expression levels of enzymes involved in the TCA cycle were upregulated in active MS lesions, but not in inactive MS lesions. We observed reduced expression and production capacity of mitochondrial α-ketoglutarate dehydrogenase (αKGDH) in demyelinated axons, which correlated with signs of axonal dysfunction. In inactive lesions, increased expression of lactate-producing enzymes was observed in astrocytes, whereas lactate-catabolising enzymes were mainly detected in axons. Our results demonstrate that the expression of various enzymes involved in glucose metabolism is increased in both astrocytes and axons in active MS lesions. In inactive MS lesions, we provide evidence that astrocytes undergo a glycolytic shift resulting in enhanced astrocyte-axon lactate shuttling, which may be pivotal for the survival of demyelinated axons. In conclusion, we show that key enzymes involved in energy metabolism are differentially expressed in active and inactive MS lesions. Our findings imply that, in addition to reduced oxidative phosphorylation activity, other bioenergetic pathways are affected as well, which may contribute to ongoing axonal degeneration in MS.
Baldo, Barbara; Soylu, Rana; Petersén, Asa
2013-01-01
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin protein. Neuropathology in the basal ganglia and in the cerebral cortex has been linked to the motor and cognitive symptoms whereas recent work has suggested that the hypothalamus might be involved in the metabolic dysfunction. Several mouse models of HD that display metabolic dysfunction have hypothalamic pathology, and expression of mutant huntingtin in the hypothalamus has been causally linked to the development of metabolic dysfunction in mice. Although the pathogenic mechanisms by which mutant huntingtin exerts its toxic functions in the HD brain are not fully known, several studies have implicated a role for the lysososomal degradation pathway of autophagy. Interestingly, changes in autophagy in the hypothalamus have been associated with the development of metabolic dysfunction in wild-type mice. We hypothesized that expression of mutant huntingtin might lead to changes in the autophagy pathway in the hypothalamus in mice with metabolic dysfunction. We therefore investigated whether there were changes in basal levels of autophagy in a mouse model expressing a fragment of 853 amino acids of mutant huntingtin selectively in the hypothalamus using a recombinant adeno-associate viral vector approach as well as in the transgenic BACHD mice. We performed qRT-PCR and Western blot to investigate the mRNA and protein expression levels of selected autophagy markers. Our results show that basal levels of autophagy are maintained in the hypothalamus despite the presence of metabolic dysfunction in both mouse models. Furthermore, although there were no major changes in autophagy in the striatum and cortex of BACHD mice, we detected modest, but significant differences in levels of some markers in mice at 12 months of age. Taken together, our results indicate that overexpression of mutant huntingtin in mice do not significantly perturb basal levels of autophagy.
Mild Cognitive Dysfunction Does Not Affect Diabetes Mellitus Control in Minority Elderly Adults
Palta, Priya; Golden, Sherita H.; Teresi, Jeanne; Palmas, Walter; Weinstock, Ruth S.; Shea, Steven; Manly, Jennifer J.; Luchsinger, Jose A.
2015-01-01
OBJECTIVES To determine whether older adults with type 2 diabetes mellitus and cognitive dysfunction have poorer metabolic control of glycosylated hemoglobin, systolic blood pressure, and low-density lipoprotein cholesterol than those without cognitive dysfunction. DESIGN Prospective cohort study. SETTING A minority cohort in New York City previously recruited for a trial of telemedicine. PARTICIPANTS Persons aged 73.0 ± 3.0 (N = 613; 69.5% female; 82.5% Hispanic, 15.5% non-Hispanic black). MEASUREMENTS Participants were classified with executive or memory dysfunction based on standardized score cutoffs (<16th percentile) for the Color Trails Test and Selective Reminding Test. Linear mixed models were used to compare repeated measures of the metabolic measures and evaluate the rates of change in individuals with and without dysfunction. RESULTS Of the 613 participants, 331 (54%) had executive dysfunction, 202 (33%) had memory dysfunction, and 96 (16%) had both. Over a median of 2 years, participants with executive or memory dysfunction did not exhibit significantly poorer metabolic control than those without executive function or memory type cognitive dysfunction. CONCLUSION Cognitive dysfunction in the mild range did not seem to affect diabetes mellitus control parameters in this multiethnic cohort of older adults with diabetes mellitus, although it cannot be excluded that cognitive impairment was overcome through assistance from formal or informal caregivers. It is possible that more-severe cognitive dysfunction could affect control. PMID:25439094
Mild cognitive dysfunction does not affect diabetes mellitus control in minority elderly adults.
Palta, Priya; Golden, Sherita H; Teresi, Jeanne; Palmas, Walter; Weinstock, Ruth S; Shea, Steven; Manly, Jennifer J; Luchsinger, Jose A
2014-12-01
To determine whether older adults with type 2 diabetes mellitus and cognitive dysfunction have poorer metabolic control of glycosylated hemoglobin, systolic blood pressure, and low-density lipoprotein cholesterol than those without cognitive dysfunction. Prospective cohort study. A minority cohort in New York City previously recruited for a trial of telemedicine. Persons aged 73.0 ± 3.0 (N = 613; 69.5% female; 82.5% Hispanic, 15.5% non-Hispanic black). Participants were classified with executive or memory dysfunction based on standardized score cutoffs (<16th percentile) for the Color Trails Test and Selective Reminding Test. Linear mixed models were used to compare repeated measures of the metabolic measures and evaluate the rates of change in individuals with and without dysfunction. Of the 613 participants, 331 (54%) had executive dysfunction, 202 (33%) had memory dysfunction, and 96 (16%) had both. Over a median of 2 years, participants with executive or memory dysfunction did not exhibit significantly poorer metabolic control than those without executive function or memory type cognitive dysfunction. Cognitive dysfunction in the mild range did not seem to affect diabetes mellitus control parameters in this multiethnic cohort of older adults with diabetes mellitus, although it cannot be excluded that cognitive impairment was overcome through assistance from formal or informal caregivers. It is possible that more-severe cognitive dysfunction could affect control. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Arrabal-Polo, M A; Vera-Arroyo, B; Lahoz-García, C; Valderrama-Illana, P; Cámara-Ortega, M; Arrabal-Martín, M; Zuluaga-Gomez, A; Lopez-Carmona Pintado, F
2014-04-01
Different studies have shown the relationship between erectile dysfunction, metabolic syndrome and cardiovascular disease. The objective of this study was to evaluate the presence of arteriopathy performing carotid ultrasound in patients with and without erectile dysfunction. We conducted a case-control study with 44 patients consulting for erectile dysfunction and 20 controls. All subjects completed the IIEF-5 test and we studied the criteria for metabolic syndrome, and a carotid ultrasound to study the intima-media thickness and the presence of atherosclerotic plaques was performed. Mean intima-media thickness was .71mm±.21 for the right and of .71±.17 for the left carotid in patients with erectile dysfunction. In the control group, the means were .54±0.11 and 0.59±0.15mm respectively, statistically significant differences (P=.02 and P=.05 respectively). No plaque was found in any control, but in 25% of both carotid arteries of patients with erectile dysfunction (P=.01). As metabolic syndrome, according to the American Heart Association, were diagnosed 52.8% of patients with erectile dysfunction, and 16.7% of controls, and according to the International Diabetes Federation, 52.3% of patients with erectile dysfunction and 25% of controls met diagnostic criteria. In both cases there were significant differences (P<.01 and P=.02 respectively). We found a positive linear correlation between waist circumference and the intima-media thickness in both carotid (P<.05). Patients with erectile dysfunction may be at increased risk of cardiovascular disease, as determined by the presence of arterial disease in the carotid arteries, which indicates that we should made a more thorough and comprehensive study of patients with erectile dysfunction. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction
ASAHINA, Makoto; SHIMIZU, Fumi; OHTA, Masayuki; TAKEYAMA, Michiyasu; TOZAWA, Ryuichi
2015-01-01
Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome. PMID:25912321
Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction.
Asahina, Makoto; Shimizu, Fumi; Ohta, Masayuki; Takeyama, Michiyasu; Tozawa, Ryuichi
2015-01-01
Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome.
Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice
USDA-ARS?s Scientific Manuscript database
Circadian disruption has become a significant factor contributing to the epidemics of obesity and insulin resistance. However, interventions to treat metabolic dysfunctions induced by circadian disruptions are limited. The ovarian hormone, estrogen, produces important antiobesity and antidiabetic ef...
Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD
Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.
2012-01-01
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248
Lu, Weiqin; Hu, Yumin; Chen, Gang; Chen, Zhao; Zhang, Hui; Wang, Feng; Feng, Li; Pelicano, Helene; Wang, Hua; Keating, Michael J; Liu, Jinsong; McKeehan, Wallace; Wang, Huamin; Luo, Yongde; Huang, Peng
2012-01-01
Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.
Neonatal ghrelin programs development of hypothalamic feeding circuits
Steculorum, Sophie M.; Collden, Gustav; Coupe, Berengere; Croizier, Sophie; Lockie, Sarah; Andrews, Zane B.; Jarosch, Florian; Klussmann, Sven; Bouret, Sebastien G.
2015-01-01
A complex neural network regulates body weight and energy balance, and dysfunction in the communication between the gut and this neural network is associated with metabolic diseases, such as obesity. The stomach-derived hormone ghrelin stimulates appetite through interactions with neurons in the arcuate nucleus of the hypothalamus (ARH). Here, we evaluated the physiological and neurobiological contribution of ghrelin during development by specifically blocking ghrelin action during early postnatal development in mice. Ghrelin blockade in neonatal mice resulted in enhanced ARH neural projections and long-term metabolic effects, including increased body weight, visceral fat, and blood glucose levels and decreased leptin sensitivity. In addition, chronic administration of ghrelin during postnatal life impaired the normal development of ARH projections and caused metabolic dysfunction. Consistent with these observations, direct exposure of postnatal ARH neuronal explants to ghrelin blunted axonal growth and blocked the neurotrophic effect of the adipocyte-derived hormone leptin. Moreover, chronic ghrelin exposure in neonatal mice also attenuated leptin-induced STAT3 signaling in ARH neurons. Collectively, these data reveal that ghrelin plays an inhibitory role in the development of hypothalamic neural circuits and suggest that proper expression of ghrelin during neonatal life is pivotal for lifelong metabolic regulation. PMID:25607843
Yang, Yong; Jia, Hongmei; Yu, Meng; Zhou, Chao; Sun, Lili; Zhao, Yang; Zhang, Hongwu; Zou, Zhongmei
2018-03-15
Myocardial infarction (MI) occurs during a sustained insufficient blood supply to the heart, eventually leading to myocardial necrosis. Xin-Ke-Shu tablet (XKS) is a prescription herbal compound and a patented medicine extensively used in the clinical treatment of coronary heart disease (CHD). To understand the molecular mechanism of the XKS action against MI in detail, it is necessary to investigate the altered metabolome and related pathways coincident with clinical features. In this study, tissue-targeted metabonomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) were developed to explore the metabolic changes associated with XKS treatment in the heart tissue of rats with MI induced by a left anterior descending coronary artery ligation (LAD). The metabolic disorder induced by LAD was alleviated after low-dose XKS (LD) and intermediate-dose XKS (MD) treatment. XKS modulated six perturbed metabolic pathways. Among them, inhibition of Ca 2+ overload and dysfunction of fatty acid β-oxidation-related metabolic pathways likely underlie the therapeutic effects of XKS against MI. In agreement with its observed effect on metabolite perturbation, XKS reversed the over-expression of the four key proteins, long-chain acyl-CoA synthetase 1 (ACSL1), carnitine palmitoyl transferase-1 (CPT1B), calcium/calmodulin-dependent kinase II (CaMKII), and phospholipase A2IIA (PLA2IIA). Both metabolite and protein changes suggested that XKS exerts its therapeutic effect on metabolic perturbations in LAD-induced MI mainly by inhibiting the Ca 2+ overload and fatty acid β-oxidation dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.
Baidwan, Sartaj; Chekuri, Anil; Hynds, DiAnna L; Kowluru, Anjaneyulu
2017-11-01
Emerging evidence suggests that long-term exposure of insulin-secreting pancreatic β-cells to hyperglycemic (HG; glucotoxic) conditions promotes oxidative stress, which, in turn, leads to stress kinase activation, mitochondrial dysfunction, loss of nuclear structure and integrity and cell apoptosis. Original observations from our laboratory have proposed that Rac1 plays a key regulatory role in the generation of oxidative stress and downstream signaling events culminating in the onset of dysfunction of pancreatic β-cells under the duress of metabolic stress. However, precise molecular and cellular mechanisms underlying the metabolic roles of hyperactive Rac1 remain less understood. Using pharmacological and molecular biological approaches, we now report mistargetting of biologically-active Rac1 [GTP-bound conformation] to the nuclear compartment in clonal INS-1 cells, normal rat islets and human islets under HG conditions. Our findings also suggest that such a signaling step is independent of post-translational prenylation of Rac1. Evidence is also presented to highlight novel roles for sustained activation of Rac1 in HG-induced expression of Cluster of Differentiation 36 [CD36], a fatty acid transporter protein, which is implicated in cell apoptosis. Finally, our findings suggest that metformin, a biguanide anti-diabetic drug, at a clinically relevant concentration, prevents β-cell defects [Rac1 activation, nuclear association, CD36 expression, stress kinase and caspase-3 activation, and loss in metabolic viability] under the duress of glucotoxicity. Potential implications of these findings in the context of novel and direct regulation of islet β-cell function by metformin are discussed.
Pereira, Cidália D; Severo, Milton; Rafael, Luísa; Martins, Maria João; Neves, Delminda
2014-01-01
Consuming a high-fructose diet induces metabolic syndrome (MS)-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC) in 10% fructose-fed Sprague-Dawley rats (FRUCT). Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF) or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively) in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN) increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study. PMID:24625878
Nitric oxide and mitochondria in metabolic syndrome
Litvinova, Larisa; Atochin, Dmitriy N.; Fattakhov, Nikolai; Vasilenko, Mariia; Zatolokin, Pavel; Kirienkova, Elena
2015-01-01
Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS. PMID:25741283
Endothelial dysfunction in patients with obstructive sleep apnoea independent of metabolic syndrome.
Amra, Babak; Karbasi, Elaheh; Hashemi, Mohammad; Hoffmann-Castendiek, Birgit; Golshan, Mohammad
2009-05-01
Obstructive sleep apnoea syndrome (OSAS), characterised by intermittent hypoxia/re-oxygenation, has been identified as an independent risk factor for cardiovascular diseases and endothelial dysfunction. Our aim was to investigate flow-mediated dilatation (FMD) in patients with obstructive sleep apnoea with and without metabolic syndrome. Fifty-two subjects with OSAS diagnosed by polysomnography were classified into 2 groups according to the presence and absence of the metabolic syndrome and also according to the severity: mild to moderate OSAS group and severe OSAS group. Endothelial function of the brachial artery was evaluated by using high-resolution vascular ultrasound. Endothelial-dependent dilatation (EDD) was assessed by establishing reactive hyperaemia and endothelial-independent dilatation (EID) was determined by using sublingual isosorbide dinitrate. Spearman correlation and regression analysis were performed. EDD was not significantly different in patients with OSAS and metabolic syndrome as compared with OSAS without metabolic syndrome (4.62 +/- 0.69 versus 4.49 +/- 0.93, P >0.05). Endothelial dysfunction in OSA may be independent of metabolic syndrome.
Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.
Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng
2012-10-01
Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.
Bousman, C. A.; Cherner, M.; Atkinson, J. H.; Heaton, R. K.; Grant, I.; Everall, I. P.; HNRC Group, The
2010-01-01
Catechol-O-methyltransferease (COMT) metabolizes prefrontal cortex dopamine (DA), a neurotransmitter involved in executive behavior; the Val158Met genotype has been linked to executive dysfunction, which might increase sexual risk behaviors favoring HIV transmission. Main and interaction effects of COMT genotype and executive functioning on sexual risk behavior were examined. 192 sexually active nonmonogamous men completed a sexual behavior questionnaire, executive functioning tests, and were genotyped using blood-derived DNA. Main effects for executive dysfunction but not COMT on number of sexual partners were observed. A COMT x executive dysfunction interaction was found for number of sexual partners and insertive anal sex, significant for carriers of the Met/Met and to a lesser extent Val/Met genotypes but not Val/Val carriers. In the context of HIV and methamphetamine dependence, dopaminergic overactivity in prefrontal cortex conferred by the Met/Met genotype appears to result in a liability for executive dysfunction and potentially associated risky sexual behavior. PMID:20069120
Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck
2013-06-15
Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.
Nohara, Kazunari; Waraich, Rizwana S.; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S.; Karsenty, Gérard; Burcelin, Rémy
2013-01-01
Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension. PMID:23612996
Padilla, Jaume; Park, Young-Min; Welly, Rebecca J.; Scroggins, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Jenkins, Nathan T.; Crissey, Jacqueline M.; Zidon, Terese; Morris, E. Matthew; Meers, Grace M. E.; Thyfault, John P.
2015-01-01
Ovariectomized rodents model human menopause in that they rapidly gain weight, reduce spontaneous physical activity (SPA), and develop metabolic dysfunction, including insulin resistance. How contrasting aerobic fitness levels impacts ovariectomy (OVX)-associated metabolic dysfunction is not known. Female rats selectively bred for high and low intrinsic aerobic fitness [high-capacity runners (HCR) and low-capacity runners (LCR), respectively] were maintained under sedentary conditions for 39 wk. Midway through the observation period, OVX or sham (SHM) operations were performed providing HCR-SHM, HCR-OVX, LCR-SHM, and LCR-OVX groups. Glucose tolerance, energy expenditure, and SPA were measured before and 4 wk after surgery, while body composition via dual-energy X-ray absorptiometry and adipose tissue distribution, brown adipose tissue (BAT), and skeletal muscle phenotype, hepatic lipid content, insulin resistance via homeostatic assessment model of insulin resistance and AdipoIR, and blood lipids were assessed at death. Remarkably, HCR were protected from OVX-associated increases in adiposity and insulin resistance, observed only in LCR. HCR rats were ∼30% smaller, had ∼70% greater spontaneous physical activity (SPA), consumed ∼10% more relative energy, had greater skeletal muscle proliferator-activated receptor coactivator 1-alpha, and ∼40% more BAT. OVX did not increase energy intake and reduced SPA to the same extent in both HCR and LCR. LCR were particularly affected by an OVX-associated reduction in resting energy expenditure and experienced a reduction in relative BAT; resting energy expenditure correlated positively with BAT across all animals (r = 0.6; P < 0.001). In conclusion, despite reduced SPA following OVX, high intrinsic aerobic fitness protects against OVX-associated increases in adiposity and insulin resistance. The mechanism may involve preservation of resting energy expenditure. PMID:25608751
Social jetlag, obesity and metabolic disorder: investigation in a cohort study.
Parsons, M J; Moffitt, T E; Gregory, A M; Goldman-Mellor, S; Nolan, P M; Poulton, R; Caspi, A
2015-05-01
Obesity is one of the leading causes of preventable death worldwide. Circadian rhythms are known to control both sleep timing and energy homeostasis, and disruptions in circadian rhythms have been linked with metabolic dysfunction and obesity-associated disease. In previous research, social jetlag, a measure of chronic circadian disruption caused by the discrepancy between our internal versus social clocks, was associated with elevated self-reported body mass index, possibly indicative of a more generalized association with obesity and metabolic dysfunction. We studied participants from the population-representative Dunedin Longitudinal Study (N=1037) to determine whether social jetlag was associated with clinically assessed measurements of metabolic phenotypes and disease indicators for obesity-related disease, specifically, indicators of inflammation and diabetes. Our analysis was restricted to N=815 non-shift workers in our cohort. Among these participants, we found that social jetlag was associated with numerous clinically assessed measures of metabolic dysfunction and obesity. We distinguished between obese individuals who were metabolically healthy versus unhealthy, and found higher social jetlag levels in metabolically unhealthy obese individuals. Among metabolically unhealthy obese individuals, social jetlag was additionally associated with elevated glycated hemoglobin and an indicator of inflammation. The findings are consistent with the possibility that 'living against our internal clock' may contribute to metabolic dysfunction and its consequences. Further research aimed at understanding that the physiology and social features of social jetlag may inform obesity prevention and have ramifications for policies and practices that contribute to increased social jetlag, such as work schedules and daylight savings time.
Anandhan, Annadurai; Jacome, Maria S; Lei, Shulei; Hernandez-Franco, Pablo; Pappa, Aglaia; Panayiotidis, Mihalis I; Powers, Robert; Franco, Rodrigo
2017-07-01
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of protein inclusions (Lewy bodies) are the pathological hallmarks of Parkinson's disease (PD). PD is triggered by genetic alterations, environmental/occupational exposures and aging. However, the exact molecular mechanisms linking these PD risk factors to neuronal dysfunction are still unclear. Alterations in redox homeostasis and bioenergetics (energy failure) are thought to be central components of neurodegeneration that contribute to the impairment of important homeostatic processes in dopaminergic cells such as protein quality control mechanisms, neurotransmitter release/metabolism, axonal transport of vesicles and cell survival. Importantly, both bioenergetics and redox homeostasis are coupled to neuro-glial central carbon metabolism. We and others have recently established a link between the alterations in central carbon metabolism induced by PD risk factors, redox homeostasis and bioenergetics and their contribution to the survival/death of dopaminergic cells. In this review, we focus on the link between metabolic dysfunction, energy failure and redox imbalance in PD, making an emphasis in the contribution of central carbon (glucose) metabolism. The evidence summarized here strongly supports the consideration of PD as a disorder of cell metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes
Arruda, Ana Paula; Hotamisligil, Gökhan S.
2015-01-01
Summary A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here, we will discuss the role of cellular Ca2+ homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease particularly in obesity and diabetes. PMID:26190652
Masha, A; Martina, V
2014-01-01
Several metabolic diseases present a high cardiovascular mortality due to endothelial dysfunction consequences. In the last years of the past century, it has come to light that the endothelial cells, previously considered as inert in what regards an eventual secretion activity, play a pivotal role in regulating different aspects of the vascular function (endothelial function). It was clearly demonstrated that the endothelium acts as a real active organ, owning endocrine, paracrine and autocrine modulation activities by means of which it is able to regulate the vascular homeostasis. The present review will investigate the relationship between some metabolic diseases and the endothelial dysfunction and in particular the mechanisms underlying the effects of metabolic pathologies on the endothelium. Furthermore, it will consider the possible therapeutic employment of the N-acetilcysteine in such conditions.
Hypogonadism as a possible link between metabolic diseases and erectile dysfunction in aging men.
Corona, Giovanni; Bianchini, Silvia; Sforza, Alessandra; Vignozzi, Linda; Maggi, Mario
2015-01-01
There is evidence demonstrating that sexual complaints represent the most specific symptoms associated with late onset hypogonadism, while central obesity is the most specific sign. In obese men, hypogonadism can further worsen the metabolic profile and increase abdominal fat. In addition, although hypogonadism can exacerbate obesity-associated erectile dysfunction (ED), recent data suggest that a direct contribution of fat-derived factors could be hypothesized. In particular, an animal model recently documented that fat accumulation induces several hepatic pro-inflammatory genes closely linked to corpora cavernosa endothelial dysfunction. Lifestyle modifications and weight loss are the first steps in the treatment of ED patients with obesity or metabolic diseases. In symptomatic hypogonadal men with metabolic impairment and obesity, combining the effect of testosterone substitution with lifestyle modifications could result in better outcomes.
Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2013-01-01
Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656
Zizola, Cynthia; Kennel, Peter J.; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi
2015-01-01
Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. PMID:25713305
Zizola, Cynthia; Kennel, Peter J; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi; Schulze, P Christian
2015-05-01
Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. Copyright © 2015 the American Physiological Society.
Witchel, Selma F; Recabarren, Sergio E; Gonzalez, Frank; Diamanti-Kandarakis, Evanthia; Cheang, Kai I; Duleba, Antoni J; Legro, Richard S; Homburg, Roy; Pasquali, Renato; Lobo, Rogerio; Zouboulis, Christos C.; Kelestimur, Fahrettin; Fruzzetti, Franca; Futterweit, Walter; Norman, Robert J; Abbott, David H
2012-01-01
The interactive nature of the 8th Annual Meeting of the Androgen Excess & PCOS Society Annual Meeting in Munich, Germany (AEPCOS 2010) and subsequent exchanges between speakers led to emerging concepts in PCOS regarding its genesis, metabolic dysfunction, and clinical treatment of inflammation, metabolic dysfunction, anovulation and hirsutism. Transition of care in congenital adrenal hyperplasia from pediatric to adult providers emerged as a potential model for care transition involving PCOS adolescents. PMID:22661293
Thompson Legault, Julie; Strittmatter, Laura; Tardif, Jessica; Sharma, Rohit; Tremblay-Vaillancourt, Vanessa; Aubut, Chantale; Boucher, Gabrielle; Clish, Clary B; Cyr, Denis; Daneault, Caroline; Waters, Paula J; Vachon, Luc; Morin, Charles; Laprise, Catherine; Rioux, John D; Mootha, Vamsi K; Des Rosiers, Christine
2015-11-03
A decline in mitochondrial respiration represents the root cause of a large number of inborn errors of metabolism. It is also associated with common age-associated diseases and the aging process. To gain insight into the systemic, biochemical consequences of respiratory chain dysfunction, we performed a case-control, prospective metabolic profiling study in a genetically homogenous cohort of patients with Leigh syndrome French Canadian variant, a mitochondrial respiratory chain disease due to loss-of-function mutations in LRPPRC. We discovered 45 plasma and urinary analytes discriminating patients from controls, including classic markers of mitochondrial metabolic dysfunction (lactate and acylcarnitines), as well as unexpected markers of cardiometabolic risk (insulin and adiponectin), amino acid catabolism linked to NADH status (α-hydroxybutyrate), and NAD(+) biosynthesis (kynurenine and 3-hydroxyanthranilic acid). Our study identifies systemic, metabolic pathway derangements that can lie downstream of primary mitochondrial lesions, with implications for understanding how the organelle contributes to rare and common diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Erectile dysfunction and type 2 diabetes mellitus in northern Pakistan.
Ahmed, Ibrar; Aamir, Aziz ul Hassan; Anwar, Ejaz; Ali, Sobia Sabir; Ali, Asfhaq; Ali, Amjad
2013-12-01
To determine the frequency of erectile dysfunction in married male Type-2 diabetic patients. The cross-sectional observational study was carried out at the Endocrinology, Diabetes and Metabolic Diseases Unit Hayatabad Medical Complex, Peshawar, from July 2011 to Apr 2012, comprising 217 male married Type-2 diabetic patients. Serum samples were assayed for blood glucose, lipid profile and glycated haemoglobin A1c. Body mass index and waist-to-hip ratio was calculated. Erectile dysfunction was assessed by Sexual Health Inventory for Men questionnaire. SPSS 18 was used for statistical analysis. A total of 217 patients were initially interviewed. The mean age was 43.1 +/- 8.160 years. The frequency of drectile dysfunction increased with age, duration of patients and increased body mass index. Overall, 6 (2.8%) patients had no erectile dysfunction, 37 (17.1%) had mild, 82 (37.8%) mild to moderate; 47 (21.7%) moderate; and 45 (20.7%) severe. Higher HbAlc levels and atherogenic dyslipidaemia were associated with erectile dysfunction. Poor glycaemic control was associated with increased erectile dysfunction risk. Duration of diabetes, older age, increased body mass index are associated with increased incidence of the condition in patients with diabetes. Intensive lifestyle changes in the beginning can add to the better management of Type-2 diabetes and prevention of erectile dysfunction.
NASA Astrophysics Data System (ADS)
Raman, Rajesh N.; Pivetti, Chris D.; Ramsamooj, Rajendra; Troppmann, Christoph; Demos, Stavros G.
2018-02-01
A major source of kidneys for transplant comes from deceased donors whose tissues have suffered an unknown amount of warm ischemia prior to retrieval, with no quantitative means to assess function before transplant. Toward addressing this need, non-contact monitoring of optical signatures in rat kidneys was performed in vivo during ischemia and reperfusion. Kidney autofluorescence images were captured under ultraviolet illumination (355 nm, 325 nm, and 266 nm) in order to provide information on related metabolic and non-metabolic response. In addition, light scattering images under 355 nm, 325 nm, and 266 nm, 500 nm illumination were monitored to report on changes in kidney optical properties giving rise to the observed autofluorescence signals during these processes. During reperfusion, various signal ratios were generated from the recorded signals and then parametrized. Time-dependent parameters derived from the ratio of autofluorescence under 355 nm excitation to that under 266 nm excitation, as well as from 500 nm scattered signal, were found capable of discriminating dysfunctional kidneys from those that were functional (p < 0.01) within hours of reperfusion. Kidney dysfunction was confirmed by subsequent survival study and histology following autopsy up to a week later. Physiologic changes potentially giving rise to the observed signals, including those in cellular metabolism, vascular response, tissue microstructure, and microenvironment chemistry, are discussed.
Insulin resistance and the metabolism of branched-chain amino acids in humans.
Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal
2012-07-01
Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.
Methoxyflurane revisited: tale of an anesthetic from cradle to grave.
Mazze, Richard I
2006-10-01
Methoxyflurane metabolism and renal dysfunction: clinical correlation in man. By Richard I. Mazze, James R. Trudell, and Michael J. Cousins. Anesthesiology 1971; 35:247-52. Reprinted with permission. Serum inorganic fluoride concentration and urinary inorganic fluoride excretion were found to be markedly elevated in ten patients previously shown to have methoxyflurane induced renal dysfunction. Five patients with clinically evident renal dysfunction had a mean peak serum inorganic fluoride level (190 +/- 21 microm) significantly higher (P < 0.02) than that of those with abnormalities in laboratory tests only (106 +/- 17 microm). Similarly, patients with clinically evident renal dysfunction had a mean peak oxalic acid excretion (286 +/- 39 mg/24 h) significantly greater (P < 0.05) than that of those with laboratory abnormalities only (130 +/- 51 mg/24 h). That patients anesthetized with halothane had insignificant changes in serum inorganic fluoride concentration and oxalic acid excretion indicates that these substances are products of methoxyflurane metabolism. A proposed metabolic pathway to support this hypothesis is presented, as well as evidence to suggest that inorganic fluoride is the substance responsible for methoxyflurane renal dysfunction.
Sato, Naoyuki; Morishita, Ryuichi
2013-11-05
It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of (1) compromised vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. β-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: (1) functional MRI or SPECT for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features of AD, would be required.
Sex differences in the effects of androgens acting in the central nervous system on metabolism
Morford, Jamie; Mauvais-Jarvis, Franck
2016-01-01
One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor. PMID:28179813
Marin, Marie-France; Song, Huijin; VanElzakker, Michael B; Staples-Bradley, Lindsay K; Linnman, Clas; Pace-Schott, Edward F; Lasko, Natasha B; Shin, Lisa M; Milad, Mohammed R
2016-09-01
Exposure-based therapy, an effective treatment for posttraumatic stress disorder (PTSD), relies on extinction learning principles. In PTSD patients, dysfunctional patterns in the neural circuitry underlying fear extinction have been observed using resting-state or functional activation measures. It remains undetermined whether resting activity predicts activations during extinction recall or PTSD symptom severity. Moreover, it remains unclear whether trauma exposure per se affects resting activity in this circuitry. The authors employed a multimodal approach to examine the relationships among resting metabolism, clinical symptoms, and activations during extinction recall. Three cohorts were recruited: PTSD patients (N=24), trauma-exposed individuals with no PTSD (TENP) (N=20), and trauma-unexposed healthy comparison subjects (N=21). Participants underwent a resting positron emission tomography scan 4 days before a functional MRI fear conditioning and extinction paradigm. Amygdala resting metabolism negatively correlated with clinical functioning (as measured by the Global Assessment of Functioning Scale) in the TENP group, and hippocampal resting metabolism negatively correlated with clinical functioning in the PTSD group. In the PTSD group, dorsal anterior cingulate cortex (dACC) resting metabolism positively correlated with PTSD symptom severity, and it predicted increased dACC activations but decreased hippocampal and ventromedial prefrontal cortex activations during extinction recall. The TENP group had lower amygdala resting metabolism compared with the PTSD and healthy comparison groups, and it exhibited lower hippocampus resting metabolism relative to the healthy comparison group. Resting metabolism in the fear circuitry correlated with functioning, PTSD symptoms, and extinction recall activations, further supporting the relevance of this network to the pathophysiology of PTSD. The study findings also highlight the fact that chronic dysfunction in the amygdala and hippocampus is demonstrable in PTSD and other trauma-exposed individuals, even without exposure to an evocative stimulus.
Mitochondrial Dynamics in Diabetic Cardiomyopathy
Galloway, Chad A.
2015-01-01
Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230
Ballarini, Tommaso; Iaccarino, Leonardo; Magnani, Giuseppe; Ayakta, Nagehan; Miller, Bruce L; Jagust, William J; Gorno-Tempini, Maria Luisa; Rabinovici, Gil D; Perani, Daniela
2016-12-01
Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer's disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18 F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective, and psychotic SSy). Eighty-five percent of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18 F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N = 51) and Healthy Controls (N = 57). The apathetic, hyperactivity, and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. Hum Brain Mapp 37:4234-4247, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tommaso, Ballarini; Leonardo, Iaccarino; Giuseppe, Magnani; Nagehan, Ayakta; Bruce L, Miller; William J, Jagust; Luisa, Gorno-Tempini Maria; Gil D, Rabinovici; Daniela, Perani
2017-01-01
Neuropsychiatric symptoms (NPSs) often occur in early-age-of-onset Alzheimer’s disease (EOAD) and cluster into sub-syndromes (SSy). The aim of this study was to investigate the association between 18F-FDG-PET regional and connectivity-based brain metabolic dysfunctions and neuropsychiatric SSy. NPSs were assessed in 27 EOAD using the Neuropsychiatric Inventory and further clustered into four SSy (apathetic, hyperactivity, affective and psychotic SSy). 85% of EOAD showed at least one NPS. Voxel-wise correlations between SSy scores and brain glucose metabolism (assessed with 18F-FDG positron emission tomography) were studied. Interregional correlation analysis was used to explore metabolic connectivity in the salience (aSN) and default mode networks (DMN) in a larger sample of EOAD (N=51) and Healthy Controls (N=57). The apathetic, hyperactivity and affective SSy were highly prevalent (>60%) as compared to the psychotic SSy (33%). The hyperactivity SSy scores were associated with increase of glucose metabolism in frontal and limbic structures, implicated in behavioral control. A comparable positive correlation with part of the same network was found for the affective SSy scores. On the other hand, the apathetic SSy scores were negatively correlated with metabolism in the bilateral orbitofrontal and dorsolateral frontal cortex known to be involved in motivation and decision-making processes. Consistent with these SSy regional correlations with brain metabolic dysfunction, the connectivity analysis showed increases in the aSN and decreases in the DMN. Behavioral abnormalities in EOAD are associated with specific dysfunctional changes in brain metabolic activity, in particular in the aSN that seems to play a crucial role in NPSs in EOAD. PMID:27412866
Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein
2013-02-01
Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.
Ruige, Johannes B; Bekaert, Marlies; Lapauw, Bruno; Fiers, Tom; Lehr, Stefan; Hartwig, Sonja; Herzfeld de Wiza, Daniella; Schiller, Martina; Passlack, Waltraud; Van Nieuwenhove, Yves; Pattyn, Piet; Cuvelier, Claude; Taes, Youri E; Sell, Henrike; Eckel, Juergen; Kaufman, Jean-Marc; Ouwens, D Margriet
2012-07-01
Low testosterone accompanied by elevated estradiol associates with the development of metabolic dysfunction in men. The aim of the study was to explore the hypothesis that alterations in sex steroid levels induce metabolic dysfunction through adipokines. Circulating levels of sex steroids and 28 adipokines were determined in a cross-sectional study of morbidly obese men and aged-matched controls, as well as in a randomized clinical trial with healthy young men in which obesity-related alterations in sex steroid levels were mimicked by treatment with an aromatase inhibitor plus estradiol patches. Morbidly obese men had lower testosterone levels than normal-weight controls. Estradiol levels were increased in morbidly obese men (without DM2) as compared to normal-weight controls. Circulating levels of multiple proinflammatory cytokines, including IL-1Ra, IL-5, IL-6, IL-10, leptin, monocyte chemoattractant protein 1 (MCP1), and macrophage inflammatory protein 1α, positively associated with estradiol and negatively with testosterone. The associations with estradiol, but not with testosterone, remained significant after adjusting for adipocyte cell size. In a separate clinical trial, the direct adverse effects of lowering testosterone and raising estradiol on MCP1 were substantiated in vivo. Initial alterations in sex steroid levels may contribute to metabolic dysfunction through adverse effects on adipokine levels in obese men. The direct adverse effects on MCP1, a chemokine highly linked to the development of metabolic dysfunction, were substantiated in a trial mimicking obesity-related alterations of sex steroid levels in healthy young males.
Salomé Campos, Dijon Henrique; Grippa Sant’Ana, Paula; Okoshi, Katashi; Padovani, Carlos Roberto; Masahiro Murata, Gilson; Nguyen, Son; Kolwicz, Stephen C.; Cicogna, Antonio Carlos
2018-01-01
Pathological cardiac hypertrophy leads to derangements in lipid metabolism that may contribute to the development of cardiac dysfunction. Since previous studies, using high saturated fat diets, have yielded inconclusive results, we investigated whether provision of a high-unsaturated fatty acid (HUFA) diet was sufficient to restore impaired lipid metabolism and normalize diastolic dysfunction in the pathologically hypertrophied heart. Male, Wistar rats were subjected to supra-valvar aortic stenosis (SVAS) or sham surgery. After 6 weeks, diastolic dysfunction and pathological hypertrophy was confirmed and both sham and SVAS rats were treated with either normolipidic or HUFA diet. At 18 weeks post-surgery, the HUFA diet failed to normalize decreased E/A ratios or attenuate measures of cardiac hypertrophy in SVAS animals. Enzymatic activity assays and gene expression analysis showed that both normolipidic and HUFA-fed hypertrophied hearts had similar increases in glycolytic enzyme activity and down-regulation of fatty acid oxidation genes. Mass spectrometry analysis revealed depletion of unsaturated fatty acids, primarily linoleate and oleate, within the endogenous lipid pools of normolipidic SVAS hearts. The HUFA diet did not restore linoleate or oleate in the cardiac lipid pools, but did maintain body weight and adipose mass in SVAS animals. Overall, these results suggest that, in addition to decreased fatty acid oxidation, aberrant unsaturated fatty acid metabolism may be a maladaptive signature of the pathologically hypertrophied heart. The HUFA diet is insufficient to reverse metabolic remodeling, diastolic dysfunction, or pathologically hypertrophy, possibly do to preferentially partitioning of unsaturated fatty acids to adipose tissue. PMID:29494668
Liu, Chunyan; Wang, Yangang
2017-01-01
In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive, and psychiatric symptoms of depression commonly observed after myocardial infarction. Peripheral 5-hydroxytryptamine is an important substance in the gut-brain axis, and its abnormal metabolism is a critical finding after myocardial infarct. PMID:28212441
Lu, Xiaofang; Wang, Yuefen; Liu, Chunyan; Wang, Yangang
2017-01-01
In this study, we investigated the relationship between tryptophan-5-hydroxytryptamine metabolism, depressive disorder, and gastrointestinal dysfunction in rats after myocardial infarction. Our goal was to elucidate the physiopathologic bases of somatic/psychiatric depression symptoms after myocardial infarction. A myocardial infarction model was established by permanent occlusion of the left anterior descending coronary artery. Depression-like behavior was evaluated using the sucrose preference test, open field test, and forced swim test. Gastric retention and intestinal transit were detected using the carbon powder labeling method. Immunohistochemical staining was used to detect indoleamine 2,3-dioxygenase expression in the hippocampus and ileum. High-performance liquid chromatography with fluorescence and ultraviolet detection determined the levels of 5-hydroxytryptamine, its precursor tryptophan, and its metabolite 5-hydroxyindoleacetic acid in the hippocampus, distal ileum, and peripheral blood. All data were analyzed using one-way analyses of variance. Three weeks after arterial occlusion, rats in the model group began to exhibit depression-like symptoms. For example, the rate of sucrose consumption was reduced, the total and central distance traveled in the open field test were reduced, and immobility time was increased, while swimming, struggling and latency to immobility were decreased in the forced swim test. Moreover, the gastric retention rate and gastrointestinal transit rate were increased in the model group. Expression of indoleamine 2,3-dioxygenase was increased in the hippocampus and ileum, whereas 5-hydroxytryptamine metabolism was decreased, resulting in lower 5-hydroxytryptamine and 5-hydroxyindoleacetic acid levels in the hippocampus and higher levels in the ileum. Depressive disorder and gastrointestinal dysfunction after myocardial infarction involve abnormal tryptophan-5-hydroxytryptamine metabolism, which may explain the somatic, cognitive, and psychiatric symptoms of depression commonly observed after myocardial infarction. Peripheral 5-hydroxytryptamine is an important substance in the gut-brain axis, and its abnormal metabolism is a critical finding after myocardial infarct.
USDA-ARS?s Scientific Manuscript database
OBJECTIVE: Regulation of fatty acid (FA) metabolism is central to adipocyte dysfunction during diet-induced obesity (DIO). Long-chain acyl-CoA synthetase-4 (ACSL4) has been hypothesized to modulate the metabolic fates of polyunsaturated FA (PUFA), including arachidonic acid (AA), but the in vivo act...
Compound mechanism hypothesis on +Gz induced brain injury and dysfunction of learning and memory
NASA Astrophysics Data System (ADS)
Sun, Xi-Qing; Li, Jin-Sheng; Cao, Xin-Sheng; Wu, Xing-Yu
2005-08-01
We systematically studied the effect of high- sustained +Gz on the brain and its mechanism in past ten years by animal centrifuge experiments. On the basis of the facts we observed and the more recent advances in acceleration physiology, we put forward a compound mechanism hypothesis to offer a possible explanation for +Gz-induced brain injury and dysfunction of learning and memory. It states that, ischemia during high G exposure might be the main factor accounting for +Gz-induced brain injury and dysfunction of learning and memory, including transient depression of brain energy metabolism, disturbance of ion homeostasis, increased blood-brain barrier permeability, increased brain nitric oxide synthase expression, and the protective effect of heat shock protein 70. In addition, the large rapid change of intracranial pressure and increased stress during +Gz exposure, and the hemorrheologic change after +Gz exposure might be one of the important factors accounting for +Gz-induced brain injury and dysfunction of learning and memory.
Clinical, Dopaminergic, and Metabolic Correlations in Parkinson Disease: A Dual-Tracer PET Study.
Liu, Feng-Tao; Ge, Jing-Jie; Wu, Jian-Jun; Wu, Ping; Ma, Yilong; Zuo, Chuan-Tao; Wang, Jian
2018-05-31
Neuroimaging indicators of Parkinson disease have been developed and applied in clinical practices. Dopaminergic imaging reflects nigrostriatal dopaminergic dysfunction, and metabolic network imaging offers disease-related metabolic changes at a system level. We aimed to elucidate the association between Parkinsonian symptoms and neuroimaging, and interactions between different imaging techniques. We conducted a dual-tracer PET study for the combined assessments of dopaminergic binding (C-CFT) and glucose metabolism (F-FDG) in 103 participants with Parkinson disease (65 male and 38 female subjects). The detailed clinical rating scores were systematically collected in all members. The interactions among dopaminergic bindings, metabolic changes, and clinical manifestations were evaluated at voxel, regional, and network levels. Striatal DAT binding correlated with akinesia-rigidity (P < 0.001) but not with tremor; the metabolic PET imaging, nonspecific to the dopaminergic dysfunction, disclosed a set of brain regions correlating with the cardinal symptoms, including tremor. In addition, the unilateral symptom correlated with the contralateral nigrostriatal dopamine loss, but with bilateral metabolic changes, suggesting their differences in the application of disease-related mechanistic studies. Further imaging-imaging correlation study revealed that dopaminergic dysfunction correlated with widely distributed metabolic changes in Parkinson disease, and the modest correlations supported the findings on the clinical-imaging correlation. In this dual-tracer PET study, we demonstrated the robust interactions among dopaminergic dysfunction, metabolic brain changes and clinical manifestations at voxel, regional, and network levels. Our findings might promote the understanding in the proper application of dopaminergic and metabolic PET imaging in Parkinson disease and offer more evidence in support of Parkinsonian pathophysiological mechanisms.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Lifestyle modifications and erectile dysfunction: what can be expected?
Maiorino, Maria Ida; Bellastella, Giuseppe; Esposito, Katherine
2015-01-01
Erectile dysfunction (ED) is a common medical disorder whose prevalence is increasing worldwide. Modifiable risk factors for ED include smoking, lack of physical activity, wrong diets, overweight or obesity, metabolic syndrome, and excessive alcohol consumption. Quite interestingly, all these metabolic conditions are strongly associated with a pro-inflammatory state that results in endothelial dysfunction by decreasing the availability of nitric oxide (NO), which is the driving force of the blood genital flow. Lifestyle and nutrition have been recognized as central factors influencing both vascular NO production, testosterone levels, and erectile function. Moreover, it has also been suggested that lifestyle habits that decrease low-grade clinical inflammation may have a role in the improvement of erectile function. In clinical trials, lifestyle modifications were effective in ameliorating ED or restoring absent ED in people with obesity or metabolic syndrome. Therefore, promotion of healthful lifestyles would yield great benefits in reducing the burden of sexual dysfunction. Efforts, in order to implement educative strategies for healthy lifestyle, should be addressed. PMID:25248655
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.
Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li
2018-01-01
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response
Zhong, Hong; Ma, Minjuan
2018-01-01
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction. PMID:29484304
Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue.
Kawasaki, Noritaka; Asada, Rie; Saito, Atsushi; Kanemoto, Soshi; Imaizumi, Kazunori
2012-01-01
Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks. After 16 weeks of feeding, ER stress markers increased and chronic inflammation occurred in adipose tissue. We found that ER stress is induced by free fatty acid (FFA)-mediated reactive oxygen species (ROS) generation and up-regulated gene expression of inflammatory cytokines in 3T3-L1 adipocytes. Oral administration to obese mice of chemical chaperons, which alleviate ER stress, improved chronic inflammation in adipose tissue, followed by the suppression of increased body weight and improved insulin signaling. These results indicate that ER stress plays important pathophysiological roles in obesity-induced adipose tissue dysfunction.
Interventions for the metabolic dysfunction in polycystic ovary syndrome.
Bozdag, Gurkan; Yildiz, Bulent O
2013-08-01
Polycystic ovary syndrome (PCOS) is associated with metabolic disturbances including obesity, insulin resistance, diabetes and dyslipidemia. Cardiometabolic risk should be assessed at regular intervals starting from diagnosis. A comprehensive clinical evaluation includes determination of body mass index, waist circumference, blood pressure and measurement of serum lipid and glucose levels in all women with PCOS. A standard 2-h 75g oral glucose tolerance test is required for women with a body mass index over 25kg/m(2) and with other risk factors for glucose intolerance. No long-term data are available for the risk or benefit of any medical intervention for metabolic dysfunction of PCOS. For the initial management of metabolic dysfunction in PCOS, available guidelines recommend lifestyle intervention which improves androgen excess and insulin resistance without significant effect on glucose intolerance or dyslipidemia. Pharmacological interventions include insulin sensitizing agents and statins. Metformin is the most commonly prescribed insulin sensitizer in PCOS. Available randomized controlled trials suggest that metformin improves insulin resistance without any effect on body mass index, fasting glucose or lipid levels. Short term use of statins alone or in combination with metformin decreases total cholesterol, low-density lipoprotein-cholesterol and triglycerides in PCOS patients with dyslipidemia. Low dose oral contraception in PCOS appears not to be associated with clinically significant metabolic dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Morinda citrifolia Linn. (Noni) and Its Potential in Obesity-Related Metabolic Dysfunction.
Inada, Aline Carla; Figueiredo, Priscila Silva; Santos-Eichler, Rosângela Aparecida Dos; Freitas, Karine de Cássia; Hiane, Priscila Aiko; Castro, Alinne Pereira de; Guimarães, Rita de Cássia Avellaneda
2017-05-25
Cultural and economic shifts in the early 19th century led to the rapid development of companies that made good profits from technologically-produced commodities. In this way, some habits changed in society, such as the overconsumption of processed and micronutrient-poor foods and devices that gave rise to a sedentary lifestyle. These factors influenced host-microbiome interactions which, in turn, mediated the etiopathogenesis of "new-era" disorders and diseases, which are closely related, such as obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, hypertension, and inflammatory bowel disease, which are characterized by chronic dysregulation of metabolic and immune processes. These pathological conditions require novel and effective therapeutic approaches. Morinda citrifolia (noni) is well known as a traditional healing plant due to its medicinal properties. Thus, many studies have been conducted to understand its bioactive compounds and their mechanisms of action. However, in obesity and obesity-related metabolic (dysfunction) syndrome, other studies are necessary to better elucidate noni's mechanisms of action, mainly due to the complexity of the pathophysiology of obesity and its metabolic dysfunction. In this review, we summarize not only the clinical effects, but also important cell signaling pathways in in vivo and in vitro assays of potent bioactive compounds present in the noni plant which have been reported in studies of obesity and obesity-associated metabolic dysfunction.
Morinda citrifolia Linn. (Noni) and Its Potential in Obesity-Related Metabolic Dysfunction
Inada, Aline Carla; Figueiredo, Priscila Silva; dos Santos-Eichler, Rosângela Aparecida; Freitas, Karine de Cássia; Hiane, Priscila Aiko; de Castro, Alinne Pereira; Guimarães, Rita de Cássia Avellaneda
2017-01-01
Cultural and economic shifts in the early 19th century led to the rapid development of companies that made good profits from technologically-produced commodities. In this way, some habits changed in society, such as the overconsumption of processed and micronutrient-poor foods and devices that gave rise to a sedentary lifestyle. These factors influenced host-microbiome interactions which, in turn, mediated the etiopathogenesis of “new-era” disorders and diseases, which are closely related, such as obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease, hypertension, and inflammatory bowel disease, which are characterized by chronic dysregulation of metabolic and immune processes. These pathological conditions require novel and effective therapeutic approaches. Morinda citrifolia (noni) is well known as a traditional healing plant due to its medicinal properties. Thus, many studies have been conducted to understand its bioactive compounds and their mechanisms of action. However, in obesity and obesity-related metabolic (dysfunction) syndrome, other studies are necessary to better elucidate noni’s mechanisms of action, mainly due to the complexity of the pathophysiology of obesity and its metabolic dysfunction. In this review, we summarize not only the clinical effects, but also important cell signaling pathways in in vivo and in vitro assays of potent bioactive compounds present in the noni plant which have been reported in studies of obesity and obesity-associated metabolic dysfunction. PMID:28587078
[Nebido in the treatment of hypogonadism syndrome and its complications in men].
Dedov, I I; Kurbatov, D G; Rozhivanov, R V; Lepetukhin, A E; Dubskiĭ, S A; Goncharov, N P
2011-01-01
The article presents original experience with use of undecanoate (nebido, BayerHealthcare Pharmaceuticals, Germany) in androgenic testosteron replacement therapy in males with hypogonadism. Prospective studies of nebido efficacy were made in males with vein-occlusive erectile dysfunction (n = 20), chronic pelvic pain syndrome (n = 77), metabolic syndrome (n = 170). Retrospective studies assessed efficacy of nebido monotherapy in patients with erectile dysfunction and hypogonadism (n = 34), hematological and urological safety of the drug (n = 40). Laboratory monitoring was performed in all the studies according to ISSAM recommendations. The patients were not included in contraindications to androgenic therapy. Nebido treatment significantly improved libido and erectile function, efficacy of phosphodiesterase of type 5 inhibiors used in moderate and severe erectile dysfunction. Depressive, asthenic, pain symptoms declined in males with chronic pelvic pain. Body fat reduced in metabolic syndrome with alleviation of its other components. Insignificant rise of hemoglobin level and packed cell volume was observed in some patients while a PSA level increase was clinically significant in 10% patients who had initial PSA > 2.5 ng/ml and acromegalia. Also, nebido depressed production of gonadotropins and spermatogenesis. Thus, nebido is highly effective in sexual dysfunction and other somatic disorders caused by hypogonadism. Nebido does not induce severe side effects, but clinically significant rise of PSA level requires treatment discontinuation and more careful urological examination. In view of nebido ability to suppress spermatogenesis, the drug should not be used in reproductively active men.
van Greevenbroek, Marleen M. J.; Schalkwijk, Casper G.; Stehouwer, Coen D.A.
2016-01-01
The ongoing worldwide obesity epidemic makes the metabolic syndrome an increasingly important entity. In this review, we provide a short background on the metabolic syndrome, we discuss recent developments in the three main options that have been identified for intervention in the metabolic syndrome, i.e. lifestyle and surgical and pharmacological interventions, and we focus on different views in the literature and also include our own viewpoints on the metabolic syndrome. In addition, we discuss some emerging treatment targets for adipose tissue dysfunction and low-grade inflammation, i.e. activation of the inflammasome and the complement system, and consider some selected opportunities for intervention in these processes. PMID:27803798
Kho, Min Chul; Lee, Yun Jung; Park, Ji Hun; Kim, Hye Yoom; Yoon, Jung Joo; Ahn, You Mee; Tan, Rui; Park, Min Cheol; Cha, Jeong Dan; Choi, Kyung Min; Kang, Dae Gill; Lee, Ho Sub
2016-01-01
Metabolic syndrome including obesity, dyslipidemia and hypertension is a cluster of risk factors of cardiovascular disease. Fermentation of medicinal herbs improves their pharmacological efficacy. Red ginseng (RG), a widely used traditional herbal medicine, was reported with anti-inflammatory and anti-oxidant activity. Aim in the present study was to investigate that the effects of fermented red ginseng (FRG) on a high-fructose (HF) diet induced metabolic disorders, and those effects were compared to RG and losartan. Animals were divided into four groups: a control group fed a regular diet and tap water, and fructose groups that were fed a 60% high-fructose (HF) diet with/without RG 250 mg/kg/day or FRG 250 mg/kg/day for eight weeks, respectively. Treatment with FRG significantly suppressed the increments of body weight, liver weight, epididymal fat weight and adipocyte size. Moreover, FRG significantly prevented the development of metabolic disturbances such as hyperlipidemia and hypertension. Staining with Oil-red-o demonstrated a marked increase of hepatic accumulation of triglycerides, and this increase was prevented by FRG. FRG ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1) and adhesion molecules in the aorta. In addition, FRG induced markedly upregulation of Insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (Glut4) in the muscle. These results indicate that FRG ameliorates obesity, dyslipidemia, hypertension and fatty liver in HF diet rats. More favorable pharmacological effects on HF diet induced metabolic disorders were observed with FRG, compared to an equal dose of RG. These results showed that the pharmacological activity of RG was enhanced by fermentation. Taken together, fermentated red ginseng might be a beneficial therapeutic approach for metabolic syndrome. PMID:27322312
Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji
2017-08-22
Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.
Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija
2017-08-01
Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sang Won; Kang, Jung-Woo; Lee, Sun-Mee, E-mail: sunmee@skku.edu
This study was designed to investigate the role of heme oxygenase-1 (HO-1) in hepatic drug metabolizing dysfunction after ischemia/reperfusion (IR) in alcoholic fatty liver (AFL). Rats were fed a Lieber–DeCarli diet for five weeks to allow for development of AFL and were then subjected to 90 min of hepatic ischemia and 5 h of reperfusion. Rats were pretreated with hemin (HO-1 inducer) or ZnPP (HO-1 inhibitor) for 16 h and 3 h before hepatic ischemia. After hepatic IR, ethanol diet (ED)-fed rats had higher serum aminotransferase activities and more severe hepatic necrosis compared to the control diet (CD)-fed rats. Thesemore » changes were attenuated by hemin and exacerbated by ZnPP. The activity and gene expression of HO-1 and its transcription factor (Nrf2) level increased significantly after 5 h of reperfusion in CD-fed rats but not in ED-fed rats. After reperfusion, cytochrome P450 (CYP) 1A1, 1A2, and 2B1 activities were reduced to levels lower than those observed in sham group, whereas CYP2E1 activity increased. The decrease in CYP2B1 activity and the increase in CYP2E1 activity were augmented after hepatic IR in ED-fed animals. These changes were significantly attenuated by hemin but aggravated by ZnPP. Finally, CHOP expression and PERK phosphorylation, microsomal lipid peroxidation, and levels of proinflammatory mediators increased in ED-fed rats compared to CD-fed rats after reperfusion. These increases were attenuated by hemin. Our results suggest that AFL exacerbates hepatic drug metabolizing dysfunction during hepatic IR via endoplasmic reticulum stress and lipid peroxidation and this is associated with impaired HO-1 induction. - Highlights: • Endogenous HO-1 is generated in insufficient quantities in steatotic ischemic injury. • Impaired HO-1 induction leads to excessive ER stress response and lipid peroxidation. • Alcoholic steatosis exacerbates IR-induced hepatic drug-metabolizing dysfunction. • HO-1 induction is required for appropriate medication in patients with steatosis.« less
Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov
2016-01-01
Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092
Ono-Moore, Kikumi D.; Ferguson, Matthew; Blackburn, Michael L.; Issafras, Hassan; Adams, Sean H.
2016-01-01
High-fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Dysfunction of triacylglycerol (TAG) metabolism may contribute to the development of hepatic steatosis, via increased de novo lipogenesis or repackaging of circulating nonesterified fatty acids (NEFAs). Hepatic TAG production (HTP) rate can be assessed through injecting mice with nonionic detergents that inhibit tissue lipoprotein lipase. Potential confounding effects of detergent-based HTP tests (HTPTs) used in longitudinal studies—including the impact on food intake, energy balance, and weight gain—have not been reported. To examine this, male C57BL/6J mice were fed a 10% or 60% kcal diet. After 4 weeks, the mice underwent an HTPT via poloxamer 407 intraperitoneal injections (1000 mg/kg). Weight gain, energy intake, and postabsorptive TAG levels normalized 7–10 days post-HTPT. The post-HTPT recovery of body weight and energy intake suggest that, in metabolic phenotyping studies, any additional sample collection should occur at least 7–10 days after the HTPT to reduce confounding effects. Diet-specific effects on HTP were also observed: HF-fed mice had reduced HTP, plasma TAG, and NEFA levels compared to controls. In conclusion, the current study highlights the procedural and physiological complexities associated with studying lipid metabolism using a HTPT in the DIO mouse model. PMID:28036028
Del Rio, Rodrigo; Quintanilla, Rodrigo A.; Orellana, Juan A.; Retamal, Mauricio A.
2015-01-01
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process. PMID:26648871
Ono-Moore, Kikumi D; Ferguson, Matthew; Blackburn, Michael L; Issafras, Hassan; Adams, Sean H
2016-12-28
High-fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Dysfunction of triacylglycerol (TAG) metabolism may contribute to the development of hepatic steatosis, via increased de novo lipogenesis or repackaging of circulating nonesterified fatty acids (NEFAs). Hepatic TAG production (HTP) rate can be assessed through injecting mice with nonionic detergents that inhibit tissue lipoprotein lipase. Potential confounding effects of detergent-based HTP tests (HTPTs) used in longitudinal studies-including the impact on food intake, energy balance, and weight gain-have not been reported. To examine this, male C57BL/6J mice were fed a 10% or 60% kcal diet. After 4 weeks, the mice underwent an HTPT via poloxamer 407 intraperitoneal injections (1000 mg/kg). Weight gain, energy intake, and postabsorptive TAG levels normalized 7-10 days post-HTPT. The post-HTPT recovery of body weight and energy intake suggest that, in metabolic phenotyping studies, any additional sample collection should occur at least 7-10 days after the HTPT to reduce confounding effects. Diet-specific effects on HTP were also observed: HF-fed mice had reduced HTP, plasma TAG, and NEFA levels compared to controls. In conclusion, the current study highlights the procedural and physiological complexities associated with studying lipid metabolism using a HTPT in the DIO mouse model.
Arruda, Ana Paula; Pers, Benedicte M; Parlakgül, Güneş; Güney, Ekin; Inouye, Karen; Hotamisligil, Gökhan S
2014-12-01
Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.
Metabolic regulation of inflammation.
Gaber, Timo; Strehl, Cindy; Buttgereit, Frank
2017-05-01
Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.
Hamamura, Kengo; Matsunaga, Naoya; Ikeda, Eriko; Kondo, Hideaki; Ikeyama, Hisako; Tokushige, Kazutaka; Itcho, Kazufumi; Furuichi, Yoko; Yoshida, Yuya; Matsuda, Masaki; Yasuda, Kaori; Doi, Atsushi; Yokota, Yoshifumi; Amamoto, Toshiaki; Aramaki, Hironori; Irino, Yasuhiro; Koyanagi, Satoru; Ohdo, Shigehiro
2016-03-04
Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qin-Qin; Qinghai Provincial People's Hospital, Xining; Xiao, Feng-Jun
Hypoxia provokes metabolism misbalance, mitochondrial dysfunction and oxidative stress in both human and animal cells. However, the mechanisms which hypoxia causes mitochondrial dysfunction and energy metabolism misbalance still remain unclear. In this study, we presented evidence that mitochondrial phosphatase Ptpmt1 is a hypoxia response molecule that regulates cell proliferation, survival and glucose metabolism in human erythroleukemia TF-1 cells. Exposure to hypoxia or DFO treatment results in upregulation of HIF1-α, HIF-2α and Ptpmt1. Only inhibition of HIF-2α by shRNA transduction reduces Ptpmt1 expression in TF-1 cells under hypoxia. Ptpmt1 inhibitor suppresses the growth and induces apoptosis of TF-1 cells. Furthermore, we demonstrated that Ptpmt1more » inhibition reduces the Glut1 and Glut3 expression and decreases the glucose consumption in TF-1 cells. In additional, Ptpmt1 knockdown also results in the mitochondrial dysfunction determined by JC1 staining. These results delineate a key role for HIF-2α-induced Ptpmt1 upregulation in proliferation, survival and glucose metabolism of erythroleukemia cells. It is indicated that Ptpmt1 plays important roles in hypoxia-induced cell metabolism and mitochondrial dysfunction. - Highlights: • Hypoxia induces upregulation of HIF-1α, HIF-2α and Ptpmt1; HIF-2a induces Ptpmt1 upregulation in TF-1 cells. • PTPMT-1 inhibition reduces growth and induces apoptosis of TF-1 cells. • PTPMT1 inhibition downregulates Glut-1, Glut-3 expression and reduces glucose consumption.« less
Madji Hounoum, Blandine; Mavel, Sylvie; Coque, Emmanuelle; Patin, Franck; Vourc'h, Patrick; Marouillat, Sylviane; Nadal-Desbarats, Lydie; Emond, Patrick; Corcia, Philippe; Andres, Christian R; Raoul, Cédric; Blasco, Hélène
2017-04-01
The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605. © 2017 Wiley Periodicals, Inc.
Assessment of Mitochondrial Dysfunction Arising from Treatment with Hepatotoxicants
King, Adrienne L.; Bailey, Shannon M.
2010-01-01
Studies demonstrate that mitochondrial dysfunction is a key causative factor in liver disease. Indeed, defects in mitochondrial energy metabolism, disrupted calcium handling, and increased reactive oxygen/nitrogen species production are observed in many metabolic disorders and diseases induced by toxicants. Mitochondria have emerged as a main research focus through work defining new functions of this key organelle in normal cellular physiology and pathophysiology. Specifically, studies show a critical role of mitochondrial reactive oxygen/nitrogen species production in regulating cellular signaling pathways involved in cell survival and death. Given this, along with advances made in proteomics technologies, mitochondria are recognized as top candidates for proteomics analysis. However, assessment of mitochondrial function and it’s proteome following toxicant exposure are not trivial undertakings. In this chapter a technique used to isolate mitochondria from liver tissue is presented along with methods needed to assess mitochondria functionality. The methods described include measurement of mitochondrial respiration, calcium accumulation, and reactive oxygen species production. A presentation of proteomics approaches is also included to allow researchers the basic tools needed to identify alterations in the mitochondrial proteome that contribute to toxicant-mediated diseases. Specifically, methods are presented that demonstrate how thiol labeling reagents in combination with electrophoresis and western blotting can be used to detect oxidant-mediated alterations in mitochondrial protein thiols. A few select pieces data are presented highlighting the power of proteomics to identify mitochondrial targets that contribute to mitochondrial dysfunction and hepatotoxicity in response to specific toxicant exposures and metabolic stressors such as alcohol and environmental tobacco smoke. PMID:23045017
Opportunities for genetic improvement of metabolic diseases
USDA-ARS?s Scientific Manuscript database
Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors and status of gene...
microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis
de Guia, Roldan M; Rose, Adam J; Sommerfeld, Anke; Seibert, Oksana; Strzoda, Daniela; Zota, Annika; Feuchter, Yvonne; Krones-Herzig, Anja; Sijmonsma, Tjeerd; Kirilov, Milen; Sticht, Carsten; Gretz, Norbert; Dallinga-Thie, Geesje; Diederichs, Sven; Klöting, Nora; Blüher, Matthias; Berriel Diaz, Mauricio; Herzig, Stephan
2015-01-01
In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction. PMID:25510864
Endocrine and metabolic disorders associated with human immune deficiency virus infection.
Unachukwu, C N; Uchenna, D I; Young, E E
2009-01-01
Many reports have described endocrine and metabolic disorders in the human immunodeficiency virus (HIV) infection. This article reviewed various reports in the literature in order to increase the awareness and thus the need for early intervention when necessary. Data were obtained from MEDLINE, Google search and otherjournals on 'HIV, Endocrinopathies/Metabolic Disorders' from 1985 till 2007. Studies related to HIV associated endocrinopathies and metabolic disorders in the last two decades were reviewed. Information on epidemiology, pathogenesis, diagnosis and treatment of the target organ endocrinopathies and metabolic disorders in HIV/AIDS were extracted from relevant literature. Endocrine and metabolic disturbances occur in the course of HIV infection. Pathogenesis includes direct infection of endocrine glands by HIV or opportunistic organisms, infiltration by neoplasms and side effects of drugs. Adrenal insufficiency is the commonest HIV endocrinopathy with cytomegalovirus adrenalitis occurring in 40-88% of cases. Thyroid dysfunction may occur as euthyroid sick syndrome or sub-clinical hypothyroidism. Hypogonadotrophic dysfunction accounts for 75% of HIV-associated hypogonadism, with prolonged amenorrhoea being three times more likely in the women. Pancreatic dysfunction may result in hypoglycaemia or diabetes mellitus (DM). Highly active antiretroviral therapy (HAART) especially protease inhibitors has been noted to result in insulin resistance and lipodystrophy. Virtually every endocrine organ is involved in the course of HIV infection. Detailed endocrinological and metabolic evaluation and appropriate treatment is necessary in the optimal management of patients with HIV infection in our environment.
Metabolic Syndrome and Sexual Function in Postmenopausal Women.
Trompeter, Susan E; Bettencourt, Ricki; Barrett-Connor, Elizabeth
2016-12-01
Limited literature suggests that sexual dysfunction in women covaries with the metabolic syndrome. This study examined the association of sexual function with metabolic syndrome and cardiovascular disease in healthy older women. There were 376 postmenopausal, community-dwelling women from the Rancho Bernardo Study (mean baseline age = 73 years) that completed a clinic visit during 1999-2002 and returned the Female Sexual Function Index (FSFI) questionnaire mailed in 2002. Thirty-nine percent reported being sexually active; 41.5% met a diagnosis of metabolic syndrome. The number of metabolic syndrome components was strongly associated with decreased sexual activity, desire, and low sexual satisfaction. Waist girth, diabetes, and hypertension were associated with decreased sexual activity. Elevated triglycerides were associated with low desire. Among the cardiovascular endpoints, heart attack, coronary artery bypass, and angina were associated with decreased sexual activity, but not with sexual desire or satisfaction. Past diagnosis of heart failure, poor circulation, and stroke were not associated with sexual function. Sexually active women with metabolic syndrome met criteria for sexual dysfunction in desire, arousal, orgasm, and satisfaction domains. The FSFI Total Score did not differ significantly between sexually active and inactive women. Metabolic syndrome was associated with decreased sexual activity, desire, and satisfaction in all women and with sexual dysfunction in most domains in sexually active women. Coronary artery disease was more prevalent in women with low sexual activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Chechi, Kanta; McGuire, John J; Cheema, Sukhinder K
2009-04-01
We have previously shown that a maternal high-fat diet, rich in saturated fatty acids (SFA), alters the lipid metabolism of their adult offspring. The present study was designed to investigate 1) whether alterations in hepatic LDL-receptor (LDL-r) expression may serve as a potential mechanism of developmental programming behind the altered lipid metabolism of the offspring, 2) whether altered lipid metabolism leads to aortic vascular dysfunction in the offspring, 3) whether deleterious effects of SFA exposure preweaning are influenced by postweaning diet, and 4) whether gender-specific programming effects are observed. Female C57Bl/6 mice were fed a high-SFA diet or regular chow during gestation and lactation while their pups, both male and female, received either SFA or a chow diet after weaning. Male offspring obtained from mothers fed an SFA diet and those who continued on chow postweaning had higher plasma triglycerides and total cholesterol, whereas female offspring had higher plasma total and LDL cholesterol levels, lower hepatic LDL-r mRNA expression, and reduced aortic contractile responses compared with the offspring that were fed chow throughout the study. A comparison of the postweaning diet revealed significantly lower hepatic LDL-r expression along with significantly higher plasma LDL-cholesterol concentration in the female offspring that were obtained from mothers fed an SFA diet and who continued on an SFA diet postweaning, compared with the female offspring that were obtained from mothers fed an SFA diet but who continued on chow postweaning. In conclusion, we report a novel observation of hepatic LDL-r-mediated programming of altered lipid metabolism, along with aortic vascular dysfunction, in the female offspring of mothers fed a high-SFA diet. Male offspring only exhibited dyslipidemia, suggesting gender-mediated programming. This study further highlighted the role of postweaning diets in overriding the effects of maternal programming.
Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S
2003-06-01
A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.
Subclinical hypothyroidism, lipid metabolism and cardiovascular disease.
Delitala, Alessandro P; Fanciulli, Giuseppe; Maioli, Margherita; Delitala, Giuseppe
2017-03-01
Subclinical hypothyroidism is defined by elevated serum thyrotropin in presence of normal free thyroid hormones. Lipid metabolism is influenced by thyroid hormone and many reports showed that lipids status worsen along with TSH level. Subclinical hypothyroidism has been also linked to other cardiovascular risk factors such as alteration in blood pressure and increased atherosclerosis. Further evidences suggested that mild dysfunction of thyroid gland is associated with metabolic syndrome and heart failure. Thyrotropin level seems the best predictor of cardiovascular disease, in particular when its levels are above 10mU/L. However, despite these observations, there is no clear evidence that levothyroxine therapy in subjects with milder form of subclinical hypothyroidism could improve lipid status and the other cardiovascular risk factors. In this review, we address the effect of thyroid hormone and cardiovascular risk, with a focus on lipid metabolism. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Joseph, Jamie; Depp, Colin; Shih, Pei-an B.; Cadenhead, Kristen S.; Schmid-Schönbein, Geert
2017-01-01
Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia. PMID:28396623
Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G
2017-09-01
Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.
Evaluation of the metabolism of high energy phosphates in patients with Chagas' disease.
Leme, Ana Maria Betim Paes; Salemi, Vera Maria Cury; Parga, José Rodrigues; Ianni, Bárbara Maria; Mady, Charles; Weiss, Robert G; Kalil-Filho, Roberto
2010-08-01
Abnormalities in myocardial metabolism have been observed in patients with heart failure of different etiologies. Magnetic resonance spectroscopy (MRS) with phosphorus-31 is a noninvasive technique that allows detection of myocardial metabolic changes. To determine the resting metabolism of high-energy phosphates in patients with Chagas' disease (CD) by MRS with phosphorus-31. We studied 39 patients with CD, 23 with preserved ventricular function (PF Group) and 16 with ventricular dysfunction (VD Group), assessed by Doppler echocardiography. MRS of the anterosseptal region was performed in 39 patients and 8 normal subjects (C Group) through a Phillips 1.5 Tesla device, obtaining the phosphocreatine/beta-adenosine triphosphate myocardial ratio (PCr/β-ATP). The levels of cardiac PCr/β-ATP were reduced in VD Group in relation to PF Group, and the latter presented reduced levels compared to C Group (VD Group: 0.89 ± 0.31 vs PF Group: 1.47 ± 0.34 vs C Group: 1.88 ± 0.08, p < 0.001). A correlation was found between left ventricular ejection fraction and PCr/β-ATP in 39 patients (r = 0.64, p < 0.001). Patients under functional class I (n = 22) presented PCr/β-ATP of 1.45 ± 0.35, and those in functional classes II and III (n = 17), PCr/β-ATP of 0.94 ± 0.36 (p < 0.001). The 31-phosphorus MRS was able to detect non-invasively changes in the rest energy metabolism of patients with Chagas' disease, with and without systolic dysfunction. These changes were related to the severity of heart impairment.
Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans
MJ, Falk; Z, Zhang; Rosenjack; Nissim; E, Daikhin; Nissim; MM, Sedensky; M, Yudkoff; PG, Morgan
2008-01-01
C. elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear gene that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes. Our goal was to detect concordant changes among clusters of genes that comprise defined metabolic pathways. Results indicate that respiratory chain mutants significantly upregulate a variety of basic cellular metabolic pathways involved in carbohydrate, amino acid, and fatty acid metabolism, as well as cellular defense pathways such as the metabolism of P450 and glutathione. To further confirm and extend expression analysis findings, quantitation of whole worm free amino acid levels was performed in C. elegans mitochondrial mutants for subunits of complexes I, II, and III. Significant differences were seen for 13 of 16 amino acid levels in complex I mutants compared with controls, as well as overarching similarities among profiles of complex I, II, and III mutants compared with controls. The specific pattern of amino acid alterations observed provides novel evidence to suggest that an increase in glutamate-linked transamination reactions caused by the failure of NAD+ dependent oxidation of ketoacids occurs in primary mitochondrial respiratory chain mutants. Recognition of consistent alterations among patterns of nuclear gene expression for multiple biochemical pathways and in quantitative amino acid profiles in a translational genetic model of mitochondrial dysfunction allows insight into the complex pathogenesis underlying primary mitochondrial disease. Such knowledge may enable the development of a metabolomic profiling diagnostic tool applicable to human mitochondrial disease. PMID:18178500
Nonhuman primate models of polycystic ovary syndrome
Abbott, David H; Nicol, Lindsey E; Levine, Jon E; Xu, Ning; Goodarzi, Mark O; Dumesic, Daniel A
2013-01-01
With close genomic and phenotypic similarity to humans, nonhuman primate models provide comprehensive epigenetic mimics of polycystic ovary syndrome (PCOS), suggesting early life targeting for prevention. Fetal exposure to testosterone (T), of all nonhuman primate emulations, provides the closest PCOS-like phenotypes, with early-to-mid gestation T-exposed female rhesus monkeys exhibiting adult reproductive, endocrinological and metabolic dysfunctional traits that are co-pathologies of PCOS. Late gestational T exposure, while inducing adult ovarian hyperandrogenism and menstrual abnormalities, has less dysfunctional metabolic accompaniment. Fetal exposures to dihydrotestosterone (DHT) or diethylstilbestrol (DES) suggest androgenic and estrogenic aspects of fetal programming. Neonatal exposure to T produces no PCOS-like outcome, while continuous T treatment of juvenile females causes precocious weight gain and early menarche (high T), or high LH and weight gain (moderate T). Acute T exposure of adult females generates polyfollicular ovaries, while chronic T exposure induces subtle menstrual irregularities without metabolic dysfunction. PMID:23370180
Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-01-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981
Pertynska-Marczewska, Magdalena; Diamanti-Kandarakis, Evanthia; Zhang, John; Merhi, Zaher
2015-11-01
Polycystic ovary syndrome (PCOS), a heterogeneous syndrome of reproductive and metabolic alterations, is associated with increased long-term risk of cardiovascular complications. This phenomenon has been linked to an increase in oxidative stress and inflammatory markers. Advanced glycation end products (AGEs) are pro-inflammatory molecules that trigger a state of intracellular oxidative stress and inflammation after binding to their cell membrane receptors RAGE. The activation of the AGE-RAGE axis has been well known to play a role in atherosclerosis in both men and women. Women with PCOS have systemic chronic inflammatory condition even at the ovarian level as represented by elevated levels of serum/ovarian AGEs and increased expression of the pro-inflammatory RAGE in ovarian tissue. Data also showed the presence of sRAGE in the follicular fluid and its potential protective role against the harmful effect of AGEs on ovarian function. Thus, whether AGE-RAGE axis constitutes a link between metabolic and endothelial dysfunction in women with PCOS is addressed in this review. Additionally, we discuss the role of hormonal changes observed in PCOS and how they are linked with the AGE-RAGE axis in order to better understand the nature of this complex syndrome whose consequences extend well beyond reproduction. Copyright © 2015 Elsevier Inc. All rights reserved.
Skeletal muscle mitochondrial health and spinal cord injury.
O'Brien, Laura C; Gorgey, Ashraf S
2016-10-18
Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.
Allaway, Heather C M; Southmayd, Emily A; De Souza, Mary Jane
2016-02-01
An energy deficiency is the result of inadequate energy intake relative to high energy expenditure. Often observed with the development of an energy deficiency is a high drive for thinness, dietary restraint, and weight and shape concerns in association with eating behaviors. At a basic physiologic level, a chronic energy deficiency promotes compensatory mechanisms to conserve fuel for vital physiologic function. Alterations have been documented in resting energy expenditure (REE) and metabolic hormones. Observed metabolic alterations include nutritionally acquired growth hormone resistance and reduced insulin-like growth factor-1 (IGF-1) concentrations; hypercortisolemia; increased ghrelin, peptide YY, and adiponectin; and decreased leptin, triiodothyronine, and kisspeptin. The cumulative effect of the energetic and metabolic alterations is a suppression of the hypothalamic-pituitary-ovarian axis. Gonadotropin releasing hormone secretion is decreased with consequent suppression of luteinizing hormone and follicle stimulating hormone release. Alterations in hypothalamic-pituitary secretion alters the production of estrogen and progesterone resulting in subclinical or clinical menstrual dysfunction.
Uemura, Osamu; Iwata, Naoyuki; Nagai, Takuhito; Yamakawa, Satoshi; Hibino, Satoshi; Yamamoto, Masaki; Nakano, Masaru; Tanaka, Kazuki
2018-05-01
To determine the optimal method of evaluating kidney function in patients with thyroid dysfunction, this study compared the estimated glomerular filtration rate derived from serum creatinine, cystatin C, or β2-microglobulin with inulin or creatinine clearance in two pediatric patients, one with hypothyroidism and the other with hyperthyroidism. It was observed that the kidney function decreased in a hypothyroid child and enhanced in a hyperthyroid child, with their kidney function becoming normalized by treatment with drugs, which normalized their thyroid function. Kidney function cannot be accurately evaluated using cystatin C-based or β2-microglobulin-based estimated glomerular filtration rate in patients with thyroid dysfunction, as these tests overestimated glomerular filtration rate in a patient with hypothyroidism and underestimated glomerular filtration rate in a patient with hyperthyroidism, perhaps through a metabolic rate-mediated mechanism. In both our patients, 24-h urinary creatinine secretion was identical before and after treatment, suggesting that creatinine production is not altered in patients with thyroid dysfunction. Therefore, kidney function in patients with thyroid dysfunction should be evaluated using creatinine-based estimated glomerular filtration rate.
De Felice, Fernanda G.; Lourenco, Mychael V.
2015-01-01
Brain metabolic dysfunction is known to influence brain activity in several neurological disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal metabolism has been postulated to play a key role leading to the clinical outcomes observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components of a novel form of brain metabolic stress that develop in AD and other neurological disorders. Here we review findings supporting this novel paradigm and further discuss how these mechanisms seem to participate in synapse and cognitive impairments that are germane to AD. These deleterious processes resemble pathways that act in peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing molecular connection linking AD to diabetes. The discovery of detailed mechanisms leading to neuronal metabolic stress may be a key step that will allow the understanding how cognitive impairment develops in AD, thereby offering new avenues for effective disease prevention and therapeutic targeting. PMID:26042036
Wei, Yongjie; Zhang, Junfeng Jim; Li, Zhigang; Gow, Andrew; Chung, Kian Fan; Hu, Min; Sun, Zhongsheng; Zeng, Limin; Zhu, Tong; Jia, Guang; Li, Xiaoqian; Duarte, Marlyn; Tang, Xiaoyan
2016-06-01
Epidemiologic evidence suggests that air pollution is a risk factor for childhood obesity. Limited experimental data have shown that early-life exposure to ambient particles either increases susceptibility to diet-induced weight gain in adulthood or increases insulin resistance, adiposity, and inflammation. However, no data have directly supported a link between air pollution and non-diet-induced weight increases. In a rodent model, we found that breathing Beijing's highly polluted air resulted in weight gain and cardiorespiratory and metabolic dysfunction. Compared to those exposed to filtered air, pregnant rats exposed to unfiltered Beijing air were significantly heavier at the end of pregnancy. At 8 wk old, the offspring prenatally and postnatally exposed to unfiltered air were significantly heavier than those exposed to filtered air. In both rat dams and their offspring, after continuous exposure to unfiltered air we observed pronounced histologic evidence for both perivascular and peribronchial inflammation in the lungs, increased tissue and systemic oxidative stress, dyslipidemia, and an enhanced proinflammatory status of epididymal fat. Results suggest that TLR2/4-dependent inflammatory activation and lipid oxidation in the lung can spill over systemically, leading to metabolic dysfunction and weight gain.-Wei, Y., Zhang, J., Li, Z., Gow, A., Chung, K. F., Hu, M., Sun, Z., Zeng, L., Zhu, T., Jia, G., Li, X., Duarte, M., Tang, X. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. © FASEB.
Characterization of a Cardiorenal-like Syndrome in Aged Chimpanzees (Pan troglodytes).
Chilton, J; Wilcox, A; Lammey, M; Meyer, D
2016-03-01
Cardiorenal syndrome involves disease and dysfunction of the heart that leads to progressive renal dysfunction. This study investigated the relationship between cardiac and renal disease in 91 aged chimpanzees at the Alamogordo Primate Facility by evaluation of the medical histories, metabolic parameters, functional measurements of the cardiovascular system, clinical pathology, and histopathology focused on the heart and kidney. Cardiac fibrosis was the most frequent microscopic finding in 82 of 91 animals (90%), followed by glomerulosclerosis with tubulointerstitial fibrosis in 63 of 91 (69%). Cardiac fibrosis with attendant glomerulosclerosis and tubulointerstitial fibrosis was observed in 58 of 91 animals (63%); there was a statistically significant association between the 2 conditions. As the severity of cardiac fibrosis increased, there was corresponding increase in severity of glomerulosclerosis with tubulointerstitial fibrosis. Altered metabolic, cardiovascular, and clinical pathology parameters indicative of heart and kidney failure were commonly associated with the moderate to severe microscopic changes, and concurrent heart and kidney failure were considered the cause of death. The constellation of findings in the chimpanzees were similar to cardiorenal syndrome in humans. © The Author(s) 2016.
Thyroid gland and cerebella lesions: New risk factors for sudden cardiac death in schizophrenia?
Scorza, Fulvio A; Cavalheiro, Esper A; de Albuquerque, Marly; de Albuquerque, Juliana; Cysneiros, Roberta M; Terra, Vera C; Arida, Ricardo M
2011-02-01
People with schizophrenia show a two to threefold increased risk to die prematurely than those without schizophrenia. Patients' life style, suicide, premature development of cardiovascular disease, high prevalence of metabolic syndrome and sudden cardiac death are well-known causes of the excess mortality. The exact pathophysiological cause of sudden death in schizophrenia is unknown, but it is likely that cardiac arrhythmia and respiratory abnormalities play potential role. Some antipsychotics may be associated with cardiovascular adverse events (e.g., QT interval prolongation) and lesions in specific brain regions, such as cerebella may be associated with respiratory abnormalities, suggesting that metabolic and brain dysfunction could lead to sudden cardiac death in patients with schizophrenia. However, exact knowledge regarding the association of these findings and schizophrenia is lacking. As subclinical hyperthyroidism has been linked with increased risk of cardiovascular disease and cerebella progressive atrophy has been observed in patients with schizophrenia, we propose in this paper that subclinical thyroid dysfunction and cerebella volume loss could be considered as new risk factor for sudden cardiac death in schizophrenia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dasuri, Kalavathi; Ebenezer, Philip; Fernandez-Kim, Sun Ok; Zhang, Le; Gao, Zhanguo; Bruce-Keller, Annadora J; Freeman, Linnea R; Keller, Jeffrey N
2013-01-01
Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.
Etiological classification of depression based on the enzymes of tryptophan metabolism.
Fukuda, Katsuhiko
2014-12-24
Viewed in terms of input and output, the mechanisms of depression are still akin to a black box. However, there must be main pivots for diverse types of depression. From recent therapeutic observations, both the serotonin (5-HT) and kynurenine pathways of tryptophan metabolism may be of particular importance to improved understanding of depression. Here, I propose an etiological classification of depression, based on key peripheral and central enzymes of tryptophan metabolism. Endogenous depression is caused by a larger genetic component than reactive depression. Besides enterochromaffin and mast cells, tryptophan hydroxylase 1 (TPH1), primarily expressed in the gastrointestinal tract, is also found in 5-hydroxytryptophan-producing cells (5-HTP cells) in normal intestinal enterocytes, which are thought to essentially shunt 5-HT production in 5-HT-producing cells. Genetic studies have reported an association between TPH1 and depression, or the responsiveness of depression to antidepressive medication. Therefore, it is possible that hypofunctional 5-HTP cells (reflecting TPH1 dysfunction) in the periphery lead to deficient brain 5-HT levels. Additionally,it has been reported that higher TPH2 expression in depressed suicides may reflect a homeostatic response to deficient 5-HT levels. Subsequently, endogenous depression may be caused by TPH1 dysfunction combined with compensatory TPH2 activation. Reactive depression results from life stresses and involves the hypothalamic-pituitary-adrenal axis, with resulting cortisol production inducing tryptophan 2,3-dioxygenase (TDO) activation. In secondary depression, caused by inflammation, infection, or oxidative stress, indoleamine 2,3-dioxygenase (IDO) is activated. In both reactive and secondary depression, the balance between 3-hydroxykynurenine (3-HK) and kynurenic acid may shift towards 3-HK production via kynurenine-3-monooxygenase (KMO) activation. By shifting the equilibrium position of key enzymes of tryptophan metabolism, the classical classification of depression can be reorganized, as below. Peripheral classification of depression by key enzymes: TPH1 dysfunction, TDO activation, IDO activation. Central classification: TPH2 activation, KMO activation. Etiological classification of depression expressed by peripheral (TPH1, TDO, IDO) and central (TPH2, KMO)enzymes of tryptophan metabolism may enable depression to be viewed as a clear box, with the inner components available for inspection and treatment.
Gomes, Katia M.S.; Bechara, Luiz R.G.; Lima, Vanessa M.; Ribeiro, Márcio A.C.; Campos, Juliane C.; Dourado, Paulo M.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.
2015-01-01
Background/Objectives We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy is unknown and should be established to determine the optimal time window for drug treatment. Methods Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. Results We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24hrs after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. Conclusion Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy. PMID:25464432
Kooragayala, Keshav; Gotoh, Norimoto; Cogliati, Tiziana; Nellissery, Jacob; Kaden, Talia R.; French, Stephanie; Balaban, Robert; Li, Wei; Covian, Raul; Swaroop, Anand
2015-01-01
Purpose Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl−/− retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1−/− mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges. PMID:26747773
Wang, Dezhen; Yan, Jin; Teng, Miaomiao; Yan, Sen; Zhou, Zhiqiang; Zhu, Wentao
2018-05-01
In this study, we investigated the effects of in utero and lactational exposure to BDE-47 on the progression of obesity and metabolic dysfunction in a diet-induced obesity model. Pregnant ICR mice were treated via oral gavage with low doses of BDE-47 (0, 0.002, and 0.2 mg/kg body weight) from gestational day 6 to postnatal day 21. After weaning, male offspring were fed an AIN93-based normal diet (ND) or high-fat diet (HFD: 60% calories from fat) for 14 weeks. We examined body weight, liver weight, histopathology, blood biochemistry, gene expression, and serum metabolic changes. A combination of 16S rRNA gene sequencing and 1 H NMR-based metabolomics was conducted to examine the effects of BDE-47 on the gut microbiome. Results showed that in utero and lactational exposure to BDE-47 caused a worsening of HFD-induced obesity, hepatic steatosis, and injury; impaired glucose homeostasis and metabolic dysfunction, and mRNA levels of genes involved in lipid metabolism were significantly altered in the BDE-47-treated HFD group. The gut microbiome were perturbed by BDE-47, causing diversity reduction, compositional alteration, and metabolic changes. These changes were more pronounced for BDE-47-treated HFD mice. All these results indicate that early life exposure to low doses of BDE-47 can promote obesity and the development of metabolic dysfunction.
Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits
Amano, Shinichi; Kegelmeyer, Deborah; Hong, S. Lee
2015-01-01
Parkinson’s disease (PD) is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic (DA) cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity) to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of DA neurons in the substantia nigra pars compacta (SNc), in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1) neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD; (2) motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state; and (3) improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD. PMID:25610377
Dias, Tânia R; Alves, Marco G; Rato, Luís; Casal, Susana; Silva, Branca M; Oliveira, Pedro F
2016-11-01
Prediabetes has been associated with alterations in male reproductive tract, especially in testis and epididymis. Moreover, in vitro studies described a promising action of tea (Camellia sinensis L.) against metabolic dysfunctions. Herein, we hypothesized that white tea (WTEA) ingestion by prediabetic animals could ameliorate the metabolic alterations induced by the disease in testicular and epididymal tissues, preserving sperm quality. WTEA infusion was prepared and its phytochemical profile was evaluated by 1 H-NMR. A streptozotocin-induced prediabetic rat model was developed and three experimental groups were defined: control, prediabetic (PreDM) and prediabetic drinking WTEA (PreDM+WTEA). Metabolic profiles of testis and epididymis were evaluated by determining the metabolites content ( 1 H-NMR), protein levels (western blot) and enzymatic activities of key metabolic intervenient. The quality of spermatozoa from cauda epididymis was also assessed. Prediabetes increased glucose transporter 3 protein levels and decreased lactate dehydrogenase activity in testis, resulting in a lower lactate content. WTEA ingestion led to a metabolic adaptation to restore testicular lactate content. Concerning epididymis, prediabetes decreased the protein levels of several metabolic intervenient, resulting in decreased lactate and alanine content. WTEA consumption restored most of the evidenced alterations, however, not lactate content. WTEA also improved epididymal sperm motility and restored sperm viability. Prediabetes strongly affected testicular and epididymal metabolic status and most of these alterations were restored by WTEA consumption, resulting in the improvement of sperm quality. Our results suggest that WTEA consumption can be a cost-effective strategy to improve prediabetes-induced reproductive dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.
Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease
Sbodio, Juan I.; Snyder, Solomon H.; Paul, Bindu D.
2016-01-01
Disturbances in amino acid metabolism, which have been observed in Huntington’s disease (HD), may account for the profound inanition of HD patients. HD is triggered by an expansion of polyglutamine repeats in the protein huntingtin (Htt), impacting diverse cellular processes, ranging from transcriptional regulation to cognitive and motor functions. We show here that the master regulator of amino acid homeostasis, activating transcription factor 4 (ATF4), is dysfunctional in HD because of oxidative stress contributed by aberrant cysteine biosynthesis and transport. Consistent with these observations, antioxidant supplementation reverses the disordered ATF4 response to nutrient stress. Our findings establish a molecular link between amino acid disposition and oxidative stress leading to cytotoxicity. This signaling cascade may be relevant to other diseases involving redox imbalance and deficits in amino acid metabolism. PMID:27436896
Prevalence of thyroid disorders in North Indian Type 2 diabetic subjects: A cross sectional study.
Ozair, Maaz; Noor, Saba; Raghav, Alok; Siddiqi, Sheelu Shafiq; Chugtai, Anjum Mirza; Ahmad, Jamal
2018-05-01
Type 2 diabetes mellitus (T2DM) is a major health burden worldwide with many patients encountering thyroid dysfunction later in their life. Various studies have found that diabetes and thyroid disorders mutually influence each other and both disorders tend to coexists. However, the prevalence of thyroid dysfunction and associated clinical variables in these patients has not been investigated. The study aimed at determining the incidence and prevalence of thyroid dysfunction in patients with T2DM in relation to age, sex, metabolic syndrome and other co-morbid conditions. In this cross-sectional study, 250 Type 2 DM patients were enrolled aged between 40 and 75 years. All the patients were evaluated for thyroid dysfunction by testing thyroid profile (T3, T4 and TSH. These subjects were also investigated for fasting blood sugar (FBS), post prandial glucose (PPG) glycosylated hemoglobin (HbA1c), serum cholesterol, serum triglycerides, high density lipoprotein (HDL), low density lipoprotein(LDL), very low density lipoprotein(VLDL), blood urea, serum creatinine and presence of other co-morbid conditions. The observations and interpretations were recorded and results obtained were statistically analyzed. A high prevalence of thyroid dysfunction (28%) was observed in type 2 diabetic patients with subclinical hypothyroidism (18.8%) as the commonest thyroid disorder. Thyroid dysfunction was more prevalent in females, with presence of dyslipidemia, retinopathy, poor glycemic state (HbA1c ≥7) and longer duration of diabetes as significant contributing factors associated. In addition to glycemic status, screening of thyroid disorder should be routinely done in type 2 diabetic subjects along with other comorbid conditions. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.
van Zutphen, Tim; Ciapaite, Jolita; Bloks, Vincent W; Ackereley, Cameron; Gerding, Albert; Jurdzinski, Angelika; de Moraes, Roberta Allgayer; Zhang, Ling; Wolters, Justina C; Bischoff, Rainer; Wanders, Ronald J; Houten, Sander M; Bronte-Tinkew, Dana; Shatseva, Tatiana; Lewis, Gary F; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M; Jonker, Johan W; Kim, Peter K; Bandsma, Robert H J
2016-12-01
Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high-resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid β-oxidation pathways. Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several β-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial β-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. Severe malnutrition in children is associated with metabolic disturbances that are poorly understood. In order to study this further, we developed a malnutrition animal model and found that severe malnutrition leads to an impaired function of liver mitochondria which are essential for energy production and a loss of peroxisomes, which are important for normal liver metabolic function. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Salivary gland dysfunction markers in type 2 diabetes mellitus patients.
Aitken-Saavedra, Juan; Rojas-Alcayaga, Gonzalo; Maturana-Ramírez, Andrea; Escobar-Álvarez, Alejandro; Cortes-Coloma, Andrea; Reyes-Rojas, Montserrat; Viera-Sapiain, Valentina; Villablanca-Martínez, Claudia; Morales-Bozo, Irene
2015-10-01
Diabetes mellitus (DM) is a chronic disease of the carbohydrate metabolism that, when not rigorously controlled, compromises systemic and organ integrity, thereby causing renal diseases, blindness, neuropathy, arteriosclerosis, infections, and glandular dysfunction, including the salivary glands. The aim of this study was to determine the relationship between the qualitative and quantitative parameters of salivary alteration, which are indicators of salivary gland dysfunction, and the level of metabolic control of type 2 diabetes patients. A convenience sample of 74 voluntary patients with type 2 DM was selected, each of whom donated a sample of unstimulated saliva. Salivary parameters such as salivary flow rate, protein concentration, pH, and xerostomia were studied. There is a positive relationship between the level of metabolic control measured with HbA1 and the protein concentration in saliva (Spearman rho = 0.329 and p = 0.004). The same assay showed an inverse correlation between HbA1 and pH (Spearman rho = -0.225 and p = 0.05). The protein concentration in saliva and, to a lesser extent, the pH may be useful as glandular dysfunction indicators in DM2 patients. Saliva, type 2 diabetes mellitus, pH, protein concentration, xerostomia.
da Costa, Rafael M; da Silva, Josiane F; Alves, Juliano V; Dias, Thiago B; Rassi, Diane M; Garcia, Luis V; Lobato, Núbia de Souza; Tostes, Rita C
2018-01-01
Under physiological conditions, the perivascular adipose tissue (PVAT) negatively modulates vascular contractility. This property is lost in experimental and human obesity and in the metabolic syndrome, indicating that changes in PVAT function may contribute to vascular dysfunction associated with increased body weight and hyperglycemia. The O -linked β-N-acetylglucosamine ( O -GlcNAc) modification of proteins ( O -GlcNAcylation) is a unique posttranslational process that integrates glucose metabolism with intracellular protein activity. Increased flux of glucose through the hexosamine biosynthetic pathway and the consequent increase in tissue-specific O -GlcNAc modification of proteins have been linked to multiple facets of vascular dysfunction in diabetes and other pathological conditions. We hypothesized that chronic consumption of glucose, a condition that progresses to metabolic syndrome, leads to increased O -GlcNAc modification of proteins in the PVAT, decreasing its anti-contractile effects. Therefore, the current study was devised to determine whether a high-sugar diet increases O -GlcNAcylation in the PVAT and how increased O -GlcNAc interferes with PVAT vasorelaxant function. To assess molecular mechanisms by which O -GlcNAc contributes to PVAT dysfunction, thoracic aortas surrounded by PVAT were isolated from Wistar rats fed either a control or high sugar diet, for 10 and 12 weeks. Rats chronically fed a high sugar diet exhibited metabolic syndrome features, increased O -GlcNAcylated-proteins in the PVAT and loss of PVAT anti-contractile effect. PVAT from high sugar diet-fed rats for 12 weeks exhibited decreased NO formation, reduced expression of endothelial nitric oxide synthase (eNOS) and increased O -GlcNAcylation of eNOS. High sugar diet also decreased OGA activity and increased superoxide anion generation in the PVAT. Visceral adipose tissue samples from hyperglycemic patients showed increased levels of O -GlcNAc-modified proteins, increased ROS generation and decreased OGA activity. These data indicate that O -GlcNAcylation contributes to metabolic syndrome-induced PVAT dysfunction and that O -GlcNAcylation of eNOS may be targeted in the development of novel therapies for vascular dysfunction in conditions associated with hyperglycemia.
Tefera, Tesfaye W.; Borges, Karin
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS. PMID:28119559
Metabolism as an Integral Cog in the Mammalian Circadian Clockwork
Gamble, Karen L.; Young, Martin E.
2013-01-01
Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144
Telomeres and Mitochondria in the Aging Heart
Moslehi, Javid; DePinho, Ronald A.; Sahin, Ergün
2013-01-01
Studies in humans and in mice have highlighted the importance of short telomeres and impaired mitochondrial function in driving age-related functional decline in the heart. Although telomere and mitochondrial dysfunction have been viewed mainly in isolation, recent studies in telomerase-deficient mice have provided evidence for an intimate link between these two processes. Telomere dysfunction induces a profound p53-dependent repression of the master regulators of mitochondrial biogenesis and function, peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and PGC-1β in the heart, which leads to bioenergetic compromise due to impaired oxidative phosphorylation and ATP generation. This telomere-p53-PGC mitochondrial/metabolic axis integrates many factors linked to heart aging including increased DNA damage, p53 activation, mitochondrial, and metabolic dysfunction and provides a molecular basis of how dysfunctional telomeres can compromise cardiomyocytes and stem cell compartments in the heart to precipitate cardiac aging. PMID:22539756
Tan, C; Cao, Y; Hu, P
1998-09-01
Inquire into the mechanism of inner ear pathological physiology in autoimmune sensorineural hearing loss (ASHL). With the auditory electric-physiological techniques and enzyme-histochemical method, the change of inner ear hearing function and enzyme activity were observed. These animals, which threshold of auditory nerve compound active potential (CAP) and cochlear microphonic potential(CM) heightening evidently, showed that the amplitude of endolymphatic potential(EP) (include-EP) bring down in various degrees, which was related to the change of the active of Na(+)-K(+)-ATPase and SDH in vascularis stria and endolymphatic sac. The abnormality of enzymes metabolism in inner ear tissues, which following autoimmune inflammation damage, is the pathological foundation of hearing dysfunction.
Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay
2012-01-01
The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.
Barrey, Eric; Mucher, Elodie; Jeansoule, Nicolas; Larcher, Thibaut; Guigand, Lydie; Herszberg, Bérénice; Chaffaux, Stéphane; Guérin, Gérard; Mata, Xavier; Benech, Philippe; Canale, Marielle; Alibert, Olivier; Maltere, Péguy; Gidrol, Xavier
2009-08-07
Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses.Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCalpha, VEGFalpha. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3beta) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor (HIF1alpha) destabilization. The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.
Metabolic alterations in children with environmental enteric dysfunction
USDA-ARS?s Scientific Manuscript database
Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increa...
Khalyfa, Abdelnaby; Cortese, Rene; Qiao, Zhuanhong; Ye, Honggang; Bao, Riyue; Andrade, Jorge; Gozal, David
2017-04-15
Late gestation during pregnancy has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia, a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis and metabolic function in offspring. Here we show that late gestation intermittent hypoxia induces metabolic dysfunction as reflected by increased body weight and adiposity index in adult male offspring that is paralleled by epigenomic alterations and inflammation in visceral white adipose tissue. Fetal perturbations by OSA during pregnancy impose long-term detrimental effects manifesting as metabolic dysfunction in adult male offspring. Pregnancy, particularly late gestation (LG), has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis, and metabolic function in offspring. We hypothesized that IH during late pregnancy (LG-IH) may increase the propensity for metabolic dysregulation and obesity in adult offspring via epigenetic modifications. Time-pregnant female C57BL/6 mice were exposed to LG-IH or room air (LG-RA) during days 13-18 of gestation. At 24 weeks, blood samples were collected from offspring mice for lipid profiles and insulin resistance, indirect calorimetry was performed and visceral white adipose tissues (VWAT) were assessed for inflammatory cells as well as for differentially methylated gene regions (DMRs) using a methylated DNA immunoprecipitation on chip (MeDIP-chip). Body weight, food intake, adiposity index, fasting insulin, triglycerides and cholesterol levels were all significantly higher in LG-IH male but not female offspring. LG-IH also altered metabolic expenditure and locomotor activities in male offspring, and increased number of pro-inflammatory macrophages emerged in VWAT along with 1520 DMRs (P < 0.0001), associated with 693 genes. Pathway analyses showed that genes affected by LG-IH were mainly associated with molecular processes related to metabolic regulation and inflammation. LG-IH induces metabolic dysfunction as reflected by increased body weight and adiposity index in adult male offspring that is paralleled by epigenomic alterations and inflammation in VWAT. Thus, perturbations to fetal environment by OSA during pregnancy can have long-term detrimental effects on the fetus, and lead to persistent metabolic dysfunction in adulthood. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Lipid accumulation in human breast cancer cells injured by iron depletors.
De Bortoli, Maida; Taverna, Elena; Maffioli, Elisa; Casalini, Patrizia; Crisafi, Francesco; Kumar, Vikas; Caccia, Claudio; Polli, Dario; Tedeschi, Gabriella; Bongarzone, Italia
2018-04-03
Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial subjects for future mechanistic and clinical studies.
Robillard, Rébecca; Rogers, Naomi L.; Whitwell, Bradley G.
2012-01-01
Schizophrenia is a psychiatric disorder that includes symptoms such as hallucinations, disordered thoughts, disorganized or catatonic behaviour, cognitive dysfunction and sleep-wake disturbance. In addition to these symptoms, cardiometabolic dysfunction is common in patients with schizophrenia. While previously it has been thought that cardiometabolic symptoms in patients with schizophrenia were associated with medications used to manage this disorder, more recently it has been demonstrated that these symptoms are present in drug naive and unmedicated patients. Sleep-wake disturbance, resulting in chronic sleep loss has also been demonstrated to induce changes in cardiometabolic function. Chronic sleep loss has been associated with an increased risk for weight gain, obesity and cardiac and metabolic disorders, independent of other potentially contributing factors, such as smoking and body mass index. We hypothesise that the sleep-wake disturbance comorbid with schizophrenia may play a significant role in the high prevalence of cardiometabolic dysfunction observed in this patient population. Here we present a critical review of the evidence that supports this hypothesis. PMID:23429436
Increased concentrations of plasma IL-18 in patients with hepatic dysfunction after hepatectomy.
Shibata, M; Hirota, M; Nozawa, F; Okabe, A; Kurimoto, M; Ogawa, M
2000-10-01
We investigated the dynamic aspects of circulatory IL-18 and other inflammatory cytokines in patients who underwent a hepatectomy. In patients with post-operative hepatic dysfunction, plasma concentrations of these cytokines increased, reflecting severe surgical trauma. IL-6, IL-10 and IFN-gamma increased in the early phase, while IL-18 increased in the later phase after 1 week. Interestingly, the increase in the plasma IL-18 concentration was correlated with that in serum bilirubin levels in hepatectomized patients. Hence, the decrease in the hepatic metabolism of IL-18 may cause the plasma accumulation of IL-18. This mechanism was confirmed using rat experiments. Intravenously administered human IL-18 was excreted into bile. Furthermore, the plasma clearance of human IL-18 was prolonged in bile duct-ligated rats. These results suggest that IL-18 is metabolized in the liver and excreted into bile, and an increase in plasma IL-18 in patients with hepatic dysfunction reflects the decreased metabolism in the liver. Copyright 2000 Academic Press.
Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue
Nagao, Hirofumi; Nishizawa, Hitoshi; Bamba, Takeshi; Nakayama, Yasumune; Isozumi, Noriyoshi; Nagamori, Shushi; Kanai, Yoshikatsu; Tanaka, Yoshimitsu; Kita, Shunbun; Fukuda, Shiro; Funahashi, Tohru; Maeda, Norikazu; Fukusaki, Eiichiro; Shimomura, Iichiro
2017-01-01
Obesity is closely associated with various metabolic disorders. However, little is known about abnormalities in the metabolic change of obese adipose tissue. Here we use static metabolic analysis and in vivo metabolic turnover analysis to assess metabolic dynamics in obese mice. The static metabolic analyses showed that glutamate and constitutive metabolites of the TCA cycle were increased in the white adipose tissue (WAT) of ob/ob and diet-induced obesity mice but not in the liver or skeletal muscle of these obese mice. Moreover, in vivo metabolic turnover analyses demonstrated that these glucose-derived metabolites were dynamically and specifically produced in obese WAT compared with lean WAT. Glutamate rise in obese WAT was associated with down-regulation of glutamate aspartate transporter (GLAST), a major glutamate transporter for adipocytes, and low uptake of glutamate into adipose tissue. In adipocytes, glutamate treatment reduced adiponectin secretion and insulin-mediated glucose uptake and phosphorylation of Akt. These data suggest that a high intra-adipocyte glutamate level potentially relates to adipocyte dysfunction in obesity. This study provides novel insights into metabolic dysfunction in obesity through comprehensive application of in vivo metabolic turnover analysis in two obese animal models. PMID:28119455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestana, Diogo, E-mail: diogopestana@gmail.com; CINTESIS—Center for Research in Health Technologies and Information Systems, P-4200-450 Porto; Faria, Gil
Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) weremore » collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (R{sub S}=0.310, p<0.01) and duration of obesity (R{sub S}=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (R{sub S}=0.277, p<0.01), with relevance for vAT (R{sub S}=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not only for their recognition as environmental obesogens. - Highlights: • POPs are pervasive in this sample of obese patients undergoing bariatric surgery. • Distinct adipose tissues have dissimilar POPs storage capability. • Despite the presence of obesity, POPs are important for metabolic dysregulation.« less
Sultana, Md Razia; Bagul, Pankaj K; Katare, Parameshwar B; Anwar Mohammed, Soheb; Padiya, Raju; Banerjee, Sanjay K
2016-11-01
Cardiac complications are major contributor in the mortality of diabetic people. Mitochondrial dysfunctioning is a crucial contributor for the cardiac complications in diabetes, and SIRT-3 remains the major mitochondrial deacetylase. We hypothesized whether garlic has any role on SIRT-3 to prevent mitochondrial dysfunction in diabetic heart. Rats with developed hyperglycemia after STZ injection were divided into two groups; diabetic (Dia) and diabetic+garlic (Dia+Garl). Garlic was administered at a dose of 250mg/kg/day, orally for four weeks. An additional group was maintained to evaluate the effect of raw garlic administration on control rat heart. We have observed altered functioning of cardiac mitochondrial enzymes involved in metabolic pathways, and increased levels of cardiac ROS with decreased activity of catalase and SOD in diabetic rats. Cardiac mRNA expression of TFAM, PGC-1α, and CO1 was also altered in diabetes. In addition, reduced levels of electron transport chain complexes that observed in Dia group were normalized with garlic administration. This indicates the presence of increased oxidative stress with mitochondrial dysfunctioning in diabetic heart. We have observed reduced activity of SIRT3 and increased acetylation of MnSOD. Silencing SIRT-3 in cells also revealed the same. However, administration of garlic improved the SIRT-3 and MnSOD activity, by deacetylating MnSOD. Increased SOD activity was correlated with reduced levels of ROS in garlic-administered rat hearts. Collectively, our results provide an insight into garlic's protection to T1DM heart through activation of SIRT3-MnSOD pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Visceral adiposity index as a predictor of clinical severity and therapeutic outcome of PCOS.
Zheng, Sai-Hua; Li, Xue-Lian
2016-01-01
Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disease which often accompany with abnormal fat distribution. Visceral adiposity has association with abnormal lipid metabolic, pro-inflammatory activity, insulin resistance (IR) and hyperandrogenism. Increased visceral adiposity raises the risk of metabolic syndrome, type 2 diabetes and cardiovascular (CV) events, and aggravates ovulatory dysfunction and hyperandrogenism in PCOS women. Visceral adiposity index (VAI), a simple surrogate maker of visceral adipose dysfunction and visceral adiposity, is a predictor of IR, and link hyperinsulinemia, hyperandrogenism and anovulation. This review aims to discuss the visceral adiposity situation in PCOS women, and suggests that VAI may be a useful predictor of clinical severity and therapeutic outcome of PCOS.
The effects of low environmental cadmium exposure on bone density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl; Jakubowski, M.; Szymczak, W.
2010-04-15
Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9;more » 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone density.« less
Wens, Inez; Eijnde, Bert O; Hansen, Dominique
2016-08-15
In the treatment of multiple sclerosis (MS), exercise training is now considered a cornerstone. However, most clinicians tend to focus on neurologic deficits only, and thus prefer to prescribe rehabilitation programs specifically to counteract these deficits. However, the present comprehensive review shows that patients with MS (pwMS) also experience significant muscular, cardiac, ventilatory and metabolic dysfunction, which significantly contribute, next to neurologic deficits, to exercise intolerance. In addition, these anomalies also might increase the risk for frequent hospitalization and morbidity and can reduce life expectancy. Unfortunately, the impact of exercise intervention on these anomalies in pwMS are mostly unknown. Therefore, it is suggested that pwMS should be screened systematically for muscular, cardiac, ventilatory and metabolic function during exercise testing. The detection of such anomalies should lead to adaptations and optimisation of exercise training prescription and clinical care/medical treatment of pwMS. In addition, future studies should focus on the impact of exercise intervention on muscular, cardiac, ventilatory and metabolic (dys)function in pwMS, to contribute to improved treatment and care. Copyright © 2016. Published by Elsevier B.V.
Zhao, Hongcui; Zhao, Yue; Li, Tianjie; Li, Min; Li, Junsheng; Li, Rong; Liu, Ping; Yu, Yang; Qiao, Jie
2015-09-01
Classic polycystic ovary syndrome (PCOS) is a high-risk phenotype accompanied by increased risks of reproductive and metabolic abnormalities; however, the local metabolism characteristics of the ovaries and their effects on germ cell development are unclear. The present study used targeted metabolomics to detect alterations in the intermediate metabolites of follicular fluid from classic PCOS patients, and the results indicated that hyperandrogenism but not obesity induced the changed intermediate metabolites in classic PCOS patients. Regarding the direct contact, we identified mitochondrial function, redox potential, and oxidative stress in cumulus cells which were necessary to support oocyte growth before fertilization, and suggested dysfunction of mitochondria, imbalanced redox potential, and increased oxidative stress in cumulus cells of classic PCOS patients. Follicular fluid intermediary metabolic profiles provide signatures of classic PCOS ovary local metabolism and establish a close link with mitochondria dysfunction of cumulus cells, highlighting the role of metabolic signal and mitochondrial cross talk involved in the pathogenesis of classic PCOS. Copyright © 2015 Elsevier Inc. All rights reserved.
Hepatic Steatosis as a Marker of Metabolic Dysfunction
Fabbrini, Elisa; Magkos, Faidon
2015-01-01
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the complex metabolic derangements associated with obesity. NAFLD is characterized by excessive deposition of fat in the liver (steatosis) and develops when hepatic fatty acid availability from plasma and de novo synthesis exceeds hepatic fatty acid disposal by oxidation and triglyceride export. Hepatic steatosis is therefore the biochemical result of an imbalance between complex pathways of lipid metabolism, and is associated with an array of adverse changes in glucose, fatty acid, and lipoprotein metabolism across all tissues of the body. Intrahepatic triglyceride (IHTG) content is therefore a very good marker (and in some cases may be the cause) of the presence and the degree of multiple-organ metabolic dysfunction. These metabolic abnormalities are likely responsible for many cardiometabolic risk factors associated with NAFLD, such as insulin resistance, type 2 diabetes mellitus, and dyslipidemia. Understanding the factors involved in the pathogenesis and pathophysiology of NAFLD will lead to a better understanding of the mechanisms responsible for the metabolic complications of obesity, and hopefully to the discovery of novel effective treatments for their reversal. PMID:26102213
Heringlake, Matthias; Wernerus, Marit; Grünefeld, Julia; Klaus, Stephan; Heinze, Hermann; Bechtel, Matthias; Bahlmann, Ludger; Poeling, Jochen; Schön, Julika
2007-01-01
Introduction Myocardial dysfunction necessitating inotropic support is a typical complication after on-pump cardiac surgery. This prospective, randomized pilot study analyzes the metabolic and renal effects of the inotropes adrenaline and milrinone in patients needing inotropic support after coronary artery bypass grafting (CABG). Methods During an 18-month period, 251 patients were screened for low cardiac output upon intensive care unit (ICU) admission after elective, isolated CABG surgery. Patients presenting with a cardiac index (CI) of less than 2.2 liters/minute per square meter upon ICU admission – despite adequate mean arterial (titrated with noradrenaline or sodium nitroprusside) and filling pressures – were randomly assigned to 14-hour treatment with adrenaline (n = 7) or milrinone (n = 11) to achieve a CI of greater than 3.0 liters/minute per square meter. Twenty patients not needing inotropes served as controls. Hemodynamics, plasma lactate, pyruvate, glucose, acid-base status, insulin requirements, the urinary excretion of alpha-1-microglobuline, and creatinine clearance were determined during the treatment period, and cystatin-C levels were determined up to 48 hours after surgery (follow-up period). Results After two to four hours after ICU admission, the target CI was achieved in both intervention groups and maintained during the observation period. Plasma lactate, pyruvate, the lactate/pyruvate ratio, plasma glucose, and insulin doses were higher (p < 0.05) in the adrenaline-treated patients than during milrinone or control conditions. The urinary excretion of alpha-1-microglobuline was higher in the adrenaline than in the control group 6 to 14 hours after admission (p < 0.05). No between-group differences were observed in creatinine clearance, whereas plasma cystatin-C levels were significantly higher in the adrenaline than in the milrinone or the control group after 48 hours (p < 0.05). Conclusion This suggests that the use of adrenaline for the treatment of postoperative myocardial dysfunction – in contrast to treatment with the PDE-III inhibitor milrinone – is associated with unwarranted metabolic and renal effects. Clinical trials registration: ClinicalTrials.gov NCT00446017. PMID:17470271
Energy metabolism and inflammation in brain aging and Alzheimer's disease.
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-11-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Overview of the Pathophysiological Implications of Organotins on the Endocrine System
Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo
2018-01-01
Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed. PMID:29615977
Overview of the Pathophysiological Implications of Organotins on the Endocrine System.
Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo
2018-01-01
Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.
Koch, Franziska; Ibrahim, Saleh M.; Vera, Julio; Wolkenhauer, Olaf; Tiedge, Markus
2015-01-01
Metabolic disorders, like diabetes and obesity, are pathogenic outcomes of imbalance in glucose metabolism. Nutrient excess and mitochondrial imbalance are implicated in dysfunctional glucose metabolism with age. We used conplastic mouse strains with defined mitochondrial DNA (mtDNA) mutations on a common nuclear genomic background, and administered a high-fat diet up to 18 months of age. The conplastic mouse strain B6-mtFVB, with a mutation in the mt-Atp8 gene, conferred β-cell dysfunction and impaired glucose tolerance after high-fat diet. To our surprise, despite of this functional deficit, blood glucose levels adapted to perturbations with age. Blood glucose levels were particularly sensitive to perturbations at the early age of 3 to 6 months. Overall the dynamics consisted of a peak between 3–6 months followed by adaptation by 12 months of age. With the help of mathematical modeling we delineate how body weight, insulin and leptin regulate this non-linear blood glucose dynamics. The model predicted a second rise in glucose between 15 and 21 months, which could be experimentally confirmed as a secondary peak. We therefore hypothesize that these two peaks correspond to two sensitive periods of life, where perturbations to the basal metabolism can mark the system for vulnerability to pathologies at later age. Further mathematical modeling may perspectively allow the design of targeted periods for therapeutic interventions and could predict effects on weight loss and insulin levels under conditions of pre-diabetic obesity. PMID:26540285
Phenotypic expression of polycystic ovary syndrome in South Asian women.
Mehta, Jaya; Kamdar, Vikram; Dumesic, Daniel
2013-03-01
Polycystic ovary syndrome (PCOS) occurs in 6% to 10% of women and, as the most common worldwide endocrinopathy of reproductive-aged women, is linked to a constellation of reproductive and metabolic abnormalities, including anovulatory infertility, hirsutism, acne, and insulin resistance in association with metabolic syndrome. Despite a genetic component to PCOS, ethnicity plays an important role in the phenotypic expression of PCOS, with South Asian PCOS women having more severe reproductive and metabolic symptoms than other ethnic groups. South Asians with PCOS seek medical care at an earlier age for reproductive abnormalities; have a higher degree of hirsutism, infertility, and acne; and experience lower live birth rates following in vitro fertilization than do whites with PCOS. Similarly, South Asians with PCOS have a higher prevalence of insulin resistance and metabolic syndrome than do other PCOS-related ethnic groups of a similar body mass index. Inheritance of PCOS appears to have a complex genetic basis, including genetic differences based on ethnicity, which interact with lifestyle and other environmental factors to affect PCOS phenotypic expression. Obstetricians and Gynecologists, Family Physicians Learning Objectives: After completing this CME activity, physicians should be better able to state an ethnic difference in reproductive dysfunction between South Asian and white women with polycystic ovary syndrome (PCOS), state an ethnic difference in metabolic dysfunction between South Asian and white women with PCOS, identify a genetic abnormality found in South Asian women with PCOS, and list 2 environmental factors that predispose South Asian women to metabolic dysfunction.
Serotonin Modulation of Cerebral Glucose Metabolism in Depressed Older Adults
Smith, Gwenn S.; Kramer, Elisse; Hermann, Carol.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David
2009-01-01
Background Monoamine dysfunction, particularly of the serotonin system, has been the dominant hypothesis guiding research and treatment development in affective disorders. The majority of research has been performed in mid-life depressed adults. The importance of understanding the neurobiology of depression in older adults is underscored by increased rates of mortality and completed suicide and an increased risk of Alzheimer's dementia. To evaluate the dynamic response of the serotonin system, the acute effects of citalopram infusion on cerebral glucose metabolism was measured in depressed older adults and control subjects. The hypothesis was tested that smaller decreases in metabolism would be observed in cortical and limbic regions in depressed older adults relative to controls. Methods Sixteen depressed older adults and thirteen controls underwent two resting Positron Emission Tomography (PET) studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose after placebo and citalopram infusions. Results In controls compared to depressed older adults, greater citalopram induced decreases in cerebral metabolism were observed in the right anterior cingulate, middle temporal (bilaterally), left precuneus, and left parahippocampal gyri. Greater decreases in the depressed older adults than controls was observed in left superior and left middle frontal gyri and increases in left inferior parietal lobule, left cuneus, left thalamus and right putamen. Conclusion In depressed older adults relative to controls, the cerebral metabolic response to citalopram is blunted in cortico-cortico and cortico-limbic pathways and increased in the left hemisphere (greater decrease interiorly and increases posterior). These findings suggest both blunted and compensatory cerebral metabolic responses to citalopram in depressed older adults. PMID:19368900
Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro
2017-01-01
Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903
Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro
2017-01-11
Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.
Sex Dimorphism in Late Gestational Sleep Fragmentation and Metabolic Dysfunction in Offspring Mice
Khalyfa, Abdelnaby; Carreras, Alba; Almendros, Isaac; Hakim, Fahed; Gozal, David
2015-01-01
Background: Excessive sleep fragmentation (SF) is common in pregnant women. Adult-onset metabolic disorders may begin during early development and exhibit substantial sex dimorphism. We hypothesized that metabolic dysfunction induced by gestational SF in male mice would not be apparent in female littermates. Methods: Body weight and food consumption were measured weekly in male and female offspring after late gestational SF or control sleep (SC). At 20 weeks, plasma leptin, adiponectin, lipid profiles, and insulin and glucose tolerance tests were assessed. Leptin and adiponectin, M1, and M2 macrophage messenger RNA expression and polarity were examined. Adiponectin gene promoter methylation levels in several tissues were assessed. Results: Food intake, body weight, visceral fat mass, and insulin resistance were higher, and adiponectin levels lower in male but not female offspring exposed to gestational SF. However, dyslipidemia was apparent in both male and female offspring exposed to SF, albeit of lesser magnitude. In visceral fat, leptin messenger RNA expression was selectively increased and adiponectin expression was decreased in male offspring exposed to gestational SF, but adiponectin was increased in exposed female offspring. Differences in adipokine expression also emerged in liver, subcutaneous fat, and muscle. Increased M1 macrophage markers were present in male offspring exposed to SF (SFOM) while increased M2 markers emerged in SF in female offspring (SFOF). Similarly, significant differences emerged in the methylation patterns of adiponectin promoter in SFOM and SFOF. Conclusion: Gestational sleep fragmentation increases the susceptibility to obesity and metabolic syndrome in male but not in female offspring, most likely via epigenetic changes. Thus, sleep perturbations impose long-term detrimental effects to the fetus manifesting as sex dimorphic metabolic dysfunction in adulthood. Citation: Khalyfa A, Carreras A, Almendros I, Hakim F, Gozal D. Sex dimorphism in late gestational sleep fragmentation and metabolic dysfunction in offspring mice. SLEEP 2015;38(4):545–557. PMID:25325475
Sawada, Takahiro; Tsubata, Hideo; Hashimoto, Naoko; Takabe, Michinori; Miyata, Taishi; Aoki, Kosuke; Yamashita, Soichiro; Oishi, Shogo; Osue, Tsuyoshi; Yokoi, Kiminobu; Tsukishiro, Yasue; Onishi, Tetsuari; Shimane, Akira; Taniguchi, Yasuyo; Yasaka, Yoshinori; Ohara, Takeshi; Kawai, Hiroya; Yokoyama, Mitsuhiro
2016-08-26
Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by recovery of concomitant endothelial dysfunction in newly diagnosed IGM patients with CAD. Clinical Trial Registration UMIN Registry number: UMIN000011265 ( https://www.upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000013200&language=E ).
Zorzano, Antonio; Hernández-Alvarez, María Isabel; Palacín, Manuel; Mingrone, Geltrude
2010-01-01
Muscle mitochondrial metabolism is regulated by a number of factors, many of which are responsible for the transcription of nuclear genes encoding mitochondrial proteins such as PPARdelta, PGC-1alpha or PGC-1beta. Recent evidence indicates that proteins participating in mitochondrial dynamics also regulate mitochondrial metabolism. Thus, in cultured cells the mitochondrial fusion protein mitofusin 2 (Mfn2) stimulates respiration, substrate oxidation and the expression of subunits involved in respiratory complexes. Mitochondrial dysfunction has been reported in skeletal muscle of type 2 diabetic patients. Reduced mitochondrial mass and defective activity has been proposed to explain this dysfunction. Alterations in mitochondrial metabolism may be crucial to account for some of the pathophysiological traits that characterize type 2 diabetes. Skeletal muscle of type 2 diabetic patients shows reduced expression of PGC-1alpha, PGC-1beta, and Mfn2. In addition, a differential response to bilio-pancreatic diversion-induced weight loss in non-diabetic and type 2 diabetic patients has been reported. While non-diabetic morbidly obese subjects showed an increased expression of genes encoding Mfn2, PGC-1alpha, PGC-1beta, PPARdelta or SIRT1 in response to bariatric surgery-induced weight loss, no effect was detected in type 2 diabetic patients. These observations suggest the existence of a heritable component responsible for the abnormal control of the expression of genes encoding for modulators of mitochondrial biogenesis/metabolism, and which may participate in the development of the disease. Copyright © 2010 Elsevier B.V. All rights reserved.
Pathophysiology and molecular basis of selected metabolic abnormalities in Huntington's disease.
Krzysztoń-Russjan, Jolanta
2016-12-30
Huntington's disease (HD) is an incurable, devastating neurodegenerative disease with a known genetic background and autosomally dominant inheritance pattern. HTT gene mutation (mHTT) is associated with polymorphic fragment elongation above 35 repeats of the CAG triplet. The mHTT product is an altered protein with a poly-Q elongated fragment, with the highest expression determined in the central nervous system (CNS) and with differentiated expression outside the CNS. A drastic loss of striatal and deeper layers of the cerebral cortex neurons was determined in the CNS, but muscle and body weight mass loss with dysfunction of many organs was also observed. HD symptoms include neurological disturbances, such as choreal movements with dystonia, speech and swallowing impairments, and additionally a variety of psychiatric and behavioral symptoms with cognitive decline have been described. They are the result of disturbances of several cellular pathways related to signal transmission, mitochondrial dysfunction and energy metabolism impairment shown by gene and protein expression and alteration of their functions. Impairment of energy processes demonstrated by a decrease of ATP production and increase of oxidative stress markers was determined in- and outside of the CNS in glycolysis, the Krebs cycle and the electron transport chain. A correlation between the increase of energy metabolism impairment level and the increase in number of CAG repeats in HTT has often been described. The energy metabolism study is an initial stage of sensitive biomarkers and a new therapeutic investigative option for early application in order to inhibit pathological processes in HD. Identification of pathological changes outside the CNS requires a reevaluation of diagnostic and therapeutic rules in HD.
Endocrine manifestations related to inherited metabolic diseases in adults
2012-01-01
Most inborn errors of metabolism (IEM) are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.). IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects), and metal (hemochromatosis) and storage disorders (cystinosis). Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes), whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction) and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure), congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last). This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses. PMID:22284844
Glucose Regulation of Load‐Induced mTOR Signaling and ER Stress in Mammalian Heart
Sen, Shiraj; Kundu, Bijoy K.; Wu, Henry Cheng‐Ju; Hashmi, S. Shahrukh; Guthrie, Patrick; Locke, Landon W.; Roy, R. Jack; Matherne, G. Paul; Berr, Stuart S.; Terwelp, Matthew; Scott, Brian; Carranza, Sylvia; Frazier, O. Howard; Glover, David K.; Dillmann, Wolfgang H.; Gambello, Michael J.; Entman, Mark L.; Taegtmeyer, Heinrich
2013-01-01
Background Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose‐6‐phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via glucose 6‐phosphate (G6P) accumulation. Methods and Results We subjected the working rat heart ex vivo to a high workload in the presence of different energy‐providing substrates including glucose, glucose analogues, and noncarbohydrate substrates. We observed an association between G6P accumulation, mTOR activation, endoplasmic reticulum (ER) stress, and impaired contractile function, all of which were prevented by pretreating animals with rapamycin (mTOR inhibition) or metformin (AMPK activation). The histone deacetylase inhibitor 4‐phenylbutyrate, which relieves ER stress, also improved contractile function. In contrast, adding the glucose analogue 2‐deoxy‐d‐glucose, which is phosphorylated but not further metabolized, to the perfusate resulted in mTOR activation and contractile dysfunction. Next we tested our hypothesis in vivo by transverse aortic constriction in mice. Using a micro‐PET system, we observed enhanced glucose tracer analog uptake and contractile dysfunction preceding dilatation of the left ventricle. In contrast, in hearts overexpressing SERCA2a, ER stress was reduced and contractile function was preserved with hypertrophy. Finally, we examined failing human hearts and found that mechanical unloading decreased G6P levels and ER stress markers. Conclusions We propose that glucose metabolic changes precede and regulate functional (and possibly also structural) remodeling of the heart. We implicate a critical role for G6P in load‐induced mTOR activation and ER stress. PMID:23686371
Environmental enteric dysfunction is associated with altered bile acid metabolism
USDA-ARS?s Scientific Manuscript database
Environmental enteric dysfunction (EED), a clinically asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, and increased gut permeability, is common among children in developing countries. Because of abnormal gut mucosa and altered gut microbiome, EED coul...
Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.
2013-01-01
Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057
Lam, Yan Y; Ha, Connie W Y; Hoffmann, Jenny M A; Oscarsson, Jan; Dinudom, Anuwat; Mather, Thomas J; Cook, David I; Hunt, Nicholas H; Caterson, Ian D; Holmes, Andrew J; Storlien, Len H
2015-07-01
To distinguish the effects of dietary fat profile on gut parameters and their relationships with metabolic changes and to determine the capacity of n-3 fatty acids to modify gut variables in the context of diet-induced metabolic dysfunctions. Mice received control or high-fat diets emphasizing saturated (HFD-sat), n-6 (HFD-n6), or n-3 (HFD-n3) fatty acids for 8 weeks. In another cohort, mice that were maintained on HFD-sat received n-3-rich fish oil or resolvin D1 supplementation. HFD-sat and HFD-n6 induced similar weight gain, but only HFD-sat increased index of insulin resistance (HOMA-IR), colonic permeability, and mesenteric fat inflammation. Hydrogen sulfide-producing bacteria were one of the major groups driving the diet-specific changes in gut microbiome, with the overall microbial profile being associated with changes in body weight, HOMA-IR, and gut permeability. In mice maintained on HFD-sat, fish oil and resolvin D1 restored barrier function and reduced inflammation in the colon but were unable to normalize HOMA-IR. Different dietary fat profiles led to distinct intestinal and metabolic outcomes that are independent of obesity. Interventions targeting inflammation successfully restored gut health but did not reverse systemic aspects of diet-induced metabolic dysfunction, implicating separation between gut dysfunctions and disease-initiating and/or -maintaining processes. © 2015 The Obesity Society.
Henry, Curtis J.; Nemkov, Travis; Casás-Selves, Matias; Bilousova, Ganna; Zaberezhnyy, Vadym; Higa, Kelly C.; Serkova, Natalie J.; Hansen, Kirk C.; D’Alessandro, Angelo; DeGregori, James
2017-01-01
While dietary folate deficiency is associated with increased risk for birth defects and other diseases, evidence suggests that supplementation with folic acid can contribute to predisposition to some diseases, including immune dysfunction and cancer. Herein, we show that diets supplemented with folic acid both below and above the recommended levels led to significantly altered metabolism in multiple tissues in mice. Surprisingly, both low and excessive dietary folate induced similar metabolic changes, which were particularly evident for nucleotide biosynthetic pathways in B-progenitor cells. Diet-induced metabolic changes in these cells partially phenocopied those observed in mice treated with anti-folate drugs, suggesting that both deficiency and excessive levels of dietary folic acid compromise folate-dependent biosynthetic pathways. Both folate deficiency and excessive dietary folate levels compromise hematopoiesis, resulting in defective cell cycle progression, persistent DNA damage, and impaired production of lymphocytes. These defects reduce the reconstitution potential in transplantation settings and increase radiation-induced mortality. We conclude that excessive folic acid supplementation can metabolically mimic dietary folate insufficiency, leading to similar functional impairment of hematopoiesis. PMID:28883079
Glucose Transporters in Cardiac Metabolism and Hypertrophy
Shao, Dan; Tian, Rong
2016-01-01
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635
Salivary gland dysfunction markers in type 2 diabetes mellitus patients
Aitken-Saavedra, Juan; Rojas-Alcayaga, Gonzalo; Maturana-Ramírez, Andrea; Escobar-Álvarez, Alejandro; Cortes-Coloma, Andrea; Reyes-Rojas, Montserrat; Viera -Sapiain, Valentina; Villablanca-Martínez, Claudia
2015-01-01
Background Diabetes mellitus (DM) is a chronic disease of the carbohydrate metabolism that, when not rigorously controlled, compromises systemic and organ integrity, thereby causing renal diseases, blindness, neuropathy, arteriosclerosis, infections, and glandular dysfunction, including the salivary glands. The aim of this study was to determine the relationship between the qualitative and quantitative parameters of salivary alteration, which are indicators of salivary gland dysfunction, and the level of metabolic control of type 2 diabetes patients. Material and Methods A convenience sample of 74 voluntary patients with type 2 DM was selected, each of whom donated a sample of unstimulated saliva. Salivary parameters such as salivary flow rate, protein concentration, pH, and xerostomia were studied. Results There is a positive relationship between the level of metabolic control measured with HbA1 and the protein concentration in saliva (Spearman rho = 0.329 and p = 0.004). The same assay showed an inverse correlation between HbA1 and pH (Spearman rho = -0.225 and p = 0.05). Conclusions The protein concentration in saliva and, to a lesser extent, the pH may be useful as glandular dysfunction indicators in DM2 patients. Key words:Saliva, type 2 diabetes mellitus, pH, protein concentration, xerostomia. PMID:26535097
Mitochondrial Dysfunction and Disturbed Coherence: Gate to Cancer
Pokorný, Jiří; Pokorný, Jan; Foletti, Alberto; Kobilková, Jitka; Vrba, Jan; Vrba, Jan
2015-01-01
Continuous energy supply, a necessary condition for life, excites a state far from thermodynamic equilibrium, in particular coherent electric polar vibrations depending on water ordering in the cell. Disturbances in oxidative metabolism and coherence are a central issue in cancer development. Oxidative metabolism may be impaired by decreased pyruvate transfer to the mitochondrial matrix, either by parasitic consumption and/or mitochondrial dysfunction. This can in turn lead to disturbance in water molecules’ ordering, diminished power, and coherence of the electromagnetic field. In tumors with the Warburg (reverse Warburg) effect, mitochondrial dysfunction affects cancer cells (fibroblasts associated with cancer cells), and the electromagnetic field generated by microtubules in cancer cells has low power (high power due to transport of energy-rich metabolites from fibroblasts), disturbed coherence, and a shifted frequency spectrum according to changed power. Therapeutic strategies restoring mitochondrial function may trigger apoptosis in treated cells; yet, before this step is performed, induction (inhibition) of pyruvate dehydrogenase kinases (phosphatases) may restore the cancer state. In tumor tissues with the reverse Warburg effect, Caveolin-1 levels should be restored and the transport of energy-rich metabolites interrupted to cancer cells. In both cancer phenotypes, achieving permanently reversed mitochondrial dysfunction with metabolic-modulating drugs may be an effective, specific anti-cancer strategy. PMID:26437417
Is there a link between soft drinks and erectile dysfunction?
Adamowicz, Jan; Drewa, Tomasz
2011-01-01
This review focuses on the potential role of soft drinks, particularly the sugar component, in the pathogenesis of erectile dysfunction (ED). We analyzed the hypothetical link between metabolic disorders, induced by sweetened soft drinks overconsumption, and ED. High caloric intake, high refined-carbohydrates, and high fructose corn syrup (HFCS) content and less satiety are main factors responsible for metabolic disorders contributing to ED development. Regular diet mistakes among human males, such as soft drink consumption, may lead to slow and asymptomatic progression of ED, finally resulting in full claimed manifestation of ED.
Fijal, Bonnie A; Guo, Yingying; Li, Si G; Ahl, Jonna; Goto, Taro; Tanaka, Yoko; Nisenbaum, Laura K; Upadhyaya, Himanshu P
2015-10-01
Atomoxetine, which is indicated for treatment of attention-deficit hyperactivity disorder (ADHD), is predominantly metabolized by genetically polymorphic cytochrome P450 2D6 (CYP2D6). Based on identified CYP2D6 genotypes, individuals can be categorized into 4 phenotypic metabolizer groups as ultrarapid, extensive, intermediate, and poor. Previous studies have focused on observed differences between poor and extensive metabolizers, but it is not well understood whether the safety profile of intermediate metabolizers differs from that of ultrarapid and extensive metabolizers. This study compared safety and tolerability among the different CYP2D6 metabolizer groups in the 12-week open-label phase of an atomoxetine study in adult patients with ADHD. Genotyping identified 1039 patients as extensive/ultrarapid metabolizers, 780 patients as intermediate metabolizers, and 117 patients as poor metabolizers. Common (≥5% frequency) treatment-emergent adverse events did not significantly differ between extensive/ultrarapid and intermediate metabolizers (odds ratios were <2.0 or >0.5). Poor metabolizers had higher frequencies of dry mouth, erectile dysfunction, hyperhidrosis, insomnia, and urinary retention compared with the other metabolizer groups. There were no significant differences between extensive/ultrarapid and intermediate metabolizers in changes from baseline in vital signs. These results suggest that data from CYP2D6 intermediate and extensive/ultrarapid metabolizers can be combined when considering safety analyses related to atomoxetine. © 2015, The American College of Clinical Pharmacology.
Bonvallot, Nathalie; Canlet, Cécile; Blas-Y-Estrada, Florence; Gautier, Roselyne; Tremblay-Franco, Marie; Chevolleau, Sylvie; Cordier, Sylvaine; Cravedi, Jean-Pierre
2018-01-01
The use of pesticides exposes humans to numerous harmful molecules. Exposure in early-life may be responsible for adverse effects in later life. This study aimed to assess the metabolic modifications induced in pregnant rats and their offspring by a pesticide mixture representative of human exposure. Ten pregnant rats were exposed to a mixture of eight pesticides: acetochlor (246 μg/kg bw/d) + bromoxynil (12 μg/kg bw/d) + carbofuran (22.5 μg/kg bw/d) + chlormequat (35 μg/kg bw/d) + ethephon (22.5 μg/kg bw/d) + fenpropimorph (15.5 μg/kg bw/d) + glyphosate (12 μg/kg bw/d) + imidacloprid (12.5 μg/kg bw/d) representing the main environmental pesticide exposure in Brittany (France) in 2004. Another group of 10 pregnant rats served as controls. Females were fed ad libitum from early pregnancy, which is from gestational day (GD) 4 to GD 21. Urine samples were collected at GD 15. At the end of the exposure, mothers and pups were euthanized and blood, liver, and brain samples collected. 1H NMR-based metabolomics and GC-FID analyses were performed and PCA and PLS-DA used to discriminate between control and exposed groups. Metabolites for which the levels were significantly modified were then identified using the Kruskal-Wallis test, and p-values were adjusted for multiple testing correction using the False Discovery Rate. The metabolomics analysis revealed many differences between dams of the two groups, especially in the plasma, liver and brain. The modified metabolites are involved in TCA cycle, energy production and storage, lipid and carbohydrate metabolism, and amino-acid metabolism. These modifications suggest that the pesticide mixture may induce oxidative stress associated with mitochondrial dysfunction and the impairment of glucose and lipid metabolism. These observations may reflect liver dysfunction with increased relative liver weight and total lipid content. Similar findings were observed for glucose and energy metabolism in the liver of the offspring, and oxidative stress was also suggested in the brains of male offspring.
What Gene Mutations Affect Serotonin in Mice?
Tenpenny, Richard C; Commons, Kathryn G
2017-05-17
Although serotonin neurotransmission has been implicated in several neurodevelopmental and psychological disorders, the factors that drive dysfunction of the serotonin system are poorly understood. Current research regarding the serotonin system revolves around its dysfunction in neuropsychiatric disorders, but there is no database collating genetic mutations that result in serotonin abnormalities. To bridge this gap, we developed a list of genes in mice that, when perturbed, result in altered levels of serotonin either in brain or blood. Due to the intrinsic limitations of search, the current list should be considered a preliminary subset of all relevant cases. Nevertheless, it offered an opportunity to gain insight into what types of genes have the potential to impact serotonin by using gene ontology (GO). This analysis found that genes associated with monoamine metabolism were more often associated with increases in brain serotonin than decreases. Speculatively, this could be because several pathways (and therefore many genes) are responsible for the clearance and metabolism of serotonin whereas only one pathway (and therefore fewer genes) is directly involved in the synthesis of serotonin. Another contributor could be cross talk between monoamine systems such as dopamine. In contrast, genes that were associated with decreases in brain serotonin were more likely linked to a developmental process. Sensitivity of serotonin neurons to developmental perturbations could be due to their complicated neuroanatomy or possibly they may be negatively regulated by dysfunction of their innervation targets. Thus, these observations suggest hypotheses regarding the mechanisms underlying the vulnerability of brain serotonin neurotransmission.
Salience network and olanzapine in schizophrenia: implications for treatment in anorexia nervosa.
Stip, Emmanuel; Lungu, Ovidiu V
2015-03-01
The salience network (SN), a set of brain regions composed of the anterior fronto-insular cortex (aFI) and the anterior cingulate cortex (ACC), is usually involved in interoception, self-regulating, and action selection. Accumulating evidence indicates that dysfunctions in this network are associated with various pathophysiological deficits in both schizophrenia and eating disorders, stemming mainly from dysfunctional information processing of internal or external stimuli. In addition, the metabolic side effects of some antipsychotics (APs), as well as their pharmacological mechanisms of action, also suggest a link between the functional and neurophysiological changes in the brain in both schizophrenia and in eating disorders. Nevertheless, there is still a knowledge gap in explicitly and directly linking the metabolic side effects associated with AP treatment with the dysfunction in SN associated with processing of food-related information in schizophrenia. Here we provide neuroimaging evidence for such a link, by presenting data on a group of schizophrenia patients who followed 16 weeks of olanzapine treatment and undertook a passive viewing task while their brain activity was recorded. In response to food-related dynamic stimuli (video clips), we observed a decreased activity in SN (aFI and ACC) after the treatment, which also correlated with ghrelin plasma concentration and a measure of dietary restraint. Taken together with past findings regarding the role of SN in both schizophrenia and eating disorders, our results suggest that enhancing the reactivity in the SN has the potential to be a treatment strategy in people with anorexia nervosa. NCT 00290121.
Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E
2010-05-01
beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.
Correlated oxygen-sensing PLIM, cell metabolism FLIM and applications
NASA Astrophysics Data System (ADS)
Rück, A. C.; Kalinina, S.; Schäfer, P.; von Einem, B.; von Arnim, C.
2017-02-01
Correlated imaging of phosphorescence and fluorescence lifetime parameters of metabolic markers is a challenge for direct investigating mechanisms related to cell metabolism and oxygen tension. A large variety of clinical phenotypes is associated with mitochondrial defects accomplished with changes in cell metabolism. In many cases the hypoxic microenvironment of cancer cells shifts metabolism from oxidative phosphorylation (OXPHOS) to anaerobic or aerobic glycolysis, a process known as "Warburg" effect. Also during stem cell differentiation a switch in cell metabolism is observed. Mitochondrial dysfunction associated with hypoxia has been invoked in many complex disorders such as type 2 diabetes, Alzheimeŕs disease, cardiac ischemia/reperfusion injury, tissue inflammation and cancer. Cellular responses to oxygen tension have been studied extensively, optical imaging techniques based on time correlated single photon counting (TCSPC) to detect oxygen concentration and distribution are therefore of prominent interest. Moreover, they offer the possibility by inspecting fluorescence decay characteristics of intrinsic coenzymes to directly image metabolic pathways, whereas oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescent probe. The combination of both fluorescence lifetime imaging (FLIM) of coenzymes like NAD(P)H and FAD and phosphorescence lifetime (PLIM) of phosphorescent dyes could provide valuable information about correlation of metabolic pathways and oxygen tension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, D.; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071; Wu, Y.
Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; themore » level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury of hippocampus in IUGR offspring rats.« less
Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.
2017-01-01
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929
The cardiovascular benefits of dark chocolate.
Kerimi, Asimina; Williamson, Gary
2015-08-01
Dark chocolate contains many biologically active components, such as catechins, procyanidins and theobromine from cocoa, together with added sucrose and lipids. All of these can directly or indirectly affect the cardiovascular system by multiple mechanisms. Intervention studies on healthy and metabolically-dysfunctional volunteers have suggested that cocoa improves blood pressure, platelet aggregation and endothelial function. The effect of chocolate is more convoluted since the sucrose and lipid may transiently and negatively impact on endothelial function, partly through insulin signalling and nitric oxide bioavailability. However, few studies have attempted to dissect out the role of the individual components and have not explored their possible interactions. For intervention studies, the situation is complex since suitable placebos are often not available, and some benefits may only be observed in individuals showing mild metabolic dysfunction. For chocolate, the effects of some of the components, such as sugar and epicatechin on FMD, may oppose each other, or alternatively in some cases may act together, such as theobromine and epicatechin. Although clearly cocoa provides some cardiovascular benefits according to many human intervention studies, the exact components, their interactions and molecular mechanisms are still under debate. Copyright © 2015 Elsevier Inc. All rights reserved.
Prevalence of thyroid dysfunction in untreated cancer patients: a cross-sectional study.
Dişel, Umut; Beşen, Ayberk; Karadeniz, Cemile; Mertsoylu, Hüseyin; Sezer, Ahmet; Köse, Fatih; TanerSümbül, Ahmet; Gürkut, Ozlem; Muallaoğlu, Sadik; Abali, Hüseyin; Ozyilkan, Ozgür
2012-12-01
The relationship between thyroid disease and cancer (and cancer therapies) has been under investigation for years. Factors that increase the risk for thyroid disease include iodine deficiency, autoimmune disorders, old age, and pregnancy. The screening policy for thyroid disease in the healthy population is not precisely defined, and the frequency of thyroid dysfunction in untreated cancer patients has not been investigated in any great detail. This study was designed to compare the prevalence of thyroid dysfunction in 457 untreated cancer patients at the time of initial diagnosis to that of 373 age- and sex-matched subjects who were healthy and cancer-free (control group). Thyroid dysfunction was found in 29.5 % (135/457) of the cancer patients, while only 15.4 % (56/373) of the control group had thyroid dysfunction (p = 0.0001). The most prevalent abnormality was euthyroid sick syndrome (14.0 %, 64/457). Overt and subclinical hyperthyroidism and overt hypothyroidism were observed more frequently in cancer patients than the control group, and these differences were all statistically significant. Thyroid dysfunction was more frequent in patients with poor performance scores and those over the age of 50 years. These data indicate that alterations in thyroid hormone metabolism are twice as common in patients with untreated cancer than in control subjects. Those alterations may lead to delayed diagnosis, suboptimal treatment, and a poorer prognosis. In all, this study suggests that screening with thyroid function tests is strongly recommended in all newly diagnosed cancer patients.
Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease
Tracey, Timothy J.; Steyn, Frederik J.; Wolvetang, Ernst J.; Ngo, Shyuan T.
2018-01-01
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS. PMID:29410613
Beger, Hans G; Mayer, Benjamin
2018-02-16
The metrics for measuring early postoperative morbidity after resection of pancreatic neoplastic tumors are overall morbidity, severe surgery-related morbidity, frequency of reoperation and reintervention, in-hospital, 30-day and 90-day mortality and length of hospital stay. Thirty-day readmission after discharge is additionally an indispensable criterion to assess quality of surgery. The metrics for surgery-associated long-term results after pancreatic resections are survival times, new onset of diabetes (DM), impaired glucose tolerance, exocrine pancreatic insufficiency, body mass index and GI motility dysfunctions. Following pancreaticoduodenectomy (PD) performed on pancreatic normo-glycemic patients for malignant and benign tumors, 4-30% develop postoperative new onset of diabetes. Long-term persistence of diabetes mellitus is observed after surgery for benign tumors in 14% and in 15.5% of patients after cancer resection. Pancreatic exocrine insufficiency after PD is observed in the early postoperative period in 23-80% of patients. Persistence of exocrine dysfunctions exists in 25% and 49% of patients. Following left-sided pancreatic resection, new onset DM is observed in 14% of cases; an exocrine insufficiency persisting in the long-term outcome is observed in 16-28% of patients. Copyright © 2018 Elsevier Inc. All rights reserved.
Study of AMPK-Regulated Metabolic Fluxes in Neurons Using the Seahorse XFe Analyzer.
Marinangeli, Claudia; Kluza, Jérome; Marchetti, Philippe; Buée, Luc; Vingtdeux, Valérie
2018-01-01
AMP-activated protein kinase (AMPK) is the intracellular master energy sensor and metabolic regulator. AMPK is involved in cell energy homeostasis through the regulation of glycolytic flux and mitochondrial biogenesis. Interestingly, metabolic dysfunctions and AMPK deregulations are observed in many neurodegenerative diseases, including Alzheimer's. While these deregulations could play a key role in the development of these diseases, the study of metabolic fluxes has remained quite challenging and time-consuming. In this chapter, we describe the Seahorse XFe respirometry assay as a fundamental experimental tool to investigate the role of AMPK in controlling and modulating cell metabolic fluxes in living and intact differentiated primary neurons. The Seahorse XFe respirometry assay allows the real-time monitoring of glycolytic flux and mitochondrial respiration from different kind of cells, tissues, and isolated mitochondria. Here, we specify a protocol optimized for primary neuronal cells using several energy substrates such as glucose, pyruvate, lactate, glutamine, and ketone bodies. Nevertheless, this protocol can easily be adapted to monitor metabolic fluxes from other types of cells, tissues, or isolated mitochondria by taking into account the notes proposed for each key step of this assay.
The Changes They are A-Timed: Metabolism, Endogenous Clocks, and the Timing of Puberty
Tolson, Kristen P.; Chappell, Patrick E.
2012-01-01
Childhood obesity has increased dramatically over the last several decades, particularly in industrialized countries, often accompanied by acceleration of pubertal progression and associated reproductive abnormalities (Biro et al., 2006; Rosenfield et al., 2009). The timing of pubertal initiation and progression in mammals is likely influenced by nutritional and metabolic state, leading to the hypothesis that deviations from normal metabolic rate, such as those seen in obesity, may contribute to observed alterations in the rate of pubertal progression. While several recent reviews have addressed the effects of metabolic disorders on reproductive function in general, this review will explore previous and current models of pubertal timing, outlining a potential role of endogenous timing mechanisms such as cellular circadian clocks in the initiation of puberty, and how these clocks might be altered by metabolic factors. Additionally, we will examine recently elucidated neuroendocrine regulators of pubertal progression such as kisspeptin, explore models detailing how the mammalian reproductive axis is silenced during the juvenile period and reactivated at appropriate developmental times, and emphasize how metabolic dysfunction such as childhood obesity may alter timing cues that advance or delay pubertal progression, resulting in diminished reproductive capacity. PMID:22645521
Quines, Caroline B; Rosa, Suzan G; Chagas, Pietro M; Velasquez, Daniela; Prado, Vinicius C; Nogueira, Cristina W
2017-09-01
The modern life leads to excess consumption of food rich in fructose; however, the long-term changes in carbohydrate and lipid metabolism could lead to metabolic dysfunction in humans. The present study evaluated the in vitro insulin-mimetic action of p-chloro-diphenyl diselenide (p-ClPhSe) 2 . The second aim of this study was to investigate if (p-ClPhSe) 2 reverses metabolic dysfunction induced by fructose load in Wistar rats. The insulin-mimetic action of (p-ClPhSe) 2 at concentrations of 50 and 100 μM was determined in slices of rat skeletal muscle. (p-ClPhSe) 2 at a concentration of 50 μM stimulated the glucose uptake by 40% in skeletal muscle. A dose-response curve revealed that (p-ClPhSe) 2 at a dose of 25 mg/kg reduced (∼20%) glycemia in rats treated with fructose (5 g/kg, i.g.). The administration of fructose impaired the liver homeostasis and (p-ClPhSe) 2 (25 mg/kg) protected against the increase (∼25%) in the G-6-Pase and isocitrate dehydrogenase activities and reduced the triglyceride content (∼25%) in the liver. (p-ClPhSe) 2 regulated the liver homeostasis by stimulating hexokinase activity (∼27%), regulating the TCA cycle activity (increased the ATP and citrate synthase activity (∼15%)) and increasing the glycogen levels (∼67%). In conclusion, (p-ClPhSe) 2 stimulated carbohydrate metabolism and reversed metabolic dysfunction in rats fed with fructose. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pediatric neurological syndromes and inborn errors of purine metabolism.
Camici, Marcella; Micheli, Vanna; Ipata, Piero Luigi; Tozzi, Maria Grazia
2010-02-01
This review is devised to gather the presently known inborn errors of purine metabolism that manifest neurological pediatric syndromes. The aim is to draw a comprehensive picture of these rare diseases, characterized by unexpected and often devastating neurological symptoms. Although investigated for many years, most purine metabolism disorders associated to psychomotor dysfunctions still hide the molecular link between the metabolic derangement and the neurological manifestations. This basically indicates that many of the actual functions of nucleosides and nucleotides in the development and function of several organs, in particular central nervous system, are still unknown. Both superactivity and deficiency of phosphoribosylpyrophosphate synthetase cause hereditary disorders characterized, in most cases, by neurological impairments. The deficiency of adenylosuccinate lyase and 5-amino-4-imidazolecarboxamide ribotide transformylase/IMP cyclohydrolase, both belonging to the de novo purine synthesis pathway, is also associated to severe neurological manifestations. Among catabolic enzymes, hyperactivity of ectosolic 5'-nucleotidase, as well as deficiency of purine nucleoside phosphorylase and adenosine deaminase also lead to syndromes affecting the central nervous system. The most severe pathologies are associated to the deficiency of the salvage pathway enzymes hypoxanthine-guanine phosphoribosyltransferase and deoxyguanosine kinase: the former due to an unexplained adverse effect exerted on the development and/or differentiation of dopaminergic neurons, the latter due to a clear impairment of mitochondrial functions. The assessment of hypo- or hyperuricemic conditions is suggestive of purine enzyme dysfunctions, but most disorders of purine metabolism may escape the clinical investigation because they are not associated to these metabolic derangements. This review may represent a starting point stimulating both scientists and physicians involved in the study of neurological dysfunctions caused by inborn errors of purine metabolism with the aim to find novel therapeutical approaches. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Zhang, Ling; Du, Jianfeng; Yano, Naohiro; Wang, Hao; Zhao, Yu Tina; Dubielecka, Patrycja M; Zhuang, Shougang; Chin, Y Eugene; Qin, Gangjian; Zhao, Ting C
2017-08-01
Histone deacetylases are recently identified to act as key regulators for cardiac pathophysiology and metabolic disorders. However, the function of histone deacetylase (HDAC) in controlling cardiac performance in Type II diabetes and obesity remains unknown. Here, we determine whether HDAC inhibition attenuates high fat diet (HFD)-induced cardiac dysfunction and improves metabolic features. Adult mice were fed with either HFD or standard chow food for 24 weeks. Starting at 12 weeks, mice were divided into four groups randomly, in which sodium butyrate (1%), a potent HDAC inhibitor, was provided to chow and HFD-fed mice in drinking water, respectively. Glucose intolerance, metabolic parameters, cardiac function, and remodeling were assessed. Histological analysis and cellular signaling were examined at 24 weeks following euthanization of mice. HFD-fed mice demonstrated myocardial dysfunction and profound interstitial fibrosis, which were attenuated by HDAC inhibition. HFD-induced metabolic syndrome features insulin resistance, obesity, hyperinsulinemia, hyperglycemia, lipid accumulations, and cardiac hypertrophy, these effects were prevented by HDAC inhibition. Furthermore, HDAC inhibition attenuated myocyte apoptosis, reduced production of reactive oxygen species, and increased angiogenesis in the HFD-fed myocardium. Notably, HFD induced decreases in MKK3, p38, p38 regulated/activated protein kinase (PRAK), and Akt-1, but not p44/42 phosphorylation, which were prevented by HDAC inhibition. These results suggest that HDAC inhibition plays a critical role to preserve cardiac performance and mitigate metabolic disorders in obesity and diabetes, which is associated with MKK3/p38/PRAK pathway. The study holds promise in developing a new therapeutic strategy in the treatment of Type II diabetic-induced heart failure and metabolic disorders. J. Cell. Biochem. 118: 2395-2408, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Lass, P; Slawek, J; Derejko, M; Rubello, D
2008-06-01
Thyroid dysfunctions may be accompanied by numerous neurological and psychiatric disorders. The most known is cognitive impairment and depression in hypothyroid patients, as well as an increased risk of cerebrovascular accidents. A separate, although a rare entity, is Hashimoto's encephalopathy. In hyperthyroidism there is an increased incidence of psychiatric disorders, including apathetic hyperthyroidism and hyperthyroid dementia. Functional imaging of cerebral blood flow and metabolism helped establish both global and/or regional decrease of both cerebral blood flow and metabolism in hypothyroidism, particularly in regions mediating attention, motor speed and visuospatial processing. Hypothyroid dementia may be mediated by neurocircuitry different from that in major depression. Less is known on flow/metabolism changes in hyperthyroidism. Global blood flow may be slightly increased, with regional deficits of blood flow, particular in hyperthyroid dementia. As presented above radionuclide functional imaging showed some metabolic patterns in thyroid dysfunctions, but still many issues remain unresolved. In particular little is known about the underlying pathology of cognitive impairment and depression in hypothyroidism, which may differ from ones in euthyroid patients. Also little is known about the reversibility of changes in cerebral blood flow following thyroid replacement therapy. In hyperthyroid patients functional imaging might contribute to elucidate the background of apathetic hyperthyroidism and potential different background of psychiatric complications.
Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling.
Zieliński, Łukasz P; Smith, Anthony C; Smith, Alexander G; Robinson, Alan J
2016-11-01
Mitochondrial respiratory chain dysfunction causes a variety of life-threatening diseases affecting about 1 in 4300 adults. These diseases are genetically heterogeneous, but have the same outcome; reduced activity of mitochondrial respiratory chain complexes causing decreased ATP production and potentially toxic accumulation of metabolites. Severity and tissue specificity of these effects varies between patients by unknown mechanisms and treatment options are limited. So far most research has focused on the complexes themselves, and the impact on overall cellular metabolism is largely unclear. To illustrate how computer modelling can be used to better understand the potential impact of these disorders and inspire new research directions and treatments, we simulated them using a computer model of human cardiomyocyte mitochondrial metabolism containing over 300 characterised reactions and transport steps with experimental parameters taken from the literature. Overall, simulations were consistent with patient symptoms, supporting their biological and medical significance. These simulations predicted: complex I deficiencies could be compensated using multiple pathways; complex II deficiencies had less metabolic flexibility due to impacting both the TCA cycle and the respiratory chain; and complex III and IV deficiencies caused greatest decreases in ATP production with metabolic consequences that parallel hypoxia. Our study demonstrates how results from computer models can be compared to a clinical phenotype and used as a tool for hypothesis generation for subsequent experimental testing. These simulations can enhance understanding of dysfunctional mitochondrial metabolism and suggest new avenues for research into treatment of mitochondrial disease and other areas of mitochondrial dysfunction. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.
Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J
2016-06-01
Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
[Effects of diabetes and obesity on the higher brain functions in rodents].
Asato, Megumi; Ikeda, Hiroko; Kamei, Junzo
2012-11-01
Metabolic disorders, such as diabetes and obesity, have been indicated to disturb the function of the central nervous system (CNS) as well as several peripheral organs. Clinically, it is well recognized that the prevalence of anxiety and depression is higher in diabetic and obesity patients than in the general population. We have recently indicated that streptozotocin-induced diabetic and diet-induced obesity mice have enhanced fear memory and higher anxiety-like behavior in several tests such as the conditioned fear, tail-suspension, hole-board and elevated open-platform tests. The changes in fear memory and anxiety-like behavior of diabetic and obese mice are due to the dysfunction of central glutamatergic and monoaminergic systems, which is mediated by the changes of intracellular signaling. These results suggest that metabolic disorders strongly affect the function of the CNS and disturb the higher brain functions. These dysfunctions of the CNS in diabetes and obesity are involved in the increased prevalence of anxiety disorders and depression. Normalization of these dysfunctions in the CNS will be a new attractive target to treat the metabolic disorders and their complications.
Yui, Kunio; Sato, Atsushi; Imataka, George
2015-01-01
Mitochondria are organelles that play a central role in processes related to cellular viability, such as energy production, cell growth, cell death via apoptosis, and metabolism of reactive oxygen species (ROS). We can observe behavioral abnormalities relevant to autism spectrum disorders (ASDs) and their recovery mediated by the mTOR inhibitor rapamycin in mouse models. In Tsc2(+/-) mice, the transcription of multiple genes involved in mTOR signaling is enhanced, suggesting a crucial role of dysregulated mTOR signaling in the ASD model. This review proposes that the mTOR inhibitor may be useful for the pharmacological treatment of ASD. This review offers novel insights into mitochondrial dysfunction and the related impaired glutathione synthesis and lower detoxification capacity. Firstly, children with ASD and concomitant mitochondrial dysfunction have been reported to manifest clinical symptoms similar to those of mitochondrial disorders, and it therefore shows that the clinical manifestations of ASD with a concomitant diagnosis of mitochondrial dysfunction are likely due to these mitochondrial disorders. Secondly, the adenosine triphosphate (ATP) production/oxygen consumption pathway may be a potential candidate for preventing mitochondrial dysfunction due to oxidative stress, and disruption of ATP synthesis alone may be related to impaired glutathione synthesis. Finally, a decrease in total antioxidant capacity may account for ASD children who show core social and behavioral impairments without neurological and somatic symptoms.
Lipoprotein metabolism indicators improve cardiovascular risk prediction
USDA-ARS?s Scientific Manuscript database
Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to inves...
Age-related changes in endothelial function and blood flow regulation.
Toda, Noboru
2012-02-01
Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.
Trushina, Eugenia; Nemutlu, Emirhan; Zhang, Song; Christensen, Trace; Camp, Jon; Mesa, Janny; Siddiqui, Ammar; Tamura, Yasushi; Sesaki, Hiromi; Wengenack, Thomas M.; Dzeja, Petras P.; Poduslo, Joseph F.
2012-01-01
Background The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics. Methods and Findings We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. Conclusions Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated alterations in nucleotide, Krebs cycle, energy transfer, carbohydrate, neurotransmitter, and amino acid metabolic pathways. Mitochondrial dysfunction, therefore, is an underlying event in AD progression, and FAD mouse models provide valuable tools to study early molecular mechanisms implicated in AD. PMID:22393443
Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I
2012-12-21
The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.
Loftus, Tyler J; Efron, Philip A; Moldawer, Lyle L; Mohr, Alicia M
2016-10-01
Sympathetic nervous system activation and catecholamine release are important events following injury and infection. The nature and timing of different pathophysiologic insults have significant effects on adrenergic pathways, inflammatory mediators, and the host response. Beta adrenergic receptor blockers (β-blockers) are commonly used for treatment of cardiovascular disease, and recent data suggests that the metabolic and immunomodulatory effects of β-blockers can expand their use. β-blocker therapy can reduce sympathetic activation and hypermetabolism as well as modify glucose homeostasis and cytokine expression. It is the purpose of this review to examine either the biologic basis for proposed mechanisms or to describe current available clinical evidence for the use of β-blockers in traumatic brain injury, spinal cord injury, hemorrhagic shock, acute traumatic coagulopathy, erythropoietic dysfunction, metabolic dysfunction, pulmonary dysfunction, burns, immunomodulation, and sepsis.
Constantinou, Caterina; Mpatsoulis, Diogenis; Natsos, Anastasios; Petropoulou, Peristera-Ioanna; Zvintzou, Evangelia; Traish, Abdulmaged M.; Voshol, Peter J.; Karagiannides, Iordanes; Kypreos, Kyriakos E.
2014-01-01
Here, we investigated how LDL receptor deficiency (Ldlr−/−) modulates the effects of testosterone on obesity and related metabolic dysfunctions. Though sham-operated Ldlr−/− mice fed Western-type diet for 12 weeks became obese and showed disturbed plasma glucose metabolism and plasma cholesterol and TG profiles, castrated mice were resistant to diet-induced obesity and had improved glucose metabolism and reduced plasma TG levels, despite a further deterioration in their plasma cholesterol profile. The effect of hypogonadism on diet-induced weight gain of Ldlr−/− mice was independent of ApoE and Lrp1. Indirect calorimetry analysis indicated that hypogonadism in Ldlr−/− mice was associated with increased metabolic rate. Indeed, mitochondrial cytochrome c and uncoupling protein 1 expression were elevated, primarily in white adipose tissue, confirming increased mitochondrial metabolic activity due to thermogenesis. Testosterone replacement in castrated Ldlr−/− mice for a period of 8 weeks promoted diet-induced obesity, indicating a direct role of testosterone in the observed phenotype. Treatment of sham-operated Ldlr−/− mice with the aromatase inhibitor exemestane for 8 weeks showed that the obesity of castrated Ldlr−/− mice is independent of estrogens. Overall, our data reveal a novel role of Ldlr as functional modulator of metabolic alterations associated with hypogonadism. PMID:24837748
Heisler, Jillian M.; O’Connor, Jason C.
2015-01-01
Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057
Redox implications in adipose tissue (dys)function—A new look at old acquaintances
Jankovic, Aleksandra; Korac, Aleksandra; Buzadzic, Biljana; Otasevic, Vesna; Stancic, Ana; Daiber, Andreas; Korac, Bato
2015-01-01
Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow. PMID:26177468
Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André
2017-05-01
Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκB), heme oxygenase-1 (HO-1), and p38 mitogen-activated protein kinase (MAPK), were also changed in adult and aged astrocytes and are probably related to the changes observed in senescence marker, glutamatergic metabolism, mitochondrial dysfunction, oxidative/nitrosative stress, antioxidant defenses, inflammatory response, and trophic factors release. Together, our results reinforce the role of hippocampal astrocytes as a target for understanding the mechanisms involved in aging and provide an innovative tool for studies of astrocyte roles in physiological and pathological aging brain.
Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle
Heo, Jun-Won; No, Mi-Hyun; Park, Dong-Ho; Kang, Ju-Hee; Seo, Dae Yun; Han, Jin; Neufer, P. Darrell
2017-01-01
Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in O2 respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle. PMID:29200899
Ilkun, Olesya; Boudina, Sihem
2013-01-01
The metabolic syndrome (MetS) is a cluster of risk factors including obesity, insulin resistance, dyslipidemia, elevated blood pressure and glucose intolerance. The MetS increases the risk for cardiovascular disease (CVD) and type 2 diabetes. Each component of the MetS causes cardiac dysfunction and their combination carries additional risk. The mechanisms underlying cardiac dysfunction in the MetS are complex and might include lipid accumulation, increased fibrosis and stiffness, altered calcium homeostasis, abnormal autophagy, altered substrate utilization, mitochondrial dysfunction and increased oxidative stress. Mitochondrial and extra-mitochondrial sources of reactive oxygen species (ROS) and reduced antioxidant defense mechanisms characterize the myocardium of humans and animals with the MetS. The mechanisms for increased cardiac oxidative stress in the MetS are not fully understood but include increased fatty acid oxidation, mitochondrial dysfunction and enhanced NADPH oxidase activity. Therapies aimed to reduce oxidative stress and enhance antioxidant defense have been employed to reduce cardiac dysfunction in the MetS in animals. In contrast, large scale clinical trials using antioxidants therapies for the treatment of CVD have been disappointing because of the lack of efficacy and undesired side effects. The focus of this review is to summarize the current knowledge about the mechanisms underlying cardiac dysfunction in the MetS with a special interest in the role of oxidative stress. Finally, we will update the reader on the results obtained with natural antioxidant and mitochondria-targeted antioxidant therapies for the treatment of CVD in the MetS. PMID:23323621
Metabolic syndrome, insulin resistance, and chronic allograft dysfunction.
Porrini, Esteban; Delgado, Patricia; Torres, Armando
2010-12-01
Metabolic syndrome (MS) is a cluster of cardiovascular (CV) risk factors (hypertension, dyslipidemia, obesity, and glucose homeostasis alterations), and insulin resistance (IR) is suggested to be a common pathogenic background. In the general population, MS and IR have been proven to be risk factors for diabetes, CV disease, and chronic kidney disease. In the renal transplant setting, few studies have analyzed the relevance of MS and IR. According to the few data available, the prevalence of MS in renal transplant patients has been described as 22.6% at 12 months, 37.7% at 36 months, and 64% at 6 years after transplantation. Importantly, MS has been shown to be an independent risk factor for chronic allograft dysfunction (CAD), graft failure, new-onset diabetes, and CV disease. Also, persistent hyperinsulinemia during the first posttransplant year has been related to an increase in glomerular filtration rate, probably reflecting glomerular hyperfiltration as observed in prediabetes and early type 2 diabetes. Importantly, prediabetes (impaired fasting glucose and impaired glucose tolerance), a state hallmarked by IR, proved to be highly frequent among stable renal transplant recipients (30%), which is nearly three times its incidence in the general population. Posttransplant IR has been associated with subclinical atheromatosis as assessed by carotid intima-media thickness, and with chronic subclinical inflammation. In conclusion, MS and IR are important modifiable risk factors in renal transplant recipients, and prompt interventions to avoid its deleterious effects at the metabolic, CV, and graft function levels are needed.
Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.
Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya
2017-11-07
Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These phenomena are of particular importance for assessing the risk of developing future CKD.
Francisco, Flávio Andrade; Barella, Luiz Felipe; Silveira, Sandra da Silva; Saavedra, Lucas Paulo Jacinto; Prates, Kelly Valério; Alves, Vander Silva; Franco, Claudinéia Conationi da Silva; Miranda, Rosiane Aparecida; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Malta, Ananda; Vieira, Elaine; Palma-Rigo, Kesia; Pavanello, Audrei; Martins, Isabela Peixoto; Moreira, Veridiana Mota; de Oliveira, Júlio Cezar; Mathias, Paulo Cezar de Freitas; Gomes, Rodrigo Mello
2018-03-01
Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in β-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in β-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.
Wu, Peng; Wang, Qianyi; Jiang, Cuilian; Chen, Chen; Liu, Yun; Chen, Yajun; Zeng, Yu
2018-06-01
MicroRNA‑29a (miR‑29a) expression has been reported to be closely associated with skeletal muscle insulin resistance and type 2 diabetes. The present study investigated the effect of miR‑29a on palmitic acid (PA)‑induced lipid metabolism dysfunction and insulin resistance in C2C12 myotubes via overexpressing or silencing of miR‑29a expression. Mouse C2C12 myoblasts were cultured, differentiated and transfected with miR‑29a or miR‑29a inhibitor lentiviral with or without subsequent palmitic acid (PA) treatment. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were performed to assess the mRNA and protein levels of related genes, respectively. PA treatment increased the expression of miR‑29a in a time‑ and dose‑ dependent manner. miR‑29a silencing improved insulin‑induced glucose uptake and increased glucose transporter‑4 (GLUT4) transportation to the plasma membrane by upregulating its target peroxisome proliferator‑activated receptor δ (PPARδ). Furthermore, it was observed that miR‑29a regulated the expression of genes associated with lipid metabolism, including pyruvate dehydrogenase kinase isoform, mitochondrial uncoupling protein (UCP)2, UCP3, long chain specific acyl‑CoA dehydrogenase, mitochondrial and fatty acid transport protein 2. The results confirmed that silencing miR‑29a induced a decrease in glucose transport and affected lipid metabolism in PA‑treated C2C12 cells, and therefore may be involved in insulin resistance by targeting PPARδ in skeletal muscle. Therefore, the inhibition of miR‑29a may be a potential novel strategy for treating insulin resistance and type 2 diabetes.
Tsedensodnom, Orkhontuya; Vacaru, Ana M.; Howarth, Deanna L.; Yin, Chunyue; Sadler, Kirsten C.
2013-01-01
SUMMARY Secretory pathway dysfunction and lipid accumulation (steatosis) are the two most common responses of hepatocytes to ethanol exposure and are major factors in the pathophysiology of alcoholic liver disease (ALD). However, the mechanisms by which ethanol elicits these cellular responses are not fully understood. Recent data indicates that activation of the unfolded protein response (UPR) in response to secretory pathway dysfunction can cause steatosis. Here, we examined the relationship between alcohol metabolism, oxidative stress, secretory pathway stress and steatosis using zebrafish larvae. We found that ethanol was immediately internalized and metabolized by larvae, such that the internal ethanol concentration in 4-day-old larvae equilibrated to 160 mM after 1 hour of exposure to 350 mM ethanol, with an average ethanol metabolism rate of 56 μmol/larva/hour over 32 hours. Blocking alcohol dehydrogenase 1 (Adh1) and cytochrome P450 2E1 (Cyp2e1), the major enzymes that metabolize ethanol, prevented alcohol-induced steatosis and reduced induction of the UPR in the liver. Thus, we conclude that ethanol metabolism causes ALD in zebrafish. Oxidative stress generated by Cyp2e1-mediated ethanol metabolism is proposed to be a major culprit in ALD pathology. We found that production of reactive oxygen species (ROS) increased in larvae exposed to ethanol, whereas inhibition of the zebrafish CYP2E1 homolog or administration of antioxidants reduced ROS levels. Importantly, these treatments also blocked ethanol-induced steatosis and reduced UPR activation, whereas hydrogen peroxide (H2O2) acted as a pro-oxidant that synergized with low doses of ethanol to induce the UPR. Collectively, these data demonstrate that ethanol metabolism and oxidative stress are conserved mechanisms required for the development of steatosis and hepatic dysfunction in ALD, and that these processes contribute to ethanol-induced UPR activation and secretory pathway stress in hepatocytes. PMID:23798569
Hypogonadism and metabolic syndrome: implications for testosterone therapy.
Makhsida, Nawras; Shah, Jay; Yan, Grace; Fisch, Harry; Shabsigh, Ridwan
2005-09-01
Metabolic syndrome, characterized by central obesity, insulin resistance, dyslipidemia and hypertension, is highly prevalent in the United States. When left untreated, it significantly increases the risk of diabetes mellitus and cardiovascular disease. It has been suggested that hypogonadism may be an additional component of metabolic syndrome. This has potential implications for the treatment of metabolic syndrome with testosterone. We reviewed the available literature on metabolic syndrome and hypogonadism with a particular focus on testosterone therapy. A comprehensive MEDLINE review of the world literature from 1988 to 2004 on hypogonadism, testosterone and metabolic syndrome was performed. Observational data suggest that metabolic syndrome is strongly associated with hypogonadism in men. Multiple interventional studies have shown that exogenous testosterone has a favorable impact on body mass, insulin secretion and sensitivity, lipid profile and blood pressure, which are the parameters most often disturbed in metabolic syndrome. Hypogonadism is likely a fundamental component of metabolic syndrome. Testosterone therapy may not only treat hypogonadism, but may also have tremendous potential to slow or halt the progression from metabolic syndrome to overt diabetes or cardiovascular disease via beneficial effects on insulin regulation, lipid profile and blood pressure. Furthermore, the use of testosterone to treat metabolic syndrome may also lead to the prevention of urological complications commonly associated with these chronic disease states, such as neurogenic bladder and erectile dysfunction. Physicians must be mindful to evaluate hypogonadism in all men diagnosed with metabolic syndrome as well as metabolic syndrome in all men diagnosed with hypogonadism. Future research in the form of randomized clinical trials should focus on further defining the role of testosterone for metabolic syndrome.
Role of Autophagy in Metabolic Syndrome-Associated Heart Disease
Ren, Sidney Y.; Xu, Xihui
2014-01-01
Metabolic syndrome (MetS) is a constellation of multiple metabolic risk factors including abdominal obesity, glucose intolerance, insulin resistance, dyslipidemia and hypertension. Over the past decades, the prevalence of metabolic syndrome has increased dramatically, imposing a devastating, pandemic health threat. More importantly, individuals with metabolic syndrome are at an increased risk of diabetes mellitus and overall cardiovascular diseases. One of the common comorbidities of metabolic syndrome is heart anomalies leading to the loss of cardiomyocytes, cardiac dysfunction and ultimately heart failure. Up-to-date, a plethora cell signaling pathways have been postulated for the pathogenesis of cardiac complications in obesity including lipotoxicity, inflammation, oxidative stress, apoptosis and sympathetic overactivation although the precise mechanism of action underscoring obesity-associated heart dysfunction remains elusive. Recent evidence has indicated a potential role of protein quality control in components of metabolic syndrome. Within the protein quality control system, the autophagy-lysosome pathway is an evolutionarily conserved pathway responsible for bulk degradation of large intracellular organelles and protein aggregates. Autophagy has been demonstrated to play an indispensible role in the maintenance of cardiac geometry and function under both physiological and pathological conditions. Accumulating studies have demonstrated that autophagy plays a pivotal role in the etiology of cardiac anomalies under obesity and metabolic syndrome. In this mini review, we will discuss on how autophagy is involved in the regulation of cardiac function in obesity and metabolic syndrome. PMID:24810277
Effect of diosgenin on metabolic dysfunction: Role of ERβ in the regulation of PPARγ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin, E-mail: xinwang@fmmu.edu.cn; Liu, Jun; Long, Zi
The present study was designed to investigate the effect of diosgenin (DSG) on metabolic dysfunction and to elucidate the possible molecular mechanisms. High fat (HF) diet-fed mice and 3T3-L1 preadipocytes was used to evaluate the effect of DSG. We showed that DSG attenuated metabolic dysfunction in HF diet-fed mice, as evidenced by reduction of blood glucose level and improvement of glucose and insulin intolerance. DSG ameliorated oxidative stress, reduced body weight, fat pads, and systematic lipid profiles and attenuated lipid accumulation. DSG inhibited 3T3-L1 adipocyte differentiation and reduced adipocyte size through regulating key factors. DSG inhibited PPARγ and its targetmore » gene expression both in differentiated 3T3-L1 adipocytes and fat tissues in HF diet-fed mice. Overexpression of PPARγ suppressed DSG-inhibited adipocyte differentiation. DSG significantly increased nuclear expression of ERβ. Inhibition of ERβ significantly suppressed DSG-exerted suppression of adipocyte differentiation and PPARγ expression. In response to DSG stimulation, ERβ bound with RXRα and dissociated RXRα from PPARγ, leading to the reduction of transcriptional activity of PPARγ. These data provide new insight into the mechanisms underlying the inhibitory effect of DSG on adipocyte differentiation and demonstrate that ERβ-exerted regulation of PPARγ expression and activity is critical for DSG-inhibited adipocyte differentiation. - Highlights: • Diosgenin (DSG) attenuated metabolic dysfunction in high fat (HF) diet-fed mice. • DSG reduced oxidative stress and lipid accumulation in HF diet-fed mice. • DSG inhibited 3T3-L1 adipocyte differentiation and reduced adipocyte size. • DSG induced the binding of ERβ with RXRα. • DSG-induced activation of ERβ dissociated RXRα from PPARγ and reduced PPARγ activity.« less
CLUH couples mitochondrial distribution to the energetic and metabolic status.
Wakim, Jamal; Goudenege, David; Perrot, Rodolphe; Gueguen, Naig; Desquiret-Dumas, Valerie; Chao de la Barca, Juan Manuel; Dalla Rosa, Ilaria; Manero, Florence; Le Mao, Morgane; Chupin, Stephanie; Chevrollier, Arnaud; Procaccio, Vincent; Bonneau, Dominique; Logan, David C; Reynier, Pascal; Lenaers, Guy; Khiati, Salim
2017-06-01
Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status. © 2017. Published by The Company of Biologists Ltd.
Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism
Montalvo, Ryan N.
2017-01-01
Cancer cachexia, a wasting syndrome characterized by skeletal muscle depletion, contributes to increased patient morbidity and mortality. While the intricate balance between protein synthesis and breakdown regulates skeletal muscle mass, the suppression of basal protein synthesis may not account for the severe wasting induced by cancer. Therefore, recent research has shifted to the regulation of “anabolic resistance,” which is the impaired ability of nutrition and exercise to stimulate protein synthesis. Emerging evidence suggests that oxidative metabolism can regulate both basal and induced muscle protein synthesis. While disrupted protein turnover and oxidative metabolism in cachectic muscle have been examined independently, evidence suggests a linkage between these processes for the regulation of cancer-induced wasting. The primary objective of this review is to highlight the connection between dysfunctional oxidative metabolism and cancer-induced anabolic resistance in skeletal muscle. First, we review oxidative metabolism regulation of muscle protein synthesis. Second, we describe cancer-induced alterations in the response to an anabolic stimulus. Finally, we review a role for exercise to inhibit cancer-induced anabolic suppression and mitochondrial dysfunction. PMID:29375734
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies
Hardaway, Aimalie L; Podgorski, Izabela
2013-01-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies. PMID:23795967
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies.
Hardaway, Aimalie L; Podgorski, Izabela
2013-06-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.
High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.
Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong
2017-03-29
High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.
Ribas, Vicent; Drew, Brian G.; Zhou, Zhenqi; Phun, Jennifer; Kalajian, Nareg Y.; Soleymani, Teo; Daraei, Pedram; Widjaja, Kevin; Wanagat, Jonathan; de Aguiar Vallim, Thomas Q.; Fluitt, Amy H.; Bensinger, Steven; Le, Thuc; Radu, Caius; Whitelegge, Julian P.; Beaven, Simon W.; Tontonoz, Peter; Lusis, Aldons J.; Parks, Brian W.; Vergnes, Laurent; Reue, Karen; Singh, Harpreet; Bopassa, Jean C.; Toro, Ligia; Stefani, Enrico; Watt, Matthew J.; Schenk, Simon; Akerstrom, Thorbjorn; Kelly, Meghan; Pedersen, Bente K.; Hewitt, Sylvia C.; Korach, Kenneth S.; Hevener, Andrea L.
2016-01-01
Impaired estrogen receptor α(ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERαexpression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERαknockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A–regulator of calcineurin 1–calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERαdeficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERαin the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women. PMID:27075628
High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions
Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong
2017-01-01
High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption. PMID:28353649
Cellular metabolism and disease: what do metabolic outliers teach us?
DeBerardinis, Ralph J.; Thompson, Craig B.
2012-01-01
An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states – often genetically programmed – that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This review discusses the broad impact of metabolism in cellular function, how modern concepts of metabolism can inform our understanding of common diseases like cancer, and considers the prospects of developing new metabolic approaches to disease treatment. PMID:22424225
Alzamendi, Ana; Castrogiovanni, Daniel; Ortega, Hugo H; Gaillard, Rolf C; Giovambattista, Andres; Spinedi, Eduardo
2010-03-01
Hyperandrogenemia predisposes an organism toward developing impaired insulin sensitivity. The aim of our study was to evaluate endocrine and metabolic effects during early allostasis induced by a fructose-rich diet (FRD) in normal (control; CT) and neonatal-androgenized (testosterone propionate; TP) female adult rats. CT and TP rats were fed either a normal diet (ND) or an FRD for 3 weeks immediately before the day of study, which was at age 100 days. Energy intake, body weight (BW), parametrial (PM) fat characteristics, and endocrine/metabolic biomarkers were then evaluated. Daily energy intake was similar in CT and TP rats regardless of the differences in diet. When compared with CT-ND rats, the TP-ND rats were heavier, had larger PM fat, and were characterized by basal hypoadiponectinemia and enhanced plasma levels of non-esterified fatty acid (NEFA), plasminogen activator inhibitor-1 (PAI-1), and leptin. FRD-fed CT rats, when compared with CT-ND rats, had high plasma levels of NEFA, triglyceride (TG), PAI-1, leptin, and adiponectin. The TP-FRD rats, when compared with TP-ND rats, displayed enhanced leptinemia and triglyceridemia, and were hyperinsulinemic, with glucose intolerance. The PM fat taken from TP rats displayed increase in the size of adipocytes, decrease in adiponectin (protein/gene), and a greater abundance of the leptin gene. PM adipocyte response to insulin was impaired in CT-FRD, TP-ND, and TP-FRD rats. A very short duration of isocaloric FRD intake in TP rats induced severe metabolic dysfunction at the reproductive age. Our study supports the hypothesis that the early-androgenized female rat phenotype is highly susceptible to developing endocrine/metabolic dysfunction. In turn, these abnormalities enhance the risk of metabolic syndrome, obesity, type 2 diabetes, and cardiovascular disease.
Belton, Kerry R; Tian, Yuan; Zhang, Limin; Anitha, Mallappa; Smith, Philip B; Perdew, Gary H; Patterson, Andrew D
2018-04-06
The liver and the mammary gland have complementary metabolic roles during lactation. Substrates synthesized by the liver are released into the circulation and are taken up by the mammary gland for milk production. The aryl hydrocarbon receptor (AHR) has been identified as a lactation regulator in mice, and its activation has been associated with myriad morphological, molecular, and functional defects such as stunted gland development, decreased milk production, and changes in gene expression. In this study, we identified adverse metabolic changes in the lactation network (mammary, liver, and serum) associated with AHR activation using 1 H nuclear magnetic resonance (NMR)-based metabolomics. Pregnant mice expressing Ahr d (low affinity) or Ahr b (high affinity) were fed diets containing beta naphthoflavone (BNF), a potent AHR agonist. Mammary, serum, and liver metabolomics analysis identified significant changes in lipid and TCA cycle intermediates in the Ahr b mice. We observed decreased amino acid and glucose levels in the mammary gland extracts of Ahr b mice fed BNF. The serum of BNF fed Ahr b mice had significant changes in LDL/VLDL (increased) and HDL, PC, and GPC (decreased). Quantitative PCR analysis revealed ∼50% reduction in the expression of key lactogenesis mammary genes including whey acid protein, α-lactalbumin, and β-casein. We also observed morphologic and developmental disruptions in the mammary gland that are consistent with previous reports. Our observations support that AHR activity contributes to metabolism regulation in the lactation network.
Neurologic Complications of Transplantation.
Dhar, Rajat
2018-02-01
Neurologic disturbances including encephalopathy, seizures, and focal deficits complicate the course 10-30% of patients undergoing organ or stem cell transplantation. While much or this morbidity is multifactorial and often associated with extra-cerebral dysfunction (e.g., graft dysfunction, metabolic derangements), immunosuppressive drugs also contribute significantly. This can either be through direct toxicity (e.g., posterior reversible encephalopathy syndrome from calcineurin inhibitors such as tacrolimus in the acute postoperative period) or by facilitating opportunistic infections in the months after transplantation. Other neurologic syndromes such as akinetic mutism and osmotic demyelination may also occur. While much of this neurologic dysfunction may be reversible if related to metabolic factors or drug toxicity (and the etiology is recognized and reversed), cases of multifocal cerebral infarction, hemorrhage, or infection may have poor outcomes. As transplant patients survive longer, delayed infections (such as progressive multifocal leukoencephalopathy) and post-transplant malignancies are increasingly reported.
Loftus, Tyler J.; Efron, Philip A.; Moldawer, Lyle L.; Mohr, Alicia M.
2016-01-01
Sympathetic nervous system activation and catecholamine release are important events following injury and infection. The nature and timing of different pathophysiologic insults have significant effects on adrenergic pathways, inflammatory mediators, and the host response. Beta adrenergic receptor blockers (β-blockers) are commonly used for treatment of cardiovascular disease but recent data suggests that the metabolic and immunomodulatory effects of β-blockers can expand their use. β-blocker therapy can reduce sympathetic activation and hypermetabolism as well as modify glucose homeostasis and cytokine expression. It is the purpose of this review to examine either the biologic basis for proposed mechanisms or to describe current available clinical evidence for the use of β-blockers in traumatic brain injury (TBI), spinal cord injury (SCI), hemorrhagic shock, acute traumatic coagulopathy, erythropoietic dysfunction, metabolic dysfunction, pulmonary dysfunction, burns, immunomodulation, and sepsis. PMID:27172161
Management of female infertility from hormonal causes.
Luciano, Antony A; Lanzone, Antonio; Goverde, Angelique J
2013-12-01
Hormonal causes of female infertility involve ovulatory dysfunctions that may result from dysfunction of the hypothalamic-pituitary-ovarian axis, peripheral endocrine glands, nonendocrine organs, or metabolic disorders. It is important to think of anovulation not as a diagnosis but as a symptom of a metabolic or endocrine disorder that requires a thorough diagnostic evaluation to identify the specific cause and to implement effective therapies that assure the best possible pregnancy outcome and avoid long-term adverse health consequences. In most instances, the medical history points to the underlying dysfunction, which can usually be confirmed with laboratory or imaging tests. For more challenging cases, more extensive evaluations may be needed, including perturbation studies. Nevertheless, the management of anovulatory infertility is gratifying because its causes are often manifest and the treatment usually results in resumption of ovulatory cycles, restoration of fertility, and healthy offspring through natural conception without requiring expensive and intrusive assisted reproductive technologies. © 2013.
Wu, Rongrong; Xiao, Zhiyong; Zhang, Xiaorui; Liu, Feng; Zhou, Wenxia; Zhang, Yongxiang
2018-01-01
It is highly valuable to study the pharmacokinetics of herbal components under the pathological condition of liver dysfunction for safe and rational use of herbal medicines. In this study, the pharmacokinetic profiles of four effective lignans from Schisandra chinensis (SC), schisandrin, schisantherin A, deoxyshisandrin and γ-schisandrin, were investigated in carbon tetrachloride (CCl4)-intoxicated rats. The metabolism of the four lignans was also studied using microsomes from patients with advanced hepatocellular carcinoma. In situ intestinal and hepatic perfusions were conducted to clarify the contributions from impairments of gut and liver on the pharmacokinetics of the four schisandra lignans in CCl4-intoxicated rats. The metabolism in rat and human liver microsomes and transport in Caco-2 monolayer cell model were studied to reveal the key factors for the in vivo disposition of the four lignans. When SC alcoholic extract was orally administrated to CCl4-intoxicated rat for a short term (4 days), the pharmacokinetics of four active SC lignans was significantly changed while its hepatotherapeutic effect was not obviously observed. The plasma concentrations of the four schisandra lignans were dramatically elevated compared with the control. The Cmax, AUC and MRT were all increased or prolonged significantly while parameter CLz/F was obviously reduced in rat pretreated with CCl4. In hepatic perfusion study and liver microsomes incubation, it was found that the hepatic metabolism of the four lignans was markedly decreased mainly due to the activity reduction of multiple CYP450 isoenzymes involved the metabolism, which, eventually, might lead to the alternation of their pharmacokinetic profiles in CCl4-intoxicated rats or patients with advanced hepatocellular carcinoma. The pharmacokinetic studies of SC components in pathological situation of liver dysfunction are expected to provide useful data for rational and safe application of SC preparations in clinic or further pharmacological and toxicological research. PMID:29593545
Wu, Rongrong; Xiao, Zhiyong; Zhang, Xiaorui; Liu, Feng; Zhou, Wenxia; Zhang, Yongxiang
2018-01-01
It is highly valuable to study the pharmacokinetics of herbal components under the pathological condition of liver dysfunction for safe and rational use of herbal medicines. In this study, the pharmacokinetic profiles of four effective lignans from Schisandra chinensis (SC) , schisandrin, schisantherin A, deoxyshisandrin and γ-schisandrin, were investigated in carbon tetrachloride (CCl 4 )-intoxicated rats. The metabolism of the four lignans was also studied using microsomes from patients with advanced hepatocellular carcinoma. In situ intestinal and hepatic perfusions were conducted to clarify the contributions from impairments of gut and liver on the pharmacokinetics of the four schisandra lignans in CCl 4 -intoxicated rats. The metabolism in rat and human liver microsomes and transport in Caco-2 monolayer cell model were studied to reveal the key factors for the in vivo disposition of the four lignans. When SC alcoholic extract was orally administrated to CCl 4 -intoxicated rat for a short term (4 days), the pharmacokinetics of four active SC lignans was significantly changed while its hepatotherapeutic effect was not obviously observed. The plasma concentrations of the four schisandra lignans were dramatically elevated compared with the control. The Cmax, AUC and MRT were all increased or prolonged significantly while parameter CLz/F was obviously reduced in rat pretreated with CCl 4 . In hepatic perfusion study and liver microsomes incubation, it was found that the hepatic metabolism of the four lignans was markedly decreased mainly due to the activity reduction of multiple CYP450 isoenzymes involved the metabolism, which, eventually, might lead to the alternation of their pharmacokinetic profiles in CCl 4 -intoxicated rats or patients with advanced hepatocellular carcinoma. The pharmacokinetic studies of SC components in pathological situation of liver dysfunction are expected to provide useful data for rational and safe application of SC preparations in clinic or further pharmacological and toxicological research.
Hypercholesterolemia induces adipose dysfunction in conditions of obesity and nonobesity.
Aguilar, David; Fernandez, Maria Luz
2014-09-01
It is well known that hypercholesterolemia can lead to atherosclerosis and coronary heart disease. Adipose tissue represents an active endocrine and metabolic site, which might be involved in the development of chronic disease. Because adipose tissue is a key site for cholesterol metabolism and the presence of hypercholesterolemia has been shown to induce adipocyte cholesterol overload, it is critical to investigate the role of hypercholesterolemia on normal adipose function. Studies in preadipocytes revealed that cholesterol accumulation can impair adipocyte differentiation and maturation by affecting multiple transcription factors. Hypercholesterolemia has been observed to cause adipocyte hypertrophy, adipose tissue inflammation, and disruption of endocrine function in animal studies. Moreover, these effects can also be observed in obesity-independent conditions as confirmed by clinical trials. In humans, hypercholesterolemia disrupts adipose hormone secretion of visfatin, leptin, and adiponectin, adipokines that play a central role in numerous metabolic pathways and regulate basic physiologic responses such as appetite and satiety. Remarkably, treatment with cholesterol-lowering drugs has been shown to restore adipose tissue endocrine function. In this review the role of hypercholesterolemia on adipose tissue differentiation and maturation, as well as on hormone secretion and physiologic outcomes, in obesity and non–obesity conditions is presented.
Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun
2015-01-01
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.
Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction.
Song, Lili; Zhuang, Pengwei; Lin, Mengya; Kang, Mingqin; Liu, Hongyue; Zhang, Yuping; Yang, Zhen; Chen, Yunlong; Zhang, Yanjun
2017-09-01
Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.
Neuropsychiatric symptoms predict hypometabolism in preclinical Alzheimer disease.
Ng, Kok Pin; Pascoal, Tharick A; Mathotaarachchi, Sulantha; Chung, Chang-Oh; Benedet, Andréa L; Shin, Monica; Kang, Min Su; Li, Xiaofeng; Ba, Maowen; Kandiah, Nagaendran; Rosa-Neto, Pedro; Gauthier, Serge
2017-05-09
To identify regional brain metabolic dysfunctions associated with neuropsychiatric symptoms (NPS) in preclinical Alzheimer disease (AD). We stratified 115 cognitively normal individuals into preclinical AD (both amyloid and tau pathologies present), asymptomatic at risk for AD (either amyloid or tau pathology present), or healthy controls (no amyloid or tau pathology present) using [ 18 F]florbetapir PET and CSF phosphorylated tau biomarkers. Regression and voxel-based regression models evaluated the relationships between baseline NPS measured by the Neuropsychiatric Inventory (NPI) and baseline and 2-year change in metabolism measured by [ 18 F]fluorodeoxyglucose (FDG) PET. Individuals with preclinical AD with higher NPI scores had higher [ 18 F]FDG uptake in the posterior cingulate cortex (PCC), ventromedial prefrontal cortex, and right anterior insula at baseline. High NPI scores predicted subsequent hypometabolism in the PCC over 2 years only in individuals with preclinical AD. Sleep/nighttime behavior disorders and irritability and lability were the components of the NPI that drove this metabolic dysfunction. The magnitude of NPS in preclinical cases, driven by sleep behavior and irritability domains, is linked to transitory metabolic dysfunctions within limbic networks vulnerable to the AD process and predicts subsequent PCC hypometabolism. These findings support an emerging conceptual framework in which NPS constitute an early clinical manifestation of AD pathophysiology. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Yi Lo, Jennifer Chi; O'Connor, Anne E; Andrews, Zane B; Lo, Camden; Tiganis, Tony; Watt, Matthew J; O'Bryan, Moira K
2016-12-01
Fatty liver, or hepatic steatosis, is an alarmingly common pathology in western societies, in large part because if left unheeded, it can lead to life-threatening forms of nonalcoholic fatty liver disease, including nonalcoholic steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. As such, it is essential that we attain a greater understanding of the pathways that control energy partitioning in the liver and ultimately how they are impacted by environmental factors. Here, we define the essential requirement for a member of the Ras-related protein in the brain (RAB)-like (RABL) clade of small GTPases, RABL2, in fatty acid metabolism including in microtubule-associated mitochondrial movement within the liver. RABL2 dysfunction, even in mice fed a low-fat chow diet, leads to retarded hepatic mitochondria movement associated with and a cascading phenotype of interrelated metabolic defects reminiscent of a type 2 diabetic state: hepatic steatosis, insulin resistance, glucose intolerance, and adult onset obesity. RABL2 dysfunction does not, however, alter mitochondrial content, or the inherent respiratory capacity of individual mitochondria per se. Rather, it is associated with a decreased capacity for fatty oxidation in the context of the intact cell, suggesting a complex, and important, role for mitochondrial movement in metabolic health. Our data highlight the importance of RABL2 and mitochondrial dynamics in hepatic fatty acid oxidation and in the achievement of metabolic balance.
Androgen deprivation therapy for prostate cancer: long-term safety and patient outcomes
Ahmadi, Hamed; Daneshmand, Siamak
2014-01-01
Androgen deprivation therapy (ADT) constitutes the first-line treatment for patients with locally advanced tumors, recurrent or metastatic disease. Given its widespread use, clinicians should be familiar with common side effects of this treatment. This review focuses on common side effects of ADT and available treatment options to control the side effects. Also, it briefly compares continuous ADT with other therapeutic approaches for androgen deprivation in prostate cancer patients. Similar to hormonal medications, newer non-hormonal therapeutic options including gabapentin and acupuncture have at best moderate effect in controlling hot flashes in patients on ADT. Supervised and/or home exercise programs significantly improve ADT-related fatigue, metabolic/cardiovascular side effects, and cognitive dysfunction. Denosumab, a human monoclonal antibody against RANK-L, is more effective than bisphosphonates in preventing skeletal-related events in patients with metastatic or castrate-resistant prostate cancer and unlike bisphosphonates, it can also reduce the risk of vertebral fractures in men receiving ADT for non-metastatic prostate cancer. Toremifene, a selective estrogen receptor inhibitor, has dual beneficial effects on ADT-related osteoporosis and metabolic dysfunction. Metformin coupled with lifestyle modification is also a well-tolerated treatment for metabolic changes during ADT. While producing similar oncological outcomes, intermittent ADT is associated with higher quality of life in patients under ADT by improving bone health, less metabolic and hematologic complications, and fewer hot flashes and sexual dysfunction events. PMID:25045284
Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents.
Ryan, Paul M; Patterson, Elaine; Kent, Robert M; Stack, Helena; O'Connor, Paula M; Murphy, Kiera; Peterson, Veronica L; Mandal, Rupasri; Wishart, David S; Dinan, Timothy G; Cryan, John F; Seeley, Randy J; Stanton, Catherine; Ross, R Paul
2017-10-19
The gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction.
Russo, Isabella
2012-01-01
The metabolic syndrome is a clinical disorder characterized by impairment of glucose metabolism, increased arterial blood pressure, and abdominal obesity. The presence of these clinical features exposes patients to a high risk of atherothrombotic cardiovascular events. The pathogenesis of atherothrombosis in the metabolic syndrome is multifactorial, requiring a close relationship among the main components of the metabolic syndrome, including insulin resistance, alterations of glycaemic and lipid pattern, haemodynamic impairment, and early appearance of endothelial dysfunction. Furthermore, haemostatic alterations involving coagulation balance, fibrinolysis, and platelet function play a relevant role both in the progression of the arterial wall damage and in acute vascular events. The mechanisms linking abdominal obesity with prothrombotic changes in the metabolic syndrome have been identified and partially elucidated on the basis of alterations of each haemostatic variable and defined through the evidence of peculiar dysfunctions in the endocrine activity of adipose tissue responsible of vascular impairment, prothrombotic tendency, and low-grade chronic inflammation. This paper will focus on the direct role of adipose tissue on prothrombotic tendency in patients affected by metabolic syndrome, with adipocytes being able to produce and/or release cytokines and adipokines which deeply influence haemostatic/fibrinolytic balance, platelet function, and proinflammatory state. PMID:24278711
Ferraù, Francesco; Spagnolo, Federica; Cotta, Oana Ruxandra; Cannavò, Laura; Alibrandi, Angela; Russo, Giuseppina Tiziana; Aversa, Tommaso; Trimarchi, Francesco; Cannavò, Salvatore
2017-11-01
Craniopharyngioma is associated with metabolic alterations leading to increased cardiovascular mortality. Recently, the visceral adiposity index has been proposed as a marker of visceral adipose tissue dysfunction and of the related cardiometabolic risk. The role of the visceral adiposity index has never been explored in craniopharyngioma patients. We assessed the cardiometabolic risk on the basis of the visceral adiposity index in craniopharyngioma patients. We evaluated data of 24 patients treated for craniopharyngioma in a single-centre. We investigated the relationship among patients' clinical and biochemical features, cardiovascular risk -assessed by the Framingham and the atherosclerotic cardiovascular disease risk scores-, visceral adiposity index and adipose tissue dysfunction severity. Increased visceral adiposity index was found in 8 patients (33%). Adipose tissue dysfunction resulted to be severe, moderate or mild in 5, 2 and 1 cases. Increased visceral adiposity index significantly correlated with the occurrence of metabolic syndrome (p 0.027), IRI (p 0.001), triglycerides (p < 0.001), HOMA-IR (p < 0.001) and with lower ISI-Matsuda (p 0.005) and HDL-cholesterol (p < 0.001). Higher degree of adipose tissue dysfunction associated with increased insulin resistance. No gender difference was found for visceral adiposity index, adipose tissue dysfunction severity, and cardiovascular risk scores. Patients with adulthood onset craniopharyngioma showed higher Framingham risk score (p 0.004), atherosclerotic cardiovascular disease 10-year (p < 0.001) and lifetime (p 0.018) risk scores than those with childhood onset disease. Visceral adiposity index is increased in one third of our patients with craniopharyngioma, even if metabolic syndrome does not occur. Increased visceral adiposity index and adipose tissue dysfunction severity correlate with insulin sensitivity parameters, do not correlate with Framingham or atherosclerotic cardiovascular disease risk scores, and are not influenced by gender and age of disease onset.
Rocheteau, P.; Chatre, L.; Briand, D.; Mebarki, M.; Jouvion, G.; Bardon, J.; Crochemore, C.; Serrani, P.; Lecci, P. P.; Latil, M.; Matot, B.; Carlier, P. G.; Latronico, N.; Huchet, C.; Lafoux, A.; Sharshar, T.; Ricchetti, M.; Chrétien, F.
2015-01-01
Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity. PMID:26666572
Rocheteau, P; Chatre, L; Briand, D; Mebarki, M; Jouvion, G; Bardon, J; Crochemore, C; Serrani, P; Lecci, P P; Latil, M; Matot, B; Carlier, P G; Latronico, N; Huchet, C; Lafoux, A; Sharshar, T; Ricchetti, M; Chrétien, F
2015-12-15
Sepsis, or systemic inflammatory response syndrome, is the major cause of critical illness resulting in admission to intensive care units. Sepsis is caused by severe infection and is associated with mortality in 60% of cases. Morbidity due to sepsis is complicated by neuromyopathy, and patients face long-term disability due to muscle weakness, energetic dysfunction, proteolysis and muscle wasting. These processes are triggered by pro-inflammatory cytokines and metabolic imbalances and are aggravated by malnutrition and drugs. Skeletal muscle regeneration depends on stem (satellite) cells. Herein we show that mitochondrial and metabolic alterations underlie the sepsis-induced long-term impairment of satellite cells and lead to inefficient muscle regeneration. Engrafting mesenchymal stem cells improves the septic status by decreasing cytokine levels, restoring mitochondrial and metabolic function in satellite cells, and improving muscle strength. These findings indicate that sepsis affects quiescent muscle stem cells and that mesenchymal stem cells might act as a preventive therapeutic approach for sepsis-related morbidity.
Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells.
Cheng, Yisen; Chen, Gaojian; Wang, Li; Kong, Jiamin; Pan, Ji; Xi, Yue; Shen, Feihai; Huang, Zhiying
2018-08-01
Triptolide is a major active ingredient of tripterygium glycosides, used for the therapy of immune and inflammatory diseases. However, its clinical applications are limited by severe male fertility toxicity associated with decreased sperm count, mobility and testicular injures. In this study, we determined that triptoide-induced mitochondrial dysfunction triggered reduction of lactate and dysregulation of fatty acid metabolism in mouse Sertoli cells. First, triptolide induced mitochondrial damage through the suppressing of proliferator-activated receptor coactivator-1 alpha (PGC-1α) activity and protein. Second, mitochondrial damage decreased lactate production and dysregulated fatty acid metabolism. Finally, mitochondrial dysfunction was initiated by the inhibition of sirtuin 1 (SIRT1) with the regulation of AMP-activated protein kinase (AMPK) in Sertoli cells after triptolide treatment. Meanwhile, triptolide induced mitochondrial fatty acid oxidation dysregulation by increasing AMPK phosphorylation. Taken together, we provide evidence that the mechanism of triptolide-induced testicular toxicity under mitochondrial injury may involve a metabolic change. Copyright © 2018 Elsevier B.V. All rights reserved.
Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth
2015-04-01
Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Lewis, Gregory D; Ngo, Debby; Hemnes, Anna R; Farrell, Laurie; Domos, Carly; Pappagianopoulos, Paul P; Dhakal, Bishnu P; Souza, Amanda; Shi, Xu; Pugh, Meredith E; Beloiartsev, Arkadi; Sinha, Sumita; Clish, Clary B; Gerszten, Robert E
2016-01-19
Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.
Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2017-02-01
Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats. © 2017 Society for Endocrinology.
Wang, Wei; Zhang, Fuyang; Xia, Yunlong; Zhao, Shihao; Yan, Wenjun; Wang, Helin; Lee, Yan; Li, Congye; Zhang, Ling; Lian, Kun; Gao, Erhe; Cheng, Hexiang; Tao, Ling
2016-11-01
Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Sanka, Shankar C.; Bennett, David C.; Rojas, Jose D.; Tasby, Geraldine B.; Meininger, Cynthia J.; Wu, Guoyao; Wesson, Donald E.; Pfarr, Curtis M.; Martinez-Zaguilan, Raul
2000-04-01
Cytosolic Ca2+ ([Ca2+]cyt) regulates several cellular functions, e.g. cell growth, contraction, secretion, etc. In many cell types, ion homeostasis appears to be coupled with glucose metabolism. In certain cell types, a strict coupling between glycolysis and the activity of Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPases (SERCA) has been suggested. Glucose metabolism is altered in diabetes. We hypothesize that: (1) Ca2+ homeostasis is altered in microvascular endothelial cells from diabetic animals due to the dysfunction of glycolysis coupling the activity of SERCA; (2) endosomal/lysosomal compartments expressing SERCA are involved in the dysfunction associated with diabetes.
Drosophila as a model to study the genetic mechanisms of obesity-associated heart dysfunction.
Diop, Soda Balla; Bodmer, Rolf
2012-05-01
Obesity and cardiovascular disease are among the world's leading causes of death, especially in Western countries where consumption of high caloric food is commonly accompanied by low physical activity. This lifestyle often leads to energy imbalance, obesity, diabetes and their associated metabolic disorders, including cardiovascular diseases. It has become increasingly recognized that obesity and cardiovascular disease are metabolically linked, and a better understanding of this relationship requires that we uncover the fundamental genetic mechanisms controlling obesity-related heart dysfunction, a goal that has been difficult to achieve in higher organisms with intricate metabolic complexity. However, the high degree of evolutionary conservation of genes and signalling pathways allows researchers to use lower animal models such as Drosophila, which is the simplest genetic model with a heart, to uncover the mechanistic basis of obesity-related heart disease and its likely relevance to humans. Here, we discuss recent advances made by using the power of the Drosophila as a powerful model to investigate the genetic pathways by which a high fat diet may lead to heart dysfunction. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Wang, Na; Qian, Hong-Yan; Zhou, Xian-Qing; Li, Yan-Bo; Sun, Zhi-Wei
2012-08-01
The experiment was designed to study the mechanism of reproductive toxicity caused by endosulfan in mice and protective effects of vitamin E. The experiment was composed of three groups: the control group did not receive any endosulfan and vitamin E; the endosulfan exposed group received 0.8 mg/kg/d endosulfan and 0mg/kg/d vitamin E; and the endosulfan+vitamin E group received 0.8 mg/kg/d endosulfan and 100mg/kg/d vitamin E. The results showed that vitamin E significantly reversed the decline of the concentration and motility rate of sperm, and inhibited the increase of sperm abnormality rate caused by endosulfan. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and lactate dehydrogenase-C4 (LDH-C4) and the level of adenosine triphosphate (ATP) in the endosulfan+vitamin E group were higher while the malondialdehyde (MDA) content was significantly lower than those of the endosulfan exposed group. The results from pathology and electron microscope observed showed vitamin E decreased the cavities formation by desquamating of spermatogenic cells, stopped the ruptures and disappearances of mitochondrial cristaes in spermatogenic cells, and prevented the breakages and partial dissolvings of sperm tails induced by endosulfan. It is likely that endosulfan could directly damage sperm structures by oxidative stress, leading to a decrease in sperm quantity and quality. It also could indirectly cause a decline in reproductive function by damaging the structure of mitochondria, resulting in energy metabolism dysfunction, which could be one of the mechanisms behind the reproductive toxicity induced by endosulfan. It was inferred that vitamin E helps maintain the structural integrities of sperm architecture and prevent mitochondrial dysfunction through inhibiting oxidative stress, and thereby prevent the reproductive dysfunctions caused by endosulfan. Copyright © 2012 Elsevier Inc. All rights reserved.
Jacobsen, Mette J.; Mentzel, Caroline M. Junker; Olesen, Ann Sofie; Huby, Thierry; Jørgensen, Claus B.; Barrès, Romain; Fredholm, Merete
2016-01-01
Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity. PMID:26798656
Effect of a 5-lipoxygenase inhibitor on endotoxin-induced pulmonary dysfunction in awake sheep.
Kuratomi, Y; Lefferts, P L; Christman, B W; Parker, R E; Smith, W G; Mueller, R A; Snapper, J R
1993-02-01
We studied the effects of a 5-lipoxygenase inhibitor, SC-45662, on endotoxin-induced pulmonary dysfunction in chronically instrumented unanesthetized sheep. Each sheep was studied with endotoxin alone, SC-45662 alone, and endotoxin after SC-45662 pretreatment. Endotoxin did not cause consistent increases in plasma or lung lymph concentrations of leukotriene B4 (LTB4). Ex vivo stimulation of whole blood from sheep before and after treatment with SC-45662 demonstrated no inhibition of cyclooxygenase metabolism but an approximately 80% inhibition of LTB4 production. At drug concentrations obtained in vivo, SC-45662 did not significantly inhibit in vitro A23187-stimulated whole blood thromboxane B2 production but did inhibit LTB4 production from ionophore-stimulated sheep granulocytes. SC-45662 attenuated the early changes in lung mechanics and pulmonary hypertension but did not attenuate the later increase in lung fluid and solute exchange observed after endotoxemia. We conclude that 5-lipoxygenase products are not measurably involved in the later increase in lung fluid and solute exchange observed after endotoxemia in sheep.
Nutritional genomics: defining the dietary requirement and effects of choline.
Zeisel, Steven H
2011-03-01
As it becomes evident that single nucleotide polymorphisms (SNPs) in humans can create metabolic inefficiencies, it is reasonable to ask if such SNPs influence dietary requirements. Epidemiologic studies that examine SNPs relative to risks for diseases are common, but there are few examples of clinically sized nutrition studies that examine how SNPs influence metabolism. Studies on how SNPs influence the dietary requirement for choline provide a model for how we might begin examining the effects of SNPs on nutritional phenotypes using clinically sized studies (clinical nutrigenomics). Most men and postmenopausal women develop liver or muscle dysfunction when deprived of dietary choline. More than one-half of premenopausal women may be resistant to choline deficiency-induced organ dysfunction, because estrogen induces the gene [phosphatidylethanolamine-N-methyltransferase (PEMT)] that catalyzes endogenous synthesis of phosphatidylcholine, which can subsequently yield choline. Those premenopausal women that do require a dietary source of choline have a SNP in PEMT, making them unresponsive to estrogen induction of PEMT. It is important to recognize differences in dietary requirements for choline in women, because during pregnancy, maternal dietary choline modulates fetal brain development in rodent models. Because choline metabolism and folate metabolism intersect at the methylation of homocysteine, manipulations that limit folate availability also increase the use of choline as a methyl donor. People with a SNPs in MTHFD1 (a gene of folate metabolism that controls the use of folate as a methyl donor) are more likely to develop organ dysfunction when deprived of choline; their dietary requirement is increased because of increased need for choline as a methyl donor.
Insulin resistance in obesity as the underlying cause for the metabolic syndrome.
Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy
2010-01-01
The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consitt, Leslie A., E-mail: consitt@ohio.edu; Diabetes Institute, Ohio University, Athens, OH, 45701; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701
The purpose of this study was to determine if plasma acylcarnitine (AC) profiling is altered under hyperinsulinemic conditions as part of the aging process. Fifteen young, lean (19–29 years) and fifteen middle-to older-aged (57–82 years) individuals underwent a 2-hr euglycemic-hyperinsulinemic clamp. Plasma samples were obtained at baseline, 20 min, 50 min, and 120 min for analysis of AC species and amino acids. Skeletal muscle biopsies were performed after 60 min of insulin-stimulation for analysis of acetyl-CoA carboxylase (ACC) phosphorylation. Insulin infusion decreased the majority of plasma short-, medium-, and long-chain (SC, MC, and LC, respectively) AC. However, during the initial 50 min, a number ofmore » MC and LC AC species (C10, C10:1, C12:1, C14, C16, C16:1, C18) remained elevated in aged individuals compared to their younger counterparts indicating a lag in responsiveness. Additionally, the insulin-induced decline in skeletal muscle ACC phosphorylation was blunted in the aged compared to young individuals (−24% vs. −56%, P < 0.05). These data suggest that a desensitization to insulin during aging, possibly at the level of skeletal muscle ACC phosphorylation, results in a diminished ability to transition to glucose oxidation indicative of metabolic inflexibility. - Highlights: • Plasma acylcarnitine profiling reveals metabolic inflexibility in aged individuals. • Time course acylcarnitine profiling is critical to identify metabolic dysfunction. • Acetyl-CoA carboxylase phosphorylation status is related to metabolic dysfunction.« less
[Prevalence of thyroid dysfunction in patients with type 2 diabetes mellitus].
Centeno Maxzud, Mirta; Gómez Rasjido, Luciana; Fregenal, Mercedes; Arias Calafiore, Florencia; Córdoba Lanus, Mercedes; D'Urso, Marcela; Luciardi, Héctor
Diabetes mellitus (DM) and thyroid dysfunction (TD) are two common endocrine disorders. The unrecognized subclinical TD may adversely affect metabolic control and increase cardiovascular risk. Our aim was to investigate the prevalence of TD in patients with type 2 diabetes mellitus in an observational cross-sectional study. Clinical and laboratory evaluation was performed to 205 consecutive outpatients at Endocrinology Diabetes and Nutrition Center in Concepcion City, Tucuman, Argentina. Thyroid dysfunction was classified as clinical hypothyroidism with TSH > 4.20 mUI / ml and FT4 < 0.93 ng / dl, subclinical hypothyroidism with TSH > 4.20 mUI / ml and free T4 0.93 to 1.70 ng / dl. Subclinical hyperthyroidism was considered with TSH < 0.27 mUI / ml and free T4 was in normal range (0.93 to 1.70 ng / dl); and clinical hyperthyroidism with TSH < 0.27 mUI / ml and free T4 > 1.70 mUI / ml. Autoimmunity was diagnosed with anti-TPO > 34 IU / ml. TD prevalence in type 2 diabetic patients was 48% (n = 92). In subjects who denied prior TD, the prevalence was 40% (n = 37), 15 with subclinical hypothyroidism (45%). In the whole study population prevalence of subclinical hypothyroidism was 8%. Globally, subclinical DT prevalence was 9% (n = 17) and anti-TPO 13% (n = 25). Early detection of thyroid dysfunction in patients with type 2 diabetes mellitus should be performed routinely, given the high rate of newly diagnosed cases, and increased cardiovascular risk associated with undiagnosed thyroid dysfunction.
Yamagata, Kazuo
2018-02-04
Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.
Yamagata, Kazuo
2018-01-01
Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome. PMID:29401716
Haviland, Julia A; Tonelli, Marco; Haughey, Dermot T; Porter, Warren P; Assadi-Porter, Fariba M
2012-08-01
Metabolomics is the study of a unique fingerprint of small molecules present in biological systems under healthy and disease conditions. One of the major challenges in metabolomics is validation of fingerprint molecules to identify specifically perturbed pathways in metabolic aberrations. This step is crucial to the understanding of budding metabolic pathologies and the ability to identify early indicators of common diseases such as obesity, type 2 diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, and cancer. We present a novel approach to diagnosing aberrations in glucose utilization including metabolic pathway switching in a disease state. We used a well-defined prenatally exposed glucocorticoid mouse model that results in adult females with metabolic dysfunction. We applied the complementary technologies of nuclear magnetic resonance spectroscopy and cavity ring-down spectroscopy to analyze serial plasma samples and real-time breath measurements following selective (13)C-isotope-assisted labeling. These platforms allowed us to trace metabolic markers in whole animals and identify key metabolic pathway switching in prenatally glucocorticoid-treated animals. Total glucose flux is significantly proportionally increased through the major oxidative pathways of glycolysis and the pentose phosphate pathway in the prenatally glucocorticoid-treated animals relative to the control animals. This novel diagnostics approach is fast, noninvasive, and sensitive for determining specific pathway utilization, and provides a direct translational application in the health care field. Copyright © 2012 Elsevier Inc. All rights reserved.
Carotid artery intima-media thickness and erectile dysfunction in patients with metabolic syndrome.
Unal, Mustafa; Aksoy, Duygu Yazgan; Aydın, Yusuf; Tanriover, Mine Durusu; Berker, Dilek; Karakaya, Jale; Guler, Serdar
2014-05-29
Metabolic syndrome (MS) has become a pandemic in Turkey, as is the case globally. Increase in carotid artery intima-media thickness (CIMT) and erectile dysfunction (ED) may be evident before the clinical signs of cardiovascular disease appear. We aimed to investigate the prevalence of increased CIMT and ED as markers of atherosclerotic disease in patients with MS. Thirty-two patients with MS and 29 healthy controls were included. Anthropometric and biochemical parameters, along with total testosterone (TT), high sensitive C-reactive protein (hs-CRP), were recorded. Carotid artery intima-media thickness was measured. Erectile dysfunction was assessed with International Index of Erectile Function. Patients with MS had higher BMI, fasting plasma glucose, post-prandial plasma glucose, insulin, HOMA-IR, total cholesterol, triglycerides, hs-CRP, and CIMT, whereas TT levels were lower (p<0.0001). The prevalence and severity of erectile dysfunction were higher in patients with MS (p<0.0001). Erectile dysfunction scores correlated inversely with CIMT. MS patients with ED were older and had higher CIMT compared to those without ED. Increase in age and HOMA and decrease in TT increased the risk of ED. When KIMT exceeding the 95th percentile of healthy controls was accepted as a risk factor for CVD, presence of ED was the only determinant for this increase. Erectile dysfunction was more prevalent and severe in patients with MS and correlated with subclinical endothelial dysfunction. Total testosterone deficiency was prominent among MS patients. Presence of ED points to an increased risk of cardiovascular disease when MS is present.
Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering
Thrane, Vinita Rangroo; Thrane, Alexander S; Wang, Fushun; Cotrina, Maria L; Smith, Nathan A; Chen, Michael; Xu, Qiwu; Kang, Ning; Fujita, Takumi; Nagelhus, Erlend A; Nedergaard, Maiken
2013-01-01
Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death1. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes2. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia3,4. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1. PMID:24240184
Amidu, N; Owiredu, W K B A; Gyasi-Sarpong, C K; Alidu, H; Antuamwine, B B; Sarpong, C
2017-05-01
We sought to establish the interplay of metabolic syndrome (MetS) and/or sexual dysfunction (SD) on hypogonadism. Sexual functioning was assessed using Golombok Rust Inventory of Sexual Satisfaction in 274 consecutive diabetic men visiting the diabetic clinic of the Tema General Hospital between November 2010 and March 2011. MetS was assessed employing the criteria of World Health Organization, International Diabetic Federation and the National Cholesterol Education Program Adult Treatment Panel III while testosterone levels were estimated. The mean ages and duration of diabetes from this study were 59.9±11.3 and 6.8±5.9 years, respectively. The prevalence of hypogonadism was 7.3%, with the -SD/+MetS subjects showing the highest prevalence of hypogonadism, irrespective of the criteria used. Additionally, subjects with MetS and its components had a significantly lower level of testosterone compared with those without MetS and its components. Using standard nine-point scale, it was observed that subjects who avoided sexual act had significantly (P=0.0410) lower testosterone values (5.8±2.3 ng ml -1 ) than subjects who did not avoid sexual act (6.4±2.6 ng ml -1 ). MetS alone impacted more on hypogonadism than SD alone or both conditions altogether.
Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; Dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Antunes, Hanna Karen Moreira
2016-01-01
Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation.
Selective reductions in prefrontal glucose metabolism in murderers.
Raine, A; Buchsbaum, M S; Stanley, J; Lottenberg, S; Abel, L; Stoddard, J
1994-09-15
This study tests the hypothesis that seriously violent offenders pleading not guilty by reason of insanity or incompetent to stand trial are characterized by prefrontal dysfunction. This hypothesis was tested in a group of 22 subjects accused of murder and 22 age-matched and gender-matched controls by measuring local cerebral uptake of glucose using positron emission tomography during the continuous performance task. Murderers had significantly lower glucose metabolism in both lateral and medial prefrontal cortex relative to controls. No group differences were observed for posterior frontal, temporal, and parietal glucose metabolism, indicating regional specificity for the prefrontal deficit. Group differences were not found to be a function of raised levels of left-handedness, schizophrenia, ethnic minority status, head injury, or motivation deficits in the murder group. These preliminary results suggest that deficits localized to the prefrontal cortex may be related to violence in a selected group of offenders, although further studies are needed to establish the generalizability of these findings to violent offenders in the community.
The emerging relevance of the gut microbiome in cardiometabolic health
USDA-ARS?s Scientific Manuscript database
Host metabolic pathways and physiological responses are regulated by signals linking the host to the gut microbial community or microbiome. Here, we draw a spotlight on lipid and bile acid metabolism and inflammatory response as they pertain to cardiometabolic dysfunction. Gut microbial dysbiosis al...
Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J.; Cheng, Jianfeng; Mirshahi, Faridoddin
2014-01-01
PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. PMID:24763554
Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J; Cheng, Jianfeng; Mirshahi, Faridoddin; Sanyal, Arun J
2014-07-01
PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. Copyright © 2014 the American Physiological Society.
Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun
2015-12-01
Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.
Chatterjee, Bidisha; Suri, Jyotsna; Suri, Jagdish Chander; Mittal, Pratima; Adhikari, Tulsi
2014-12-01
Polycystic ovary syndrome (PCOS) is the most common endocrinological disorder among women in the reproductive age group. These women are prone to develop sleep-disordered breathing (SDB) and metabolic disorders. SDB is also associated with metabolic dysfunctions. We hypothesized that SDB is an independent risk factor contributing to metabolic dysfunctions in women with PCOS. Prospective cross-sectional study in which 50 women with PCOS and not on any treatment were selected. They were divided into two groups: Group 1 - PCOS with SDB and Group 2 - PCOS without SDB. Thirty-three (66%) women with PCOS had SDB. Women in Group 1 had significantly higher systolic blood pressure (SBP) (P = 0.002); diastolic blood pressure (DBP) (P = 0.044); fasting blood sugar (P = 0.006), triglyceride levels (P = 0.014) and mean Ferriman-Gallwey score (P = 0.028). The HDL was significantly lower in group 1 (P = 0.006). In group 1, 42.4% of women had metabolic syndrome (P < 0.001). Excessive daytime sleepiness (EDS) was significantly higher in Group 1 (P = 0.04). Respiratory distress index significantly correlated positively with waist circumference (r = 0.551, P < 0.001), SBP (r = 0.455, P = 0.001), DBP (r = 0.387, P = 0.006), FBS (r = 0.524, P = 0.000), homeostatic model assessment (r = 0.512, P = 0.000), triglycerides (r = 0.384, P = 0.006), free testosterone (r = 0.390, P = 0.005), and negatively with HDL (r = -0.555, P < 0.001). Women with PCOS and SDB had significantly increased metabolic abnormalities as well as more severe hyperandrogenism. Women with PCOS who have metabolic abnormalities or severe hyperandrogenism should undergo an overnight PSG. Copyright © 2014 Elsevier B.V. All rights reserved.
Coronary microvascular dysfunction in diabetes mellitus
Selthofer-Relatic, Kristina; Drenjancevic, Ines; Bacun, Tatjana; Bosnjak, Ivica; Kibel, Dijana; Gros, Mario
2017-01-01
The significance, mechanisms and consequences of coronary microvascular dysfunction associated with diabetes mellitus are topics into which we have insufficient insight at this time. It is widely recognized that endothelial dysfunction that is caused by diabetes in various vascular beds contributes to a wide range of complications and exerts unfavorable effects on microcirculatory regulation. The coronary microcirculation is precisely regulated through a number of interconnected physiological processes with the purpose of matching local blood flow to myocardial metabolic demands. Dysregulation of this network might contribute to varying degrees of pathological consequences. This review discusses the most important findings regarding coronary microvascular dysfunction in diabetes from pre-clinical and clinical perspectives. PMID:28643578
METABOLISM OF PBDES IN FATHEAD MINNOWS (PIMEPHALES PROMELAS) AND EFFECTS ON THYROID REGULATION
PBDE effects on fish and other wildlife continue to be poorly understood, and this research will contribute to filling this data gap. It will increase our understanding of PBDE metabolic pathways and mechanisms of thyroid dysfunction in fish exposed to this important class of ...
[Pseudo-Bartter syndrome--2 cases].
Jóźwiak, Lucyna; Jaroszyński, Andrzej; Baranowicz-Gaszczyk, Iwona; Borowicz, Ewa; Ksiazek, Andrzej
2010-01-01
Bartter syndrome represents the group of renal disturbances characterized by hypokaliemia and metabolic alkalosis. Some diseases could display hypokalemic metabolic alkalosis without primary tubular dysfunction. These disorders are called pseudo-Bartter syndrome. In this paper we present 2 cases of pseudo-Bartter syndrome related among to other things to overuse of diuretic drugs.
USDA-ARS?s Scientific Manuscript database
Obesity is associated with a chronic low grade inflammation characterized by high level of pro-inflammatory cytokines and mediators implicated in disrupted metabolic homeostasis. Parasitic nematode infection induces a polarized Th2 cytokine response and has been shown to modulate immune-based pathol...
Pircher, Andreas; Treps, Lucas; Bodrug, Natalia; Carmeliet, Peter
2016-10-01
Atherosclerosis is a leading cause of morbidity and mortality in Western society. Despite improved insight into disease pathogenesis and therapeutic options, additional treatment strategies are required. Emerging evidence highlights the relevance of endothelial cell (EC) metabolism for angiogenesis, and indicates that EC metabolism is perturbed when ECs become dysfunctional to promote atherogenesis. In this review, we overview the latest insights on EC metabolism and discuss current knowledge on how atherosclerosis deregulates EC metabolism, and how maladaptation of deregulated EC metabolism can contribute to atherosclerosis progression. We will also highlight possible therapeutic avenues, based on targeting EC metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Murri, Mora; Insenser, María; Fernández-Durán, Elena; San-Millán, José L; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F
2018-02-02
Circulating micro-ribonucleic acids (miRNAs) are small noncoding RNA molecules that influence gene transcription. We conducted the present profiling study to characterize the expression of circulating miRNAs in lean and obese patients with polycystic ovary syndrome (PCOS), the most common endocrine and metabolic disorder in premenopausal women. We selected 11 control women, 12 patients with PCOS and 12 men so that they were similar in terms of body mass index. Five control women, 6 men and 6 patients with PCOS had normal weight whereas 6 subjects per group were obese. We used miRCURY LNA™ Universal RT microRNA PCR for miRNA profiling. The expression of 38 miRNAs and was different between subjects with PCOS and male and female controls. The differences in 15 miRNAs followed a pattern suggestive of androgenization characterized by expression levels that were similar in patients with PCOS and men but were different compared with those of control women. The expression of 13 miRNAs in women with PCOS was similar to that of control women and different compared with the expression observed in men, suggesting sexual dimorphism and, lastly, we observed 5 miRNAs that were expressed differently in women with PCOS compared with both men and control women, suggesting a specific abnormality in expression associated with the syndrome. Obesity interacted with the differences in several of these miRNAs, and the expression levels of many of them correlated with the hirsutism score, sex hormones and/or indexes of obesity, adiposity and metabolic dysfunction. The present results suggest that several serum miRNAs are influenced by PCOS, sex hormones and obesity. Our findings may guide the targeted search of miRNAs as clinically relevant markers for PCOS and its association with obesity and metabolic dysfunction in future studies. Copyright © 2018. Published by Elsevier Inc.
Metabolic Dysfunction Consistent with Premature Aging Results from Deletion of Pim Kinases
Din, Shabana; Konstandin, Mathias H; Johnson, Bevan; Emathinger, Jacqueline; Völkers, Mirko; Toko, Haruhiro; Collins, Brett; Ormachea, Lucy; Samse, Kaitlen; Kubli, Dieter A; De La Torre, Andrea; Kraft, Andrew S; Gustafsson, Asa B; Kelly, Daniel P; Sussman, Mark A
2014-01-01
Rationale The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention since Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight regarding cardiac mitochondrial biology and the aging phenotype. Objective Demonstrate myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. Methods and Results Cardiac myocyte senescence was evident at three months of age in Pim Triple KnockOut (PTKO) mice, where all three isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation was followed by heart failure at six months in PTKO mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMPK, exposing an energy deficiency in PTKO mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ coactivator-1 (PGC-1) α and β were diminished in PTKO hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc, a downstream target of Pim kinases. Conclusion Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics. PMID:24916111
Longterm management of Polycystic Ovarian Syndrome (PCOS).
Bates, Gordon W; Legro, Richard S
2013-07-05
Polycystic Ovarian Syndrome (PCOS) has been associated with numerous reproductive and metabolic abnormalities. Despite tremendous advances in the management of reproductive dysfunction, insight into the metabolic implications of PCOS is limited by the lack of uniform diagnostic criteria, the heterogeneity of the condition and the presence of confounders including obesity. Obesity clearly has a role in long term health and may best predict both reproductive and metabolic dysfunction as well as negatively affect the response to treatment in women with PCOS. Diabetes, cardiovascular disease and cancer are also at the forefront of any risk assessment or comprehensive treatment strategy for these women. Lifestyle modifications including dietary changes, increased exercise and weight loss are appropriate first line interventions for many women with PCOS. Pharmaceuticals including metformin, lipid lowering agents and oral contraceptives should be tailored to the individual's risk profile and treatment goals. Copyright © 2012. Published by Elsevier Ireland Ltd.
Intersection between metabolic dysfunction, high fat diet consumption, and brain aging.
Uranga, Romina M; Bruce-Keller, Annadora J; Morrison, Christopher D; Fernandez-Kim, Sun Ok; Ebenezer, Philip J; Zhang, Le; Dasuri, Kalavathi; Keller, Jeffrey N
2010-07-01
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Cardiometabolic Risk in PCOS: More than a Reproductive Disorder
Torchen, Laura C.
2018-01-01
Purpose of Review Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well-established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. Recent Findings Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. Summary PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed. PMID:29128916
Cardiometabolic Risk in PCOS: More than a Reproductive Disorder.
Torchen, Laura C
2017-11-11
Polycystic ovary syndrome (PCOS) is diagnosed by its characteristic reproductive features. However, PCOS is also associated with metabolic abnormalities, including insulin resistance and β-cell dysfunction. The severity of these abnormalities varies according to the reproductive phenotype, with the so-called NIH or classic phenotype conferring the greatest metabolic risk. The increased risk for type 2 diabetes (T2D) is well established among affected women with the NIH phenotype, but whether PCOS also confers an increased risk for cardiovascular events remains unknown. Recent studies in daughters of affected women have found evidence for pancreatic β-cell dysfunction prior to menarche. Further, genetic analyses have provided evidence that metabolic abnormalities such as obesity and insulin resistance contribute to the pathogenesis of PCOS. PCOS increases the risk for T2D. However, the risk for cardiovascular disease has not been quantified, and prospective, longitudinal studies are still critically needed.
Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando
2018-01-01
Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Pistorio, Elisabetta; Luca, Maria; Luca, Antonina; Messina, Vincenzo; Calandra, Carmela
2011-10-28
To correlate lipid metabolism and autonomic dysfunction with anxious-depressive spectrum and eating disorders. To propose the lipid index (LI) as a new possible biomarker. 95 patients and 60 controls were enrolled from the University Psychiatry Unit of Catania and from general practitioners (GPs). The patients were divided into four pathological groups: Anxiety, Depression, Anxious-Depressive Disorder and Eating Disorders [Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision (DSM-IV-TR) official/appendix criteria]. The levels of the cholesterol, triglycerides and apolipoproteins A and B were determined. The LI, for each subject, was obtained through a mathematical operation on the values of the cholesterol and triglycerides levels compared with the maximum cut-off of the general population. The autonomic functioning was tested with Ewing battery tests. Particularly, the correlation between heart rate variability (HRV) and lipid metabolism has been investigated. Pathological and control groups, compared among each other, presented some peculiarities in the lipid metabolism and the autonomic dysfunction scores. In addition, a statistically significant correlation has been found between HRV and lipid metabolism. Lipid metabolism and autonomic functioning seem to be related to the discussed psychiatric disorders. LI, in addition, could represent a new possible biomarker to be considered.
Ribas, Vicent; Drew, Brian G; Zhou, Zhenqi; Phun, Jennifer; Kalajian, Nareg Y; Soleymani, Teo; Daraei, Pedram; Widjaja, Kevin; Wanagat, Jonathan; de Aguiar Vallim, Thomas Q; Fluitt, Amy H; Bensinger, Steven; Le, Thuc; Radu, Caius; Whitelegge, Julian P; Beaven, Simon W; Tontonoz, Peter; Lusis, Aldons J; Parks, Brian W; Vergnes, Laurent; Reue, Karen; Singh, Harpreet; Bopassa, Jean C; Toro, Ligia; Stefani, Enrico; Watt, Matthew J; Schenk, Simon; Akerstrom, Thorbjorn; Kelly, Meghan; Pedersen, Bente K; Hewitt, Sylvia C; Korach, Kenneth S; Hevener, Andrea L
2016-04-13
Impaired estrogen receptor α (ERα) action promotes obesity and metabolic dysfunction in humans and mice; however, the mechanisms underlying these phenotypes remain unknown. Considering that skeletal muscle is a primary tissue responsible for glucose disposal and oxidative metabolism, we established that reduced ERα expression in muscle is associated with glucose intolerance and adiposity in women and female mice. To test this relationship, we generated muscle-specific ERα knockout (MERKO) mice. Impaired glucose homeostasis and increased adiposity were paralleled by diminished muscle oxidative metabolism and bioactive lipid accumulation in MERKO mice. Aberrant mitochondrial morphology, overproduction of reactive oxygen species, and impairment in basal and stress-induced mitochondrial fission dynamics, driven by imbalanced protein kinase A-regulator of calcineurin 1-calcineurin signaling through dynamin-related protein 1, tracked with reduced oxidative metabolism in MERKO muscle. Although muscle mitochondrial DNA (mtDNA) abundance was similar between the genotypes, ERα deficiency diminished mtDNA turnover by a balanced reduction in mtDNA replication and degradation. Our findings indicate the retention of dysfunctional mitochondria in MERKO muscle and implicate ERα in the preservation of mitochondrial health and insulin sensitivity as a defense against metabolic disease in women. Copyright © 2016, American Association for the Advancement of Science.
Evidence for Metabolic Hypothalamo-Amygdala Dysfunction in Narcolepsy
Poryazova, Rositsa; Schnepf, Betina; Werth, Esther; Khatami, Ramin; Dydak, Ulrike; Meier, Dieter; Boesiger, Peter; Bassetti, Claudio L.
2009-01-01
Study Objectives: Proton resonance spectroscopy (1H-MRS) allows noninvasive chemical tissue analysis in the living brain. As neuronal loss and gliosis have been described in narcolepsy, metabolites of primary interest are N-acetylaspartate (NAA), a marker of neuronal integrity and myo-Inositol (mI), a glial marker and second messenger involved in the regulation of intracellular calcium. One 1H-MRS study in narcolepsy found no metabolic changes in the pontomedullary junction. Another study showed a reduction in NAA/creatine-phosphocreatine (Cr) in the hypothalamus of narcolepsy patients with cataplexy. We aimed to test for metabolic changes in specific brain areas, “regions of interest,” thought to be involved in emotional processing, sleep regulation and pathophysiology of narcolepsy: hypothalamus, pontomesencephalic junction and both amygdalae. Design: We performed 1H-MRS using a 3T Philips Achieva whole body MR scanner. Single-voxel proton MR spectra were acquired and quantified with LCModel to determine metabolite concentration ratios. Setting: The participants in the study were recruited at the outpatient clinic for sleep medicine, Department of Neurology and magnetic resonance spectroscopy was performed at the MRI facility, University Hospital Zurich. Participants: 1H-MRS was performed in fourteen narcolepsy patients with cataplexy, CSF hypocretin deficiency (10/10) and HLA-DQB1*0602 positivity (14/14) and 14 age, gender and body mass index matched controls. Patients were treatment naïve or off therapy for at least 14 days before scanning. Measurements and Results: No differences were observed in the regions of interest for (total NAA)/Cr ratios. Myo-Inositol (mI)/Cr was significantly lower in the right amygdala of the patients, compared to controls (P < 0.042). Significant negative correlations only in the patients group were found between (total NAA)/Cr in hypothalamus and mI/Cr in the right amygdala (r = −0.89, P < 0.001), between mI/Cr in hypothalamus and (total NAA)/Cr in the right amygdala (r = −63, P < 0.05) and between mI/Cr in the left amygdala and total NAA)/Cr in the pontomesencephalic junction (r = −0.69, P < 0.05). Conclusion: Our findings suggest amygdala involvement and possible hypothalamo-amygdala dysfunction in narcolepsy. Citation: Poryazova R; Werth E; Khatami R; Dydak U; Meier D; Boesiger P; Bassetti CL. Evidence for metabolic hypothalamo-amygdala dysfunction in narcolepsy. SLEEP 2009;32(5):607-613. PMID:19480227
Cerebral metabolic dysfunction and impaired vigilance in recently abstinent methamphetamine abusers.
London, Edythe D; Berman, Steven M; Voytek, Bradley; Simon, Sara L; Mandelkern, Mark A; Monterosso, John; Thompson, Paul M; Brody, Arthur L; Geaga, Jennifer A; Hong, Michael S; Hayashi, Kiralee M; Rawson, Richard A; Ling, Walter
2005-11-15
Methamphetamine (MA) abusers have cognitive deficits, abnormal metabolic activity and structural deficits in limbic and paralimbic cortices, and reduced hippocampal volume. The links between cognitive impairment and these cerebral abnormalities are not established. We assessed cerebral glucose metabolism with [F-18]fluorodeoxyglucose positron emission tomography in 17 abstinent (4 to 7 days) methamphetamine users and 16 control subjects performing an auditory vigilance task and obtained structural magnetic resonance brain scans. Regional brain radioactivity served as a marker for relative glucose metabolism. Error rates on the task were related to regional radioactivity and hippocampal morphology. Methamphetamine users had higher error rates than control subjects on the vigilance task. The groups showed different relationships between error rates and relative activity in the anterior and middle cingulate gyrus and the insula. Whereas the MA user group showed negative correlations involving these regions, the control group showed positive correlations involving the cingulate cortex. Across groups, hippocampal metabolic and structural measures were negatively correlated with error rates. Dysfunction in the cingulate and insular cortices of recently abstinent MA abusers contribute to impaired vigilance and other cognitive functions requiring sustained attention. Hippocampal integrity predicts task performance in methamphetamine users as well as control subjects.
Zhang, Limin; Hatzakis, Emmanuel; Nichols, Robert G; Hao, Ruixin; Correll, Jared; Smith, Philip B; Chiaro, Christopher R; Perdew, Gary H; Patterson, Andrew D
2015-07-07
Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.
Catry, Emilie; Bindels, Laure B; Tailleux, Anne; Lestavel, Sophie; Neyrinck, Audrey M; Goossens, Jean-François; Lobysheva, Irina; Plovier, Hubert; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Bouzin, Caroline; Pachikian, Barbara D; Cani, Patrice D; Staels, Bart; Dessy, Chantal; Delzenne, Nathalie M
2018-02-01
To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe -/- ) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe -/- mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.
Jackson, Kathryn C; Wohlers, Lindsay M; Lovering, Richard M; Schuh, Rosemary A; Maher, Amy C; Bonen, Arend; Koves, Timothy R; Ilkayeva, Olga; Thomson, David M; Muoio, Deborah M; Spangenburg, Espen E
2013-02-01
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.
Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice
Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.
2013-01-01
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112
Is Type-2 Diabetes a Glycogen Storage Disease of Pancreatic β-Cells?
Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F
2018-01-01
Elevated plasma glucose leads to pancreatic β-cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this ‘glucotoxicity’ via dysregulated biochemical pathways promoting β-cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β-cells in normoglycaemia and in diabetes. PMID:28683284
Cavalera, Michele; Wang, Junhong; Frangogiannis, Nikolaos G
2014-01-01
Cardiac fibrosis is strongly associated with obesity and metabolic dysfunction and may contribute to the increased incidence of heart failure, atrial arrhythmias and sudden cardiac death in obese subjects. Our review discusses the evidence linking obesity and myocardial fibrosis in animal models and human patients, focusing on the fundamental pathophysiologic alterations that may trigger fibrogenic signaling, the cellular effectors of fibrosis and the molecular signals that may regulate the fibrotic response. Obesity is associated with a wide range of pathophysiologic alterations (such as pressure and volume overload, metabolic dysregulation, neurohumoral activation and systemic inflammation); their relative role in mediating cardiac fibrosis is poorly defined. Activation of fibroblasts likely plays a major role in obesity-associated fibrosis; however, inflammatory cells, cardiomyocytes and vascular cells may also contribute to fibrogenic signaling. Several molecular processes have been implicated in regulation of the fibrotic response in obesity. Activation of the Renin-Angiotensin-Aldosterone System, induction of Transforming Growth Factor-β, oxidative stress, advanced glycation end-products (AGEs), endothelin-1, Rho-kinase signaling, leptin-mediated actions and upregulation of matricellular proteins (such as thrombospondin-1) may play a role in the development of fibrosis in models of obesity and metabolic dysfunction. Moreover, experimental evidence suggests that obesity and insulin resistance profoundly affect the fibrotic and remodeling response following cardiac injury. Understanding the pathways implicated in obesity-associated fibrosis may lead to development of novel therapies to prevent heart failure and to attenuate post-infarction cardiac remodeling in obese patients. PMID:24880146
Cholesterol in islet dysfunction and type 2 diabetes
Brunham, Liam R.; Kruit, Janine K.; Verchere, C. Bruce; Hayden, Michael R.
2008-01-01
Type 2 diabetes (T2D) frequently occurs in the context of abnormalities of plasma lipoproteins. However, a role for elevated levels of plasma cholesterol in the pathogenesis of this disease is not well established. Recent evidence suggests that alterations of plasma and islet cholesterol levels may contribute to islet dysfunction and loss of insulin secretion. A number of genes involved in lipid metabolism have been implicated in T2D. Recently an important role for ABCA1, a cellular cholesterol transporter, has emerged in regulating cholesterol homeostasis and insulin secretion in pancreatic β cells. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D. PMID:18246189
Review of Prader-Willi syndrome: the endocrine approach
Heksch, Ryan; Kamboj, Manmohan; Anglin, Kathryn
2017-01-01
Prader-Willi syndrome (PWS) is a complex genetic disorder with implications on the endocrine and neurologic systems, metabolism, and behavior. Early in life, PWS is characterized by hypotonia and failure to thrive, followed by obesity and hyperphagia. Patients with PWS develop hypothalamic dysfunction which may lead growth hormone deficiency (GHD), hypogonadism, hypothyroidism, adrenal insufficiency, and poor bone mineral density (BMD). In addition to hypothalamic dysfunction, individuals with PWS have increased risk for obesity which may be complicated by metabolic syndrome and type 2 diabetes mellitus (T2DM). In this paper, we will review the current literature pertaining to the endocrine concerns of PWS and current recommendations for screening and management of these conditions. PMID:29184809
Treatment of polycystic ovary syndrome in adolescence.
Vitek, Wendy; Hoeger, Kathleen M
2014-05-01
Adolescence is a time of rapidly changing reproductive hormones and menstrual patterns making diagnosis of polycystic ovary syndrome (PCOS) challenging in this population. Nonetheless, there is significant concern that the metabolic and reproductive abnormalities that emerge at adolescence associated with a diagnosis of PCOS have lifelong implications for the individual. There are limited data available on the best treatments for the adolescent with PCOS. The focus of treatment is often best served by attention to the individual abnormalities such as menstrual dysfunction, symptoms of androgen excess such as hirsutism and acne, possible metabolic dysfunction primarily seen with concurrent obesity, and concerns related to self-image and mood disorders. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Chen, Qun; Wang, Ningning; Zhu, Mingjiang; Lu, Jianhong; Zhong, Huiqin; Xue, Xinli; Guo, Shuoyuan; Li, Min; Wei, Xinben; Tao, Yongzhen; Yin, Huiyong
2018-05-01
Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO 2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO 2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM) experiments, which demonstrated that TiO 2 NPs were trapped inside of multi-vesicular bodies (MVB) through endocytotic pathways. TiO 2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS), decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA) cycle from 13 C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO 2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO 2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD 2 , PGE 2 , and 15d-PGJ 2 . In addition, TiO 2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO 2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart
2017-07-07
The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu
2016-02-15
Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent. Copyright © 2016 Elsevier B.V. All rights reserved.
Bakalova, Rumiana; Georgieva, Ekaterina; Ivanova, Donika; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo
2015-12-16
This study shows that a mitochondria-penetrating nitroxide probe (mito-TEMPO) allows detection of superoxide and visualization of mitochondrial dysfunction in living cells due to the effect of T1 shortening in MRI. Mitochondrial dysfunction was induced by treatment of cells with rotenone and 2-methoxyestradiol (2-ME/Rot). The MRI measurements were performed on 7T MRI. The 2-ME/Rot-treated cells were characterized by overproduction of superoxide, which was confirmed by a conventional dihydroethidium test. In the presence of mito-TEMPO, the intensity of MRI signal in 2-ME/Rot-treated cells was ∼30-40% higher, in comparison with that in untreated cells or culture media. In model (cell-free) systems, we observed that superoxide, but not hydrogen peroxide, increased the intensity of T1-weighted MRI signal of mito-TEMPO. Moreover, the superoxide restores the T1-weighted MRI contrast of mito-TEMPOH, a noncontrast (diamagnetic) analogue of mito-TEMPO. This was also confirmed by using EPR spectroscopy. The results demonstrate that superoxide radical is involved in the enhancement of T1-weighted MRI contrast in living cells, in the absence and presence of mito-TEMPO. This report gives a direction for discovering new opportunities for functional MRI, for detection of metabolic activity, accompanied by overproduction of superoxide, as well as by disturbance of the balance between superoxide and hydrogen peroxide, a very important approach to clarify the fine molecular mechanisms in the regulation of many pathologies. The visualization of mitochondrial activity in real-time can be crucial to clarify the molecular mechanism of the functional MRI in its commonly accepted definition, as a method for detection of neurovascular coupling.
Fleury, Naomi; Geldenhuys, Sian; Gorman, Shelley
2016-01-01
Obesity is a significant burden on global healthcare due to its high prevalence and associations with chronic health conditions. In our animal studies, ongoing exposure to low dose ultraviolet radiation (UVR, found in sunlight) reduced weight gain and the development of signs of cardiometabolic dysfunction in mice fed a high fat diet. These observations suggest that regular exposure to safe levels of sunlight could be an effective means of reducing the burden of obesity. However, there is limited knowledge around the nature of associations between sun exposure and the development of obesity and cardiometabolic dysfunction, and we do not know if sun exposure (independent of outdoor activity) affects the metabolic processes that determine obesity in humans. In addition, excessive sun exposure has strong associations with a number of negative health consequences such as skin cancer. This means it is very important to “get the balance right” to ensure that we receive benefits without increasing harm. In this review, we detail the evidence around the cardiometabolic protective effects of UVR and suggest mechanistic pathways through which UVR could be beneficial. PMID:27727191
Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue
Boengler, Kerstin; Kosiol, Maik; Mayr, Manuel; Schulz, Rainer
2017-01-01
Abstract Age is the most important risk factor for most diseases. Mitochondria play a central role in bioenergetics and metabolism. In addition, several lines of evidence indicate the impact of mitochondria in lifespan determination and ageing. The best‐known hypothesis to explain ageing is the free radical theory, which proposes that cells, organs, and organisms age because they accumulate reactive oxygen species (ROS) damage over time. Mitochondria play a central role as the principle source of intracellular ROS, which are mainly formed at the level of complex I and III of the respiratory chain. Dysfunctional mitochondria generating less ATP have been observed in various aged organs. Mitochondrial dysfunction comprises different features including reduced mitochondrial content, altered mitochondrial morphology, reduced activity of the complexes of the electron transport chain, opening of the mitochondrial permeability transition pore, and increased ROS formation. Furthermore, abnormalities in mitochondrial quality control or defects in mitochondrial dynamics have also been linked to senescence. Among the tissues affected by mitochondrial dysfunction are those with a high‐energy demand and thus high mitochondrial content. Therefore, the present review focuses on the impact of mitochondria in the ageing process of heart and skeletal muscle. In this article, we review different aspects of mitochondrial dysfunction and discuss potential therapeutic strategies to improve mitochondrial function. Finally, novel aspects of adipose tissue biology and their involvement in the ageing process are discussed. PMID:28432755
Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia
2013-01-01
In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of “metabolic syndrome rats”, compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats. PMID:24250786
Albarado-Ibañez, Alondra; Avelino-Cruz, José Everardo; Velasco, Myrian; Torres-Jácome, Julián; Hiriart, Marcia
2013-01-01
In the last ten years, the incidences of metabolic syndrome and supraventricular arrhythmias have greatly increased. The metabolic syndrome is a cluster of alterations, which include obesity, hypertension, hypertriglyceridemia, glucose intolerance and insulin resistance, that increase the risk of developing, among others, atrial and nodal arrhythmias. The aim of this study is to demonstrate that metabolic syndrome induces electrical remodeling of the sinus node and produces arrhythmias. We induced metabolic syndrome in 2-month-old male Wistar rats by administering 20% sucrose in the drinking water. Eight weeks later, the rats were anesthetized and the electrocardiogram was recorded, revealing the presence of arrhythmias only in treated rats. Using conventional microelectrode and voltage clamp techniques, we analyzed the electrical activity of the sinoatrial node. We observed that in the sinoatrial node of "metabolic syndrome rats", compared to controls, the spontaneous firing of all cells decreased, while the slope of the diastolic depolarization increased only in latent pacemaker cells. Accordingly, the pacemaker currents If and Ist increased. Furthermore, histological analysis showed a large amount of fat surrounding nodal cardiomyocytes and a rise in the sympathetic innervation. Finally, Poincaré plot denoted irregularity in the R-R and P-P ECG intervals, in agreement with the variability of nodal firing potential recorded in metabolic syndrome rats. We conclude that metabolic syndrome produces a dysfunction SA node by disrupting normal architecture and the electrical activity, which could explain the onset of arrhythmias in rats.
Miller, Tracie L.; Borkowsky, William; DiMeglio, Linda A.; Dooley, Laurie; Geffner, Mitchell E.; Hazra, Rohan; McFarland, Elizabeth J.; Mendez, Armando J.; Patel, Kunjal; Siberry, George K.; Van Dyke, Russell B.; Worrell, Carol J.; Jacobson, Denise L.
2011-01-01
Objectives Human immunodeficiency virus (HIV)-infected children may be at risk for premature cardiovascular disease. We compared levels of biomarkers of vascular dysfunction among HIV-infected children with and without hyperlipidemia to HIV-exposed, uninfected children (HEU) enrolled in the Pediatric HIV/AIDS Cohort Study (PHACS), and determined factors associated with these biomarkers. Design Prospective cohort study Methods Biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP1)); coagulant dysfunction (fibrinogen and P-selectin); endothelial dysfunction (soluble intracellular cell adhesion molecule-1 (sICAM), soluble vascular cell adhesion molecule-1 (sVCAM), and E-selectin); and metabolic dysfunction (adiponectin) were measured in 226 HIV-infected and 140 HEU children. Anthropometry, body composition, lipids, glucose, insulin, HIV disease severity, and antiretroviral therapy were recorded. Results The median ages were 12.3 y (HIV-infected) and 10.1 y (HEU). Body mass index (BMI) Z-scores, waist and hip circumference, and percent body fat were lower among HIV-infected. Total and non-HDL cholesterol and triglycerides were higher in HIV-infected children. HIV-infected children had higher MCP-1, fibrinogen, sICAM, and sVCAM levels. In multivariable analyses in the HIV-infected children alone, BMI z-score was associated with higher CRP and fibrinogen, but lower MCP-1 and sVCAM. Unfavorable lipid profiles were positively associated with IL6, MCP1, fibrinogen, and P- and E-selectin, whereas increased HIV viral load was associated with markers of inflammation (MCP1 and CRP) and endothelial dysfunction (sICAM and sVCAM). Conclusions HIV-infected children have higher levels of biomarkers of vascular dysfunction than do HEU children. Risk factors associated with higher biomarkers include unfavorable lipid levels and active HIV replication. PMID:22136114
Guo, Rui; Zhang, Yingmei; Turdi, Subat; Ren, Jun
2013-08-01
Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22weeks. After 40day feeding, mice were treated with 2mg/kg rapamycin or vehicle every other day for 42days on respective fat diet. Cardiomyocyte contractile and Ca(2+) transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca(2+) derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Longjian; Nettleton, Jennifer A; Bertoni, Alain G; Bluemke, David A; Lima, João A; Szklo, Moyses
2009-08-01
Little is known about the relations between dietary patterns, metabolic dysfunction, and left ventricular (LV) function. The objective was to examine associations of dietary patterns with LV mass and function and to explore the potential role of metabolic dysfunction in the association between diet and LV function. Dietary patterns that maximally explained the variation in metabolic syndrome (MetSyn) components were derived by using reduced rank regression (RRR). LV mass, stroke volume, and LV ejection fraction (LVEF) were measured by magnetic resonance imaging. Associations between dietary pattern and LV indexes were analyzed cross-sectionally. A total of 4601 participants aged 45-84 y and free of clinical cardiovascular disease were studied. The primary RRR dietary pattern score was positively correlated with intake of foods with a high glycemic index, high-fat meats, cheeses, and processed foods and negatively correlated with low intakes of vegetables, soy, fruit, green and black tea, low-fat dairy desserts, seeds and nuts, and fish. Multivariate analyses showed that each 1-unit increase in the RRR dietary pattern score was associated with a 0.32-g/m(2) increase in LV mass/body surface area, a 0.43-mL/m(2) decrease in stroke volume/body surface area, and a 0.21% decrease in LVEF. The associations of the RRR dietary pattern score with LV mass and stroke indexes were attenuated and became nonsignificant after adjustment for all MetSyn components (P > 0.05). The results suggest that the RRR dietary pattern is significantly associated with unfavorable LV function, and this association might be mediated by metabolic dysfunction. Given the cross-sectional nature of our study, these results must be confirmed with the use of longitudinal data.
Sex dimorphism in late gestational sleep fragmentation and metabolic dysfunction in offspring mice.
Khalyfa, Abdelnaby; Carreras, Alba; Almendros, Isaac; Hakim, Fahed; Gozal, David
2015-04-01
Excessive sleep fragmentation (SF) is common in pregnant women. Adult-onset metabolic disorders may begin during early development and exhibit substantial sex dimorphism. We hypothesized that metabolic dysfunction induced by gestational SF in male mice would not be apparent in female littermates. Body weight and food consumption were measured weekly in male and female offspring after late gestational SF or control sleep (SC). At 20 weeks, plasma leptin, adiponectin, lipid profiles, and insulin and glucose tolerance tests were assessed. Leptin and adiponectin, M1, and M2 macrophage messenger RNA expression and polarity were examined. Adiponectin gene promoter methylation levels in several tissues were assessed. Food intake, body weight, visceral fat mass, and insulin resistance were higher, and adiponectin levels lower in male but not female offspring exposed to gestational SF. However, dyslipidemia was apparent in both male and female offspring exposed to SF, albeit of lesser magnitude. In visceral fat, leptin messenger RNA expression was selectively increased and adiponectin expression was decreased in male offspring exposed to gestational SF, but adiponectin was increased in exposed female offspring. Differences in adipokine expression also emerged in liver, subcutaneous fat, and muscle. Increased M1 macrophage markers were present in male offspring exposed to SF (SFOM) while increased M2 markers emerged in SF in female offspring (SFOF). Similarly, significant differences emerged in the methylation patterns of adiponectin promoter in SFOM and SFOF. Gestational sleep fragmentation increases the susceptibility to obesity and metabolic syndrome in male but not in female offspring, most likely via epigenetic changes. Thus, sleep perturbations impose long-term detrimental effects to the fetus manifesting as sex dimorphic metabolic dysfunction in adulthood. © 2015 Associated Professional Sleep Societies, LLC.
Guo, Rui; Zhang, Yingmei; Turdi, Subat; Ren, Jun
2013-01-01
Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22 weeks. After 40 day feeding, mice were treated with 2 mg/kg rapamycin or vehicle every other day for 42 days on respective fat diet. Cardiomyocyte contractile and Ca2+ transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca2+ derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy. PMID:23524376
Bays, Harold
2005-05-01
Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.
Sargis, Robert M
2015-01-01
The global epidemic of metabolic disease is a clear and present danger to both individual and societal health. Understanding the myriad factors contributing to obesity and diabetes is essential for curbing their decades-long expansion. Emerging data implicate environmental endocrine disrupting chemicals (EDCs) in the pathogenesis of metabolic diseases such as obesity and diabetes. The phenylsulfamide fungicide and anti-fouling agent tolylfluanid (TF) was recently added to the list of EDCs promoting metabolic dysfunction. Dietary exposure to this novel metabolic disruptor promoted weight gain, increased adiposity, and glucose intolerance as well as systemic and cellular insulin resistance. Interestingly, the increase in body weight and adipose mass was not a consequence of increased food consumption; rather, it may have resulted from disruptions in diurnal patterns of energy intake, raising the possibility that EDCs may promote metabolic dysfunction through alterations in circadian rhythms. While these studies provide further evidence that EDCs may promote the development of obesity and diabetes, many questions remain regarding the clinical factors that modulate patient-specific consequences of EDC exposure, including the impact of genetics, diet, lifestyle, underlying disease, pharmacological treatments, and clinical states of fat redistribution. Currently, little is known regarding the impact of these factors on an individual's susceptibility to environmentally-mediated metabolic disruption. Advances in these areas will be critical for translating EDC science into the clinic to enable physicians to stratify an individual's risk of developing EDC-induced metabolic disease and to provide direction for treating exposed patients.
USDA-ARS?s Scientific Manuscript database
Adipose tissue dysfunction plays a key role in the development of the metabolic abnormalities characteristic of type 2 diabetes (T2DM) and participates actively in lipid metabolism. Adiponectin, found abundantly in circulation and a marker of adipose health, is decreased in obese persons with T2DM. ...
USDA-ARS?s Scientific Manuscript database
High fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Changes in TAG metabolism contribute to the development of hepatic steatosis including changes in production rate from de novo lipogenes...
Arginine metabolism is altered in adults with A-B + ketosis-prone diabetes
USDA-ARS?s Scientific Manuscript database
A-B + ketosis-prone diabetes (KPD) is a subset of type 2 diabetes in which patients have severe but reversible B cell dysfunction of unknown etiology. Plasma metabolomic analysis indicates that abnormal arginine metabolism may be involved. The objective of this study was to determine the relation be...
USDA-ARS?s Scientific Manuscript database
Study objectives were to evaluate the effects of intentionally reduced intestinal barrier function on productivity, metabolism, and inflammatory indices in otherwise healthy dairy cows. Fourteen lactating Holstein cows (parity 2.6 ± 0.3; 117 ± 18 days in milk) were enrolled in two experimental perio...
Padmanabhan, Vasantha; Veiga-Lopez, Almudena
2013-01-01
Polycystic ovary syndrome (PCOS) is one of the most common fertility disorders, affecting several million women worldwide. Women with PCOS manifest neuroendocrine, ovarian, and metabolic defects. A large number of animal models have evolved to understand the etiology of PCOS. These models provide support for the contributing role of excess steroids during development in programming the PCOS phenotype. However, considerable phenotypic variability is evident across animal models, depending on the quality of the steroid administered and the perinatal time of treatment relative to the developmental trajectory of the fetus/offspring. This review focuses on the reproductive and metabolic phenotypes of the various PCOS animal models that have evolved in the last decade to delineate the relative roles of androgens and estrogens in relation to the timing of exposure in programming the various dysfunctions that are part and parcel of the PCOS phenotype. Furthermore, the review addresses the contributory role of the postnatal metabolic environment in exaggerating the severity of the phenotype, the translational relevance of the various animal models to PCOS, and areas for future research. PMID:21710394
Leiva, Andrea; Pardo, Fabián; Ramírez, Marco A.; Farías, Marcelo; Casanello, Paola; Sobrevia, Luis
2011-01-01
Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the “endothelial L-arginine/nitric oxide signalling pathway.” Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an “altered metabolic state” leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome. PMID:22144986
Salavert, José; Gasol, Miquel; Vieta, Eduard; Cervantes, Ana; Trampal, Carlos; Gispert, Juan Domingo
2011-06-01
Several functional neuroimaging studies have demonstrated abnormalities in fronto-limbic pathways when comparing borderline personality disorder (BPD) patients with controls. The present study aimed to evaluate regional cerebral metabolism in euthymic BPD patients with similar measured impulsivity levels by means of 18F-FDG PET during resting state and to compare them against a control group. The present study evaluates regional cerebral metabolism in 8 euthymic BPD patients with 18F-FDG PET during resting state as compared to 8 controls with similar socio-geographic characteristics. BPD patients presented a marked hypo-metabolism in frontal lobe and showed hyper-metabolism in motor cortex (paracentral lobules and post-central cortex), medial and anterior cingulus, occipital lobe, temporal pole, left superior parietal gyrus and right superior frontal gyrus. No significant differences appeared in basal ganglia or thalamus. Results reveal a dysfunction in patients' frontolimbic network during rest and provide further evidence for the importance of these regions in relation to BPD symptomatology. Copyright © 2011 Elsevier B.V. All rights reserved.
Thornton, Ben; Cohen, Bruce; Copeland, William; Maria, Bernard L.
2015-01-01
Mitochondrial medicine provides a metabolic perspective on the pathology of conditions linked with inadequate oxidative phosphorylation. Dysfunction in the mitochondrial machinery can result in improper energy production, leading to cellular injury or even apoptosis. Clinical presentations are often subtle, so clinicians must have a high index of suspicion to make early diagnoses. Symptoms could include muscle weakness and pain, seizures, loss of motor control, decreased visual and auditory functions, metabolic acidosis, acute developmental regression, and immune system dysfunction. The 2013 Neurobiology of Disease in Children Symposium, held in conjunction with the 42nd Annual Meeting of the Child Neurology Society, aimed to (1) describe accepted clinical phenotypes of mitochondrial disease produced from various mitochondrial mutations, (2) discuss contemporary understanding of molecular mechanisms that contribute to disease pathology, (3) highlight the systemic effects produced by dysfunction within the mitochondrial machinery, and (4) introduce current strategies that are being translated from bench to bedside as potential therapeutics. PMID:24916430
Mitochondrial Dysfunctions in Bipolar Disorder: Effect of the Disease and Pharmacotherapy.
Cikankova, Tereza; Sigitova, Ekaterina; Zverova, Martina; Fisar, Zdenek; Raboch, Jiri; Hroudova, Jana
2017-01-01
Exact pathophysiological mechanisms of bipolar disorder have not been sufficiently clarified. We review the evidence of mitochondrial dysfunctions on the relation between both disease and pharmacotherapy. Mitochondria produce the most of energy-rich molecules of adenosine triphosphate (ATP), apart from energy production they are involved in other functions: regulation of free radicals, antioxidant defenses, lipid peroxidation, calcium metabolism and participate in the intrinsic pathway of apoptosis. According to increasing evidence dysfunctions of mitochondria are associated with affective disorders, a hypothesis of impaired mitochondrial functions has been proposed in bipolar disorder pathogenesis. Mitochondrial DNA mutations and/or polymorphisms, impaired phospholipid metabolism and glycolytic shift, decrease in ATP production, increased oxidative stress and changes of intracellular calcium are concerned in mood disorders and effects of mood stabilizers. Recent studies have also provided data about the positive effects of chronic treatment by mood stabilizers on mitochondrial functions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Azziz, Ricardo; Carmina, Enrico; Chen, ZiJiang; Dunaif, Andrea; Laven, Joop S E; Legro, Richard S; Lizneva, Daria; Natterson-Horowtiz, Barbara; Teede, Helena J; Yildiz, Bulent O
2016-08-11
Polycystic ovary syndrome (PCOS) affects 5-20% of women of reproductive age worldwide. The condition is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology (PCOM) - with excessive androgen production by the ovaries being a key feature of PCOS. Metabolic dysfunction characterized by insulin resistance and compensatory hyperinsulinaemia is evident in the vast majority of affected individuals. PCOS increases the risk for type 2 diabetes mellitus, gestational diabetes and other pregnancy-related complications, venous thromboembolism, cerebrovascular and cardiovascular events and endometrial cancer. PCOS is a diagnosis of exclusion, based primarily on the presence of hyperandrogenism, ovulatory dysfunction and PCOM. Treatment should be tailored to the complaints and needs of the patient and involves targeting metabolic abnormalities through lifestyle changes, medication and potentially surgery for the prevention and management of excess weight, androgen suppression and/or blockade, endometrial protection, reproductive therapy and the detection and treatment of psychological features. This Primer summarizes the current state of knowledge regarding the epidemiology, mechanisms and pathophysiology, diagnosis, screening and prevention, management and future investigational directions of the disorder.
Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction[S
Alecu, Irina; Tedeschi, Andrea; Behler, Natascha; Wunderling, Klaus; Lamberz, Christian; Lauterbach, Mario A. R.; Gaebler, Anne; Ernst, Daniela; Van Veldhoven, Paul P.; Al-Amoudi, Ashraf; Latz, Eicke; Othman, Alaa; Kuerschner, Lars; Hornemann, Thorsten; Bradke, Frank; Thiele, Christoph; Penno, Anke
2017-01-01
1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs. PMID:27881717
Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.
2014-01-01
Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and/or treating alcohol-related pulmonary disorders. PMID:24940828
de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H; Hayden, Michael R
2014-03-01
Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1(-ad/-ad)). When fed a high-fat, high-cholesterol diet, ABCA1(-ad/-ad) mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1(-ad/-ad) mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis.
Martin, Josiane Morais; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Alves, Vander Silva; Fabricio, Gabriel Sergio; Pavanello, Audrei; Franco, Claudinéia Conationi da Silva; Ribeiro, Tatiane Aparecida; Visentainer, Jesuí Vergílio; Banafé, Elton Guntendeorfer; Martin, Clayton Antunes; Mathias, Paulo Cezar de Freitas
2016-01-01
Essential polyunsaturated fatty acids (PUFAs) prevent cardiometabolic diseases. We aimed to study whether a diet supplemented with a mixture of n-6/n-3 PUFAs, during perinatal life, attenuates outcomes of long-term metabolic dysfunction in prediabetic and obese mice. Seventy-day-old virgin female mice were mated. From the conception day, dams were fed a diet supplemented with sunflower oil and flaxseed powder (containing an n-6/n-3 PUFAs ratio of 1.2 : 1.0) throughout pregnancy and lactation, while control dams received a commercial diet. Newborn mice were treated with monosodium L-glutamate (MSG, 4 mg g−1 body weight per day) for the first 5 days of age. A batch of weaned pups was sacrificed to quantify the brain and pancreas total lipids; another batch were fed a commercial diet until 90 days of age, where glucose homeostasis and glucose-induced insulin secretion (GIIS) as well as retroperitoneal fat and Lee index were assessed. MSG-treated mice developed obesity, glucose intolerance, insulin resistance, pancreatic islet dysfunction, and higher fat stores. Maternal flaxseed diet-supplementation decreased n-6/n-3 PUFAs ratio in the brain and pancreas and blocked glucose intolerance, insulin resistance, GIIS impairment, and obesity development. The n-6/n-3 essential PUFAs in a ratio of 1.2 : 1.0 supplemented in maternal diet during pregnancy and lactation prevent metabolic dysfunction in MSG-obesity model. PMID:28050167
Yu, Shu-Yang; Cao, Chen-Jie; Zuo, Li-Jun; Chen, Ze-Jie; Lian, Teng-Hong; Wang, Fang; Hu, Yang; Piao, Ying-Shan; Li, Li-Xia; Guo, Peng; Liu, Li; Yu, Qiu-Jin; Wang, Rui-Dan; Chan, Piu; Chen, Sheng-di; Wang, Xiao-Min; Zhang, Wei
2018-01-17
Transcranial ultrasound is a useful tool for providing the evidences for the early diagnosis and differential diagnosis of Parkinson disease (PD). However, the relationship between hyper echogenicity in substantia nigra (SN) and clinical symptoms of PD patients remains unknown, and the role of dysfunction of iron metabolism on the pathogenesis of SN hyper echogenicity is unclear. PD patients was detected by transcranial sonography and divided into with no hyper echogenicity (PDSN-) group and with hyper echogenicity (PDSN+) group. Motor symptoms (MS) and non-motor symptoms (NMS) were evaluated, and the levels of iron and related proteins in serum and cerebrospinal fluid (CSF) were detected for PD patients. Data comparison between the two groups and correlation analyses were performed. PDSN+ group was significantly older, and had significantly older age of onset, more advanced Hohen-Yahr stage, higher SCOPA-AUT score and lower MoCA score than PDSN- group (P < 0.05). Compared with PDSN- group, the levels of transferrin and light-ferritin in serum and iron level in CSF were significantly elevated (P < 0.05), but ferroportin level in CSF was significantly decreased in PDSN+ group (P < 0.05). PD patients with hyper echogenicity in SN are older, at more advanced disease stage, have severer motor symptoms, and non-motor symptoms of cognitive impairment and autonomic dysfunction. Hyper echogenicity of SN in PD patients is related to dysfunction of iron metabolism, involving increased iron transport from peripheral system to central nervous system, reduction of intracellular iron release and excessive iron deposition in brain.
Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping
2012-01-01
It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560
Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo
2013-11-01
Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.
Dassanayaka, Sujith; Brainard, Robert E; Watson, Lewis J; Long, Bethany W; Brittian, Kenneth R; DeMartino, Angelica M; Aird, Allison L; Gumpert, Anna M; Audam, Timothy N; Kilfoil, Peter J; Muthusamy, Senthilkumar; Hamid, Tariq; Prabhu, Sumanth D; Jones, Steven P
2017-05-01
The myocardial response to pressure overload involves coordination of multiple transcriptional, posttranscriptional, and metabolic cues. The previous studies show that one such metabolic cue, O-GlcNAc, is elevated in the pressure-overloaded heart, and the increase in O-GlcNAcylation is required for cardiomyocyte hypertrophy in vitro. Yet, it is not clear whether and how O-GlcNAcylation participates in the hypertrophic response in vivo. Here, we addressed this question using patient samples and a preclinical model of heart failure. Protein O-GlcNAcylation levels were increased in myocardial tissue from heart failure patients compared with normal patients. To test the role of OGT in the heart, we subjected cardiomyocyte-specific, inducibly deficient Ogt (i-cmOgt -/- ) mice and Ogt competent littermate wild-type (WT) mice to transverse aortic constriction. Deletion of cardiomyocyte Ogt significantly decreased O-GlcNAcylation and exacerbated ventricular dysfunction, without producing widespread changes in metabolic transcripts. Although some changes in hypertrophic and fibrotic signaling were noted, there were no histological differences in hypertrophy or fibrosis. We next determined whether significant differences were present in i-cmOgt -/- cardiomyocytes from surgically naïve mice. Interestingly, markers of cardiomyocyte dedifferentiation were elevated in Ogt-deficient cardiomyocytes. Although no significant differences in cardiac dysfunction were apparent after recombination, it is possible that such changes in dedifferentiation markers could reflect a larger phenotypic shift within the Ogt-deficient cardiomyocytes. We conclude that cardiomyocyte Ogt is not required for cardiomyocyte hypertrophy in vivo; however, loss of Ogt may exert subtle phenotypic differences in cardiomyocytes that sensitize the heart to pressure overload-induced ventricular dysfunction.
CES1 Carriers in the PAPI Study
2018-04-10
Heart Diseases; Coronary Disease; Coronary Artery Disease; Cardiovascular Diseases; Myocardial Ischemia; Artery Occlusion; Aspirin Sensitivity; Clopidogrel, Poor Metabolism of; Platelet Dysfunction; Platelet Thrombus
Aguer, Céline; Gambarotta, Daniela; Mailloux, Ryan J; Moffat, Cynthia; Dent, Robert; McPherson, Ruth; Harper, Mary-Ellen
2011-01-01
Human primary myotubes are highly glycolytic when cultured in high glucose medium rendering it difficult to study mitochondrial dysfunction. Galactose is known to enhance mitochondrial metabolism and could be an excellent model to study mitochondrial dysfunction in human primary myotubes. The aim of the present study was to 1) characterize the effect of differentiating healthy human myoblasts in galactose on oxidative metabolism and 2) determine whether galactose can pinpoint a mitochondrial malfunction in post-diabetic myotubes. Oxygen consumption rate (OCR), lactate levels, mitochondrial content, citrate synthase and cytochrome C oxidase activities, and AMPK phosphorylation were determined in healthy myotubes differentiated in different sources/concentrations of carbohydrates: 25 mM glucose (high glucose (HG)), 5 mM glucose (low glucose (LG)) or 10 mM galactose (GAL). Effect of carbohydrates on OCR was also determined in myotubes derived from post-diabetic patients and matched obese non-diabetic subjects. OCR was significantly increased whereas anaerobic glycolysis was significantly decreased in GAL myotubes compared to LG or HG myotubes. This increased OCR in GAL myotubes occurred in conjunction with increased cytochrome C oxidase activity and expression, as well as increased AMPK phosphorylation. OCR of post-diabetic myotubes was not different than that of obese non-diabetic myotubes when differentiated in LG or HG. However, whereas GAL increased OCR in obese non-diabetic myotubes, it did not affect OCR in post-diabetic myotubes, leading to a significant difference in OCR between groups. The lack of an increase in OCR in post-diabetic myotubes differentiated in GAL was in relation with unaltered cytochrome C oxidase activity levels or AMPK phosphorylation. Our results indicate that differentiating human primary myoblasts in GAL enhances aerobic metabolism. Because this cell culture model elicited an abnormal response in cells from post-diabetic patients, it may be useful in further studies of the molecular mechanisms of mitochondrial dysfunction.
Nishiyama, Akira
2018-01-01
The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others’ recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders. PMID:29385702
The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers.
Caterino, Marianna; Chandler, Randy J; Sloan, Jennifer L; Dorko, Kenneth; Cusmano-Ozog, Kristina; Ingenito, Laura; Strom, Stephen C; Imperlini, Esther; Scolamiero, Emanuela; Venditti, Charles P; Ruoppolo, Margherita
2016-02-01
Methylmalonic acidemia (MMA) is a heterogeneous and severe autosomal recessive inborn error of metabolism most commonly caused by the deficient activity of the vitamin B12 dependent enzyme, methylmalonyl-CoA mutase (MUT). The main treatment for MMA patients is the dietary restriction of propiogenic amino acids and carnitine supplementation. Despite treatment, the prognosis for vitamin B12 non-responsive patients remains poor and is associated with neonatal lethality, persistent morbidity and decreased life expectancy. While multi-organ pathology is a feature of MMA, the liver is severely impacted by mitochondrial dysfunction which likely underlies the metabolic instability experienced by the patients. Liver and/or combined liver/kidney transplantation is therefore sometimes performed in severely affected patients. Using liver specimens from donors and MMA patients undergoing elective liver transplantation collected under a dedicated natural history protocol (clinicaltrials.gov: NCT00078078), we employed proteomics to characterize the liver pathology and impaired hepatic metabolism observed in the patients. Pathway analysis revealed perturbations of enzymes involved in energy metabolism, gluconeogenesis and Krebs cycle anaplerosis. Our findings identify new pathophysiologic and therapeutic targets that could be valuable for designing alternative therapies to alleviate clinical manifestations seen in this disorder.
Metabolic Plasticity in Cancer Cells: Reconnecting Mitochondrial Function to Cancer Control
Ramanujan, V. Krishnan
2015-01-01
Anomalous increase in glycolytic activity defines one of the key metabolic alterations in cancer cells. A realization of this feature has led to critical advancements in cancer detection techniques such as positron emission tomography (PET) as well as a number of therapeutic avenues targeting the key glycolytic steps within a cancer cell. A normal healthy cell’s survival relies on a sensitive balance between the primordial glycolysis and a more regulated mitochondrial bioenergetics. The salient difference between these two bioenergetics pathways is that oxygen availability is an obligatory requirement for mitochondrial pathway while glycolysis can function without oxygen. Early observations that some cancer cells up-regulate glycolytic activity even in the presence of oxygen (aerobic glycolysis) led to a hypothesis that such an altered cancer cell metabolism stems from inherent mitochondrial dysfunction. While a general validity of this hypothesis is still being debated, a number of recent research efforts have yielded clarity on the physiological origins of this aerobic glycolysis phenotype in cancer cells. Building on these recent studies, we present a generalized scheme of cancer cell metabolism and propose a novel hypothesis that might rationalize new avenues of cancer intervention. PMID:26457230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Congying; Dong, Ruolan; Chen, Chen
Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejectionmore » fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.« less
Hong, Eun-Gyoung; Kim, Brian W.; Young Jung, Dae; Hun Kim, Jong; Yu, Tim; Seixas Da Silva, Wagner; Friedline, Randall H.; Bianco, Suzy D.; Seslar, Stephen P.; Wakimoto, Hiroko; Berul, Charles I.; Russell, Kerry S.; Won Lee, Ki; Larsen, P. Reed; Bianco, Antonio C.
2013-01-01
Altered glucose metabolism in the heart is an important characteristic of cardiovascular and metabolic disease. Because thyroid hormones have major effects on peripheral metabolism, we examined the metabolic effects of heart-selective increase in T3 using transgenic mice expressing human type 2 iodothyronine deiodinase (D2) under the control of the α-myosin heavy chain promoter (MHC-D2). Hyperinsulinemic-euglycemic clamps showed normal whole-body glucose disposal but increased hepatic insulin action in MHC-D2 mice as compared to wild-type (WT) littermates. Insulin-stimulated glucose uptake in heart was not altered, but basal myocardial glucose metabolism was increased by more than two-fold in MHC-D2 mice. Myocardial lipid levels were also elevated in MHC-D2 mice, suggesting an overall up-regulation of cardiac metabolism in these mice. The effects of doxorubicin (DOX) treatment on cardiac function and structure were examined using M-mode echocardiography. DOX treatment caused a significant reduction in ventricular fractional shortening and resulted in more than 50% death in WT mice. In contrast, MHC-D2 mice showed increased survival rate after DOX treatment, and this was associated with a six-fold increase in myocardial glucose metabolism and improved cardiac function. Myocardial activity and expression of AMPK, GLUT1, and Akt were also elevated in MHC-D2 and WT mice following DOX treatment. Thus, our findings indicate an important role of thyroid hormone in cardiac metabolism and further suggest a protective role of glucose utilization in DOX-mediated cardiac dysfunction. PMID:23861374
Diabetes and sexual dysfunction: current perspectives
Maiorino, Maria Ida; Bellastella, Giuseppe; Esposito, Katherine
2014-01-01
Diabetes mellitus is one of the most common chronic diseases in nearly all countries. It has been associated with sexual dysfunction, both in males and in females. Diabetes is an established risk factor for sexual dysfunction in men, as a threefold increased risk of erectile dysfunction was documented in diabetic men, as compared with nondiabetic men. Among women, evidence regarding the association between diabetes and sexual dysfunction are less conclusive, although most studies have reported a higher prevalence of female sexual dysfunction in diabetic women as compared with nondiabetic women. Female sexual function appears to be more related to social and psychological components than to the physiological consequence of diabetes. Hyperglycemia, which is a main determinant of vascular and microvascular diabetic complications, may participate in the pathogenetic mechanisms of sexual dysfunction in diabetes. Moreover, diabetic people may present several clinical conditions, including hypertension, overweight and obesity, metabolic syndrome, cigarette smoking, and atherogenic dyslipidemia, which are themselves risk factors for sexual dysfunction, both in men and in women. The adoption of healthy lifestyles may reduce insulin resistance, endothelial dysfunction, and oxidative stress – all of which are desirable achievements in diabetic patients. Improved well-being may further contribute to reduce and prevent sexual dysfunction in both sexes. PMID:24623985
Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus
Zhang, Yuehui; Sun, Xue; Sun, Xiaoyan; Meng, Fanci; Hu, Min; Li, Xin; Li, Wei; Wu, Xiao-Ke; Brännström, Mats; Shao, Ruijin; Billig, Håkan
2016-01-01
Peripheral insulin resistance and hyperandrogenism are the primary features of polycystic ovary syndrome (PCOS). However, how insulin resistance and hyperandrogenism affect uterine function and contribute to the pathogenesis of PCOS are open questions. We treated rats with insulin alone or in combination with human chorionic gonadotropin (hCG) and showed that peripheral insulin resistance and hyperandrogenism alter uterine morphology, cell phenotype, and cell function, especially in glandular epithelial cells. These defects are associated with an aberration in the PI3K/Akt signaling pathway that is used as an indicator for the onset of insulin resistance in classical metabolic tissues. Concomitantly, increased GSK3β (Ser-9) phosphorylation and decreased ERK1/2 phosphorylation in rats treated with insulin and hCG were also observed. We also profiled the expression of glucose transporter (Glut) isoform genes in the uterus under conditions of insulin resistance and/or hyperandrogenism. Finally, we determined the expression pattern of glycolytic enzymes and intermediates during insulin resistance and hyperandrogenism in the uterus. These findings suggest that the PI3K/Akt and MAPK/ERK signaling pathways play a role in the onset of uterine insulin resistance, and they also suggest that changes in specific Glut isoform expression and alterations to glycolytic metabolism contribute to the endometrial dysfunction observed in PCOS patients. PMID:27461373
Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun
2015-01-01
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player. PMID:26247588
Kawasaki, Yukihiko; Hosoya, Mitsuaki; Yasumura, Seiji; Ohira, Tetsuya; Satoh, Hiroaki; Suzuki, Hitoshi; Sakai, Akira; Ohtsuru, Akira; Takahashi, Atsushi; Ozasa, Kotaro; Kobashi, Gen; Kamiya, Kenji; Yamashita, Shunichi; Abe, Masafumi
2014-01-01
To assist in the long-term health management of residents and evaluate health impacts after the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant accident in Fukushima Prefecture, the Fukushima prefectural government decided to conduct the Fukushima Health Management Survey. This report describes the results for residents aged 16 years or older who received the health check examinations and evaluates the data obtained from 2011 and 2012. The target group consisted of residents aged 16 years or older who had lived in the evacuation zone. The health check examinations were performed on receipt of an application for a health check examination from any of the residents. The examinations, including measurements of height, weight, abdominal circumference/body mass index (BMI), blood pressure, biochemical laboratory findings, and peripheral blood findings, were performed as required. 1) A total of 56,399 (30.9%) and 47,009 (25.4%) residents aged 16 years or older received health checks in 2011 and 2012, respectively. 2) In both years, a number of male and female residents in the 16-39 year age group were found to suffer obesity, hyperlipidemia, hyperuricemia, or liver dysfunction, and the prevalence of obesity and hyperlipidemia among residents increased with age. Furthermore, the proportion of residents with hypertension, glucose metabolic abnormalities or renal dysfunction was higher in those aged 40 years or older. 3) The frequencies of obesity, hypertension and hyperlipidemia among residents in 2012 were lower than those in 2011. However, the prevalence of liver dysfunction, hyperuricemia, glucose metabolic abnormalities and renal dysfunction among residents was higher in 2012 than in 2011. These results suggested the number of residents who had lived in the evacuation zone with obesity, hyperlipidemia, hyperuricemia, liver dysfunction, hypertension, glucose metabolic abnormalities, or renal dysfunction increased with age in all age groups. Therefore, we think that it is necessary to continue with health check examinations for these residents in order to ameliorate lifestyle-related disease.
Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S
2018-02-01
Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Adamczak, Marcin; Masajtis-Zagajewska, Anna; Mazanowska, Oktawia; Madziarska, Katarzyna; Stompór, Tomasz; Więcek, Andrzej
2018-01-01
Metabolic acidosis is commonly found in patients with chronic kidney disease (CKD), and its causes are: impaired ammonia excretion, reduced tubular bicarbonate reabsorption and insufficient renal bicarbonate production in relation to the amount of acids synthesised by the body and ingested with food. As the consequence, numerous metabolic abnormalities develop, which may lead to dysfunction of several organs. In observational studies, it has been found that CKD patients with metabolic acidosis are characterised by faster progression of kidney disease towards end stage kidney failure, and by increased mortality. Results of interventional studies suggest that alkali therapy in CKD patients slows progression of kidney disease. In view of these facts, the members of "The Working Group of the Polish Society of Nephrology on Metabolic and Endocrine Abnormalities in Kidney Diseases" have prepared the following statement and guidelines for the diagnosis and treatment of metabolic acidosis in CKD patients. Measurement of bicarbonate concentration in venous plasma or venous blood to check for metabolic acidosis should be performed in all CKD patients and metabolic acidosis in these patients should be diagnosed when the venous plasma or venous blood bicarbonate concentration is lower than 22 mmol/l. In patients with metabolic acidosis and CKD, oral sodium bicarbonate administration is recommended. The goal of such a treatment is to achieve a plasma or blood bicarbonate concentration equal to or greater than 22 mmol/l. © 2018 The Author(s). Published by S. Karger AG, Basel.
The bioenergetics of inflammation: insights into obesity and type 2 diabetes.
Keane, K N; Calton, E K; Carlessi, R; Hart, P H; Newsholme, P
2017-07-01
Diabetes mellitus is one of the most common chronic metabolic disorders worldwide, and its incidence in Asian countries is alarmingly high. Type 2 diabetes (T2DM) is closely associated with obesity, and the staggering rise in obesity is one of the primary factors related to the increased frequency of T2DM. Low-grade chronic inflammation is also accepted as an integral metabolic adaption in obesity and T2DM, and is believed to be a major player in the onset of insulin resistance. However, the exact mechanism(s) that cause a persistent chronic low-grade infiltration of leukocytes into insulin-target tissues such as adipose, skeletal muscle and liver are not entirely known. Recent developments in the understanding of leukocyte metabolism have revealed that the inflammatory polarization of immune cells, and consequently their immunological function, are strongly connected to their metabolic profile. Therefore, it is hypothesized that dysfunctional immune cell metabolism is a central cellular mechanism that prevents the resolution of inflammation in chronic metabolic conditions such as that observed in obesity and T2DM. The purpose of this review is to explore the metabolic demands of different immune cell types, and identify the molecular switches that control immune cell metabolism and ultimately function. Understanding of these concepts may allow the development of interventions that can correct immune function and may possibly decrease chronic low-grade inflammation in humans suffering from obesity and T2DM. We also review the latest clinical techniques used to measure metabolic flux in primary leukocytes isolated from obese and T2DM patients.
Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao
2018-02-05
Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.
Akhtar, Md Sayeed; Pillai, Krishna Kolappa; Hassan, Md Quamrul; Dhyani, Neha; Ismail, Md Vasim; Najmi, Abul Kalam
2016-05-15
Diabetic cardiomyopathy (DCM) is one of the most common causes of mortality. Its pathophysiology is not fully understood and involve number of factors including, cardiovascular and metabolic disorders. The present study was designed to study the pathogenesis of DCM and to explore the effects of levosimendan along with either ramipril or insulin in the long term management of DCM. Streptozotocin (STZ) was used to develop DCM in Wistar rats at the dose of 25mg/kg body weight for three consecutive days. Rats were randomly divided into 9 groups and treatments were started after 2weeks of STZ administration. Persistent hyperglycemia was observed in STZ treated rats, leading to significant contractile dysfunction as evidenced by decreased left ventricular pressure (LVP), +LV (dp/dt), -LV (dp/dt) as well as elevated Tau and LVEDP. Marked myocardial damage such as fibrosis, increased wall tension, depletion of contractile proteins were observed as evidenced by increased levels of TGF-β, BNP, cTroponin-I, as well as decreased expression of SERCA2a and NCX1 proteins in diabetic rats. The levosimendan alone and also in combination with either ramipril or insulin significantly normalized the myocardial dysfunctions developed during the course of persistent hyperglycemia. The study suggests that levosimendan treatment improves cardiac dysfunction significantly. Its combined use with ramipril proves better than with insulin in correcting myocardial performance as well as reduction in myocardial damage. Copyright © 2016 Elsevier Inc. All rights reserved.
Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty
Stout, Michael B.; Justice, Jamie N.; Nicklas, Barbara J.; Kirkland, James L.
2016-01-01
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. PMID:27927801
Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction
Lee, Seung Eun; Park, Yong Seek
2013-01-01
Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction. PMID:23819013
Newell-Fugate, Annie E.; Taibl, Jessica N.; Alloosh, Mouhamad; Sturek, Michael; Bahr, Janice M.; Nowak, Romana A.; Krisher, Rebecca L.
2015-01-01
The discrete effects of obesity on infertility in females remain undefined to date. To investigate obesity-induced ovarian dysfunction, we characterized metabolic parameters, steroidogenesis, and folliculogenesis in obese and lean female Ossabaw mini-pigs. Nineteen nulliparous, sexually mature female Ossabaw pigs were fed a high fat/cholesterol/fructose diet (n=10) or a control diet (n=9) for eight months. After a three-month diet-induction period, pigs remained on their respective diets and had ovarian ultrasound and blood collection conducted during a five-month study period after which ovaries were collected for histology, cell culture, and gene transcript level analysis. Blood was assayed for steroid and protein hormones. Obese pigs developed abdominal obesity and metabolic syndrome, including hyperglycemia, hypertension, insulin resistance and dyslipidemia. Obese pigs had elongated estrous cycles and hyperandrogenemia with decreased LH, increased FSH and luteal phase progesterone, and increased numbers of medium, ovulatory, and cystic follicles. Theca cells of obese, compared to control, pigs displayed androstenedione hypersecretion in response to in vitro treatment with LH, and up-regulated 3-beta-hydroxysteroid dehydrogenase 1 and 17-beta-hydroxysteroid dehydrogenase 4 transcript levels in response to in vitro treatment with LH or LH + insulin. Granulosa cells of obese pigs had increased 3-beta-hydroxysteroid dehydrogenase 1 transcript levels. In summary, obese Ossabaw pigs have increased transcript levels and function of ovarian enzymes in the delta 4 steroidogenic pathway. Alterations in LH, FSH, and progesterone, coupled with theca cell dysfunction, contribute to the hyperandrogenemia and disrupted folliculogenesis patterns observed in obese pigs. The obese Ossabaw mini-pig is a useful animal model in which to study the effects of obesity and metabolic syndrome on ovarian function and steroidogenesis. Ultimately, this animal model may be useful toward the development of therapies to improve fertility in obese and/or hyperandrogenemic females or in which to examine the effects of obesity on the maternal-fetal environment and offspring health. PMID:26046837
Lethal Dysregulation of Energy Metabolism During Embryonic Vitamin E Deficiency
McDougall, Melissa; Choi, Jaewoo; Kim, Hye-Kyeong; Bobe, Gerd; Stevens, J. Frederik; Cadenas, Enrique; Tanguay, Robert; Traber, Maret G.
2017-01-01
Vitamin E (α-tocopherol, VitE) was discovered in 1922 for its role in preventing embryonic mortality. We investigated the underlying mechanisms causing lethality using targeted metabolomics analyses of zebrafish VitE-deficient embryos over five days of development, which coincided with their increased morbidity and mortality. VitE deficiency resulted in peroxidation of docosahexaenoic acid (DHA), depleting DHA-containing phospholipids, especially phosphatidylcholine, which also caused choline depletion. This increased lipid peroxidation also increased NADPH oxidation, which depleted glucose by shunting it to the pentose phosphate pathway. VitE deficiency was associated with mitochondrial dysfunction with concomitant impairment of energy homeostasis. The observed morbidity and mortality outcomes could be attenuated, but not fully reversed, by glucose injection into VitE-deficient embryos at developmental day one. Thus, embryonic VitE deficiency in vertebrates leads to a metabolic reprogramming that adversely affects methyl donor status and cellular energy homeostasis with lethal outcomes. PMID:28095320
Lipids, lysosomes, and autophagy
2016-01-01
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054
Loiseau, Camille; Osinski, Diane; Joubert, Fanny; Straus, Christian; Similowski, Thomas; Bodineau, Laurence
2014-05-01
Central congenital hypoventilation syndrome is a neuro-respiratory disease characterized by the dysfunction of the CO2/H(+) chemosensitive neurons of the retrotrapezoid nucleus/parafacial respiratory group. A recovery of CO2/H(+) chemosensitivity has been observed in some central congenital hypoventilation syndrome patients coincidental with contraceptive treatment by a potent progestin, desogestrel (Straus et al., 2010). The mechanisms of this progestin effect remain unknown, although structures of medulla oblongata, midbrain or diencephalon are known to be targets for progesterone. In the present study, on ex vivo preparations of central nervous system of newborn rats, we show that acute exposure to etonogestrel (active metabolite of desogestrel) enhanced the increased respiratory frequency induced by metabolic acidosis via a mechanism involving supramedullary structures located in pontine, mesencephalic or diencephalic regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Smeland, Olav B; Hadera, Mussie G; McDonald, Tanya S; Sonnewald, Ursula; Borges, Karin
2013-01-01
Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model. PMID:23611869
Biological functions of histidine-dipeptides and metabolic syndrome.
Song, Byeng Chun; Joo, Nam-Seok; Aldini, Giancarlo; Yeum, Kyung-Jin
2014-02-01
The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (β-alanyl-L-histidine) and anserine (β-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.
Metabolomic Analysis in Brain Research: Opportunities and Challenges
Vasilopoulou, Catherine G.; Margarity, Marigoula; Klapa, Maria I.
2016-01-01
Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results. PMID:27252656
[Biliary dysfunction in obese children].
Aleshina, E I; Gubonina, I V; Novikova, V P; Vigurskaia, M Iu
2014-01-01
To examine the state of the biliary system, a study of properties of bile "case-control") 100 children and adolescents aged 8 to 18 years, held checkup in consultative and diagnostic center for chronic gastroduodenitis. BMI children were divided into 2 groups: group 1-60 children with obesity (BMI of 30 to 40) and group 2-40 children with normal anthropometric indices. Survey methods included clinical examination pediatrician, endocrinologist, biochemical parameters (ALT, AST, alkaline phosphatase level, total protein, bilirubin, lipidogram, glucose, insulin, HOMA-index), ultrasound of the abdomen and retroperitoneum, EGD with aspiration of gallbladder bile. Crystallography bile produced by crystallization of biological substrates micromethods modification Prima AV, 1992. Obese children with chronic gastroduodenita more likely than children of normal weight, had complaints and objective laboratory and instrumental evidence of insulin resistance and motor disorders of the upper gastrointestinal and biliary tract, liver enlargement and biliary "sludge". Biochemical parameters of obese children indicate initial metabolic changes in carbohydrate and fat metabolism and cholestasis, as compared to control children. Colloidal properties of bile in obese children with chronic gastroduodenita reduced, as indicated by the nature of the crystallographic pattern. Conclusions: Obese children with chronic gastroduodenitis often identified enlarged liver, cholestasis and biliary dysfunction, including with the presence of sludge in the gallbladder; most often--hypertonic bile dysfunction. Biochemical features of carbohydrate and fat metabolism reflect the features of the metabolic profile of obese children. Crystallography bile in obese children reveals the instability of the colloidal structure of bile, predisposing children to biliary sludge, which is a risk factor for gallstones.
Fariña, Juan Pablo; García, María Elisa; Alzamendi, Ana; Giovambattista, Andrés; Marra, Carlos Alberto; Spinedi, Eduardo; Gagliardino, Juan José
2013-07-01
In the present study, we tested the effect of OS (oxidative stress) inhibition in rats fed on an FRD [fructose-rich diet; 10% (w/v) in drinking water] for 3 weeks. Normal adult male rats received a standard CD (commercial diet) or an FRD without or with an inhibitor of NADPH oxidase, APO (apocynin; 5 mM in drinking water; CD-APO and FRD-APO). We thereafter measured plasma OS and metabolic-endocrine markers, AAT (abdominal adipose tissue) mass and cell size, FA (fatty acid) composition (content and release), OS status, LEP (leptin) and IRS (insulin receptor substrate)-1/IRS-2 mRNAs, ROS (reactive oxygen species) production, NADPH oxidase activity and LEP release by isolated AAT adipocytes. FRD-fed rats had larger AAT mass without changes in body weight, and higher plasma levels of TAG (triacylglycerol), FAs, TBARS (thiobarbituric acid-reactive substance) and LEP. Although no significant changes in glucose and insulin plasma levels were observed in these animals, their HOMA-IR (homoeostasis model assessment of insulin resistance) values were significantly higher than those of CD. The AAT from FRD-fed rats had larger adipocytes, higher saturated FA content, higher NADPH oxidase activity, greater ROS production, a distorted FA content/release pattern, lower insulin sensitivity together with higher and lower mRNA content of LEP and IRS-1-/2 respectively, and released a larger amount of LEP. The development of all the clinical, OS, metabolic, endocrine and molecular changes induced by the FRD were significantly prevented by APO co-administration. The fact that APO treatment prevented both changes in NADPH oxidase activity and the development of all the FRD-induced AAT dysfunctions in normal rats strongly suggests that OS plays an important role in the FRD-induced MS (metabolic syndrome) phenotype.
A compromised liver alters polychlorinated biphenyl-mediated toxicity.
Wahlang, Banrida; Perkins, Jordan T; Petriello, Michael C; Hoffman, Jessie B; Stromberg, Arnold J; Hennig, Bernhard
2017-04-01
Exposure to environmental toxicants namely polychlorinated biphenyls (PCBs) is correlated with multiple health disorders including liver and cardiovascular diseases. The liver is important for both xenobiotic and endobiotic metabolism. However, the responses of an injured liver to subsequent environmental insults has not been investigated. The current study aims to evaluate the role of a compromised liver in PCB-induced toxicity and define the implications on overall body homeostasis. Male C57Bl/6 mice were fed either an amino acid control diet (CD) or a methionine-choline deficient diet (MCD) during the 12-week study. Mice were subsequently exposed to either PCB126 (4.9mg/kg) or the PCB mixture, Arcolor1260 (20mg/kg) and analyzed for inflammatory, calorimetry and metabolic parameters. Consistent with the literature, MCD diet-fed mice demonstrated steatosis, indicative of a compromised liver. Mice fed the MCD-diet and subsequently exposed to PCB126 showed observable wasting syndrome leading to mortality. PCB126 and Aroclor1260 exposure worsened hepatic fibrosis exhibited by the MCD groups. Interestingly, PCB126 but not Aroclor1260 induced steatosis and inflammation in CD-fed mice. Mice with liver injury and subsequently exposed to PCBs also manifested metabolic disturbances due to alterations in hepatic gene expression. Furthermore, PCB exposure in MCD-fed mice led to extra-hepatic toxicity such as upregulated circulating inflammatory biomarkers, implicating endothelial cell dysfunction. Taken together, these results indicate that environmental pollution can exacerbate toxicity caused by diet-induced liver injury which may be partially due to dysfunctional energy homeostasis. This is relevant to PCB-exposed human cohorts who suffer from alcohol or diet-induced fatty liver diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Christ, Jacob P; Vanden Brink, Heidi; Brooks, Eric D; Pierson, Roger A; Chizen, Donna R; Lujan, Marla E
2015-03-01
To reexamine associations between polycystic ovarian morphology (PCOM) and degree of symptomatology in polycystic ovary syndrome (PCOS) using a well-defined PCOS population, newer ultrasound technology, and reliable offline assessments of sonographic parameters. Cross-sectional observational study. Academic hospital and clinical research unit. Forty-nine women with PCOS as defined by hyperandrogenism and oligoamenorrhea. None. Number of follicles per follicle size category, antral follicle count (AFC), ovarian volume (OV), follicle distribution pattern, stromal area, ovarian area, stromal to ovarian area ratio (S/A) and stromal echogenicity index (SI), total (TT), androstenedione, LH, FSH, cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein, C-reactive protein, glucose, insulin, and hemoglobin A1C, menstrual cycle length, hirsutism score, body mass index (BMI), waist:hip ratio, and blood pressure. AFC, but not OV, was positively associated with TT (ρ = .610), androstenedione (ρ = .490), and LH:FSH (ρ = .402). SI was positively associated with androgen markers and LH:FSH, while S/A was negatively associated with these variables. Follicles ≤4 mm were negatively associated with various metabolic markers, whereas larger follicles (5-8 mm) showed positive associations. Stromal markers were not associated with cardiometabolic measures. LH:FSH best predicted follicles ≤4 mm, and BMI predicted 5- to 9-mm follicles. Dominant follicles ≥10 mm were best predicted by age. AFC, and not OV, reflected the severity of reproductive dysfunction in PCOS. Associations among different sized follicles were consistent with recruitable sized follicles, which reflects the severity of metabolic dysfunction in PCOS. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Lewis, Philip; Sheehan, David; Soares, Renata; Varela Coelho, Ana; O'Halloran, Ken D.
2015-01-01
Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease. PMID:25941492
... disease Metabolic problems Multiple sclerosis (MS) Poisoning with copper, manganese, or other heavy metals Stroke Tumors A ... the brain) Wilson disease (disorder causing too much copper in the body's tissues)
The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease
Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.
2016-01-01
Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening. PMID:27713486
The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease
NASA Astrophysics Data System (ADS)
Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.
2016-10-01
Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening.
FDG metabolism associated with tau-amyloid interaction predicts memory decline
Hanseeuw, Bernard J.; Betensky, Rebecca A.; Schultz, Aaron P.; Papp, Kate V.; Mormino, Elizabeth C.; Sepulcre, Jorge; Bark, John S.; Cosio, Danielle M.; LaPoint, Molly; Chhatwal, Jasmeer P.; Rentz, Dorene M.; Sperling, Reisa A.; Johnson, Keith
2017-01-01
Objective To evaluate in normal older adults and preclinical Alzheimer’s disease (AD) the impact of amyloid and regional tauopathy on cerebral glucose metabolism and subsequent memory decline. Methods We acquired positron emission tomography using F18 Flortaucipir (tau), C11 Pittsburgh Compound B (amyloid) and F18 Fluorodeoxyglucose in 90 clinically normal elderly of the Harvard Aging Brain Study. Results Posterior cingulate metabolism decreased when both amyloid and neocortical tau were high and predicted subsequent memory decline in a larger sample of normal elderly. In contrast, frontal hypometabolism related to the common age-related entorhinal tauopathy, but this dysfunction was independent of amyloid, and did not predict significant memory decline. Neocortical tauopathy was positively associated with metabolism in individuals with sub-threshold amyloid, suggesting that glucose metabolism increases before decreasing in the course of preclinical AD. Interpretation Our study identified a synergistic effect of amyloid and tau deposits and demonstrated for the first time in normal elderly its link to AD-like hypometabolism and to AD-like memory decline. The amyloid effect was seen with tau in neocortex, but not with tau in entorhinal cortex, which is the common site of age-related tauopathy. Entorhinal tau was associated with frontal hypometabolism, but this dysfunction was not associated with memory loss. PMID:28253546
Uddin, Golam Mezbah; Youngson, Neil A; Doyle, Bronte M; Sinclair, David A; Morris, Margaret J
2017-11-08
Maternal overnutrition increases the risk of long-term metabolic dysfunction in offspring. Exercise improves metabolism partly by upregulating mitochondrial biogenesis or function, via increased levels of nicotinamide adenine dinucleotide (NAD + ). We have shown that the NAD + precursor, nicotinamide mononucleotide (NMN) can reverse some of the negative consequences of high fat diet (HFD) consumption. To investigate whether NMN can impact developmentally-set metabolic deficits, we compared treadmill exercise and NMN injection in offspring of obese mothers. Five week old lean and obese female C57BL6/J mice were mated with chow fed males. Female offspring weaned onto HFD were given treadmill exercise for 9 weeks, or NMN injection daily for 18 days. Maternal obesity programmed increased adiposity and liver triglycerides, with decreased glucose tolerance, liver NAD + levels and citrate synthase activity in offspring. Both interventions reduced adiposity, and showed a modest improvement in glucose tolerance and improved markers of mitochondrial function. NMN appeared to have stronger effects on liver fat catabolism (Hadh) and synthesis (Fasn) than exercise. The interventions appeared to exert the most global benefit in mice that were most metabolically challenged (HFD-consuming offspring of obese mothers). This work encourages further study to confirm the suitability of NMN for use in reversing metabolic dysfunction linked to programming by maternal obesity.
Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity
Gaspar, Renato Simões
2016-01-01
Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation. PMID:28053690
Potential Role of Protein Disulfide Isomerase in Metabolic Syndrome-Derived Platelet Hyperactivity.
Gaspar, Renato Simões; Trostchansky, Andrés; Paes, Antonio Marcus de Andrade
2016-01-01
Metabolic Syndrome (MetS) has become a worldwide epidemic, alongside with a high socioeconomic cost, and its diagnostic criteria must include at least three out of the five features: visceral obesity, hypertension, dyslipidemia, insulin resistance, and high fasting glucose levels. MetS shows an increased oxidative stress associated with platelet hyperactivation, an essential component for thrombus formation and ischemic events in MetS patients. Platelet aggregation is governed by the peroxide tone and the activity of Protein Disulfide Isomerase (PDI) at the cell membrane. PDI redox active sites present active cysteine residues that can be susceptible to changes in plasma oxidative state, as observed in MetS. However, there is a lack of knowledge about the relationship between PDI and platelet hyperactivation under MetS and its metabolic features, in spite of PDI being a mediator of important pathways implicated in MetS-induced platelet hyperactivation, such as insulin resistance and nitric oxide dysfunction. Thus, the aim of this review is to analyze data available in the literature as an attempt to support a possible role for PDI in MetS-induced platelet hyperactivation.
Metabolic profiles in serum of mouse after chronic exposure to drinking water.
Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei
2011-08-01
The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.
Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.
Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M
2016-10-01
This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. Copyright © 2016 Elsevier Inc. All rights reserved.
Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans.
Oppelt, Sarah A; Sennott, Erin M; Tolan, Dean R
2015-03-01
The rise in fructose consumption, and its correlation with symptoms of metabolic syndrome (MBS), has highlighted the need for a better understanding of fructose metabolism. To that end, valid rodent models reflecting the same metabolism as in humans, both biochemically and physiologically, are critical. A key to understanding any type of metabolism comes from study of disease states that affect such metabolism. A serious defect of fructose metabolism is the autosomal recessive condition called hereditary fructose intolerance (HFI), caused by mutations in the human aldolase B gene (Aldob). Those afflicted with HFI experience liver and kidney dysfunction after fructose consumption, which can lead to death, particularly during infancy. With very low levels of fructose exposure, HFI patients develop non-alcoholic fatty acid liver disease and fibrosis, sharing liver pathologies also seen in MBS. A major step toward establishing that fructose metabolism in mice mimics that of humans is reported by investigating the consequences of targeting the mouse aldolase-B gene (Aldo2) for deletion in mice (Aldo2(-/-)). The Aldo2(-/-) homozygous mice show similar pathology following exposure to fructose as humans with HFI such as failure to thrive, liver dysfunction, and potential morbidity. Establishing that this mouse reflects the symptoms of HFI in humans is critical for comparison of rodent studies to the human condition, where this food source is increasing, and increasingly controversial. This animal should provide a valuable resource for answering remaining questions about fructose metabolism in HFI, as well as help investigate the biochemical mechanisms leading to liver pathologies seen in MBS from high fructose diets. Copyright © 2015 Elsevier Inc. All rights reserved.
Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells?
Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F
2017-07-05
Elevated plasma glucose leads to pancreatic β cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this "glucotoxicity" via dysregulated biochemical pathways promoting β cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β cells in normoglycemia and in diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Battista, C; Woodhead, JL; Stahl, SH; Mettetal, JT; Watkins, PB; Siler, SQ; Howell, BA
2017-01-01
Elevations in serum bilirubin during drug treatment may indicate global liver dysfunction and a high risk of liver failure. However, drugs also can increase serum bilirubin in the absence of hepatic injury by inhibiting specific enzymes/transporters. We constructed a mechanistic model of bilirubin disposition based on known functional polymorphisms in bilirubin metabolism/transport. Using physiologically based pharmacokinetic (PBPK) model‐predicted drug exposure and enzyme/transporter inhibition constants determined in vitro, our model correctly predicted indinavir‐mediated hyperbilirubinemia in humans and rats. Nelfinavir was predicted not to cause hyperbilirubinemia, consistent with clinical observations. We next examined a new drug candidate that caused both elevations in serum bilirubin and biochemical evidence of liver injury in rats. Simulations suggest that bilirubin elevation primarily resulted from inhibition of transporters rather than global liver dysfunction. We conclude that mechanistic modeling of bilirubin can help elucidate underlying mechanisms of drug‐induced hyperbilirubinemia, and thereby distinguish benign from clinically important elevations in serum bilirubin. PMID:28074467
Advanced Glycation End Products: Link between Diet and Ovulatory Dysfunction in PCOS?
Garg, Deepika; Merhi, Zaher
2015-12-04
PCOS is the most common cause of anovulation in reproductive-aged women with 70% experiencing ovulatory problems. Advanced glycation end products are highly reactive molecules that are formed by non-enzymatic reactions of sugars with proteins, nucleic acids and lipids. AGEs are also present in a variety of diet where substantial increase in AGEs can result due to thermal processing and modifications of food. Elevation in bodily AGEs, produced endogenously or absorbed exogenously from high-AGE diets, is further exaggerated in women with PCOS and is associated with ovulatory dysfunction. Additionally, increased expression of AGEs as pro-inflammatory receptors in the ovarian tissue has been observed in women with PCOS. In this review, we summarize the role of dietary AGEs as mediators of metabolic and reproductive alterations in PCOS. Once a mechanistic understanding of the relationship between AGEs and anovulation is established, there is a promise that such knowledge will contribute to the subsequent development of targeted pharmacological therapies that will treat anovulation and improve ovarian health in women with PCOS.
Zelzer, Sieglinde; Mangge, Harald; Pailer, Sabine; Ainoedhofer, Herwig; Kieslinger, Petra; Stojakovic, Tatjana; Scharnagl, Hubert; Prüller, Florian; Weghuber, Daniel; Datz, Christian; Haybaeck, Johannes; Obermayer-Pietsch, Barbara; Trummer, Christian; Gostner, Johanna; Gruber, Hans-Jürgen
2015-05-21
Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding) on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66) were grouped into normal diet (n = 30) and high-fat diet (n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL), malondialdehyde (MDA), 4-hydroxynonenal (HNE), the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats.
Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L. H.; Leu, Steve; Chan, Julie Y. H.
2016-01-01
Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M2-, M3-muscarinic and P2X1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE. PMID:27703194
Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L H; Leu, Steve; Chan, Julie Y H
2016-10-05
Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M 2 -, M 3 -muscarinic and P2X 1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE.
He, M; Lu, Y; Xu, S; Mao, L; Zhang, L; Duan, W; Liu, C; Pi, H; Zhang, Y; Zhong, M; Yu, Z; Zhou, Z
2014-02-27
The cellular energy metabolism shift, characterized by the inhibition of oxidative phosphorylation (OXPHOS) and enhancement of glycolysis, is involved in nickel-induced neurotoxicity. MicroRNA-210 (miR-210) is regulated by hypoxia-inducible transcription factor-1α (HIF-1α) under hypoxic conditions and controls mitochondrial energy metabolism by repressing the iron-sulfur cluster assembly protein (ISCU1/2). ISCU1/2 facilitates the assembly of iron-sulfur clusters (ISCs), the prosthetic groups that are critical for mitochondrial oxidation-reduction reactions. This study aimed to investigate whether miR-210 modulates alterations in energy metabolism after nickel exposure through suppressing ISCU1/2 and inactivating ISCs-containing metabolic enzymes. We determined that NiCl2 exposure leads to a significant accumulation of HIF-1α, rather than HIF-1β, in Neuro-2a cells. The miR-210 overexpression and ISCU1/2 downregulation was observed in a dose- and time-dependent manner. The gain-of-function and loss-of-dysfunction assays revealed that miR-210 mediated the ISCU1/2 suppression, energy metabolism alterations, and ISC-containing metabolic enzyme inactivation after nickel exposure. In addition, the impact of miR-210 on ISC-containing metabolic enzymes was independent from cellular iron regulation. Overall, these data suggest that repression of miR-210 on ISCU1/2 may contribute to HIF-1α-triggered alterations in energy metabolism after nickel exposure. A better understanding of how nickel impacts cellular energy metabolism may facilitate the elucidation of the mechanisms by which nickel affects the human health.
Short, Kevin R.; Frimberger, Dominic
2012-01-01
Children and adolescents who have decreased mobility due to spina bifida may be at increased risk for the components of metabolic syndrome, including abdominal obesity, insulin resistance, and dyslipidemia due to low physical activity. Like their nondisabled peers, adolescents with spina bifida that develop metabolic risk factors early in life have set the stage for adult disease. Exercise interventions can improve metabolic dysfunction in nondisabled youth, but the types of exercise programs that are most effective and the mechanisms involved are not known. This is especially true in adolescents with spina bifida, who have impaired mobility and physical function and with whom there have been few well-controlled studies. This paper highlights the current lack of knowledge about the role of physical activity and the need to develop exercise strategies targeting the reduction of cardiometabolic risk and improving quality of life in youth with spina bifida. PMID:22778758
Short, Kevin R; Frimberger, Dominic
2012-01-01
Children and adolescents who have decreased mobility due to spina bifida may be at increased risk for the components of metabolic syndrome, including abdominal obesity, insulin resistance, and dyslipidemia due to low physical activity. Like their nondisabled peers, adolescents with spina bifida that develop metabolic risk factors early in life have set the stage for adult disease. Exercise interventions can improve metabolic dysfunction in nondisabled youth, but the types of exercise programs that are most effective and the mechanisms involved are not known. This is especially true in adolescents with spina bifida, who have impaired mobility and physical function and with whom there have been few well-controlled studies. This paper highlights the current lack of knowledge about the role of physical activity and the need to develop exercise strategies targeting the reduction of cardiometabolic risk and improving quality of life in youth with spina bifida.
Infant with cardiomyopathy: When to suspect inborn errors of metabolism?
Byers, Stephanie L; Ficicioglu, Can
2014-01-01
Inborn errors of metabolism are identified in 5%-26% of infants and children with cardiomyopathy. Although fatty acid oxidation disorders, lysosomal and glycogen storage disorders and organic acidurias are well-known to be associated with cardiomyopathies, emerging reports suggest that mitochondrial dysfunction and congenital disorders of glycosylation may also account for a proportion of cardiomyopathies. This review article clarifies when primary care physicians and cardiologists should suspect inborn errors of metabolism in a patient with cardiomyopathy, and refer the patient to a metabolic specialist for a further metabolic work up, with specific discussions of “red flags” which should prompt additional evaluation. PMID:25429327
Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity
Scharping, Nicole E.; Delgoffe, Greg M.
2016-01-01
When a T cell infiltrates a tumor, it is subjected to a variety of immunosuppressive and regulatory signals in the microenvironment. However, it is becoming increasingly clear that due to the proliferative and energetically-deregulated nature of tumor cells, T cells also operate at a metabolic disadvantage. The nutrient dearth of the tumor microenvironment (TME) creates “metabolic checkpoints” upon infiltrating T cells, impacting their ability to survive, proliferate and function effectively. In this review, we summarize the basics of tumor cell and T cell metabolism and discuss recent advances elucidating the individual metabolic checkpoints exerted on T cells that drive their dysfunction in the TME. PMID:27929420
Veeranki, Sudhakar; Winchester, Lee J; Tyagi, Suresh C
2015-01-01
HHcy has been implicated in elderly frailty, but the underlying mechanisms are poorly understood. Using C57 and CBS+/- mice and C2C12 cell line, we investigated mechanisms behind HHcy induced skeletal muscle weakness and fatigability. Possible alterations in metabolic capacity (levels of LDH, CS, MM-CK and COX-IV), in structural proteins (levels of dystrophin) and in mitochondrial function (ATP production) were examined. An exercise regimen was employed to reverse HHcy induced changes. CBS+/- mice exhibited more fatigability, and generated less contraction force. No significant changes in muscle morphology were observed. However, there is corresponding reduction in large muscle fiber number in CBS+/- mice. Excess fatigability was not due to changes in key enzymes involved in metabolism, but was due to reduced ATP levels. A marginal reduction in dystrophin levels along with a decrease in mitochondrial transcription factor A (mtTFA) were observed. There was also an increase in the mir-31, and mir-494 quantities that were implicated in dystrophin and mtTFA regulation respectively. The molecular changes elevated during HHcy, with the exception of dystrophin levels, were reversed after exercise. In addition, amount of NRF-1, one of the transcriptional regulators of mtTFA, was significantly decreased. Furthermore, there was enhancement in mir-494 levels and a concomitant decline in mtTFA protein quantity in homocysteine treated cells. These changes in C2C12 cells were also accompanied by an increase in DNMT3a and DNMT3b proteins and global DNA methylation levels. Together, these results suggest that HHcy plays a causal role in enhanced fatigability through mitochondrial dysfunction which involves epigenetic changes. PMID:25615794
Hinder, Lucy M; Park, Meeyoung; Rumora, Amy E; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L
2017-09-01
Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Small, David M; Sanchez, Washington Y; Roy, Sandrine F; Morais, Christudas; Brooks, Heddwen L; Coombes, Jeff S; Johnson, David W; Gobe, Glenda C
2018-05-01
Oxidative stress and mitochondrial dysfunction exacerbate acute kidney injury (AKI), but their role in any associated progress to chronic kidney disease (CKD) remains unclear. Antioxidant therapies often benefit AKI, but their benefits in CKD are controversial since clinical and preclinical investigations often conflict. Here we examined the influence of the antioxidant N-acetyl-cysteine (NAC) on oxidative stress and mitochondrial function during AKI (20-min bilateral renal ischemia plus reperfusion/IR) and progression to chronic kidney pathologies in mice. NAC (5% in diet) was given to mice 7 days prior and up to 21 days post-IR (21d-IR). NAC treatment resulted in the following: prevented proximal tubular epithelial cell apoptosis at early IR (40-min postischemia), yet enhanced interstitial cell proliferation at 21d-IR; increased transforming growth factor-β1 expression independent of IR time; and significantly dampened nuclear factor-like 2-initiated cytoprotective signaling at early IR. In the long term, NAC enhanced cellular metabolic impairment demonstrated by increased peroxisome proliferator activator-γ serine-112 phosphorylation at 21d-IR. Intravital multiphoton microscopy revealed increased endogenous fluorescence of nicotinamide adenine dinucleotide (NADH) in cortical tubular epithelial cells during ischemia, and at 21d-IR that was not attenuated with NAC. Fluorescence lifetime imaging microscopy demonstrated persistent metabolic impairment by increased free/bound NADH in the cortex at 21d-IR that was enhanced by NAC. Increased mitochondrial dysfunction in remnant tubular cells was demonstrated at 21d-IR by tetramethylrhodamine methyl ester fluorimetry. In summary, NAC enhanced progression to CKD following AKI not only by dampening endogenous cellular antioxidant responses at time of injury but also by enhancing persistent kidney mitochondrial and metabolic dysfunction.
Lucero, Diego; López, Graciela I; Gorzalczany, Susana; Duarte, Mariano; González Ballerga, Esteban; Sordá, Juan; Schreier, Laura; Zago, Valeria
2016-08-01
Our aim was to analyze the effect of circulating triglyceride rich lipoprotein (TRL) on endothelial function in metabolic syndrome (MetS). We studied 40 patients with MetS (ATPIII), divided into those presenting normal endothelial function (n=19) and those with endothelial dysfunction (n=21) by means of the evaluation of pulse wave velocity, before and after brachial artery ischemia. In fasting serum we measured lipid and lipoprotein profile, insulin and glucose (HOMA-IR). Moreover, isolated TRL (d<1006g/l) were chemically characterized. In parallel, using randomly selected TRL from MetS patients with endothelial dysfunction (n=6) and MetS patients with normal endothelial function (n=6), the ability of TRL to inhibit ACh-induced vasorelaxation (10(-9)-10(-5)mM) on aortic rings previously pre-contracted by noradrenaline (10(-8)mM) was evaluated. Interestingly, TRL isolated from MetS patients presenting endothelial dysfunction showed triglyceride over-enrichment (59.1±4.8 vs. 54.1±4.7%; p=0.04), even after adjusting by potential confounders (p=0.05). In addition, while TRL resulting from both MetS groups significantly inhibited endothelium dependent vasorelaxation (p<0.001), TRL from MetS patients with endothelial dysfunction showed a strong tendency to a greater inhibition of vasorelaxation (p=0.06). Moreover, TRL-triglyceride (%) showed a strong tendency to correlate with the grade of vasorelaxation inhibition exerted by TRL (r=0.60; p=0.05). These results, taken together, would allow inferring for the first time that the predominance of triglyceride over-enriched TRL in circulation in MetS would induce endothelial dysfunction, contributing to the inherent cardiovascular risk of MetS. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
de Pablo-Latorre, Raquel; Saide, Assunta; Polishhuck, Elena V.; Nusco, Edoardo; Fraldi, Alessandro; Ballabio, Andrea
2012-01-01
Dysfunctional mitochondria are a well-known disease hallmark. The accumulation of aberrant mitochondria can alter cell homeostasis, thus resulting in tissue degeneration. Lysosomal storage disorders (LSDs) are a group of inherited diseases characterized by the buildup of undegraded material inside the lysosomes that leads to autophagic-lysosomal dysfunction. In LSDs, autophagic stress has been associated to mitochondrial accumulation and dysfunction. However, the mechanisms underlying mitochondrial aberrations and how these are involved in tissue pathogenesis remain largely unexplored. In normal conditions, mitochondrial clearance occurs by mitophagy, a selective form of autophagy, which relies on a parkin-mediated mitochondrial priming and subsequent sequestration by autophagosomes. Here, we performed a detailed analysis of key steps of mitophagy in a mouse model of multiple sulfatase deficiency (MSD), a severe type of LSD characterized by both neurological and systemic involvement. We demonstrated that in MSD liver reduced parkin levels resulted in inefficient mitochondrial priming, thus contributing to the accumulation of giant mitochondria that are located outside autophagic vesicles ultimately leading to cytochrome c release and apoptotic cell death. Morphological and functional changes were also observed in mitochondria from MSD brain but these were not directly associated with neuronal cell loss, suggesting a secondary contribution of mitochondria to neurodegeneration. Together, these data shed new light on the mechanisms underlying mitochondrial dysfunction in LSDs and on their tissue-specific differential contribution to the pathogenesis of this group of metabolic disorders. PMID:22215441
Metabolic Syndrome: Polycystic Ovary Syndrome.
Mortada, Rami; Williams, Tracy
2015-08-01
Polycystic ovary syndrome (PCOS) is a heterogeneous condition characterized by androgen excess, ovulatory dysfunction, and polycystic ovaries. It is the most common endocrinopathy among women of reproductive age, affecting between 6.5% and 8% of women, and is the most common cause of infertility. Insulin resistance is almost always present in women with PCOS, regardless of weight, and they often develop diabetes and metabolic syndrome. The Rotterdam criteria are widely used for diagnosis. These criteria require that patients have at least two of the following conditions: hyperandrogenism, ovulatory dysfunction, and polycystic ovaries. The diagnosis of PCOS also requires exclusion of other potential etiologies of hyperandrogenism and ovulatory dysfunction. The approach to PCOS management differs according to the presenting symptoms and treatment goals, particularly the patient's desire for pregnancy. Weight loss through dietary modifications and exercise is recommended for patients with PCOS who are overweight. Oral contraceptives are the first-line treatment for regulating menstrual cycles and reducing manifestations of hyperandrogenism, such as acne and hirsutism. Clomiphene is the first-line drug for management of anovulatory infertility. Metformin is recommended for metabolic abnormalities such as prediabetes, and a statin should be prescribed for cardioprotection if the patient meets standard criteria for statin therapy. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.
Liu, Jing; Wan, Shengming; Zhang, Yun; Zhang, Shu; Zhang, Hongying; Wu, Shiwen
2018-05-11
Heat stroke, the most serious type of heat illness, refers to the presence of hyperthermia (core temperature >40°C), accompanied by central nervous system dysfunction. The hippocampus is a particularly vulnerable region in the early stage of heat stroke. Increasing evidence suggests that dysregulation of brain iron metabolism is involved in many neurodegenerative diseases. However, whether heat stroke causes dysfunction of iron metabolism, as well as iron-regulatory proteins, in the hippocampus remains unknown. The present study was conducted to explore the effects on spatial learning and memory, as well as iron content, ferroportin 1 (Fpn1), and hepcidin expression in the hippocampus after heat stroke in rats. Compared with the Sham group, learning ability and memory declined in rats after heat stroke. Iron concentration was significantly increased in the hippocampus. Expression of Fpn1 protein significantly decreased in the hippocampus, while expression of hepcidin increased. Interestingly, Fpn1 mRNA expression in the hippocampus increased. Our data thereby indicate that heat stroke can decrease learning ability and memory in rats. The mechanism may be related to changes of iron levels, as well as Fpn1 and hepcidin expression, in the hippocampus. Furthermore, hepcidin may rapidly decrease cellular Fpn1 protein levels, even under conditions of iron loading, indicating that hepcidin is a more dominant regulator of Fpn1 than is iron.
Hardonnière, Kévin; Saunier, Elise; Lemarié, Anthony; Fernier, Morgane; Gallais, Isabelle; Héliès-Toussaint, Cécile; Mograbi, Baharia; Antonio, Samantha; Bénit, Paule; Rustin, Pierre; Janin, Maxime; Habarou, Florence; Ottolenghi, Chris; Lavault, Marie-Thérèse; Benelli, Chantal; Sergent, Odile; Huc, Laurence; Bortoli, Sylvie; Lagadic-Gossmann, Dominique
2016-01-01
Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na+/H+ exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration). PMID:27488617
Increasing quality of life in pulmonary arterial hypertension: is there a role for nutrition?
Vinke, Paulien; Jansen, Suzanne M; Witkamp, Renger F; van Norren, Klaske
2018-06-16
Pulmonary arterial hypertension (PAH) is a progressive disease primarily affecting the pulmonary vasculature and heart. PAH patients suffer from exercise intolerance and fatigue, negatively affecting their quality of life. This review summarizes current insights in the pathophysiological mechanisms underlying PAH. It zooms in on the potential involvement of nutritional status and micronutrient deficiencies on PAH exercise intolerance and fatigue, also summarizing the potential benefits of exercise and nutritional interventions. Pubmed/Medline, Scopus, and Web of Science were searched for publications on pathophysiological mechanisms of PAH negatively affecting physical activity potential and nutritional status, and for potential effects of interventions involving exercise or nutritional measures known to improve exercise intolerance. Pathophysiological processes that contribute to exercise intolerance and impaired quality of life of PAH patients include right ventricular dysfunction, inflammation, skeletal muscle alterations, and dysfunctional energy metabolism. PAH-related nutritional deficiencies and metabolic alterations have been linked to fatigue, exercise intolerance, and endothelial dysfunction. Available evidence suggests that exercise interventions can be effective in PAH patients to improve exercise tolerance and decrease fatigue. By contrast, knowledge on the prevalence of micronutrient deficiencies and the possible effects of nutritional interventions in PAH patients is limited. Although data on nutritional status and micronutrient deficiencies in PAH are scarce, the available knowledge, including that from adjacent fields, suggests that nutritional intervention to correct deficiencies and metabolic alterations may contribute to a reduction of disease burden.
TREATMENT OF METABOLIC ALTERATIONS IN POLYCYSTIC OVARY SYNDROME.
Păvăleanu, Ioana; Gafiţanu, D; Popovici, Diana; Duceac, Letiţia Doina; Păvăleanu, Maricica
2016-01-01
Polycystic ovary syndrome is a common endocrinopathy characterized by oligo ovulation or anovulation, signs of androgen excess and multiple small ovarian cysts. It includes various metabolic abnormalities: insulin resistance, hyperinsulinemia, impaired glucose tolerance, visceral obesity, inflammation and endothelial dysfunction, hypertension and dyslipidemia. All these metabolic abnormalities have long-term implications. Treatment should be individualized and must not address a single sign or symptom. Studies are still needed to determine the benefits and the associated risks of the medication now available to practitioners.
Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.
Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L
2017-01-01
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.
Cellular Plasticity in the Diabetic Myocardium
2017-09-01
pathogenesis of cardiac dysfunction associated with metabolic disease . 8 Fig. 1: The db/db mouse recapitulates features of human Heart failure with ...patients, hypertensive heart disease is associated with development of interstitial and periarteriolar fibrosis even in the absence of significant cor...increased secretion of structural matrix proteins. The cardiac ECM in metabolic disease Diabetics exhibit a high incidence of heart failure with
Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations
Dienel, Gerald A
2014-01-01
Lactate is proposed to be generated by astrocytes during glutamatergic neurotransmission and shuttled to neurons as ‘preferred' oxidative fuel. However, a large body of evidence demonstrates that metabolic changes during activation of living brain disprove essential components of the astrocyte–neuron lactate shuttle model. For example, some glutamate is oxidized to generate ATP after its uptake into astrocytes and neuronal glucose phosphorylation rises during activation and provides pyruvate for oxidation. Extension of the notion that lactate is a preferential fuel into the traumatic brain injury (TBI) field has important clinical implications, and the concept must, therefore, be carefully evaluated before implementation into patient care. Microdialysis studies in TBI patients demonstrate that lactate and pyruvate levels and lactate/pyruvate ratios, along with other data, have important diagnostic value to distinguish between ischemia and mitochondrial dysfunction. Results show that lactate release from human brain to blood predominates over its uptake after TBI, and strong evidence for lactate metabolism is lacking; mitochondrial dysfunction may inhibit lactate oxidation. Claims that exogenous lactate infusion is energetically beneficial for TBI patients are not based on metabolic assays and data are incorrectly interpreted. PMID:25204393
Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra
2017-03-01
Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE. Copyright © 2017 the American Physiological Society.
Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction
Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.
2016-01-01
Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025
Common presentation of rare diseases: Left ventricular hypertrophy and diastolic dysfunction.
Linhart, Ales; Cecchi, Franco
2018-04-15
Left ventricular hypertrophy may be a consequence of a hemodynamic overload or a manifestation of several diseases affecting different structural and functional proteins of cardiomyocytes. Among these, sarcomeric hypertrophic cardiomyopathy (HCM) represents the most frequent cause. In addition, several metabolic diseases lead to myocardial thickening, either due to intracellular storage (glycogen storage and lysosomal diseases), extracellular deposition (TTR and AL amyloidosis) or due to abnormal energy metabolism (mitochondrial diseases). The recognition of these rare causes of myocardial hypertrophy is important for family screening strategies, risk assessment, and treatment. Moreover, as there are specific therapies for some forms of HCM including enzyme substitution and chaperone therapies and specific treatments for TTR amyloidosis, a differential diagnosis should be sought in all patients with unexplained left ventricular hypertrophy. Diastolic dysfunction is a key feature of HCM and its phenocopies. Its assessment is complex and requires evaluation of several functional parameters and structural changes. Severe diastolic dysfunction carries a negative prognostic implication and its value in differential diagnosis is limited. Copyright © 2018 Elsevier B.V. All rights reserved.
Hyperthyroidism causes cardiac dysfunction by mitochondrial impairment and energy depletion.
Maity, Sangeeta; Kar, Dipak; De, Kakali; Chander, Vivek; Bandyopadhyay, Arun
2013-05-01
This study elucidates the role of metabolic remodeling in cardiac dysfunction induced by hyperthyroidism. Cardiac hypertrophy, structural remodeling, and expression of the genes associated with fatty acid metabolism were examined in rats treated with triiodothyronine (T3) alone (8 μg/100 g body weight (BW), i.p.) for 15 days or along with a peroxisome proliferator-activated receptor alpha agonist bezafibrate (Bzf; 30 μg/100 g BW, oral) and were found to improve in the Bzf co-treated condition. Ultrastructure of mitochondria was damaged in T3-treated rat heart, which was prevented by Bzf co-administration. Hyperthyroidism-induced oxidative stress, reduction in cytochrome c oxidase activity, and myocardial ATP concentration were also significantly checked by Bzf. Heart function studied at different time points during the course of T3 treatment shows an initial improvement and then a gradual but progressive decline with time, which is prevented by Bzf co-treatment. In summary, the results demonstrate that hyperthyroidism inflicts structural and functional damage to mitochondria, leading to energy depletion and cardiac dysfunction.
Wood, Richard J.; O'Neill, Elizabeth C.
2012-01-01
The prevalence of Type II Diabetes mellitus (T2DM) is increasing rapidly and will continue to be a major healthcare expenditure burden. As such, identification of effective lifestyle treatments is paramount. Skeletal muscle and bone display metabolic and functional disruption in T2DM. Skeletal muscle in T2DM is characterized by insulin resistance, impaired glycogen synthesis, impairments in mitochondria, and lipid accumulation. Bone quality in T2DM is decreased, potentially due to the effects of advanced glycation endproducts on collagen, impaired osteoblast activity, and lipid accumulation. Although exercise is widely recognized as an important component of treatment for T2DM, the focus has largely been on aerobic exercise. Emerging research suggests that resistance training (strength training) may impose potent and unique benefits in T2DM. The purpose of this review is to examine the role of resistance training in treating the dysfunction in skeletal muscle and the potential role for resistance training in treating the associated dysfunction in bone. PMID:22474580
Raza, Haider; John, Annie; Howarth, Frank C.
2012-01-01
The Zucker diabetic fatty (ZDF) rat is a genetic model in which the homozygous (FA/FA) male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old) rat heart compared to age matched Zucker lean (ZL) controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats). An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention. PMID:23203193
Hipp, Jason D; Davies, Kelvin P; Tar, Moses; Valcic, Mira; Knoll, Abraham; Melman, Arnold; Christ, George J
2007-02-01
To identify early diabetes-related alterations in gene expression in bladder and erectile tissue that would provide novel diagnostic and therapeutic treatment targets to prevent, delay or ameliorate the ensuing bladder and erectile dysfunction. The RG-U34A rat GeneChip (Affymetrix Inc., Sunnyvale, CA, USA) oligonucleotide microarray (containing approximately 8799 genes) was used to evaluate gene expression in corporal and male bladder tissue excised from rats 1 week after confirmation of a diabetic state, but before demonstrable changes in organ function in vivo. A conservative analytical approach was used to detect alterations in gene expression, and gene ontology (GO) classifications were used to identify biological themes/pathways involved in the aetiology of the organ dysfunction. In all, 320 and 313 genes were differentially expressed in bladder and corporal tissue, respectively. GO analysis in bladder tissue showed prominent increases in biological pathways involved in cell proliferation, metabolism, actin cytoskeleton and myosin, as well as decreases in cell motility, and regulation of muscle contraction. GO analysis in corpora showed increases in pathways related to ion channel transport and ion channel activity, while there were decreases in collagen I and actin genes. The changes in gene expression in these initial experiments are consistent with the pathophysiological characteristics of the bladder and erectile dysfunction seen later in the diabetic disease process. Thus, the observed changes in gene expression might be harbingers or biomarkers of impending organ dysfunction, and could provide useful diagnostic and therapeutic targets for a variety of progressive urological diseases/conditions (i.e. lower urinary tract symptoms related to benign prostatic hyperplasia, erectile dysfunction, etc.).
Brooks, Steven; Brnayan, Kayla W; DeVallance, Evan; Skinner, Roy; Lemaster, Kent; Sheets, J Whitney; Pitzer, Christopher R; Asano, Shinichi; Bryner, Randall W; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D
2018-05-01
What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Metabolic Dysfunction and Peroxisome Proliferator-Activated Receptors (PPAR) in Multiple Sclerosis.
Ferret-Sena, Véronique; Capela, Carlos; Sena, Armando
2018-06-01
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) probably caused, in most cases, by the interaction of genetic and environmental factors. This review first summarizes some clinical, epidemiological and pathological characteristics of MS. Then, the involvement of biochemical pathways is discussed in the development and repair of the CNS lesions and the immune dysfunction in the disease. Finally, the potential roles of peroxisome proliferator-activated receptors (PPAR) in MS are discussed. It is suggested that metabolic mechanisms modulated by PPAR provide a window to integrate the systemic and neurological events underlying the pathogenesis of the disease. In conclusion, the reviewed data highlight molecular avenues of understanding MS that may open new targets for improved therapies and preventive strategies for the disease.
[Renal dysfunction in patients with myocardial infarction concurrent with type 2 diabetes mellitus].
Evseeva, M V; Karetnikova, V N; Barbarash, O L
2015-01-01
Carbohydrate metabolic disturbances are an independent risk factor for not only the development, but also poor course of cardiovascular diseases, particularly those concurrent with renal dysfunction (RD). This factor acquires particular relevance due to the fact that the incidence of type 2 diabetes mellitus significantly continues to rise worldwide. The review considers the main mechanisms and common components of the pathogenesis of RD, as well as the constituents forming its basis in the presence of carbohydrate metabolic disturbances. Moreover, it highlights the timely detection of RD, a search for new biomarkers of prognostic value for cardiovascular events, and the early diagnosis of RD. The review unveils the present view of optimal diagnostic and management tactics for patients with myocardial infarction concurrent with background diseases.
Camacho-Pereira, Juliana; Tarragó, Mariana G; Chini, Claudia C S; Nin, Veronica; Escande, Carlos; Warner, Gina M; Puranik, Amrutesh S; Schoon, Renee A; Reid, Joel M; Galina, Antonio; Chini, Eduardo N
2016-06-14
Nicotinamide adenine dinucleotide (NAD) levels decrease during aging and are involved in age-related metabolic decline. To date, the mechanism responsible for the age-related reduction in NAD has not been elucidated. Here we demonstrate that expression and activity of the NADase CD38 increase with aging and that CD38 is required for the age-related NAD decline and mitochondrial dysfunction via a pathway mediated at least in part by regulation of SIRT3 activity. We also identified CD38 as the main enzyme involved in the degradation of the NAD precursor nicotinamide mononucleotide (NMN) in vivo, indicating that CD38 has a key role in the modulation of NAD-replacement therapy for aging and metabolic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Deng, Mario C
2018-05-08
Heart failure (HF) is a complex clinical syndrome that causes systemic hypoperfusion and failure to meet the body's metabolic demands. In an attempt to compensate, chronic upregulation of the sympathetic nervous system and renin-angiotensin-aldosterone leads to further myocardial injury, HF progression and reduced O 2 delivery. This triggers progressive organ dysfunction, immune system activation and profound metabolic derangements, creating a milieu similar to other chronic systemic diseases and presenting as advanced HF with severely limited prognosis. We hypothesize that 1-year survival in advanced HF is linked to functional recovery potential (FRP), a novel clinical composite parameter that includes HF severity, secondary organ dysfunction, co-morbidities, frailty, disabilities as well as chronological age and that can be diagnosed by a molecular biomarker.
Gross, H; Kling, A; Henry, G; Herndon, C; Lavretsky, H
1996-01-01
A retrospective study of 20 patients with mild traumatic brain injury (MTBI) examined brain regions of interest by comparing [18F]-2-deoxyglucose PET, neuropsychological test results, and continuing behavioral dysfunction. Abnormal local cerebral metabolic rates (rLCMs) were most prominent in midtemporal, anterior cingulate, precuneus, anterior temporal, frontal white, and corpus callosum brain regions. Abnormal rLCMs were significantly correlated statistically with 1) overall clinical complaints, most specifically with inconsistent attention/concentration and 2) overall neuropsychological test results. The authors conclude that 1) even mild TBI may result in continuing brain behavioral deficits; 2) PET can help elucidate dysfunctional brain circuitry in neurobehavioral disorders; and 3) specific brain areas may correlate with deficits in daily neurobehavioral functioning and neuropsychological test findings.
Acquired Bartter syndrome following gentamicin therapy
Singh, J.; Patel, M. L.; Gupta, K. K.; Pandey, S.; Dinkar, A.
2016-01-01
Aminoglycoside nephrotoxicity may manifest as nonoliguric renal failure or tubular dysfunction, such as Fanconi-like syndrome, Bartter-like syndrome (BS), or distal renal tubular acidosis. We report a case who developed severe renal tubular dysfunction on the the 7th day of gentamicin therapy, resulting in metabolic alkalosis, refractory hypokalemia, hypocalcemia, hypomagnesemia, and polyuria. The patient was diagnosed as a case of transient BS associated with gentamicin exposure. The patient recovered with conservative management. PMID:27942182
Acquired Bartter syndrome following gentamicin therapy.
Singh, J; Patel, M L; Gupta, K K; Pandey, S; Dinkar, A
2016-01-01
Aminoglycoside nephrotoxicity may manifest as nonoliguric renal failure or tubular dysfunction, such as Fanconi-like syndrome, Bartter-like syndrome (BS), or distal renal tubular acidosis. We report a case who developed severe renal tubular dysfunction on the the 7 th day of gentamicin therapy, resulting in metabolic alkalosis, refractory hypokalemia, hypocalcemia, hypomagnesemia, and polyuria. The patient was diagnosed as a case of transient BS associated with gentamicin exposure. The patient recovered with conservative management.
Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka; Marycz, Krzysztof
2017-08-03
Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.
de Haan, Willeke; Bhattacharjee, Alpana; Ruddle, Piers; Kang, Martin H.; Hayden, Michael R.
2014-01-01
Adipose tissue contains one of the largest reservoirs of cholesterol in the body. Adipocyte dysfunction in obesity is associated with intracellular cholesterol accumulation, and alterations in cholesterol homeostasis have been shown to alter glucose metabolism in cultured adipocytes. ABCA1 plays a major role in cholesterol efflux, suggesting a role for ABCA1 in maintaining cholesterol homeostasis in the adipocyte. However, the impact of adipocyte ABCA1 on adipose tissue function and glucose metabolism is unknown. Our aim was to determine the impact of adipocyte ABCA1 on adipocyte lipid metabolism, body weight, and glucose metabolism in vivo. To address this, we used mice lacking ABCA1 specifically in adipocytes (ABCA1−ad/−ad). When fed a high-fat, high-cholesterol diet, ABCA1−ad/−ad mice showed increased cholesterol and triglyceride stores in adipose tissue, developed enlarged fat pads, and had increased body weight. Associated with these phenotypic changes, we observed significant changes in the expression of genes involved in cholesterol and glucose homeostasis, including ldlr, abcg1, glut-4, adiponectin, and leptin. ABCA1−ad/−ad mice also demonstrated impaired glucose tolerance, lower insulin sensitivity, and decreased insulin secretion. We conclude that ABCA1 in adipocytes influences adipocyte lipid metabolism, body weight, and whole-body glucose homeostasis. PMID:24443560
Silva, Pamelli; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Prates, Kelly Valério; Francisco, Flávio Andrade; Silveira, Sandra da Silva; Malta, Ananda; Lopes, Denise Alves; Miranda, Rosiane Aparecida; Palma-Rigo, Kesia; Torrezan, Rosana; Mathias, Paulo Cezar de Freitas
2018-01-01
The incidences of obesity and related diseases have reached epidemic proportions, and new therapeutic approaches are needed. Soy isoflavones have been identified as an important dietary factor for preventing and treating metabolic dysfunction. This study examined the effects of high doses of isoflavone on glucose and fat metabolism in a model of programmed obesity and evaluated its effects on the autonomic nervous system. Litters of Wistar rats were standardized at nine pups per dam in normal litters (NL) or reduced to three pups per dam at the third day of life (P3) in small litters (SL) to induce postnatal overfeeding. Gavage with a soy bean isoflavone mixture (1 g/day) diluted in water was started at P60 and continued for 30 days. The control animals received vehicle gavage. At P90, biometric and metabolic parameters as well as direct autonomic nerve activity were measured. Increases in glycaemia and insulinaemia observed in SL rats were reduced by isoflavone treatment, which also caused lower glucose-induced insulin secretion by pancreatic islets. Sympathetic activity in the major splanchnic nerve was increased, while vagus nerve activity was reduced by isoflavone treatment. The dyslipidaemia induced by overfeeding in SL rats was restored by isoflavone treatment. The present study shows that treatment with isoflavone reduces adiposity and improves glucose and lipid metabolism. Collectively, these effects may depend on autonomic changes.
Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka
2017-01-01
Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)—the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs’ and IECs’ morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome. PMID:28771165
Brain 18F-FDG PET Metabolic Abnormalities in Patients with Long-Lasting Macrophagic Myofascitis.
Van Der Gucht, Axel; Aoun Sebaiti, Mehdi; Guedj, Eric; Aouizerate, Jessie; Yara, Sabrina; Gherardi, Romain K; Evangelista, Eva; Chalaye, Julia; Cottereau, Anne-Ségolène; Verger, Antoine; Bachoud-Levi, Anne-Catherine; Abulizi, Mukedaisi; Itti, Emmanuel; Authier, François-Jérôme
2017-03-01
The aim of this study was to characterize brain metabolic abnormalities in patients with macrophagic myofascitis (MMF) and the relationship with cognitive dysfunction through the use of PET with 18 F-FDG. Methods: 18 F-FDG PET brain imaging and a comprehensive battery of neuropsychological tests were performed in 100 consecutive MMF patients (age [mean ± SD], 45.9 ± 12 y; 74% women). Images were analyzed with statistical parametric mapping (SPM12). Through the use of analysis of covariance, all 18 F-FDG PET brain images of MMF patients were compared with those of a reference population of 44 healthy subjects similar in age (45.4 ± 16 y; P = 0.87) and sex (73% women; P = 0.88). The neuropsychological assessment identified 4 categories of patients: those with no significant cognitive impairment ( n = 42), those with frontal subcortical (FSC) dysfunction ( n = 29), those with Papez circuit dysfunction ( n = 22), and those with callosal disconnection ( n = 7). Results: In comparison with healthy subjects, the whole population of patients with MMF exhibited a spatial pattern of cerebral glucose hypometabolism ( P < 0.001) involving the occipital lobes, temporal lobes, limbic system, cerebellum, and frontoparietal cortices, as shown by analysis of covariance. The subgroup of patients with FSC dysfunction exhibited a larger extent of involved areas (35,223 voxels vs. 13,680 voxels in the subgroup with Papez circuit dysfunction and 5,453 voxels in patients without cognitive impairment). Nonsignificant results were obtained for the last subgroup because of its small population size. Conclusion: Our study identified a peculiar spatial pattern of cerebral glucose hypometabolism that was most marked in MMF patients with FSC dysfunction. Further studies are needed to determine whether this pattern could represent a diagnostic biomarker of MMF in patients with chronic fatigue syndrome and cognitive dysfunction. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Gramatyka, Michalina; Skorupa, Agnieszka; Sokół, Maria
2018-01-01
Several lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system. Cardiotoxicity of ionizing radiation is associated with metabolic changes observed in cardiac cells injured by radiation. In this study, we used human cardiomyocytes as a model system, and studied their metabolic response to radiation using high-resolution magic angle spinning nuclear magnetic resonance techniques (HR-MAS NMR). Human cardiomyocytes cultured in vitro were exposed to ionizing radiation and their survival was assessed by clonogenic assay. Changes in apoptosis intensity and cell cycle distribution after the irradiation were measured as well. NMR spectra of cardiomyocytes were acquired using Bruker Avance 400 MHz spectrometer at a spinning rate of 3200 Hz. Survival of cardiomyocytes after NMR experiments was assessed by the Trypan blue exclusion assay. Exposure of cardiomyocytes to small doses of ionizing radiation had no effect on cell proliferation potential and intensity of cell death. However, analysis of metabolic profiles revealed changes in lipids, threonine, glycine, glycerophosphocholine, choline, valine, isoleucine, glutamate, reduced glutathione and taurine metabolism. The results of this study showed that ionizing radiation affects metabolic profiles of cardiomyocytes even at low doses, which potentially have no effect on cell viability.
Korneev, I A
2013-01-01
The arsenal of professionals providing assistance to men with erectile dysfunction includes a new, mouth dissolving dosage form of the vardenafil--levitra ODT. This form is effective, safe, and has a higher bioavailability as compared to vardenafil in the form of coated tablets. POTENT I and POTENT II studies revealed that levitra ODT equally successfully corrects erectile dysfunction in men younger and older than 65 years regardless of concomitant diseases and metabolic disorders: hypertension, diabetes, dyslipidemia. In addition, it was found that this drug helped to successfully carry out sexual intercourse in the first 15 minutes after dosing in 62.5% of patients. This allows to widely recommend levitra ODT for the treatment of erectile dysfunction in young men and older men.
Uncoupling Protein 2 and Metabolic Diseases
Sreedhar, Annapoorna; Zhao, Yunfeng
2017-01-01
Mitochondria are fascinating organelles involved in various cellular-metabolic activities that are integral for mammalian development. Although they perform diverse, yet interconnected functions, mitochondria are remarkably regulated by complex signaling networks. Therefore, it is not surprising that mitochondrial dysfunction is involved in plethora of diseases, including neurodegenerative and metabolic disorders. One of the many factors that lead to mitochondrial-associated metabolic diseases is the uncoupling protein-2, a family of mitochondrial anion proteins present in the inner mitochondrial membrane. Since their discovery, uncoupling proteins have attracted considerable attention due to their involvement in mitochondrial-mediated oxidative stress and energy metabolism. This review attempts to provide a summary of recent developments in the field of uncoupling protein 2 relating to mitochondrial associated metabolic diseases. PMID:28351676
Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi
2016-10-18
Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18 F-labed fluorodeoxyglucose ( 18 F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.
Alarcon, Gabriela; Roco, Julieta; Medina, Mirta; Medina, Analia; Peral, Maria; Jerez, Susana
2018-01-30
Obesity contributes significantly to the development and evolution of cardiovascular disease (CVD) which is believed to be mediated by oxidative stress, inflammation and endothelial dysfunction. However, the vascular health of metabolically obese and normal weight (MONW) individuals is not completely comprehended. The purpose of our study was to evaluate vascular function on the basis of a high fat diet (HFD)-MONW rabbit model. Twenty four male rabbits were randomly assigned to receive either a regular diet (CD, n = 12) or a high-fat diet (18% extra fat on the regular diet, HFD, n = 12) for 6 weeks. Body weight, TBARS and gluthathione serum levels were similar between the groups; fasting glucose, triglycerides, C reactive protein (CRP), visceral adipose tissue (VAT), triglyceride-glucose index (TyG index) were higher in the HFD group. Compared to CD, the HFD rabbits had glucose intolerance and lower HDL-cholesterol and plasma nitrites levels. Thoracic aortic rings from HFD rabbits exhibited: (a) a reduced acetylcholine-induced vasorelaxation; (b) a greater contractile response to norepinephrine and KCl; (c) an improved angiotensin II-sensibility. The HFD-effect on acetylcholine-response was reversed by the cyclooxygenase-2 (COX-2) inhibitor (NS398) and the cyclooxygenase-1 inhibitor (SC560), and the HFD-effect on angiotensin II was reversed by NS398 and the TP receptor blocker (SQ29538). Immunohistochemistry and western blot studies showed COX-2 expression only in arteries from HFD rabbits. Our study shows a positive pro-inflammatory status of HFD-induced MONW characterized by raised COX-2 expression, increase of the CRP levels, reduction of NO release and oxidative stress-controlled conditions in an early stage of metabolic alterations characteristic of metabolic syndrome. Endothelial dysfunction and increased vascular reactivity in MONW individuals may be biomarkers of early vascular injury. Therefore, the metabolic changes induced by HFD even in normal weight individuals may be associated to functional alterations of blood vessels.
Nielsen, Signe Marie Borch; Hasholt, Lis; Nørremølle, Anne; Josefsen, Knud
2015-04-20
Huntington's disease (HD) is a neurodegenerative illness, where selective neuronal loss in the brain caused by expression of mutant huntingtin protein leads to motor dysfunction and cognitive decline in addition to peripheral metabolic changes. In this study we confirm our previous observation of impairment of lactate-based hepatic gluconeogenesis in the transgenic HD mouse model R6/2 and determine that the defect manifests very early and progresses in severity with disease development, indicating a potential to explore this defect in a biomarker context. Moreover, R6/2 animals displayed lower blood glucose levels during prolonged fasting compared to wild type animals.
Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José
2015-01-01
Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483
Sung, Shih-Hsien; Chuang, Shao-Yuan; Sheu, Wayne Huey-Herng; Lee, Wen-Jane; Chou, Pesus; Chen, Chen-Huan
2009-05-15
The roles of metabolic syndrome and chronic subclinical inflammation in arterial stiffening and the development of heart failure remain to be elucidated. Whether adiponectin and high-sensitivity C-reactive protein (hs-CRP) were independently related to brachial-ankle pulse-wave velocity (ba-PWV) and N-terminal pro-brain natriuretic peptide (NT-pro-BNP) in the general population were investigated. Eligible study subjects were 445 Chinese residents aged > or =40 years who participated in a community-based survey, underwent examination of ba-PWV, and had complete data of serum adiponectin, hs-CRP (<10 mg/L), and NT-pro-BNP. Adiponectin, but not hs-CRP, was independently related to ba-PWV (standardized regression parameter -0.107, p <0.05) when age, gender, body mass index, and number of metabolic syndrome components were accounted for. On the other hand, ba-PWV, adiponectin, and hs-CRP were independently related to NT-pro-BNP (standardized regression parameters 0.116, 0.188, and 0.094, respectively; all p <0.05) when age, gender, body mass index, number of metabolic syndrome components, and renal function were accounted for. In conclusion, adiponectin, but not hs-CRP, is independently associated with both ba-PWV and NT-pro-BNP in the general population. Because adiponectin, hs-CRP, ba-PWV, and NT-pro-BNP may represent markers for metabolic syndrome, chronic subclinical inflammation, arterial stiffness, and ventricular dysfunction, respectively, our results suggest that adiponectin may directly modulate both arterial stiffening and ventricular dysfunction. In contrast, hs-CRP may independently contribute to ventricular dysfunction, but not arterial stiffening.
Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity
Trim, William; Turner, James E.; Thompson, Dylan
2018-01-01
Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed “inflammageing”. In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity—including an accumulation of pro-inflammatory immune cell populations—plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence. PMID:29479350
Segovia, Stephanie A; Vickers, Mark H; Zhang, Xiaoyuan D; Gray, Clint; Reynolds, Clare M
2015-12-01
Maternal consumption of a high-fat diet significantly impacts the fetal environment and predisposes offspring to obesity and metabolic dysfunction during adulthood. We examined the effects of a high-fat diet during pregnancy and lactation on metabolic and inflammatory profiles and whether maternal supplementation with the anti-inflammatory lipid conjugated linoleic acid (CLA) could have beneficial effects on mothers and offspring. Sprague-Dawley rats were fed a control (CD; 10% kcal from fat), CLA (CLA; 10% kcal from fat, 1% total fat as CLA), high-fat (HF; 45% kcal from fat) or high fat with CLA (HFCLA; 45% kcal from fat, 1% total fat as CLA) diet ad libitum 10days prior to and throughout gestation and lactation. Dams and offspring were culled at either late gestation (fetal day 20, F20) or early postweaning (postnatal day 24, P24). CLA, HF and HFCLA dams were heavier than CD throughout gestation. Plasma concentrations of proinflammatory cytokines interleukin-1β and tumour necrosis factor-α were elevated in HF dams, with restoration in HFCLA dams. Male and female fetuses from HF dams were smaller at F20 but displayed catch-up growth and impaired insulin sensitivity at P24, which was reversed in HFCLA offspring. HFCLA dams at P24 were protected from impaired insulin sensitivity as compared to HF dams. Maternal CLA supplementation normalised inflammation associated with consumption of a high-fat diet and reversed associated programming of metabolic dysfunction in offspring. This demonstrates that there are critical windows of developmental plasticity in which the effects of an adverse early-life environment can be reversed by maternal dietary interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
Padmanabhan, Vasantha; Sarma, Hiren N.; Savabieasfahani, Mozhgan; Steckler, Teresa L.; Veiga-Lopez, Almudena
2014-01-01
The inappropriate programming of developing organ systems by exposure to excess native or environmental steroids, particularly the contamination of our environment and our food sources with synthetic endocrine disrupting chemicals that can interact with steroid receptors, is a major concern. Studies with native steroids have found that in utero exposure of sheep to excess testosterone, an estrogen precursor, results in low birth weight offspring and leads to an array of adult reproductive / metabolic deficits manifested as cycle defects, functional hyperandrogenism, neuroendocrine / ovarian defects, insulin resistance, and hypertension. Furthermore, the severity of reproductive dysfunction is amplified by excess postnatal weight gain. The constellation of adult reproductive and metabolic dysfunction in prenatal testosterone-treated sheep is similar to features seen in women with polycystic ovary syndrome. Prenatal dihydrotestosterone treatment failed to result in similar phenotype suggesting that many effects of prenatal testosterone excess are likely facilitated via aromatization to estradiol. Similarly, exposure to environmental steroid imposters such as bisphenol A (BPA) and methoxychlor (MXC) from days 30-90 of gestation had long-term but differential effects. Exposure of sheep to BPA, which resulted in maternal levels of 30-50 ng/ml BPA, culminated in low birth-weight offspring. These female offspring were hypergonadotropic during early postnatal life and characterized by severely dampened preovulatory LH surges. Prenatal MXC-treated females had normal birth weight and manifested delayed but normal amplitude LH surges. Importantly, the effects of BPA were evident at levels, which approximated twice the highest levels found in human maternal circulation of industrialized nations. These findings provide evidence in support of developmental origin of adult reproductive and metabolic diseases and highlight the risk posed by exposure to environmental endocrine disrupting chemicals. PMID:20070410
Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong; Xie, Zhonglin
2012-11-15
Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD(+) levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity.
Li, Hongliang; Xu, Mingjiang; Lee, Jiyeon; He, Chaoyong
2012-01-01
Leucine supplementation has been shown to prevent high-fat diet (HFD)-induced obesity, hyperglycemia, and dyslipidemia in animal models, but the underlying mechanisms are not fully understood. Recent studies suggest that activation of Sirtuin 1 (SIRT1) is an important mechanism to maintain energy and metabolic homeostasis. We therefore examined the involvement of SIRT1 in leucine supplementation-prevented obesity and insulin resistance. To accomplish this goal, male C57BL/6J mice were fed normal diet or HFD, supplemented with or without leucine. After 2 mo of treatment, alterations in SIRT1 expression, insulin signaling, and energy metabolism were analyzed. Eight weeks of HFD induced obesity, fatty liver, mitochondrial dysfunction, hyperglycemia, and insulin resistance in mice. Addition of leucine to HFD correlated with increased expression of SIRT1 and NAMPT (nicotinamide phosphoribosyltransferase) as well as higher intracellular NAD+ levels, which decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) and forkhead box O1 (FoxO1). The deacetylation of PGC1α may contribute to upregulation of genes controlling mitochondrial biogenesis and fatty acid oxidation, thereby improving mitochondrial function and preventing HFD-induced obesity in mice. Moreover, decreased acetylation of FoxO1 was accompanied by decreased expression of pseudokinase tribble 3 (TRB3) and reduced the association between TRB3 and Akt, which enhanced insulin sensitivity and improved glucose metabolism. Finally, transfection of dominant negative AMPK prevented activation of SIRT1 signaling in HFD-Leu mice. These data suggest that increased expression of SIRT1 after leucine supplementation may lead to reduced acetylation of PGC1α and FoxO1, which is associated with attenuation of HFD-induced mitochondrial dysfunction, insulin resistance, and obesity. PMID:22967499
Timpani, Cara A; Trewin, Adam J; Stojanovska, Vanesa; Robinson, Ainsley; Goodman, Craig A; Nurgali, Kulmira; Betik, Andrew C; Stepto, Nigel; Hayes, Alan; McConell, Glenn K; Rybalka, Emma
2017-04-01
Duchenne muscular dystrophy arises from the loss of dystrophin and is characterized by calcium dysregulation, muscular atrophy, and metabolic dysfunction. The secondary reduction of neuronal nitric oxide synthase (nNOS) from the sarcolemma reduces NO production and bioavailability. As NO modulates glucose uptake, metabolism, and mitochondrial bioenergetics, we investigated whether an 8-week nitrate supplementation regimen could overcome metabolic dysfunction in the mdx mouse. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were supplemented with sodium nitrate (85 mg/l) in drinking water. Following the supplementation period, extensor digitorum longus and soleus were excised and radioactive glucose uptake was measured at rest (basal) and during contraction. Gastrocnemius was excised and mitochondrial respiration was measured using the Oroboros Oxygraph. Tibialis anterior was analyzed immunohistochemically for the presence of dystrophin, nNOS, nitrotyrosine, IgG and CD45+ cells, and histologically to assess areas of damage and regeneration. Glucose uptake in the basal and contracting states was normal in unsupplemented mdx muscles but was reduced following nitrate supplementation in mdx muscles only. The mitochondrial utilization of substrates was also impaired in mdx gastrocnemius during phosphorylating and maximal uncoupled respiration, and nitrate could not improve respiration in mdx muscle. Although nitrate supplementation reduced mitochondrial hydrogen peroxide emission, it induced mitochondrial uncoupling in red gastrocnemius, increased muscle fiber peroxynitrite (nitrotyrosine), and promoted skeletal muscle damage. Our novel data suggest that despite lower nNOS protein expression and likely lower NO production in mdx muscle, enhancing NO production with nitrate supplementation in these mice has detrimental effects on skeletal muscle. This may have important relevance for those with DMD.
Gagliardi, A C M; Maranhão, R C; de Sousa, H P; Schaefer, E J; Santos, R D
2010-10-01
Our purpose was to examine the effects of daily servings of butter, no-trans-fat margarine and plant sterol margarine, within recommended amounts, on plasma lipids, apolipoproteins (Apos), biomarkers of inflammation and endothelial dysfunction, and on the transfer of lipids to HDL particles in free-living subjects with the metabolic syndrome. This was a randomized, single-blind study where 53 metabolic syndrome subjects (62% women, mean age 54 years) received isocaloric servings of butter, no-trans-fat margarine or plant sterol margarine in addition to their usual diets for 5 weeks. The main outcome measures were plasma lipids, Apo, inflammatory and endothelial dysfunction markers (CRP, IL-6, CD40L or E-selectin), small dense LDL cholesterol concentrations and in vitro radioactive lipid transfer from cholesterol-rich emulsions to HDL. Difference among groups was evaluated by analysis of variance. There was a significant reduction in Apo-B (-10.4 %, P=0.043) and in the Apo-B/Apo-A-1 ratio (-11.1%, P=0.034) with plant sterol margarine. No changes in plasma lipids were noticed with butter and no-trans-fat margarine. Transfer rates of lipids to HDL were reduced in the no-trans-fat margarine group: triglycerides -42.0%, (P<0.001 vs butter and sterol margarine) and free cholesterol -16.2% (P=0.006 vs sterol margarine). No significant effects were noted on the concentrations of inflammatory and endothelial dysfunction markers among the groups. In free-living subjects with the metabolic syndrome consumption of plant sterol and no-trans-fat margarines within recommended amounts reduced, respectively, Apo-B concentrations and the ability of HDL to accept lipids.
2016-01-01
The global obesity epidemic, dubbed “globesity” by the World Health Organisation, is a pressing public health issue. The aetiology of obesity is multifactorial incorporating both genetic and environmental factors. Recently, epidemiological studies have observed an association between microbes and obesity. Obesity-promoting microbiome and resultant gut barrier disintegration have been implicated as key factors facilitating metabolic endotoxaemia. This is an influx of bacterial endotoxins into the systemic circulation, believed to underpin obesity pathogenesis. Adipocyte dysfunction and subsequent adipokine secretion characterised by low grade inflammation, were conventionally attributed to persistent hyperlipidaemia. They were thought of as pivotal in perpetuating obesity. It is now debated whether infection and endotoxaemia are also implicated in initiating and perpetuating low grade inflammation. The fact that obesity has a prevalence of over 600 million and serves as a risk factor for chronic diseases including cardiovascular disease and type 2 diabetes mellitus is testament to the importance of exploring the role of microbes in obesity pathobiology. It is on this basis that Massachusetts General Hospital is sponsoring the Faecal Microbiota Transplant for Obesity and Metabolism clinical trial, to study the impact of microbiome composition on weight. The association of microbes with obesity, namely, adenovirus infection and metabolic endotoxaemia, is reviewed. PMID:28004036
Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.
Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo
2015-01-01
In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.
Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne
2016-06-28
The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.
Hayden, Melvin R; Whaley-Connell, Adam; Sowers, James R
2005-01-01
Type 2 diabetes mellitus has reached epidemic proportions and diabetic nephropathy is the leading cause of end-stage renal disease. The metabolic syndrome constitutes a milieu conducive to tissue redox stress. This loss of redox homeostasis contributes to renal remodeling and parallels the concurrent increased vascular redox stress associated with the cardiometabolic syndrome. The multiple metabolic toxicities, redox stress and endothelial dysfunction combine to weave the complicated mosaic fabric of diabetic glomerulosclerosis and diabetic nephropathy. A better understanding may provide both the clinician and researcher tools to unravel this complicated disease process. Cellular remodeling of podocyte foot processes in the Ren-2 transgenic rat model of tissue angiotensin II overexpression (TG(mREN-2)27) and the Zucker diabetic fatty model of type 2 diabetes mellitus have been observed in preliminary studies. Importantly, angiotensin II receptor blockers have been shown to abrogate these ultrastructural changes in the foot processes of the podocyte in preliminary studies. An integrated, global risk reduction, approach in therapy addressing the multiple metabolic abnormalities combined with attempts to reach therapeutic goals at an earlier stage could have a profound effect on the development and progressive nature to end-stage renal disease and ultimately renal replacement therapy.
Moshkin, M P; Akulov, A E; Petrovskiĭ, D V; Saĭk, O V; Petrovskiĭ, E D; Savelov, A A; Koptug, I V
2012-10-01
In vivo proton magnetic resonance spectroscopy (1H MRS) of ICR male mice was used to study the brain (hippocampus) metabolic response to the acute deficiency of the available energy or to the pro-inflammatory stimulus. Inhibition of glycolysis by means of an intraperitoneal injection with 2-deoxy-D-glucose (2DG) reduced the levels of gamma-aminobutiric acid (GABA), N-acetylaspartate (NAA) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS)--a very common pro-inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred three hours after the injection of LPS. Different metabolic responses to the energy deficiency and the pro-inflammatory stimuli can explain the contradictory results of the brain MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. Prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, shifts brain metabolic pattern to prevalence of the inhibitory neurotransmitter GABA.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet.
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer; Rocic, Petra
2017-04-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. Copyright © 2017 the American Physiological Society.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer
2017-01-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. PMID:28087518
Dodd, Michael S; Atherton, Helen J; Carr, Carolyn A; Stuckey, Daniel J; West, James A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Heather, Lisa C; Tyler, Damian J
2014-11-01
Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. © 2014 American Heart Association, Inc.
Carr, Carolyn A.; Stuckey, Daniel J.; West, James A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Heather, Lisa C.; Tyler, Damian J.
2015-01-01
Background Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Methods and Results Using hyperpolarized carbon-13 (13C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased 13C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. Conclusions The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. PMID:25201905
Genetics Home Reference: biotin-thiamine-responsive basal ganglia disease
... link) Biotin-Thiamine-Responsive Basal Ganglia Disease Scientific Articles on PubMed (1 link) PubMed OMIM (1 link) THIAMINE METABOLISM DYSFUNCTION SYNDROME 2 (BIOTIN- OR THIAMINE-RESPONSIVE TYPE) ...
van Bussel, B C T; Henry, R M A; Schalkwijk, C G; Dekker, J M; Nijpels, G; Feskens, E J M; Stehouwer, C D A
2018-06-01
Endothelial dysfunction and low-grade inflammation are key phenomena in the pathobiology of cardiovascular disease (CVD). Their dietary modification might explain the observed reduction in CVD that has been associated with a healthy diet rich in fruit, vegetables and fish, low in dairy products and with moderate alcohol and red wine consumption. We investigated the associations between the above food groups and endothelial dysfunction and low-grade inflammation in a population-based cohort of Dutch elderly individuals. Diet was measured by food frequency questionnaire (n = 801; women = 399; age 68.5 ± 7.2 years). Endothelial dysfunction was determined (1) by combining von Willebrand factor, and soluble intercellular adhesion molecule 1 (sICAM-1), vascular cell adhesion molecule 1, endothelial selectin and thrombomodulin, using Z-scores, into a biomarker score and (2) by flow-mediated vasodilation (FMD), and low-grade inflammation by combining C-reactive protein, serum amyloid A, interleukin 6, interleukin 8, tumour necrosis factor α and sICAM-1 into a biomarker score, with smaller FMD and higher scores representing more dysfunction and inflammation, respectively. We used linear regression analyses to adjust associations for sex, age, energy, glucose metabolism, body mass index, smoking, prior CVD, educational level, physical activity and each of the other food groups. Moderate [β (95% CI) -0.13 (-0.33; 0.07)] and high [-0.22 (-0.45; -0.003)] alcohol consumption, and red wine [-0.16 (-0.30; -0.01)] consumption, but none of the other food groups, were associated with a lower endothelial dysfunction biomarker score and a greater FMD. The associations for FMD were, however, not statistically significant. Only red wine consumption was associated with a lower low-grade inflammation biomarker score [-0.18 (-0.33; -0.04)]. Alcohol and red wine consumption may favourably influence processes involved in atherothrombosis.
Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E.; Accili, Domenico
2016-01-01
Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo. The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure. PMID:26917725
O'Farrell, Alice C; Evans, Rhys; Silvola, Johanna M U; Miller, Ian S; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W; Jarzabek, Monika A; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M; Rousseau, Jacques A; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M; Roivainen, Anne; Byrne, Annette T
2017-01-01
Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment.
Silvola, Johanna M. U.; Miller, Ian S.; Conroy, Emer; Hector, Suzanne; Cary, Maurice; Murray, David W.; Jarzabek, Monika A.; Maratha, Ashwini; Alamanou, Marina; Udupi, Girish Mallya; Shiels, Liam; Pallaud, Celine; Saraste, Antti; Liljenbäck, Heidi; Jauhiainen, Matti; Oikonen, Vesa; Ducret, Axel; Cutler, Paul; McAuliffe, Fionnuala M.; Rousseau, Jacques A.; Lecomte, Roger; Gascon, Suzanne; Arany, Zoltan; Ky, Bonnie; Force, Thomas; Knuuti, Juhani; Gallagher, William M.; Roivainen, Anne; Byrne, Annette T.
2017-01-01
Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity. Balb/CJ mice or Sprague-Dawley rats were treated orally for 4 weeks with 40 or 20 mg/kg/day sunitinib. Cardiac positron emission tomography (PET) was implemented to investigate alterations in myocardial glucose and oxidative metabolism. Following treatment, blood pressure increased, and left ventricular ejection fraction decreased. Cardiac [18F]-fluorodeoxyglucose (FDG)-PET revealed increased glucose uptake after 48 hours. [11C]Acetate-PET showed decreased myocardial perfusion following treatment. Electron microscopy revealed significant lipid accumulation in the myocardium. Proteomic analyses indicated that oxidative metabolism, fatty acid β-oxidation and mitochondrial dysfunction were among the top myocardial signalling pathways perturbed. Sunitinib treatment results in an increased reliance on glycolysis, increased myocardial lipid deposition and perturbed mitochondrial function, indicative of a fundamental energy crisis resulting in compromised myocardial energy metabolism and function. Our findings suggest that a cardiac PET strategy may represent a rational approach to non-invasively monitor metabolic pathway remodeling following sunitinib treatment. PMID:28129334
Akar, Fatma; Uludağ, Orhan; Aydın, Ali; Aytekin, Yasin Atacan; Elbeg, Sehri; Tuzcu, Mehmet; Sahin, Kazim
2012-06-01
High-fructose corn syrup (HFCS) is used in many prepared foods and soft drinks. However, limited data is available on the consequences of HFCS consumption on metabolic and cardiovascular functions. This study was, therefore, designed to assess whether HFCS drinking influences the endothelial and vascular function in association with metabolic disturbances in rats. Additionally, resveratrol was tested at challenge with HFCS. We investigated the effects of HFCS (10% and 20%) and resveratrol (50mg/l) beverages on several metabolic parameters as well as endothelial relaxation, vascular contractions, expressions of endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), gp91(phox) and p22(phox) proteins and superoxide generation in the aortas. Consumption of HFCS (20%) increased serum triglyceride, VLDL and insulin levels as well as blood pressure. Impaired relaxation to acetylcholine and intensified contractions to phenylephrine and angiotensin II were associated with decreased eNOS and SIRT1 whereas increased gp91(phox) and p22(phox) proteins, along with provoked superoxide production in the aortas from HFCS-treated rats. Resveratrol supplementation efficiently restored HFCS-induced deteriorations. Thus, intake of HFCS leads to vascular dysfunction by decreasing vasoprotective factors and provoking oxidative stress in association with metabolic disturbances. Resveratrol has a protective potential against the harmful consequences of HFCS consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia
2014-05-01
To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to (1)H-NMR-based metabolomic analysis. Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The (1)H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines.
Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia
2014-01-01
Aim: To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Methods: Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to 1H-NMR-based metabolomic analysis. Results: Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Conclusion: Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The 1H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines. PMID:24632844
Wang, Qingzhi; Yuan, Jing; Yu, Zhanyang; Lin, Li; Jiang, Yinghua; Cao, Zeyuan; Zhuang, Pengwei; Whalen, Michael J; Song, Bo; Wang, Xiao-Jie; Li, Xiaokun; Lo, Eng H; Xu, Yuming; Wang, Xiaoying
2018-06-01
Accumulating studies suggest that overnutrition-associated obesity may lead to development of type 2 diabetes mellitus and metabolic syndromes (MetS). MetS and its components are important risk factors of mild cognitive impairment, age-related cognitive decline, vascular dementia, and Alzheimer's disease. It has been recently proposed that development of a disease-course modification strategy toward early and effective risk factor management would be clinically significant in reducing the risk of metabolic disorder-initiated cognitive decline. In the present study, we propose that fibroblast growth factor 21 (FGF21) is a novel candidate for the disease-course modification approach. Using a high-fat diet (HFD) consumption-induced obese mouse model, we tested our hypothesis that recombinant human FGF21 (rFGF21) administration is effective for improving obesity-induced cognitive dysfunction and anxiety-like behavior, by its multiple metabolic modulation and anti-pro-inflammation actions. Our experimental findings support our hypothesis that rFGF21 is protective to HFD-induced cognitive impairment, at least in part by metabolic regulation in glucose tolerance impairment, insulin resistance, and hyperlipidemia; potent systemic pro-inflammation inhibition; and improvement of hippocampal dysfunction, particularly by inhibiting pro-neuroinflammation and neurogenesis deficit. This study suggests that FGF21 might be a novel molecular target of the disease-course-modifying strategy for early intervention of MstS-associated cognitive decline.
Origins of retinal intrinsic signals: a series of experiments on retinas of macaque monkeys.
Tsunoda, Kazushige; Hanazono, Gen; Inomata, Koichi; Kazato, Yoko; Suzuki, Wataru; Tanifuji, Manabu
2009-07-01
Diffuse flash stimuli applied to the ocular fundus evoke light reflectance decreases of the fundus illuminated with infrared observation light. This phenomenon, which is independent of the photopigment bleaching observed as an increase in the reflectance of visible light, is called intrinsic signals. Intrinsic signals, in general, are stimulus-evoked light reflectance changes of neural tissues due to metabolic changes, and they have been extensively investigated in the cerebral cortex. This noninvasive objective technique of functional imaging has good potential as a tool for the early detection of retinal dysfunction. Once the signal properties were studied in detail, however, it became apparent that the intrinsic signals observed in the retina have uniquely interesting properties of their own due to the characteristic layered structure of the retina. Experiments on anesthetized macaque monkeys are reviewed, and the possible origins of the intrinsic signals of the retina are discussed.
Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity
Choi, Joungil; Chandrasekaran, Krish; Demarest, Tyler G; Kristian, Tibor; Xu, Su; Vijaykumar, Kadambari; Dsouza, Kevin Geoffrey; Qi, Nathan R; Yarowsky, Paul J; Gallipoli, Rao; Koch, Lauren G; Fiskum, Gary M; Britton, Steven L; Russell, James W
2014-01-01
Objectives Diabetes leads to cognitive impairment and is associated with age-related neurodegenerative diseases including Alzheimer's disease (AD). Thus, understanding diabetes-induced alterations in brain function is important for developing early interventions for neurodegeneration. Low-capacity runner (LCR) rats are obese and manifest metabolic risk factors resembling human “impaired glucose tolerance” or metabolic syndrome. We examined hippocampal function in aged LCR rats compared to their high-capacity runner (HCR) rat counterparts. Methods Hippocampal function was examined using proton magnetic resonance spectroscopy and imaging, unbiased stereology analysis, and a Y maze. Changes in the mitochondrial respiratory chain function and levels of hyperphosphorylated tau and mitochondrial transcriptional regulators were examined. Results The levels of glutamate, myo-inositol, taurine, and choline-containing compounds were significantly increased in the aged LCR rats. We observed a significant loss of hippocampal neurons and impaired cognitive function in aged LCR rats. Respiratory chain function and activity were significantly decreased in the aged LCR rats. Hyperphosphorylated tau was accumulated within mitochondria and peroxisome proliferator-activated receptor-gamma coactivator 1α, the NAD+-dependent protein deacetylase sirtuin 1, and mitochondrial transcription factor A were downregulated in the aged LCR rat hippocampus. Interpretation These data provide evidence of a neurodegenerative process in the hippocampus of aged LCR rats, consistent with those seen in aged-related dementing illnesses such as AD in humans. The metabolic and mitochondrial abnormalities observed in LCR rat hippocampus are similar to well-described mechanisms that lead to diabetic neuropathy and may provide an important link between cognitive and metabolic dysfunction. PMID:25356430
Growth and nutritional status of children with homozygous sickle cell disease.
Al-Saqladi, A-W M; Cipolotti, R; Fijnvandraat, K; Brabin, B J
2008-09-01
Poor growth and under-nutrition are common in children with sickle cell disease (SCD). This review summarises evidence of nutritional status in children with SCD in relation to anthropometric status, disease severity, body composition, energy metabolism, micronutrient deficiency and endocrine dysfunction. A literature search was conducted on the Medline/PUBMED, SCOPUS, SciELO and LILACS databases to July 2007 using the keywords sickle cell combined with nutrition, anthropometry, growth, height and weight, body mass index, and specific named micronutrients. Forty-six studies (26 cross-sectional and 20 longitudinal) were included in the final anthropometric analysis. Fourteen of the longitudinal studies were conducted in North America, the Caribbean or Europe, representing 78.8% (2086/2645) of patients. Most studies were observational with wide variations in sample size and selection of reference growth data, which limited comparability. There was a paucity of studies from Africa and the Arabian Peninsula, highlighting a large knowledge gap for low-resource settings. There was a consistent pattern of growth failure among affected children from all geographic areas, with good evidence linking growth failure to endocrine dysfunction, metabolic derangement and specific nutrient deficiencies. The monitoring of growth and nutritional status in children with SCD is an essential requirement for comprehensive care, facilitating early diagnosis of growth failure and nutritional intervention. Randomised controlled trials are necessary to assess the potential benefits of nutritional interventions in relation to growth, nutritional status and the pathophysiology of the disease.
New players for advanced prostate cancer and the rationalisation of insulin-sensitising medication.
Gunter, Jennifer H; Sarkar, Phoebe L; Lubik, Amy A; Nelson, Colleen C
2013-01-01
Obesity and type 2 diabetes are recognised risk factors for the development of some cancers and, increasingly, predict more aggressive disease, treatment failure, and cancer-specific mortality. Many factors may contribute to this clinical observation. Hyperinsulinaemia, dyslipidaemia, hypoxia, ER stress, and inflammation associated with expanded adipose tissue are thought to be among the main culprits driving malignant growth and cancer advancement. This observation has led to the proposal of the potential utility of "old players" for the treatment of type 2 diabetes and metabolic syndrome as new cancer adjuvant therapeutics. Androgen-regulated pathways drive proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen deprivation therapy (ADT) exploits this dependence to systemically treat advanced prostate cancer resulting in anticancer response and improvement of cancer symptoms. However, the initial therapeutic response from ADT eventually progresses to castrate resistant prostate cancer (CRPC) which is currently incurable. ADT rapidly induces hyperinsulinaemia which is associated with more rapid treatment failure. We discuss current observations of cancer in the context of obesity, diabetes, and insulin-lowering medication. We provide an update on current treatments for advanced prostate cancer and discuss whether metabolic dysfunction, developed during ADT, provides a unique therapeutic window for rapid translation of insulin-sensitising medication as combination therapy with antiandrogen targeting agents for the management of advanced prostate cancer.
Kim, Juyoung; Kim, Juhae; Kwon, Young Hye
2016-08-01
Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.
Owen, Lauren; Sunram-Lea, Sandra I.
2011-01-01
Over the past four or five decades, there has been increasing interest in the neurochemical regulation of cognition. This field received considerable attention in the 1980s, with the identification of possible cognition enhancing agents or “smart drugs”. Even though many of the optimistic claims for some agents have proven premature, evidence suggests that several metabolic agents may prove to be effective in improving and preserving cognitive performance and may lead to better cognitive aging through the lifespan. Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. There are a number of agents with the potential to improve metabolic activity. Research is now beginning to identify these various agents and delineate their potential usefulness for improving cognition in health and disease. This review provides a brief overview of the metabolic agents glucose, oxygen, pyruvate, creatine, and L-carnitine and their beneficial effects on cognitive function. These agents are directly responsible for generating ATP (adenosine triphosphate) the main cellular currency of energy. The brain is the most metabolically active organ in the body and as such is particularly vulnerable to disruption of energy resources. Therefore interventions that sustain adenosine triphosphate (ATP) levels may have importance for improving neuronal dysfunction and loss. Moreover, recently, it has been observed that environmental conditions and diet can affect transgenerational gene expression via epigenetic mechanisms. Metabolic agents might play a role in regulation of nutritional epigenetic effects. In summary, the reviewed metabolic agents represent a promising strategy for improving cognitive function and possibly slowing or preventing cognitive decline. PMID:22254121
Gunn, Harriet M; Emilsson, Hanna; Gabriel, Melissa; Maguire, Ann M; Steinbeck, Katharine S
2016-03-01
Childhood cancer survivors (CCS) are at increased risk of metabolic dysfunction as a late effect of cancer treatment. However, pediatric metabolic syndrome (MetS) lacks a unified definition, limiting the diagnosis of MetS in CCS. This study evaluated individual metabolic health risk factors and potential areas for intervention in this at-risk population. This single center, retrospective observational longitudinal study evaluated the metabolic health of all CCS attending an oncology long-term follow-up clinic at a university hospital in Sydney, Australia (January 2012-August 2014). Participants were 276 CCS (52.2% male; mean age 18.0 years; range 6.8-37.9 years), at least 5 years disease free with a broad spectrum of oncological diagnoses. Primary metabolic health risk factors included raised body mass index, hypertension, and hypertransaminasemia. Participants treated with cranial radiotherapy (n = 47; 17.0% of cohort) had additional biochemical variables analyzed: fasting glucose/insulin, HDL/LDL cholesterol, and triglycerides. Hypertension was common (19.0%), with male sex (p < 0.01) and being aged 18 years or above (p < 0.01) identified as risk factors. Cranial irradiation was a risk factor for overweight/obesity (47.8% in cranial radiotherapy-treated participants vs. 30.4%; p = 0.02). Hypertransaminasemia was more prevalent among participants treated with radiotherapy (15.6% vs. 7.3%; p = 0.03), and overweight/obese participants (17.6% vs. 8.2%; p = 0.04). Metabolic health risk factors comprising MetS are common in CCS, placing this population at risk of premature adverse cardiovascular consequences. Proactive surveillance and targeted interventions are required to minimize these metabolic complications, and a unified definition for pediatric MetS would improve identification and monitoring.
PATHWAYS IN MICROBE-INDUCED OBESITY
Cox, Laura M.; Blaser, Martin J.
2013-01-01
Diet, host gene composition, and alterations in the intestinal microbiota can contribute to obesity. In microbe-induced obesity, metabolic changes stem from primary perturbation of the microbiota, consequent to modern changes in human biology. Microbiota disruption during early development can result in syndromes of metabolic dysfunction. We focus on the pathways involved in these interactions, particularly related to energy extraction and the role of inflammation in the metabolic phenotypes. Model physiologic systems and perturbations including gastric bypass surgery, pregnancy, and hibernation provide insight into the respective roles of the critical participants. PMID:23747247
Voloshyna, O O; Lyzohub, V H; Romanenko, I M
2007-01-01
Endothelial dysfunction and endothelial cells activation as it was shown in patients with ischemic heart disease play important role in atherosclerosis progression and the development of cardiovascular events. Relationship between E-selectine and functional/ structural changes of the arterial vessels in patients with metabolic syndrome was not explored. We revealed that both activation of the endothelial cells and structural/functional changes of the arterial wall mostly depend on obesity and dislipedemia and in less extent on carbohydrates metabolism disorders.
Glucocorticoids and Metabolic Control.
Magomedova, Lilia; Cummins, Carolyn L
2016-01-01
In response to stress, the central nervous system initiates a signaling cascade, which leads to the production of glucocorticoids (GCs). GCs act through the glucocorticoid receptor (GR) to coordinate the appropriate cellular response with the primary goal of mobilizing the storage forms of carbon precursors to generate a continuous glucose supply for the brain. Although GCs are critical for maintaining energy homeostasis, excessive GC stimulation leads to a number of undesirable side effects, including hyperglycemia, insulin resistance, fatty liver, obesity, and muscle wasting leading to severe metabolic dysfunction. Summarized below are the diverse metabolic roles of glucocorticoids in energy homeostasis and dysregulation, focusing specifically on glucose, lipid, and protein metabolism.
Westermann, Martin; Lambeck, Sandro; Lupp, Amelie; Rudiger, Alain; Dyson, Alex; Carré, Jane E.; Kortgen, Andreas; Krafft, Christoph; Popp, Jürgen; Sponholz, Christoph; Fuhrmann, Valentin; Hilger, Ingrid; Claus, Ralf A.; Riedemann, Niels C.; Wetzker, Reinhard; Singer, Mervyn; Trauner, Michael; Bauer, Michael
2012-01-01
Background Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary PMID:23152722
OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function
Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...
Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W
2017-11-01
Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.
VanderVeen, Brandon N.; Fix, Dennis K.
2017-01-01
Chronic inflammation is a hallmark of cancer cachexia in both patients and preclinical models. Cachexia is prevalent in roughly 80% of cancer patients and accounts for up to 20% of all cancer-related deaths. Proinflammatory cytokines IL-6, TNF-α, and TGF-β have been widely examined for their regulation of cancer cachexia. An established characteristic of cachectic skeletal muscle is a disrupted capacity for oxidative metabolism, which is thought to contribute to cancer patient fatigue, diminished metabolic function, and muscle mass loss. This review's primary objective is to highlight emerging evidence linking cancer-induced inflammation to the dysfunctional regulation of mitochondrial dynamics, mitophagy, and biogenesis in cachectic muscle. The potential for either muscle inactivity or exercise to alter mitochondrial dysfunction during cancer cachexia will also be discussed. PMID:28785374
Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete
2016-01-01
Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.
Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho
2014-09-26
Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jun; Song, Meijun; Zhou, Mi
Targeting mitochondrial metabolism has been recently demonstrated to be a promising therapeutic strategy for the treatment of various cancer. In this work, we demonstrate that antibiotic tigecycline is selectively against hepatocellular carcinoma (HCC) through inducing mitochondrial dysfunction and oxidative damage. Tigecycline is more effective in inhibiting proliferation and inducing apoptosis of HCC than normal liver cells. Importantly, tigecycline significantly enhances the inhibitory effects of chemotherapeutic drug cisplatin in HCC in vitro and in vivo. Mechanistically, tigecycline specifically inhibits mitochondrial translation as shown by the decreased protein levels of Cox-1 and -2 but not Cox-4 or Grp78, and increased mRNA levels of Cox-1more » and -2 but not Cox-4 in HCC cells exposed to tigecycline. In addition, tigecycline significantly induces mitochondrial dysfunction in HCC cells via decreasing mitochondrial membrane potential, complex I and IV activities, mitochondrial respiration and ATP levels. Tigecycline also increases levels of mitochondrial superoxide, hydrogen peroxide and ROS levels. Consistent with oxidative stress, oxidative damage on DNA, protein and lipid are also observed in tigecycline-treated cells. Importantly, antioxidant N-acetyl-L-cysteine (NAC) reverses the effects of tigecycline, suggesting that oxidative stress is required for the action of tigecycline in HCC cells. We further show that HCC cells have higher level of mitochondrial biogenesis than normal liver cells which might explain the different sensitivity to tigecycline between HCC and normal liver cells. Our work is the first to demonstrate that tigecycline is a promising candidate for HCC treatment and highlight the therapeutic value of targeting mitochondrial metabolism in HCC. - Highlights: • Tigecycline selectively targets HCC in vitro and in vivo. • Tigecycline enhances HCC cell response to chemotherapeutic drug. • Tigecycline inhibits mitochondrial translation and functions in HCC cells. • Tigecycline induces oxidative stress and damage in HCC cells. • Mitochondrial biogenesis and respiration is higher in HCC than normal liver cells.« less
Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE
2010-01-01
Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j.1476-5381.2010.00663.x PMID:20218980
Double blind study of the effects of zinc sulfate on taste and smell dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henkin, R.I.; Schecter, P.J.; Friedewald, W.T.
1976-01-01
A randomized, double blind crossover study of the effects of zinc sulfate and placebo was carried out in 106 patients with taste and smell dysfunction secondary to a variety of etiological factors. In the patient group prior to treatment, mean serum zinc concentration and leukocyte alkaline phosphatase activity were significantly lower than normal. Results indicate that zinc sulfate was effectively equivalent to placebo in the treatment of these disorders. Although these results demonstrate abnormalities of zinc metabolism in some patients with taste and smell dysfunction they fail to provide evidence for a single, therapeutic approach to the many disorders whichmore » are associated with abnormalities of taste and smell. However, the methods and procedures developed in this study demonstrate that taste and smell dysfunction can be studied in a quantitative, systematic manner.« less
Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes
McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...
2015-09-22
Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less
Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment.
Escobar-Morreale, Héctor F
2018-05-01
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in premenopausal women. Heterogeneous by nature, PCOS is defined by a combination of signs and symptoms of androgen excess and ovarian dysfunction in the absence of other specific diagnoses. The aetiology of this syndrome remains largely unknown, but mounting evidence suggests that PCOS might be a complex multigenic disorder with strong epigenetic and environmental influences, including diet and lifestyle factors. PCOS is frequently associated with abdominal adiposity, insulin resistance, obesity, metabolic disorders and cardiovascular risk factors. The diagnosis and treatment of PCOS are not complicated, requiring only the judicious application of a few well-standardized diagnostic methods and appropriate therapeutic approaches addressing hyperandrogenism, the consequences of ovarian dysfunction and the associated metabolic disorders. This article aims to provide a balanced review of the latest advances and current limitations in our knowledge about PCOS while also providing a few clear and simple principles, based on current evidence-based clinical guidelines, for the proper diagnosis and long-term clinical management of women with PCOS.
Letra, Liliana; Santana, Isabel
2017-01-01
The brain is a highly metabolic organ and thus especially vulnerable to changes in peripheral metabolism, including those induced by obesity-associated adipose tissue dysfunction. In this context, it is likely that the development and maturation of neurocognitive circuits may also be affected and modulated by metabolic environmental factors, beginning in utero. It is currently recognized that maternal obesity, either pre-gestational or gestational, negatively influences fetal brain development and elevates the risk of cognitive impairment and neuropsychiatric disorders in the offspring. During infancy and adolescence, obesity remains a limiting factor for healthy neurodevelopment, especially affecting executive functions but also attention, visuospatial ability, and motor skills. In middle age, obesity seems to induce an accelerated brain aging and thus may increase the risk of age-related neurodegenerative diseases such as Alzheimer's disease. In this chapter we review and discuss experimental and clinical evidence focusing on the influence of adipose tissue dysfunction on neurodevelopment and cognition across lifespan, as well as some possible mechanistic links, namely the role of the most well studied adipokines.
Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation.
Lai, Ching-Shu; Wu, Jia-Ching; Ho, Chi-Tang; Pan, Min-Hsiung
2017-06-01
Mitochondria are at the center stage in the control of energy homeostasis in many organs and tissues including adipose tissue. Recently, abundant evidence from experimental studies has clearly supported the strong correlation between mitochondrial dysfunction in adipocytes and obesity. Various physiological conditions such as excessive nutrition, genetic factors, hypoxia, and toxins disrupt mitochondrial function by impairing mitochondrial biogenesis, dynamics, and oxidative capacity. Mitochondrial dysfunction in adipocytes could have an impact on differentiation, adipogenesis, insulin sensitivity, and the significant alteration in their metabolic function, which ultimately results in obesity and type 2 diabetes. Numerous dietary natural compounds are the subject of research for the prevention and treatment of obesity through reprogramming multiple metabolic pathways. Some of them have the potential against obesity by modulating insulin signaling, decreasing oxidative damage, downregulating adipokines secretion, and increasing mitochondrial DNA that improves mitochondrial function and thus maintain metabolic homeostasis. Here, we focus on and summarize and briefly discuss the currently known targets and the mitochondria-targeting effects of dietary natural compounds in the intervention of obesity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adeno-Associated Virus–Mediated Gene Therapy for Metabolic Myopathy
Mah, Cathryn S.; Soustek, Meghan S.; Todd, A. Gary; McCall, Angela; Smith, Barbara K.; Corti, Manuela; Falk, Darin J.
2013-01-01
Abstract Metabolic myopathies are a diverse group of rare diseases in which impaired breakdown of stored energy leads to profound muscle dysfunction ranging from exercise intolerance to severe muscle wasting. Metabolic myopathies are largely caused by functional deficiency of a single gene and are generally subcategorized into three major types of metabolic disease: mitochondrial, lipid, or glycogen. Treatment varies greatly depending on the biochemical nature of the disease, and unfortunately no definitive treatments exist for metabolic myopathy. Since this group of diseases is inherited, gene therapy is being explored as an approach to personalized medical treatment. Adeno-associated virus–based vectors in particular have shown to be promising in the treatment of several forms of metabolic myopathy. This review will discuss the most recent advances in gene therapy efforts for the treatment of metabolic myopathies. PMID:24164240
Proteomic Analysis of the Human Olfactory Bulb.
Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava
2017-08-01
The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.
Yafi, Faysal A.; Jenkins, Lawrence; Albersen, Maarten; Corona, Giovanni; Isidori, Andrea M.; Goldfarb, Shari; Maggi, Mario; Nelson, Christian J.; Parish, Sharon; Salonia, Andrea; Tan, Ronny; Mulhall, John P.; Hellstrom, Wayne J. G.
2016-01-01
Erectile dysfunction is a multidimensional but common male sexual dysfunction that involves an alteration in any of the components of the erectile response, including organic, relational and psychological. Roles for nonendocrine (neurogenic, vasculogenic and iatrogenic) and endocrine pathways have been proposed. Owing to its strong association with metabolic syndrome and cardiovascular disease, cardiac assessment may be warranted in men with symptoms of erectile dysfunction. Minimally invasive interventions to relieve the symptoms of erectile dysfunction include lifestyle modifications, oral drugs, injected vasodilator agents and vacuum erection devices. Surgical therapies are reserved for the subset of patients who have contraindications to these nonsurgical interventions, those who experience adverse effects from (or are refractory to) medical therapy and those who also have penile fibrosis or penile vascular insufficiency. Erectile dysfunction can have deleterious effects on a man’s quality of life; most patients have symptoms of depression and anxiety related to sexual performance. These symptoms, in turn, affect his partner’s sexual experience and the couple’s quality of life. This Primer highlights numerous aspects of erectile dysfunction, summarizes new treatment targets and ongoing preclinical studies that evaluate new pharmacotherapies, and covers the topic of regenerative medicine, which represents the future of sexual medicine. PMID:27188339
Peiris, Heshan; Duffield, Michael D.; Fadista, Joao; Kashmir, Vinder; Genders, Amanda J.; McGee, Sean L.; Martin, Alyce M.; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A.; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Busciglio, Jorge; Coskun, Pinar E.; Becker, Ann; Belichenko, Pavel V.; Mobley, William C.; Ryan, Michael T.; Chan, Jeng Yie; Laybutt, D. Ross; Coates, P. Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A.; Keating, Damien J.
2016-01-01
Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D. PMID:27195491
Sörensen, Ben M; Houben, Alfons J H M; Berendschot, Tos T J M; Schouten, Jan S A G; Kroon, Abraham A; van der Kallen, Carla J H; Henry, Ronald M A; Koster, Annemarie; Sep, Simone J S; Dagnelie, Pieter C; Schaper, Nicolaas C; Schram, Miranda T; Stehouwer, Coen D A
2016-11-01
Type 2 diabetes (T2DM) is associated with an increased risk of cardiovascular disease. This can be partly explained by large-artery dysfunction, which already occurs in prediabetes ("ticking clock hypothesis"). Whether a similar phenomenon also applies to microvascular dysfunction is not known. We therefore tested the hypothesis that microvascular dysfunction is already present in prediabetes and is more severe in T2DM. To do so, we investigated the associations of prediabetes, T2DM, and measures of hyperglycemia with microvascular function measured as flicker light-induced retinal arteriolar dilation and heat-induced skin hyperemia. In the Maastricht Study, a T2DM-enriched population-based cohort study (n=2213, 51% men, aged [mean±standard deviation] 59.7±8.2 years), we determined flicker light-induced retinal arteriolar %-dilation (Dynamic Vessel Analyzer), heat-induced skin %-hyperemia (laser-Doppler flowmetry), and glucose metabolism status (oral glucose tolerance test; normal glucose metabolism [n=1269], prediabetes [n=335], or T2DM [n=609]). Differences were assessed with multivariable regression analyses adjusted for age, sex, body mass index, smoking, physical activity, systolic blood pressure, lipid profile, retinopathy, estimated glomerular filtration rate, (micro)albuminuria, the use of lipid-modifying and blood pressure-lowering medication, and prior cardiovascular disease. Retinal arteriolar %-dilation was (mean±standard deviation) 3.4±2.8 in normal glucose metabolism, 3.0±2.7 in prediabetes, and 2.3±2.6 in T2DM. Adjusted analyses showed a lower arteriolar %-dilation in prediabetes (B=-0.20, 95% confidence interval -0.56 to 0.15) with further deterioration in T2DM (B=-0.61 [-0.97 to -0.25]) versus normal glucose metabolism (P for trend=0.001). Skin %-hyperemia was (mean±standard deviation) 1235±810 in normal glucose metabolism, 1109±748 in prediabetes, and 937±683 in T2DM. Adjusted analyses showed a lower %-hyperemia in prediabetes (B=-46 [-163 to 72]) with further deterioration in T2DM (B=-184 [-297 to -71]) versus normal glucose metabolism (P for trend=0.001). In addition, higher glycohemoglobin A1c and fasting plasma glucose were associated with lower retinal arteriolar %-dilation and skin %-hyperemia in fully adjusted models (for glycohemoglobin A1c, standardized B=-0.10 [-0.15 to -0.05], P<0.001 and standardized B=-0.13 [-0.19 to -0.07], P<0.001, respectively; for fasting plasma glucose, standardized B=-0.09 [-0.15 to -0.04], P<0.001 and standardized B=-0.10 [-0.15 to -0.04], P=0.002, respectively). Prediabetes, T2DM, and measures of hyperglycemia are independently associated with impaired microvascular function in the retina and skin. These findings support the concept that microvascular dysfunction precedes and thus may contribute to T2DM-associated cardiovascular disease and other complications, which may in part have a microvascular origin such as impaired cognition and heart failure. © 2016 American Heart Association, Inc.
Shiftwork and metabolic dysfunction.
Tucker, Philip; Marquié, Jean-Claude; Folkard, Simon; Ansiau, David; Esquirol, Yolande
2012-06-01
Many of the health problems that are more prevalent among shiftworkers are thought to be linked to their heightened susceptibility to metabolic syndrome, i.e., the association of even moderate degrees of visceral obesity, dyslipidemia, abnormal blood pressure, and serum glucose levels in the same individual. Although previous studies have identified associations between shiftwork and metabolic syndrome, there is relatively little evidence to date of how the risk of developing it varies as a function of exposure to shiftwork. The current study seeks to confirm earlier findings of an association between shiftwork exposure and metabolic dysfunction, and to examine the impact of exposure duration, while adjusting for a number of covariates in the analyses. The analyses were based on data from VISAT, a study involving the measurement of physiological, behavioral, and subjective outcomes from 1757 participants, 989 being current or former shiftworkers. The sample comprised employed and retired wage earners, male and female, who were 32, 42, 52, and 62 yrs old. The first analysis sought to confirm previous findings of an association between exposure to shiftwork and the risk of developing metabolic syndrome. It indicated that participants who were or who had previously been shiftworkers (i.e., working schedules that involved rotating shifts; not being able to go to bed before midnight; having to get up before 05:00 h; or being prevented from sleeping during the night) were more likely to exhibit symptoms of metabolic syndrome, after adjusting for age, sex, socioeconomic status, smoking, alcohol intake, perceived stress, and sleep difficulty (odds ratio [OR] 1.78; 95% confidence interval [CI] 1.03-3.08). The results suggest the association between shiftwork and metabolic syndrome cannot be fully accounted for by either higher levels of strain or increased sleep difficulty among shiftworkers, although it remains a possibility that either one or both of these factors may have played a contributing role. The second analysis addressed the issue of duration of exposure to shiftwork. Participants with >10 yrs' experience of working rotating shifts were more likely to exhibit symptoms of metabolic syndrome than participants without exposure to shiftwork, i.e., dayworkers, even after adjusting for age and sex (OR 1.96; 95% CI 1.03-3.75). Thus, the current study confirms the association between shiftwork exposure and metabolic syndrome. It also provides new information regarding the time course of the development of the illness as function of exposure duration, although this was only examined in relation to rotating shiftwork. It is concluded that those responsible for monitoring workers' health should pay particular attention to indices of metabolic dysfunction in workers who have been exposed to shiftwork for >10 yrs.
Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica
2006-12-01
Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.