Science.gov

Sample records for metabolic network preferentially

  1. Though with constraints imposed by endosymbiosis, preferential attachment is still a plausible mechanism responsible for the evolution of the chloroplast metabolic network.

    PubMed

    Wang, Z; Zhu, X-G; Chang, X; Chen, Y Z; Li, Y X; Liu, L

    2009-01-01

    Chloroplasts evolved as a result of endosymbiosis, during which sophisticated mechanisms evolved to translocate nucleus-encoded plastid-targeted enzymes into the chloroplast to form the chloroplast metabolic network. Given the constraints and complexity of endosymbiosis, will preferential attachment still be a plausible mechanism for chloroplast metabolic network evolution? We answer this question by analysing the metabolic network properties of the chloroplast and a cyanobacterium, Synechococcus sp. WH8102 (syw). First, we found that enzymes related to more ancient pathways are more connected, and synthetases have the highest connectivity. Most of the enzymes shared by the two densest cores between the chloroplast and syw are synthetases. Second, the highly conserved functional modules mainly consist of highly connected enzymes. Finally, isozymes and enzymes from endosymbiotic gene transfer (EGT) were distributed mainly in conserved modules and showed higher connectivity than nonisozymes or non-EGT enzymes. These results suggest that even with severe evolutionary constraints imposed by endosymbiosis, preferential attachment is still a plausible mechanism responsible for the evolution of the chloroplast metabolic network. However, the current analysis may not completely differentiate whether the chloroplast network properties reflect the evolution of the chloroplast network through preferential attachment or has been inherited from its cyanobacterial ancestor. To fully differentiate these two possibilities, further analyses of the metabolic network structure properties of organisms at various intermediate evolutionary stages between cyanobacteria and the chloroplast are needed.

  2. Preferential urn model and nongrowing complex networks.

    PubMed

    Ohkubo, Jun; Yasuda, Muneki; Tanaka, Kazuyuki

    2005-12-01

    A preferential urn model, which is based on the concept "the rich get richer," is proposed. From a relationship between a nongrowing model for complex networks and the preferential urn model in regard to degree distributions, it is revealed that a fitness parameter in the nongrowing model is interpreted as an inverse local temperature in the preferential urn model. Furthermore, it is clarified that the preferential urn model with randomness generates a fat-tailed occupation distribution; the concept of the local temperature enables us to understand the fat-tailed occupation distribution intuitively. Since the preferential urn model is a simple stochastic model, it can be applied to research on not only the nongrowing complex networks, but also many other fields such as econophysics and social sciences.

  3. Reverse preferential spread in complex networks

    NASA Astrophysics Data System (ADS)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  4. Discovering Preferential Patterns in Sectoral Trade Networks.

    PubMed

    Cingolani, Isabella; Piccardi, Carlo; Tajoli, Lucia

    2015-01-01

    We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of "preferentiality" in countries' trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis. In particular, we apply a pattern detection approach based on community and pseudocommunity analysis, in order to highlight the groups of countries within which most of members' trade occur. The method is applied to two intra-industry trade networks consisting of 221 countries, relative to the low-tech "Textiles and Textile Articles" and the high-tech "Electronics" sectors for the year 2006, to look at the structure of world trade before the start of the international financial crisis. It turns out that the two networks display some similarities and some differences in preferential trade patterns: they both include few significant communities that define narrow sets of countries trading with each other as preferential destinations markets or supply sources, and they are characterized by the presence of similar hierarchical structures, led by the largest economies. But there are also distinctive features due to the characteristics of the industries examined, in which the organization of production and the destination markets are different. Overall, the extent of preferentiality and partner selection at the sector level confirm the relevance of international trade costs still today, inducing countries to seek the highest efficiency in their trade patterns.

  5. Complex Cooperative Networks from Evolutionary Preferential Attachment

    PubMed Central

    Poncela, Julia; Gómez-Gardeñes, Jesús; Floría, Luis M.; Sánchez, Angel; Moreno, Yamir

    2008-01-01

    In spite of its relevance to the origin of complex networks, the interplay between form and function and its role during network formation remains largely unexplored. While recent studies introduce dynamics by considering rewiring processes of a pre-existent network, we study network growth and formation by proposing an evolutionary preferential attachment model, its main feature being that the capacity of a node to attract new links depends on a dynamical variable governed in turn by the node interactions. As a specific example, we focus on the problem of the emergence of cooperation by analyzing the formation of a social network with interactions given by the Prisoner's Dilemma. The resulting networks show many features of real systems, such as scale-free degree distributions, cooperative behavior and hierarchical clustering. Interestingly, results such as the cooperators being located mostly on nodes of intermediate degree are very different from the observations of cooperative behavior on static networks. The evolutionary preferential attachment mechanism points to an evolutionary origin of scale-free networks and may help understand similar feedback problems in the dynamics of complex networks by appropriately choosing the game describing the interaction of nodes. PMID:18560601

  6. Discovering Preferential Patterns in Sectoral Trade Networks

    PubMed Central

    Cingolani, Isabella; Piccardi, Carlo; Tajoli, Lucia

    2015-01-01

    We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of “preferentiality” in countries’ trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis. In particular, we apply a pattern detection approach based on community and pseudocommunity analysis, in order to highlight the groups of countries within which most of members’ trade occur. The method is applied to two intra-industry trade networks consisting of 221 countries, relative to the low-tech “Textiles and Textile Articles” and the high-tech “Electronics” sectors for the year 2006, to look at the structure of world trade before the start of the international financial crisis. It turns out that the two networks display some similarities and some differences in preferential trade patterns: they both include few significant communities that define narrow sets of countries trading with each other as preferential destinations markets or supply sources, and they are characterized by the presence of similar hierarchical structures, led by the largest economies. But there are also distinctive features due to the characteristics of the industries examined, in which the organization of production and the destination markets are different. Overall, the extent of preferentiality and partner selection at the sector level confirm the relevance of international trade costs still today, inducing countries to seek the highest efficiency in their trade patterns. PMID:26485163

  7. Macropore Network Connectivity and Preferential Flow

    NASA Astrophysics Data System (ADS)

    Jarvis, N.; Koestel, J. K.; Larsbo, M.

    2016-12-01

    The increasingly widespread application of non-invasive X-ray imaging has led to the realization that macropores usually comprise complex multi-scale networks of multiple inter-connected and disconnected pathways, including dead-end pores and bottleneck constrictions. Combining X-ray scanning with flow and transport experiments carried out on the same soil columns may further our understanding of how network characteristics control preferential flow. We carried out tracer breakthrough experiments at a flow rate of 2 mm/hour on forty topsoil columns sampled from five different sites in east-central Sweden (four cultivated and one under long-term grass-clover ley) that had previously been imaged by X-ray tomography at a resolution of 0.3 mm. The results suggest that preferential flow is increasingly triggered as the macroporosity decreases towards a `percolation threshold' (i.e. the macroporosity that is required to establish long-range network connectivity). Sample size effects on the connectivity of the X-ray imaged macropore networks were also analyzed at two different resolutions (local pore thicknesses > 0.3 mm or > 1 mm) with two different methods: i.) a traditional technique for estimation of the REV using the statistics of the connection probability (the probability that two pore voxels belong to the same cluster) and ii.) a finite-size scaling analysis of the percolation probabilities. The analyses show that a cube of side length 8 cm is representative for imaged porosity and connectivity in these soil horizons. We conclude that percolation concepts could be used to account for the effects of macropore network connectivity in Darcy-scale models of preferential flow, although similar analyses should first be performed in subsoil horizons more susceptible to macropore flow.

  8. Metabolic Networks

    NASA Astrophysics Data System (ADS)

    Palumbo, Maria Concetta; Farina, Lorenzo; Colosimo, Alfredo; Giuliani, Alessandro

    The use of the term `network' is more and more widespread in all fields of biology. It evokes a systemic approach to biological problems able to overcome the evident limitations of the strict reductionism of the past twenty years. The expectations produced by taking into considerations not only the single elements but even the intermingled `web' of links connecting different parts of biological entities, are huge. Nevertheless, we believe that the lack of consciousness that networks, beside their biological `likelihood', are modeling tools and not real entities, could be detrimental to the exploitation of the full potential of this paradigm. Like any modeling tool the network paradigm has a range of application going from situations in which it is particularly fit to situations in which its application can be largely misleading. In this chapter we deal with an aspect of biological entities that is particularly fit for the network approach: the intermediate metabolism. This fit derives both from the existence of a privileged formalization in which the relative role of nodes (metabolites) and arches (enzymes) is immediately suggested by the system architecture. Here we will discuss some applications of both graph theory based analysis and multidimensional statistics method to metabolic network studies with the emphasis on the derivation of biologically meaningful information.

  9. Fitness networks for real world systems via modified preferential attachment

    NASA Astrophysics Data System (ADS)

    Shang, Ke-ke; Small, Michael; Yan, Wei-sheng

    2017-05-01

    Complex networks are virtually ubiquitous, and the Barabási and Albert model (BA model) has became an acknowledged standard for the modelling of these systems. The so-called BA model is a kind of preferential attachment growth model based on the intuitive premise that popularity is attractive. However, preferential attachment alone is insufficient to describe the diversity of complex networks observed in the real world. In this paper we first use the accuracy of a link prediction method, as a metric for network fitness. The link prediction method predicts the occurrence of links consistent with preferential attachment, the performance of this link prediction scheme is then a natural measure of the ;preferential-attachment-likeness; of a given network. We then propose several modification methods and modified BA models to construct networks which more accurately describe the fitness properties of real networks. We find that all features assortativity, degree distribution and rich-club formation can play significant roles for the network construction and eventual structure. Moreover, link sparsity and the size of a network are key factors for network reconstruction. In addition, we find that the structure of the network which is limited by geographic location (nodes are embedded in a Euclidean space and connectivity is correlated with distances) differs from other typical networks. In social networks, we observe that the high school contact network has similar structure as the friends network and so we speculate that the contact behaviours can reflect real friendships.

  10. Network Evolution by Relevance and Importance Preferential Attachment

    DTIC Science & Technology

    2014-08-06

    improved preferential attachment (PA) algorithm to take in consideration the relevance between vertices of the network measured by a given metric. We...Network Evolution by Relevance and Importance Preferential Attachment The views, opinions and/or findings contained in this report are those of the... attachment by importance and relevance REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8

  11. Consensus of synchronization-preferential scale-free networks

    NASA Astrophysics Data System (ADS)

    Hongyong, Yang; Lan, Lu; Siying, Zhang

    2010-08-01

    In this paper, the relations of the scale-free network topology and the moving consensus of multi-agent systems are studied. A synchronization-preferential BA (SPBA) network with the combinatorial preferential attachment is presented for the prestissimo consensus. The effects of the SPBA network on the algebraic connectivity of the topology graph are compared with the standard BA network. The robustness gain to delay is analyzed for variable network topologies with the same size. The characteristics of dramatic increase for the algebraic connectivity and slightly increase for the robustness gain to delay are unfolded in SPBA network. By comparing the convergence time of the different network structures, the consensuses are studied for multiagent systems with and without communication delays.

  12. Preferential survival in models of complex ad hoc networks

    NASA Astrophysics Data System (ADS)

    Kong, Joseph S.; Roychowdhury, Vwani P.

    2008-05-01

    There has been a rich interplay in recent years between (i) empirical investigations of real-world dynamic networks, (ii) analytical modeling of the microscopic mechanisms that drive the emergence of such networks, and (iii) harnessing of these mechanisms to either manipulate existing networks, or engineer new networks for specific tasks. We continue in this vein, and study the deletion phenomenon in the web by the following two different sets of websites (each comprising more than 150,000 pages) over a one-year period. Empirical data show that there is a significant deletion component in the underlying web networks, but the deletion process is not uniform. This motivates us to introduce a new mechanism of preferential survival (PS), where nodes are removed according to the degree-dependent deletion kernel, D(k)∝k, with α≥0. We use the mean-field rate equation approach to study a general dynamic model driven by Preferential Attachment (PA), Double PA (DPA), and a tunable PS (i.e., with any α>0), where c nodes ( c<1) are deleted per node added to the network, and verify our predictions via large-scale simulations. One of our results shows that, unlike in the case of uniform deletion (i.e., where α=0), the PS kernel when coupled with the standard PA mechanism, can lead to heavy-tailed power-law networks even in the presence of extreme turnover in the network. Moreover, a weak DPA mechanism, coupled with PS, can help to make the network even more heavy-tailed, especially in the limit when deletion and insertion rates are almost equal, and the overall network growth is minimal. The dynamics reported in this work can be used to design and engineer stable ad hoc networks and explain the stability of the power-law exponents observed in real-world networks.

  13. Weighted trade network in a model of preferential bipartite transactions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhijit; Manna, S. S.

    2010-01-01

    Using a model of wealth distribution where traders are characterized by quenched random saving propensities and trade among themselves by bipartite transactions, we mimic the enhanced rates of trading of the rich by introducing the preferential selection rule using a pair of continuously tunable parameters. The bipartite trading defines a growing trade network of traders linked by their mutual trade relationships. With the preferential selection rule this network appears to be highly heterogeneous characterized by the scale-free nodal degree and the link weight distributions and presents signatures of nontrivial strength-degree correlations. With detailed numerical simulations and using finite-size scaling analysis we present evidence that the associated critical exponents are continuous functions of the tuning parameters. However the wealth distribution has been observed to follow the well-known Pareto law robustly for all positive values of the tuning parameters.

  14. Homophily versus preferential attachment: Evolutionary mechanisms of scientific collaboration networks

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Zhen; Zhu, Jonathan J. H.

    2014-12-01

    Homophily and preferential attachment are among the most recognized mechanisms of network evolution. Instead of examining the two mechanisms separately, this study considers them jointly in a scholarly collaboration network. Specifically, when a new scholar enters a field, how does he/she choose the first collaborator from the pool of available scholars? We find that new scholars tend to collaborate with someone who works in the same institution (which is called constrained acceptance), shares similar specialty interests (active choice), or has already worked with many collaborators (random action). We view constrained acceptance and active choice as supporting evidence for homophily (because similarity is attractive) and random action as supporting evidence for preferential attachment (because popularity is attractive). As such, both homophily and preferential attachment affect the evolution of collaboration networks. Furthermore, the influences vary over time with random action, constrained acceptance, and active choice taking turns to act the dominant force at the beginning, middle and later phases of the evolution process, respectively.

  15. Soil organic carbon, macropore networks and preferential transport

    NASA Astrophysics Data System (ADS)

    Larsbo, Mats; Koestel, John; Kätterer, Thomas; Jarvis, Nick

    2016-04-01

    Agricultural management practices such as tillage, crop rotations, residue management and fertilization can have a strong influence on soil organic carbon (SOC) stocks. An increase in SOC content will generally improve soil structure, which in turn determines the solute transport pathways through the soil. The aim of this study was to quantify the architecture of macropore networks in undisturbed soil columns (15 cm high, 12.7 cm diameter) sampled along a transect with natural variations in SOC using X-ray tomography and to relate the network characteristics to the degree of preferential transport in the columns. Two tracer experiments were carried out at constant irrigation rates of 2 and 5 mm h-1. We used the normalised 5% arrival time which reflects the tendency for early arrival of the solutes as a measure of the degree of preferential transport. The soil macropore networks were analysed in cylindrical sub-volumes (8 cm high, 10 cm diameter) located centrally within the soil columns. These sub-volumes were considered unaffected by sampling artefacts. Analyses were also carried out the for whole sample volumes to enable comparisons with the results from the transport experiments. Image processing and analysis were carried out in ImageJ and R. The same grey value threshold was applied to all images after harmonisation of grey values using the PVC column walls and the air outside the columns. This approach resulted in a satisfactory separation between the pore space and the surrounding soil matrix and organic matter. The SOC content along the transect, which varied from 4.2 to 15% , was correlated to all measures of the pore network for the sub-volumes except for the connectivity probability. Columns with high SOC content were associated with large macroporosities (both total and connected), large specific surface areas, large fractal dimensions and small mean pore thicknesses. The SOC content for whole sample volumes was positively correlated to 5% arrival times

  16. Granger causality stock market networks: Temporal proximity and preferential attachment

    NASA Astrophysics Data System (ADS)

    Výrost, Tomáš; Lyócsa, Štefan; Baumöhl, Eduard

    2015-06-01

    The structure of return spillovers is examined by constructing Granger causality networks using daily closing prices of 20 developed markets from 2nd January 2006 to 31st December 2013. The data is properly aligned to take into account non-synchronous trading effects. The study of the resulting networks of over 94 sub-samples revealed three significant findings. First, after the recent financial crisis the impact of the US stock market has declined. Second, spatial probit models confirmed the role of the temporal proximity between market closing times for return spillovers, i.e. the time distance between national stock markets matters. Third, a preferential attachment between stock markets exists, i.e. the probability of the presence of spillover effects between any given two markets increases with their degree of connectedness to others.

  17. Complex networks as an emerging property of hierarchical preferential attachment

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  18. Attractor Metabolic Networks

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Pelta, David A.; Veguillas, Juan

    2013-01-01

    Background The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. Methodology/Principal Findings In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. Conclusions/Significance We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency

  19. Context dependent preferential attachment model for complex networks

    NASA Astrophysics Data System (ADS)

    Pandey, Pradumn Kumar; Adhikari, Bibhas

    2015-10-01

    In this paper, we propose a growing random complex network model, which we call context dependent preferential attachment model (CDPAM), when the preference of a new node to get attached to old nodes is determined by the local and global property of the old nodes. We consider that local and global properties of a node as the degree and relative average degree of the node respectively. We prove that the degree distribution of complex networks generated by CDPAM follow power law with exponent lies in the interval [2,3] and the expected diameter grows logarithmically with the size of new nodes added to the initial small network. Numerical results show that the expected diameter stabilizes when alike weights to the local and global properties are assigned by the new nodes. Computing various measures including clustering coefficient, assortativity, number of triangles, algebraic connectivity, spectral radius, we show that the proposed model replicates properties of real networks when alike weights are given to local and global property. Finally, we observe that the BA model is a limiting case of CDPAM when new nodes tend to give large weight to the local property compared to the weight given to the global property during link formation.

  20. Testing the hypothesis of preferential attachment in social network formation.

    PubMed

    House, Thomas; Read, Jonathan M; Danon, Leon; Keeling, Matthew J

    The hypothesis of preferential attachment (PA) - whereby better connected individuals make more connections - is hotly debated, particularly in the context of epidemiological networks. The simplest models of PA, for example, are incompatible with the eradication of any disease through population-level control measures such as random vaccination. Typically, evidence has been sought for the presence or absence of preferential attachment via asymptotic power-law behaviour. Here, we present a general statistical method to test directly for evidence of PA in count data and apply this to data for contacts relevant to the spread of respiratory diseases. We find that while standard methods for model selection prefer a form of PA, careful analysis of the best fitting PA models allows for a level of contact heterogeneity that in fact allows control of respiratory diseases. Our approach is based on a flexible but numerically cheap likelihood-based model that could in principle be applied to other integer data where the hypothesis of PA is of interest.

  1. Metabolic and Toxicological Networks

    DTIC Science & Technology

    2006-11-01

    sequence from clone DKEYP-1H4 6I15 Zebra Fish DNA sequence from clone DKEYP-46C9 4G9 Zebra Fish DNA sequence from clone RP71-61H23 Lipid Metabolism ...Respiration PPARαL-FABP Lipid metabolism Apolipoproteins O2 Transferrin Hemoglobin Mitochondrial cytochrome oxidase Fe Fatty Acids Cholesterol Fe... Metabolic and toxicological networks Dr. Ed Perkins Environmental Genomics and Genetics Team Environmental Laboratory US Army Engineer Research and

  2. Motile hepatocellular carcinoma cells preferentially secret sugar metabolism regulatory proteins via exosomes.

    PubMed

    Zhang, Jing; Lu, Shaohua; Zhou, Ye; Meng, Kun; Chen, Zhipeng; Cui, Yizhi; Shi, Yunfeng; Wang, Tong; He, Qing-Yu

    2017-07-01

    Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super-SILAC-based MS analysis on the exosomes secreted by three human HCC cell lines, including the non-motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism-centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism-associated proteins via exosomes that differentiate them from non-motile HCC cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Redundancy in Metabolic Networks

    NASA Astrophysics Data System (ADS)

    Domach, Michael M.

    2009-09-01

    Metabolic networks possess redundant functionalities and thus they can behave as highly resilient systems. One practical consequence is many seemingly obvious mutations fail to work as intended when metabolic engineering is attempted. Alternately, mutations distal from where an effect on metabolism is sought prove to be effective. The existence of viable and alternate flux solutions can also confound the interpretation of 13C NMR experiments. Unless 13C label design for a precursor such as glucose is correctly done, wrong answers can be obtained concerning the effect of a mutation when one goes numerically from NMR data to the values of the metabolic fluxes. From the practical stand point, such incorrect answers can then (i) cause one to reject a mutation strategy that is actually successful or (ii) lead to formulating incorrect next steps for the round(s) of mutation. After summarizing different ways to analyze metabolic networks (e.g. mixed integer programming), this presentation will first present examples of how a non-obvious mutation proved to be the winner. Both modeling and experimental results will be shown. Abolishing pyruvate kinase activity (rPyk) will be shown to increase folic acid synthesis in B. subtilis by 700% Interesting the same mutation in a different organism, E. coli, significantly increases the yield of therapeutic DNA as shown below. This presentation will close with a case study that shows how different NMR-based flux distributions were reported in the literature for the same E. coli mutant. Through network analysis and NMR simulation it will be shown that one answer is incorrect and it arose due to network redundancy and low-contrast label design.

  4. Robustness of metabolic networks

    NASA Astrophysics Data System (ADS)

    Jeong, Hawoong

    2009-03-01

    We investigated the robustness of cellular metabolism by simulating the system-level computational models, and also performed the corresponding experiments to validate our predictions. We address the cellular robustness from the ``metabolite''-framework by using the novel concept of ``flux-sum,'' which is the sum of all incoming or outgoing fluxes (they are the same under the pseudo-steady state assumption). By estimating the changes of the flux-sum under various genetic and environmental perturbations, we were able to clearly decipher the metabolic robustness; the flux-sum around an essential metabolite does not change much under various perturbations. We also identified the list of the metabolites essential to cell survival, and then ``acclimator'' metabolites that can control the cell growth were discovered. Furthermore, this concept of ``metabolite essentiality'' should be useful in developing new metabolic engineering strategies for improved production of various bioproducts and designing new drugs that can fight against multi-antibiotic resistant superbacteria by knocking-down the enzyme activities around an essential metabolite. Finally, we combined a regulatory network with the metabolic network to investigate its effect on dynamic properties of cellular metabolism.

  5. Spreading dynamics of an e-commerce preferential information model on scale-free networks

    NASA Astrophysics Data System (ADS)

    Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding

    2017-02-01

    In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.

  6. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment

    PubMed Central

    Abdelzaher, Ahmed F.; Al-Musawi, Ahmad F.; Ghosh, Preetam; Mayo, Michael L.; Perkins, Edward J.

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs – i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent “building blocks” of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties. PMID:26528473

  7. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment.

    PubMed

    Abdelzaher, Ahmed F; Al-Musawi, Ahmad F; Ghosh, Preetam; Mayo, Michael L; Perkins, Edward J

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs - i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent "building blocks" of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  8. Joint estimation of preferential attachment and node fitness in growing complex networks

    NASA Astrophysics Data System (ADS)

    Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi

    2016-09-01

    Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit.

  9. Joint estimation of preferential attachment and node fitness in growing complex networks

    PubMed Central

    Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi

    2016-01-01

    Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314

  10. Structural Preferential Attachment: Network Organization beyond the Link

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.

    2011-10-01

    We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.

  11. Feedback mechanism in network dynamics with preferential flow

    NASA Astrophysics Data System (ADS)

    Fan, H.; Wang, Z.; Chen, L.; Aihara, K.

    2009-02-01

    We study complex systems or networks in which each node holds an internal dynamics and interacts with other nodes through some kinds of topologies. Collective behavior with dynamical fluctuations is analyzed in complex systems. The dynamical fluctuations of a node can be divided into two parts: one is the internal dynamical fluctuation of the node and the other is the external dynamical fluctuation caused by other nodes. Based on a theoretical analysis, a hidden feedback mechanism is identified in complex systems, which is illustrated in a macroeconomic network and in a city-population network. Furthermore, we study the effect of the topology of the networks on the feedback mechanism. The feedback mechanism is preserved for hub nodes in the networks with a scale-free topology as well as in the networks with an evolving topology. By the hidden feedback mechanism, the observation data can be utilized to judge directly whether the system of each node is with positive feedback or with negative feedback even without knowing its dynamical model.

  12. A preferential attachment strategy for connectivity link addition strategy in improving the robustness of interdependent networks

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Cao, Jianye; Li, Rui; Zhao, Tianfang

    2017-10-01

    Given the same two networks and only one-to-one interlinks are allowed, apparently interdependent networks coupled by these two networks has the optimal robustness when we connect every pair of the same nodes in these two networks. According to the structure of this interdependent network with the optimal robustness, we propose a preferential attachment strategy. And by applying this preferential attachment strategy to three existing connectivity link addition strategies RA (random addition strategy), LD (low degree addition strategy) and LIDD (low inter degree-degree difference addition strategy), we find that each improved strategy is obviously better than before in improving the robustness of interdependent networks. Our findings can provide guidance on connectivity link addition strategy to improve robustness of interdependent networks against cascading failures.

  13. A coevolving model based on preferential triadic closure for social media networks

    PubMed Central

    Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng

    2013-01-01

    The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061

  14. Thermodynamic Constraints Improve Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2017-08-08

    In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of reactions is thermodynamically constrained in modern metabolic networks. The reversibility constraints follow from heuristic thermodynamic poise approximations that take anticipated cellular metabolite concentration ranges into account. Because constraints reduce the feasible space, draft metabolic network reconstructions may need more extensive reconciliation, and a larger number of genes may become essential. Notwithstanding ubiquitous application, the effect of reversibility constraints on the predictive capabilities of metabolic networks has not been investigated in detail. Instead, work has focused on the implementation and validation of the thermodynamic poise calculation itself. With the advance of fast linear programming-based network reconciliation, the effects of reversibility constraints on network reconciliation and gene essentiality predictions have become feasible and are the subject of this study. Networks with thermodynamically informed reversibility constraints outperformed gene essentiality predictions compared to networks that were constrained with randomly shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as thermodynamically constrained networks, but predicted substantially fewer essential genes. Networks that were reconciled with sequence similarity data and strongly enforced reversibility constraints outperformed all other networks. We conclude that metabolic network analysis confirmed the validity of the thermodynamic constraints, and that thermodynamic poise information is actionable during network reconciliation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Functional Alignment of Metabolic Networks.

    PubMed

    Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded

    2016-05-01

    Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.

  16. Microbial regulatory and metabolic networks.

    PubMed

    Cho, Byung-Kwan; Charusanti, Pep; Herrgård, Markus J; Palsson, Bernhard O

    2007-08-01

    Reconstruction of transcriptional regulatory and metabolic networks is the foundation of large-scale microbial systems and synthetic biology. An enormous amount of information including the annotated genomic sequences and the genomic locations of DNA-binding regulatory proteins can be used to define metabolic and regulatory networks in cells. In particular, advances in experimental methods to map regulatory networks in microbial cells have allowed reliable data-driven reconstruction of these networks. Recent work on metabolic engineering and experimental evolution of microbes highlights the key role of global regulatory networks in controlling specific metabolic processes and the need to consider the integrated function of multiple types of networks for both scientific and engineering purposes.

  17. Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.

    2016-02-01

    Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.

  18. Evolution of metabolic network organization

    PubMed Central

    2010-01-01

    Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya), from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules in the cell. This approach

  19. From a Harmonious Unifying Hybrid Preferential Model Toward a Large Unifying Hybrid Network Model

    NASA Astrophysics Data System (ADS)

    Fang, Jinqing; Li, Yong; Bi, Qiao

    The motivation of this work raises four challenging questions: (1) Why is it that so many generalized random network models exist but they cannot be completely consistent with real-world networks? (2) Are these complex networks fundamentally attached in a random preferential manner without any deterministic attachment for both un-weighted and weighted networks? To answer the first two questions, we propose a harmonious unifying hybrid preferential model (HUHPM) controlled by a total hybrid ratio. (3) Why are social networks mostly positive degree-degree correlation but biological and technological networks tend to possess negative degree-degree correlation? (4) Are there coherent physical ideas and a unification formation mechanism for studies of complex networks? To seek a better answer of all these questions, especially the last two above, we extend the HUHPM to a large unifying hybrid network model (LUHNM), based on introducing two new hybrid ratios. We study the two models above, both numerically and analytically. All findings of topological properties in the network models above can give a certain universally meaningful result, which reveals some nontrivial topological properties, new phenomena, and give a relatively satisfactory answer.

  20. Relations between macropore network characteristics and the degree of preferential solute transport

    NASA Astrophysics Data System (ADS)

    Larsbo, M.; Koestel, J.; Jarvis, N.

    2014-12-01

    The characteristics of the soil macropore network determine the potential for fast transport of agrochemicals and contaminants through the soil. The objective of this study was to examine the relationships between macropore network characteristics, hydraulic properties and state variables and measures of preferential transport. Experiments were carried out under near-saturated conditions on undisturbed columns sampled from four agricultural topsoils of contrasting texture and structure. Macropore network characteristics were computed from 3-D X-ray tomography images of the soil pore system. Non-reactive solute transport experiments were carried out at five steady-state water flow rates from 2 to 12 mm h-1. The degree of preferential transport was evaluated by the normalised 5% solute arrival time and the apparent dispersivity calculated from the resulting breakthrough curves. Near-saturated hydraulic conductivities were measured on the same samples using a tension disc infiltrometer placed on top of the columns. Results showed that many of the macropore network characteristics were inter-correlated. For example, large macroporosities were associated with larger specific macropore surface areas and better local connectivity of the macropore network. Generally, an increased flow rate resulted in earlier solute breakthrough and a shifting of the arrival of peak concentration towards smaller drained volumes. Columns with smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities exhibited a greater degree of preferential transport. This can be explained by the fact that, with only two exceptions, global (i.e. sample scale) continuity of the macropore network was still preserved at low macroporosities. Thus, for any given flow rate, pores of larger diameter were actively conducting solute in soils of smaller near-saturated hydraulic conductivity. This was associated with larger local transport

  1. Metabolic networks: beyond the graph.

    PubMed

    Bernal, Andrés; Daza, Edgar

    2011-06-01

    Drugs are devised to enter into the metabolism of an organism in order to produce a desired effect. From the chemical point of view, cellular metabolism is constituted by a complex network of reactions transforming metabolites one in each other. Knowledge on the structure of this network could help to develop novel methods for drug design, and to comprehend the root of known unexpected side effects. Many large-scale studies on the structure of metabolic networks have been developed following models based on different kinds of graphs as the fundamental image of the reaction network. Graphs models, however, comport wrong assumptions regarding the structure of reaction networks that may lead into wrong conclusions if they are not taken into account. In this article we critically review some graph-theoretical approaches to the analysis of centrality, vulnerability and modularity of metabolic networks, analyzing their limitations in estimating these key network properties, consider some proposals explicit or implicitly based on directed hypergraphs regarding their ability to overcome these issues, and review some recent implementation improvements that make the application of these models in increasingly large networks a viable option.

  2. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    SciTech Connect

    Falzon, M.; McMahon, J.B.; Gazdar, A.F.; Schuller, H.M.

    1986-01-01

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of (/sup 14/C)DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring /sup 14/CO/sub 2/ production and covalent binding of radiolabel from (/sup 14/C)DEN to the cell protein and DNA fractions. (/sup 14/C)DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. (/sup 14/C)DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited (/sup 14/C)DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung.

  3. Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation.

    PubMed

    Alarcon, Cristina; Wicksteed, Barton; Prentki, Marc; Corkey, Barbara E; Rhodes, Christopher J

    2002-08-01

    The secondary signals emanating from increased glucose metabolism, which lead to specific increases in proinsulin biosynthesis translation, remain elusive. It is known that signals for glucose-stimulated insulin secretion and proinsulin biosynthesis diverge downstream of glycolysis. Consequently, the mitochondrial products ATP, Krebs cycle intermediates, glutamate, and acetoacetate were investigated as candidate stimulus-coupling signals specific for glucose-induced proinsulin biosynthesis in rat islets. Decreasing ATP levels by oxidative phosphorylation inhibitors showed comparable effects on proinsulin biosynthesis and total protein synthesis. Although it is a cofactor, ATP is unlikely to be a metabolic stimulus-coupling signal specific for glucose-induced proinsulin biosynthesis. Neither glutamic acid methyl ester nor acetoacetic acid methyl ester showed a specific effect on glucose-stimulated proinsulin biosynthesis. Interestingly, among Krebs cycle intermediates, only succinic acid monomethyl ester specifically stimulated proinsulin biosynthesis. Malonic acid methyl ester, an inhibitor of succinate dehydrogenase, also specifically increased glucose-induced proinsulin biosynthesis without affecting islet ATP levels or insulin secretion. Glucose caused a 40% increase in islet intracellular succinate levels, but malonic acid methyl ester showed no further effect, probably due to efficient conversion of succinate to succinyl-CoA. In this regard, a GTP-dependent succinyl-CoA synthetase activity was found in cytosolic fractions of pancreatic islets. Thus, succinate and/or succinyl-CoA appear to be preferential metabolic stimulus-coupling factors for glucose-induced proinsulin biosynthesis translation.

  4. CORE-Net: exploiting prior knowledge and preferential attachment to infer biological interaction networks.

    PubMed

    Montefusco, F; Cosentino, C; Amato, F

    2010-09-01

    The problem of reverse engineering in the topology of functional interaction networks from time-course experimental data has received considerable attention in literature, due to the potential applications in the most diverse fields, comprising engineering, biology, economics and social sciences. The present work introduces a novel technique, CORE-Net, which addresses this problem focusing on the case of biological interaction networks. The method is based on the representation of the network in the form of a dynamical system and on an iterative convex optimisation procedure. A first advantage of the proposed approach is that it allows to exploit qualitative prior knowledge about the network interactions, of the same kind as typically available from biological literature and databases. A second novel contribution consists of exploiting the growth and preferential attachment mechanisms to improve the inference performances when dealing with networks which exhibit a scale-free topology. The technique is first assessed through numerical tests on in silico random networks, subsequently it is applied to reverse engineering a cell cycle regulatory subnetwork in Saccharomyces cerevisiae from experimental microarray data. These tests show that the combined exploitation of prior knowledge and preferential attachment significantly improves the predictions with respect to other approaches.

  5. Flux networks in metabolic graphs

    NASA Astrophysics Data System (ADS)

    Warren, P. B.; Duarte Queiros, S. M.; Jones, J. L.

    2009-12-01

    A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms.

  6. Preferential inhibition of mouse hepatic coumarin 7-hydroxylase by inhibitors of steroid metabolizing monooxygenases.

    PubMed

    Kojo, A; Honkakoski, P; Järvinen, P; Pelkonen, O; Lang, M

    1989-08-01

    Etomidate, metomidate and metyrapone, all potent inhibitors of steroid metabolizing monooxygenases, inhibit preferentially coumarin 7-hydroxylase (COH) amongst several liver microsomal monooxygenase activities from control and pyrazole-treated D2 mice in vitro. SKF-525A, an inhibitor of phenobarbital-inducible monooxygenase activities has a much weaker effect on COH than the other three drugs, even though COH is a phenobarbital-inducible enzyme. Treatment of mice with eto- and metomidate decreases the microsomal COH also in vivo while the other activities remained unchanged (with the exception of 7-ethoxycoumarin O-deethylase (ECDE) in case of metomidate). Despite of the decrease in COH no parallel decrease in the amount of microsomal P450Coh (P450 isoenzyme highly active in the 7-hydroxylation of coumarin) could be found in dot immuno-binding analysis. These data suggest that among several liver microsomal P450 isoenzymes, metyrapone, eto- and metomidate interact preferentially with the P450Coh and that eto- and metomidate may alter selectively the catalytic properties of P450Coh leading to decreased enzyme activity. Two different Ks-values could be found for all three drug in their binding to microsomal cytochrome(s) P450. Based on substrate binding spectra, potassium ferricyanide treatment does not dissociate the complex between reduced P450 and metomidate and does it only partly for etomidate. Furthermore potassium ferricyanide treatment of microsomes does not increase COH after in vivo treatment of mice with eto- and metomidate. These data further suggest that the complex between P450Coh and eto- and metomidate may be particularly strong and independent from the redox state of the haem iron.

  7. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    PubMed

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  8. Nonlinear preferential rewiring in fixed-size networks as a diffusion process.

    PubMed

    Johnson, Samuel; Torres, Joaquín J; Marro, Joaquín

    2009-05-01

    We present an evolving network model in which the total numbers of nodes and edges are conserved, but in which edges are continuously rewired according to nonlinear preferential detachment and reattachment. Assuming power-law kernels with exponents alpha and beta , the stationary states which the degree distributions evolve toward exhibit a second-order phase transition-from relatively homogeneous to highly heterogeneous (with the emergence of starlike structures) at alpha=beta . Temporal evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power laws of exponents -alpha and 1-alpha .

  9. Metabolic Constraint-Based Refinement of Transcriptional Regulatory Networks

    PubMed Central

    Chandrasekaran, Sriram; Price, Nathan D.

    2013-01-01

    There is a strong need for computational frameworks that integrate different biological processes and data-types to unravel cellular regulation. Current efforts to reconstruct transcriptional regulatory networks (TRNs) focus primarily on proximal data such as gene co-expression and transcription factor (TF) binding. While such approaches enable rapid reconstruction of TRNs, the overwhelming combinatorics of possible networks limits identification of mechanistic regulatory interactions. Utilizing growth phenotypes and systems-level constraints to inform regulatory network reconstruction is an unmet challenge. We present our approach Gene Expression and Metabolism Integrated for Network Inference (GEMINI) that links a compendium of candidate regulatory interactions with the metabolic network to predict their systems-level effect on growth phenotypes. We then compare predictions with experimental phenotype data to select phenotype-consistent regulatory interactions. GEMINI makes use of the observation that only a small fraction of regulatory network states are compatible with a viable metabolic network, and outputs a regulatory network that is simultaneously consistent with the input genome-scale metabolic network model, gene expression data, and TF knockout phenotypes. GEMINI preferentially recalls gold-standard interactions (p-value = 10−172), significantly better than using gene expression alone. We applied GEMINI to create an integrated metabolic-regulatory network model for Saccharomyces cerevisiae involving 25,000 regulatory interactions controlling 1597 metabolic reactions. The model quantitatively predicts TF knockout phenotypes in new conditions (p-value = 10−14) and revealed potential condition-specific regulatory mechanisms. Our results suggest that a metabolic constraint-based approach can be successfully used to help reconstruct TRNs from high-throughput data, and highlights the potential of using a biochemically-detailed mechanistic framework

  10. Network Formation of Tissue Cells via Preferential Attraction to Elongated Structures

    NASA Astrophysics Data System (ADS)

    Szabo, Andras; Perryn, Erica D.; Czirok, Andras

    2007-01-01

    Vascular and nonvascular cells often form an interconnected network in vitro, similar to the early vascular bed of warm-blooded embryos. Our time-lapse recordings show that the network forms by extending sprouts, i.e., multicellular linear segments. To explain the emergence of such structures, we propose a simple model of preferential attraction to stretched cells. Numerical simulations reveal that the model evolves into a quasistationary pattern containing linear segments, which interconnect above the critical volume fraction of 0.2. In the quasistationary state, the generation of new branches offset the coarsening driven by surface tension. In agreement with empirical data, the characteristic size of the resulting polygonal pattern is density-independent within a wide range of volume fractions.

  11. Structural correlations in bacterial metabolic networks

    PubMed Central

    2011-01-01

    Background Evolution of metabolism occurs through the acquisition and loss of genes whose products acts as enzymes in metabolic reactions, and from a presumably simple primordial metabolism the organisms living today have evolved complex and highly variable metabolisms. We have studied this phenomenon by comparing the metabolic networks of 134 bacterial species with known phylogenetic relationships, and by studying a neutral model of metabolic network evolution. Results We consider the 'union-network' of 134 bacterial metabolisms, and also the union of two smaller subsets of closely related species. Each reaction-node is tagged with the number of organisms it belongs to, which we denote organism degree (OD), a key concept in our study. Network analysis shows that common reactions are found at the centre of the network and that the average OD decreases as we move to the periphery. Nodes of the same OD are also more likely to be connected to each other compared to a random OD relabelling based on their occurrence in the real data. This trend persists up to a distance of around five reactions. A simple growth model of metabolic networks is used to investigate the biochemical constraints put on metabolic-network evolution. Despite this seemingly drastic simplification, a 'union-network' of a collection of unrelated model networks, free of any selective pressure, still exhibit similar structural features as their bacterial counterpart. Conclusions The OD distribution quantifies topological properties of the evolutionary history of bacterial metabolic networks, and lends additional support to the importance of horizontal gene transfer during bacterial metabolic evolution where new reactions are attached at the periphery of the network. The neutral model of metabolic network growth can reproduce the main features of real networks, but we observe that the real networks contain a smaller common core, while they are more similar at the periphery of the network. This suggests

  12. Design of pathway-preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues

    PubMed Central

    Madak-Erdogan, Zeynep; Kim, Sung-Hoon; Gong, Ping; Zhao, Yiru C.; Zhang, Hui; Chambliss, Ken L.; Carlson, Kathryn E.; Mayne, Christopher G.; Shaul, Philip W.; Korach, Kenneth S.; Katzenellenbogen, John A.; Katzenellenbogen, Benita S.

    2016-01-01

    There is great medical need for estrogens with favorable pharmacological profiles, that support desirable activities for menopausal women such as metabolic and vascular protection but that lack stimulatory activities on the breast and uterus. Here, we report the development of structurally novel estrogens that preferentially activate a subset of estrogen receptor (ER) signaling pathways and result in favorable target tissue-selective activity. Through a process of structural alteration of estrogenic ligands that was designed to preserve their essential chemical and physical features but greatly reduced their binding affinity for ERs, we obtained “Pathway Preferential Estrogens” (PaPEs) which interacted with ERs to activate the extranuclear-initiated signaling pathway preferentially over the nuclear-initiated pathway. PaPEs elicited a pattern of gene regulation and cellular and biological processes that did not stimulate reproductive and mammary tissues or breast cancer cells. However, in ovariectomized mice, PaPEs triggered beneficial responses both in metabolic tissues (adipose tissue and liver) that reduced body weight gain and fat accumulation and in the vasculature that accelerated repair of endothelial damage. This process of designed ligand structure alteration represents a novel approach to develop ligands that shift the balance in ER-mediated extranuclear and nuclear pathways to obtain tissue-selective, non-nuclear pathway-preferential estrogens, which may be beneficial for postmenopausal hormone replacement. The approach may also have broad applicability for other members of the nuclear hormone receptor superfamily. PMID:27221711

  13. Preferential duplication of intermodular hub genes: an evolutionary signature in eukaryotes genome networks.

    PubMed

    Ferreira, Ricardo M; Rybarczyk-Filho, José Luiz; Dalmolin, Rodrigo J S; Castro, Mauro A A; Moreira, José C F; Brunnet, Leonardo G; de Almeida, Rita M C

    2013-01-01

    Whole genome protein-protein association networks are not random and their topological properties stem from genome evolution mechanisms. In fact, more connected, but less clustered proteins are related to genes that, in general, present more paralogs as compared to other genes, indicating frequent previous gene duplication episodes. On the other hand, genes related to conserved biological functions present few or no paralogs and yield proteins that are highly connected and clustered. These general network characteristics must have an evolutionary explanation. Considering data from STRING database, we present here experimental evidence that, more than not being scale free, protein degree distributions of organisms present an increased probability for high degree nodes. Furthermore, based on this experimental evidence, we propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a preferential attachment rule, or duplicated with a probability that linearly grows with gene degree and decreases with its clustering coefficient. For the first time a model yields results that simultaneously describe different topological distributions. Also, this model correctly predicts that, to produce protein-protein association networks with number of links and number of nodes in the observed range for Eukaryotes, it is necessary 90% of gene duplication and 10% of de novo gene acquisition. This scenario implies a universal mechanism for genome evolution.

  14. Cascading failure and robustness in metabolic networks.

    PubMed

    Smart, Ashley G; Amaral, Luis A N; Ottino, Julio M

    2008-09-09

    We investigate the relationship between structure and robustness in the metabolic networks of Escherichia coli, Methanosarcina barkeri, Staphylococcus aureus, and Saccharomyces cerevisiae, using a cascading failure model based on a topological flux balance criterion. We find that, compared to appropriate null models, the metabolic networks are exceptionally robust. Furthermore, by decomposing each network into rigid clusters and branched metabolites, we demonstrate that the enhanced robustness is related to the organization of branched metabolites, as rigid cluster formations in the metabolic networks appear to be consistent with null model behavior. Finally, we show that cascading in the metabolic networks can be described as a percolation process.

  15. Cascading failure and robustness in metabolic networks

    PubMed Central

    Smart, Ashley G.; Amaral, Luis A. N.; Ottino, Julio M.

    2008-01-01

    We investigate the relationship between structure and robustness in the metabolic networks of Escherichia coli, Methanosarcina barkeri, Staphylococcus aureus, and Saccharomyces cerevisiae, using a cascading failure model based on a topological flux balance criterion. We find that, compared to appropriate null models, the metabolic networks are exceptionally robust. Furthermore, by decomposing each network into rigid clusters and branched metabolites, we demonstrate that the enhanced robustness is related to the organization of branched metabolites, as rigid cluster formations in the metabolic networks appear to be consistent with null model behavior. Finally, we show that cascading in the metabolic networks can be described as a percolation process. PMID:18765805

  16. Randomizing Genome-Scale Metabolic Networks

    PubMed Central

    Samal, Areejit; Martin, Olivier C.

    2011-01-01

    Networks coming from protein-protein interactions, transcriptional regulation, signaling, or metabolism may appear to have “unusual” properties. To quantify this, it is appropriate to randomize the network and test the hypothesis that the network is not statistically different from expected in a motivated ensemble. However, when dealing with metabolic networks, the randomization of the network using edge exchange generates fictitious reactions that are biochemically meaningless. Here we provide several natural ensembles of randomized metabolic networks. A first constraint is to use valid biochemical reactions. Further constraints correspond to imposing appropriate functional constraints. We explain how to perform these randomizations with the help of Markov Chain Monte Carlo (MCMC) and show that they allow one to approach the properties of biological metabolic networks. The implication of the present work is that the observed global structural properties of real metabolic networks are likely to be the consequence of simple biochemical and functional constraints. PMID:21779409

  17. Preferential attachment in the growth of social networks: the internet encyclopedia Wikipedia.

    PubMed

    Capocci, A; Servedio, V D P; Colaiori, F; Buriol, L S; Donato, D; Leonardi, S; Caldarelli, G

    2006-09-01

    We present an analysis of the statistical properties and growth of the free on-line encyclopedia Wikipedia. By describing topics by vertices and hyperlinks between them as edges, we can represent this encyclopedia as a directed graph. The topological properties of this graph are in close analogy with those of the World Wide Web, despite the very different growth mechanism. In particular, we measure a scale-invariant distribution of the in and out degree and we are able to reproduce these features by means of a simple statistical model. As a major consequence, Wikipedia growth can be described by local rules such as the preferential attachment mechanism, though users, who are responsible of its evolution, can act globally on the network.

  18. Profiling metabolic networks to study cancer metabolism.

    PubMed

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention.

  19. An online system for metabolic network analysis

    PubMed Central

    Cicek, Abdullah Ercument; Qi, Xinjian; Cakmak, Ali; Johnson, Stephen R.; Han, Xu; Alshalwi, Sami; Ozsoyoglu, Zehra Meral; Ozsoyoglu, Gultekin

    2014-01-01

    Metabolic networks have become one of the centers of attention in life sciences research with the advancements in the metabolomics field. A vast array of studies analyzes metabolites and their interrelations to seek explanations for various biological questions, and numerous genome-scale metabolic networks have been assembled to serve for this purpose. The increasing focus on this topic comes with the need for software systems that store, query, browse, analyze and visualize metabolic networks. PathCase Metabolomics Analysis Workbench (PathCaseMAW) is built, released and runs on a manually created generic mammalian metabolic network. The PathCaseMAW system provides a database-enabled framework and Web-based computational tools for browsing, querying, analyzing and visualizing stored metabolic networks. PathCaseMAW editor, with its user-friendly interface, can be used to create a new metabolic network and/or update an existing metabolic network. The network can also be created from an existing genome-scale reconstructed network using the PathCaseMAW SBML parser. The metabolic network can be accessed through a Web interface or an iPad application. For metabolomics analysis, steady-state metabolic network dynamics analysis (SMDA) algorithm is implemented and integrated with the system. SMDA tool is accessible through both the Web-based interface and the iPad application for metabolomics analysis based on a metabolic profile. PathCaseMAW is a comprehensive system with various data input and data access subsystems. It is easy to work with by design, and is a promising tool for metabolomics research and for educational purposes. Database URL: http://nashua.case.edu/PathwaysMAW/Web PMID:25267793

  20. Your Health Buddies Matter: Preferential Selection and Social Influence on Weight Management in an Online Health Social Network.

    PubMed

    Meng, Jingbo

    2016-12-01

    A growing number of online social networks are designed with the intention to promote health by providing virtual space wherein individuals can seek and share information and support with similar others. Research has shown that real-world social networks have a significant influence on one's health behavior and outcomes. However, there is a dearth of studies on how individuals form social networks in virtual space and whether such online social networks exert any impact on individuals' health outcomes. Built on the Multi-Theoretical Multilevel (MTML) framework and drawing from literature on social influence, this study examined the mechanisms underlying the formation of an online health social network and empirically tested social influence on individual health outcomes through the network. Situated in a weight management social networking site, the study tracked a health buddy network of 709 users and their weight management activities and outcomes for 4 months. Actor-based modeling was used to test the joint dynamics of preferential selection and social influence among health buddies. The results showed that baseline, inbreeding, and health status homophily significantly predicted preferential selection of health buddies in the weight management social networking site, whereas self-interest in seeking experiential health information did not. The study also found peer influence of online health buddy networks on individual weight outcomes, such that an individual's odds of losing weight increased if, on average, the individual's health buddies were losing weight.

  1. Network growth with arbitrary initial conditions: Degree dynamics for uniform and preferential attachment

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2013-12-01

    This paper provides time-dependent expressions for the expected degree distribution of a given network that is subject to growth. We consider both uniform attachment, where incoming nodes form links to existing nodes selected uniformly at random, and preferential attachment, where probabilities are assigned proportional to the degrees of the existing nodes. We consider the cases of single and multiple links being formed by each newly introduced node. The initial conditions are arbitrary, that is, the solution depends on the degree distribution of the initial graph which is the substrate of the growth. Previous work in the literature focuses on the asymptotic state, that is, when the number of nodes added to the initial graph tends to infinity, rendering the effect of the initial graph negligible. Our contribution provides a solution for the expected degree distribution as a function of time, for arbitrary initial condition. Previous results match our results in the asymptotic limit. The results are discrete in the degree domain and continuous in the time domain, where the addition of new nodes to the graph are approximated by a continuous arrival rate.

  2. Preferential Effect of Synchrotron Microbeam Radiation Therapy on Intracerebral 9L Gliosarcoma Vascular Networks

    SciTech Connect

    Bouchet, Audrey; Lemasson, Benjamin; Le Duc, Geraldine; Maisin, Cecile; Braeuer-Krisch, Elke; Siegbahn, Erik Albert; Renaud, Luc; Khalil, Enam; Remy, Chantal; Poillot, Cathy; Bravin, Alberto; Laissue, Jean A.; Barbier, Emmanuel L.; Serduc, Raphael

    2010-12-01

    Purpose: Synchrotron microbeam radiation therapy (MRT) relies on spatial fractionation of the incident photon beam into parallel micron-wide beams. Our aim was to analyze the effects of MRT on normal brain and 9L gliosarcoma tissues, particularly on blood vessels. Methods and Materials: Responses to MRT (two arrays, one lateral, one anteroposterior (2 x 400 Gy), intersecting orthogonally in the tumor region) were studied during 6 weeks using MRI, immunohistochemistry, and vascular endothelial growth factor Western blot. Results: MRT increased the median survival time of irradiated rats (x3.25), significantly increased blood vessel permeability, and inhibited tumor growth; a cytotoxic effect on 9L cells was detected 5 days after irradiation. Significant decreases in tumoral blood volume fraction and vessel diameter were measured from 8 days after irradiation, due to loss of endothelial cells in tumors as detected by immunochemistry. Edema was observed in the normal brain exposed to both crossfired arrays about 6 weeks after irradiation. This edema was associated with changes in blood vessel morphology and an overexpression of vascular endothelial growth factor. Conversely, vascular parameters and vessel morphology in brain regions exposed to one of the two arrays were not damaged, and there was no loss of vascular endothelia. Conclusions: We show for the first time that preferential damage of MRT to tumor vessels versus preservation of radioresistant normal brain vessels contributes to the efficient palliation of 9L gliosarcomas in rats. Molecular pathways of repair mechanisms in normal and tumoral vascular networks after MRT may be essential for the improvement of such differential effects on the vasculature.

  3. Mathematical optimization applications in metabolic networks.

    PubMed

    Zomorrodi, Ali R; Suthers, Patrick F; Ranganathan, Sridhar; Maranas, Costas D

    2012-11-01

    Genome-scale metabolic models are increasingly becoming available for a variety of microorganisms. This has spurred the development of a wide array of computational tools, and in particular, mathematical optimization approaches, to assist in fundamental metabolic network analyses and redesign efforts. This review highlights a number of optimization-based frameworks developed towards addressing challenges in the analysis and engineering of metabolic networks. In particular, three major types of studies are covered here including exploring model predictions, correction and improvement of models of metabolism, and redesign of metabolic networks for the targeted overproduction of a desired compound. Overall, the methods reviewed in this paper highlight the diversity of queries, breadth of questions and complexity of redesigns that are amenable to mathematical optimization strategies.

  4. Genotype networks in metabolic reaction spaces

    PubMed Central

    2010-01-01

    Background A metabolic genotype comprises all chemical reactions an organism can catalyze via enzymes encoded in its genome. A genotype is viable in a given environment if it is capable of producing all biomass components the organism needs to survive and reproduce. Previous work has focused on the properties of individual genotypes while little is known about how genome-scale metabolic networks with a given function can vary in their reaction content. Results We here characterize spaces of such genotypes. Specifically, we study metabolic genotypes whose phenotype is viability in minimal chemical environments that differ in their sole carbon sources. We show that regardless of the number of reactions in a metabolic genotype, the genotypes of a given phenotype typically form vast, connected, and unstructured sets -- genotype networks -- that nearly span the whole of genotype space. The robustness of metabolic phenotypes to random reaction removal in such spaces has a narrow distribution with a high mean. Different carbon sources differ in the number of metabolic genotypes in their genotype network; this number decreases as a genotype is required to be viable on increasing numbers of carbon sources, but much less than if metabolic reactions were used independently across different chemical environments. Conclusions Our work shows that phenotype-preserving genotype networks have generic organizational properties and that these properties are insensitive to the number of reactions in metabolic genotypes. PMID:20302636

  5. Changes in Glucose and Fat Metabolism in Response to the Administration of a Hepato-Preferential Insulin Analog

    PubMed Central

    Moore, Mary C.; Winnick, Jason J.; Scott, Melanie; Farmer, Ben; Naver, Helle; Jeppesen, Claus B.; Madsen, Peter; Kjeldsen, Thomas B.; Nishimura, Erica; Brand, Christian L.; Cherrington, Alan D.

    2014-01-01

    Endogenous insulin secretion exposes the liver to three times higher insulin concentrations than the rest of the body. Because subcutaneous insulin delivery eliminates this gradient and is associated with metabolic abnormalities, functionally restoring the physiologic gradient may provide therapeutic benefits. The effects of recombinant human insulin (HI) delivered intraportally or peripherally were compared with an acylated insulin model compound (insulin-327) in dogs. During somatostatin and basal portal vein glucagon infusion, insulin was infused portally (PoHI; 1.8 pmol/kg/min; n = 7) or peripherally (PeHI; 1.8 pmol/kg/min; n = 8) and insulin-327 (Pe327; 7.2 pmol/kg/min; n = 5) was infused peripherally. Euglycemia was maintained by glucose infusion. While the effects on liver glucose metabolism were greatest in the PoHI and Pe327 groups, nonhepatic glucose uptake increased most in the PeHI group. Suppression of lipolysis was greater during PeHI than PoHI and was delayed in Pe327 infusion. Thus small increments in portal vein insulin have major consequences on the liver, with little effect on nonhepatic glucose metabolism, whereas insulin delivered peripherally cannot act on the liver without also affecting nonhepatic tissues. Pe327 functionally restored the physiologic portal–arterial gradient and thereby produced hepato-preferential effects. PMID:24947349

  6. Hierarchical analysis of dependency in metabolic networks.

    PubMed

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  7. Control of fluxes in metabolic networks

    PubMed Central

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-01-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  8. Control of fluxes in metabolic networks.

    PubMed

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-07-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism.

  9. Novel PEGylated Basal Insulin LY2605541 Has a Preferential Hepatic Effect on Glucose Metabolism

    PubMed Central

    Moore, Mary Courtney; Smith, Marta S.; Sinha, Vikram P.; Beals, John M.; Michael, M. Dodson; Jacober, Scott J.; Cherrington, Alan D.

    2014-01-01

    The impact of the novel basal insulin LY2605541 (LY) on hepatic and nonhepatic glucose uptake (non-HGU) was evaluated. Conscious dogs underwent euglycemic clamps with tracer and hepatic balance measurements. Clamp period infusions were peripheral venous regular insulin (0.1 nmol ⋅ kg−1 ⋅ h−1 [control], n = 6) or LY (bolus [nmol/kg], continuous [nmol ⋅ kg−1 ⋅ h−1]: 0.5, 0.5 [n = 6]; 0.375, 0.375 [n = 5]; 0.25, 0.25 [n = 4]), somatostatin, and glucose, as well as intraportal glucagon (basal). During the clamp, the dogs switched from net hepatic glucose output to uptake (rates reached 2.1 ± 1.2, 0.9 ± 2.1, 8.6 ± 2.3, and 6.0 ± 1.1 µmol ⋅ kg−1 ⋅ min−1 within 5 h in control, LY0.25, LY0.375, and LY0.5, respectively). Non-HGU in LY increased less than in control; the ratio of change from basal in non-HGU to change in net hepatic glucose balance, calculated when glucose infusion rates (GIRs) were ~20 µmol ⋅ kg-1 ⋅ min−1 in all groups, was higher in control (1.17 ± 0.38) versus LY0.25 (0.39 ± 0.33), LY0.375 (−0.01 ± 0.13), and LY0.5 (−0.09 ± 0.07). Likewise, the change from baseline in glucose Rd-to-Ra ratio was greatest in control (1.4 ± 0.3 vs. 0.6 ± 0.4, 0.5 ± 0.2, and 0.6 ± 0.2 in LY0.25, LY0.375, and LY0.5, respectively). In contrast to exogenously administered human insulin, LY demonstrated preferential hepatic effects, similar to endogenously secreted insulin. Therefore, the analog might reduce complications associated with current insulin therapy. PMID:24089512

  10. Novel PEGylated basal insulin LY2605541 has a preferential hepatic effect on glucose metabolism.

    PubMed

    Moore, Mary Courtney; Smith, Marta S; Sinha, Vikram P; Beals, John M; Michael, M Dodson; Jacober, Scott J; Cherrington, Alan D

    2014-02-01

    The impact of the novel basal insulin LY2605541 (LY) on hepatic and nonhepatic glucose uptake (non-HGU) was evaluated. Conscious dogs underwent euglycemic clamps with tracer and hepatic balance measurements. Clamp period infusions were peripheral venous regular insulin (0.1 nmol ⋅ kg(-1) ⋅ h(-1) [control], n = 6) or LY (bolus [nmol/kg], continuous [nmol ⋅ kg(-1) ⋅ h(-1)]: 0.5, 0.5 [n = 6]; 0.375, 0.375 [n = 5]; 0.25, 0.25 [n = 4]), somatostatin, and glucose, as well as intraportal glucagon (basal). During the clamp, the dogs switched from net hepatic glucose output to uptake (rates reached 2.1 ± 1.2, 0.9 ± 2.1, 8.6 ± 2.3, and 6.0 ± 1.1 µmol ⋅ kg(-1) ⋅ min(-1) within 5 h in control, LY0.25, LY0.375, and LY0.5, respectively). Non-HGU in LY increased less than in control; the ratio of change from basal in non-HGU to change in net hepatic glucose balance, calculated when glucose infusion rates (GIRs) were ~20 µmol ⋅ kg(-1) ⋅ min(-1) in all groups, was higher in control (1.17 ± 0.38) versus LY0.25 (0.39 ± 0.33), LY0.375 (-0.01 ± 0.13), and LY0.5 (-0.09 ± 0.07). Likewise, the change from baseline in glucose Rd-to-Ra ratio was greatest in control (1.4 ± 0.3 vs. 0.6 ± 0.4, 0.5 ± 0.2, and 0.6 ± 0.2 in LY0.25, LY0.375, and LY0.5, respectively). In contrast to exogenously administered human insulin, LY demonstrated preferential hepatic effects, similar to endogenously secreted insulin. Therefore, the analog might reduce complications associated with current insulin therapy.

  11. Chemical Approaches to Probe Metabolic Networks

    PubMed Central

    Medina-Cleghorn, Daniel; Nomura, Daniel K.

    2013-01-01

    One of the more provocative realizations that have come out of the genome sequencing projects is that organisms possess a large number of uncharacterized or poorly characterized enzymes. This finding belies the commonly held notion that our knowledge of cell metabolism is nearly complete, underscoring the vast landscape of unannotated metabolic and signaling networks that operate under normal physiological conditions, let alone in disease states where metabolic networks may be rewired, dysregulated, or altered to drive disease progression. Consequently, the functional annotation of enzymatic pathways represents a grand challenge for researchers in the post-genomic era. This review will highlight the chemical technologies that have been successfully used to characterize metabolism, and put forth some of the challenges we face as we expand our map of metabolic pathways. PMID:23296751

  12. Chemical approaches to study metabolic networks.

    PubMed

    Medina-Cleghorn, Daniel; Nomura, Daniel K

    2013-03-01

    One of the more provocative realizations that have come out of the genome sequencing projects is that organisms possess a large number of uncharacterized or poorly characterized enzymes. This finding belies the commonly held notion that our knowledge of cell metabolism is nearly complete, underscoring the vast landscape of unannotated metabolic and signaling networks that operate under normal physiological conditions, let alone in disease states where metabolic networks may be rewired, dysregulated, or altered to drive disease progression. Consequently, the functional annotation of enzymatic pathways represents a grand challenge for researchers in the post-genomic era. This review will highlight the chemical technologies that have been successfully used to characterize metabolism, and put forth some of the challenges we face as we expand our map of metabolic pathways.

  13. Preferential Use of Central Metabolism In Vivo Reveals a Nutritional Basis for Polymicrobial Infection

    PubMed Central

    Alteri, Christopher J.; Himpsl, Stephanie D.; Mobley, Harry L. T.

    2015-01-01

    The human genitourinary tract is a common anatomical niche for polymicrobial infection and a leading site for the development of bacteremia and sepsis. Most uncomplicated, community-acquired urinary tract infections (UTI) are caused by Escherichia coli, while another bacterium, Proteus mirabilis, is more often associated with complicated UTI. Here, we report that uropathogenic E. coli and P. mirabilis have divergent requirements for specific central pathways in vivo despite colonizing and occupying the same host environment. Using mutants of specific central metabolism enzymes, we determined glycolysis mutants lacking pgi, tpiA, pfkA, or pykA all have fitness defects in vivo for P. mirabilis but do not affect colonization of E. coli during UTI. Similarly, the oxidative pentose phosphate pathway is required only for P. mirabilis in vivo. In contrast, gluconeogenesis is required only for E. coli fitness in vivo. The remarkable difference in central pathway utilization between E. coli and P. mirabilis during experimental UTI was also observed for TCA cycle mutants in sdhB, fumC, and frdA. The distinct in vivo requirements between these pathogens suggest E. coli and P. mirabilis are not direct competitors within host urinary tract nutritional niche. In support of this, we found that co-infection with E. coli and P. mirabilis wild-type strains enhanced bacterial colonization and persistence of both pathogens during UTI. Our results reveal that complementary utilization of central carbon metabolism facilitates polymicrobial disease and suggests microbial activity in vivo alters the host urinary tract nutritional niche. PMID:25568946

  14. Inference and Prediction of Metabolic Network Fluxes

    PubMed Central

    Nikoloski, Zoran; Perez-Storey, Richard; Sweetlove, Lee J.

    2015-01-01

    In this Update, we cover the basic principles of the estimation and prediction of the rates of the many interconnected biochemical reactions that constitute plant metabolic networks. This includes metabolic flux analysis approaches that utilize the rates or patterns of redistribution of stable isotopes of carbon and other atoms to estimate fluxes, as well as constraints-based optimization approaches such as flux balance analysis. Some of the major insights that have been gained from analysis of fluxes in plants are discussed, including the functioning of metabolic pathways in a network context, the robustness of the metabolic phenotype, the importance of cell maintenance costs, and the mechanisms that enable energy and redox balancing at steady state. We also discuss methodologies to exploit 'omic data sets for the construction of tissue-specific metabolic network models and to constrain the range of permissible fluxes in such models. Finally, we consider the future directions and challenges faced by the field of metabolic network flux phenotyping. PMID:26392262

  15. Simulating adverse event spontaneous reporting systems as preferential attachment networks: application to the Vaccine Adverse Event Reporting System.

    PubMed

    Scott, J; Botsis, T; Ball, R

    2014-01-01

    Spontaneous Reporting Systems [SRS] are critical tools in the post-licensure evaluation of medical product safety. Regulatory authorities use a variety of data mining techniques to detect potential safety signals in SRS databases. Assessing the performance of such signal detection procedures requires simulated SRS databases, but simulation strategies proposed to date each have limitations. We sought to develop a novel SRS simulation strategy based on plausible mechanisms for the growth of databases over time. We developed a simulation strategy based on the network principle of preferential attachment. We demonstrated how this strategy can be used to create simulations based on specific databases of interest, and provided an example of using such simulations to compare signal detection thresholds for a popular data mining algorithm. The preferential attachment simulations were generally structurally similar to our targeted SRS database, although they had fewer nodes of very high degree. The approach was able to generate signal-free SRS simulations, as well as mimicking specific known true signals. Explorations of different reporting thresholds for the FDA Vaccine Adverse Event Reporting System suggested that using proportional reporting ratio [PRR] > 3.0 may yield better signal detection operating characteristics than the more commonly used PRR > 2.0 threshold. The network analytic approach to SRS simulation based on the principle of preferential attachment provides an attractive framework for exploring the performance of safety signal detection algorithms. This approach is potentially more principled and versatile than existing simulation approaches. The utility of network-based SRS simulations needs to be further explored by evaluating other types of simulated signals with a broader range of data mining approaches, and comparing network-based simulations with other simulation strategies where applicable.

  16. Optimal flux patterns in cellular metabolic networks.

    PubMed

    Almaas, Eivind

    2007-06-01

    The availability of whole-cell-level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate the metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations has relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reactions are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central carbon metabolic pathways for the sample of random environments.

  17. Optimal flux patterns in cellular metabolic networks

    SciTech Connect

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  18. Optimal flux patterns in cellular metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2007-06-01

    The availability of whole-cell-level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate the metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30 000 random cellular environments. The distribution of reaction fluxes is heavy tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations has relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reactions are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central carbon metabolic pathways for the sample of random environments.

  19. Detecting breakdown points in metabolic networks.

    PubMed

    Tagore, Somnath; De, Rajat K

    2011-12-14

    A complex network of biochemical reactions present in an organism generates various biological moieties necessary for its survival. It is seen that biological systems are robust to genetic and environmental changes at all levels of organization. Functions of various organisms are sustained against mutational changes by using alternative pathways. It is also seen that if any one of the paths for production of the same metabolite is hampered, an alternate path tries to overcome this defect and helps in combating the damage. Certain physical, chemical or genetic change in any of the precursor substrate of a biochemical reaction may damage the production of the ultimate product. We employ a quantitative approach for simulating this phenomena of causing a physical change in the biochemical reactions by performing external perturbations to 12 metabolic pathways under carbohydrate metabolism in Saccharomyces cerevisae as well as 14 metabolic pathways under carbohydrate metabolism in Homo sapiens. Here, we investigate the relationship between structure and degree of compatibility of metabolites against external perturbations, i.e., robustness. Robustness can also be further used to identify the extent to which a metabolic pathway can resist a mutation event. Biological networks with a certain connectivity distribution may be very resilient to a particular attack but not to another. The goal of this work is to determine the exact boundary of network breakdown due to both random and targeted attack, thereby analyzing its robustness. We also find that compared to various non-standard models, metabolic networks are exceptionally robust. Here, we report the use of a 'Resilience-based' score for enumerating the concept of 'network-breakdown'. We also use this approach for analyzing metabolite essentiality providing insight into cellular robustness that can be further used for future drug development. We have investigated the behavior of metabolic pathways under carbohydrate

  20. Metabolic networks are almost nonfractal: a comprehensive evaluation.

    PubMed

    Takemoto, Kazuhiro

    2014-08-01

    Network self-similarity or fractality are widely accepted as an important topological property of metabolic networks; however, recent studies cast doubt on the reality of self-similarity in the networks. Therefore, we perform a comprehensive evaluation of metabolic network fractality using a box-covering method with an earlier version and the latest version of metabolic networks and demonstrate that the latest metabolic networks are almost self-dissimilar, while the earlier ones are fractal, as reported in a number of previous studies. This result may be because the networks were randomized because of an increase in network density due to database updates, suggesting that the previously observed network fractality was due to a lack of available data on metabolic reactions. This finding may not entirely discount the importance of self-similarity of metabolic networks. Rather, it highlights the need for a more suitable definition of network fractality and a more careful examination of self-similarity of metabolic networks.

  1. Metabolic networks are almost nonfractal: A comprehensive evaluation

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuhiro

    2014-08-01

    Network self-similarity or fractality are widely accepted as an important topological property of metabolic networks; however, recent studies cast doubt on the reality of self-similarity in the networks. Therefore, we perform a comprehensive evaluation of metabolic network fractality using a box-covering method with an earlier version and the latest version of metabolic networks and demonstrate that the latest metabolic networks are almost self-dissimilar, while the earlier ones are fractal, as reported in a number of previous studies. This result may be because the networks were randomized because of an increase in network density due to database updates, suggesting that the previously observed network fractality was due to a lack of available data on metabolic reactions. This finding may not entirely discount the importance of self-similarity of metabolic networks. Rather, it highlights the need for a more suitable definition of network fractality and a more careful examination of self-similarity of metabolic networks.

  2. Caenorhabditis elegans metabolic gene regulatory networks govern the cellular economy.

    PubMed

    Watson, Emma; Walhout, Albertha J M

    2014-10-01

    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here, we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors (NHRs) in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by miRNAs, and feedback between metabolic genes and their regulators.

  3. Metabolic network alignment in large scale by network compression.

    PubMed

    Ay, Ferhat; Dang, Michael; Kahveci, Tamer

    2012-03-21

    Metabolic network alignment is a system scale comparative analysis that discovers important similarities and differences across different metabolisms and organisms. Although the problem of aligning metabolic networks has been considered in the past, the computational complexity of the existing solutions has so far limited their use to moderately sized networks. In this paper, we address the problem of aligning two metabolic networks, particularly when both of them are too large to be dealt with using existing methods. We develop a generic framework that can significantly improve the scale of the networks that can be aligned in practical time. Our framework has three major phases, namely the compression phase, the alignment phase and the refinement phase. For the first phase, we develop an algorithm which transforms the given networks to a compressed domain where they are summarized using fewer nodes, termed supernodes, and interactions. In the second phase, we carry out the alignment in the compressed domain using an existing network alignment method as our base algorithm. This alignment results in supernode mappings in the compressed domain, each of which are smaller instances of network alignment problem. In the third phase, we solve each of the instances using the base alignment algorithm to refine the alignment results. We provide a user defined parameter to control the number of compression levels which generally determines the tradeoff between the quality of the alignment versus how fast the algorithm runs. Our experiments on the networks from KEGG pathway database demonstrate that the compression method we propose reduces the sizes of metabolic networks by almost half at each compression level which provides an expected speedup of more than an order of magnitude. We also observe that the alignments obtained by only one level of compression capture the original alignment results with high accuracy. Together, these suggest that our framework results in

  4. Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.

    PubMed

    Blank, Lars M; Ebert, Birgitta E; Buehler, Katja; Bühler, Bruno

    2010-08-01

    Whole-cell biocatalysis utilizes native or recombinant enzymes produced by cellular metabolism to perform synthetically interesting reactions. Besides hydrolases, oxidoreductases represent the most applied enzyme class in industry. Oxidoreductases are attributed a high future potential, especially for applications in the chemical and pharmaceutical industries, as they enable highly interesting chemistry (e.g., the selective oxyfunctionalization of unactivated C-H bonds). Redox reactions are characterized by electron transfer steps that often depend on redox cofactors as additional substrates. Their regeneration typically is accomplished via the metabolism of whole-cell catalysts. Traditionally, studies towards productive redox biocatalysis focused on the biocatalytic enzyme, its activity, selectivity, and specificity, and several successful examples of such processes are running commercially. However, redox cofactor regeneration by host metabolism was hardly considered for the optimization of biocatalytic rate, yield, and/or titer. This article reviews molecular mechanisms of oxidoreductases with synthetic potential and the host redox metabolism that fuels biocatalytic reactions with redox equivalents. The tools discussed in this review for investigating redox metabolism provide the basis for studies aiming at a deeper understanding of the interplay between synthetically active enzymes and metabolic networks. The ultimate goal of rational whole-cell biocatalyst engineering and use for fine chemical production is discussed.

  5. Maize metabolic network construction and transcriptome analysis

    USDA-ARS?s Scientific Manuscript database

    A framework for understanding the synthesis and catalysis of metabolites and other biochemicals by proteins is crucial for unraveling the physiology of cells. To create such a framework for Zea mays ssp. mays (maize), we developed MaizeCyc a metabolic network of enzyme catalysts, proteins, carbohydr...

  6. Kinetic analysis of complex metabolic networks

    SciTech Connect

    Stephanopoulos, G.

    1996-12-31

    A new methodology is presented for the analysis of complex metabolic networks with the goal of metabolite overproduction. The objective is to locate a small number of reaction steps in a network that have maximum impact on network flux amplification and whose rate can also be increased without functional network derangement. This method extends the concepts of Metabolic Control Analysis to groups of reactions and offers the means for calculating group control coefficients as measures of the control exercised by groups of reactions on the overall network fluxes and intracellular metabolite pools. It is further demonstrated that the optimal strategy for the effective increase of network fluxes, while maintaining an uninterrupted supply of intermediate metabolites, is through the coordinated amplification of multiple (as opposed to a single) reaction steps. Satisfying this requirement invokes the concept of the concentration control to coefficient, which emerges as a critical parameter in the identification of feasible enzymatic modifications with maximal impact on the network flux. A case study of aromatic aminoacid production is provided to illustrate these concepts.

  7. Dissecting Germ Cell Metabolism through Network Modeling.

    PubMed

    Whitmore, Leanne S; Ye, Ping

    2015-01-01

    Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

  8. Ecological network analysis of China's societal metabolism.

    PubMed

    Zhang, Yan; Liu, Hong; Li, Yating; Yang, Zhifeng; Li, Shengsheng; Yang, Naijin

    2012-01-01

    Uncontrolled socioeconomic development has strong negative effects on the ecological environment, including pollution and the depletion and waste of natural resources. These serious consequences result from the high flows of materials and energy through a socioeconomic system produced by exchanges between the system and its surroundings, causing the disturbance of metabolic processes. In this paper, we developed an ecological network model for a societal system, and used China in 2006 as a case study to illustrate application of the model. We analyzed China's basic metabolic processes and used ecological network analysis to study the network relationships within the system. Basic components comprised the internal environment, five sectors (agriculture, exploitation, manufacturing, domestic, and recycling), and the external environment. We defined 21 pairs of ecological relationships in China's societal metabolic system (excluding self-mutualism within a component). Using utility and throughflow analysis, we found that exploitation, mutualism, and competition relationships accounted for 76.2, 14.3, and 9.5% of the total relationships, respectively. In our trophic level analysis, the components were divided into producers, consumers, and decomposers according to their positions in the system. Our analyses revealed ways to optimize the system's structure and adjust its functions, thereby promoting healthier socioeconomic development, and suggested ways to apply ecological network analysis in future socioeconomic research.

  9. The topology of metabolic isotope labeling networks.

    PubMed

    Weitzel, Michael; Wiechert, Wolfgang; Nöh, Katharina

    2007-08-29

    Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures. With a strong focus on the speedup of algorithms the topology of ILNs is investigated using graph theoretic concepts and algorithms. A rigorous determination of all cyclic and isomorphic subnetworks, accompanied by the global analysis of ILN connectivity is performed. Particularly, it is proven that ILNs always brake up into a large number of small strongly connected components (SCCs) and, moreover, there are natural isomorphisms between many of these SCCs. All presented techniques are universal, i.e. they do not require special assumptions on the network structure, bidirectionality of fluxes, measurement configuration, or label input. The general results are exemplified with a practically relevant metabolic network which describes the central metabolism of E. coli comprising 10390 isotopomer pools. Exploiting the topological features of ILNs leads to a significant speedup of all universal algorithms for ILE evaluation. It is proven in theory and exemplified with the E. coli example that a speedup factor of about 1000 compared to standard algorithms is achieved. This widely opens the door for new high performance algorithms suitable for high throughput applications and large ILNs. Moreover, for the first time the global topological analysis of ILNs allows to comprehensively

  10. Growth-Induced Instability in Metabolic Networks

    SciTech Connect

    Goyal, Sidhartha; Wingreen, Ned S.

    2007-03-30

    Product-feedback inhibition is a ubiquitous regulatory scheme for maintaining homeostasis in living cells. Individual metabolic pathways with product-feedback inhibition are stable as long as one pathway step is rate limiting. However, pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We show that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Our results highlight novel evolutionary constraints on the architecture of metabolism.

  11. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571

  12. Genotype networks, innovation, and robustness in sulfur metabolism

    PubMed Central

    2011-01-01

    Background A metabolism is a complex network of chemical reactions. This network synthesizes multiple small precursor molecules of biomass from chemicals that occur in the environment. The metabolic network of any one organism is encoded by a metabolic genotype, defined as the set of enzyme-coding genes whose products catalyze the network's reactions. Each metabolic genotype has a metabolic phenotype. We define this metabolic phenotype as the spectrum of different sources of a chemical element that a metabolism can use to synthesize biomass. We here focus on the element sulfur. We study properties of the space of all possible metabolic genotypes in sulfur metabolism by analyzing random metabolic genotypes that are viable on different numbers of sulfur sources. Results We show that metabolic genotypes with the same phenotype form large connected genotype networks - networks of metabolic networks - that extend far through metabolic genotype space. How far they reach through this space depends linearly on the number of super-essential reactions. A super-essential reaction is an essential reaction that occurs in all networks viable in a given environment. Metabolic networks can differ in how robust their phenotype is to the removal of individual reactions. We find that this robustness depends on metabolic network size, and on other variables, such as the size of minimal metabolic networks whose reactions are all essential in a specific environment. We show that different neighborhoods of any genotype network harbor very different novel phenotypes, metabolic innovations that can sustain life on novel sulfur sources. We also analyze the ability of evolving populations of metabolic networks to explore novel metabolic phenotypes. This ability is facilitated by the existence of genotype networks, because different neighborhoods of these networks contain very different novel phenotypes. Conclusions We show that the space of metabolic genotypes involved in sulfur metabolism

  13. Genome-scale metabolic network reconstruction.

    PubMed

    Fondi, Marco; Liò, Pietro

    2015-01-01

    Bacterial metabolism is an important source of novel products/processes for everyday life and strong efforts are being undertaken to discover and exploit new usable substances of microbial origin. Computational modeling and in silico simulations are powerful tools in this context since they allow the exploration and a deeper understanding of bacterial metabolic circuits. Many approaches exist to quantitatively simulate chemical reaction fluxes within the whole microbial metabolism and, regardless of the technique of choice, metabolic model reconstruction is the first step in every modeling pipeline. Reconstructing a metabolic network consists in drafting the list of the biochemical reactions that an organism can carry out together with information on cellular boundaries, a biomass assembly reaction, and exchange fluxes with the external environment. Building up models able to represent the different functional cellular states is universally recognized as a tricky task that requires intensive manual effort and much additional information besides genome sequence. In this chapter we present a general protocol for metabolic reconstruction in bacteria and the main challenges encountered during this process.

  14. Protein-Protein interaction networks: why static MpK model works and preferential attachment does not

    NASA Astrophysics Data System (ADS)

    Zhang, Jingshan; Shakhnovich, Eugene

    2007-03-01

    Various approaches have been proposed to explain the observed scale free structure p(k) ˜k^-γ of protein-protein interaction networks. We argue that the preferential attachment coming from gene duplication[1] is questionable. A static ``MpK'' model produces the scale free structure via computer simulations[2] for unexplained reasons. On the other hand, it was analytically proved[3] that deterministic threshold models produce scale free networks (with γ≡2) if fitness distributions are exponential. We study the static MpK model further and find the above analytical proof applicable with extensions, and γ dependent on the threshold parameter. This work not only predicts the dependence of γ on protein concentrations, but also provides a generic mechanism of scale free networks. The clustering coefficient distribution in the model is interpreted by a simple picture. [1] A.-L. Barab'asi and Z. N. Oltvai, Nature Reviews Genetics 5, 101 (2004). [2] E. J. Deeds, O. Ashenberg, E. I. Shakhnovich, Proc. Natl. Acad. Sci. USA 103, 311 (2006). [3] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz, Phys. Rev. Lett. 89, 258702 (2002).

  15. The reconstruction and analysis of tissue specific human metabolic networks.

    PubMed

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  16. On the identifiability of metabolic network models.

    PubMed

    Berthoumieux, Sara; Brilli, Matteo; Kahn, Daniel; de Jong, Hidde; Cinquemani, Eugenio

    2013-12-01

    A major problem for the identification of metabolic network models is parameter identifiability, that is, the possibility to unambiguously infer the parameter values from the data. Identifiability problems may be due to the structure of the model, in particular implicit dependencies between the parameters, or to limitations in the quantity and quality of the available data. We address the detection and resolution of identifiability problems for a class of pseudo-linear models of metabolism, so-called linlog models. Linlog models have the advantage that parameter estimation reduces to linear or orthogonal regression, which facilitates the analysis of identifiability. We develop precise definitions of structural and practical identifiability, and clarify the fundamental relations between these concepts. In addition, we use singular value decomposition to detect identifiability problems and reduce the model to an identifiable approximation by a principal component analysis approach. The criterion is adapted to real data, which are frequently scarce, incomplete, and noisy. The test of the criterion on a model with simulated data shows that it is capable of correctly identifying the principal components of the data vector. The application to a state-of-the-art dataset on central carbon metabolism in Escherichia coli yields the surprising result that only 4 out of 31 reactions, and 37 out of 100 parameters, are identifiable. This underlines the practical importance of identifiability analysis and model reduction in the modeling of large-scale metabolic networks. Although our approach has been developed in the context of linlog models, it carries over to other pseudo-linear models, such as generalized mass-action (power-law) models. Moreover, it provides useful hints for the identifiability analysis of more general classes of nonlinear models of metabolism.

  17. Cytochrome P450 27A1 Deficiency and Regional Differences in Brain Sterol Metabolism Cause Preferential Cholestanol Accumulation in the Cerebellum.

    PubMed

    Mast, Natalia; Anderson, Kyle W; Lin, Joseph B; Li, Yong; Turko, Illarion V; Tatsuoka, Curtis; Bjorkhem, Ingemar; Pikuleva, Irina A

    2017-02-11

    Cytochrome P450 27A1 (CYP27A1 or sterol 27-hydroxylase) is a ubiquitous, multifunctional enzyme catalyzing regio- and stereo-specific hydroxylation of different sterols. In humans, complete CYP27A1 deficiency leads to cerebrotendinous xanthomatosis or nodule formation in tendons and brain (preferentially in the cerebellum) rich in cholesterol and cholestanol, the 5α-saturated analog of cholesterol. In Cyp27a1(-/-) mice, xanthomas are not formed, despite a significant cholestanol increase in the brain and cerebellum. The mechanism behind cholestanol production has been clarified, yet little is known about its metabolism, except that CYP27A1 might metabolize cholestanol. It also is unclear why CYP27A1 deficiency results in preferential cholestanol accumulation in the cerebellum. We hypothesized that cholestanol might be metabolized by CYP46A1, the principal cholesterol 24-hydroxylase in the brain. We quantified sterols along with CYP27A1 and CYP46A1 in mouse models (Cyp27a1(-/-) , Cyp46a1(-/-) , Cyp27a1(-/-)Cyp46a1(-/-) , and two wild type strains) and human brain specimens. In vitro experiments with purified P450s were conducted as well. We demonstrate that CYP46A1 is involved in cholestanol removal from the brain, and that several factors contribute to the preferential increase in cholestanol in the cerebellum arising from CYP27A1 deficiency. These factors include: (i) low cerebellar abundance of CYP46A1 and high cerebellar abundance of CYP27A1, whose lack likely selectively increases the cerebellar cholestanol production; (ii) spatial separation in the cerebellum of cholesterol/cholestanol-metabolizing P450s from a pool of metabolically available cholestanol; and (iii) weak cerebellar regulation of cholesterol biosynthesis. We identified a new physiological role of CYP46A1, an important brain enzyme and cytochrome P450 that could be activated pharmacologically.

  18. Hierarchical modularity of nested bow-ties in metabolic networks.

    PubMed

    Zhao, Jing; Yu, Hong; Luo, Jian-Hua; Cao, Zhi-Wei; Li, Yi-Xue

    2006-08-18

    The exploration of the structural topology and the organizing principles of genome-based large-scale metabolic networks is essential for studying possible relations between structure and functionality of metabolic networks. Topological analysis of graph models has often been applied to study the structural characteristics of complex metabolic networks. In this work, metabolic networks of 75 organisms were investigated from a topological point of view. Network decomposition of three microbes (Escherichia coli, Aeropyrum pernix and Saccharomyces cerevisiae) shows that almost all of the sub-networks exhibit a highly modularized bow-tie topological pattern similar to that of the global metabolic networks. Moreover, these small bow-ties are hierarchically nested into larger ones and collectively integrated into a large metabolic network, and important features of this modularity are not observed in the random shuffled network. In addition, such a bow-tie pattern appears to be present in certain chemically isolated functional modules and spatially separated modules including carbohydrate metabolism, cytosol and mitochondrion respectively. The highly modularized bow-tie pattern is present at different levels and scales, and in different chemical and spatial modules of metabolic networks, which is likely the result of the evolutionary process rather than a random accident. Identification and analysis of such a pattern is helpful for understanding the design principles and facilitate the modelling of metabolic networks.

  19. Browsing Metabolic and Regulatory Networks with BioCyc

    PubMed Central

    Latendresse, Mario; Paley, Suzanne; Karp, Peter D.

    2012-01-01

    Summary The BioCyc database collection at BioCyc.org integrates genome and cellular network information for more than 500 organisms. This method article describes Web-based tools for browsing metabolic and regulatory networks within BioCyc. These tools allow visualization of complete metabolic and regulatory networks, and allow the user to zoom-in on regions of the network of interest. The user can find objects of interest such as genes and metabolites within the networks, and can selectively examine the connectivity of the network. The EcoCyc database within the BioCyc collection has been extensively curated. The descriptions within EcoCyc of the Escherichia coli metabolic network and regulatory network were derived from thousands of publications. Other BioCyc databases received moderate levels of curation, or no curation at all. Those databases receiving no curation contain metabolic networks that were computationally inferred from the annotated genome sequences of each organism. PMID:22144155

  20. Basic concepts and principles of stoichiometric modeling of metabolic networks.

    PubMed

    Maarleveld, Timo R; Khandelwal, Ruchir A; Olivier, Brett G; Teusink, Bas; Bruggeman, Frank J

    2013-09-01

    Metabolic networks supply the energy and building blocks for cell growth and maintenance. Cells continuously rewire their metabolic networks in response to changes in environmental conditions to sustain fitness. Studies of the systemic properties of metabolic networks give insight into metabolic plasticity and robustness, and the ability of organisms to cope with different environments. Constraint-based stoichiometric modeling of metabolic networks has become an indispensable tool for such studies. Herein, we review the basic theoretical underpinnings of constraint-based stoichiometric modeling of metabolic networks. Basic concepts, such as stoichiometry, chemical moiety conservation, flux modes, flux balance analysis, and flux solution spaces, are explained with simple, illustrative examples. We emphasize the mathematical definitions and their network topological interpretations.

  1. Metabolic network modularity in archaea depends on growth conditions.

    PubMed

    Takemoto, Kazuhiro; Borjigin, Suritalatu

    2011-01-01

    Network modularity is an important structural feature in metabolic networks. A previous study suggested that the variability in natural habitat promotes metabolic network modularity in bacteria. However, since many factors influence the structure of the metabolic network, this phenomenon might be limited and there may be other explanations for the change in metabolic network modularity. Therefore, we focus on archaea because they belong to another domain of prokaryotes and show variability in growth conditions (e.g., trophic requirement and optimal growth temperature), but not in habitats because of their specialized growth conditions (e.g., high growth temperature). The relationship between biological features and metabolic network modularity is examined in detail. We first show the absence of a relationship between network modularity and habitat variability in archaea, as archaeal habitats are more limited than bacterial habitats. Although this finding implies the need for further studies regarding the differences in network modularity, it does not contradict previous work. Further investigations reveal alternative explanations. Specifically, growth conditions, trophic requirement, and optimal growth temperature, in particular, affect metabolic network modularity. We have discussed the mechanisms for the growth condition-dependant changes in network modularity. Our findings suggest different explanations for the changes in network modularity and provide new insights into adaptation and evolution in metabolic networks, despite several limitations of data analysis.

  2. Steady states and stability in metabolic networks without regulation.

    PubMed

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological

  3. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    PubMed

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  4. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    NASA Astrophysics Data System (ADS)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  5. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development.

    PubMed

    Angelovici, Ruthie; Fait, Aaron; Zhu, Xiaohong; Szymanski, Jedrzej; Feldmesser, Ester; Fernie, Alisdair R; Galili, Gad

    2009-12-01

    In order to elucidate transcriptional and metabolic networks associated with lysine (Lys) metabolism, we utilized developing Arabidopsis (Arabidopsis thaliana) seeds as a system in which Lys synthesis could be stimulated developmentally without application of chemicals and coupled this to a T-DNA insertion knockout mutation impaired in Lys catabolism. This seed-specific metabolic perturbation stimulated Lys accumulation starting from the initiation of storage reserve accumulation. Our results revealed that the response of seed metabolism to the inducible alteration of Lys metabolism was relatively minor; however, that which was observable operated in a modular manner. They also demonstrated that Lys metabolism is strongly associated with the operation of the tricarboxylic acid cycle while largely disconnected from other metabolic networks. In contrast, the inducible alteration of Lys metabolism was strongly associated with gene networks, stimulating the expression of hundreds of genes controlling anabolic processes that are associated with plant performance and vigor while suppressing a small number of genes associated with plant stress interactions. The most pronounced effect of the developmentally inducible alteration of Lys metabolism was an induction of expression of a large set of genes encoding ribosomal proteins as well as genes encoding translation initiation and elongation factors, all of which are associated with protein synthesis. With respect to metabolic regulation, the inducible alteration of Lys metabolism was primarily associated with altered expression of genes belonging to networks of amino acids and sugar metabolism. The combined data are discussed within the context of network interactions both between and within metabolic and transcriptional control systems.

  6. Environmental versatility promotes modularity in genome-scale metabolic networks.

    PubMed

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple

  7. Environmental versatility promotes modularity in genome-scale metabolic networks

    PubMed Central

    2011-01-01

    Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Results Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Conclusions Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to

  8. Matching metabolites and reactions in different metabolic networks.

    PubMed

    Qi, Xinjian; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2014-10-01

    Comparing and identifying matching metabolites, reactions, and compartments in genome-scale reconstructed metabolic networks can be difficult due to inconsistent naming in different networks. In this paper, we propose metabolite and reaction matching techniques for matching metabolites and reactions in a given metabolic network to metabolites and reactions in another metabolic network. We employ a variety of techniques that include approximate string matching, similarity score functions and multi-step filtering techniques, all enhanced by a set of rules based on the underlying metabolic biochemistry. The proposed techniques are evaluated by an empirical study on four pairs of metabolic networks, and significant accuracy gains are achieved using the proposed metabolite and reaction identification techniques.

  9. Fluxes through plant metabolic networks: measurements, predictions, insights and challenges.

    PubMed

    Kruger, Nicholas J; Ratcliffe, R George

    2015-01-01

    Although the flows of material through metabolic networks are central to cell function, they are not easy to measure other than at the level of inputs and outputs. This is particularly true in plant cells, where the network spans multiple subcellular compartments and where the network may function either heterotrophically or photoautotrophically. For many years, kinetic modelling of pathways provided the only method for describing the operation of fragments of the network. However, more recently, it has become possible to map the fluxes in central carbon metabolism using the stable isotope labelling techniques of metabolic flux analysis (MFA), and to predict intracellular fluxes using constraints-based modelling procedures such as flux balance analysis (FBA). These approaches were originally developed for the analysis of microbial metabolism, but over the last decade, they have been adapted for the more demanding analysis of plant metabolic networks. Here, the principal features of MFA and FBA as applied to plants are outlined, followed by a discussion of the insights that have been gained into plant metabolic networks through the application of these time-consuming and non-trivial methods. The discussion focuses on how a system-wide view of plant metabolism has increased our understanding of network structure, metabolic perturbations and the provision of reducing power and energy for cell function. Current methodological challenges that limit the scope of plant MFA are discussed and particular emphasis is placed on the importance of developing methods for cell-specific MFA.

  10. Path finding methods accounting for stoichiometry in metabolic networks

    PubMed Central

    2011-01-01

    Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks. PMID:21619601

  11. Evolution of biomolecular networks: lessons from metabolic and protein interactions.

    PubMed

    Yamada, Takuji; Bork, Peer

    2009-11-01

    Despite only becoming popular at the beginning of this decade, biomolecular networks are now frameworks that facilitate many discoveries in molecular biology. The nodes of these networks are usually proteins (specifically enzymes in metabolic networks), whereas the links (or edges) are their interactions with other molecules. These networks are made up of protein-protein interactions or enzyme-enzyme interactions through shared metabolites in the case of metabolic networks. Evolutionary analysis has revealed that changes in the nodes and links in protein-protein interaction and metabolic networks are subject to different selection pressures owing to distinct topological features. However, many evolutionary constraints can be uncovered only if temporal and spatial aspects are included in the network analysis.

  12. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.

    PubMed

    Antoniewicz, Maciek R

    2013-12-01

    Computational approaches for analyzing dynamic states of metabolic networks provide a practical framework for design, control, and optimization of biotechnological processes. In recent years, two promising modeling approaches have emerged for characterizing transients in cellular metabolism, dynamic metabolic flux analysis (DMFA), and dynamic flux balance analysis (DFBA). Both approaches combine metabolic network analysis based on pseudo steady-state (PSS) assumption for intracellular metabolism with dynamic models for extracellular environment. One strategy to capture dynamics is by combining network analysis with a kinetic model. Predictive models are thus established that can be used to optimize bioprocessing conditions and identify useful genetic manipulations. Alternatively, by combining network analysis with methods for analyzing extracellular time-series data, transients in intracellular metabolic fluxes can be determined and applied for process monitoring and control.

  13. Graph methods for the investigation of metabolic networks in parasitology.

    PubMed

    Cottret, Ludovic; Jourdan, Fabien

    2010-08-01

    Recently, a way was opened with the development of many mathematical methods to model and analyze genome-scale metabolic networks. Among them, methods based on graph models enable to us quickly perform large-scale analyses on large metabolic networks. However, it could be difficult for parasitologists to select the graph model and methods adapted to their biological questions. In this review, after briefly addressing the problem of the metabolic network reconstruction, we propose an overview of the graph-based approaches used in whole metabolic network analyses. Applications highlight the usefulness of this kind of approach in the field of parasitology, especially by suggesting metabolic targets for new drugs. Their development still represents a major challenge to fight against the numerous diseases caused by parasites.

  14. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism

    PubMed Central

    Chang, Roger L; Ghamsari, Lila; Manichaikul, Ani; Hom, Erik F Y; Balaji, Santhanam; Fu, Weiqi; Shen, Yun; Hao, Tong; Palsson, Bernhard Ø; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2011-01-01

    Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. PMID:21811229

  15. Metabolic pathways variability and sequence/networks comparisons

    PubMed Central

    Tun, Kyaw; Dhar, Pawan K; Palumbo, Maria Concetta; Giuliani, Alessandro

    2006-01-01

    Background In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. Results We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. Conclusion The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint) steps of the metabolic process. PMID:16420696

  16. Reverse engineering of metabolic networks, a critical assessment.

    PubMed

    Hendrickx, Diana M; Hendriks, Margriet M W B; Eilers, Paul H C; Smilde, Age K; Hoefsloot, Huub C J

    2011-02-01

    Inferring metabolic networks from metabolite concentration data is a central topic in systems biology. Mathematical techniques to extract information about the network from data have been proposed in the literature. This paper presents a critical assessment of the feasibility of reverse engineering of metabolic networks, illustrated with a selection of methods. Appropriate data are simulated to study the performance of four representative methods. An overview of sampling and measurement methods currently in use for generating time-resolved metabolomics data is given and contrasted with the needs of the discussed reverse engineering methods. The results of this assessment show that if full inference of a real-world metabolic network is the goal there is a large discrepancy between the requirements of reverse engineering of metabolic networks and contemporary measurement practice. Recommendations for improved time-resolved experimental designs are given.

  17. FCDECOMP: decomposition of metabolic networks based on flux coupling relations.

    PubMed

    Rezvan, Abolfazl; Marashi, Sayed-Amir; Eslahchi, Changiz

    2014-10-01

    A metabolic network model provides a computational framework to study the metabolism of a cell at the system level. Due to their large sizes and complexity, rational decomposition of these networks into subsystems is a strategy to obtain better insight into the metabolic functions. Additionally, decomposing metabolic networks paves the way to use computational methods that will be otherwise very slow when run on the original genome-scale network. In the present study, we propose FCDECOMP decomposition method based on flux coupling relations (FCRs) between pairs of reaction fluxes. This approach utilizes a genetic algorithm (GA) to obtain subsystems that can be analyzed in isolation, i.e. without considering the reactions of the original network in the analysis. Therefore, we propose that our method is useful for discovering biologically meaningful modules in metabolic networks. As a case study, we show that when this method is applied to the metabolic networks of barley seeds and yeast, the modules are in good agreement with the biological compartments of these networks.

  18. MANET: tracing evolution of protein architecture in metabolic networks

    PubMed Central

    Kim, Hee Shin; Mittenthal, Jay E; Caetano-Anollés, Gustavo

    2006-01-01

    Background Cellular metabolism can be characterized by networks of enzymatic reactions and transport processes capable of supporting cellular life. Our aim is to find evolutionary patterns and processes embedded in the architecture and function of modern metabolism, using information derived from structural genomics. Description The Molecular Ancestry Network (MANET) project traces evolution of protein architecture in biomolecular networks. We describe metabolic MANET, a database that links information in the Structural Classification of Proteins (SCOP), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and phylogenetic reconstructions depicting the evolution of protein fold architecture. Metabolic MANET literally 'paints' the ancestries of enzymes derived from rooted phylogenomic trees directly onto over one hundred metabolic subnetworks, enabling the study of evolutionary patterns at global and local levels. An initial analysis of painted subnetworks reveals widespread enzymatic recruitment and an early origin of amino acid metabolism. Conclusion MANET maps evolutionary relationships directly and globally onto biological networks, and can generate and test hypotheses related to evolution of metabolism. We anticipate its use in the study of other networks, such as signaling and other protein-protein interaction networks. PMID:16854231

  19. MANET: tracing evolution of protein architecture in metabolic networks.

    PubMed

    Kim, Hee Shin; Mittenthal, Jay E; Caetano-Anollés, Gustavo

    2006-07-19

    Cellular metabolism can be characterized by networks of enzymatic reactions and transport processes capable of supporting cellular life. Our aim is to find evolutionary patterns and processes embedded in the architecture and function of modern metabolism, using information derived from structural genomics. The Molecular Ancestry Network (MANET) project traces evolution of protein architecture in biomolecular networks. We describe metabolic MANET, a database that links information in the Structural Classification of Proteins (SCOP), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and phylogenetic reconstructions depicting the evolution of protein fold architecture. Metabolic MANET literally 'paints' the ancestries of enzymes derived from rooted phylogenomic trees directly onto over one hundred metabolic subnetworks, enabling the study of evolutionary patterns at global and local levels. An initial analysis of painted subnetworks reveals widespread enzymatic recruitment and an early origin of amino acid metabolism. MANET maps evolutionary relationships directly and globally onto biological networks, and can generate and test hypotheses related to evolution of metabolism. We anticipate its use in the study of other networks, such as signaling and other protein-protein interaction networks.

  20. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection.

    PubMed

    Palmer, Clovis S; Duette, Gabriel A; Wagner, Marc C E; Henstridge, Darren C; Saleh, Suah; Pereira, Candida; Zhou, Jingling; Simar, David; Lewin, Sharon R; Ostrowski, Matias; McCune, Joseph M; Crowe, Suzanne M

    2017-09-11

    High Glut1 surface expression is associated with increased glycolytic activity in activated CD4+ T cells. PI3K activation measured by p-Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrate hyper-responsive PI3K-mTOR signalling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)-treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in 'virologically suppressed' cART-treated HIV+ persons. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    PubMed

    Vitkin, Edward; Shlomi, Tomer

    2012-11-29

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files.

  2. Horizontal and vertical growth of S. cerevisiae metabolic network

    PubMed Central

    2011-01-01

    Background The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. Results We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. Conclusions Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today. PMID:21999464

  3. Does Habitat Variability Really Promote Metabolic Network Modularity?

    PubMed Central

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments. PMID:23593470

  4. Symbolic flux analysis for genome-scale metabolic networks.

    PubMed

    Schryer, David W; Vendelin, Marko; Peterson, Pearu

    2011-05-23

    With the advent of genomic technology, the size of metabolic networks that are subject to analysis is growing. A common task when analyzing metabolic networks is to find all possible steady state regimes. There are several technical issues that have to be addressed when analyzing large metabolic networks including accumulation of numerical errors and presentation of the solution to the researcher. One way to resolve those technical issues is to analyze the network using symbolic methods. The aim of this paper is to develop a routine that symbolically finds the steady state solutions of large metabolic networks. A symbolic Gauss-Jordan elimination routine was developed for analyzing large metabolic networks. This routine was tested by finding the steady state solutions for a number of curated stoichiometric matrices with the largest having about 4000 reactions. The routine was able to find the solution with a computational time similar to the time used by a numerical singular value decomposition routine. As an advantage of symbolic solution, a set of independent fluxes can be suggested by the researcher leading to the formation of a desired flux basis describing the steady state solution of the network. These independent fluxes can be constrained using experimental data. We demonstrate the application of constraints by calculating a flux distribution for the central metabolic and amino acid biosynthesis pathways of yeast. We were able to find symbolic solutions for the steady state flux distribution of large metabolic networks. The ability to choose a flux basis was found to be useful in the constraint process and provides a strong argument for using symbolic Gauss-Jordan elimination in place of singular value decomposition.

  5. Symbolic flux analysis for genome-scale metabolic networks

    PubMed Central

    2011-01-01

    Background With the advent of genomic technology, the size of metabolic networks that are subject to analysis is growing. A common task when analyzing metabolic networks is to find all possible steady state regimes. There are several technical issues that have to be addressed when analyzing large metabolic networks including accumulation of numerical errors and presentation of the solution to the researcher. One way to resolve those technical issues is to analyze the network using symbolic methods. The aim of this paper is to develop a routine that symbolically finds the steady state solutions of large metabolic networks. Results A symbolic Gauss-Jordan elimination routine was developed for analyzing large metabolic networks. This routine was tested by finding the steady state solutions for a number of curated stoichiometric matrices with the largest having about 4000 reactions. The routine was able to find the solution with a computational time similar to the time used by a numerical singular value decomposition routine. As an advantage of symbolic solution, a set of independent fluxes can be suggested by the researcher leading to the formation of a desired flux basis describing the steady state solution of the network. These independent fluxes can be constrained using experimental data. We demonstrate the application of constraints by calculating a flux distribution for the central metabolic and amino acid biosynthesis pathways of yeast. Conclusions We were able to find symbolic solutions for the steady state flux distribution of large metabolic networks. The ability to choose a flux basis was found to be useful in the constraint process and provides a strong argument for using symbolic Gauss-Jordan elimination in place of singular value decomposition. PMID:21605414

  6. Structuring evolution: biochemical networks and metabolic diversification in birds.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  7. A compendium of inborn errors of metabolism mapped onto the human metabolic network.

    PubMed

    Sahoo, Swagatika; Franzson, Leifur; Jonsson, Jon J; Thiele, Ines

    2012-10-01

    Inborn errors of metabolism (IEMs) are hereditary metabolic defects, which are encountered in almost all major metabolic pathways occurring in man. Many IEMs are screened for in neonates through metabolomic analysis of dried blood spot samples. To enable the mapping of these metabolomic data onto the published human metabolic reconstruction, we added missing reactions and pathways involved in acylcarnitine (AC) and fatty acid oxidation (FAO) metabolism. Using literary data, we reconstructed an AC/FAO module consisting of 352 reactions and 139 metabolites. When this module was combined with the human metabolic reconstruction, the synthesis of 39 acylcarnitines and 22 amino acids, which are routinely measured, was captured and 235 distinct IEMs could be mapped. We collected phenotypic and clinical features for each IEM enabling comprehensive classification. We found that carbohydrate, amino acid, and lipid metabolism were most affected by the IEMs, while the brain was the most commonly affected organ. Furthermore, we analyzed the IEMs in the context of metabolic network topology to gain insight into common features between metabolically connected IEMs. While many known examples were identified, we discovered some surprising IEM pairs that shared reactions as well as clinical features but not necessarily causal genes. Moreover, we could also re-confirm that acetyl-CoA acts as a central metabolite. This network based analysis leads to further insight of hot spots in human metabolism with respect to IEMs. The presented comprehensive knowledge base of IEMs will provide a valuable tool in studying metabolic changes involved in inherited metabolic diseases.

  8. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle.

  9. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    PubMed Central

    Martín-Jiménez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; González, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework to elucidate how astrocytes modulate human brain metabolic states during normal conditions and in neurodegenerative diseases. We performed a Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network with the purpose of elucidating a significant portion of the metabolic map of the astrocyte. This is the first global high-quality, manually curated metabolic reconstruction network of a human astrocyte. It includes 5,007 metabolites and 5,659 reactions distributed among 8 cell compartments, (extracellular, cytoplasm, mitochondria, endoplasmic reticle, Golgi apparatus, lysosome, peroxisome and nucleus). Using the reconstructed network, the metabolic capabilities of human astrocytes were calculated and compared both in normal and ischemic conditions. We identified reactions activated in these two states, which can be useful for understanding the astrocytic pathways that are affected during brain disease. Additionally, we also showed that the obtained flux distributions in the model, are in accordance with literature-based findings. Up to date, this is the most complete representation of the human astrocyte in terms of inclusion of genes, proteins, reactions and metabolic pathways, being a useful guide for in-silico analysis of several metabolic behaviors of the astrocyte during normal and pathologic states. PMID:28243200

  10. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network.

    PubMed

    Martín-Jiménez, Cynthia A; Salazar-Barreto, Diego; Barreto, George E; González, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework to elucidate how astrocytes modulate human brain metabolic states during normal conditions and in neurodegenerative diseases. We performed a Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network with the purpose of elucidating a significant portion of the metabolic map of the astrocyte. This is the first global high-quality, manually curated metabolic reconstruction network of a human astrocyte. It includes 5,007 metabolites and 5,659 reactions distributed among 8 cell compartments, (extracellular, cytoplasm, mitochondria, endoplasmic reticle, Golgi apparatus, lysosome, peroxisome and nucleus). Using the reconstructed network, the metabolic capabilities of human astrocytes were calculated and compared both in normal and ischemic conditions. We identified reactions activated in these two states, which can be useful for understanding the astrocytic pathways that are affected during brain disease. Additionally, we also showed that the obtained flux distributions in the model, are in accordance with literature-based findings. Up to date, this is the most complete representation of the human astrocyte in terms of inclusion of genes, proteins, reactions and metabolic pathways, being a useful guide for in-silico analysis of several metabolic behaviors of the astrocyte during normal and pathologic states.

  11. Metabolic resting-state brain networks in health and disease.

    PubMed

    Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C; Nazem, Amir; Sako, Wataru; Peng, Shichun; Ma, Yilong; Dhawan, Vijay; Eidelberg, David

    2015-02-24

    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson's disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the "DMN-like" dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer's disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer's disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease.

  12. Green pathways: Metabolic network analysis of plant systems.

    PubMed

    Dersch, Lisa Maria; Beckers, Veronique; Wittmann, Christoph

    2016-03-01

    Metabolic engineering of plants with enhanced crop yield and value-added compositional traits is particularly challenging as they probably exhibit the highest metabolic network complexity of all living organisms. Therefore, approaches of plant metabolic network analysis, which can provide systems-level understanding of plant physiology, appear valuable as guidance for plant metabolic engineers. Strongly supported by the sequencing of plant genomes, a number of different experimental and computational methods have emerged in recent years to study plant systems at various levels: from heterotrophic cell cultures to autotrophic entire plants. The present review presents a state-of-the-art toolbox for plant metabolic network analysis. Among the described approaches are different in silico modeling techniques, including flux balance analysis, elementary flux mode analysis and kinetic flux profiling, as well as different variants of experiments with plant systems which use radioactive and stable isotopes to determine in vivo plant metabolic fluxes. The fundamental principles of these techniques, the required data input and the obtained flux information are enriched by technical advices, specific to plants. In addition, pioneering and high-impacting findings of plant metabolic network analysis highlight the potential of the field.

  13. Metabolic networks in motion: 13C-based flux analysis

    PubMed Central

    Sauer, Uwe

    2006-01-01

    Many properties of complex networks cannot be understood from monitoring the components—not even when comprehensively monitoring all protein or metabolite concentrations—unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism. PMID:17102807

  14. Topological analysis of metabolic networks based on petri net theory.

    PubMed

    Zevedei-Oancea, Ionela; Schuster, Stefan

    2011-01-01

    Petri net concepts provide additional tools for the modelling of metabolic networks. Here, the similarities between the counterparts in traditional biochemical modelling and Petri net theory are discussed. For example the stoichiometry matrix of a metabolic network corresponds to the incidence matrix of the Petri net. The flux modes and conservation relations have the T-invariants, respectively, P-invariants as counterparts. We reveal the biological meaning of some notions specific to the Petri net framework (traps, siphons, deadlocks, liveness). We focus on the topological analysis rather than on the analysis of the dynamic behaviour. The treatment of external metabolites is discussed. Some simple theoretical examples are presented for illustration. Also the Petri nets corresponding to some biochemical networks are built to support our results. For example, the role of triose phosphate isomerase (TPI) in Trypanosoma brucei metabolism is evaluated by detecting siphons and traps. All Petri net properties treated in this contribution are exemplified on a system extracted from nucleotide metabolism.

  15. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    PubMed

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  16. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    PubMed Central

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates. PMID:25540776

  17. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE PAGES

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-11-21

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  18. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.

    PubMed

    Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2016-11-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.

  19. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    PubMed Central

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  20. An integrated text mining framework for metabolic interaction network reconstruction.

    PubMed

    Patumcharoenpol, Preecha; Doungpan, Narumol; Meechai, Asawin; Shen, Bairong; Chan, Jonathan H; Vongsangnak, Wanwipa

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module-MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module-MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme-metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and virtual

  1. Signatures of arithmetic simplicity in metabolic network architecture.

    PubMed

    Riehl, William J; Krapivsky, Paul L; Redner, Sidney; Segrè, Daniel

    2010-04-01

    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  2. Signatures of Arithmetic Simplicity in Metabolic Network Architecture

    PubMed Central

    Riehl, William J.; Krapivsky, Paul L.; Redner, Sidney; Segrè, Daniel

    2010-01-01

    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity. PMID:20369010

  3. Multi-equilibrium property of metabolic networks: SSI module

    PubMed Central

    2011-01-01

    Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module. PMID:21689474

  4. Multi-equilibrium property of metabolic networks: SSI module.

    PubMed

    Lei, Hong-Bo; Zhang, Ji-Feng; Chen, Luonan

    2011-06-20

    Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI) metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.

  5. On the growth of directed complex networks with preferential attachment: Effect upon the prohibition of multiple links

    NASA Astrophysics Data System (ADS)

    Esquivel-Gómez, J.; Balderas-Navarro, R. E.; Ugalde, Edgardo; Acosta-Elías, J.

    2015-11-01

    Several real-world directed networks do not have multiple links. For example, in a paper citation network a paper does not cite two identical references, and in a network of friends there exists only a single link between two individuals. This suggest that the growth and evolution models of complex networks should take into account such feature in order to approximate the topological properties of this class of networks. The aim of this paper is to propose a growth model of directed complex networks that takes into account the prohibition of the existence multiple links. It is shown through numerical experiments that when multiple links are forbidden, the exponent γ of the in-degree connectivity distribution, P(k{ in}) ˜ k{ in}-γ , takes values ranging from 1 to ∞. In particular, the proposed multi-link free (MLF) model is able to predict exponents occurring in real-world complex networks, which range 1.05 < γ < 3.51. As an example, the MLF reproduces somxe topological properties exhibited by the network of flights between airports of the world (NFAW); i.e. γ ≈ 1.74. With this result, we believe that the multiple links prohibition might be one of the local processes accounting for the existence of exponents γ < 2 found in some real complex networks.

  6. Flux analysis in plant metabolic networks: increasing throughput and coverage.

    PubMed

    Junker, Björn H

    2014-04-01

    Quantitative information about metabolic networks has been mainly obtained at the level of metabolite contents, transcript abundance, and enzyme activities. However, the active process of metabolism is represented by the flow of matter through the pathways. These metabolic fluxes can be predicted by Flux Balance Analysis or determined experimentally by (13)C-Metabolic Flux Analysis. These relatively complicated and time-consuming methods have recently seen significant improvements at the level of coverage and throughput. Metabolic models have developed from single cell models into whole-organism dynamic models. Advances in lab automation and data handling have significantly increased the throughput of flux measurements. This review summarizes advances to increase coverage and throughput of metabolic flux analysis in plants.

  7. Reconciliation of metabolites and biochemical reactions for metabolic networks

    PubMed Central

    Bernard, Thomas; Bridge, Alan; Morgat, Anne; Moretti, Sébastien; Xenarios, Ioannis

    2014-01-01

    Genome-scale metabolic network reconstructions are now routinely used in the study of metabolic pathways, their evolution and design. The development of such reconstructions involves the integration of information on reactions and metabolites from the scientific literature as well as public databases and existing genome-scale metabolic models. The reconciliation of discrepancies between data from these sources generally requires significant manual curation, which constitutes a major obstacle in efforts to develop and apply genome-scale metabolic network reconstructions. In this work, we discuss some of the major difficulties encountered in the mapping and reconciliation of metabolic resources and review three recent initiatives that aim to accelerate this process, namely BKM-react, MetRxn and MNXref (presented in this article). Each of these resources provides a pre-compiled reconciliation of many of the most commonly used metabolic resources. By reducing the time required for manual curation of metabolite and reaction discrepancies, these resources aim to accelerate the development and application of high-quality genome-scale metabolic network reconstructions and models. PMID:23172809

  8. Cellular Metabolic Network Analysis: Discovering Important Reactions in Treponema pallidum

    PubMed Central

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis. PMID:26495292

  9. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks

    PubMed Central

    Kun, Ádám; Papp, Balázs; Szathmáry, Eörs

    2008-01-01

    Background If chemical A is necessary for the synthesis of more chemical A, then A has the power of replication (such systems are known as autocatalytic systems). We provide the first systems-level analysis searching for small-molecular autocatalytic components in the metabolisms of diverse organisms, including an inferred minimal metabolism. Results We find that intermediary metabolism is invariably autocatalytic for ATP. Furthermore, we provide evidence for the existence of additional, organism-specific autocatalytic metabolites in the forms of coenzymes (NAD+, coenzyme A, tetrahydrofolate, quinones) and sugars. Although the enzymatic reactions of a number of autocatalytic cycles are present in most of the studied organisms, they display obligatorily autocatalytic behavior in a few networks only, hence demonstrating the need for a systems-level approach to identify metabolic replicators embedded in large networks. Conclusion Metabolic replicators are apparently common and potentially both universal and ancestral: without their presence, kick-starting metabolic networks is impossible, even if all enzymes and genes are present in the same cell. Identification of metabolic replicators is also important for attempts to create synthetic cells, as some of these autocatalytic molecules will presumably be needed to be added to the system as, by definition, the system cannot synthesize them without their initial presence. PMID:18331628

  10. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    PubMed Central

    Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto

    2012-01-01

    Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. PMID:24957767

  11. Metabolism and evolution: A comparative study of reconstructed genome-level metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2008-03-01

    The availability of high-quality annotations of sequenced genomes has made it possible to generate organism-specific comprehensive maps of cellular metabolism. Currently, more than twenty such metabolic reconstructions are publicly available, with the majority focused on bacteria. A typical metabolic reconstruction for a bacterium results in a complex network containing hundreds of metabolites (nodes) and reactions (links), while some even contain more than a thousand. The constrain-based optimization approach of flux-balance analysis (FBA) is used to investigate the functional characteristics of such large-scale metabolic networks, making it possible to estimate an organism's growth behavior in a wide variety of nutrient environments, as well as its robustness to gene loss. We have recently completed the genome-level metabolic reconstruction of Yersinia pseudotuberculosis, as well as the three Yersinia pestis biovars Antiqua, Mediaevalis, and Orientalis. While Y. pseudotuberculosis typically only causes fever and abdominal pain that can mimic appendicitis, the evolutionary closely related Y. pestis strains are the aetiological agents of the bubonic plague. In this presentation, I will discuss our results and conclusions from a comparative study on the evolution of metabolic function in the four Yersiniae networks using FBA and related techniques, and I will give particular focus to the interplay between metabolic network topology and evolutionary flexibility.

  12. Phylogeny of metabolic networks: a spectral graph theoretical approach.

    PubMed

    Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony

    2015-10-01

    Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.

  13. Fast reconstruction of compact context-specific metabolic network models.

    PubMed

    Vlassis, Nikos; Pacheco, Maria Pires; Sauter, Thomas

    2014-01-01

    Systemic approaches to the study of a biological cell or tissue rely increasingly on the use of context-specific metabolic network models. The reconstruction of such a model from high-throughput data can routinely involve large numbers of tests under different conditions and extensive parameter tuning, which calls for fast algorithms. We present fastcore, a generic algorithm for reconstructing context-specific metabolic network models from global genome-wide metabolic network models such as Recon X. fastcore takes as input a core set of reactions that are known to be active in the context of interest (e.g., cell or tissue), and it searches for a flux consistent subnetwork of the global network that contains all reactions from the core set and a minimal set of additional reactions. Our key observation is that a minimal consistent reconstruction can be defined via a set of sparse modes of the global network, and fastcore iteratively computes such a set via a series of linear programs. Experiments on liver data demonstrate speedups of several orders of magnitude, and significantly more compact reconstructions, over a rival method. Given its simplicity and its excellent performance, fastcore can form the backbone of many future metabolic network reconstruction algorithms.

  14. Fast Reconstruction of Compact Context-Specific Metabolic Network Models

    PubMed Central

    Sauter, Thomas

    2014-01-01

    Systemic approaches to the study of a biological cell or tissue rely increasingly on the use of context-specific metabolic network models. The reconstruction of such a model from high-throughput data can routinely involve large numbers of tests under different conditions and extensive parameter tuning, which calls for fast algorithms. We present fastcore, a generic algorithm for reconstructing context-specific metabolic network models from global genome-wide metabolic network models such as Recon X. fastcore takes as input a core set of reactions that are known to be active in the context of interest (e.g., cell or tissue), and it searches for a flux consistent subnetwork of the global network that contains all reactions from the core set and a minimal set of additional reactions. Our key observation is that a minimal consistent reconstruction can be defined via a set of sparse modes of the global network, and fastcore iteratively computes such a set via a series of linear programs. Experiments on liver data demonstrate speedups of several orders of magnitude, and significantly more compact reconstructions, over a rival method. Given its simplicity and its excellent performance, fastcore can form the backbone of many future metabolic network reconstruction algorithms. PMID:24453953

  15. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance

    NASA Astrophysics Data System (ADS)

    Thomas, Alex; Rahmanian, Sorena; Bordbar, Aarash; Palsson, Bernhard Ø.; Jamshidi, Neema

    2014-01-01

    Recently there has not been a systematic, objective assessment of the metabolic capabilities of the human platelet. A manually curated, functionally tested, and validated biochemical reaction network of platelet metabolism, iAT-PLT-636, was reconstructed using 33 proteomic datasets and 354 literature references. The network contains enzymes mapping to 403 diseases and 231 FDA approved drugs, alluding to an expansive scope of biochemical transformations that may affect or be affected by disease processes in multiple organ systems. The effect of aspirin (ASA) resistance on platelet metabolism was evaluated using constraint-based modeling, which revealed a redirection of glycolytic, fatty acid, and nucleotide metabolism reaction fluxes in order to accommodate eicosanoid synthesis and reactive oxygen species stress. These results were confirmed with independent proteomic data. The construction and availability of iAT-PLT-636 should stimulate further data-driven, systems analysis of platelet metabolism towards the understanding of pathophysiological conditions including, but not strictly limited to, coagulopathies.

  16. Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks.

    PubMed

    Southam, Andrew D; Easton, John M; Stentiford, Grant D; Ludwig, Christian; Arvanitis, Theodoros N; Viant, Mark R

    2008-12-01

    Histopathologically well-characterized fish liver was analyzed by 800 MHz 1H NMR metabolomics to identify metabolic changes between healthy and tumor tissue. Data were analyzed by multivariate statistics and metabolic correlation networks, and results revealed elevated anaerobic metabolism and reduced choline metabolism in tumor tissue. Significant negative correlations were observed between alanine-acetate (p = 3.0 x 10(-5)) and between proline-acetate (p = 0.003) in tumors only, suggesting alanine and proline are utilized as alternative energy sources in flatfish liver tumors.

  17. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    SciTech Connect

    Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela; Taylor, Ronald C.; Lee, Joon-Yong; Zucker, Jeremy; Song, Hyun-Seob

    2016-06-02

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.

  18. MaizeCyc: Metabolic networks in maize

    USDA-ARS?s Scientific Manuscript database

    MaizeCyc is a catalog of known and predicted metabolic and transport pathways that enables plant researchers to graphically represent the metabolome of maize (Zea mays), thereby supporting integrated systems-biology analysis. Supported analyses include molecular and genetic/phenotypic profiling (e.g...

  19. Predicting novel pathways in genome-scale metabolic networks.

    PubMed

    Schuster, Stefan; de Figueiredo, Luís F; Kaleta, Christoph

    2010-10-01

    Elementary-modes analysis has become a well-established theoretical tool in metabolic pathway analysis. It allows one to decompose complex metabolic networks into the smallest functional entities, which can be interpreted as biochemical pathways. This analysis has, in medium-size metabolic networks, led to the successful theoretical prediction of hitherto unknown pathways. For illustration, we discuss the example of the phosphoenolpyruvate-glyoxylate cycle in Escherichia coli. Elementary-modes analysis meets with the problem of combinatorial explosion in the number of pathways with increasing system size, which has hampered scaling it up to genome-wide models. We present a novel approach to overcoming this obstacle. That approach is based on elementary flux patterns, which are defined as sets of reactions representing the basic routes through a particular subsystem that are compatible with admissible fluxes in a (possibly) much larger metabolic network. The subsystem can be made up by reactions in which we are interested in, for example, reactions producing a certain metabolite. This allows one to predict novel metabolic pathways in genome-scale networks.

  20. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction

    PubMed Central

    Heavner, Benjamin D.; Price, Nathan D.

    2015-01-01

    We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159). We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype. PMID:26566239

  1. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    PubMed

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism

    PubMed Central

    2012-01-01

    Background Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Results Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. Conclusions CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output. PMID:22929619

  3. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism.

    PubMed

    Karlstädt, Anja; Fliegner, Daniela; Kararigas, Georgios; Ruderisch, Hugo Sanchez; Regitz-Zagrosek, Vera; Holzhütter, Hermann-Georg

    2012-08-29

    Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

  4. Underground metabolism: network-level perspective and biotechnological potential.

    PubMed

    Notebaart, Richard A; Kintses, Bálint; Feist, Adam M; Papp, Balázs

    2017-08-21

    A key challenge in molecular systems biology is understanding how new pathways arise during evolution and how to exploit them for biotechnological applications. New pathways in metabolic networks often evolve by recruiting weak promiscuous activities of pre-existing enzymes. Here we describe recent systems biology advances to map such 'underground' activities and to predict and analyze their contribution to new metabolic functions. Underground activities are prevalent in cellular metabolism and can form novel pathways that either enable evolutionary adaptation to new environments or provide bypass to genetic lesions. We also illustrate the potential of integrating computational models of underground metabolism and experimental approaches to study the evolution of novel metabolic phenotypes and advance the field of biotechnology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Advanced stoichiometric analysis of metabolic networks of mammalian systems.

    PubMed

    Orman, Mehmet A; Berthiaume, Francois; Androulakis, Ioannis P; Ierapetritou, Marianthi G

    2011-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted.

  6. Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems

    PubMed Central

    Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.

    2013-01-01

    Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224

  7. Flux balance analysis of myocardial mitochondrial metabolic network

    NASA Astrophysics Data System (ADS)

    Luo, Ruoyu; Liao, Sha; Liu, Bifeng; Liu, Manxi; Zhang, Hongming; Luo, Qingming

    2005-03-01

    A large number of biological information has been available from genome sequencing and bioinformatics. To further understand the qualities of the biological networks (such as metabolic network) in the complex biological system, representations of integrated function in silico have been widely investigated, and various modeling approaches have been designed, most of which are based on detailed kinetic information except flux balance analysis (FBA). FBA, just based on stoichimetrical information of reactions, is a suitable method for the study of metabolic pathways, and it analyzes the behaviors of the network from the viewpoint of the whole system. Herein, this modeling approach has been utilized to reconstruct the mitochondrial metabolic network to integrate and analyze its capability of producing energy. Besides, extreme pathways analysis (EPA) and shadow prices analysis have also been integrated to study the interior characters of the network. Our modeling results have indicated for the first time that the covalent regulative property of pyruvate dehydrogenase is restrained by the feedback of acetyl-CoA. Combined with the biological experiments, these simulations in silico could be pretty useful for the further understanding of functions and characters of the biological network as a complex system.

  8. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    PubMed Central

    Choudhary, Kumari Sonal; Rohatgi, Neha; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend. PMID:27253373

  9. Multi-Criteria Optimization of Regulation in Metabolic Networks

    PubMed Central

    Higuera, Clara; Villaverde, Alejandro F.; Banga, Julio R.; Ross, John; Morán, Federico

    2012-01-01

    Determining the regulation of metabolic networks at genome scale is a hard task. It has been hypothesized that biochemical pathways and metabolic networks might have undergone an evolutionary process of optimization with respect to several criteria over time. In this contribution, a multi-criteria approach has been used to optimize parameters for the allosteric regulation of enzymes in a model of a metabolic substrate-cycle. This has been carried out by calculating the Pareto set of optimal solutions according to two objectives: the proper direction of flux in a metabolic cycle and the energetic cost of applying the set of parameters. Different Pareto fronts have been calculated for eight different “environments” (specific time courses of end product concentrations). For each resulting front the so-called knee point is identified, which can be considered a preferred trade-off solution. Interestingly, the optimal control parameters corresponding to each of these points also lead to optimal behaviour in all the other environments. By calculating the average of the different parameter sets for the knee solutions more frequently found, a final and optimal consensus set of parameters can be obtained, which is an indication on the existence of a universal regulation mechanism for this system.The implications from such a universal regulatory switch are discussed in the framework of large metabolic networks. PMID:22848435

  10. Evolution of enzymes in metabolism: a network perspective.

    PubMed

    Alves, Rui; Chaleil, Raphael A G; Sternberg, Michael J E

    2002-07-19

    Several models have been proposed to explain the origin and evolution of enzymes in metabolic pathways. Initially, the retro-evolution model proposed that, as enzymes at the end of pathways depleted their substrates in the primordial soup, there was a pressure for earlier enzymes in pathways to be created, using the later ones as initial template, in order to replenish the pools of depleted metabolites. Later, the recruitment model proposed that initial templates from other pathways could be used as long as those enzymes were similar in chemistry or substrate specificity. These two models have dominated recent studies of enzyme evolution. These studies are constrained by either the small scale of the study or the artificial restrictions imposed by pathway definitions. Here, a network approach is used to study enzyme evolution in fully sequenced genomes, thus removing both constraints. We find that homologous pairs of enzymes are roughly twice as likely to have evolved from enzymes that are less than three steps away from each other in the reaction network than pairs of non-homologous enzymes. These results, together with the conservation of the type of chemical reaction catalyzed by evolutionarily related enzymes, suggest that functional blocks of similar chemistry have evolved within metabolic networks. One possible explanation for these observations is that this local evolution phenomenon is likely to cause less global physiological disruptions in metabolism than evolution of enzymes from other enzymes that are distant from them in the metabolic network.

  11. Transcription factor networks regulating hepatic fatty acid metabolism.

    PubMed

    Karagianni, Panagiota; Talianidis, Iannis

    2015-01-01

    Tight regulation of lipid levels is critical for cellular and organismal homeostasis, not only in terms of energy utilization and storage, but also to prevent potential toxicity. The liver utilizes a set of hepatic transcription factors to regulate the expression of genes implicated in all aspects of lipid metabolism including catabolism, transport, and synthesis. In this article, we will review the main transcriptional mechanisms regulating the expression of genes involved in hepatic lipid metabolism. The principal regulatory pathways are composed of simple modules of transcription factor crosstalks, which correspond to building blocks of more complex regulatory networks. These transcriptional networks contribute to the regulation of proper lipid homeostasis in parallel to posttranslational mechanisms and end product-mediated modulation of lipid metabolizing enzymes. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Metagenomics reveals flavour metabolic network of cereal vinegar microbiota.

    PubMed

    Wu, Lin-Huan; Lu, Zhen-Ming; Zhang, Xiao-Juan; Wang, Zong-Min; Yu, Yong-Jian; Shi, Jin-Song; Xu, Zheng-Hong

    2017-04-01

    Multispecies microbial community formed through centuries of repeated batch acetic acid fermentation (AAF) is crucial for the flavour quality of traditional vinegar produced from cereals. However, the metabolism to generate and/or formulate the essential flavours by the multispecies microbial community is hardly understood. Here we used metagenomic approach to clarify in situ metabolic network of key microbes responsible for flavour synthesis of a typical cereal vinegar, Zhenjiang aromatic vinegar, produced by solid-state fermentation. First, we identified 3 organic acids, 7 amino acids, and 20 volatiles as dominant vinegar metabolites. Second, we revealed taxonomic and functional composition of the microbiota by metagenomic shotgun sequencing. A total of 86 201 predicted protein-coding genes from 35 phyla (951 genera) were involved in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of Metabolism (42.3%), Genetic Information Processing (28.3%), and Environmental Information Processing (10.1%). Furthermore, a metabolic network for substrate breakdown and dominant flavour formation in vinegar microbiota was constructed, and microbial distribution discrepancy in different metabolic pathways was charted. This study helps elucidating different metabolic roles of microbes during flavour formation in vinegar microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  14. The solution space of metabolic networks: Producibility, robustness and fluctuations

    NASA Astrophysics Data System (ADS)

    De Martino, A.; Marinari, E.

    2010-06-01

    By flux analysis one generically indicates a class of constraint-based approaches to the study of biochemical reaction networks concerned with the calculation of the flux configurations compatible with given stoichiometric and thermodynamic constraints. One of its main areas of application is the study of cellular metabolic networks. We briefly and selectively review the main approaches to this problem and then, building on recent work, we provide a characterization of the productive capabilities of the metabolic network of the bacterium E.coli in a specified growth medium in terms of the producible biochemical species. While a robust and physiologically meaningful production profile clearly emerges, the underlying constraints still allow for significant fluctuations in the net production even for key metabolites like ATP and, as a consequence, apparently lay the ground for different growth scenarios.

  15. Reconstructed Metabolic Network Models Predict Flux-Level Metabolic Reprogramming in Glioblastoma

    PubMed Central

    Özcan, Emrah; Çakır, Tunahan

    2016-01-01

    Developments in genome scale metabolic modeling techniques and omics technologies have enabled the reconstruction of context-specific metabolic models. In this study, glioblastoma multiforme (GBM), one of the most common and aggressive malignant brain tumors, is investigated by mapping GBM gene expression data on the growth-implemented brain specific genome-scale metabolic network, and GBM-specific models are generated. The models are used to calculate metabolic flux distributions in the tumor cells. Metabolic phenotypes predicted by the GBM-specific metabolic models reconstructed in this work reflect the general metabolic reprogramming of GBM, reported both in in-vitro and in-vivo experiments. The computed flux profiles quantitatively predict that major sources of the acetyl-CoA and oxaloacetic acid pool used in TCA cycle are pyruvate dehydrogenase from glycolysis and anaplerotic flux from glutaminolysis, respectively. Also, our results, in accordance with recent studies, predict a contribution of oxidative phosphorylation to ATP pool via a slightly active TCA cycle in addition to the major contributor aerobic glycolysis. We verified our results by using different computational methods that incorporate transcriptome data with genome-scale models and by using different transcriptome datasets. Correct predictions of flux distributions in glycolysis, glutaminolysis, TCA cycle and lipid precursor metabolism validate the reconstructed models for further use in future to simulate more specific metabolic patterns for GBM. PMID:27147948

  16. Efficient searching and annotation of metabolic networks using chemical similarity.

    PubMed

    Pertusi, Dante A; Stine, Andrew E; Broadbelt, Linda J; Tyo, Keith E J

    2015-04-01

    The urgent need for efficient and sustainable biological production of fuels and high-value chemicals has elicited a wave of in silico techniques for identifying promising novel pathways to these compounds in large putative metabolic networks. To date, these approaches have primarily used general graph search algorithms, which are prohibitively slow as putative metabolic networks may exceed 1 million compounds. To alleviate this limitation, we report two methods--SimIndex (SI) and SimZyme--which use chemical similarity of 2D chemical fingerprints to efficiently navigate large metabolic networks and propose enzymatic connections between the constituent nodes. We also report a Byers-Waterman type pathway search algorithm for further paring down pertinent networks. Benchmarking tests run with SI show it can reduce the number of nodes visited in searching a putative network by 100-fold with a computational time improvement of up to 10(5)-fold. Subsequent Byers-Waterman search application further reduces the number of nodes searched by up to 100-fold, while SimZyme demonstrates ∼ 90% accuracy in matching query substrates with enzymes. Using these modules, we have designed and annotated an alternative to the methylerythritol phosphate pathway to produce isopentenyl pyrophosphate with more favorable thermodynamics than the native pathway. These algorithms will have a significant impact on our ability to use large metabolic networks that lack annotation of promiscuous reactions. Python files will be available for download at http://tyolab.northwestern.edu/tools/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. An integrated network visualization framework towards metabolic engineering applications.

    PubMed

    Noronha, Alberto; Vilaça, Paulo; Rocha, Miguel

    2014-12-30

    Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential. In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks. The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.

  18. Optimality Principles in the Regulation of Metabolic Networks

    PubMed Central

    Berkhout, Jan; Bruggeman, Frank J.; Teusink, Bas

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide. PMID:24957646

  19. Parameter estimation in tree graph metabolic networks

    PubMed Central

    Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings. PMID:27688960

  20. Detecting drug targets with minimum side effects in metabolic networks.

    PubMed

    Li, Z; Wang, R-S; Zhang, X-S; Chen, L

    2009-11-01

    High-throughput techniques produce massive data on a genome-wide scale which facilitate pharmaceutical research. Drug target discovery is a crucial step in the drug discovery process and also plays a vital role in therapeutics. In this study, the problem of detecting drug targets was addressed, which finds a set of enzymes whose inhibition stops the production of a given set of target compounds and meanwhile minimally eliminates non-target compounds in the context of metabolic networks. The model aims to make the side effects of drugs as small as possible and thus has practical significance of potential pharmaceutical applications. Specifically, by exploiting special features of metabolic systems, a novel approach was proposed to exactly formulate this drug target detection problem as an integer linear programming model, which ensures that optimal solutions can be found efficiently without any heuristic manipulations. To verify the effectiveness of our approach, computational experiments on both Escherichia coli and Homo sapiens metabolic pathways were conducted. The results show that our approach can identify the optimal drug targets in an exact and efficient manner. In particular, it can be applied to large-scale networks including the whole metabolic networks from most organisms.

  1. Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks.

    PubMed

    Peretó, Juli

    2012-08-21

    The origin of life on Earth was a chemical affair. So how did primitive biochemical systems originate from geochemical and cosmochemical processes on the young planet? Contemporary research into the origins of life subscribes to the Darwinian principle of material causes operating in an evolutionary context, as advocated by A. I. Oparin and J. B. S. Haldane in the 1920s. In its simplest form (e.g., a bacterial cell) extant biological complexity relies on the functional integration of metabolic networks and replicative genomes inside a lipid boundary. Different research programmes have explored the prebiotic plausibility of each of these autocatalytic subsystems and combinations thereof: self-maintained networks of small molecules, template chemistry, and self-reproductive vesicles. This tutorial review focuses on the debates surrounding the origin of metabolism and offers a brief overview of current studies on the evolution of metabolic networks. I suggest that a leitmotif in the origin and evolution of metabolism is the role played by catalysers' substrate ambiguity and multifunctionality.

  2. Classifying Membrane Proteins in the Proteome by Using Artificial Neural Networks Based on the Preferential Parameters of Amino Acids

    NASA Astrophysics Data System (ADS)

    Bose, Subrata K.; Browne, Antony; Kazemian, Hassan; White, Kenneth

    Membrane proteins (MPs) are large set of biological macromolecules that play a fundamental role in physiology and pathophysiology for survival. From a pharma-economical perspective, though it is the fact that MPs constitute ˜75% of possible targets for novel drugs but MPs are one of the most understudied groups of proteins in biochemical research. This is mainly because of the technical difficulties of obtaining structural information about trans-membrane regions (these are small sequences that crossways the bilayer lipid membrane). It is quite useful to predict the location of transmembrane segments down the sequence, since these are the elementary structural building blocks defining their topology. There have been several attempts over the last 20 years to develop tools for predicting membrane-spanning regions but current tools are far away from achieving a considerable reliability in prediction. This study aims to exploit the knowledge and current understanding in the field of artificial neural networks (ANNs) in particular data representation through the development of a system to identify and predict membrane-spanning regions by analysing primary amino acids sequence. In this paper we present a novel neural network (NNs) architecture and algorithms for predicting membrane spanning regions from primary amino acids sequences by using their preference parameters.

  3. Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis.

    PubMed

    Gaquerel, Emmanuel; Gulati, Jyotasana; Baldwin, Ian T

    2014-08-01

    The phenylpropanoid metabolic space comprises a network of interconnected metabolic branches that contribute to the biosynthesis of a large array of compounds with functions in plant development and stress adaptation. During biotic challenges, such as insect attack, a major rewiring of gene networks associated with phenylpropanoid metabolism is observed. This rapid reconfiguration of gene expression allows prioritized production of metabolites that help the plant solve ecological problems. Phenolamides are a group of phenolic derivatives that originate from diversion of hydroxycinnamoyl acids from the main phenylpropanoid pathway after N-acyltransferase-dependent conjugation to polyamines or aryl monoamines. These structurally diverse metabolites are abundant in the reproductive organs of many plants, and have recently been shown to play roles as induced defenses in vegetative tissues. In the wild tobacco, Nicotiana attenuata, in which herbivory-induced regulation of these metabolites has been studied, rapid elevations of the levels of phenolamides that function as induced defenses result from a multi-hormonal signaling network that re-shapes connected metabolic pathways. In this review, we summarize recent findings in the regulation of phenolamides obtained by mass spectrometry-based metabolomics profiling, and outline a conceptual framework for gene discovery in this pathway. We also introduce a multifactorial approach that is useful in deciphering metabolic pathway reorganizations among tissues in response to stress.

  4. Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis

    PubMed Central

    Gaquerel, Emmanuel; Gulati, Jyotasana; Baldwin, Ian T.

    2016-01-01

    The phenylpropanoid metabolic space comprises a network of interconnected metabolic branches that contribute to the biosynthesis of a large array of compounds with functions in plant development and stress adaptation. During biotic challenges, such as insect attack, a major rewiring of gene networks associated with phenylpropanoid metabolism is observed. This rapid reconfiguration of gene expression allows for the prioritized production of metabolites that help the plant solve ecological problems. Phenolamides are a group of phenolic-derivatives that originate from the diversion of hydroxycinnamoyl acids from the main phenylpropanoid pathway after N-acyltransferase-dependent conjugation to polyamines or aryl-monoamines. These structurally diverse metabolites are abundant in reproductive organs of many plants and have recently been shown to play roles as induced defenses in vegetative tissues. In the wild tobacco, Nicotiana attenuata in which the herbivory-induced regulation of these metabolites has been studied, rapid elevations of phenolamide levels that function as induced defenses result from a multi-hormonal signaling network that reshapes connected metabolic pathways. In this review, we summarize recent findings in the regulation of phenolamides obtained by mass spectrometry-based metabolomics and outline a conceptual framework for gene discovery in this pathway. We finally introduce a multifactorial approach useful in deciphering metabolic pathway reorganizations among different tissues in response to stress. PMID:24617849

  5. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    PubMed

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements.

  6. Predicting metabolic adaptation from networks of mutational paths.

    PubMed

    Josephides, Christos; Swain, Peter S

    2017-09-25

    Competition for substrates is a ubiquitous selection pressure faced by microbes, yet intracellular trade-offs can prevent cells from metabolizing every type of available substrate. Adaptive evolution is constrained by these trade-offs, but their consequences for the repeatability and predictability of evolution are unclear. Here we develop an eco-evolutionary model with a metabolic trade-off to generate networks of mutational paths in microbial communities and show that these networks have descriptive and predictive information about the evolution of microbial communities. We find that long-term outcomes, including community collapse, diversity, and cycling, have characteristic evolutionary dynamics that determine the entropy, or repeatability, of mutational paths. Although reliable prediction of evolutionary outcomes from environmental conditions is difficult, graph-theoretic properties of the mutational networks enable accurate prediction even from incomplete observations. In conclusion, we present a novel methodology for analyzing adaptive evolution and report that the dynamics of adaptation are a key variable for predictive success.The structure and dynamics of microbial communities reflect trade-offs in the ability to use different resources. Here, Josephides and Swain incorporate metabolic trade-offs into an eco-evolutionary model to predict networks of mutational paths and the evolutionary outcomes for microbial communities.

  7. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks

    PubMed Central

    2012-01-01

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files. PMID:23194418

  8. Functional modules, structural topology, and optimal activity in metabolic networks.

    PubMed

    Resendis-Antonio, Osbaldo; Hernández, Magdalena; Mora, Yolanda; Encarnación, Sergio

    2012-01-01

    Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is

  9. Sensitivity of chemical reaction networks: a structural approach. 1. Examples and the carbon metabolic network.

    PubMed

    Mochizuki, Atsushi; Fiedler, Bernold

    2015-02-21

    In biological cells, chemical reaction pathways lead to complex network systems like metabolic networks. One experimental approach to the dynamics of such systems examines their "sensitivity": each enzyme mediating a reaction in the system is increased/decreased or knocked out separately, and the responses in the concentrations of chemicals or their fluxes are observed. In this study, we present a mathematical method, named structural sensitivity analysis, to determine the sensitivity of reaction systems from information on the network alone. We investigate how the sensitivity responses of chemicals in a reaction network depend on the structure of the network, and on the position of the perturbed reaction in the network. We establish and prove some general rules which relate the sensitivity response to the structure of the underlying network. We describe a hierarchical pattern in the flux response which is governed by branchings in the network. We apply our method to several hypothetical and real life chemical reaction networks, including the metabolic network of the Escherichia coli TCA cycle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Metabolomics integrated elementary flux mode analysis in large metabolic networks.

    PubMed

    Gerstl, Matthias P; Ruckerbauer, David E; Mattanovich, Diethard; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2015-03-10

    Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is currently restricted to medium-scale models, as the number of EFMs explodes with the network's size. However, many topologically feasible EFMs are biologically irrelevant. We present thermodynamic EFMA (tEFMA), which calculates only the small(er) subset of thermodynamically feasible EFMs. We integrate network embedded thermodynamics into EFMA and show that we can use the metabolome to identify and remove thermodynamically infeasible EFMs during an EFMA without losing biologically relevant EFMs. Calculating only the thermodynamically feasible EFMs strongly reduces memory consumption and program runtime, allowing the analysis of larger networks. We apply tEFMA to study the central carbon metabolism of E. coli and find that up to 80% of its EFMs are thermodynamically infeasible. Moreover, we identify glutamate dehydrogenase as a bottleneck, when E. coli is grown on glucose and explain its inactivity as a consequence of network embedded thermodynamics. We implemented tEFMA as a Java package which is available for download at https://github.com/mpgerstl/tEFMA.

  11. Bacterial Unculturability and the Formation of Intercellular Metabolic Networks.

    PubMed

    Pande, Samay; Kost, Christian

    2017-05-01

    The majority of known bacterial species cannot be cultivated under laboratory conditions. Here we argue that the adaptive emergence of obligate metabolic interactions in natural bacterial communities can explain this pattern. Bacteria commonly release metabolites into the external environment. Accumulating pools of extracellular metabolites create an ecological niche that benefits auxotrophic mutants, which have lost the ability to autonomously produce the corresponding metabolites. In addition to a diffusion-based metabolite transfer, auxotrophic cells can use contact-dependent means to obtain nutrients from other co-occurring cells. Spatial colocalisation and a continuous coevolution further increase the nutritional dependency and optimise fluxes through combined metabolic networks. Thus, bacteria likely function as networks of interacting cells that reciprocally exchange nutrients and biochemical functions rather than as physiologically autonomous units. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Estimating Metabolic Fluxes Using a Maximum Network Flexibility Paradigm

    PubMed Central

    Megchelenbrink, Wout; Rossell, Sergio; Huynen, Martijn A.

    2015-01-01

    Motivation Genome-scale metabolic networks can be modeled in a constraint-based fashion. Reaction stoichiometry combined with flux capacity constraints determine the space of allowable reaction rates. This space is often large and a central challenge in metabolic modeling is finding the biologically most relevant flux distributions. A widely used method is flux balance analysis (FBA), which optimizes a biologically relevant objective such as growth or ATP production. Although FBA has proven to be highly useful for predicting growth and byproduct secretion, it cannot predict the intracellular fluxes under all environmental conditions. Therefore, alternative strategies have been developed to select flux distributions that are in agreement with experimental “omics” data, or by incorporating experimental flux measurements. The latter, unfortunately can only be applied to a limited set of reactions and is currently not feasible at the genome-scale. On the other hand, it has been observed that micro-organisms favor a suboptimal growth rate, possibly in exchange for a more “flexible” metabolic network. Instead of dedicating the internal network state to an optimal growth rate in one condition, a suboptimal growth rate is used, that allows for an easier switch to other nutrient sources. A small decrease in growth rate is exchanged for a relatively large gain in metabolic capability to adapt to changing environmental conditions. Results Here, we propose Maximum Metabolic Flexibility (MMF) a computational method that utilizes this observation to find the most probable intracellular flux distributions. By mapping measured flux data from central metabolism to the genome-scale models of Escherichia coli and Saccharomyces cerevisiae we show that i) indeed, most of the measured fluxes agree with a high adaptability of the network, ii) this result can be used to further reduce the space of feasible solutions iii) this reduced space improves the quantitative predictions

  13. Systematic assignment of thermodynamic constraints in metabolic network models

    PubMed Central

    Kümmel, Anne; Panke, Sven; Heinemann, Matthias

    2006-01-01

    Background The availability of genome sequences for many organisms enabled the reconstruction of several genome-scale metabolic network models. Currently, significant efforts are put into the automated reconstruction of such models. For this, several computational tools have been developed that particularly assist in identifying and compiling the organism-specific lists of metabolic reactions. In contrast, the last step of the model reconstruction process, which is the definition of the thermodynamic constraints in terms of reaction directionalities, still needs to be done manually. No computational method exists that allows for an automated and systematic assignment of reaction directions in genome-scale models. Results We present an algorithm that – based on thermodynamics, network topology and heuristic rules – automatically assigns reaction directions in metabolic models such that the reaction network is thermodynamically feasible with respect to the production of energy equivalents. It first exploits all available experimentally derived Gibbs energies of formation to identify irreversible reactions. As these thermodynamic data are not available for all metabolites, in a next step, further reaction directions are assigned on the basis of network topology considerations and thermodynamics-based heuristic rules. Briefly, the algorithm identifies reaction subsets from the metabolic network that are able to convert low-energy co-substrates into their high-energy counterparts and thus net produce energy. Our algorithm aims at disabling such thermodynamically infeasible cyclic operation of reaction subnetworks by assigning reaction directions based on a set of thermodynamics-derived heuristic rules. We demonstrate our algorithm on a genome-scale metabolic model of E. coli. The introduced systematic direction assignment yielded 130 irreversible reactions (out of 920 total reactions), which corresponds to about 70% of all irreversible reactions that are required to

  14. Characterizing the Network of Drugs and Their Affected Metabolic Subpathways

    PubMed Central

    Li, Jing; Han, Junwei; Wang, Shuyuan; Yao, Qianlan; Wang, Yingying; Zhang, Yunpeng; Zhang, Chunlong; Xu, Yanjun; Jiang, Wei; Li, Xia

    2012-01-01

    A fundamental issue in biology and medicine is illustration of the overall drug impact which is always the consequence of changes in local regions of metabolic pathways (subpathways). To gain insights into the global relationship between drugs and their affected metabolic subpathways, we constructed a drug–metabolic subpathway network (DRSN). This network included 3925 significant drug–metabolic subpathway associations representing drug dual effects. Through analyses based on network biology, we found that if drugs were linked to the same subpathways in the DRSN, they tended to share the same indications and side effects. Furthermore, if drugs shared more subpathways, they tended to share more side effects. We then calculated the association score by integrating drug-affected subpathways and disease-related subpathways to quantify the extent of the associations between each drug class and disease class. The results showed some close drug–disease associations such as sex hormone drugs and cancer suggesting drug dual effects. Surprisingly, most drugs displayed close associations with their side effects rather than their indications. To further investigate the mechanism of drug dual effects, we classified all the subpathways in the DRSN into therapeutic and non-therapeutic subpathways representing drug therapeutic effects and side effects. Compared to drug side effects, the therapeutic effects tended to work through tissue-specific genes and these genes tend to be expressed in the adrenal gland, liver and kidney; while drug side effects always occurred in the liver, bone marrow and trachea. Taken together, the DRSN could provide great insights into understanding the global relationship between drugs and metabolic subpathways. PMID:23112813

  15. Network analysis of metabolic enzyme evolution in Escherichia coli

    PubMed Central

    Light, Sara; Kraulis, Per

    2004-01-01

    Background The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc. Results Sequence comparison between all enzyme pairs was performed and the minimal path length (MPL) between all enzyme pairs was determined. We find a strong over-representation of homologous enzymes at MPL 1. We show that the functionally similar and functionally undetermined enzyme pairs are responsible for most of the over-representation of homologous enzyme pairs at MPL 1. Conclusions The retrograde evolution model predicts that homologous enzymes pairs are at short metabolic distances from each other. In general agreement with previous studies we find that homologous enzymes occur close to each other in the network more often than expected by chance, which lends some support to the retrograde evolution model. However, we show that the homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs that are functionally dissimilar, show a weaker over-representation at MPL 1 than the functionally similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have played a small part, the patchwork evolution model is the predominant process of metabolic enzyme evolution. PMID:15113413

  16. Second Law of Thermodynamics Applied to Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Nigam, R.; Liang, S.

    2003-01-01

    We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.

  17. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable.

  18. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    PubMed Central

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  19. Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    PubMed Central

    Ferrara, Christine T.; Wang, Ping; Neto, Elias Chaibub; Stevens, Robert D.; Bain, James R.; Wenner, Brett R.; Ilkayeva, Olga R.; Keller, Mark P.; Blasiole, Daniel A.; Kendziorski, Christina; Yandell, Brian S.; Newgard, Christopher B.; Attie, Alan D.

    2008-01-01

    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes. PMID:18369453

  20. Current Understanding of the Formation and Adaptation of Metabolic Systems Based on Network Theory

    PubMed Central

    Takemoto, Kazuhiro

    2012-01-01

    Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering. PMID:24957641

  1. Current understanding of the formation and adaptation of metabolic systems based on network theory.

    PubMed

    Takemoto, Kazuhiro

    2012-07-12

    Formation and adaptation of metabolic networks has been a long-standing question in biology. With recent developments in biotechnology and bioinformatics, the understanding of metabolism is progressively becoming clearer from a network perspective. This review introduces the comprehensive metabolic world that has been revealed by a wide range of data analyses and theoretical studies; in particular, it illustrates the role of evolutionary events, such as gene duplication and horizontal gene transfer, and environmental factors, such as nutrient availability and growth conditions, in evolution of the metabolic network. Furthermore, the mathematical models for the formation and adaptation of metabolic networks have also been described, according to the current understanding from a perspective of metabolic networks. These recent findings are helpful in not only understanding the formation of metabolic networks and their adaptation, but also metabolic engineering.

  2. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis

    PubMed Central

    Goelzer, Anne; Bekkal Brikci, Fadia; Martin-Verstraete, Isabelle; Noirot, Philippe; Bessières, Philippe; Aymerich, Stéphane; Fromion, Vincent

    2008-01-01

    Background Few genome-scale models of organisms focus on the regulatory networks and none of them integrates all known levels of regulation. In particular, the regulations involving metabolite pools are often neglected. However, metabolite pools link the metabolic to the genetic network through genetic regulations, including those involving effectors of transcription factors or riboswitches. Consequently, they play pivotal roles in the global organization of the genetic and metabolic regulatory networks. Results We report the manually curated reconstruction of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis (transcriptional, translational and post-translational regulations and modulation of enzymatic activities). We provide a systematic graphic representation of regulations of each metabolic pathway based on the central role of metabolites in regulation. We show that the complex regulatory network of B. subtilis can be decomposed as sets of locally regulated modules, which are coordinated by global regulators. Conclusion This work reveals the strong involvement of metabolite pools in the general regulation of the metabolic network. Breaking the metabolic network down into modules based on the control of metabolite pools reveals the functional organization of the genetic and metabolic regulatory networks of B. subtilis. PMID:18302748

  3. Hierarchical decomposition of metabolic networks using k-modules.

    PubMed

    Reimers, Arne C

    2015-12-01

    The optimal solutions obtained by flux balance analysis (FBA) are typically not unique. Flux modules have recently been shown to be a very useful tool to simplify and decompose the space of FBA-optimal solutions. Since yield-maximization is sometimes not the primary objective encountered in vivo, we are also interested in understanding the space of sub-optimal solutions. Unfortunately, the flux modules are too restrictive and not suited for this task. We present a generalization, called k-module, which compensates the limited applicability of flux modules to the space of sub-optimal solutions. Intuitively, a k-module is a sub-network with low connectivity to the rest of the network. Recursive application of k-modules yields a hierarchical decomposition of the metabolic network, which is also known as branch decomposition in matroid theory. In particular, decompositions computed by existing methods, like the null-space-based approach, introduced by Poolman et al. [(2007) J. Theor. Biol. 249: , 691-705] can be interpreted as branch decompositions. With k-modules we can now compare alternative decompositions of metabolic networks to the classical sub-systems of glycolysis, tricarboxylic acid (TCA) cycle, etc. They can be used to speed up algorithmic problems [theoretically shown for elementary flux modes (EFM) enumeration] and have the potential to present computational solutions in a more intuitive way independently from the classical sub-systems.

  4. A generalized theory of preferential linking

    NASA Astrophysics Data System (ADS)

    Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan

    2014-12-01

    There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.

  5. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae.

    PubMed

    Jin, Yong-Su; Jeffries, Thomas W

    2004-07-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast traditionally used in ethanol production from hexose. However, recombinant S. cerevisiae created in several laboratories have used xylose oxidatively rather than in the fermentative manner that this yeast metabolizes glucose. To understand the differences between glucose and engineered xylose metabolic networks, we performed a flux balance analysis (FBA) and calculated extreme pathways using a stoichiometric model that describes the biochemistry of yeast cell growth. FBA predicted that the ethanol yield from xylose exhibits a maximum under oxygen-limited conditions, and a fermentation experiment confirmed this finding. Fermentation results were largely consistent with in silico phenotypes based on calculated extreme pathways, which displayed several phases of metabolic phenotype with respect to oxygen availability from anaerobic to aerobic conditions. However, in contrast to the model prediction, xylitol production continued even after the optimum aeration level for ethanol production was attained. These results suggest that oxygen (or some other electron accepting system) is required to resolve the redox imbalance caused by cofactor difference between xylose reductase and xylitol dehydrogenase, and that other factors limit glycolytic flux when xylose is the sole carbon source.

  6. Global insights into energetic and metabolic networks in Rhodobacter sphaeroides

    PubMed Central

    2013-01-01

    Background Improving our understanding of processes at the core of cellular lifestyles can be aided by combining information from genetic analyses, high-throughput experiments and computational predictions. Results We combined data and predictions derived from phenotypic, physiological, genetic and computational analyses to dissect the metabolic and energetic networks of the facultative photosynthetic bacterium Rhodobacter sphaeroides. We focused our analysis on pathways crucial to the production and recycling of pyridine nucleotides during aerobic respiratory and anaerobic photosynthetic growth in the presence of an organic electron donor. In particular, we assessed the requirement for NADH/NADPH transhydrogenase enzyme, PntAB during respiratory and photosynthetic growth. Using high-throughput phenotype microarrays (PMs), we found that PntAB is essential for photosynthetic growth in the presence of many organic electron donors, particularly those predicted to require its activity to produce NADPH. Utilizing the genome-scale metabolic model iRsp1095, we predicted alternative routes of NADPH synthesis and used gene expression analyses to show that transcripts from a subset of the corresponding genes were conditionally increased in a ΔpntAB mutant. We then used a combination of metabolic flux predictions and mutational analysis to identify flux redistribution patterns utilized in the ΔpntAB mutant to compensate for the loss of this enzyme. Data generated from metabolic and phenotypic analyses of wild type and mutant cells were used to develop iRsp1140, an expanded genome-scale metabolic reconstruction for R. sphaeroides with improved ability to analyze and predict pathways associated with photosynthesis and other metabolic processes. Conclusions These analyses increased our understanding of key aspects of the photosynthetic lifestyle, highlighting the added importance of NADPH production under these conditions. It also led to a significant improvement in the

  7. Artefacts in statistical analyses of network motifs: general framework and application to metabolic networks.

    PubMed

    Beber, Moritz Emanuel; Fretter, Christoph; Jain, Shubham; Sonnenschein, Nikolaus; Müller-Hannemann, Matthias; Hütt, Marc-Thorsten

    2012-12-07

    Few-node subgraphs are the smallest collective units in a network that can be investigated. They are beyond the scale of individual nodes but more local than, for example, communities. When statistically over- or under-represented, they are called network motifs. Network motifs have been interpreted as building blocks that shape the dynamic behaviour of networks. It is this promise of potentially explaining emergent properties of complex systems with relatively simple structures that led to an interest in network motifs in an ever-growing number of studies and across disciplines. Here, we discuss artefacts in the analysis of network motifs arising from discrepancies between the network under investigation and the pool of random graphs serving as a null model. Our aim was to provide a clear and accessible catalogue of such incongruities and their effect on the motif signature. As a case study, we explore the metabolic network of Escherichia coli and show that only by excluding ever more artefacts from the motif signature a strong and plausible correlation with the essentiality profile of metabolic reactions emerges.

  8. Artefacts in statistical analyses of network motifs: general framework and application to metabolic networks

    PubMed Central

    Beber, Moritz Emanuel; Fretter, Christoph; Jain, Shubham; Sonnenschein, Nikolaus; Müller-Hannemann, Matthias; Hütt, Marc-Thorsten

    2012-01-01

    Few-node subgraphs are the smallest collective units in a network that can be investigated. They are beyond the scale of individual nodes but more local than, for example, communities. When statistically over- or under-represented, they are called network motifs. Network motifs have been interpreted as building blocks that shape the dynamic behaviour of networks. It is this promise of potentially explaining emergent properties of complex systems with relatively simple structures that led to an interest in network motifs in an ever-growing number of studies and across disciplines. Here, we discuss artefacts in the analysis of network motifs arising from discrepancies between the network under investigation and the pool of random graphs serving as a null model. Our aim was to provide a clear and accessible catalogue of such incongruities and their effect on the motif signature. As a case study, we explore the metabolic network of Escherichia coli and show that only by excluding ever more artefacts from the motif signature a strong and plausible correlation with the essentiality profile of metabolic reactions emerges. PMID:22896565

  9. Applications of genome-scale metabolic network model in metabolic engineering.

    PubMed

    Kim, Byoungjin; Kim, Won Jun; Kim, Dong In; Lee, Sang Yup

    2015-03-01

    Genome-scale metabolic network model (GEM) is a fundamental framework in systems metabolic engineering. GEM is built upon extensive experimental data and literature information on gene annotation and function, metabolites and enzymes so that it contains all known metabolic reactions within an organism. Constraint-based analysis of GEM enables the identification of phenotypic properties of an organism and hypothesis-driven engineering of cellular functions to achieve objectives. Along with the advances in omics, high-throughput technology and computational algorithms, the scope and applications of GEM have substantially expanded. In particular, various computational algorithms have been developed to predict beneficial gene deletion and amplification targets and used to guide the strain development process for the efficient production of industrially important chemicals. Furthermore, an Escherichia coli GEM was integrated with a pathway prediction algorithm and used to evaluate all possible routes for the production of a list of commodity chemicals in E. coli. Combined with the wealth of experimental data produced by high-throughput techniques, much effort has been exerted to add more biological contexts into GEM through the integration of omics data and regulatory network information for the mechanistic understanding and improved prediction capabilities. In this paper, we review the recent developments and applications of GEM focusing on the GEM-based computational algorithms available for microbial metabolic engineering.

  10. Optimal control of metabolic networks with saturable enzyme kinetics.

    PubMed

    Oyarzuun, D A

    2011-03-01

    This note addresses the optimal control of non-linear metabolic networks by means of time-dependent enzyme synthesis rates. The authors consider networks with general topologies described by a control-affine dynamical system coupled with a linear model for enzyme synthesis and degradation. The problem formulation accounts for transitions between two metabolic equilibria, which typically arise in metabolic adaptations to environmental changes, and the minimisation of a quadratic functional that weights the cost/benefit relation between the transcriptional effort required for enzyme synthesis and the transition to the new phenotype. Using a linear time-variant approximation of the non-linear dynamics, the problem is recast as a sequence of linear-quadratic problems, the solution of which involves a sequence of differential Lyapunov equations. The authors provide conditions for convergence to an approximate solution of the original problem, which are naturally satisfied by a wide class of models for saturable enzyme kinetics. As a case study the authors use the method to examine the robustness of an optimal just-in-time gene expression pattern with respect to heterogeneity in the biosynthetic costs of individual proteins.

  11. Alterations in metabolic pathways and networks in Alzheimer's disease.

    PubMed

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-04-09

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.

  12. Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803

    PubMed Central

    Knoop, Henning; Gründel, Marianne; Zilliges, Yvonne; Lehmann, Robert; Hoffmann, Sabrina; Lockau, Wolfgang; Steuer, Ralf

    2013-01-01

    Cyanobacteria are versatile unicellular phototrophic microorganisms that are highly abundant in many environments. Owing to their capability to utilize solar energy and atmospheric carbon dioxide for growth, cyanobacteria are increasingly recognized as a prolific resource for the synthesis of valuable chemicals and various biofuels. To fully harness the metabolic capabilities of cyanobacteria necessitates an in-depth understanding of the metabolic interconversions taking place during phototrophic growth, as provided by genome-scale reconstructions of microbial organisms. Here we present an extended reconstruction and analysis of the metabolic network of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Building upon several recent reconstructions of cyanobacterial metabolism, unclear reaction steps are experimentally validated and the functional consequences of unknown or dissenting pathway topologies are discussed. The updated model integrates novel results with respect to the cyanobacterial TCA cycle, an alleged glyoxylate shunt, and the role of photorespiration in cellular growth. Going beyond conventional flux-balance analysis, we extend the computational analysis to diurnal light/dark cycles of cyanobacterial metabolism. PMID:23843751

  13. Emergence of tempered preferential attachment from optimization

    PubMed Central

    D'Souza, Raissa M.; Borgs, Christian; Chayes, Jennifer T.; Berger, Noam; Kleinberg, Robert D.

    2007-01-01

    We show how preferential attachment can emerge in an optimization framework, resolving a long-standing theoretical controversy. We also show that the preferential attachment model so obtained has two novel features, saturation and viability, which have natural interpretations in the underlying network and lead to a power-law degree distribution with exponential cutoff. Moreover, we consider a generalized version of this preferential attachment model with independent saturation and viability, leading to a broader class of power laws again with exponential cutoff. We present a collection of empirical observations from social, biological, physical, and technological networks, for which such degree distributions give excellent fits. We suggest that, in general, optimization models that give rise to preferential attachment with saturation and viability effects form a good starting point for the analysis of many networks. PMID:17395721

  14. Origins of Specificity and Promiscuity in Metabolic Networks

    PubMed Central

    Carbonell, Pablo; Lecointre, Guillaume; Faulon, Jean-Loup

    2011-01-01

    How enzymes have evolved to their present form is linked to the question of how pathways emerged and evolved into extant metabolic networks. To investigate this mechanism, we have explored the chemical diversity present in a largely unbiased data set of catalytic reactions processed by modern enzymes across the tree of life. In order to get a quantitative estimate of enzyme chemical diversity, we measure enzyme multispecificity or promiscuity using the reaction molecular signatures. Our main finding is that reactions that are catalyzed by a highly specific enzyme are shared by poorly divergent species, suggesting a later emergence of this function during evolution. In contrast, reactions that are catalyzed by highly promiscuous enzymes are more likely to appear uniformly distributed across species in the tree of life. From a functional point of view, promiscuous enzymes are mainly involved in amino acid and lipid metabolisms, which might be associated with the earliest form of biochemical reactions. In this way, results presented in this paper might assist us with the identification of primeval promiscuous catalytic functions contributing to life's minimal metabolism. PMID:22052908

  15. Metabolic networks for nitrogen utilization in Prevotella ruminicola 23.

    PubMed

    Kim, Jong Nam; Méndez-García, Celia; Geier, Renae R; Iakiviak, Michael; Chang, Jongsoo; Cann, Isaac; Mackie, Roderick I

    2017-08-10

    Nitrogen metabolism in gut systems remains poorly studied in spite of its importance for microbial growth and its implications for the metabolism of the host. Prevotella spp. are the most predominant bacteria detected in the rumen, but their presence has also been related to health and disease states in the human gut and oral cavity. To explore the metabolic networks for nitrogen assimilation in this bacterium, changes in gene expression profiles in response to variations in the available nitrogen source and to different concentrations of ammonium were analyzed by microarray and reverse transcription quantitative PCR, and linked with function by further proteomic analysis. The observed patterns of transcript abundances for genes involved in ammonium assimilation differed from the classical "enteric paradigm" for nitrogen utilization. Expression of genes encoding high substrate affinity nitrogen assimilation enzymes (GS-GOGAT system) was similar in growth-limiting and non-limiting nitrogen concentrations in P. ruminicola 23, whereas E. coli and Salmonella spp. responses to excess nitrogen involve only low substrate affinity enzymes. This versatile behavior might be a key feature for ecological success in habitats such as the rumen and human colon where nitrogen is rarely limiting for growth, and might be linked to previously reported Prevotella spp. population imbalances relative to other bacterial species in gut systems.

  16. Metabolic network architecture and carbon source determine metabolite production costs.

    PubMed

    Waschina, Silvio; D'Souza, Glen; Kost, Christian; Kaleta, Christoph

    2016-06-01

    Metabolism is essential to organismal life, because it provides energy and building block metabolites. Even though it is known that the biosynthesis of metabolites consumes a significant proportion of the resources available to a cell, the factors that determine their production costs remain less well understood. In this context, it is especially unclear how the nutritional environment affects the costs of metabolite production. Here, we use the amino acid metabolism of Escherichia coli as a model to show that the point at which a carbon source enters central metabolic pathways is a major determinant of individual metabolite production costs. Growth rates of auxotrophic genotypes, which in the presence of the required amino acid save biosynthetic costs, were compared to the growth rates that prototrophic cells achieved under the same conditions. The experimental results showed a strong concordance with computationally estimated biosynthetic costs, which allowed us, for the first time, to systematically quantify carbon source-dependent metabolite production costs. Thus, we demonstrate that the nutritional environment in combination with network architecture is an important but hitherto underestimated factor influencing biosynthetic costs and thus microbial growth. Our observations are highly relevant for the optimization of biotechnological processes as well as for understanding the ecology of microorganisms in their natural environments. © 2016 Federation of European Biochemical Societies.

  17. Hands-on metabolism analysis of complex biochemical networks using elementary flux modes.

    PubMed

    Schäuble, Sascha; Schuster, Stefan; Kaleta, Christoph

    2011-01-01

    The aim of this chapter is to discuss the basic principles and reasoning behind elementary flux mode analysis (EFM analysis)--an important tool for the analysis of metabolic networks. We begin with a short introduction into metabolic pathway analysis and subsequently outline in detail fundamentals of EFM analysis by way of a small example network. We discuss issues arising in the reconstruction of metabolic networks required for EFM analysis and how they can be circumvented. Subsequently, we analyze a more elaborate example network representing photosynthate metabolism. Finally, we give an overview of applications of EFM analysis in biotechnology and other fields and discuss issues arising when applying methods from metabolic pathway analysis to genome-scale metabolic networks.

  18. Inactivation of Metabolic Genes Causes Short- and Long-Range dys-Regulation in Escherichia coli Metabolic Network

    PubMed Central

    Barupal, Dinesh Kumar; Lee, Sang Jun; Karoly, Edward D.; Adhya, Sankar

    2013-01-01

    The metabolic network in E. coli can be severely affected by the inactivation of metabolic genes that are required to catabolize a nutrient (D-galactose). We hypothesized that the resulting accumulation of small molecules can yield local as well as systemic effects on the metabolic network. Analysis of metabolomics data in wild-type and D-galactose non-utilizing mutants, galT, galU and galE, reveal the large metabolic differences between the wild-type and the mutants when the strains were grown in D-galactose. Network mapping suggested that the enzymatic defects affected the metabolic modules located both at short- and long-ranges from the D-galactose metabolic module. These modules suggested alterations in glutathione, energy, nucleotide and lipid metabolism and disturbed carbon to nitrogen ratio in mutant strains. The altered modules are required for normal cell growth for the wild-type strain, explaining why the cell growth is inhibited in the mutants in the presence of D-galactose. Identification of these distance-based dys-regulations would enhance the systems level understanding of metabolic networks of microorganisms having importance in biomedical and biotechnological research. PMID:24363806

  19. Integration of Metabolic and Gene Regulatory Networks Modulates The C. elegans Dietary Response

    PubMed Central

    Arda, H. Efsun; Zhu, Lihua Julie; Walhout, Albertha J.M.

    2013-01-01

    SUMMARY Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network comprised of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus. PMID:23540702

  20. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.

    PubMed

    Watson, Emma; MacNeil, Lesley T; Arda, H Efsun; Zhu, Lihua Julie; Walhout, Albertha J M

    2013-03-28

    Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network composed of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus.

  1. Controlled CO preferential oxidation

    DOEpatents

    Meltser, M.A.; Hoch, M.M.

    1997-06-10

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  2. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network.

    PubMed

    Hodges, Michael; Dellero, Younès; Keech, Olivier; Betti, Marco; Raghavendra, Agepati S; Sage, Rowan; Zhu, Xin-Guang; Allen, Doug K; Weber, Andreas P M

    2016-05-01

    Photorespiration is an essential high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed metabolic repair pathway that serves to detoxify 2-phosphoglycolic acid and to recycle carbon to fuel the Calvin-Benson cycle. However, this view is too simplistic since the photorespiratory cycle is known to interact with several primary metabolic pathways, including photosynthesis, nitrate assimilation, amino acid metabolism, C1 metabolism and the Krebs (TCA) cycle. Here we will review recent advances in photorespiration research and discuss future priorities to better understand (i) the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism and (ii) the importance of photorespiration in response to abiotic and biotic stresses.

  3. A Bayesian Approach to the Evolution of Metabolic Networks on a Phylogeny

    PubMed Central

    Mithani, Aziz; Preston, Gail M.; Hein, Jotun

    2010-01-01

    The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions) or complex (incorporating dependencies among reactions) stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks. PMID:20700467

  4. A Bayesian approach to the evolution of metabolic networks on a phylogeny.

    PubMed

    Mithani, Aziz; Preston, Gail M; Hein, Jotun

    2010-08-05

    The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions) or complex (incorporating dependencies among reactions) stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks.

  5. A new network representation of the metabolism to detect chemical transformation modules.

    PubMed

    Sorokina, Maria; Medigue, Claudine; Vallenet, David

    2015-11-14

    Metabolism is generally modeled by directed networks where nodes represent reactions and/or metabolites. In order to explore metabolic pathway conservation and divergence among organisms, previous studies were based on graph alignment to find similar pathways. Few years ago, the concept of chemical transformation modules, also called reaction modules, was introduced and correspond to sequences of chemical transformations which are conserved in metabolism. We propose here a novel graph representation of the metabolic network where reactions sharing a same chemical transformation type are grouped in Reaction Molecular Signatures (RMS). RMS were automatically computed for all reactions and encode changes in atoms and bonds. A reaction network containing all available metabolic knowledge was then reduced by an aggregation of reaction nodes and edges to obtain a RMS network. Paths in this network were explored and a substantial number of conserved chemical transformation modules was detected. Furthermore, this graph-based formalism allows us to define several path scores reflecting different biological conservation meanings. These scores are significantly higher for paths corresponding to known metabolic pathways and were used conjointly to build association rules that should predict metabolic pathway types like biosynthesis or degradation. This representation of metabolism in a RMS network offers new insights to capture relevant metabolic contexts. Furthermore, along with genomic context methods, it should improve the detection of gene clusters corresponding to new metabolic pathways.

  6. A flexible state-space approach for the modeling of metabolic networks II: advanced interrogation of hybridoma metabolism.

    PubMed

    Baughman, Adam C; Sharfstein, Susan T; Martin, Lealon L

    2011-03-01

    Having previously introduced the mathematical framework of topological metabolic analysis (TMA) - a novel optimization-based technique for modeling metabolic networks of arbitrary size and complexity - we demonstrate how TMA facilitates unique methods of metabolic interrogation. With the aid of several hybridoma metabolic investigations as case-studies (Bonarius et al., 1995, 1996, 2001), we first establish that the TMA framework identifies biologically important aspects of the metabolic network under investigation. We also show that the use of a structured weighting approach within our objective provides a substantial modeling benefit over an unstructured, uniform, weighting approach. We then illustrate the strength of TAM as an advanced interrogation technique, first by using TMA to prove the existence of (and to quantitatively describe) multiple topologically distinct configurations of a metabolic network that each optimally model a given set of experimental observations. We further show that such alternate topologies are indistinguishable using existing stoichiometric modeling techniques, and we explain the biological significance of the topological variables appearing within our model. By leveraging the manner in which TMA implements metabolite inputs and outputs, we also show that metabolites whose possible metabolic fates are inadequately described by a given network reconstruction can be quickly identified. Lastly, we show how the use of the TMA aggregate objective function (AOF) permits the identification of modeling solutions that can simultaneously consider experimental observations, underlying biological motivations, or even purely engineering- or design-based goals.

  7. Microbial diversity and metabolic networks in acid mine drainage habitats

    PubMed Central

    Méndez-García, Celia; Peláez, Ana I.; Mesa, Victoria; Sánchez, Jesús; Golyshina, Olga V.; Ferrer, Manuel

    2015-01-01

    Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far. PMID:26074887

  8. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    PubMed

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism.

  9. Controllability in cancer metabolic networks according to drug targets as driver nodes.

    PubMed

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

  10. Controllability in Cancer Metabolic Networks According to Drug Targets as Driver Nodes

    PubMed Central

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine. PMID:24282504

  11. Automated refinement and inference of analytical models for metabolic networks

    PubMed Central

    Schmidt, Michael D; Vallabhajosyula, Ravishankar R; Jenkins, Jerry W; Hood, Jonathan E; Soni, Abhishek S; Wikswo, John P; Lipson, Hod

    2013-01-01

    The reverse engineering of metabolic networks from experimental data is traditionally a labor-intensive task requiring a priori systems knowledge. Using a proven model as a test system, we demonstrate an automated method to simplify this process by modifying an existing or related model – suggesting nonlinear terms and structural modifications – or even constructing a new model that agrees with the system’s time-series observations. In certain cases, this method can identify the full dynamical model from scratch without prior knowledge or structural assumptions. The algorithm selects between multiple candidate models by designing experiments to make their predictions disagree. We performed computational experiments to analyze a nonlinear seven-dimensional model of yeast glycolytic oscillations. This approach corrected mistakes reliably in both approximated and overspecified models. The method performed well to high levels of noise for most states, could identify the correct model de novo, and make better predictions than ordinary parametric regression and neural network models. We identified an invariant quantity in the model, which accurately derived kinetics and the numerical sensitivity coefficients of the system. Finally, we compared the system to dynamic flux estimation and discussed the scaling and application of this methodology to automated experiment design and control in biological systems in real-time. PMID:21832805

  12. Automated refinement and inference of analytical models for metabolic networks

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael D.; Vallabhajosyula, Ravishankar R.; Jenkins, Jerry W.; Hood, Jonathan E.; Soni, Abhishek S.; Wikswo, John P.; Lipson, Hod

    2011-10-01

    The reverse engineering of metabolic networks from experimental data is traditionally a labor-intensive task requiring a priori systems knowledge. Using a proven model as a test system, we demonstrate an automated method to simplify this process by modifying an existing or related model--suggesting nonlinear terms and structural modifications--or even constructing a new model that agrees with the system's time series observations. In certain cases, this method can identify the full dynamical model from scratch without prior knowledge or structural assumptions. The algorithm selects between multiple candidate models by designing experiments to make their predictions disagree. We performed computational experiments to analyze a nonlinear seven-dimensional model of yeast glycolytic oscillations. This approach corrected mistakes reliably in both approximated and overspecified models. The method performed well to high levels of noise for most states, could identify the correct model de novo, and make better predictions than ordinary parametric regression and neural network models. We identified an invariant quantity in the model, which accurately derived kinetics and the numerical sensitivity coefficients of the system. Finally, we compared the system to dynamic flux estimation and discussed the scaling and application of this methodology to automated experiment design and control in biological systems in real time.

  13. Text mining for metabolic pathways, signaling cascades, and protein networks.

    PubMed

    Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso

    2005-05-10

    The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks.

  14. Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi.

    PubMed

    Lavoie, Hugo; Hogues, Hervé; Whiteway, Malcolm

    2009-12-01

    Growing evidence suggests that transcriptional regulatory networks in many organisms are highly flexible. Here, we discuss the evolution of transcriptional regulatory networks governing the metabolic machinery of sequenced ascomycetes. In particular, recent work has shown that transcriptional rewiring is common in regulons controlling processes such as production of ribosome components and metabolism of carbohydrates and lipids. We note that dramatic rearrangements of the transcriptional regulatory components of metabolic functions have occurred among ascomycetes species.

  15. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    PubMed

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  16. MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model.

    PubMed

    Lawless, Nathan; Reinhardt, Timothy A; Bryan, Kenneth; Baker, Mike; Pesch, Bruce; Zimmerman, Duane; Zuelke, Kurt; Sonstegard, Tad; O'Farrelly, Cliona; Lippolis, John D; Lynn, David J

    2014-01-27

    Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per year. Because disease susceptibility is a multifactorial complex phenotype, an integrative biology approach is required to dissect the molecular networks involved. Here, we report such an approach using next-generation sequencing combined with advanced network and pathway biology methods to simultaneously profile mRNA and miRNA expression at multiple time points (0, 12, 24, 36 and 48 hr) in milk and blood FACS-isolated CD14(+) monocytes from animals infected in vivo with Streptococcus uberis. More than 3700 differentially expressed (DE) genes were identified in milk-isolated monocytes (MIMs), a key immune cell recruited to the site of infection during mastitis. Upregulated genes were significantly enriched for inflammatory pathways, whereas downregulated genes were enriched for nonglycolytic metabolic pathways. Monocyte transcriptional changes in the blood, however, were more subtle but highlighted the impact of this infection systemically. Genes upregulated in blood-isolated monocytes (BIMs) showed a significant association with interferon and chemokine signaling. Furthermore, 26 miRNAs were DE in MIMs and three were DE in BIMs. Pathway analysis revealed that predicted targets of downregulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E-8), particularly TLR signaling, whereas upregulated miRNAs preferentially targeted genes involved in metabolism. We conclude that during S. uberis infection miRNAs are key amplifiers of monocyte inflammatory response networks and repressors of several metabolic pathways.

  17. MicroRNA Regulation of Bovine Monocyte Inflammatory and Metabolic Networks in an In Vivo Infection Model

    PubMed Central

    Lawless, Nathan; Reinhardt, Timothy A.; Bryan, Kenneth; Baker, Mike; Pesch, Bruce; Zimmerman, Duane; Zuelke, Kurt; Sonstegard, Tad; O’Farrelly, Cliona; Lippolis, John D.; Lynn, David J.

    2014-01-01

    Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per year. Because disease susceptibility is a multifactorial complex phenotype, an integrative biology approach is required to dissect the molecular networks involved. Here, we report such an approach using next-generation sequencing combined with advanced network and pathway biology methods to simultaneously profile mRNA and miRNA expression at multiple time points (0, 12, 24, 36 and 48 hr) in milk and blood FACS-isolated CD14+ monocytes from animals infected in vivo with Streptococcus uberis. More than 3700 differentially expressed (DE) genes were identified in milk-isolated monocytes (MIMs), a key immune cell recruited to the site of infection during mastitis. Upregulated genes were significantly enriched for inflammatory pathways, whereas downregulated genes were enriched for nonglycolytic metabolic pathways. Monocyte transcriptional changes in the blood, however, were more subtle but highlighted the impact of this infection systemically. Genes upregulated in blood-isolated monocytes (BIMs) showed a significant association with interferon and chemokine signaling. Furthermore, 26 miRNAs were DE in MIMs and three were DE in BIMs. Pathway analysis revealed that predicted targets of downregulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E−8), particularly TLR signaling, whereas upregulated miRNAs preferentially targeted genes involved in metabolism. We conclude that during S. uberis infection miRNAs are key amplifiers of monocyte inflammatory response networks and repressors of several metabolic pathways. PMID:24470219

  18. Study on incompatibility of traditional chinese medicine: evidence from formula network, chemical space, and metabolism room.

    PubMed

    Long, Wei; Zhang, Xiao-Dong; Wu, Hong-Ying; Jin, Jin; Yu, Guang-Yun; He, Xin; Wang, Hao; Shen, Xiu; Zhou, Ze-Wei; Liu, Pei-Xun; Fan, Sai-Jun

    2013-01-01

    A traditional Chinese medicine (TCM) formula network including 362 TCM formulas was built by using complex network methodologies. The properties of this network were analyzed including network diameter, average distance, clustering coefficient, and average degree. Meanwhile, we built a TCM chemical space and a TCM metabolism room under the theory of chemical space. The properties of chemical space and metabolism room were calculated and analyzed. The properties of the medicine pairs in "eighteen antagonisms and nineteen mutual inhibitors," an ancient rule for TCM incompatibility, were studied based on the TCM formula network, chemical space, and metabolism room. The results showed that the properties of these incompatible medicine pairs are different from those of the other TCM based on the analysis of the TCM formula network, chemical space, and metabolism room. The lines of evidence derived from our work demonstrated that the ancient rule of TCM incompatibility, "eighteen antagonisms and nineteen mutual inhibitors," is probably scientifically based.

  19. Metabolic network structure and function in bacteria goes beyond conserved enzyme components

    PubMed Central

    Bazurto, Jannell V.; Downs, Diana M.

    2016-01-01

    For decades, experimental work has laid the foundation for our understanding of the linear and branched pathways that are integrated to form the metabolic networks on which life is built. Genetic and biochemical approaches applied in model organisms generate empirical data that correlate genes, gene products and their biological activities. In the post-genomic era, these results have served as the basis for the genome annotation that is routinely used to infer the metabolic capabilities of an organism and mathematically model the presumed metabolic network structure. At large, genome annotation and metabolic network reconstructions have demystified genomic content of non-culturable microorganisms and allowed researchers to explore the breadth of metabolisms in silico. Mis-annotation aside, it is unclear whether in silico reconstructions of metabolic structure from component parts accurately captures the higher levels of network organization and flux distribution. For this approach to provide accurate predictions, one must assume that the conservation of metabolic components leads to conservation of metabolic network architecture and function. This assumption has not been rigorously tested. Here we describe the implications of a recent study (MBio 5;7(1): e01840-15), which demonstrated that conservation of metabolic components was not sufficient to predict network structure and function. PMID:28357363

  20. Identification of functional differences in metabolic networks using comparative genomics and constraint-based models.

    PubMed

    Hamilton, Joshua J; Reed, Jennifer L

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different

  1. Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    PubMed Central

    Hamilton, Joshua J.; Reed, Jennifer L.

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different

  2. Information filtering via preferential diffusion

    NASA Astrophysics Data System (ADS)

    Lü, Linyuan; Liu, Weiping

    2011-06-01

    Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  3. Information filtering via preferential diffusion.

    PubMed

    Lü, Linyuan; Liu, Weiping

    2011-06-01

    Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  4. Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery☆

    PubMed Central

    Kell, Douglas B.; Goodacre, Royston

    2014-01-01

    Metabolism represents the ‘sharp end’ of systems biology, because changes in metabolite concentrations are necessarily amplified relative to changes in the transcriptome, proteome and enzyme activities, which can be modulated by drugs. To understand such behaviour, we therefore need (and increasingly have) reliable consensus (community) models of the human metabolic network that include the important transporters. Small molecule ‘drug’ transporters are in fact metabolite transporters, because drugs bear structural similarities to metabolites known from the network reconstructions and from measurements of the metabolome. Recon2 represents the present state-of-the-art human metabolic network reconstruction; it can predict inter alia: (i) the effects of inborn errors of metabolism; (ii) which metabolites are exometabolites, and (iii) how metabolism varies between tissues and cellular compartments. However, even these qualitative network models are not yet complete. As our understanding improves so do we recognise more clearly the need for a systems (poly)pharmacology. PMID:23892182

  5. Observation conflict resolution in steady-state metabolic network dynamics analysis.

    PubMed

    Cicek, A Ercument; Ozsoyoglu, Gultekin

    2012-02-01

    Steady state metabolic network dynamics analysis (SMDA) is a recently proposed computational metabolomics tool that (i) captures a metabolic network and its rules via a metabolic network database, (ii) mimics the reasoning of a biochemist, given a set of metabolic observations, and (iii) locates efficiently all possible metabolic activation/inactivation (flux) alternatives. However, a number of factors may cause the SMDA algorithm to eliminate feasible flux scenarios. These factors include (i) inherent error margins in observations (measurements), (ii) lack of knowledge to classify measurements as normal versus abnormal, and (iii) choosing a highly constrained metabolic subnetwork to query against. In this work, we first present and formalize these obstacles. Then, we propose techniques to eliminate them and present an experimental evaluation of our proposed techniques.

  6. Into new territory: improved microbial synthesis through engineering of the essential metabolic network.

    PubMed

    Lynch, Michael D

    2016-04-01

    Advances in synthetic biology and metabolic engineering offer the promise of next generation bioprocesses to produce numerous products including specialty and bulk chemicals and even biofuels sustainably from renewable feedstocks. A primary challenge is the optimization of product flux, within a much larger and complex metabolic network. While simple gene deletion methods can be used in the case of non-essential byproduct pathways, more sophisticated approaches are required when competitive fluxes are essential to host cellular functions. Engineering essential metabolic networks has been traditionally off-limits to metabolic engineers. Newer approaches to be reviewed include the rebalancing or rewiring of the metabolic network by tuning the levels of essential enzymes and the use of dynamic metabolic control strategies to conditionally reduce essential competitive fluxes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Computational approaches to the topology, stability and dynamics of metabolic networks.

    PubMed

    Steuer, Ralf

    2007-01-01

    Cellular metabolism is characterized by an intricate network of interactions between biochemical fluxes, metabolic compounds and regulatory interactions. To investigate and eventually understand the emergent global behavior arising from such networks of interaction is not possible by intuitive reasoning alone. This contribution seeks to describe recent computational approaches that aim to asses the topological and functional properties of metabolic networks. In particular, based on a recently proposed method, it is shown that it is possible to acquire a quantitative picture of the possible dynamics of metabolic systems, without assuming detailed knowledge of the underlying enzyme-kinetic rate equations and parameters. Rather, the method builds upon a statistical exploration of the comprehensive parameter space to evaluate the dynamic capabilities of a metabolic system, thus providing a first step towards the transition from topology to function of metabolic pathways. Utilizing this approach, the role of feedback mechanisms in the maintenance of stability is discussed using minimal models of cellular pathways.

  8. Design of pathway-level bioprocess monitoring and control strategies supported by metabolic networks.

    PubMed

    Isidro, Inês A; Ferreira, Ana R; Clemente, João J; Cunha, António E; Dias, João M L; Oliveira, Rui

    2013-01-01

    In this chapter we explore the basic tools for the design of bioprocess monitoring, optimization, and control algorithms that incorporate a priori knowledge of metabolic networks. The main advantage is that this ultimately enables the targeting of intracellular control variables such as metabolic reactions or metabolic pathways directly linked with productivity and product quality. We analyze in particular design methods that target elementary modes of metabolic networks. The topics covered include the analysis of the structure of metabolic networks, computation and reduction of elementary modes, measurement methods for the envirome, envirome-guided metabolic reconstruction, and macroscopic dynamic modeling and control. These topics are illustrated with applications to a cultivation process of a recombinant Pichia pastoris X33 strain expressing a single-chain antibody fragment (scFv).

  9. Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches

    PubMed Central

    2012-01-01

    Background Cockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria. Results We report the metabolic models of Blattabacterium strains Bge (iCG238) and Pam (iCG230), comprising 296 and 289 biochemical reactions, associated with 238 and 230 genes, and 364 and 358 metabolites, respectively. Both models reflect both the striking similarities and the singularities of these microorganisms. FBA was used to analyze the properties, potential and limits of the models, assuming some environmental constraints such as aerobic conditions and the net production of ammonia from these bacterial systems, as has been experimentally observed. In addition, in silico simulations with the iCG238 model have enabled a set of carbon and nitrogen sources to be defined, which would also support a viable phenotype in terms of biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic acid cycle. FBA reveals a metabolic condition that renders these enzymatic steps dispensable, thus offering a possible evolutionary explanation for their elimination. We also confirm, by computational simulations, the fragility of the metabolic networks and their host dependence. Conclusions The minimized Blattabacterium metabolic networks are surprisingly similar in strains Bge and Pam, after 140 million years of evolution of these endosymbionts in separate cockroach

  10. Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches.

    PubMed

    González-Domenech, Carmen Maria; Belda, Eugeni; Patiño-Navarrete, Rafael; Moya, Andrés; Peretó, Juli; Latorre, Amparo

    2012-01-18

    Cockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria. We report the metabolic models of Blattabacterium strains Bge (iCG238) and Pam (iCG230), comprising 296 and 289 biochemical reactions, associated with 238 and 230 genes, and 364 and 358 metabolites, respectively. Both models reflect both the striking similarities and the singularities of these microorganisms. FBA was used to analyze the properties, potential and limits of the models, assuming some environmental constraints such as aerobic conditions and the net production of ammonia from these bacterial systems, as has been experimentally observed. In addition, in silico simulations with the iCG238 model have enabled a set of carbon and nitrogen sources to be defined, which would also support a viable phenotype in terms of biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic acid cycle. FBA reveals a metabolic condition that renders these enzymatic steps dispensable, thus offering a possible evolutionary explanation for their elimination. We also confirm, by computational simulations, the fragility of the metabolic networks and their host dependence. The minimized Blattabacterium metabolic networks are surprisingly similar in strains Bge and Pam, after 140 million years of evolution of these endosymbionts in separate cockroach lineages. FBA performed on the

  11. The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles.

    PubMed

    Durek, Pawel; Walther, Dirk

    2008-11-25

    The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems. Our results reveal topological equivalences between the protein interaction network and the metabolic pathway network. Evolved

  12. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks

    PubMed Central

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities. PMID:26909353

  13. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    PubMed

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  14. Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs.

    PubMed

    Cheng, Xinlai; Kim, Jee Young; Ghafoory, Shahrouz; Duvaci, Tijen; Rafiee, Roya; Theobald, Jannick; Alborzinia, Hamed; Holenya, Pavlo; Fredebohm, Johannes; Merz, Karl-Heinz; Mehrabi, Arianeb; Hafezi, Mohammadreza; Saffari, Arash; Eisenbrand, Gerhard; Hoheisel, Jörg D; Wölfl, Stefan

    2016-06-01

    Pancreatic ductal adenocarcinoma (PDAC) clinically has a very poor prognosis. No small molecule is available to reliably achieve cures. Meisoindigo is chemically related to the natural product indirubin and showed substantial efficiency in clinical chemotherapy for CML in China. However, its effect on PDAC is still unknown. Our results showed strong anti-proliferation effect of meisoindigo on gemcitabine-resistant PDACs. Using a recently established primary PDAC cell line, called Jopaca-1 with a larger CSCs population as model, we observed a reduction of CD133+ and ESA+/CD44+/CD24+ populations upon treatment and concomitantly a decreased expression of CSC-associated genes, and reduced cellular mobility and sphere formation. Investigating basic cellular metabolic responses, we detected lower oxygen consumption and glucose uptake, while intracellular ROS levels increased. This was effectively neutralized by the addition of antioxidants, indicating an essential role of the cellular redox balance. Further analysis on energy metabolism related signaling revealed that meisoindigo inhibited LKB1, but activated AMPK. Both of them were involved in cellular apoptosis. Additional in situ hybridization in tissue sections of PDAC patients reproducibly demonstrated co-expression and -localization of LKB1 and CD133 in malignant areas. Finally, we detected that CD133+/CD44+ were more vulnerable to meisoindigo, which could be mimicked by LKB1 siRNAs. Our results provide the first evidence, to our knowledge, that LKB1 sustains the CSC population in PDACs and demonstrate a clear benefit of meisoindigo in treatment of gemcitabine-resistant cells. This novel mechanism may provide a promising new treatment option for PDAC. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways.

    PubMed

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Blomberg, Bonnie B

    2017-01-01

    The percentage of late/exhausted memory (LM) B cells increases with age and we show here that this is associated with a lower influenza vaccine response. To identify novel contributors to the phenotypic and functional changes observed in aged B cells, we sorted the major peripheral B cell subsets [naïve, IgM memory, switched memory (swIg) and late/exhausted memory (LM)] and determined their percentages in the peripheral blood as well as their level of immune activation by measuring basal levels of expression of multiple senescence-associated secretory phenotype (SASP) markers, such as pro-inflammatory cytokines (TNF-α/IL-6/IL-8), inflammatory micro-RNAs (miRs, miR-155/16/93), cell cycle regulators (p16(INK4)). We found that only memory B cells express SASP markers, and especially the LM B cell subset, which is also showing spontaneous activation of AMP-activated protein kinase (AMPK), the energy sensing enzyme which is ubiquitously expressed in mammalian cells. LM B cells, but not IgM memory B cells, activate a p38MAPK signaling pathway, downstream of AMPK, leading to the expression of SASP mediators, while class switch recombination is downregulated. These data show that some B cell subsets are more inflammatory than others, that they are pre-activated and that this signaling through metabolic pathways is associated with a senescence phenotype, demonstrating for the first time in human B lymphocytes the link between aging, cellular senescence, SASP and metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A toolbox model of evolution of metabolic pathways on networks of arbitrary topology.

    PubMed

    Pang, Tin Yau; Maslov, Sergei

    2011-05-01

    In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger "universal" network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of "small-world" topology, real-life metabolic networks are characterized by a broad distribution of pathway

  17. A Toolbox Model of Evolution of Metabolic Pathways on Networks of Arbitrary Topology

    SciTech Connect

    Maslov, S.; Pang, T.Y.

    2011-05-01

    In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger 'universal' network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of 'small-world' topology, real-life metabolic networks are characterized by a broad distribution of pathway

  18. A Toolbox Model of Evolution of Metabolic Pathways on Networks of Arbitrary Topology

    PubMed Central

    Pang, Tin Yau; Maslov, Sergei

    2011-01-01

    In prokaryotic genomes the number of transcriptional regulators is known to be proportional to the square of the total number of protein-coding genes. A toolbox model of evolution was recently proposed to explain this empirical scaling for metabolic enzymes and their regulators. According to its rules, the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger “universal” network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes in the toolbox model. Here we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We prove that critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for quadratic scaling. We further generalize the rules of the model to incorporate reactions with multiple substrates/products as well as branched and cyclic metabolic pathways. To achieve its metabolic tasks, the new model employs evolutionary optimized pathways with minimal number of reactions. Numerical simulations of this realistic model on the universal network of all reactions in the KEGG database produced approximately quadratic scaling between the number of regulated pathways and the size of the metabolic network. To quantify the geometrical structure of individual pathways, we investigated the relationship between their number of reactions, byproducts, intermediate, and feedback metabolites. Our results validate and explain the ubiquitous appearance of the quadratic scaling for a broad spectrum of topologies of underlying universal metabolic networks. They also demonstrate why, in spite of “small-world” topology, real-life metabolic networks are characterized by a broad distribution of

  19. Metabolic networking in Brunfelsia calycina petals after flower opening.

    PubMed

    Bar-Akiva, Ayelet; Ovadia, Rinat; Rogachev, Ilana; Bar-Or, Carmiya; Bar, Einat; Freiman, Zohar; Nissim-Levi, Ada; Gollop, Natan; Lewinsohn, Efraim; Aharoni, Asaph; Weiss, David; Koltai, Hinanit; Oren-Shamir, Michal

    2010-03-01

    Brunfelsia calycina flowers change colour from purple to white due to anthocyanin degradation, parallel to an increase in fragrance and petal size. Here it was tested whether the production of the fragrant benzenoids is dependent on induction of the shikimate pathway, or if they are formed from the anthocyanin degradation products. An extensive characterization of the events taking place in Brunfelsia flowers is presented. Anthocyanin characterization was performed using ultraperfomance liquid chromatography-quadrupole time of flight-tandem mass specrometry (UPLC-QTOF-MS/MS). Volatiles emitted were identified by headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Accumulated proteins were identified by 2D gel electrophoresis. Transcription profiles were characterized by cross-species hybridization of Brunfelsia cDNAs to potato cDNA microarrays. Identification of accumulated metabolites was performed by UPLC-QTOF-MS non-targeted metabolite analysis. The results include characterization of the nine main anthocyanins in Brunfelsia flowers. In addition, 146 up-regulated genes, 19 volatiles, seven proteins, and 17 metabolites that increased during anthocyanin degradation were identified. A multilevel analysis suggests induction of the shikimate pathway. This pathway is the most probable source of the phenolic acids, which in turn are precursors of both the benzenoid and lignin production pathways. The knowledge obtained is valuable for future studies on degradation of anthocyanins, formation of volatiles, and the network of secondary metabolism in Brunfelsia and related species.

  20. Quantitative petri net model of gene regulated metabolic networks in the cell.

    PubMed

    Chen, Ming; Hofestädt, Ralf

    2011-01-01

    A method to exploit hybrid Petri nets (HPN) for quantitatively modeling and simulating gene regulated metabolic networks is demonstrated. A global kinetic modeling strategy and Petri net modeling algorithm are applied to perform the bioprocess functioning and model analysis. With the model, the interrelations between pathway analysis and metabolic control mechanism are outlined. Diagrammatical results of the dynamics of metabolites are simulated and observed by implementing a HPN tool, Visual Object Net ++. An explanation of the observed behavior of the urea cycle is proposed to indicate possibilities for metabolic engineering and medical care. Finally, the perspective of Petri nets on modeling and simulation of metabolic networks is discussed.

  1. Metabolic Networks of Sodalis glossinidius: A Systems Biology Approach to Reductive Evolution

    PubMed Central

    Belda, Eugeni; Silva, Francisco J.; Peretó, Juli; Moya, Andrés

    2012-01-01

    Background Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius. Results The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association. Conclusions Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems. PMID:22292008

  2. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    PubMed Central

    Takemoto, Kazuhiro; Yoshitake, Ikumi

    2013-01-01

    Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example). However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity) between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods. PMID:24958261

  3. Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily

    2017-01-01

    Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli.

  4. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis.

    PubMed

    Bonde, Bhushan K; Beste, Dany J V; Laing, Emma; Kierzek, Andrzej M; McFadden, Johnjoe

    2011-06-01

    A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for extracting

  5. Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks.

    PubMed

    Bardoscia, Marco; Marsili, Matteo; Samal, Areejit

    2015-07-01

    System-level properties of metabolic networks may be the direct product of natural selection or arise as a by-product of selection on other properties. Here we study the effect of direct selective pressure for growth or viability in particular environments on two properties of metabolic networks: latent versatility to function in additional environments and carbon usage efficiency. Using a Markov chain Monte Carlo (MCMC) sampling based on flux balance analysis (FBA), we sample from a known biochemical universe random viable metabolic networks that differ in the number of directly constrained environments. We find that the latent versatility of sampled metabolic networks increases with the number of directly constrained environments and with the size of the networks. We then show that the average carbon wastage of sampled metabolic networks across the constrained environments decreases with the number of directly constrained environments and with the size of the networks. Our work expands the growing body of evidence about nonadaptive origins of key functional properties of biological networks.

  6. Metabolic Pathways and Networks Associated With Tobacco Use in Military Personnel.

    PubMed

    Jones, Dean P; Walker, Douglas I; Uppal, Karan; Rohrbeck, Patricia; Mallon, Col Timothy M; Go, Young-Mi

    2016-08-01

    The aim of this study is to use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Four hundred deidentified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or nonusers according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Eighty individuals were classified as tobacco users compared with 320 nonusers on the basis of cotinine levels at least 10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid, and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Tobacco use has complex metabolic effects that must be considered in evaluation of deployment-associated environmental exposures in military personnel.

  7. Metabolic Pathways and Networks Associated with Tobacco Use in Military Personnel

    PubMed Central

    Jones, Dean P.; Walker, Douglas I.; Uppal, Karan; Rohrbeck, Patricia; Mallon, Timothy M.; Go, Young-Mi

    2016-01-01

    Objective Use high-resolution metabolomics (HRM) to identify metabolic pathways and networks associated with tobacco use in military personnel. Methods Four hundred de-identified samples obtained from the Department of Defense Serum Repository were classified as tobacco users or non-users according to cotinine content. HRM and bioinformatic methods were used to determine pathways and networks associated with classification. Results Eighty individuals were classified as tobacco users compared to 320 non-users based on cotinine levels ≥10 ng/mL. Alterations in lipid and xenobiotic metabolism, and diverse effects on amino acid, sialic acid and purine and pyrimidine metabolism were observed. Importantly, network analysis showed broad effects on metabolic associations not simply linked to well-defined pathways. Conclusions Tobacco use has complex metabolic effects which must be considered in evaluation of deployment-associated environmental exposures in military personnel. PMID:27501098

  8. Mass conservation and inference of metabolic networks from high-throughput mass spectrometry data.

    PubMed

    Bandaru, Pradeep; Bansal, Mukesh; Nemenman, Ilya

    2011-02-01

    We present a step towards the metabolome-wide computational inference of cellular metabolic reaction networks from metabolic profiling data, such as mass spectrometry. The reconstruction is based on identification of irreducible statistical interactions among the metabolite activities using the ARACNE reverse-engineering algorithm and on constraining possible metabolic transformations to satisfy the conservation of mass. The resulting algorithms are validated on synthetic data from an abridged computational model of Escherichia coli metabolism. Precision rates upwards of 50% are routinely observed for identification of full metabolic reactions, and recalls upwards of 20% are also seen.

  9. Controlled CO preferential oxidation

    DOEpatents

    Meltser, Mark A.; Hoch, Martin M.

    1997-01-01

    Method for controlling the supply of air to a PROX reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference therebetween correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference.

  10. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    PubMed Central

    2012-01-01

    Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking. PMID:22548736

  11. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    PubMed

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-02-10

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy.

  12. Genome-scale analysis of the metabolic networks of oleaginous Zygomycete fungi.

    PubMed

    Vongsangnak, Wanwipa; Ruenwai, Rawisara; Tang, Xin; Hu, Xinjie; Zhang, Hao; Shen, Bairong; Song, Yuanda; Laoteng, Kobkul

    2013-05-25

    Microbial lipids are becoming an attractive option for the industrial production of foods and oleochemicals. To investigate the lipid physiology of the oleaginous microorganisms, at the system level, genome-scale metabolic networks of Mortierella alpina and Mucor circinelloides were constructed using bioinformatics and systems biology. As scaffolds for integrated data analysis focusing on lipid production, consensus metabolic routes governing fatty acid synthesis, and lipid storage and mobilisation were identified by comparative analysis of developed metabolic networks. Unique metabolic features were identified in individual fungi, particularly in NADPH metabolism and sterol biosynthesis, which might be related to differences in fungal lipid phenotypes. The frameworks detailing the metabolic relationship between M. alpina and M. circinelloides generated in this study is useful for further elucidation of the microbial oleaginicity, which might lead to the production improvement of microbial oils as alternative feedstocks for oleochemical industry.

  13. A genome-scale metabolic network reconstruction of tomato (Solanum lycopersicum L.) and its application to photorespiratory metabolism.

    PubMed

    Yuan, Huili; Cheung, C Y Maurice; Poolman, Mark G; Hilbers, Peter A J; van Riel, Natal A W

    2016-01-01

    Tomato (Solanum lycopersicum L.) has been studied extensively due to its high economic value in the market, and high content in health-promoting antioxidant compounds. Tomato is also considered as an excellent model organism for studying the development and metabolism of fleshy fruits. However, the growth, yield and fruit quality of tomatoes can be affected by drought stress, a common abiotic stress for tomato. To investigate the potential metabolic response of tomato plants to drought, we reconstructed iHY3410, a genome-scale metabolic model of tomato leaf, and used this metabolic network to simulate tomato leaf metabolism. The resulting model includes 3410 genes and 2143 biochemical and transport reactions distributed across five intracellular organelles including cytosol, plastid, mitochondrion, peroxisome and vacuole. The model successfully described the known metabolic behaviour of tomato leaf under heterotrophic and phototrophic conditions. The in silico investigation of the metabolic characteristics for photorespiration and other relevant metabolic processes under drought stress suggested that: (i) the flux distributions through the mevalonate (MVA) pathway under drought were distinct from that under normal conditions; and (ii) the changes in fluxes through core metabolic pathways with varying flux ratio of RubisCO carboxylase to oxygenase may contribute to the adaptive stress response of plants. In addition, we improved on previous studies of reaction essentiality analysis for leaf metabolism by including potential alternative routes for compensating reaction knockouts. Altogether, the genome-scale model provides a sound framework for investigating tomato metabolism and gives valuable insights into the functional consequences of abiotic stresses.

  14. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints.

    PubMed

    Nigam, R; Liang, S

    2005-01-01

    A linear programming algorithm is presented to constructively compute thermodynamically feasible fluxes and change in chemical potentials of reactions for a metabolic network. It is based on physical laws of mass conservation and the second law of thermodynamics that all chemical reactions should satisfy. As a demonstration, the algorithm has been applied to the core metabolic pathway of E. coli.

  15. A computational analysis of protein interactions in metabolic networks reveals novel enzyme pairs potentially involved in metabolic channeling.

    PubMed

    Huthmacher, Carola; Gille, Christoph; Holzhütter, Hermann-Georg

    2008-06-07

    Protein-protein interactions are operative at almost every level of cell structure and function as, for example, formation of sub-cellular organelles, packaging of chromatin, muscle contraction, signal transduction, and regulation of gene expression. Public databases of reported protein-protein interactions comprise hundreds of thousands interactions, and this number is steadily growing. Elucidating the implications of protein-protein interactions for the regulation of the underlying cellular or extra-cellular reaction network remains a great challenge for computational biochemistry. In this work, we have undertaken a systematic and comprehensive computational analysis of reported enzyme-enzyme interactions in the metabolic networks of the model organisms Escherichia coli and Saccharomyces cerevisiae. We grouped all enzyme pairs according to the topological distance that the catalyzed reactions have in the metabolic network and performed a statistical analysis of reported enzyme-enzyme interactions within these groups. We found a higher frequency of reported enzyme-enzyme interactions within the group of enzymes catalyzing reactions that are adjacent in the network, i.e. sharing at least one metabolite. As some of these interacting enzymes have already been implicated in metabolic channeling our analysis may provide a useful screening for candidates of this phenomenon. To check for a possible regulatory role of interactions between enzymes catalyzing non-neighboring reactions, we determined potentially regulatory enzymes using connectivity in the network and absolute change of Gibbs free energy. Indeed a higher portion of reported interactions pertain to such potentially regulatory enzymes.

  16. Metabolic Brain Covariant Networks as Revealed by FDG-PET with Reference to Resting-State fMRI Networks

    PubMed Central

    Di, Xin

    2012-01-01

    Abstract The human brain is inherently organized as separate networks, as has been widely revealed by resting-state functional magnetic resonance imaging (fMRI). Although the large-scale functional connectivity can be partially explained by the underlying white-matter structural connectivity, the question of whether the underlying functional connectivity is related to brain metabolic factors is still largely unanswered. The present study investigated the presence of metabolic covariant networks across subjects using a set of fluorodeoxyglucose (18F, FDG) positron-emission tomography (PET) images. Spatial-independent component analysis was performed on the subject series of FDG-PET images. A number of networks that were mainly homotopic regions could be identified, including visual, auditory, motor, cerebellar, and subcortical networks. However, the anterior-posterior networks such as the default-mode and left frontoparietal networks could not be observed. Region-of-interest-based correlation analysis confirmed that the intersubject metabolic covariances within the default-mode and left frontoparietal networks were reduced as compared with corresponding time-series correlations using resting-state fMRI from an independent sample. In contrast, homotopic intersubject metabolic covariances observed using PET were comparable to the corresponding fMRI resting-state time-series correlations. The current study provides preliminary illustration, suggesting that the human brain metabolism pertains to organized covariance patterns that might partially reflect functional connectivity as revealed by resting-state blood oxygen level dependent (BOLD). The discrepancy between the PET covariance and BOLD functional connectivity might reflect the differences of energy consumption coupling and ongoing neural synchronization within these brain networks. PMID:23025619

  17. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network.

    PubMed

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-02-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions.

  18. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    PubMed

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications.

  19. Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network

    PubMed Central

    Galhardo, Mafalda; Sinkkonen, Lasse; Berninger, Philipp; Lin, Jake; Sauter, Thomas; Heinäniemi, Merja

    2014-01-01

    Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways. Motivated by increasing availability of deep sequencing studies, we obtained ChIP-seq data from widely studied human umbilical vein endothelial cells. Interestingly, we found that association of metabolic genes with multiple transcription factors (TFs) enriched disease-associated genes. To demonstrate further extensions enabled by examining these networks together, constraint-based modeling was applied to data from human preadipocyte differentiation. In parallel, data on gene expression, genome-wide ChIP-seq profiles for peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (CEBP) α, liver X receptor (LXR) and H3K4me3 and microRNA target identification for miR-27a, miR-29a and miR-222 were collected. Disease-relevant key nodes, including mitochondrial glycerol-3-phosphate acyltransferase (GPAM), were exposed from metabolic pathways predicted to change activity by focusing on association with multiple regulators. In both cell types, our analysis reveals the convergence of microRNAs and TFs within the branched chain amino acid (BCAA) metabolic pathway, possibly providing an explanation for its downregulation in obese and diabetic conditions. PMID:24198249

  20. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    PubMed Central

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Le Novère, Nicolas; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2014-01-01

    Genomic data now allow the large-scale manual or semi-automated reconstruction of metabolic networks. A network reconstruction represents a highly curated organism-specific knowledge base. A few genome-scale network reconstructions have appeared for metabolism in the baker’s yeast Saccharomyces cerevisiae. These alternative network reconstructions differ in scope and content, and further have used different terminologies to describe the same chemical entities, thus making comparisons between them difficult. The formulation of a ‘community consensus’ network that collects and formalizes the ‘community knowledge’ of yeast metabolism is thus highly desirable. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. Special emphasis is laid on referencing molecules to persistent databases or using database-independent forms such as SMILES or InChI strings, since this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language, and we describe the manner in which it can be maintained as a community resource. It should serve as a common denominator for system biology studies of yeast. Similar strategies will be of benefit to communities studying genome-scale metabolic networks of other organisms. PMID:18846089

  1. The interdependent network of gene regulation and metabolism is robust where it needs to be.

    PubMed

    Klosik, David F; Grimbs, Anne; Bornholdt, Stefan; Hütt, Marc-Thorsten

    2017-09-14

    Despite being highly interdependent, the major biochemical networks of the living cell-the networks of interacting genes and of metabolic reactions, respectively-have been approached mostly as separate systems so far. Recently, a framework for interdependent networks has emerged in the context of statistical physics. In a first quantitative application of this framework to systems biology, here we study the interdependent network of gene regulation and metabolism for the model organism Escherichia coli in terms of a biologically motivated percolation model. Particularly, we approach the system's conflicting tasks of reacting rapidly to (internal and external) perturbations, while being robust to minor environmental fluctuations. Considering its response to perturbations that are localized with respect to functional criteria, we find the interdependent system to be sensitive to gene regulatory and protein-level perturbations, yet robust against metabolic changes. We expect this approach to be applicable to a range of other interdependent networks.Although networks of interacting genes and metabolic reactions are interdependent, they have largely been treated as separate systems. Here the authors apply a statistical framework for interdependent networks to E. coli, and show that it is sensitive to gene and protein perturbations but robust against metabolic changes.

  2. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.

    PubMed

    Chakrabarti, Anirikh; Miskovic, Ljubisa; Soh, Keng Cher; Hatzimanikatis, Vassily

    2013-09-01

    Mathematical modeling is an essential tool for the comprehensive understanding of cell metabolism and its interactions with the environmental and process conditions. Recent developments in the construction and analysis of stoichiometric models made it possible to define limits on steady-state metabolic behavior using flux balance analysis. However, detailed information on enzyme kinetics and enzyme regulation is needed to formulate kinetic models that can accurately capture the dynamic metabolic responses. The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the kinetic properties of enzymes. Therefore, the majority of recent works considered only mass action kinetics for reactions in metabolic networks. Herein, we applied the optimization and risk analysis of complex living entities (ORACLE) framework and constructed a large-scale mechanistic kinetic model of optimally grown Escherichia coli. We investigated the complex interplay between stoichiometry, thermodynamics, and kinetics in determining the flexibility and capabilities of metabolism. Our results indicate that enzyme saturation is a necessary consideration in modeling metabolic networks and it extends the feasible ranges of metabolic fluxes and metabolite concentrations. Our results further suggest that enzymes in metabolic networks have evolved to function at different saturation states to ensure greater flexibility and robustness of cellular metabolism.

  3. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  4. The AT-hook motif-encoding gene METABOLIC NETWORK MODULATOR 1 underlies natural variation in Arabidopsis primary metabolism

    PubMed Central

    Li, Baohua; Kliebenstein, Daniel J.

    2014-01-01

    Regulation of primary metabolism is a central mechanism by which plants coordinate their various responses to biotic and abiotic challenge. To identify genes responsible for natural variation in primary metabolism, we focused on cloning a locus from Arabidopsis thaliana that influences the level of TCA cycle metabolites in planta. We found that the Met.V.67 locus was controlled by natural variation in METABOLIC NETWORK MODULATOR 1 (MNM1), which encoded an AT-hook motif-containing protein that was unique to the Brassicales lineage. MNM1 had wide ranging effects on plant metabolism and displayed a tissue expression pattern that was suggestive of a function in sink tissues. Natural variation within MNM1 had differential effects during a diurnal time course, and this temporal dependency was supported by analysis of T-DNA insertion and over-expression lines for MNM1. Thus, the cloning of a natural variation locus specifically associated with primary metabolism allowed us to identify MNM1 as a lineage-specific modulator of primary metabolism, suggesting that the regulation of primary metabolism can change during evolution. PMID:25202318

  5. Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence

    DTIC Science & Technology

    2016-04-01

    prevent disease and reduce lifetime risks. Metabolic dysfunction characterized by insulin resistance predicts future risk for type 2 diabetes mellitus...in lifestyle modification intensity improve insulin resistance through changes in lipoprotein profiles. (Resubmit planned to Diabetes , Obesity, and...Abstract Background: Metabolic dysfunction characterized by insulin resistance (IR) is an important risk factor for type-2 diabetes and coronary artery

  6. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Treesearch

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  7. A metabolic-transcriptional network links sleep and cellular energetics in the brain.

    PubMed

    Wisor, Jonathan P

    2012-01-01

    This review proposes a mechanistic link between cellular metabolic status, transcriptional regulatory changes and sleep. Sleep loss is associated with changes in cellular metabolic status in the brain. Metabolic sensors responsive to cellular metabolic status regulate the circadian clock transcriptional network. Modifications of the transcriptional activity of circadian clock genes affect sleep/wake state changes. Changes in sleep state reverse sleep loss-induced changes in cellular metabolic status. It is thus proposed that the regulation of circadian clock genes by cellular metabolic sensors is a critical intermediate step in the link between cellular metabolic status and sleep. Studies of this regulatory relationship may offer insights into the function of sleep at the cellular level.

  8. Discovering missing reactions of metabolic networks by using gene co-expression data

    PubMed Central

    Hosseini, Zhaleh; Marashi, Sayed-Amir

    2017-01-01

    Flux coupling analysis is a computational method which is able to explain co-expression of metabolic genes by analyzing the topological structure of a metabolic network. It has been suggested that if genes in two seemingly fully-coupled reactions are not highly co-expressed, then these two reactions are not fully coupled in reality, and hence, there is a gap or missing reaction in the network. Here, we present GAUGE as a novel approach for gap filling of metabolic networks, which is a two-step algorithm based on a mixed integer linear programming formulation. In GAUGE, the discrepancies between experimental co-expression data and predicted flux coupling relations is minimized by adding a minimum number of reactions to the network. We show that GAUGE is able to predict missing reactions of E. coli metabolism that are not detectable by other popular gap filling approaches. We propose that our algorithm may be used as a complementary strategy for the gap filling problem of metabolic networks. Since GAUGE relies only on gene expression data, it can be potentially useful for exploring missing reactions in the metabolism of non-model organisms, which are often poorly characterized, cannot grow in the laboratory, and lack genetic tools for generating knockouts. PMID:28150713

  9. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast.

    PubMed

    Wang, Zhuo; Danziger, Samuel A; Heavner, Benjamin D; Ma, Shuyi; Smith, Jennifer J; Li, Song; Herricks, Thurston; Simeonidis, Evangelos; Baliga, Nitin S; Aitchison, John D; Price, Nathan D

    2017-05-01

    Gene regulatory and metabolic network models have been used successfully in many organisms, but inherent differences between them make networks difficult to integrate. Probabilistic Regulation Of Metabolism (PROM) provides a partial solution, but it does not incorporate network inference and underperforms in eukaryotes. We present an Integrated Deduced And Metabolism (IDREAM) method that combines statistically inferred Environment and Gene Regulatory Influence Network (EGRIN) models with the PROM framework to create enhanced metabolic-regulatory network models. We used IDREAM to predict phenotypes and genetic interactions between transcription factors and genes encoding metabolic activities in the eukaryote, Saccharomyces cerevisiae. IDREAM models contain many fewer interactions than PROM and yet produce significantly more accurate growth predictions. IDREAM consistently outperformed PROM using any of three popular yeast metabolic models and across three experimental growth conditions. Importantly, IDREAM's enhanced accuracy makes it possible to identify subtle synthetic growth defects. With experimental validation, these novel genetic interactions involving the pyruvate dehydrogenase complex suggested a new role for fatty acid-responsive factor Oaf1 in regulating acetyl-CoA production in glucose grown cells.

  10. Discovering missing reactions of metabolic networks by using gene co-expression data

    NASA Astrophysics Data System (ADS)

    Hosseini, Zhaleh; Marashi, Sayed-Amir

    2017-02-01

    Flux coupling analysis is a computational method which is able to explain co-expression of metabolic genes by analyzing the topological structure of a metabolic network. It has been suggested that if genes in two seemingly fully-coupled reactions are not highly co-expressed, then these two reactions are not fully coupled in reality, and hence, there is a gap or missing reaction in the network. Here, we present GAUGE as a novel approach for gap filling of metabolic networks, which is a two-step algorithm based on a mixed integer linear programming formulation. In GAUGE, the discrepancies between experimental co-expression data and predicted flux coupling relations is minimized by adding a minimum number of reactions to the network. We show that GAUGE is able to predict missing reactions of E. coli metabolism that are not detectable by other popular gap filling approaches. We propose that our algorithm may be used as a complementary strategy for the gap filling problem of metabolic networks. Since GAUGE relies only on gene expression data, it can be potentially useful for exploring missing reactions in the metabolism of non-model organisms, which are often poorly characterized, cannot grow in the laboratory, and lack genetic tools for generating knockouts.

  11. Dead End Metabolites - Defining the Known Unknowns of the E. coli Metabolic Network

    PubMed Central

    Mackie, Amanda; Keseler, Ingrid M.; Nolan, Laura; Karp, Peter D.; Paulsen, Ian T.

    2013-01-01

    The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database – these are metabolites which lack the requisite reactions (either metabolic or transport) that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12 – these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism. PMID:24086468

  12. Interferon Control of the Sterol Metabolic Network: Bidirectional Molecular Circuitry-Mediating Host Protection.

    PubMed

    Robertson, Kevin A; Ghazal, Peter

    2016-01-01

    The sterol metabolic network is emerging center stage in inflammation and immunity. Historically, observational clinical studies show that hypocholesterolemia is a common side effect of interferon (IFN) treatment. More recently, comprehensive systems-wide investigations of the macrophage IFN response reveal a direct molecular link between cholesterol metabolism and infection. Upon infection, flux through the sterol metabolic network is acutely moderated by the IFN response at multiple regulatory levels. The precise mechanisms by which IFN regulates the mevalonate-sterol pathway-the spine of the network-are beginning to be unraveled. In this review, we discuss our current understanding of the multifactorial mechanisms by which IFN regulates the sterol pathway. We also consider bidirectional communications resulting in sterol metabolism regulation of immunity. Finally, we deliberate on how this fundamental interaction functions as an integral element of host protective responses to infection and harmful inflammation.

  13. Double and multiple knockout simulations for genome-scale metabolic network reconstructions.

    PubMed

    Goldstein, Yaron Ab; Bockmayr, Alexander

    2015-01-01

    Constraint-based modeling of genome-scale metabolic network reconstructions has become a widely used approach in computational biology. Flux coupling analysis is a constraint-based method that analyses the impact of single reaction knockouts on other reactions in the network. We present an extension of flux coupling analysis for double and multiple gene or reaction knockouts, and develop corresponding algorithms for an in silico simulation. To evaluate our method, we perform a full single and double knockout analysis on a selection of genome-scale metabolic network reconstructions and compare the results. A prototype implementation of double knockout simulation is available at http://hoverboard.io/L4FC.

  14. Computing the shortest elementary flux modes in genome-scale metabolic networks.

    PubMed

    de Figueiredo, Luis F; Podhorski, Adam; Rubio, Angel; Kaleta, Christoph; Beasley, John E; Schuster, Stefan; Planes, Francisco J

    2009-12-01

    Elementary flux modes (EFMs) represent a key concept to analyze metabolic networks from a pathway-oriented perspective. In spite of considerable work in this field, the computation of the full set of elementary flux modes in large-scale metabolic networks still constitutes a challenging issue due to its underlying combinatorial complexity. In this article, we illustrate that the full set of EFMs can be enumerated in increasing order of number of reactions via integer linear programming. In this light, we present a novel procedure to efficiently determine the K-shortest EFMs in large-scale metabolic networks. Our method was applied to find the K-shortest EFMs that produce lysine in the genome-scale metabolic networks of Escherichia coli and Corynebacterium glutamicum. A detailed analysis of the biological significance of the K-shortest EFMs was conducted, finding that glucose catabolism, ammonium assimilation, lysine anabolism and cofactor balancing were correctly predicted. The work presented here represents an important step forward in the analysis and computation of EFMs for large-scale metabolic networks, where traditional methods fail for networks of even moderate size. Supplementary data are available at Bioinformatics online.

  15. An algorithm for rapid computational construction of metabolic networks: a cholesterol biosynthesis example.

    PubMed

    Belič, Aleš; Pompon, Denis; Monostory, Katalin; Kelly, Diane; Kelly, Steven; Rozman, Damjana

    2013-06-01

    Alternative pathways of metabolic networks represent the escape routes that can reduce drug efficacy and can cause severe adverse effects. In this paper we introduce a mathematical algorithm and a coding system for rapid computational construction of metabolic networks. The initial data for the algorithm are the source substrate code and the enzyme/metabolite interaction tables. The major strength of the algorithm is the adaptive coding system of the enzyme-substrate interactions. A reverse application of the algorithm is also possible, when optimisation algorithm is used to compute the enzyme/metabolite rules from the reference network structure. The coding system is user-defined and must be adapted to the studied problem. The algorithm is most effective for computation of networks that consist of metabolites with similar molecular structures. The computation of the cholesterol biosynthesis metabolic network suggests that 89 intermediates can theoretically be formed between lanosterol and cholesterol, only 20 are presently considered as cholesterol intermediates. Alternative metabolites may represent links with other metabolic networks both as precursors and metabolites of cholesterol. A possible cholesterol-by-pass pathway to bile acids metabolism through cholestanol is suggested.

  16. Resource constrained flux balance analysis predicts selective pressure on the global structure of metabolic networks.

    PubMed

    Abedpour, Nima; Kollmann, Markus

    2015-11-23

    A universal feature of metabolic networks is their hourglass or bow-tie structure on cellular level. This architecture reflects the conversion of multiple input nutrients into multiple biomass components via a small set of precursor metabolites. However, it is yet unclear to what extent this structural feature is the result of natural selection. We extend flux balance analysis to account for limited cellular resources. Using this model, optimal structure of metabolic networks can be calculated for different environmental conditions. We observe a significant structural reshaping of metabolic networks for a toy-network and E. coli core metabolism if we increase the share of invested resources for switching between different nutrient conditions. Here, hub nodes emerge and the optimal network structure becomes bow-tie-like as a consequence of limited cellular resource constraint. We confirm this theoretical finding by comparing the reconstructed metabolic networks of bacterial species with respect to their lifestyle. We show that bow-tie structure can give a system-level fitness advantage to organisms that live in highly competitive and fluctuating environments. Here, limitation of cellular resources can lead to an efficiency-flexibility tradeoff where it pays off for the organism to shorten catabolic pathways if they are frequently activated and deactivated. As a consequence, generalists that shuttle between diverse environmental conditions should have a more predominant bow-tie structure than specialists that visit just a few isomorphic habitats during their life cycle.

  17. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.

    PubMed

    Guo, Jing; Zhang, Hong; Wang, Cheng; Chang, Ji-Wei; Chen, Ling-Ling

    2016-05-01

    We constructed the genome-scale metabolic network of Bacillus licheniformis (B. licheniformis) WX-02 by combining genomic annotation, high-throughput phenotype microarray (PM) experiments and literature-based metabolic information. The accuracy of the metabolic network was assessed by an OmniLog PM experiment. The final metabolic model iWX1009 contains 1009 genes, 1141 metabolites and 1762 reactions, and the predicted metabolic phenotypes showed an agreement rate of 76.8% with experimental PM data. In addition, key metabolic features such as growth yield, utilization of different substrates and essential genes were identified by flux balance analysis. A total of 195 essential genes were predicted from LB medium, among which 149 were verified with the experimental essential gene set of B. subtilis 168. With the removal of 5 reactions from the network, pathways for poly-γ-glutamic acid (γ-PGA) synthesis were optimized and the γ-PGA yield reached 83.8 mmol/h. Furthermore, the important metabolites and pathways related to γ-PGA synthesis and bacterium growth were comprehensively analyzed. The present study provides valuable clues for exploring the metabolisms and metabolic regulation of γ-PGA synthesis in B. licheniformis WX-02.

  18. Inference of Network Dynamics and Metabolic Interactions in the Gut Microbiome

    PubMed Central

    Loughran, Thomas P.; Papin, Jason A.; Albert, Reka

    2015-01-01

    We present a novel methodology to construct a Boolean dynamic model from time series metagenomic information and integrate this modeling with genome-scale metabolic network reconstructions to identify metabolic underpinnings for microbial interactions. We apply this in the context of a critical health issue: clindamycin antibiotic treatment and opportunistic Clostridium difficile infection. Our model recapitulates known dynamics of clindamycin antibiotic treatment and C. difficile infection and predicts therapeutic probiotic interventions to suppress C. difficile infection. Genome-scale metabolic network reconstructions reveal metabolic differences between community members and are used to explore the role of metabolism in the observed microbial interactions. In vitro experimental data validate a key result of our computational model, that B. intestinihominis can in fact slow C. difficile growth. PMID:26102287

  19. Putting The Plant Metabolic Network pathway databases to work: going offline to gain new capabilities.

    PubMed

    Dreher, Kate

    2014-01-01

    Metabolic databases such as The Plant Metabolic Network/MetaCyc and KEGG PATHWAY are publicly accessible resources providing organism-specific information on reactions and metabolites. KEGG PATHWAY depicts metabolic networks as wired, electronic circuit-like maps, whereas the MetaCyc family of databases uses a canonical textbook-like representation. The first MetaCyc-based database for a plant species was AraCyc, which describes metabolism in the model plant Arabidopsis. This database was created over 10 years ago and has since then undergone extensive manual curation to reflect updated information on enzymes and pathways in Arabidopsis. This chapter describes accessing and using AraCyc and its underlying Pathway Tools software. Specifically, methods for (1) navigating Pathway Tools, (2) visualizing omics data and superimposing the data on a metabolic pathway map, and (3) creating pathways and pathway components are discussed.

  20. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    PubMed

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Discovery of substrate cycles in large scale metabolic networks using hierarchical modularity.

    PubMed

    Sridharan, Gautham Vivek; Ullah, Ehsan; Hassoun, Soha; Lee, Kyongbum

    2015-02-13

    A substrate cycle is a set of metabolic reactions, arranged in a loop, which does not result in net consumption or production of the metabolites. The cycle operates by transforming a cofactor, e.g. oxidizing a reducing equivalent. Substrate cycles have been found experimentally in many parts of metabolism; however, their physiological roles remain unclear. As genome-scale metabolic models become increasingly available, there is now the opportunity to comprehensively catalogue substrate cycles, and gain additional insight into this potentially important motif of metabolic networks. We present a method to identify substrate cycles in the context of metabolic modules, which facilitates functional analysis. This method utilizes elementary flux mode (EFM) analysis to find potential substrate cycles in the form of cyclical EFMs, and combines this analysis with network partition based on retroactive (cyclical) interactions between reactions. In addition to providing functional context, partitioning the network into modules allowed exhaustive EFM calculations on smaller, tractable subnetworks that are enriched in metabolic cycles. Applied to a large-scale model of human liver metabolism (HepatoNet1), our method found not only well-known substrate cycles involving ATP hydrolysis, but also potentially novel substrate cycles involving the transformation of other cofactors. A key characteristic of the substrate cycles identified in this study is that the lengths are relatively short (2-13 reactions), comparable to many experimentally observed substrate cycles. EFM computation for large scale networks remains computationally intractable for exhaustive substrate cycle enumeration. Our algorithm utilizes a 'divide and conquer' strategy where EFM analysis is performed on systematically identified network modules that are designed to be enriched in cyclical interactions. We find that several substrate cycles uncovered using our approach are not identified when the network is

  2. New approach for phylogenetic tree recovery based on genome-scale metabolic networks.

    PubMed

    Gamermann, Daniel; Montagud, Arnaud; Conejero, J Alberto; Urchueguía, Javier F; de Córdoba, Pedro Fernández

    2014-07-01

    A wide range of applications and research has been done with genome-scale metabolic models. In this work, we describe an innovative methodology for comparing metabolic networks constructed from genome-scale metabolic models and how to apply this comparison in order to infer evolutionary distances between different organisms. Our methodology allows a quantification of the metabolic differences between different species from a broad range of families and even kingdoms. This quantification is then applied in order to reconstruct phylogenetic trees for sets of various organisms.

  3. NExT: integration of thermodynamic constraints and metabolomics data into a metabolic network.

    PubMed

    Martínez, Verónica Sofía; Nielsen, Lars K

    2014-01-01

    Thermodynamic constraints are widely used in metabolic modelling such that calculated flux phenotypes are closer to real cell behavior. If metabolic data is also included in the analysis, a check of the thermodynamic consistency of the data can be realized and subsequently use the metabolic data to further constrain the solution space, giving a more specific representation of the cell metabolism under the studied conditions. Here NExT, a software based on network-embedded thermodynamic analysis, is presented, to integrate thermodynamics constraints and metabolomics data in the estimation of intracellular fluxes. New irreversible reactions can be inferred by calculating the thermodynamically feasible range of metabolite concentrations and Gibbs energy of reactions.

  4. Effect of substrate competition in kinetic models of metabolic networks.

    PubMed

    Schäuble, Sascha; Stavrum, Anne Kristin; Puntervoll, Pål; Schuster, Stefan; Heiland, Ines

    2013-09-02

    Substrate competition can be found in many types of biological processes, ranging from gene expression to signal transduction and metabolic pathways. Although several experimental and in silico studies have shown the impact of substrate competition on these processes, it is still often neglected, especially in modelling approaches. Using toy models that exemplify different metabolic pathway scenarios, we show that substrate competition can influence the dynamics and the steady state concentrations of a metabolic pathway. We have additionally derived rate laws for substrate competition in reversible reactions and summarise existing rate laws for substrate competition in irreversible reactions.

  5. A network-based feature selection approach to identify metabolic signatures in disease.

    PubMed

    Netzer, Michael; Kugler, Karl G; Müller, Laurin A J; Weinberger, Klaus M; Graber, Armin; Baumgartner, Christian; Dehmer, Matthias

    2012-10-07

    The identification and interpretation of metabolic biomarkers is a challenging task. In this context, network-based approaches have become increasingly a key technology in systems biology allowing to capture complex interactions in biological systems. In this work, we introduce a novel network-based method to identify highly predictive biomarker candidates for disease. First, we infer two different types of networks: (i) correlation networks, and (ii) a new type of network called ratio networks. Based on these networks, we introduce scores to prioritize features using topological descriptors of the vertices. To evaluate our method we use an example dataset where quantitative targeted MS/MS analysis was applied to a total of 52 blood samples from 22 persons with obesity (BMI >30) and 30 healthy controls. Using our network-based feature selection approach we identified highly discriminating metabolites for obesity (F-score >0.85, accuracy >85%), some of which could be verified by the literature.

  6. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson's disease.

    PubMed

    Feigin, Andrew; Kaplitt, Michael G; Tang, Chengke; Lin, Tanya; Mattis, Paul; Dhawan, Vijay; During, Matthew J; Eidelberg, David

    2007-12-04

    Parkinson's disease (PD) is characterized by elevated expression of an abnormal metabolic brain network that is reduced by clinically effective treatment. We used fluorodeoxyglucose (FDG) positron emission tomography (PET) to determine the basis for motor improvement in 12 PD patients receiving unilateral subthalamic nucleus (STN) infusion of an adenoassociated virus vector expressing glutamic acid decarboxylase (AAV-GAD). After gene therapy, we observed significant reductions in thalamic metabolism on the operated side as well as concurrent metabolic increases in ipsilateral motor and premotor cortical regions. Abnormal elevations in the activity of metabolic networks associated with motor and cognitive functioning in PD patients were evident at baseline. The activity of the motor-related network declined after surgery and persisted at 1 year. These network changes correlated with improved clinical disability ratings. By contrast, the activity of the cognition-related network did not change after gene transfer. This suggests that modulation of abnormal network activity underlies the clinical outcome observed after unilateral STN AAV-GAD gene therapy. Network biomarkers may be used as physiological assays in early-phase trials of experimental therapies for PD and other neurodegenerative disease.

  7. fastGapFill: efficient gap filling in metabolic networks

    PubMed Central

    Thiele, Ines; Vlassis, Nikos; Fleming, Ronan M. T.

    2014-01-01

    Motivation: Genome-scale metabolic reconstructions summarize current knowledge about a target organism in a structured manner and as such highlight missing information. Such gaps can be filled algorithmically. Scalability limitations of available algorithms for gap filling hinder their application to compartmentalized reconstructions. Results: We present fastGapFill, a computationally efficient tractable extension to the COBRA toolbox that permits the identification of candidate missing knowledge from a universal biochemical reaction database (e.g. Kyoto Encyclopedia of Genes and Genomes) for a given (compartmentalized) metabolic reconstruction. The stoichiometric consistency of the universal reaction database and of the metabolic reconstruction can be tested for permitting the computation of biologically more relevant solutions. We demonstrate the efficiency and scalability of fastGapFill on a range of metabolic reconstructions. Availability and implementation: fastGapFill is freely available from http://thielelab.eu. Contact: ines.thiele@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24812336

  8. Efficient Reconstruction of Predictive Consensus Metabolic Network Models

    PubMed Central

    Martins dos Santos, Vitor A. P.; Stelling, Joerg

    2016-01-01

    Understanding cellular function requires accurate, comprehensive representations of metabolism. Genome-scale, constraint-based metabolic models (GSMs) provide such representations, but their usability is often hampered by inconsistencies at various levels, in particular for concurrent models. COMMGEN, our tool for COnsensus Metabolic Model GENeration, automatically identifies inconsistencies between concurrent models and semi-automatically resolves them, thereby contributing to consolidate knowledge of metabolic function. Tests of COMMGEN for four organisms showed that automatically generated consensus models were predictive and that they substantially increased coherence of knowledge representation. COMMGEN ought to be particularly useful for complex scenarios in which manual curation does not scale, such as for eukaryotic organisms, microbial communities, and host-pathogen interactions. PMID:27563720

  9. A general model for metabolic scaling in self-similar asymmetric networks

    PubMed Central

    Savage, Van M.; Enquist, Brian J.

    2017-01-01

    How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE) model argues that these two principles (space-filling and energy minimization) are (i) general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii) can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber’s Law can still be attained within many asymmetric networks. PMID:28319153

  10. A general model for metabolic scaling in self-similar asymmetric networks.

    PubMed

    Brummer, Alexander Byers; Savage, Van M; Enquist, Brian J

    2017-03-01

    How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE) model argues that these two principles (space-filling and energy minimization) are (i) general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii) can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  11. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  12. Theoretical Basis for Dynamic Label Propagation in Stationary Metabolic Networks under Step and Periodic Inputs.

    PubMed

    Sokol, Serguei; Portais, Jean-Charles

    2015-01-01

    The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on the size of metabolite pools. However, major issues, both in the experimental set-up and in the accompanying numerical methods currently limit the application of this approach. Here, we propose a method to apply novel types of label inputs, sinusoidal or more generally periodic label inputs, to address both the practical and numerical challenges of dynamic labeling experiments. By considering a simple metabolic system, i.e. a linear, non-reversible pathway of arbitrary length, we develop mathematical descriptions of label propagation for both classical and novel label inputs. Theoretical developments and computer simulations show that the application of rectangular periodic pulses has both numerical and practical advantages over other approaches. We applied the strategy to estimate fluxes in a simulated experiment performed on a complex metabolic network (the central carbon metabolism of Escherichia coli), to further demonstrate its value in conditions which are close to those in real experiments. This study provides a theoretical basis for the rational interpretation of label propagation curves in real experiments, and will help identify the strengths, pitfalls and limitations of such experiments. The cases described here can also be used as test cases for more general numerical methods aimed at identifying network topology, analyzing metabolic fluxes or measuring concentrations of metabolites.

  13. Microbial Community Metabolic Modeling: A Community Data‐Driven Network Reconstruction

    PubMed Central

    Henry, Christopher S.; Bernstein, Hans C.; Weisenhorn, Pamela; Taylor, Ronald C.; Lee, Joon‐Yong; Zucker, Jeremy

    2016-01-01

    Metabolic network modeling of microbial communities provides an in‐depth understanding of community‐wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high‐quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community‐level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph–heterotroph consortium that was used to provide data needed for a community‐level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources. J. Cell. Physiol. 231: 2339–2345, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:27186840

  14. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    PubMed

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  15. Exact quantification of cellular robustness in genome-scale metabolic networks

    PubMed Central

    Gerstl, Matthias P.; Klamt, Steffen; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2016-01-01

    Motivation: Robustness, the ability of biological networks to uphold their functionality in spite of perturbations, is a key characteristic of all living systems. Although several theoretical approaches have been developed to formalize robustness, it still eludes an exact quantification. Here, we present a rigorous and quantitative approach for the structural robustness of metabolic networks by measuring their ability to tolerate random reaction (or gene) knockouts. Results: In analogy to reliability theory, based on an explicit consideration of all possible knockout sets, we exactly quantify the probability of failure for a given network function (e.g. growth). This measure can be computed if the network’s minimal cut sets (MSCs) are known. We show that even in genome-scale metabolic networks the probability of (network) failure can be reliably estimated from MSCs with lowest cardinalities. We demonstrate the applicability of our theory by analyzing the structural robustness of multiple Enterobacteriaceae and Blattibacteriaceae and show a dramatically low structural robustness for the latter. We find that structural robustness develops from the ability to proliferate in multiple growth environments consistent with experimentally found knowledge. Conclusion: The probability of (network) failure provides thus a reliable and easily computable measure of structural robustness and redundancy in (genome-scale) metabolic networks. Availability and implementation: Source code is available under the GNU General Public License at https://github.com/mpgerstl/networkRobustnessToolbox. Contact: juergen.zanghellini@boku.ac.at Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26543173

  16. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    PubMed

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  17. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks.

    PubMed

    Brochado, Ana Rita; Andrejev, Sergej; Maranas, Costas D; Patil, Kiran R

    2012-01-01

    Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in Saccharomyces cerevisiae.

  18. Impact of Stoichiometry Representation on Simulation of Genotype-Phenotype Relationships in Metabolic Networks

    PubMed Central

    Brochado, Ana Rita; Andrejev, Sergej; Maranas, Costas D.; Patil, Kiran R.

    2012-01-01

    Genome-scale metabolic networks provide a comprehensive structural framework for modeling genotype-phenotype relationships through flux simulations. The solution space for the metabolic flux state of the cell is typically very large and optimization-based approaches are often necessary for predicting the active metabolic state under specific environmental conditions. The objective function to be used in such optimization algorithms is directly linked with the biological hypothesis underlying the model and therefore it is one of the most relevant parameters for successful modeling. Although linear combination of selected fluxes is widely used for formulating metabolic objective functions, we show that the resulting optimization problem is sensitive towards stoichiometry representation of the metabolic network. This undesirable sensitivity leads to different simulation results when using numerically different but biochemically equivalent stoichiometry representations and thereby makes biological interpretation intrinsically subjective and ambiguous. We hereby propose a new method, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results with biological interpretation. For example, MiMBl allowed us to expand the scope of metabolic modeling in elucidating the mechanistic basis of several genetic interactions in Saccharomyces cerevisiae. PMID:23133362

  19. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information

    PubMed Central

    Nägele, Thomas; Fürtauer, Lisa; Nagler, Matthias; Weiszmann, Jakob; Weckwerth, Wolfram

    2016-01-01

    The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian, or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels, and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome, and metabolome has become a common part of many systems biological studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e., first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e., second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities, and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®. PMID:27014700

  20. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information.

    PubMed

    Nägele, Thomas; Fürtauer, Lisa; Nagler, Matthias; Weiszmann, Jakob; Weckwerth, Wolfram

    2016-01-01

    The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian, or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels, and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome, and metabolome has become a common part of many systems biological studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e., first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e., second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities, and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.

  1. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  2. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    PubMed Central

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-01-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191

  3. Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage.

    PubMed

    Lombardo, Verónica A; Osorio, Sonia; Borsani, Julia; Lauxmann, Martin A; Bustamante, Claudia A; Budde, Claudio O; Andreo, Carlos S; Lara, María V; Fernie, Alisdair R; Drincovich, María F

    2011-12-01

    Fruit from rosaceous species collectively display a great variety of flavors and textures as well as a generally high content of nutritionally beneficial metabolites. However, relatively little analysis of metabolic networks in rosaceous fruit has been reported. Among rosaceous species, peach (Prunus persica) has stone fruits composed of a juicy mesocarp and lignified endocarp. Here, peach mesocarp metabolic networks were studied across development using metabolomics and analysis of key regulatory enzymes. Principal component analysis of peach metabolic composition revealed clear metabolic shifts from early through late development stages and subsequently during postharvest ripening. Early developmental stages were characterized by a substantial decrease in protein abundance and high levels of bioactive polyphenols and amino acids, which are substrates for the phenylpropanoid and lignin pathways during stone hardening. Sucrose levels showed a large increase during development, reflecting translocation from the leaf, while the importance of galactinol and raffinose is also inferred. Our study further suggests that posttranscriptional mechanisms are key for metabolic regulation at early stages. In contrast to early developmental stages, a decrease in amino acid levels is coupled to an induction of transcripts encoding amino acid and organic acid catabolic enzymes during ripening. These data are consistent with the mobilization of amino acids to support respiration. In addition, sucrose cycling, suggested by the parallel increase of transcripts encoding sucrose degradative and synthetic enzymes, appears to operate during postharvest ripening. When taken together, these data highlight singular metabolic programs for peach development and may allow the identification of key factors related to agronomic traits of this important crop species.

  4. Study on Incompatibility of Traditional Chinese Medicine: Evidence from Formula Network, Chemical Space, and Metabolism Room

    PubMed Central

    Zhang, Xiao-Dong; Wu, Hong-Ying; Jin, Jin; Yu, Guang-Yun; He, Xin; Wang, Hao; Shen, Xiu; Zhou, Ze-Wei; Liu, Pei-Xun; Fan, Sai-Jun

    2013-01-01

    A traditional Chinese medicine (TCM) formula network including 362 TCM formulas was built by using complex network methodologies. The properties of this network were analyzed including network diameter, average distance, clustering coefficient, and average degree. Meanwhile, we built a TCM chemical space and a TCM metabolism room under the theory of chemical space. The properties of chemical space and metabolism room were calculated and analyzed. The properties of the medicine pairs in “eighteen antagonisms and nineteen mutual inhibitors,” an ancient rule for TCM incompatibility, were studied based on the TCM formula network, chemical space, and metabolism room. The results showed that the properties of these incompatible medicine pairs are different from those of the other TCM based on the analysis of the TCM formula network, chemical space, and metabolism room. The lines of evidence derived from our work demonstrated that the ancient rule of TCM incompatibility, “eighteen antagonisms and nineteen mutual inhibitors,” is probably scientifically based. PMID:24369478

  5. Consistent abnormalities in metabolic network activity in idiopathic rapid eye movement sleep behaviour disorder.

    PubMed

    Wu, Ping; Yu, Huan; Peng, Shichun; Dauvilliers, Yves; Wang, Jian; Ge, Jingjie; Zhang, Huiwei; Eidelberg, David; Ma, Yilong; Zuo, Chuantao

    2014-12-01

    Rapid eye movement sleep behaviour disorder has been evaluated using Parkinson's disease-related metabolic network. It is unknown whether this disorder is itself associated with a unique metabolic network. 18F-fluorodeoxyglucose positron emission tomography was performed in 21 patients (age 65.0±5.6 years) with idiopathic rapid eye movement sleep behaviour disorder and 21 age/gender-matched healthy control subjects (age 62.5±7.5 years) to identify a disease-related pattern and examine its evolution in 21 hemi-parkinsonian patients (age 62.6±5.0 years) and 16 moderate parkinsonian patients (age 56.9±12.2 years). We identified a rapid eye movement sleep behaviour disorder-related metabolic network characterized by increased activity in pons, thalamus, medial frontal and sensorimotor areas, hippocampus, supramarginal and inferior temporal gyri, and posterior cerebellum, with decreased activity in occipital and superior temporal regions. Compared to the healthy control subjects, network expressions were elevated (P<0.0001) in the patients with this disorder and in the parkinsonian cohorts but decreased with disease progression. Parkinson's disease-related network activity was also elevated (P<0.0001) in the patients with rapid eye movement sleep behaviour disorder but lower than in the hemi-parkinsonian cohort. Abnormal metabolic networks may provide markers of idiopathic rapid eye movement sleep behaviour disorder to identify those at higher risk to develop neurodegenerative parkinsonism.

  6. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    PubMed

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  7. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    PubMed Central

    2011-01-01

    Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR) relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data. PMID:21943338

  8. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    PubMed

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.

  9. Interferon Control of the Sterol Metabolic Network: Bidirectional Molecular Circuitry-Mediating Host Protection

    PubMed Central

    Robertson, Kevin A.; Ghazal, Peter

    2016-01-01

    The sterol metabolic network is emerging center stage in inflammation and immunity. Historically, observational clinical studies show that hypocholesterolemia is a common side effect of interferon (IFN) treatment. More recently, comprehensive systems-wide investigations of the macrophage IFN response reveal a direct molecular link between cholesterol metabolism and infection. Upon infection, flux through the sterol metabolic network is acutely moderated by the IFN response at multiple regulatory levels. The precise mechanisms by which IFN regulates the mevalonate-sterol pathway—the spine of the network—are beginning to be unraveled. In this review, we discuss our current understanding of the multifactorial mechanisms by which IFN regulates the sterol pathway. We also consider bidirectional communications resulting in sterol metabolism regulation of immunity. Finally, we deliberate on how this fundamental interaction functions as an integral element of host protective responses to infection and harmful inflammation. PMID:28066443

  10. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    PubMed

    Wang, Xinyan; Li, Wan; Zhang, Yihua; Feng, Yuyan; Zhao, Xilei; He, Yuehan; Zhang, Jun; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  11. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions.

    PubMed

    Blais, Edik M; Rawls, Kristopher D; Dougherty, Bonnie V; Li, Zhuo I; Kolling, Glynis L; Ye, Ping; Wallqvist, Anders; Papin, Jason A

    2017-02-08

    The laboratory rat has been used as a surrogate to study human biology for more than a century. Here we present the first genome-scale network reconstruction of Rattus norvegicus metabolism, iRno, and a significantly improved reconstruction of human metabolism, iHsa. These curated models comprehensively capture metabolic features known to distinguish rats from humans including vitamin C and bile acid synthesis pathways. After reconciling network differences between iRno and iHsa, we integrate toxicogenomics data from rat and human hepatocytes, to generate biomarker predictions in response to 76 drugs. We validate comparative predictions for xanthine derivatives with new experimental data and literature-based evidence delineating metabolite biomarkers unique to humans. Our results provide mechanistic insights into species-specific metabolism and facilitate the selection of biomarkers consistent with rat and human biology. These models can serve as powerful computational platforms for contextualizing experimental data and making functional predictions for clinical and basic science applications.

  12. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans.

    PubMed

    Watson, Emma; Olin-Sandoval, Viridiana; Hoy, Michael J; Li, Chi-Hua; Louisse, Timo; Yao, Victoria; Mori, Akihiro; Holdorf, Amy D; Troyanskaya, Olga G; Ralser, Markus; Walhout, Albertha Jm

    2016-07-06

    Metabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked. Our study presents the first example of transcriptional vitamin-directed metabolic network rewiring to promote survival under vitamin deficiency. The ability to reroute propionate breakdown according to B12 availability may provide C. elegans with metabolic plasticity and thus a selective advantage on different diets in the wild.

  13. Enumeration of smallest intervention strategies in genome-scale metabolic networks.

    PubMed

    von Kamp, Axel; Klamt, Steffen

    2014-01-01

    One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal) provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs) which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions) in genome-scale metabolic network models. For this we combine two approaches, namely (i) the mapping of MCSs to EMs in a dual network, and (ii) a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine) by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth) than reported previously. The strength of the presented approach is that smallest intervention strategies can be quickly

  14. An efficient graph theory based method to identify every minimal reaction set in a metabolic network

    PubMed Central

    2014-01-01

    Background Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks are computationally expensive. Further, they identify only one of the several possible minimal reaction sets. Results In this paper, we propose an efficient graph theory based recursive optimization approach to identify all minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing 38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required only 4.5 hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in the solution time when compared to the existing methods for finding minimal reaction set. Conclusions Identification of all minimal reactions sets in metabolic networks is essential since different minimal reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to other methods for finding minimal

  15. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    PubMed Central

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  16. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.

    PubMed

    Bolten, Christoph J; Heinzle, Elmar; Müller, Rolf; Wittmann, Christoph

    2009-01-01

    In the present work, the metabolic network of primary metabolism of the slow-growing myxobacterium Sorangium cellulosum was reconstructed from the annotated genome sequence of the type strain So ce56. During growth on glucose as the carbon source and asparagine as the nitrogen source, So ce56 showed a very low growth rate of 0.23 d-(1), equivalent to a doubling time of 3 days. Based on a complete stoichiometric and isotopomer model of the central metabolism, 13C metabolic flux analysis was carried out for growth with glucose as carbon and asparagine as nitrogen sources. Normalized to the uptake flux for glucose (100%), cells recruited glycolysis (51%) and the pentose phosphate pathway (48%) as major catabolic pathways. The Entner-Doudoroff pathway and glyoxylate shunt were not active. A high flux through the TCA cycle (118%) enabled a strong formation of ATP, but cells revealed a rather low yield for biomass. Inspection of fluxes linked to energy metabolism revealed that S. cellulosum utilized only 10% of the ATP formed for growth, whereas 90% is required for maintenance. This explains the apparent discrepancy between the relatively low biomass yield and the high flux through the energy-delivering TCA cycle. The total flux of NADPH supply (216%) was higher than the demand for anabolism (156%), indicating additional reactions for balancing of NADPH. The cells further exhibited a highly active metabolic cycle, interconverting C3 and C4 metabolites of glycolysis and the TCA cycle. The present work provides the first insight into fluxes of the primary metabolism of myxobacteria, especially for future investigation on the supply of cofactors, building blocks, and energy in myxobacteria, producing natural compounds of biotechnological interest.

  17. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis

    PubMed Central

    2010-01-01

    Background During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these models, under in vitro conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host. Results To better account for the metabolic activity of M. tuberculosis in the host environment, we developed a set of procedures to systematically modify an existing in vitro metabolic network by enhancing the agreement between calculated and in vivo-measured gene essentiality data. After our modifications, the new in vivo network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81) in predicted gene essentiality than the in vitro network (0.31). We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under in vivo conditions. Moreover, we used the developed in vivo network to predict the effects of double-gene deletions on M. tuberculosis growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection. Conclusions The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by M. tuberculosis during host infection compared with

  18. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    SciTech Connect

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; DeLisi, Charles; Segre, Daniel; Hu, Zhenjun

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.

  19. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    PubMed

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  20. Exploring metabolic pathways in genome-scale networks via generating flux modes.

    PubMed

    Rezola, A; de Figueiredo, L F; Brock, M; Pey, J; Podhorski, A; Wittmann, C; Schuster, S; Bockmayr, A; Planes, F J

    2011-02-15

    The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach. The source code in C++ is available upon request.

  1. Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes.

    PubMed

    Dumas, Marc-Emmanuel

    2012-10-01

    The characterization of the metabolome has rapidly evolved over two decades, from early developments in analytical chemistry to systems biology. Metabolites and small molecules are not independent; they are organized in biochemical pathways and in a wider metabolic network, which is itself dependent on various genetic and signaling networks for its regulation. Recent advances in genomics, transcriptomics, proteomics and metabolomics have been matched by the development of publicly available repositories, which have helped shaping a new generation of integrative studies using metabolite measurements in molecular epidemiology and genetic studies. Although the environment influences metabolism, the identification of the genetic determinants of metabolic phenotypes (metabotypes) was made possible by the development of metabotype quantitative trait locus (mQTL) mapping and metabolomic genome-wide association studies (mGWAS) in a rigorous statistical genetics framework, deriving associations between metabolite concentrations and genetic polymorphisms. However, given the complexity of the biomolecular events involved in the regulation of metabolic patterns, alternative network biology approaches have also been recently introduced, such as integrated metabolome and interactome mapping (iMIM). This unprecedented convergence of metabolic biochemistry, quantitative genetics and network biology already has had a strong impact on the role of the metabolome in biomedical sciences, and this review gives a foretaste of its anticipated successes in eventually delivering personalized medicine.

  2. Towards stable kinetics of large metabolic networks: Nonequilibrium potential function approach

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Cong; Yuan, Ruo-Shi; Ao, Ping; Xu, Min-Juan; Zhu, Xiao-Mei

    2016-06-01

    While the biochemistry of metabolism in many organisms is well studied, details of the metabolic dynamics are not fully explored yet. Acquiring adequate in vivo kinetic parameters experimentally has always been an obstacle. Unless the parameters of a vast number of enzyme-catalyzed reactions happened to fall into very special ranges, a kinetic model for a large metabolic network would fail to reach a steady state. In this work we show that a stable metabolic network can be systematically established via a biologically motivated regulatory process. The regulation is constructed in terms of a potential landscape description of stochastic and nongradient systems. The constructed process draws enzymatic parameters towards stable metabolism by reducing the change in the Lyapunov function tied to the stochastic fluctuations. Biologically it can be viewed as interplay between the flux balance and the spread of workloads on the network. Our approach allows further constraints such as thermodynamics and optimal efficiency. We choose the central metabolism of Methylobacterium extorquens AM1 as a case study to demonstrate the effectiveness of the approach. Growth efficiency on carbon conversion rate versus cell viability and futile cycles is investigated in depth.

  3. A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions.

    PubMed

    Kotze, Helen L; Armitage, Emily G; Sharkey, Kieran J; Allwood, James W; Dunn, Warwick B; Williams, Kaye J; Goodacre, Royston

    2013-10-23

    Metabolomics has become increasingly popular in the study of disease phenotypes and molecular pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells; this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that are associated with normoxic or hypoxic oxygen environments. Correlation analysis has revealed statistically significant connections between metabolites, where differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network (EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen. This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen. Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not previously linked, or less well recognised, with respect to hypoxia before. Lactate

  4. [Controlling arachidonic acid metabolic network: from single- to multi-target inhibitors of key enzymes].

    PubMed

    Liu, Ying; Chen, Zheng; Shang, Er-chang; Yang, Kun; Wei, Deng-guo; Zhou, Lu; Jiang, Xiao-lu; He, Chong; Lai, Lu-hua

    2009-03-01

    Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.

  5. An Evidence-Based Review of Related Metabolites and Metabolic Network Research on Cerebral Ischemia

    PubMed Central

    Liu, Mengting; Tang, Liying; Liu, Xin; Fang, Jing; Zhan, Hao; Wu, Hongwei; Yang, Hongjun

    2016-01-01

    In recent years, metabolomics analyses have been widely applied to cerebral ischemia research. This paper introduces the latest proceedings of metabolomics research on cerebral ischemia. The main techniques, models, animals, and biomarkers of cerebral ischemia will be discussed. With analysis help from the MBRole website and the KEGG database, the altered metabolites in rat cerebral ischemia were used for metabolic pathway enrichment analyses. Our results identify the main metabolic pathways that are related to cerebral ischemia and further construct a metabolic network. These results will provide useful information for elucidating the pathogenesis of cerebral ischemia, as well as the discovery of cerebral ischemia biomarkers. PMID:27274780

  6. Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach

    PubMed Central

    Kaltdorf, Martin; Srivastava, Mugdha; Gupta, Shishir K.; Liang, Chunguang; Binder, Jasmin; Dietl, Anna-Maria; Meir, Zohar; Haas, Hubertus; Osherov, Nir; Krappmann, Sven; Dandekar, Thomas

    2016-01-01

    New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness (“hubs”), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines. PMID:27379244

  7. [Gene networks that regulate secondary metabolism in actinomycetes: pleiotropic regulators].

    PubMed

    Rabyk, M V; Ostash, B O; Fedorenko, V O

    2014-01-01

    Current advances in the research and practical applications of pleiotropic regulatory genes for antibiotic production in actinomycetes are reviewed. The basic regulatory mechanisms found in these bacteria are outlined. Examples described in the review show the importance of the manipulation of regulatory systems that affect the synthesis of antibiotics for the metabolic engineering of the actinomycetes. Also, the study of these genes is the basis for the development of genetic engineering approaches towards the induction of "cryptic" part of the actinomycetes secondary metabolome, which capacity for production of biologically active compounds is much bigger than the diversity of antibiotics underpinned by traditional microbiological screening. Besides the practical problems, the study of regulatory genes for antibiotic biosynthesis will provide insights into the process of evolution of complex regulatory systems that coordinate the expression of gene operons, clusters and regulons, involved in the control of secondary metabolism and morphogenesis of actinomycetes.

  8. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets

    PubMed Central

    Koch, Ina; Nöthen, Joachim; Schleiff, Enrico

    2017-01-01

    Motivation: Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem. Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs. Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the fixed carbon to

  9. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Noise effect in metabolic networks

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Yan; Xie, Zheng-Wei; Chen, Tong; Ouyang, Qi

    2009-12-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states.

  10. On dynamically generating relevant elementary flux modes in a metabolic network using optimization.

    PubMed

    Oddsdóttir, Hildur Æsa; Hagrot, Erika; Chotteau, Véronique; Forsgren, Anders

    2015-10-01

    Elementary flux modes (EFMs) are pathways through a metabolic reaction network that connect external substrates to products. Using EFMs, a metabolic network can be transformed into its macroscopic counterpart, in which the internal metabolites have been eliminated and only external metabolites remain. In EFMs-based metabolic flux analysis (MFA) experimentally determined external fluxes are used to estimate the flux of each EFM. It is in general prohibitive to enumerate all EFMs for complex networks, since the number of EFMs increases rapidly with network complexity. In this work we present an optimization-based method that dynamically generates a subset of EFMs and solves the EFMs-based MFA problem simultaneously. The obtained subset contains EFMs that contribute to the optimal solution of the EFMs-based MFA problem. The usefulness of our method was examined in a case-study using data from a Chinese hamster ovary cell culture and two networks of varied complexity. It was demonstrated that the EFMs-based MFA problem could be solved at a low computational cost, even for the more complex network. Additionally, only a fraction of the total number of EFMs was needed to compute the optimal solution.

  11. An extended bioreaction database that significantly improves reconstruction and analysis of genome-scale metabolic networks.

    PubMed

    Stelzer, Michael; Sun, Jibin; Kamphans, Tom; Fekete, Sándor P; Zeng, An-Ping

    2011-11-01

    The bioreaction database established by Ma and Zeng (Bioinformatics, 2003, 19, 270-277) for in silico reconstruction of genome-scale metabolic networks has been widely used. Based on more recent information in the reference databases KEGG LIGAND and Brenda, we upgrade the bioreaction database in this work by almost doubling the number of reactions from 3565 to 6851. Over 70% of the reactions have been manually updated/revised in terms of reversibility, reactant pairs, currency metabolites and error correction. For the first time, 41 spontaneous sugar mutarotation reactions are introduced into the biochemical database. The upgrade significantly improves the reconstruction of genome scale metabolic networks. Many gaps or missing biochemical links can be recovered, as exemplified with three model organisms Homo sapiens, Aspergillus niger, and Escherichia coli. The topological parameters of the constructed networks were also largely affected, however, the overall network structure remains scale-free. Furthermore, we consider the problem of computing biologically feasible shortest paths in reconstructed metabolic networks. We show that these paths are hard to compute and present solutions to find such paths in networks of small and medium size.

  12. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    PubMed

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network.

    PubMed

    Mohanty, Bijayalaxmi; Kitazumi, Ai; Cheung, C Y Maurice; Lakshmanan, Meiyappan; de los Reyes, Benildo G; Jang, In-Cheol; Lee, Dong-Yup

    2016-01-01

    In this study, we have integrated a rice genome-scale metabolic network and the transcriptome of a drought-tolerant rice line, DK151, to identify the major transcriptional regulators involved in metabolic adjustments necessary for adaptation to drought. This was achieved by examining the differential expressions of transcription factors and metabolic genes in leaf, root and young panicle of rice plants subjected to drought stress during tillering, booting and panicle elongation stages. Critical transcription factors such as AP2/ERF, bZIP, MYB and NAC that control the important nodes in the gene regulatory pathway were identified through correlative analysis of the patterns of spatio-temporal expression and cis-element enrichment. We showed that many of the candidate transcription factors involved in metabolic adjustments were previously linked to phenotypic variation for drought tolerance. This approach represents the first attempt to integrate models of transcriptional regulation and metabolic pathways for the identification of candidate regulatory genes for targeted selection in rice breeding.

  14. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers.

    PubMed

    Pinweha, Pannapa; Rattanapornsompong, Khanti; Charoensawan, Varodom; Jitrapakdee, Sarawut

    2016-01-01

    Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth factor overstimulation. We review different pathways involving metabolic alterations in cancers including aerobic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Although oncoproteins, c-MYC, HIF1α and p53 are the major drivers of this metabolic reprogramming, post-transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in cancers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is frequently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By combining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1α and p53), sterol regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers. The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1α, whereas the genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory organization that cannot be observed by investigating individual miRs, TFs, and target genes.

  15. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    PubMed Central

    Patti, Mary Elizabeth; Patil, Kiran Raosaheb

    2010-01-01

    Type 2 diabetes mellitus (T2DM) is a disorder characterized by both insulin resistance and impaired insulin secretion. Recent transcriptomics studies related to T2DM have revealed changes in expression of a large number of metabolic genes in a variety of tissues. Identification of the molecular mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment of binding sites in the promoter regions of these genes. In addition to metabolites from TCA cycle, oxidative phosphorylation, and lipid metabolism (known to be associated with T2DM), we identified several reporter metabolites representing novel biomarker candidates. For example, the highly connected metabolites NAD+/NADH and ATP/ADP were also identified as reporter metabolites that are potentially contributing to the widespread gene expression changes observed in T2DM. An algorithm based on the analysis of the promoter regions of the genes associated with reporter metabolites revealed a transcription factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic and regulatory nodes potentially involved in the pathogenesis of T2DM. PMID:20369014

  16. Preferential Remedies for Employment Discrimination

    ERIC Educational Resources Information Center

    Edwards, Harry T.; Zaretsky, Barry L.

    1975-01-01

    An overview of the problem of preferential remedies to achieve equal employment opportunities for women and minority groups. Contends that "color blindness" will not end discrimination but that some form of "color conscious" affirmative action program must be employed. Temporary preferential treatment is justified, according to…

  17. Preferential Remedies for Employment Discrimination

    ERIC Educational Resources Information Center

    Edwards, Harry T.; Zaretsky, Barry L.

    1975-01-01

    An overview of the problem of preferential remedies to achieve equal employment opportunities for women and minority groups. Contends that "color blindness" will not end discrimination but that some form of "color conscious" affirmative action program must be employed. Temporary preferential treatment is justified, according to…

  18. Cooccurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata.

    PubMed

    Ovrutsky, Alida R; Chan, Edward D; Kartalija, Marinka; Bai, Xiyuan; Jackson, Mary; Gibbs, Sara; Falkinham, Joseph O; Iseman, Michael D; Reynolds, Paul R; McDonnell, Gerald; Thomas, Vincent

    2013-05-01

    The incidence of lung and other diseases due to nontuberculous mycobacteria (NTM) is increasing. NTM sources include potable water, especially in households where NTM populate pipes, taps, and showerheads. NTM share habitats with free-living amoebae (FLA) and can grow in FLA as parasites or as endosymbionts. FLA containing NTM may form cysts that protect mycobacteria from disinfectants and antibiotics. We first assessed the presence of FLA and NTM in water and biofilm samples collected from a hospital, confirming the high prevalence of NTM and FLA in potable water systems, particularly in biofilms. Acanthamoeba spp. (genotype T4) were mainly recovered (8/17), followed by Hartmannella vermiformis (7/17) as well as one isolate closely related to the genus Flamella and one isolate only distantly related to previously described species. Concerning mycobacteria, Mycobacterium gordonae was the most frequently found isolate (9/17), followed by Mycobacterium peregrinum (4/17), Mycobacterium chelonae (2/17), Mycobacterium mucogenicum (1/17), and Mycobacterium avium (1/17). The propensity of Mycobacterium avium hospital isolate H87 and M. avium collection strain 104 to survive and replicate within various FLA was also evaluated, demonstrating survival of both strains in all amoebal species tested but high replication rates only in Acanthamoeba lenticulata. As A. lenticulata was frequently recovered from environmental samples, including drinking water samples, these results could have important consequences for the ecology of M. avium in drinking water networks and the epidemiology of disease due to this species.

  19. Cooccurrence of Free-Living Amoebae and Nontuberculous Mycobacteria in Hospital Water Networks, and Preferential Growth of Mycobacterium avium in Acanthamoeba lenticulata

    PubMed Central

    Ovrutsky, Alida R.; Kartalija, Marinka; Bai, Xiyuan; Jackson, Mary; Gibbs, Sara; Falkinham, Joseph O.; Iseman, Michael D.; Reynolds, Paul R.; McDonnell, Gerald

    2013-01-01

    The incidence of lung and other diseases due to nontuberculous mycobacteria (NTM) is increasing. NTM sources include potable water, especially in households where NTM populate pipes, taps, and showerheads. NTM share habitats with free-living amoebae (FLA) and can grow in FLA as parasites or as endosymbionts. FLA containing NTM may form cysts that protect mycobacteria from disinfectants and antibiotics. We first assessed the presence of FLA and NTM in water and biofilm samples collected from a hospital, confirming the high prevalence of NTM and FLA in potable water systems, particularly in biofilms. Acanthamoeba spp. (genotype T4) were mainly recovered (8/17), followed by Hartmannella vermiformis (7/17) as well as one isolate closely related to the genus Flamella and one isolate only distantly related to previously described species. Concerning mycobacteria, Mycobacterium gordonae was the most frequently found isolate (9/17), followed by Mycobacterium peregrinum (4/17), Mycobacterium chelonae (2/17), Mycobacterium mucogenicum (1/17), and Mycobacterium avium (1/17). The propensity of Mycobacterium avium hospital isolate H87 and M. avium collection strain 104 to survive and replicate within various FLA was also evaluated, demonstrating survival of both strains in all amoebal species tested but high replication rates only in Acanthamoeba lenticulata. As A. lenticulata was frequently recovered from environmental samples, including drinking water samples, these results could have important consequences for the ecology of M. avium in drinking water networks and the epidemiology of disease due to this species. PMID:23475613

  20. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    PubMed Central

    2013-01-01

    Background Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and

  1. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    PubMed

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems

  2. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    PubMed Central

    Kuang, Meihua Christina; Hutchins, Paul D; Russell, Jason D; Coon, Joshua J; Hittinger, Chris Todd

    2016-01-01

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation. DOI: http://dx.doi.org/10.7554/eLife.19027.001 PMID:27690225

  3. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    SciTech Connect

    Kuang, Meihua Christina; Hutchins, Paul D.; Russell, Jason D.; Coon, Joshua J.; Hittinger, Chris Todd

    2016-09-30

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of theGALactose sugar utilization network in two yeast species. Here, we show that theSaccharomyces uvarumnetwork is more active, even as over-induction is prevented by a second co-repressor that the model yeastSaccharomyces cerevisiaelacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. Furthermore, we show thatS. cerevisiaeexperiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. Our results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.

  4. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    PubMed

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  5. Visualization of metabolic interaction networks in microbial communities using VisANT 5.0

    DOE PAGES

    Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...

    2016-04-15

    Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less

  6. Glucose Metabolic Brain Networks in Early-Onset vs. Late-Onset Alzheimer's Disease

    PubMed Central

    Chung, Jinyong; Yoo, Kwangsun; Kim, Eunjoo; Na, Duk L.; Jeong, Yong

    2016-01-01

    Objective: Early-onset Alzheimer's disease (EAD) shows distinct features from late-onset Alzheimer's disease (LAD). To explore the characteristics of EAD, clinical, neuropsychological, and functional imaging studies have been conducted. However, differences between EAD and LAD are not clear, especially in terms of brain connectivity and networks. In this study, we investigated the differences in metabolic connectivity between EAD and LAD by adopting graph theory measures. Methods: We analyzed 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) images to investigate the distinct features of metabolic connectivity between EAD and LAD. Using metabolic connectivity and graph theory analysis, metabolic network differences between LAD and EAD were explored. Results: Results showed the decreased connectivity centered in the cingulate gyri and occipital regions in EAD, whereas decreased connectivity in the occipital and temporal regions as well as increased connectivity in the supplementary motor area were observed in LAD when compared with age-matched control groups. Global efficiency and clustering coefficients were decreased in EAD but not in LAD. EAD showed progressive network deterioration as a function of disease severity and clinical dementia rating (CDR) scores, mainly in terms of connectivity between the cingulate gyri and occipital regions. Global efficiency and clustering coefficients were also decreased along with disease severity. Conclusion: These results indicate that EAD and LAD have distinguished features in terms of metabolic connectivity, with EAD demonstrating more extensive and progressive deterioration. PMID:27445800

  7. A Maize Gene Regulatory Network for Phenolic Metabolism.

    PubMed

    Yang, Fan; Li, Wei; Jiang, Nan; Yu, Haidong; Morohashi, Kengo; Ouma, Wilberforce Zachary; Morales-Mantilla, Daniel E; Gomez-Cano, Fabio Andres; Mukundi, Eric; Prada-Salcedo, Luis Daniel; Velazquez, Roberto Alers; Valentin, Jasmin; Mejía-Guerra, Maria Katherine; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2017-03-06

    The translation of the genotype into phenotype, represented for example by the expression of genes encoding enzymes required for the biosynthesis of phytochemicals that are important for interaction of plants with the environment, is largely carried out by transcription factors (TFs) that recognize specific cis-regulatory elements in the genes that they control. TFs and their target genes are organized in gene regulatory networks (GRNs), and thus uncovering GRN architecture presents an important biological challenge necessary to explain gene regulation. Linking TFs to the genes they control, central to understanding GRNs, can be carried out using gene- or TF-centered approaches. In this study, we employed a gene-centered approach utilizing the yeast one-hybrid assay to generate a network of protein-DNA interactions that participate in the transcriptional control of genes involved in the biosynthesis of maize phenolic compounds including general phenylpropanoids, lignins, and flavonoids. We identified 1100 protein-DNA interactions involving 54 phenolic gene promoters and 568 TFs. A set of 11 TFs recognized 10 or more promoters, suggesting a role in coordinating pathway gene expression. The integration of the gene-centered network with information derived from TF-centered approaches provides a foundation for a phenolics GRN characterized by interlaced feed-forward loops that link developmental regulators with biosynthetic genes.

  8. Finding elementary flux modes in metabolic networks based on flux balance analysis and flux coupling analysis: application to the analysis of Escherichia coli metabolism.

    PubMed

    Tabe-Bordbar, Shayan; Marashi, Sayed-Amir

    2013-12-01

    Elementary modes (EMs) are steady-state metabolic flux vectors with minimal set of active reactions. Each EM corresponds to a metabolic pathway. Therefore, studying EMs is helpful for analyzing the production of biotechnologically important metabolites. However, memory requirements for computing EMs may hamper their applicability as, in most genome-scale metabolic models, no EM can be computed due to running out of memory. In this study, we present a method for computing randomly sampled EMs. In this approach, a network reduction algorithm is used for EM computation, which is based on flux balance-based methods. We show that this approach can be used to recover the EMs in the medium- and genome-scale metabolic network models, while the EMs are sampled in an unbiased way. The applicability of such results is shown by computing “estimated” control-effective flux values in Escherichia coli metabolic network.

  9. A Scalable Algorithm to Explore the Gibbs Energy Landscape of Genome-Scale Metabolic Networks

    PubMed Central

    De Martino, Daniele; Figliuzzi, Matteo

    2012-01-01

    The integration of various types of genomic data into predictive models of biological networks is one of the main challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility). The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli metabolic network (iAF1260). In the former case, we produce consistent predictions for chemical potentials (or log-concentrations) of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total) in the periplasmic and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample () of flux configurations generated randomly and compatibly with the prior information available on reaction reversibility. PMID:22737065

  10. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii

    PubMed Central

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F. Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R.; Shachar-Hill, Yair; Hicks, Leslie M.; Gang, David R.

    2015-01-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism. PMID:26022256

  11. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii

    SciTech Connect

    Gargouri, Mahmoud; Park, Jeong -Jin; Holguin, F. Omar; Kim, Min -Jeong; Wang, Hongxia; Deshpande, Rahul R.; Shachar-Hill, Yair; Hicks, Leslie M.; Gang, David R.

    2015-05-28

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. In conclusion, evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.

  12. FASIMU: flexible software for flux-balance computation series in large metabolic networks.

    PubMed

    Hoppe, Andreas; Hoffmann, Sabrina; Gerasch, Andreas; Gille, Christoph; Holzhütter, Hermann-Georg

    2011-01-22

    Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit. We present FASIMU, a command line oriented software for the computation of flux distributions using a variety of the most common FBA algorithms, including the first available implementation of (i) weighted flux minimization, (ii) fitness maximization for partially inhibited enzymes, and (iii) of the concentration-based thermodynamic feasibility constraint. It allows batch computation with varying objectives and constraints suited for network pruning, leak analysis, flux-variability analysis, and systematic probing of metabolic objectives for network curation. Input and output supports SBML. FASIMU can work with free (lp_solve and GLPK) or commercial solvers (CPLEX, LINDO). A new plugin (faBiNA) for BiNA allows to conveniently visualize calculated flux distributions. The platform-independent program is an open-source project, freely available under GNU public license at http://www.bioinformatics.org/fasimu including manual, tutorial, and plugins. We present a flux-balance optimization program whose main merits are the implementation of thermodynamics as a constraint, batch series of computations, free availability of sources, choice on various external solvers, and the flexibility on metabolic objectives and constraints.

  13. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    PubMed

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.

  14. FASIMU: flexible software for flux-balance computation series in large metabolic networks

    PubMed Central

    2011-01-01

    Background Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit. Results We present FASIMU, a command line oriented software for the computation of flux distributions using a variety of the most common FBA algorithms, including the first available implementation of (i) weighted flux minimization, (ii) fitness maximization for partially inhibited enzymes, and (iii) of the concentration-based thermodynamic feasibility constraint. It allows batch computation with varying objectives and constraints suited for network pruning, leak analysis, flux-variability analysis, and systematic probing of metabolic objectives for network curation. Input and output supports SBML. FASIMU can work with free (lp_solve and GLPK) or commercial solvers (CPLEX, LINDO). A new plugin (faBiNA) for BiNA allows to conveniently visualize calculated flux distributions. The platform-independent program is an open-source project, freely available under GNU public license at http://www.bioinformatics.org/fasimu including manual, tutorial, and plugins. Conclusions We present a flux-balance optimization program whose main merits are the implementation of thermodynamics as a constraint, batch series of computations, free availability of sources, choice on various external solvers, and the flexibility on metabolic objectives and constraints. PMID:21255455

  15. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    PubMed

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  16. Genome-scale metabolic network of Cordyceps militaris useful for comparative analysis of entomopathogenic fungi.

    PubMed

    Vongsangnak, Wanwipa; Raethong, Nachon; Mujchariyakul, Warasinee; Nguyen, Nam Ninh; Leong, Hon Wai; Laoteng, Kobkul

    2017-08-30

    The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin. Copyright © 2017. Published by Elsevier B.V.

  17. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases.

    PubMed

    Scholz, Gerhard H; Hanefeld, Markolf

    2016-10-01

    Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.

  18. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks.

    PubMed

    Rardin, Matthew J; He, Wenjuan; Nishida, Yuya; Newman, John C; Carrico, Chris; Danielson, Steven R; Guo, Ailan; Gut, Philipp; Sahu, Alexandria K; Li, Biao; Uppala, Radha; Fitch, Mark; Riiff, Timothy; Zhu, Lei; Zhou, Jing; Mulhern, Daniel; Stevens, Robert D; Ilkayeva, Olga R; Newgard, Christopher B; Jacobson, Matthew P; Hellerstein, Marc; Goetzman, Eric S; Gibson, Bradford W; Verdin, Eric

    2013-12-03

    Reversible posttranslational modifications are emerging as critical regulators of mitochondrial proteins and metabolism. Here, we use a label-free quantitative proteomic approach to characterize the lysine succinylome in liver mitochondria and its regulation by the desuccinylase SIRT5. A total of 1,190 unique sites were identified as succinylated, and 386 sites across 140 proteins representing several metabolic pathways including β-oxidation and ketogenesis were significantly hypersuccinylated in Sirt5(-/-) animals. Loss of SIRT5 leads to accumulation of medium- and long-chain acylcarnitines and decreased β-hydroxybutyrate production in vivo. In addition, we demonstrate that SIRT5 regulates succinylation of the rate-limiting ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) both in vivo and in vitro. Finally, mutation of hypersuccinylated residues K83 and K310 on HMGCS2 to glutamic acid strongly inhibits enzymatic activity. Taken together, these findings establish SIRT5 as a global regulator of lysine succinylation in mitochondria and present a mechanism for inhibition of ketogenesis through HMGCS2.

  19. Hepatokines: unlocking the multi-organ network in metabolic diseases.

    PubMed

    Iroz, Alison; Couty, Jean-Pierre; Postic, Catherine

    2015-08-01

    In the face of urbanisation, surplus energy intake, sedentary habits and obesity, type 2 diabetes has developed into a major health concern worldwide. Commonly overlooked in contemporary obesity research, the liver is emerging as a central regulator of whole body energy homeostasis. Liver-derived proteins known as hepatokines are now considered attractive targets for the development of novel type 2 diabetes treatments. This commentary presents examples of three leading hepatokines: fetuin-A, the first to be described and correlated with increased inflammation and insulin resistance; angiopoietin-like protein (ANGPTL)8/betatrophin, initially proposed for its action on beta cell proliferation, although this effect has recently been brought into question; and fibroblast growth factor 21 (FGF21), an insulin-sensitising hormone that is an appealing drug target because of its beneficial metabolic actions. Novel discoveries in hepatokine research may lead to promising biomarkers and treatments for metabolic disorders and type 2 diabetes. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015).

  20. The long-chain alkane metabolism network of Alcanivorax dieselolei.

    PubMed

    Wang, Wanpeng; Shao, Zongze

    2014-12-12

    Alkane-degrading bacteria are ubiquitous in marine environments, but little is known about how alkane degradation is regulated. Here we investigate alkane sensing, chemotaxis, signal transduction, uptake and pathway regulation in Alcanivorax dieselolei. The outer membrane protein OmpS detects the presence of alkanes and triggers the expression of an alkane chemotaxis complex. The coupling protein CheW2 of the chemotaxis complex, which is induced only by long-chain (LC) alkanes, sends signals to trigger the expression of Cyo, which participates in modulating the expression of the negative regulator protein AlmR. This change in turn leads to the expression of ompT1 and almA, which drive the selective uptake and hydroxylation of LC alkanes, respectively. AlmA is confirmed as a hydroxylase of LC alkanes. Additional factors responsible for the metabolism of medium-chain-length alkanes are also identified, including CheW1, OmpT1 and OmpT2. These results provide new insights into alkane metabolism pathways from alkane sensing to degradation.

  1. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    SciTech Connect

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  2. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems

    PubMed Central

    Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh

    2016-01-01

    We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can

  3. The cellular and signaling networks linking the immune system and metabolism in disease.

    PubMed

    Osborn, Olivia; Olefsky, Jerrold M

    2012-03-06

    It is now recognized that obesity is driving the type 2 diabetes epidemic in Western countries. Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes and cardiovascular disease, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various cellular and signaling networks that participate in linking the immune and metabolic systems together have contributed to understanding of the pathogenesis of metabolic diseases and may also inform new therapeutic strategies based on immunomodulation. Here we discuss how these various networks underlie the etiology of the inflammatory component of insulin resistance, with a particular focus on the central roles of macrophages in adipose tissue and liver.

  4. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness.

    PubMed

    Ray, Sandipan; Reddy, Akhilesh B

    2016-04-01

    Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non-transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24-hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems-level investigations implementing integrated multi-omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems.

  5. Identifying all moiety conservation laws in genome-scale metabolic networks.

    PubMed

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  6. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry.

    PubMed

    Morrish, F; Isern, N; Sadilek, M; Jeffrey, M; Hockenbery, D M

    2009-07-09

    Cell proliferation requires the coordinated activity of cytosolic and mitochondrial metabolic pathways to provide ATP and building blocks for DNA, RNA and protein synthesis. Many metabolic pathway genes are targets of the c-myc oncogene and cell-cycle regulator. However, the contribution of c-Myc to the activation of cytosolic and mitochondrial metabolic networks during cell-cycle entry is unknown. Here, we report the metabolic fates of [U-(13)C] glucose in serum-stimulated myc(-/-) and myc(+/+) fibroblasts by (13)C isotopomer NMR analysis. We demonstrate that endogenous c-myc increased (13)C labeling of ribose sugars, purines and amino acids, indicating partitioning of glucose carbons into C1/folate and pentose phosphate pathways, and increased tricarboxylic acid cycle turnover at the expense of anaplerotic flux. Myc expression also increased global O-linked N-acetylglucosamine protein modification, and inhibition of hexosamine biosynthesis selectively reduced growth of Myc-expressing cells, suggesting its importance in Myc-induced proliferation. These data reveal a central organizing function for the Myc oncogene in the metabolism of cycling cells. The pervasive deregulation of this oncogene in human cancers may be explained by its function in directing metabolic networks required for cell proliferation.

  7. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.

    PubMed

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-05-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops.

  8. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

    PubMed Central

    Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA

    2015-01-01

    When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124

  9. Data-driven integration of genome-scale regulatory and metabolic network models

    SciTech Connect

    Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; Baliga, Nitin S.; Price, Nathan D.

    2015-05-05

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  10. Data-driven integration of genome-scale regulatory and metabolic network models

    DOE PAGES

    Imam, Saheed; Schauble, Sascha; Brooks, Aaron N.; ...

    2015-05-05

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or moremore » network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. Lastly, in this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.« less

  11. Data-driven integration of genome-scale regulatory and metabolic network models.

    PubMed

    Imam, Saheed; Schäuble, Sascha; Brooks, Aaron N; Baliga, Nitin S; Price, Nathan D

    2015-01-01

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert-a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  12. Predicting functional associations from metabolism using bi-partite network algorithms.

    PubMed

    Veeramani, Balaji; Bader, Joel S

    2010-07-14

    Metabolic reconstructions contain detailed information about metabolic enzymes and their reactants and products. These networks can be used to infer functional associations between metabolic enzymes. Many methods are based on the number of metabolites shared by two enzymes, or the shortest path between two enzymes. Metabolite sharing can miss associations between non-consecutive enzymes in a serial pathway, and shortest-path algorithms are sensitive to high-degree metabolites such as water and ATP that create connections between enzymes with little functional similarity. We present new, fast methods to infer functional associations in metabolic networks. A local method, the degree-corrected Poisson score, is based only on the metabolites shared by two enzymes, but uses the known metabolite degree distribution. A global method, based on graph diffusion kernels, predicts associations between enzymes that do not share metabolites. Both methods are robust to high-degree metabolites. They out-perform previous methods in predicting shared Gene Ontology (GO) annotations and in predicting experimentally observed synthetic lethal genetic interactions. Including cellular compartment information improves GO annotation predictions but degrades synthetic lethal interaction prediction. These new methods perform nearly as well as computationally demanding methods based on flux balance analysis. We present fast, accurate methods to predict functional associations from metabolic networks. Biological significance is demonstrated by identifying enzymes whose strong metabolic correlations are missed by conventional annotations in GO, most often enzymes involved in transport vs. synthesis of the same metabolite or other enzyme pairs that share a metabolite but are separated by conventional pathway boundaries. More generally, the methods described here may be valuable for analyzing other types of networks with long-tailed degree distributions and high-degree hubs.

  13. Invariant features of metabolic networks: a data analysis application on scaling properties of biochemical pathways

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandro; Zbilut, Joseph P.; Conti, Filippo; Manetti, Cesare; Miccheli, Alfredo

    2004-06-01

    The network metaphor is currently one of the most common general paradigms in biological sciences: this paradigm spans different scales of definition going from gene regulation to protein-protein interaction studies and metabolic regulation networks. Generally, the networks are defined by the nature of the connected elements (nodes) and their relative relations (edges). In this paper we demonstrate how the same biochemical regulation network can assume different shapes in terms of both constituting elements and intervening relations while remaining recognizable as a specific entity. This behaviour can be explained by the general scaling properties of biological networks and points to regulation pathways as emergent features of biochemical systems posited at a different hierarchical level with respect to the intervening metabolites.

  14. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.

    PubMed

    Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C

    2017-02-01

    Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.

  15. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    PubMed

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Inherited drainage - paleochannels and preferential groundwater flow

    NASA Astrophysics Data System (ADS)

    Owen, Richard; Dahlin, T.

    2010-06-01

    It is suggested that in a localized remnant of Kalahari sand at Dufuya, central Zimbabwe, groundwater flows in an integrated pattern inherited from the paleochannel network of the underlying gneiss. Contact springs occur at discrete localities along the Kalahari sand/gneiss boundary and are associated with spring sapping and land surface subsidence. Subsidence is presumed to be due to preferential solute removal by leaching and dissolution as a result of concentration of groundwater flow within the buried paleochannel network and the location of the springs is presumed to occur where the paleochannel network intersects the Kalahari sand/gneiss boundary. Over time the surficial Kalahari sand is preferentially removed along these buried drainage lines by spring sapping and headwards erosion, exposing the gneiss. Multi-electrode direct current resistivity profiling and radar have been used to map the sub-surface, revealing the topography of the basement and nature of the Kalahari cover. Coincidence of gneiss basement depressions with the spring sites, leached sands and subsidence zones suggests inheritance of the gneiss fluvial paleochannel network pattern by the present day groundwater flow. Washed sand and gravel intersected in shallow boreholes in these areas provides further evidentiary support for the concept of inherited drainage.

  17. An integrated approach to characterize genetic interaction networks in yeast metabolism

    PubMed Central

    Szappanos, Balázs; Kovács, Károly; Szamecz, Béla; Honti, Frantisek; Costanzo, Michael; Baryshnikova, Anastasia; Gelius-Dietrich, Gabriel; Lercher, Martin J.; Jelasity, Márk; Myers, Chad L.; Andrews, Brenda J.; Boone, Charles; Oliver, Stephen G.; Pál, Csaba; Papp, Balázs

    2011-01-01

    Intense experimental and theoretical efforts have been made to globally map genetic interactions, yet we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we: i) quantitatively measure genetic interactions between ~185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii) superpose the data on a detailed systems biology model of metabolism, and iii) introduce a machine-learning method to reconcile empirical interaction data with model predictions. We systematically investigate the relative impacts of functional modularity and metabolic flux coupling on the distribution of negative and positive genetic interactions. We also provide a mechanistic explanation for the link between the degree of genetic interaction, pleiotropy, and gene dispensability. Last, we demonstrate the feasibility of automated metabolic model refinement by correcting misannotations in NAD biosynthesis and confirming them by in vivo experiments. PMID:21623372

  18. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models.

    PubMed

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-10-07

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations.

  19. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models

    PubMed Central

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-01-01

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352

  20. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    PubMed

    Alvarez-Silva, María Camila; Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  1. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils

    PubMed Central

    Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community. PMID:28767679

  2. Growth states of catalytic reaction networks exhibiting energy metabolism

    NASA Astrophysics Data System (ADS)

    Kondo, Yohei; Kaneko, Kunihiko

    2011-07-01

    All cells derive nutrition by absorbing some chemical and energy resources from the environment; these resources are used by the cells to reproduce the chemicals within them, which in turn leads to an increase in their volume. In this study we introduce a protocell model exhibiting catalytic reaction dynamics, energy metabolism, and cell growth. Results of extensive simulations of this model show the existence of four phases with regard to the rates of both the influx of resources and cell growth. These phases include an active phase with high influx and high growth rates, an inefficient phase with high influx but low growth rates, a quasistatic phase with low influx and low growth rates, and a death phase with negative growth rate. A mean field model well explains the transition among these phases as bifurcations. The statistical distribution of the active phase is characterized by a power law, and that of the inefficient phase is characterized by a nearly equilibrium distribution. We also discuss the relevance of the results of this study to distinct states in the existing cells.

  3. GAM: a web-service for integrated transcriptional and metabolic network analysis.

    PubMed

    Sergushichev, Alexey A; Loboda, Alexander A; Jha, Abhishek K; Vincent, Emma E; Driggers, Edward M; Jones, Russell G; Pearce, Edward J; Artyomov, Maxim N

    2016-07-08

    Novel techniques for high-throughput steady-state metabolomic profiling yield information about changes of nearly thousands of metabolites. Such metabolomic profiles, when analyzed together with transcriptional profiles, can reveal novel insights about underlying biological processes. While a number of conceptual approaches have been developed for data integration, easily accessible tools for integrated analysis of mammalian steady-state metabolomic and transcriptional data are lacking. Here we present GAM ('genes and metabolites'): a web-service for integrated network analysis of transcriptional and steady-state metabolomic data focused on identification of the most changing metabolic subnetworks between two conditions of interest. In the web-service, we have pre-assembled metabolic networks for humans, mice, Arabidopsis and yeast and adapted exact solvers for an optimal subgraph search to work in the context of these metabolic networks. The output is the most regulated metabolic subnetwork of size controlled by false discovery rate parameters. The subnetworks are then visualized online and also can be downloaded in Cytoscape format for subsequent processing. The web-service is available at: https://artyomovlab.wustl.edu/shiny/gam/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Network thermodynamic curation of human and yeast genome-scale metabolic models.

    PubMed

    Martínez, Verónica S; Quek, Lake-Ee; Nielsen, Lars K

    2014-07-15

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties.

  5. Network-level architecture and the evolutionary potential of underground metabolism.

    PubMed

    Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs

    2014-08-12

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.

  6. Network-level architecture and the evolutionary potential of underground metabolism

    PubMed Central

    Notebaart, Richard A.; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs

    2014-01-01

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics. PMID:25071190

  7. Multi-omics approach for estimating metabolic networks using low-order partial correlations.

    PubMed

    Kayano, Mitsunori; Imoto, Seiya; Yamaguchi, Rui; Miyano, Satoru

    2013-08-01

    Two typical purposes of metabolome analysis are to estimate metabolic pathways and to understand the regulatory systems underlying the metabolism. A powerful source of information for these analyses is a set of multi-omics data for RNA, proteins, and metabolites. However, integrated methods that analyze multi-omics data simultaneously and unravel the systems behind metabolisms have not been well established. We developed a statistical method based on low-order partial correlations with a robust correlation coefficient for estimating metabolic networks from metabolome, proteome, and transcriptome data. Our method is defined by the maximum of low-order, particularly first-order, partial correlations (MF-PCor) in order to assign a correct edge with the highest correlation and to detect the factors that strongly affect the correlation coefficient. First, through numerical experiments with real and synthetic data, we showed that the use of protein and transcript data of enzymes improved the accuracy of the estimated metabolic networks in MF-PCor. In these experiments, the effectiveness of the proposed method was also demonstrated by comparison with a correlation network (Cor) and a Gaussian graphical model (GGM). Our theoretical investigation confirmed that the performance of MF-PCor could be superior to that of the competing methods. In addition, in the real data analysis, we investigated the role of metabolites, enzymes, and enzyme genes that were identified as important factors in the network established by MF-PCor. We then found that some of them corresponded to specific reactions between metabolites mediated by catalytic enzymes that were difficult to be identified by analysis based on metabolite data alone.

  8. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    DOE PAGES

    Kuang, Meihua Christina; Hutchins, Paul D.; Russell, Jason D.; ...

    2016-09-30

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of theGALactose sugar utilization network in two yeast species. Here, we show that theSaccharomyces uvarumnetwork is more active, even as over-induction is prevented by a second co-repressor that the model yeastSaccharomyces cerevisiaelacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systemsmore » and exacerbate this phenotype. Furthermore, we show thatS. cerevisiaeexperiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. Our results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.« less

  9. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    PubMed

    Vinay-Lara, Elena; Hamilton, Joshua J; Stahl, Buffy; Broadbent, Jeff R; Reed, Jennifer L; Steele, James L

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  10. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response

    PubMed Central

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M. James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-01-01

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer. PMID:28275095

  11. AMBIENT: Active Modules for Bipartite Networks - using high-throughput transcriptomic data to dissect metabolic response

    PubMed Central

    2013-01-01

    Background With the continued proliferation of high-throughput biological experiments, there is a pressing need for tools to integrate the data produced in ways that produce biologically meaningful conclusions. Many microarray studies have analysed transcriptomic data from a pathway perspective, for instance by testing for KEGG pathway enrichment in sets of upregulated genes. However, the increasing availability of species-specific metabolic models provides the opportunity to analyse these data in a more objective, system-wide manner. Results Here we introduce ambient (Active Modules for Bipartite Networks), a simulated annealing approach to the discovery of metabolic subnetworks (modules) that are significantly affected by a given genetic or environmental change. The metabolic modules returned by ambient are connected parts of the bipartite network that change coherently between conditions, providing a more detailed view of metabolic changes than standard approaches based on pathway enrichment. Conclusions ambient is an effective and flexible tool for the analysis of high-throughput data in a metabolic context. The same approach can be applied to any system in which reactions (or metabolites) can be assigned a score based on some biological observation, without the limitation of predefined pathways. A Python implementation of ambient is available at http://www.theosysbio.bio.ic.ac.uk/ambient. PMID:23531303

  12. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    PubMed

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  13. Genome –Scale Reconstruction of Metabolic Networks of Lactobacillus casei ATCC 334 and 12A

    PubMed Central

    Vinay-Lara, Elena; Hamilton, Joshua J.; Stahl, Buffy; Broadbent, Jeff R.; Reed, Jennifer L.; Steele, James L.

    2014-01-01

    Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications. PMID:25365062

  14. Analysis of metabolic networks using a pathway distance metric through linear programming.

    PubMed

    Simeonidis, Evangelos; Rison, Stuart C G; Thornton, Janet M; Bogle, I David L; Papageorgiou, Lazaros G

    2003-07-01

    The solution of the shortest path problem in biochemical systems constitutes an important step for studies of their evolution. In this paper, a linear programming (LP) algorithm for calculating minimal pathway distances in metabolic networks is studied. Minimal pathway distances are identified as the smallest number of metabolic steps separating two enzymes in metabolic pathways. The algorithm deals effectively with circularity and reaction directionality. The applicability of the algorithm is illustrated by calculating the minimal pathway distances for Escherichia coli small molecule metabolism enzymes, and then considering their correlations with genome distance (distance separating two genes on a chromosome) and enzyme function (as characterised by enzyme commission number). The results illustrate the effectiveness of the LP model. In addition, the data confirm that propinquity of genes on the genome implies similarity in function (as determined by co-involvement in the same region of the metabolic network), but suggest that no correlation exists between pathway distance and enzyme function. These findings offer insight into the probable mechanism of pathway evolution.

  15. A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803.

    PubMed

    Maarleveld, Timo R; Boele, Joost; Bruggeman, Frank J; Teusink, Bas

    2014-03-01

    Data integration is a central activity in systems biology. The integration of genomic, transcript, protein, metabolite, flux, and computational data yields unprecedented information about the system level functioning of organisms. Often, data integration is done purely computationally, leaving the user with little insight in addition to statistical information. In this article, we present a visualization tool for the metabolic network of Synechocystis sp. PCC 6803, an important model cyanobacterium for sustainable biofuel production. We illustrate how this metabolic map can be used to integrate experimental and computational data for Synechocystis sp. PCC 6803 systems biology and metabolic engineering studies. Additionally, we discuss how this map, and the software infrastructure that we supply with it, can be used in the development of other organism-specific metabolic network visualizations. In addition to the Python console package VoNDA (http://vonda.sf.net), we provide a working demonstration of the interactive metabolic map and the associated Synechocystis sp. PCC 6803 genome-scale stoichiometric model, as well as various ready-to-visualize microarray data sets, at http://f-a-m-e.org/synechocytis.

  16. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    PubMed Central

    Dzeja, Petras; Terzic, Andre

    2009-01-01

    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network. PMID:19468337

  17. Modeling and Robustness Analysis of Biochemical Networks of Glycerol Metabolism by Klebsiella Pneumoniae

    NASA Astrophysics Data System (ADS)

    Ye, Jianxiong; Feng, Enmin; Wang, Lei; Xiu, Zhilong; Sun, Yaqin

    Glycerol bioconversion to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulatory. To date, there still exist some uncertain factors in this complex network because of the limitation in bio-techniques, especially in measuring techniques for intracellular substances. In this paper, among these uncertain factors, we aim to infer the transport mechanisms of glycerol and 1,3-PD across the cell membrane, which have received intensive interest in recent years. On the basis of different inferences of the transport mechanisms, we reconstruct various metabolic networks correspondingly and subsequently develop their dynamical systems (S-systems). To determine the most reasonable metabolic network from all possible ones, we establish a quantitative definition of biological robustness and undertake parameter identification and robustness analysis for each system. Numerical results show that it is most possible that both glycerol and 1,3-PD pass the cell membrane by active transport and passive diffusion.

  18. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    PubMed Central

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  19. Patterns of metabolite changes identified from large-scale gene perturbations in Arabidopsis using a genome-scale metabolic network.

    PubMed

    Kim, Taehyong; Dreher, Kate; Nilo-Poyanco, Ricardo; Lee, Insuk; Fiehn, Oliver; Lange, Bernd Markus; Nikolau, Basil J; Sumner, Lloyd; Welti, Ruth; Wurtele, Eve S; Rhee, Seung Y

    2015-04-01

    Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.

  20. A FDG-PET Study of Metabolic Networks in Apolipoprotein E ε4 Allele Carriers.

    PubMed

    Yao, Zhijun; Hu, Bin; Zheng, Jiaxiang; Zheng, Weihao; Chen, Xuejiao; Gao, Xiang; Xie, Yuanwei; Fang, Lei

    2015-01-01

    Recently, some studies have applied the graph theory in brain network analysis in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). However, relatively little research has specifically explored the properties of the metabolic network in apolipoprotein E (APOE) ε4 allele carriers. In our study, all the subjects, including ADs, MCIs and NCs (normal controls) were divided into 165 APOE ε4 carriers and 165 APOE ε4 noncarriers. To establish the metabolic network for all brain regions except the cerebellum, cerebral glucose metabolism data obtained from FDG-PET (18F-fluorodeoxyglucose positron emission tomography) were segmented into 90 areas with automated anatomical labeling (AAL) template. Then, the properties of the networks were computed to explore the between-group differences. Our results suggested that both APOE ε4 carriers and noncarriers showed the small-world properties. Besides, compared with APOE ε4 noncarriers, the carriers showed a lower clustering coefficient. In addition, significant changes in 6 hub brain regions were found in between-group nodal centrality. Namely, compared with APOE ε4 noncarriers, significant decreases of the nodal centrality were found in left insula, right insula, right anterior cingulate, right paracingulate gyri, left cuneus, as well as significant increases in left paracentral lobule and left heschl gyrus in APOE ε4 carriers. Increased local short distance interregional correlations and disrupted long distance interregional correlations were found, which may support the point that the APOE ε4 carriers were more similar with AD or MCI in FDG uptake. In summary, the organization of metabolic network in APOE ε4 carriers indicated a less optimal pattern and APOE ε4 might be a risk factor for AD.

  1. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls

    PubMed Central

    Knecht, Carolin; Fretter, Christoph; Rosenstiel, Philip; Krawczak, Michael; Hütt, Marc-Thorsten

    2016-01-01

    Information on biological networks can greatly facilitate the function-orientated interpretation of high-throughput molecular data. Genome-wide metabolic network models of human cells, in particular, can be employed to contextualize gene expression profiles of patients with the goal of both, a better understanding of individual etiologies and an educated reclassification of (clinically defined) phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of ‘coherence’, we quantified how well individual patterns of expression changes matched the metabolic network. We observed a bimodal distribution of metabolic network coherence in both patients and controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed a bisectional pattern as well that overlapped widely with the metabolic network-based results. Expression differences driving the observed bimodality were related to cellular transport of thiamine and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital pathways. We demonstrated how classical data mining and network analysis can jointly identify biologically meaningful patterns in gene expression data. PMID:27585741

  2. Habitat variability does not generally promote metabolic network modularity in flies and mammals.

    PubMed

    Takemoto, Kazuhiro

    2016-01-01

    The evolution of species habitat range is an important topic over a wide range of research fields. In higher organisms, habitat range evolution is generally associated with genetic events such as gene duplication. However, the specific factors that determine habitat variability remain unclear at higher levels of biological organization (e.g., biochemical networks). One widely accepted hypothesis developed from both theoretical and empirical analyses is that habitat variability promotes network modularity; however, this relationship has not yet been directly tested in higher organisms. Therefore, I investigated the relationship between habitat variability and metabolic network modularity using compound and enzymatic networks in flies and mammals. Contrary to expectation, there was no clear positive correlation between habitat variability and network modularity. As an exception, the network modularity increased with habitat variability in the enzymatic networks of flies. However, the observed association was likely an artifact, and the frequency of gene duplication appears to be the main factor contributing to network modularity. These findings raise the question of whether or not there is a general mechanism for habitat range expansion at a higher level (i.e., above the gene scale). This study suggests that the currently widely accepted hypothesis for habitat variability should be reconsidered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Reconciled Rat and Human Metabolic Networks for Comparative Toxicogenomics and Biomarker Predictions

    DTIC Science & Technology

    2017-02-08

    St3gal3 and ST3GAL3 (ref. 46). Surprisingly, FUT3 was the only functional difference attributed to human -specific enzymes after performing network...been reported to perform 6-b hydroxylation of lithocholic acid51 (EC 1.14.13.94), with rat genes. We identified Cyp3a18 as the best candidate with the...inclusivity. In addition, HMR2 was capable of performing 256 well- curated metabolic tasks relevant to hepatocyte metabolism in both humans and rats

  4. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.

    PubMed

    Prigent, Sylvain; Frioux, Clémence; Dittami, Simon M; Thiele, Sven; Larhlimi, Abdelhalim; Collet, Guillaume; Gutknecht, Fabien; Got, Jeanne; Eveillard, Damien; Bourdon, Jérémie; Plewniak, Frédéric; Tonon, Thierry; Siegel, Anne

    2017-01-01

    Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to

  5. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    PubMed Central

    Prigent, Sylvain; Frioux, Clémence; Dittami, Simon M.; Larhlimi, Abdelhalim; Collet, Guillaume; Gutknecht, Fabien; Got, Jeanne; Eveillard, Damien; Bourdon, Jérémie; Plewniak, Frédéric; Tonon, Thierry; Siegel, Anne

    2017-01-01

    Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to

  6. Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks

    PubMed Central

    Bassel, George W.; Gaudinier, Allison; Brady, Siobhan M.; Hennig, Lars; Rhee, Seung Y.; De Smet, Ive

    2012-01-01

    Physiological responses, developmental programs, and cellular functions rely on complex networks of interactions at different levels and scales. Systems biology brings together high-throughput biochemical, genetic, and molecular approaches to generate omics data that can be analyzed and used in mathematical and computational models toward uncovering these networks on a global scale. Various approaches, including transcriptomics, proteomics, interactomics, and metabolomics, have been employed to obtain these data on the cellular, tissue, organ, and whole-plant level. We summarize progress on gene regulatory, cofunction, protein interaction, and metabolic networks. We also illustrate the main approaches that have been used to obtain these networks, with specific examples from Arabidopsis thaliana, and describe the pros and cons of each approach. PMID:23110892

  7. Systems analysis of plant functional, transcriptional, physical interaction, and metabolic networks.

    PubMed

    Bassel, George W; Gaudinier, Allison; Brady, Siobhan M; Hennig, Lars; Rhee, Seung Y; De Smet, Ive

    2012-10-01

    Physiological responses, developmental programs, and cellular functions rely on complex networks of interactions at different levels and scales. Systems biology brings together high-throughput biochemical, genetic, and molecular approaches to generate omics data that can be analyzed and used in mathematical and computational models toward uncovering these networks on a global scale. Various approaches, including transcriptomics, proteomics, interactomics, and metabolomics, have been employed to obtain these data on the cellular, tissue, organ, and whole-plant level. We summarize progress on gene regulatory, cofunction, protein interaction, and metabolic networks. We also illustrate the main approaches that have been used to obtain these networks, with specific examples from Arabidopsis thaliana, and describe the pros and cons of each approach.

  8. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

  9. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans

    PubMed Central

    David, Helga; Hofmann, Gerald; Oliveira, Ana Paula; Jarmer, Hanne; Nielsen, Jens

    2006-01-01

    Background Aspergillus nidulans (the asexual form of Emericella nidulans) is a model organism for aspergilli, which are an important group of filamentous fungi that encompasses human and plant pathogens as well as industrial cell factories. Aspergilli have a highly diversified metabolism and, because of their medical, agricultural and biotechnological importance, it would be valuable to have an understanding of how their metabolism is regulated. We therefore conducted a genome-wide transcription analysis of A. nidulans grown on three different carbon sources (glucose, glycerol, and ethanol) with the objective of identifying global regulatory structures. Furthermore, we reconstructed the complete metabolic network of this organism, which resulted in linking 666 genes to metabolic functions, as well as assigning metabolic roles to 472 genes that were previously uncharacterized. Results Through combination of the reconstructed metabolic network and the transcription data, we identified subnetwork structures that pointed to coordinated regulation of genes that are involved in many different parts of the metabolism. Thus, for a shift from glucose to ethanol, we identified coordinated regulation of the complete pathway for oxidation of ethanol, as well as upregulation of gluconeogenesis and downregulation of glycolysis and the pentose phosphate pathway. Furthermore, on change in carbon source from glucose to ethanol, the cells shift from using the pentose phosphate pathway as the major source of NADPH (nicotinamide adenine dinucleotide phosphatase, reduced form) for biosynthesis to use of the malic enzyme. Conclusion Our analysis indicates that some of the genes are regulated by common transcription factors, making it possible to establish new putative links between known transcription factors and genes through clustering. PMID:17107606

  10. Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data.

    PubMed

    Kuehne, Andreas; Mayr, Urs; Sévin, Daniel C; Claassen, Manfred; Zamboni, Nicola

    2017-06-01

    In recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS) algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data. The algorithm sections the metabolic network into modules of metabolites with consistent changes. Metabolic reactions that connect different modules are the most likely sites of metabolic regulation. In contrast to most state-of-the-art methods, the MNS algorithm is independent of arbitrary pathway definitions, and its probabilistic nature facilitates assessments of noisy and incomplete measurements. With serial (i.e., time-resolved) data, the MNS algorithm also indicates the sequential order of metabolic regulation. We demonstrated the power and flexibility of the MNS algorithm with three, realistic case studies with bacterial and human cells. Thus, this approach enables the identification of mechanistic regulatory events from large-scale metabolomics data, and contributes to the understanding of metabolic processes and their interplay with cellular signaling and regulation processes.

  11. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool.

    PubMed

    Brown, Dustin G; Rao, Sangeeta; Weir, Tiffany L; O'Malia, Joanne; Bazan, Marlon; Brown, Regina J; Ryan, Elizabeth P

    2016-01-01

    Colorectal cancers (CRC) are associated with perturbations in cellular amino acids, nucleotides, pentose-phosphate pathway carbohydrates, and glycolytic, gluconeogenic, and tricarboxylic acid intermediates. A non-targeted global metabolome approach was utilized for exploring human CRC, adjacent mucosa, and stool. In this pilot study, we identified metabolite profile differences between CRC and adjacent mucosa from patients undergoing colonic resection. Metabolic pathway analyses further revealed relationships between complex networks of metabolites. Seventeen CRC patients participated in this pilot study and provided CRC, adjacent mucosa ~10 cm proximal to the tumor, and stool. Metabolomes were analyzed by gas chromatography-mass spectrometry (GC/MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). All of the library standard identifications were confirmed and further analyzed via MetaboLync(TM) for metabolic network interactions. There were a total of 728 distinct metabolites identified from colonic tissue and stool matrices. Nineteen metabolites significantly distinguished CRC from adjacent mucosa in our patient-matched cohort. Glucose-6-phosphate and fructose-6-phosphate demonstrated 0.64-fold and 0.75-fold lower expression in CRC compared to mucosa, respectively, whereas isobar: betaine aldehyde, N-methyldiethanolamine, and adenylosuccinate had 2.68-fold and 1.88-fold higher relative abundance in CRC. Eleven of the 19 metabolites had not previously been reported for CRC relevance. Metabolic pathway analysis revealed significant perturbations of short-chain fatty acid metabolism, fructose, mannose, and galactose metabolism, and glycolytic, gluconeogenic, and pyruvate metabolism. In comparison to the 500 stool metabolites identified from human CRC patients, only 215 of those stool metabolites were also detected in tissue. This CRC and stool metabolome investigation identified novel metabolites that may serve as key small molecules in

  12. Computing smallest intervention strategies for multiple metabolic networks in a boolean model.

    PubMed

    Lu, Wei; Tamura, Takeyuki; Song, Jiangning; Akutsu, Tatsuya

    2015-02-01

    This article considers the problem whereby, given two metabolic networks N1 and N2, a set of source compounds, and a set of target compounds, we must find the minimum set of reactions whose removal (knockout) ensures that the target compounds are not producible in N1 but are producible in N2. Similar studies exist for the problem of finding the minimum knockout with the smallest side effect for a single network. However, if technologies of external perturbations are advanced in the near future, it may be important to develop methods of computing the minimum knockout for multiple networks (MKMN). Flux balance analysis (FBA) is efficient if a well-polished model is available. However, that is not always the case. Therefore, in this article, we study MKMN in Boolean models and an elementary mode (EM)-based model. Integer linear programming (ILP)-based methods are developed for these models, since MKMN is NP-complete for both the Boolean model and the EM-based model. Computer experiments are conducted with metabolic networks of clostridium perfringens SM101 and bifidobacterium longum DJO10A, respectively known as bad bacteria and good bacteria for the human intestine. The results show that larger networks are more likely to have MKMN solutions. However, solving for these larger networks takes a very long time, and often the computation cannot be completed. This is reasonable, because small <