Science.gov

Sample records for metabolic processes affected

  1. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    PubMed Central

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  2. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae-A 2D NMR Metabolomics Study.

    PubMed

    Vergara, Fredd; Shino, Amiu; Kikuchi, Jun

    2016-01-01

    Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal), the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR) and principal component analysis (PCA). Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of ¹H-(13)C HSQC (Heteronuclear Single Quantum Coherence) signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae. PMID:27598144

  3. [Affective disorders: endocrine and metabolic comorbidities].

    PubMed

    Cermolacce, M; Belzeaux, R; Adida, M; Azorin, J-M

    2014-12-01

    Links between affective and endocrine-metabolic disorders are numerous and complex. In this review, we explore most frequent endocrine-metabolic comorbidities. On the one hand, these comorbidities imply numerous iatrogenic effects from antipsychotics (metabolic side-effects) or from lithium (endocrine side-effects). On the other hand, these comorbidities are also associated with affective disorders independently from medication. We will successively examine metabolic syndrome, glycemic disturbances, obesity and thyroid disorders among patients with affective disorders. Endocrinemetabolic comorbidities can be individually encountered, but can also be associated. Therefore, they substantially impact morbidity and mortality by increasing cardiovascular risk factors. Two distinct approaches give an account of processes involved in these comorbidities: common environmental factors (iatrogenic effects, lifestyle), and/or shared physiological vulnerabilities. In conclusion, we provide a synthesis of important results and recommendations related to endocrine-metabolic comorbidities in affective disorders : heavy influence on morbidity and mortality, undertreatment of somatic diseases, importance of endocrine and metabolic side effects from main mood stabilizers, impact from sex and age on the prevalence of comorbidities, influence from previous depressive episodes in bipolar disorders, and relevance of systematic screening for subclinical (biological) disturbances. PMID:25550238

  4. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process.

    PubMed

    Costamagna, M S; Zampini, I C; Alberto, M R; Cuello, S; Torres, S; Pérez, J; Quispe, C; Schmeda-Hirschmann, G; Isla, M I

    2016-01-01

    Geoffroea decorticans (chañar), is widely distributed throughout Northwestern Argentina. Its fruit is consumed as flour, arrope or hydroalcoholic beverage. The chañar fruits flour was obtained and 39 phenolic compounds were tentatively identified by HPLC-MS/MS(n). The compounds comprised caffeic acid glycosides, simple phenolics (protocatechuic acid and vanillic acid), a glycoside of vanillic acid, p-coumaric acid and its phenethyl ester as well as free and glycosylated flavonoids. The polyphenols enriched extract with and without gastroduodenal digestion inhibited enzymes associated with metabolic syndrome, including α-amylase, α-glucosidase, lipase and hydroxyl methyl glutaryl CoA reductase. The polyphenolic extract exhibited antioxidant activity by different mechanisms and inhibited the pro-inflammatory enzymes (ciclooxygenase, lipoxygenase and phospholipase A2). The polyphenolic extract did not showed mutagenic effect by Ames test against Salmonella typhimurium TA98 and TA100 strains. These findings add evidence that chañar fruit flour may be considered a functional food with preventive properties against diseases associated with oxidative stress, inflammatory mediators and metabolic syndrome. PMID:26212988

  5. Affective Disorders, Bone Metabolism, and Osteoporosis.

    PubMed

    Mezuk, Briana

    2008-12-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk.

  6. Affective Disorders, Bone Metabolism, and Osteoporosis

    PubMed Central

    2013-01-01

    The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk. PMID:23874147

  7. Trichoderma secondary metabolites that affect plant metabolism.

    PubMed

    Vinale, Francesco; Sivasithamparam, Krishnapillai; Ghisalberti, Emilio L; Ruocco, Michelina; Wood, Sheridan; Lorito, Matteo

    2012-11-01

    Recently, there have been many exciting new developments relating to the use of Trichoderma spp. as agents for biocontrol of pathogens and as plant growth promoters. Several mechanisms have been proposed to explain the positive effects of these microorganisms on the plant host. One factor that contributes to their beneficial biological activities is related to the wide variety of metabolites that they produce. These metabolites have been found not only to directly inhibit the growth and pathogenic activities of the parasites, but also to increase disease resistance by triggering the system of defence in the plant host. In addition, these metabolites are also capable of enhancing plant growth, which enables the plant to counteract the disease with compensatory vegetative growth by the augmented production of root and shoot systems. This review takes into account the Trichoderma secondary metabolites that affect plant metabolism and that may play an important role in the complex interactions of this biocontrol agent with the plant and pathogens.

  8. Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis[OPEN

    PubMed Central

    Penfold, Christopher A.; Jenkins, Dafyd J.; Legaie, Roxane; Lawson, Tracy; Vialet-Chabrand, Silvere R.M.; Subramaniam, Sunitha; Hickman, Richard; Feil, Regina; Bowden, Laura; Hill, Claire; Lunn, John E.; Finkenstädt, Bärbel; Buchanan-Wollaston, Vicky; Beynon, Jim; Wild, David L.; Ott, Sascha

    2016-01-01

    In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464

  9. Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis.

    PubMed

    Bechtold, Ulrike; Penfold, Christopher A; Jenkins, Dafyd J; Legaie, Roxane; Moore, Jonathan D; Lawson, Tracy; Matthews, Jack S A; Vialet-Chabrand, Silvere R M; Baxter, Laura; Subramaniam, Sunitha; Hickman, Richard; Florance, Hannah; Sambles, Christine; Salmon, Deborah L; Feil, Regina; Bowden, Laura; Hill, Claire; Baker, Neil R; Lunn, John E; Finkenstädt, Bärbel; Mead, Andrew; Buchanan-Wollaston, Vicky; Beynon, Jim; Rand, David A; Wild, David L; Denby, Katherine J; Ott, Sascha; Smirnoff, Nicholas; Mullineaux, Philip M

    2016-02-01

    In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464

  10. Factors Affecting the Tutoring Process.

    ERIC Educational Resources Information Center

    Hartman, Hope J.

    1990-01-01

    Analyzes factors internal to the tutor and tutee (i.e., cognition, metacognition, and affect) and external to them (e.g., teacher/tutor background knowledge, educational environment, content to be learned, socioeconomic status, family background, and cultural forces) that influence the tutoring process. Suggests a theoretical framework for…

  11. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    PubMed

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  12. [Pathogenetic correction of metabolic disturbances in chronic liver affections].

    PubMed

    Romantsov, M G; Petrov, A Iu; Aleksandrova, L N; Sukhanov, D S; Kovalenko, A L

    2012-01-01

    The available drugs for the treatment of chronic liver affections (the adequate model is chronic hepatitis C) include agents of metabolic therapy, whose efficacy is not always enough, that required the search for original mitochondrial substrates on the basis of succinate. Such agents were composed as a pharmaceutical group named "Substrates of Energetic Metabolism" or "Substrate Antihypoxants". The review presents the description of the pharmacological effects of remaxole and cytoflavin, evident from lower levels of active metabolites of oxygen that increases the clinical efficacy of the therapy. Their role in the metabolic reactions in chronic liver affections is exclusive and rather actual. PMID:23700935

  13. Inherited metabolic diseases affecting the carrier.

    PubMed

    Endres, W

    1997-03-01

    The objective of this review is to draw attention to those inherited metabolic traits which are potentially harmful also for the carrier, and to outline preventive measures, at least for obligate heterozygotes, i.e. parents of homozygous children. Concerning carriers of food-dependent abnormalities, early vascular disease in homocystinuria, hyperammonaemic episodes in ornithine transcarbamylase deficiency, presenile cataracts in galactosaemia as well as galactokinase deficiency, spastic paraparesis in X-linked adrenoleukodystrophy, and HELLP syndrome in mothers of babies with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency have to be mentioned. In the group of food-independent disorders, clinical features in carriers may be paraesthesias and corneal dystrophy in Fabry disease, lens clouding in Lowe syndrome, lung and/or liver diseases in alpha 1-antitrypsin deficiency, and renal stones in cystinuria type II and III. Finally, two monogenic carrier states are known which in pregnant individuals could possibly afflict the developing fetus, i.e. heterozygosity for galactosaemia and for phenylketonuria. Elevated levels of galactose-1-phosphate have been found in red blood cells of infants heterozygous for galactosaemia born to heterozygous mothers. Aspartame in very high doses is reported to increase blood phenylalanine levels in heterozygotes for phenylketonuria, thus being a risk for the fetus of a heterozygous mother. For some of these carrier states preventive measures can be recommended, e.g. restriction of lactose in parents and heterozygous grandparents of children with galactosaemia and galactokinase deficiency as well as transiently in infants heterozygous for galactosaemia, dietary supplementation with monounsaturated fatty acids in symptomatic carriers for X-linked adrenoleukodystrophy, avoidance of smoking and alcohol in heterozygotes for alpha 1-antitrypsin deficiency, avoidance of episodes of dehydration in heterozygotes for cystinuria, and

  14. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    PubMed

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  15. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  16. Abnormal folate metabolism in foetuses affected by neural tube defects.

    PubMed

    Dunlevy, Louisa P E; Chitty, Lyn S; Burren, Katie A; Doudney, Kit; Stojilkovic-Mikic, Taita; Stanier, Philip; Scott, Rosemary; Copp, Andrew J; Greene, Nicholas D E

    2007-04-01

    Folic acid supplementation can prevent many cases of neural tube defects (NTDs), whereas suboptimal maternal folate status is a risk factor, suggesting that folate metabolism is a key determinant of susceptibility to NTDs. Despite extensive genetic analysis of folate cycle enzymes, and quantification of metabolites in maternal blood, neither the protective mechanism nor the relationship between maternal folate status and susceptibility are understood in most cases. In order to investigate potential abnormalities in folate metabolism in the embryo itself, we derived primary fibroblastic cell lines from foetuses affected by NTDs and subjected them to the dU suppression test, a sensitive metabolic test of folate metabolism. Significantly, a subset of NTD cases exhibited low scores in this test, indicative of abnormalities in folate cycling that may be causally linked to the defect. Susceptibility to NTDs may be increased by suppression of the methylation cycle, which is interlinked with the folate cycle. However, reduced efficacy in the dU suppression test was not associated with altered abundance of the methylation cycle intermediates, s-adenosylmethionine and s-adenosylhomocysteine, suggesting that a methylation cycle defect is unlikely to be responsible for the observed abnormality of folate metabolism. Genotyping of samples for known polymorphisms in genes encoding folate-associated enzymes did not reveal any correlation between specific genotypes and the observed abnormalities in folate metabolism. These data suggest that as yet unrecognized genetic variants result in embryonic abnormalities of folate cycling that may be causally related to NTDs. PMID:17438019

  17. Emotional processing affects movement speed.

    PubMed

    Hälbig, Thomas D; Borod, Joan C; Frisina, Pasquale G; Tse, Winona; Voustianiouk, Andrei; Olanow, C Warren; Gracies, Jean-Michel

    2011-09-01

    Emotions can affect various aspects of human behavior. The impact of emotions on behavior is traditionally thought to occur at central, cognitive and motor preparation stages. Using EMG to measure the effects of emotion on movement, we found that emotional stimuli differing in valence and arousal elicited highly specific effects on peripheral movement time. This result has conceptual implications for the emotion-motion link and potentially practical implications for neurorehabilitation and professional environments where fast motor reactions are critical.

  18. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome.

    PubMed

    Volek, Jeff S; Fernandez, Maria Luz; Feinman, Richard D; Phinney, Stephen D

    2008-09-01

    Abnormal fatty acid metabolism and dyslipidemia play an intimate role in the pathogenesis of metabolic syndrome and cardiovascular diseases. The availability of glucose and insulin predominate as upstream regulatory elements that operate through a collection of transcription factors to partition lipids toward anabolic pathways. The unraveling of the details of these cellular events has proceeded rapidly, but their physiologic relevance to lifestyle modification has been largely ignored. Here we highlight the role of dietary input, specifically carbohydrate intake, in the mechanism of metabolic regulation germane to metabolic syndrome. The key principle is that carbohydrate, directly or indirectly through the effect of insulin, controls the disposition of excess dietary nutrients. Dietary carbohydrate modulates lipolysis, lipoprotein assembly and processing and affects the relation between dietary intake of saturated fat intake and circulating levels. Several of these processes are the subject of intense investigation at the cellular level. We see the need to integrate these cellular mechanisms with results from low-carbohydrate diet trials that have shown reduced cardiovascular risk through improvement in hepatic, intravascular, and peripheral processing of lipoproteins, alterations in fatty acid composition, and reductions in other cardiovascular risk factors, notably inflammation. From the current state of the literature, however, low-carbohydrate diets are grounded in basic metabolic principles and the data suggest that some form of carbohydrate restriction is a candidate to be the preferred dietary strategy for cardiovascular health beyond weight regulation.

  19. Affect, Behavioural Schemas and the Proving Process

    ERIC Educational Resources Information Center

    Selden, Annie; McKee, Kerry; Selden, John

    2010-01-01

    In this largely theoretical article, we discuss the relation between a kind of affect, behavioural schemas and aspects of the proving process. We begin with affect as described in the mathematics education literature, but soon narrow our focus to a particular kind of affect--nonemotional cognitive feelings. We then mention the position of feelings…

  20. Molecular processes in cellular arsenic metabolism

    SciTech Connect

    Thomas, David J.

    2007-08-01

    Elucidating molecular processes that underlie accumulation, metabolism and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptual model that incorporates available information on molecular processes involved in the influx, metabolism, binding and efflux of arsenicals in cells. This conceptual model is initially conceived as a non-quantitative representation of critical molecular processes that can be used as a framework for experimental design and prediction. However, with refinement and incorporation of additional data, the conceptual model can be expressed in mathematical terms and should be useful for quantitative estimates of the kinetic and dynamic behavior of iAs and its methylated metabolites in cells. Development of a quantitative model will be facilitated by the availability of tools and techniques to manipulate molecular processes underlying transport of arsenicals across cell membranes or expression and activity of enzymes involved in methylation of arsenicals. This model of cellular metabolism might be integrated into more complex pharmacokinetic models for systemic metabolism of iAs and its methylated metabolites. It may also be useful in development of biologically based dose-response models describing the toxic and carcinogenic actions of arsenicals.

  1. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    DOE PAGESBeta

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction bymore » clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less

  2. Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia

    SciTech Connect

    Gao, Weimin; Francis, Arokiasamy J.

    2013-01-01

    Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H2) production.

  3. [THE ANALYSIS OF INDICATORS OF MINERAL METABOLISM IN PATIENTS WITH DEGENERATIVE DYSTROPHIC AFFECTIONS OF JOINTS].

    PubMed

    Gasanova, A G; Matveeva, E L; Spirkina, E S

    2015-12-01

    The analysis of indicators of mineral metabolism in patients with degenerative dystrophic affections of joints demonstrated that under development of osteoarthrosis process the alteration of indicators of concentration of electrolytes in blood serum, urine and synovial fluid occurs. The stage II of process is characterized by maximal alterations of indicators. The indicator of relationship between concentration of phosphate-ion and index of phosphatases of blood serum turned out the significant coefficient of correlation. PMID:27032248

  4. [THE ANALYSIS OF INDICATORS OF MINERAL METABOLISM IN PATIENTS WITH DEGENERATIVE DYSTROPHIC AFFECTIONS OF JOINTS].

    PubMed

    Gasanova, A G; Matveeva, E L; Spirkina, E S

    2015-12-01

    The analysis of indicators of mineral metabolism in patients with degenerative dystrophic affections of joints demonstrated that under development of osteoarthrosis process the alteration of indicators of concentration of electrolytes in blood serum, urine and synovial fluid occurs. The stage II of process is characterized by maximal alterations of indicators. The indicator of relationship between concentration of phosphate-ion and index of phosphatases of blood serum turned out the significant coefficient of correlation.

  5. Interactions between dietary boron and thiamine affect lipid metabolism

    SciTech Connect

    Herbel, J.L.; Hunt, C.D. )

    1991-03-15

    An experiment was designed to test the hypothesis that dietary boron impacts upon the function of various coenzymes involved in energy metabolism. In a 2 {times} 7 factorially-arranged experiment, weanling, vitamin D{sub 3}-deprived rats were fed a ground corn-casein-corn oil based diet supplemented with 0 or 2 mg boron/kg and 50% of the requirement for thiamine (TM), riboflavin (RF), pantothenic acid (PA) or pyridoxine (PX); 0% for folic acid (FA) or nicotinic acid (NA). All vitamins were supplemented in adequate amounts in the control diet. At 8 weeks of age, the TM dietary treatment was the one most affected by supplemental dietary boron (SDB). In rats that were fed 50% TM, SDB increased plasma concentrations of triglyceride (TG) and activity of alanine transaminase (ALT), and the liver to body weight (L/B) ratio. However, in the SDB animals, adequate amounts of TM decreased the means of those variables to near that observed in non-SDB rats fed 50% TM. The findings suggest that an interaction between dietary boron and TM affects lipid metabolism.

  6. Fusion and metabolism of plant cells as affected by microgravity.

    PubMed

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  7. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots. PMID:23692371

  8. Affective processing in bilingual speakers: disembodied cognition?

    PubMed

    Pavlenko, Aneta

    2012-01-01

    A recent study by Keysar, Hayakawa, and An (2012) suggests that "thinking in a foreign language" may reduce decision biases because a foreign language provides a greater emotional distance than a native tongue. The possibility of such "disembodied" cognition is of great interest for theories of affect and cognition and for many other areas of psychological theory and practice, from clinical and forensic psychology to marketing, but first this claim needs to be properly evaluated. The purpose of this review is to examine the findings of clinical, introspective, cognitive, psychophysiological, and neuroimaging studies of affective processing in bilingual speakers in order to identify converging patterns of results, to evaluate the claim about "disembodied cognition," and to outline directions for future inquiry. The findings to date reveal two interrelated processing effects. First-language (L1) advantage refers to increased automaticity of affective processing in the L1 and heightened electrodermal reactivity to L1 emotion-laden words. Second-language (L2) advantage refers to decreased automaticity of affective processing in the L2, which reduces interference effects and lowers electrodermal reactivity to negative emotional stimuli. The differences in L1 and L2 affective processing suggest that in some bilingual speakers, in particular late bilinguals and foreign language users, respective languages may be differentially embodied, with the later learned language processed semantically but not affectively. This difference accounts for the reduction of framing biases in L2 processing in the study by Keysar et al. (2012). The follow-up discussion identifies the limits of the findings to date in terms of participant populations, levels of processing, and types of stimuli, puts forth alternative explanations of the documented effects, and articulates predictions to be tested in future research. PMID:23163422

  9. Multiple dietary supplements do not affect metabolic and cardiovascular health.

    PubMed

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2013-09-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals.

  10. Cognitive and Affective Processes Underlying Career Change

    ERIC Educational Resources Information Center

    Muja, Naser; Appelbaum, Steven H.

    2012-01-01

    Purpose: Aligning social identity and career identity has become increasingly complex due to growth in the pursuit of meaningful careers that offer very long-term personal satisfaction and stability. This paper aims to explore the complex cognitive and affective thought process involved in the conscious planning of voluntary career change.…

  11. Leptin expression affects metabolic rate in zebrafish embryos (D. rerio).

    PubMed

    Dalman, Mark R; Liu, Qin; King, Mason D; Bagatto, Brian; Londraville, Richard L

    2013-01-01

    We used antisense morpholino oligonucleotide technology to knockdown leptin-(A) gene expression in developing zebrafish embryos and measured its effects on metabolic rate and cardiovascular function. Using two indicators of metabolic rate, oxygen consumption was significantly lower in leptin morphants early in development [<48 hours post-fertilization (hpf)], while acid production was significantly lower in morphants later in development (>48 hpf). Oxygen utilization rates in <48 hpf embryos and acid production in 72 hpf embryos could be rescued to that of wildtype embryos by recombinant leptin coinjected with antisense morpholino. Leptin is established to influence metabolic rate in mammals, and these data suggest leptin signaling also influences metabolic rate in fishes.

  12. Microphysical Processes Affecting the Pinatubo Volcanic Plume

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia

    1996-01-01

    In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.

  13. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    PubMed

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.

  14. Cardiac Metabolic Pathways Affected in the Mouse Model of Barth Syndrome

    PubMed Central

    Huang, Yan; Powers, Corey; Madala, Satish K.; Greis, Kenneth D.; Haffey, Wendy D.; Towbin, Jeffrey A.; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W.; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS. PMID:26030409

  15. Stress modulation of cognitive and affective processes.

    PubMed

    Campeau, Serge; Liberzon, Israel; Morilak, David; Ressler, Kerry

    2011-09-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects.

  16. Stress modulation of cognitive and affective processes.

    PubMed

    Campeau, Serge; Liberzon, Israel; Morilak, David; Ressler, Kerry

    2011-09-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  17. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    SciTech Connect

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-02-07

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 (1,25(OH)2(26,27(n)-3H)D3) or on carbons 23 and 24 (1,25(OH)2(23,24(n)-3H)D3) reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of (3H)1,25(OH)2D3 to (3H)1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced.

  18. Impact of Chronic Hypercortisolemia on Affective Processing

    PubMed Central

    Langenecker, Scott A.; Weisenbach, Sara L.; Giordani, Bruno; Briceno, Emily M.; GuidottiBreting, Leslie M.; Schallmo, Michael-Paul; Leon, Hadia M.; Noll, Douglas C.; Zubieta, Jon-Kar; Schteingart, David E.; Starkman, Monica N.

    2011-01-01

    Cushing syndrome (CS) is the classic condition of cortisol dysregulation, and cortisol dysregulation is the prototypic finding in Major Depressive Disorder (MDD). We hypothesized that subjects with active CS would show dysfunction in frontal and limbic structures relevant to affective networks, and also manifest poorer facial affect identification accuracy, a finding reported in MDD.Twenty-one patients with confirmed CS (20 ACTH-dependent and 1 ACTH-independent) were compared to 21 healthy controlsubjects. Identification of affective facial expressions (Facial Emotion Perception Test) was conducted in a 3 Tesla GE fMRI scanner using BOLD fMRI signal. The impact of disease (illness duration, current hormone elevation and degree of disruption of circadian rhythm), performance, and comorbid conditions secondary to hypercortisolemia were evaluated.CS patients made more errors in categorizing facial expressions and had less activation in left anterior superior temporal gyrus, a region important in emotion processing. CS patients showed higher activation in frontal, medial, and subcortical regions relative to controls. Two regions of elevated activation in CS, left middle frontal and lateral posterior/pulvinar areas, were positively correlated with accuracy in emotion identification in the CS group, reflecting compensatory recruitment. In addition, within the CSgroup, greater activation in left dorsal anterior cingulatewas related to greater severity of hormone dysregulation. In conclusion, cortisol dysregulation in CS patients is associated with problems in accuracy of affective discrimination and altered activation of brain structures relevant to emotion perception, processing and regulation, similar to the performance decrements and brain regions shown to be dysfunctional in MDD. PMID:21787793

  19. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    PubMed

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis.

  20. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment.

  1. Spastin binds to lipid droplets and affects lipid metabolism.

    PubMed

    Papadopoulos, Chrisovalantis; Orso, Genny; Mancuso, Giuseppe; Herholz, Marija; Gumeni, Sentiljana; Tadepalle, Nimesha; Jüngst, Christian; Tzschichholz, Anne; Schauss, Astrid; Höning, Stefan; Trifunovic, Aleksandra; Daga, Andrea; Rugarli, Elena I

    2015-04-01

    Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP). HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT)-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87). We now show that spastin-M1 can sort from the endoplasmic reticulum (ER) to pre- and mature lipid droplets (LDs). A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  2. Osmoregulatory processes and skeletal muscle metabolism

    NASA Astrophysics Data System (ADS)

    Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens

    Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits

  3. Genetic Alterations Affecting Cholesterol Metabolism and Human Fertility1

    PubMed Central

    DeAngelis, Anthony M.; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-01-01

    ABSTRACT Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. PMID:25122065

  4. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  5. Factors affecting the process performance of biofiltration

    SciTech Connect

    Kopchynski, D.M.; Farmer, R.W.; Maier, W.J.

    1996-11-01

    Biofiltration is an emerging biological treatment technology for the removal of airborne VOCs from industrial process waste streams. Removal of air-phase VOCs by biofiltration is accomplished by contacting a process airstream with an active microbial biofilm attached to a solid phase packing. VOCs that partition into the biofilm are aerobically oxidized to the endproducts of water, carbon dioxide and salts. A multiple reactor biofiltration pilot plant test program has been in progress at the University of Minnesota Environmental Engineering Laboratories since 1992. The primary goal of the program is to study factors that affect biofiltration process performance. Initial results of this test program were reported in a previous conference paper and master`s thesis. This paper presents the results of more recent studies that focus on the effects of: (1) biofilm accumulation (which in turn causes a decrease in biofilter bed porosity and packing bed surface area), (2) rates of nutrient addition, and (3) chemical properties of the target contaminant, on biofiltration removal performance. Removal performance was evaluated by determining biofilter removal capacities and efficiencies for various substrate feeds. The performance parameters were measured under constant contaminant inlet concentrations and under constant temperature. Three VOCs were selected for study and they are: MEK, (methyl ethyl ketone), xylene, and hexane. MEK, xylene, and hexane were chosen because they are representative of widely used industrial solvents and they have significantly different Henry`s law constants relative to each other (the MEK value < Xylene value < Hexane value). Henry`s law constants quantify the partitioning of a chemical between the air and water-biofilm phase and therefore can be used to correlate the effect of chemical properties on biofilter removal capacities. This paper also introduces a new model for the biofiltration process.

  6. Scoparone affects lipid metabolism in primary hepatocytes using lipidomics

    PubMed Central

    Zhang, Aihua; Qiu, Shi; Sun, Hui; Zhang, Tianlei; Guan, Yu; Han, Ying; Yan, Guangli; Wang, Xijun

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, could provide valuable insights about disease mechanisms. In this study, we present a nontargeted lipidomics strategy to determine cellular lipid alterations after scoparone exposure in primary hepatocytes. Lipid metabolic profiles were analyzed by high-performance liquid chromatography coupled with time-of-flight mass spectrometry, and a novel imaging TransOmics tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. Chemometric and statistical analyses of the obtained lipid fingerprints revealed the global lipidomic alterations and tested the therapeutic effects of scoparone. Identification of ten proposed lipids contributed to the better understanding of the effects of scoparone on lipid metabolism in hepatocytes. The most striking finding was that scoparone caused comprehensive lipid changes, as represented by significant changes of the identificated lipids. The levels of identified PG(19:1(9Z)/14:0), PE(17:1(9Z)/0:0), PE(19:1(9Z)/0:0) were found to be upregulated in ethanol-induced group, whereas the levels in scoparone group were downregulated. Lipid metabolism in primary hepatocytes was changed significantly by scoparone treatment. We believe that this novel approach could substantially broaden the applications of high mass resolution mass spectrometry for cellular lipidomics. PMID:27306123

  7. Post-uptake metabolism affects quantification of amino acid uptake.

    PubMed

    Warren, Charles R

    2012-01-01

    • The quantitative significance of amino acids to plant nutrition remains controversial. This experiment determined whether post-uptake metabolism and root to shoot export differ between glycine and glutamine, and examined implications for estimation of amino acid uptake. • Field soil containing a Eucalyptus pauciflora seedling was injected with uniformly (13)C- and (15)N-labelled glycine or glutamine. I quantified (15)N and (13)C excess in leaves and roots and intact labelled amino acids in leaves, roots and stem xylem sap. A tunable diode laser quantified fluxes of (12)CO(2) and (13)CO(2) from leaves and soil. • 60-360 min after addition of amino acid, intact molecules of U-(13)C,(15)N glutamine were < 5% of (15)N excess in roots, whereas U-(13)C,(15)N glycine was 30-100% of (15)N excess in roots. Intact molecules of glutamine, but not glycine, were exported from roots to shoots. • Post-uptake metabolism and transport complicate interpretation of isotope labelling such that root and shoot contents of intact amino acid, (13)C and (15)N may not reflect rates of uptake. Future experiments should focus on reconciling discrepancies between intact amino acid, (13)C and (15)N by determining the turnover of amino acids within roots. Alternatively, post-uptake metabolism and transport could be minimized by harvesting plants within minutes of isotope addition.

  8. Environmental factors affecting indole metabolism under anaerobic conditions.

    PubMed Central

    Madsen, E L; Francis, A J; Bollag, J M

    1988-01-01

    The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35 degrees C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15 degrees C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction. PMID:3345080

  9. How aneuploidy affects metabolic control and causes cancer.

    PubMed Central

    Rasnick, D; Duesberg, P H

    1999-01-01

    The complexity and diversity of cancer-specific phenotypes, including de-differentiation, invasiveness, metastasis, abnormal morphology and metabolism, genetic instability and progression to malignancy, have so far eluded explanation by a simple, coherent hypothesis. However, an adaptation of Metabolic Control Analysis supports the 100-year-old hypothesis that aneuploidy, an abnormal number of chromosomes, is the cause of cancer. The results demonstrate the currently counter-intuitive principle that it is the fraction of the genome undergoing differential expression, not the magnitude of the differential expression, that controls phenotypic transformation. Transforming the robust normal phenotype into cancer requires a twofold increase in the expression of thousands of normal gene products. The massive change in gene dose produces highly non-linear (i.e. qualitative) changes in the physiology and metabolism of cells and tissues. Since aneuploidy disrupts the natural balance of mitosis proteins, it also explains the notorious genetic instability of cancer cells as a consequence of the perpetual regrouping of chromosomes. In view of this and the existence of non-cancerous aneuploidy, we propose that cancer is the phenotype of cells above a certain threshold of aneuploidy. This threshold is reached either by the gradual, stepwise increase in the level of aneuploidy as a consequence of the autocatalysed genetic instability of aneuploid cells or by tetraploidization followed by a gradual loss of chromosomes. Thus the initiation step of carcinogenesis produces aneuploidy below the threshold for cancer, and the promotion step increases the level of aneuploidy above this threshold. We conclude that aneuploidy offers a simple and coherent explanation for all the cancer-specific phenotypes. Accordingly, the gross biochemical abnormalities, abnormal cellular size and morphology, the appearance of tumour-associated antigens, the high levels of secreted proteins responsible for

  10. Factors affecting antipyrine metabolism in West African villagers.

    PubMed

    Fraser, H S; Bulpitt, C J; Kahn, C; Mould, G; Mucklow, J C; Dollery, C T

    1976-09-01

    Saliva half-life of antipyrine was studied in 49 healthy Gambians between 20 and 60 yr of age of whom 27 were male (mean age, 44.5) and 22 female (mean age, 39.1). Body wieght, height, ponderal index, albumin, and hemoglobin were moderately reduced compared to accepted normal values. Antipyrine half-life was 13.6 +/- 0.58 (SEM) hr. Multiple regression analysis showed that sex, cola nut consumption, hemoglobin in women, and height in men were statiscally significant independent predictors of antipyrine half-life. Half-life was shorter in women, decreased with an increase in height in men, and was prolonged by cola nut consumption. Half-life in women increased with hemoglobin. These factors explained 36% of the variation and suggest that geographic differences in the environment could be important in drug metabolism in man. PMID:954356

  11. Ghrelin: a metabolic signal affecting the reproductive system.

    PubMed

    Lorenzi, Teresa; Meli, Rosaria; Marzioni, Daniela; Morroni, Manrico; Baragli, Alessandra; Castellucci, Mario; Gualillo, Oreste; Muccioli, Giampiero

    2009-04-01

    Ghrelin, an acylated 28 amino acid gastric peptide, was isolated from the stomach as an endogenous ligand for growth hormone (GH) secretagogue receptor in 1999. Circulating ghrelin is mainly produced by specific cells in the stomach's oxyntic glands. Ghrelin potently stimulates GH release and food intake and exhibits diverse effects, including ones on glucose metabolism and on secretion and motility of the gastrointestinal tract. Besides these effects on food intake and energy homeostasis, ghrelin is also involved in controlling reproductive functions, and a role for it as a novel regulator of the hypothalamic-pituitary gonadal axis is clearly emerging. We review recent ghrelin research with emphasis on its roles in the reproductive axis.

  12. Metabolic differences in temperamental Brahman cattle can affect productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors may adversely affect the growth and productivity of livestock. These include stressors associated with management practices, such as weaning, handling relative to transportation, and vaccination, that can modulate growth through the production of stress-related hormones (i.e., cortisol,...

  13. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  14. Ozone treatment affects pigment precursor metabolism in pine seedlings.

    PubMed

    Shamay, Y.; Raskin, V. I.; Brandis, A. S.; Steinberger, H. E.; Marder, J. B.; Schwartz, A.

    2001-06-01

    Five-week-old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l-1, 12 h day-1 for 4 days) or to ambient air containing ca 10-20 nl l-1 O3, in the light (180 &mgr;mol m-2 s-1 photosynthetic photon flux density [PPFD], 12 h day-1) and then fed for 24 h in the light (100 &mgr;mol m-2 s-1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5-[4-14C]-aminolevulinic acid (14C-ALA), L-[14C(U)]-glutamic acid (14C-Glu), or D,L-[2-14C]-mevalonic acid (14C-MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin-layer chromatography and high-performance liquid chromatography and their specific activities were determined. 14C-ALA and 14C-Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C-ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C-MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C-ALA was used as the label than when 14C-Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3-treated pine seedlings with 14C-ALA and 14C-Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C-ALA (in comparison with 14C-Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as

  15. Ozone treatment affects pigment precursor metabolism in pine seedlings.

    PubMed

    Shamay, Y.; Raskin, V. I.; Brandis, A. S.; Steinberger, H. E.; Marder, J. B.; Schwartz, A.

    2001-06-01

    Five-week-old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l-1, 12 h day-1 for 4 days) or to ambient air containing ca 10-20 nl l-1 O3, in the light (180 &mgr;mol m-2 s-1 photosynthetic photon flux density [PPFD], 12 h day-1) and then fed for 24 h in the light (100 &mgr;mol m-2 s-1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5-[4-14C]-aminolevulinic acid (14C-ALA), L-[14C(U)]-glutamic acid (14C-Glu), or D,L-[2-14C]-mevalonic acid (14C-MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin-layer chromatography and high-performance liquid chromatography and their specific activities were determined. 14C-ALA and 14C-Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C-ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C-MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C-ALA was used as the label than when 14C-Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3-treated pine seedlings with 14C-ALA and 14C-Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C-ALA (in comparison with 14C-Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as

  16. [How strongly does heavy work in the heat affect metabolism?].

    PubMed

    Zöller, H; May, B; Weiss, M; Gross, W

    1981-06-19

    The study covered 39 acclimatised workers of a ball-bearing forge, aged 39,03 +/- 9,95 years. Temperature of the air, relative humidity and air speed were measured immediately at work. Additionally electrocardiogram, heart rate and temperature of the skin were continuously transmitted by telemetry. Before and at the end of the shift analysis of blood pressure, heart rate, electrocardiogram, blood cells and coagulation, serum acidity and a great number of other metabolic parameters was performed. The netto calories were calculated as 3250 kcal/8 hours (= 13585 kJ/8 hours). Hematological analysis demonstrated a tendency to increase of leucocytes favouring neutrophil granulocytes. The main alterations comprised decrease of actual pH, base excess and standard bicarbonate. Furthermore serum lactate and triglycerides increased, creatinine attained the upper limit of the normal range, mineralogram remained unchanged by drinking ad libitum. The so called "liver enzymes" remained stable. As to circulatory parameters systolic blood pressure slightly declined whilst heart rate increased.

  17. Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer’s disease

    PubMed Central

    Mosconi, Lisa; Tsui, Wai; Murray, John; McHugh, Pauline; Li, Yi; Williams, Schantel; Pirraglia, Elizabeth; Glodzik, Lidia; De Santi, Susan; Vallabhajosula, Shankar; de Leon, Mony J.

    2011-01-01

    Cognitively normal (NL) individuals with a maternal history of late-onset Alzheimer’s disease (MH) show reduced brain glucose metabolism on FDG-PET as compared to those with a paternal history (PH) and those with negative family history (NH) of Alzheimer’s disease (AD). This FDG-PET study investigates whether metabolic deficits in NL MH are associated with advancing maternal age at birth. Ninety-six NL individuals with FDG-PET were examined, including 36 MH, 24 PH, and 36 NH. Regional-to-whole brain gray matter standardized FDG uptake value ratios were examined for associations with parental age across groups using automated regions-of-interest and statistical parametric mapping. Groups were comparable for clinical and neuropsychological measures. Brain metabolism in AD-vulnerable regions was lower in MH compared to NH and PH, and negatively correlated with maternal age at birth only in MH. There were no associations between paternal age and metabolism in any group. Evidence for a maternally inherited, maternal age-related mechanism provides further insight on risk factors and genetic transmission in late-onset AD. PMID:21514691

  18. Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer's disease.

    PubMed

    Mosconi, Lisa; Tsui, Wai; Murray, John; McHugh, Pauline; Li, Yi; Williams, Schantel; Pirraglia, Elizabeth; Glodzik, Lidia; De Santi, Susan; Vallabhajosula, Shankar; de Leon, Mony J

    2012-03-01

    Cognitively normal (NL) individuals with a maternal history of late-onset Alzheimer's disease (MH) show reduced brain glucose metabolism on FDG-PET as compared to those with a paternal history (PH) and those with negative family history (NH) of Alzheimer's disease (AD). This FDG-PET study investigates whether metabolic deficits in NL MH are associated with advancing maternal age at birth. Ninety-six NL individuals with FDG-PET were examined, including 36 MH, 24 PH, and 36 NH. Regional-to-whole brain gray matter standardized FDG uptake value ratios were examined for associations with parental age across groups using automated regions-of-interest and statistical parametric mapping. Groups were comparable for clinical and neuropsychological measures. Brain metabolism in AD-vulnerable regions was lower in MH compared to NH and PH, and negatively correlated with maternal age at birth only in MH. There were no associations between paternal age and metabolism in any group. Evidence for a maternally inherited, maternal age-related mechanism provides further insight on risk factors and genetic transmission in late-onset AD.

  19. Childhood obesity affects adult metabolic syndrome and diabetes.

    PubMed

    Liang, Yajun; Hou, Dongqing; Zhao, Xiaoyuan; Wang, Liang; Hu, Yuehua; Liu, Junting; Cheng, Hong; Yang, Ping; Shan, Xinying; Yan, Yinkun; Cruickshank, J Kennedy; Mi, Jie

    2015-09-01

    We seek to observe the association between childhood obesity by different measures and adult obesity, metabolic syndrome (MetS), and diabetes. Thousand two hundred and nine subjects from "Beijing Blood Pressure Cohort Study" were followed 22.9 ± 0.5 years in average from childhood to adulthood. We defined childhood obesity using body mass index (BMI) or left subscapular skinfold (LSSF), and adult obesity as BMI ≥ 28 kg/m(2). MetS was defined according to the joint statement of International Diabetes Federation and American Heart Association with modified waist circumference (≥ 90/85 cm for men/women). Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/L or blood glucose 2 h after oral glucose tolerance test ≥ 11.1 mmol/L or currently using blood glucose-lowering agents. Multiple linear and logistic regression models were used to assess the association. The incidence of adult obesity was 13.4, 60.0, 48.3, and 65.1 % for children without obesity, having obesity by BMI only, by LSSF only, and by both, respectively. Compared to children without obesity, children obese by LSSF only or by both had higher risk of diabetes. After controlling for adult obesity, childhood obesity predicted independently long-term risks of diabetes (odds ratio 2.8, 95 % confidence interval 1.2-6.3) or abdominal obesity (2.7, 1.6-4.7) other than MetS as a whole (1.2, 0.6-2.4). Childhood obesity predicts long-term risk of adult diabetes, and the effect is independent of adult obesity. LSSF is better than BMI in predicting adult diabetes.

  20. Factors Affecting the Absorption, Metabolism, and Excretion of Cocoa Flavanols in Humans.

    PubMed

    Cifuentes-Gomez, Tania; Rodriguez-Mateos, Ana; Gonzalez-Salvador, Isidro; Alañon, María Elena; Spencer, Jeremy P E

    2015-09-01

    Cocoa is rich in a subclass of flavonoids known as flavanols, the cardiovascular health benefits of which have been extensively reported. The appearance of flavanol metabolites in the systemic circulation after flavanol-rich food consumption is likely to mediate the physiological effects on the vascular system, and these levels are influenced by numerous factors, including food matrix, processing, intake, age, gender, or genetic polymorphisms, among others. This review will focus on our current understanding of factors affecting the absorption, metabolism, and excretion of cocoa flavanols in humans. Second, it will identify gaps in these contributing factors that need to be addressed to conclusively translate our collective knowledge into the context of public health, dietary guidelines, and evidence-based dietary recommendations.

  1. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    PubMed Central

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFMTM (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  2. Is metabolic rate a universal 'pacemaker' for biological processes?

    PubMed

    Glazier, Douglas S

    2015-05-01

    A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of

  3. Is metabolic rate a universal 'pacemaker' for biological processes?

    PubMed

    Glazier, Douglas S

    2015-05-01

    A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of

  4. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  5. Dilution, Not Load, Affects Distractor Processing

    ERIC Educational Resources Information Center

    Wilson, Daryl E.; Muroi, Miya; MacLeod, Colin M.

    2011-01-01

    Lavie and Tsal (1994) proposed that spare attentional capacity is allocated involuntarily to the processing of irrelevant stimuli, thereby enabling interference. Under this view, when task demands increase, spare capacity should decrease and distractor interference should decrease. In support, Lavie and Cox (1997) found that increasing perceptual…

  6. Sound Affects the Speed of Visual Processing

    ERIC Educational Resources Information Center

    Keetels, Mirjam; Vroomen, Jean

    2011-01-01

    The authors examined the effects of a task-irrelevant sound on visual processing. Participants were presented with revolving clocks at or around central fixation and reported the hand position of a target clock at the time an exogenous cue (1 clock turning red) or an endogenous cue (a line pointing toward 1 of the clocks) was presented. A…

  7. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    PubMed Central

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  8. Respiratory muscle strength and muscle endurance are not affected by acute metabolic acidemia.

    PubMed

    Nizet, Tessa A C; Heijdra, Yvonne F; van den Elshout, Frank J J; van de Ven, Marjo J T; Bosch, Frank H; Mulder, Paul H; Folgering, Hans Th M

    2009-11-01

    Respiratory muscle fatigue in asthma and chronic obstructive lung disease (COPD) contributes to respiratory failure with hypercapnia, and subsequent respiratory acidosis. Therapeutic induction of acute metabolic acidosis further increases the respiratory drive and, therefore, may diminish ventilatory failure and hypercapnia. On the other hand, it is known that acute metabolic acidosis can also negatively affect (respiratory) muscle function and, therefore, could lead to a deterioration of respiratory failure. Moreover, we reasoned that the impact of metabolic acidosis on respiratory muscle strength and respiratory muscle endurance could be more pronounced in COPD patients as compared to asthma patients and healthy subjects, due to already impaired respiratory muscle function. In this study, the effect of metabolic acidosis was studied on peripheral muscle strength, peripheral muscle endurance, airway resistance, and on arterial carbon dioxide tension (PaCO(2)). Acute metabolic acidosis was induced by administration of ammonium chloride (NH(4)Cl). The effect of metabolic acidosis was studied on inspiratory and expiratory muscle strength and on respiratory muscle endurance. Effects were studied in a randomized, placebo-controlled cross-over design in 15 healthy subjects (4 male; age 33.2 +/- 11.5 years; FEV(1) 108.3 +/- 16.2% predicted), 14 asthma patients (5 male; age 48.1 +/- 16.1 years; FEV(1) 101.6 +/- 15.3% predicted), and 15 moderate to severe COPD patients (9 male; age 62.8 +/- 6.8 years; FEV(1) 50.0 +/- 11.8% predicted). An acute metabolic acidemia of BE -3.1 mmol x L(-1) was induced. Acute metabolic acidemia did not significantly affect strength or endurance of respiratory and peripheral muscles, respectively. In all subjects airway resistance was significantly decreased after induction of metabolic acidemia (mean difference -0.1 kPa x sec x L(-1) [95%-CI: -0.1 - -0.02]. In COPD patients PaCO(2) was significantly lowered during metabolic acidemia (mean

  9. Auditory motion affects visual biological motion processing.

    PubMed

    Brooks, A; van der Zwan, R; Billard, A; Petreska, B; Clarke, S; Blanke, O

    2007-02-01

    The processing of biological motion is a critical, everyday task performed with remarkable efficiency by human sensory systems. Interest in this ability has focused to a large extent on biological motion processing in the visual modality (see, for example, Cutting, J. E., Moore, C., & Morrison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44(4), 339-347). In naturalistic settings, however, it is often the case that biological motion is defined by input to more than one sensory modality. For this reason, here in a series of experiments we investigate behavioural correlates of multisensory, in particular audiovisual, integration in the processing of biological motion cues. More specifically, using a new psychophysical paradigm we investigate the effect of suprathreshold auditory motion on perceptions of visually defined biological motion. Unlike data from previous studies investigating audiovisual integration in linear motion processing [Meyer, G. F. & Wuerger, S. M. (2001). Cross-modal integration of auditory and visual motion signals. Neuroreport, 12(11), 2557-2560; Wuerger, S. M., Hofbauer, M., & Meyer, G. F. (2003). The integration of auditory and motion signals at threshold. Perception and Psychophysics, 65(8), 1188-1196; Alais, D. & Burr, D. (2004). No direction-specific bimodal facilitation for audiovisual motion detection. Cognitive Brain Research, 19, 185-194], we report the existence of direction-selective effects: relative to control (stationary) auditory conditions, auditory motion in the same direction as the visually defined biological motion target increased its detectability, whereas auditory motion in the opposite direction had the inverse effect. Our data suggest these effects do not arise through general shifts in visuo-spatial attention, but instead are a consequence of motion-sensitive, direction-tuned integration mechanisms that are, if not unique to biological visual motion, at least not common to all types of

  10. Low temperature alteration processes affecting ultramafic bodies

    USGS Publications Warehouse

    Nesbitt, H.W.; Bricker, O.P.

    1978-01-01

    At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step. Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry. Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction: 3H2O + 2Mg2SiO4 ??? Mg3Si2O5(OH)4 + Mg(OH)2 (Johannes, 1968, Contrib. Mineral. Petrol. 19, 309-315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions. ?? 1978.

  11. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  12. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    PubMed Central

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  13. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  14. Implicit affectivity and rapid processing of affective body language: An fMRI study.

    PubMed

    Suslow, Thomas; Ihme, Klas; Quirin, Markus; Lichev, Vladimir; Rosenberg, Nicole; Bauer, Jochen; Bomberg, Luise; Kersting, Anette; Hoffmann, Karl-Titus; Lobsien, Donald

    2015-10-01

    Previous research has revealed affect-congruity effects for the recognition of affects from faces. Little is known about the impact of affect on the perception of body language. The aim of the present study was to investigate the relationship of implicit (versus explicit) affectivity with the recognition of briefly presented affective body expressions. Implicit affectivity, which can be measured using indirect assessment methods, has been found to be more predictive of spontaneous physiological reactions than explicit (self-reported) affect. Thirty-four healthy women had to label the expression of body postures (angry, fearful, happy, or neutral) presented for 66 ms and masked by a neutral body posture in a forced-choice format while undergoing functional magnetic resonance imaging (fMRI). Participants' implicit affectivity was assessed using the Implicit Positive and Negative Affect Test. Measures of explicit state and trait affectivity were also administered. Analysis of the fMRI data was focused on a subcortical network involved in the rapid perception of affective body expressions. Only implicit negative affect (but not explicit affect) was correlated with correct labeling performance for angry body posture. As expected, implicit negative affect was positively associated with activation of the subcortical network in response to fearful and angry expression (compared to neutral expression). Responses of the caudate nucleus to affective body expression were especially associated with its recognition. It appears that processes of rapid recognition of affects from body postures could be facilitated by an individual's implicit negative affect. PMID:26032148

  15. Elaboration Likelihood and the Counseling Process: The Role of Affect.

    ERIC Educational Resources Information Center

    Stoltenberg, Cal D.; And Others

    The role of affect in counseling has been examined from several orientations. The depth of processing model views the efficiency of information processing as a function of the extent to which the information is processed. The notion of cognitive processing capacity states that processing information at deeper levels engages more of one's limited…

  16. ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism.

    PubMed

    Peters, Heidi; Buck, Nicole; Wanders, Ronald; Ruiter, Jos; Waterham, Hans; Koster, Janet; Yaplito-Lee, Joy; Ferdinandusse, Sacha; Pitt, James

    2014-11-01

    Two siblings with fatal Leigh disease had increased excretion of S-(2-carboxypropyl)cysteine and several other metabolites that are features of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, a rare defect in the valine catabolic pathway associated with Leigh-like disease. However, this diagnosis was excluded by HIBCH sequencing and normal enzyme activity. In contrast to HIBCH deficiency, the excretion of 3-hydroxyisobutyryl-carnitine was normal in the children, suggesting deficiency of short-chain enoyl-CoA hydratase (ECHS1 gene). This mitochondrial enzyme is active in several metabolic pathways involving fatty acids and amino acids, including valine, and is immediately upstream of HIBCH in the valine pathway. Both children were compound heterozygous for a c.473C > A (p.A158D) missense mutation and a c.414+3G>C splicing mutation in ECHS1. ECHS1 activity was markedly decreased in cultured fibroblasts from both siblings, ECHS1 protein was undetectable by immunoblot analysis and transfection of patient cells with wild-type ECHS1 rescued ECHS1 activity. The highly reactive metabolites methacrylyl-CoA and acryloyl-CoA accumulate in deficiencies of both ECHS1 and HIBCH and are probably responsible for the brain pathology in both disorders. Deficiency of ECHS1 or HIBCH should be considered in children with Leigh disease. Urine metabolite testing can detect and distinguish between these two disorders.

  17. Metabolic dynamics analysis by massive data integration: application to tsunami-affected field soils in Japan.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Tsuboi, Yuuri; Kikuchi, Jun

    2015-08-21

    A new metabolic dynamics analysis approach has been developed in which massive data sets from time-series of (1)H and (13)C NMR spectra are integrated in combination with microbial variability to characterize the biomass degradation process using field soil microbial communities. On the basis of correlation analyses that revealed relationships between various metabolites and bacteria, we efficiently monitored the metabolic dynamics of saccharides, amino acids, and organic acids, by assessing time-course changes in the microbial and metabolic profiles during biomass degradation. Specific bacteria were found to support specific steps of metabolic pathways in the degradation process of biomass to short chain fatty acids. We evaluated samples from agricultural and abandoned fields contaminated by the tsunami that followed the Great East earthquake in Japan. Metabolic dynamics and activities in the biomass degradation process differed considerably between soil from agricultural and abandoned fields. In particular, production levels of short chain fatty acids, such as acetate and propionate, which were considered to be produced by soil bacteria such as Sedimentibacter sp. and Coprococcus sp., were higher in the soil from agricultural fields than from abandoned fields. Our approach could characterize soil activity based on the metabolic dynamics of microbial communities in the biomass degradation process and should therefore be useful in future investigations of the environmental effects of natural disasters on soils.

  18. Metabolic dynamics analysis by massive data integration: application to tsunami-affected field soils in Japan.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Tsuboi, Yuuri; Kikuchi, Jun

    2015-08-21

    A new metabolic dynamics analysis approach has been developed in which massive data sets from time-series of (1)H and (13)C NMR spectra are integrated in combination with microbial variability to characterize the biomass degradation process using field soil microbial communities. On the basis of correlation analyses that revealed relationships between various metabolites and bacteria, we efficiently monitored the metabolic dynamics of saccharides, amino acids, and organic acids, by assessing time-course changes in the microbial and metabolic profiles during biomass degradation. Specific bacteria were found to support specific steps of metabolic pathways in the degradation process of biomass to short chain fatty acids. We evaluated samples from agricultural and abandoned fields contaminated by the tsunami that followed the Great East earthquake in Japan. Metabolic dynamics and activities in the biomass degradation process differed considerably between soil from agricultural and abandoned fields. In particular, production levels of short chain fatty acids, such as acetate and propionate, which were considered to be produced by soil bacteria such as Sedimentibacter sp. and Coprococcus sp., were higher in the soil from agricultural fields than from abandoned fields. Our approach could characterize soil activity based on the metabolic dynamics of microbial communities in the biomass degradation process and should therefore be useful in future investigations of the environmental effects of natural disasters on soils. PMID:25997449

  19. Modulation of Glycosaminoglycans Affects PrPSc Metabolism but Does Not Block PrPSc Uptake

    PubMed Central

    Wolf, Hanna; Graßmann, Andrea; Bester, Romina; Hossinger, André; Möhl, Christoph; Paulsen, Lydia; Groschup, Martin H.; Schätzl, Hermann

    2015-01-01

    ABSTRACT Mammalian prions are unconventional infectious agents composed primarily of the misfolded aggregated host prion protein PrP, termed PrPSc. Prions propagate by the recruitment and conformational conversion of cellular prion protein into abnormal prion aggregates on the cell surface or along the endocytic pathway. Cellular glycosaminoglycans have been implicated as the first attachment sites for prions and cofactors for cellular prion replication. Glycosaminoglycan mimetics and obstruction of glycosaminoglycan sulfation affect prion replication, but the inhibitory effects on different strains and different stages of the cell infection have not been thoroughly addressed. We examined the effects of a glycosaminoglycan mimetic and undersulfation on cellular prion protein metabolism, prion uptake, and the establishment of productive infections in L929 cells by two mouse-adapted prion strains. Surprisingly, both treatments reduced endogenous sulfated glycosaminoglycans but had divergent effects on cellular PrP levels. Chemical or genetic manipulation of glycosaminoglycans did not prevent PrPSc uptake, arguing against their roles as essential prion attachment sites. However, both treatments effectively antagonized de novo prion infection independently of the prion strain and reduced PrPSc formation in chronically infected cells. Our results demonstrate that sulfated glycosaminoglycans are dispensable for prion internalization but play a pivotal role in persistently maintained PrPSc formation independent of the prion strain. IMPORTANCE Recently, glycosaminoglycans (GAGs) became the focus of neurodegenerative disease research as general attachment sites for cell invasion by pathogenic protein aggregates. GAGs influence amyloid formation in vitro. GAGs are also found in intra- and extracellular amyloid deposits. In light of the essential role GAGs play in proteinopathies, understanding the effects of GAGs on protein aggregation and aggregate dissemination is crucial

  20. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. PMID:27533012

  1. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  2. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    PubMed Central

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  3. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    PubMed

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05). Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05). The fecal lipid contents (% dry weight) were significantly greater in the XD group than in the CD group (p < 0.01). The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  4. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    SciTech Connect

    Schryver, Jack C; Begoli, Edmon; Jose, Ajith; Griffin, Christopher

    2011-02-01

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.

  5. Emotion-specific load disrupts concomitant affective processing.

    PubMed

    Vermeulen, Nicolas; Niedenthal, Paula M; Pleyers, Gordy; Bayot, Marie; Corneille, Olivier

    2014-01-01

    Findings in the neuroimaging literature suggest that separate brain circuitries are involved when individuals perform emotional compared to nonemotional working memory (WM) tasks. Here we test this hypothesis with behavioural measures. We predicted that the conceptual processing of affect would be disrupted more by concurrent affective than nonaffective load. Participants performed a conceptual task in which they verified affective versus sensory properties of concepts, and a second, concurrent, working memory (n-back) task in which the target stimuli were facial expressions. Results revealed that storing and updating affective (as compared with identity) features of facial expressions altered performance more for affective than for sensory properties of concepts. The findings are supportive of the ideas that affective resources exist and that these resources are specifically used during the processing and representation of affective properties of objects and events.

  6. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype.

    PubMed

    Simpson, Natalie E; Tryndyak, Volodymyr P; Pogribna, Marta; Beland, Frederick A; Pogribny, Igor P

    2012-12-01

    The interplay of metabolism and epigenetic regulatory mechanisms has become a focal point for a better understanding of cancer development and progression. In this study, we have acquired data supporting previous observations that demonstrate glutamine metabolism affects histone modifications in human breast cancer cell lines. Treatment of non-invasive epithelial (T-47D and MDA-MB-361) and invasive mesenchymal (MDA-MB-231 and Hs-578T) breast cancer cell lines with the glutaminase inhibitor, Compound 968, resulted in cytotoxicity in all cell lines, with the greatest effect being observed in MDA-MB-231 breast cancer cells. Compound 968-treatment induced significant downregulation of 20 critical cancer-related genes, the majority of which are anti-apoptotic and/or promote metastasis, including AKT, BCL2, BCL2L1, CCND1, CDKN3, ERBB2, ETS1, E2F1, JUN, KITLG, MYB, and MYC. Histone H3K4me3, a mark of transcriptional activation, was reduced at the promoters of all but one of these critical cancer genes. The decrease in histone H3K4me3 at global and gene-specific levels correlated with reduced expression of SETD1 and ASH2L, genes encoding the histone H3K4 methyltransferase complex. Further, the expression of other epigenetic regulatory genes, known to be downregulated during apoptosis (e.g., DNMT1, DNMT3B, SETD1 and SIRT1), was also downregulated by Compound 968. These changes in gene expression and histone modifications were accompanied by the activation of apoptosis, and decreased invasiveness and resistance of MDA-MB-231 cells to chemotherapeutic drug doxorubicin. The results of this study provide evidence to a link between cytotoxicity caused by inhibiting glutamine metabolism with alterations of the epigenome of breast cancer cells and suggest that modification of intracellular metabolism may enhance the efficiency of epigenetic therapy. PMID:23117580

  7. Dietary n-3 PUFA affect lipid metabolism and tissue function-related genes in bovine muscle.

    PubMed

    Hiller, Beate; Hocquette, Jean-Francois; Cassar-Malek, Isabelle; Nuernberg, Gerd; Nuernberg, Karin

    2012-09-01

    Gene expression profiles of bovine longissimus muscle as affected by dietary n-3 v. n-6 fatty acid (FA) intervention were analysed by microarray pre-screening of >3000 muscle biology/meat quality-related genes as well as subsequent quantitative RT-PCR gene expression validation of genes encoding lipogenesis-related transcription factors (CCAAT/enhancer-binding protein β, sterol regulatory element-binding transcription factor 1), key-lipogenic enzymes (acetyl-CoA carboxylase α (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD)), lipid storage-associated proteins (adipose differentiation-related protein (ADFP)) and muscle biology-related proteins (cholinergic receptor, nicotinic, α1, farnesyl diphosphate farnesyl transferase 1, sema domain 3C (SEMA3C)). Down-regulation of ACACA (P = 0·00), FASN (P = 0·09) and SCD (P = 0·02) gene expression upon an n-3 FA intervention directly corresponded to reduced SFA, MUFA and total FA concentrations in longissimus muscle, whereas changes in ADFP (P = 0·00) and SEMA3C (P = 0·05) gene expression indicated improved muscle function via enhanced energy metabolism, vasculogenesis, innervation and mediator synthesis. The present study highlights the significance of dietary n-3 FA intervention on muscle development, maintenance and function, which are relevant for meat quality tailoring of bovine tissues and modulating animal production-relevant physiological processes.

  8. Implicit Processing of Visual Emotions Is Affected by Sound-Induced Affective States and Individual Affective Traits

    PubMed Central

    Quarto, Tiziana; Blasi, Giuseppe; Pallesen, Karen Johanne; Bertolino, Alessandro; Brattico, Elvira

    2014-01-01

    The ability to recognize emotions contained in facial expressions are affected by both affective traits and states and varies widely between individuals. While affective traits are stable in time, affective states can be regulated more rapidly by environmental stimuli, such as music, that indirectly modulate the brain state. Here, we tested whether a relaxing or irritating sound environment affects implicit processing of facial expressions. Moreover, we investigated whether and how individual traits of anxiety and emotional control interact with this process. 32 healthy subjects performed an implicit emotion processing task (presented to subjects as a gender discrimination task) while the sound environment was defined either by a) a therapeutic music sequence (MusiCure), b) a noise sequence or c) silence. Individual changes in mood were sampled before and after the task by a computerized questionnaire. Additionally, emotional control and trait anxiety were assessed in a separate session by paper and pencil questionnaires. Results showed a better mood after the MusiCure condition compared with the other experimental conditions and faster responses to happy faces during MusiCure compared with angry faces during Noise. Moreover, individuals with higher trait anxiety were faster in performing the implicit emotion processing task during MusiCure compared with Silence. These findings suggest that sound-induced affective states are associated with differential responses to angry and happy emotional faces at an implicit stage of processing, and that a relaxing sound environment facilitates the implicit emotional processing in anxious individuals. PMID:25072162

  9. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish. PMID:23656796

  10. Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar).

    PubMed

    Andersen, Synne M; Holen, Elisabeth; Aksnes, Anders; Rønnestad, Ivar; Zerrahn, Jens-Erik; Espe, Marit

    2013-12-14

    In the present study, quadruplicate groups of juvenile Atlantic salmon (Salmo salar) were fed plant protein-based diets with increasing arginine inclusions (range 28·8-37·4 g/kg DM) to investigate whether arginine supplementation affects growth and lipid accumulation through an elevated polyamine turnover. Dietary lysine was held at a constant concentration, just below the requirement. All other amino acids were balanced and equal in the diets. Arginine supplementation increased protein and fat accretion, without affecting the hepatosomatic or visceralsomatic indices. Dietary arginine correlated with putrescine in the liver (R 0·78, P= 0·01) and with ornithine in the muscle, liver and plasma (P= 0·0002, 0·003 and 0·0002, respectively). The mRNA of ornithine decarboxylase, the enzyme producing putrescine, was up-regulated in the white adipose tissue of fish fed the high-arginine inclusion compared with those fed the low-arginine diet. Concomitantly, spermidine/spermine-(N1)-acetyltransferase, the rate-limiting enzyme for polyamine turnover that consumes acetyl-CoA, showed an increased activity in the liver of fish fed the arginine-supplemented diets. In addition, lower acetyl-CoA concentrations were observed in the liver of fish fed the high-arginine diet, while ATP, which is used in the process of synthesising spermidine and spermine, did not show a similar trend. Gene expression of the rate-limiting enzyme for β-oxidation of long-chain fatty acids, carnitine palmitoyl transferase-1, was up-regulated in the liver of fish fed the high-arginine diet. Taken together, the data support that increased dietary arginine activates polyamine turnover and β-oxidation in the liver of juvenile Atlantic salmon and may act to improve the metabolic status of the fish.

  11. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  12. Metabolic processes of Methanococcus maripaludis and potential applications.

    PubMed

    Goyal, Nishu; Zhou, Zhi; Karimi, Iftekhar A

    2016-01-01

    Methanococcus maripaludis is a rapidly growing, fully sequenced, genetically tractable model organism among hydrogenotrophic methanogens. It has the ability to convert CO2 and H2 into a useful cleaner energy fuel (CH4). In fact, this conversion enhances in the presence of free nitrogen as the sole nitrogen source due to prolonged cell growth. Given the global importance of GHG emissions and climate change, diazotrophy can be attractive for carbon capture and utilization applications from appropriately treated flue gases, where surplus hydrogen is available from renewable electricity sources. In addition, M. maripaludis can be engineered to produce other useful products such as terpenoids, hydrogen, methanol, etc. M. maripaludis with its unique abilities has the potential to be a workhorse like Escherichia coli and S. cerevisiae for fundamental and experimental biotechnology studies. More than 100 experimental studies have explored different specific aspects of the biochemistry and genetics of CO2 and N2 fixation by M. maripaludis. Its genome-scale metabolic model (iMM518) also exists to study genetic perturbations and complex biological interactions. However, a comprehensive review describing its cell structure, metabolic processes, and methanogenesis is still lacking in the literature. This review fills this crucial gap. Specifically, it integrates distributed information from the literature to provide a complete and detailed view for metabolic processes such as acetyl-CoA synthesis, pyruvate synthesis, glycolysis/gluconeogenesis, reductive tricarboxylic acid (RTCA) cycle, non-oxidative pentose phosphate pathway (NOPPP), nitrogen metabolism, amino acid metabolism, and nucleotide biosynthesis. It discusses energy production via methanogenesis and its relation to metabolism. Furthermore, it reviews taxonomy, cell structure, culture/storage conditions, molecular biology tools, genome-scale models, and potential industrial and environmental applications. Through the

  13. Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract

    PubMed Central

    Yang, Yu-Xiang; Mu, Chun-Long; Luo, Zhen

    2015-01-01

    Bromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production. PMID:26567308

  14. Bromochloromethane, a Methane Analogue, Affects the Microbiota and Metabolic Profiles of the Rat Gastrointestinal Tract.

    PubMed

    Yang, Yu-Xiang; Mu, Chun-Long; Luo, Zhen; Zhu, Wei-Yun

    2016-02-01

    Bromochloromethane (BCM), an inhibitor of methanogenesis, has been used in animal production. However, little is known about its impact on the intestinal microbiota and metabolic patterns. The present study aimed to investigate the effect of BCM on the colonic bacterial community and metabolism by establishing a Wistar rat model. Twenty male Wistar rats were randomly divided into two groups (control and treated with BCM) and raised for 6 weeks. Bacterial fermentation products in the cecum were determined, and colonic methanogens and sulfate-reducing bacteria (SRB) were quantified. The colonic microbiota was analyzed by pyrosequencing of the 16S rRNA genes, and metabolites were profiled by gas chromatography and mass spectrometry. The results showed that BCM did not affect body weight and feed intake, but it did significantly change the intestinal metabolic profiles. Cecal protein fermentation was enhanced by BCM, as methylamine, putrescine, phenylethylamine, tyramine, and skatole were significantly increased. Colonic fatty acid and carbohydrate concentrations were significantly decreased, indicating the perturbation of lipid and carbohydrate metabolism by BCM. BCM treatment decreased the abundance of methanogen populations, while SRB were increased in the colon. BCM did not affect the total colonic bacterial counts but significantly altered the bacterial community composition by decreasing the abundance of actinobacteria, acidobacteria, and proteobacteria. The results demonstrated that BCM treatment significantly altered the microbiotic and metabolite profiles in the intestines, which may provide further information on the use of BCM in animal production. PMID:26567308

  15. Metabolic stressors and signals differentially affect energy allocation between reproduction and immune function.

    PubMed

    Carlton, Elizabeth D; Cooper, Candace L; Demas, Gregory E

    2014-11-01

    Most free-living animals have finite energy stores that they must allocate to different physiological and behavioral processes. In times of energetic stress, trade-offs in energy allocation among these processes may occur. The manifestation of trade-offs may depend on the source (e.g., glucose, lipids) and severity of energy limitation. In this study, we investigated energetic trade-offs between the reproductive and immune systems by experimentally limiting energy availability to female Siberian hamsters (Phodopus sungorus) with 2-deoxy-d-glucose, a compound that disrupts cellular utilization of glucose. We observed how glucoprivation at two levels of severity affected allocation to reproduction and immunity. Additionally, we treated a subset of these hamsters with leptin, an adipose hormone that provides a direct signal of available fat stores, in order to determine how increasing this signal of fat stores influences glucoprivation-induced trade-offs. We observed trade-offs between the reproductive and immune systems and that these trade-offs depended on the severity of energy limitation and exogenous leptin signaling. The majority of the animals experiencing mild glucoprivation entered anestrus, whereas leptin treatment restored estrous cycling in these animals. Surprisingly, virtually all animals experiencing more severe glucoprivation maintained normal estrous cycling throughout the experiment; however, exogenous leptin resulted in lower antibody production in this group. These data suggest that variation in these trade-offs may be mediated by shifts between glucose and fatty acid utilization. Collectively, the results of the present study highlight the context-dependent nature of these trade-offs, as trade-offs induced by the same metabolic stressor can manifest differently depending on its intensity.

  16. Temperature-induced elevation of basal metabolic rate does not affect testis growth in great tits.

    PubMed

    Caro, Samuel P; Visser, Marcel E

    2009-07-01

    The timing of reproduction varies from year to year in many bird species. To adjust their timing to the prevailing conditions of that year, birds use cues from their environment. However, the relative importance of these cues, such as the initial predictive (e.g. photoperiod) and the supplemental factors (e.g. temperature), on the seasonal sexual development are difficult to distinguish. In particular, the fine-tuning effect of temperature on gonadal growth is not well known. One way temperature may affect timing is via its strong effect on energy expenditure as gonadal growth is an energy-demanding process. To study the interaction of photoperiod and temperature on gonadal development, we first exposed 35 individually housed male great tits (Parus major) to mid-long days (after 6 weeks of 8 h L:16 h D at 15 degrees C, photoperiod was set to 13 h L:11 h D at 15 degrees C). Two weeks later, for half of the males the temperature was set to 8 degrees C, and for the other half to 22 degrees C. Unilateral laparotomies were performed at weeks 5 (i.e one week before the birds were transferred to mid-long days), 8 and 11 to measure testis size. Two measures of basal metabolic rate (BMR) were performed at the end of the experiment (weeks 11 and 12). Testis size increased significantly during the course of the experiment, but independently of the temperature treatment. BMR was significantly higher in birds exposed to the cold treatment. These results show that temperature-related elevation of BMR did not impair the long-day-induced testis growth in great tits. As a consequence, temperature may not be a crucial cue and/or constraint factor in the fine-tuning of the gonadal recrudescence in male great tits, and testis growth is not a high energy-demanding seasonal process. PMID:19525424

  17. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information.

  18. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes.

    PubMed

    Auclair, Sylvain; Uzbekov, Rustem; Elis, Sébastien; Sanchez, Laura; Kireev, Igor; Lardic, Lionel; Dalbies-Tran, Rozenn; Uzbekova, Svetlana

    2013-03-15

    Cumulus cells (CC) surround the oocyte and are coupled metabolically through regulation of nutrient intake. CC removal before in vitro maturation (IVM) decreases bovine oocyte developmental competence without affecting nuclear meiotic maturation. The objective was to investigate the influence of CC on oocyte cytoplasmic maturation in relation to energy metabolism. IVM with either cumulus-enclosed (CEO) or -denuded (DO) oocytes was performed in serum-free metabolically optimized medium. Transmission electron microscopy revealed different distribution of membrane-bound vesicles and lipid droplets between metaphase II DO and CEO. By Nile Red staining, a significant reduction in total lipid level was evidenced in DO. Global transcriptomic analysis revealed differential expression of genes regulating energy metabolism, transcription, and translation between CEO and DO. By Western blot, fatty acid synthase (FAS) and hormone-sensitive phospholipase (HSL) proteins were detected in oocytes and in CC, indicating a local lipogenesis and lypolysis. FAS protein was significantly less abundant in DO that in CEO and more highly expressed in CC than in the oocytes. On the contrary, HSL protein was more abundant in oocytes than in CC. In addition, active Ser⁵⁶³-phosphorylated HSL was detected in the oocytes only after IVM, and its level was similar in CEO and DO. In conclusion, absence of CC during IVM affected lipid metabolism in the oocyte and led to suboptimal cytoplasmic maturation. Thus, CC may influence the oocyte by orienting the consumption of nutritive storage via regulation of local fatty acid synthesis and lipolysis to provide energy for maturation. PMID:23321473

  19. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  20. Metabolic approaches for the optimisation of recombinant fermentation processes.

    PubMed

    Cserjan-Puschmann, M; Kramer, W; Duerrschmid, E; Striedner, G; Bayer, K

    1999-12-01

    The aim of this work was the establishment of a novel method to determine the metabolic load on host-cell metabolism resulting from recombinant protein production in Escherichia coli. This tool can be used to develop strategies to optimise recombinant fermentation processes through adjustment of recombinant-protein expression to the biosynthetic capacity of the host-cell. The signal molecule of the stringent-response network, guanosine tetraphosphate (ppGpp), and its precursor nucleotides were selected for the estimation of the metabolic load relating to recombinant-protein production. An improved analytical method for the quantification of nucleotides by ion-pair, high-performance liquid chromatography was established. The host-cell response upon overexpression of recombinant protein in fed-batch fermentations was investigated using the production of human superoxide dismutase (rhSOD) as a model system. E. coli strains with different recombinant systems (the T7 and pKK promoter system) exerting different loads on host-cell metabolism were analysed with regard to intracellular nucleotide concentration, rate of product formation and plasmid copy number.

  1. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism.

    PubMed

    Cáp, Michal; Stěpánek, Luděk; Harant, Karel; Váchová, Libuše; Palková, Zdena

    2012-05-25

    Nutrient sensing and metabolic reprogramming are crucial for metazoan cell aging and tumor growth. Here, we identify metabolic and regulatory parallels between a layered, multicellular yeast colony and a tumor-affected organism. During development, a yeast colony stratifies into U and L cells occupying the upper and lower colony regions, respectively. U cells activate a unique metabolism controlled by the glutamine-induced TOR pathway, amino acid-sensing systems (SPS and Gcn4p) and signaling from mitochondria with lowered respiration. These systems jointly modulate U cell physiology, which adapts to nutrient limitations and utilize the nutrients released from L cells. Stress-resistant U cells share metabolic pathways and other similar characteristics with tumor cells, including the ability to proliferate. L cells behave similarly to stressed and starving cells, which activate degradative mechanisms to provide nutrients to U cells. Our data suggest a nutrient flow between both cell types, resembling the Cori cycle and glutamine-NH(4)(+) shuttle between tumor and healthy metazoan cells.

  2. Ceramide metabolism is affected by obesity and diabetes in human adipose tissue.

    PubMed

    Błachnio-Zabielska, A U; Pułka, M; Baranowski, M; Nikołajuk, A; Zabielski, P; Górska, M; Górski, J

    2012-02-01

    Ceramide is involved in development of insulin resistance. However, there are no data on ceramide metabolism in human adipose tissue. The aim of our study was to examine sphingolipid metabolism in fat tissue from obese nondiabetic (n = 11), obese diabetic (n = 11), and lean nondiabetic (n = 8) subjects. The content of ceramide (Cer), dihydroceramide (dhCer), sphingosine (SPH), sphinganine (SPA), sphingosine-1-phosphate (S1P; pmol/mg of protein), the expression (mRNA) and activity of key enzymes responsible for Cer metabolism: serine palmitoyltransferase (SPT), neutral and acidic sphingomyelinase (nSMase and aSMase, respectively), and neutral and acidic ceramidase (nCDase and aCDase, respectively) were examined in human adipose tissue. The contents of SPA and Cer were significantly lower whereas the content of dhCer was higher in both obese groups than the respective values in the lean subjects. The expression of examined enzymes was elevated in both obese groups. The SPT and CDases activity increased whereas aSMase activity deceased in both obese groups. We have found correlation between adipose tissue Cer content and plasma adiponectin concentration (r = 0.69, P < 0.001) and negative correlation between total Cer content and HOMA-IR index (homeostasis model of insulin resistance) (r = -0.67, P < 0.001). We have found that both obesity and diabetes affected pathways of sphingolipid metabolism in the adipose tissue.

  3. Host-related metabolic cues affect colonization strategies of a root endophyte

    PubMed Central

    Lahrmann, Urs; Ding, Yi; Banhara, Aline; Rath, Magnus; Hajirezaei, Mohammad R.; Döhlemann, Stefanie; von Wirén, Nicolaus; Parniske, Martin; Zuccaro, Alga

    2013-01-01

    The mechanisms underpinning broad compatibility in root symbiosis are largely unexplored. The generalist root endophyte Piriformospora indica establishes long-lasting interactions with morphologically and biochemically different hosts, stimulating their growth, alleviating salt stress, and inducing local and systemic resistance to pathogens. Cytological studies and global investigations of fungal transcriptional responses to colonization of barley and Arabidopsis at different symbiotic stages identified host-dependent colonization strategies and host-specifically induced effector candidates. Here, we show that in Arabidopsis, P. indica establishes and maintains biotrophic nutrition within living epidermal cells, whereas in barley the symbiont undergoes a nutritional switch to saprotrophy that is associated with the production of secondary thinner hyphae in dead cortex cells. Consistent with a diversified trophic behavior and with the occurrence of nitrogen deficiency at the onset of saprotrophy in barley, fungal genes encoding hydrolytic enzymes and nutrient transporters were highly induced in this host but not in Arabidopsis. Silencing of the high-affinity ammonium transporter PiAMT1 gene, whose transcripts are accumulating during nitrogen starvation and in barley, resulted in enhanced colonization of this host, whereas it had no effect on the colonization of Arabidopsis. Increased levels of free amino acids and reduced enzymatic activity for the cell-death marker VPE (vacuolar-processing enzyme) in colonized barley roots coincided with an extended biotrophic lifestyle of P. indica upon silencing of PiAMT1. This suggests that PiAmt1 functions as a nitrogen sensor mediating the signal that triggers the in planta activation of the saprotrophic program. Thus, host-related metabolic cues affect the expression of P. indica’s alternative lifestyles. PMID:23918389

  4. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster

    PubMed Central

    Wagner, Anika E.; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-01-01

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  5. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    PubMed

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.

  6. Evidence that high pCO2 affects protein metabolism in tropical reef corals.

    PubMed

    Edmunds, Peter J; Wall, Christopher B

    2014-08-01

    Early life stages of the coral Seriatopora caliendrum were used to test the hypothesis that the depression of dark respiration in coral recruits by high pCO2 is caused by perturbed protein metabolism. First, the contribution of protein anabolism to respiratory costs under high pCO2 was evaluated by measuring the aerobic respiration of S. caliendrum recruits with and without the protein synthesis inhibitor emetine following 1 to 4 days at 45 Pa versus 77 Pa pCO2. Second, protein catabolism under high pCO2 was evaluated by measuring the flux of ammonium (NH4 (+)) from juvenile colonies of S. caliendrum incubated in darkness at 47 Pa and 90 Pa pCO2. Two days after settlement, respiration of recruits was affected by an interaction between emetine and pCO2, with emetine reducing respiration 63% at 45 Pa pCO2 and 27% at 77 Pa pCO2. The interaction disappeared 5 days after settlement, when respiration was reduced 27% by emetine under both pCO2 conditions. These findings suggest that protein anabolism accounted for a large proportion of metabolic costs in coral recruits and was affected by high pCO2, with consequences detected in aerobic respiration. Juvenile S. caliendrum showed net uptake of NH4 (+) at 45 Pa pCO2 but net release of NH4 (+) at 90 Pa pCO2, indicating that protein catabolism, NH4 (+) recycling, or both were affected by high pCO2. Together, these results are consistent with the hypothesis that high pCO2 affects protein metabolism in corals.

  7. Relationship between auditory processing and affective prosody in schizophrenia.

    PubMed

    Jahshan, Carol; Wynn, Jonathan K; Green, Michael F

    2013-02-01

    Patients with schizophrenia have well-established deficits in their ability to identify emotion from facial expression and tone of voice. In the visual modality, there is strong evidence that basic processing deficits contribute to impaired facial affect recognition in schizophrenia. However, few studies have examined the auditory modality for mechanisms underlying affective prosody identification. In this study, we explored links between different stages of auditory processing, using event-related potentials (ERPs), and affective prosody detection in schizophrenia. Thirty-six schizophrenia patients and 18 healthy control subjects received tasks of affective prosody, facial emotion identification, and tone matching, as well as two auditory oddball paradigms, one passive for mismatch negativity (MMN) and one active for P300. Patients had significantly reduced MMN and P300 amplitudes, impaired auditory and visual emotion recognition, and poorer tone matching performance, relative to healthy controls. Correlations between ERP and behavioral measures within the patient group revealed significant associations between affective prosody recognition and both MMN and P300 amplitudes. These relationships were modality specific, as MMN and P300 did not correlate with facial emotion recognition. The two ERP waves accounted for 49% of the variance in affective prosody in a regression analysis. Our results support previous suggestions of a relationship between basic auditory processing abnormalities and affective prosody dysfunction in schizophrenia, and indicate that both relatively automatic pre-attentive processes (MMN) and later attention-dependent processes (P300) are involved with accurate auditory emotion identification. These findings provide support for bottom-up (e.g., perceptually based) cognitive remediation approaches.

  8. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish.

    PubMed

    Cedervall, Tommy; Hansson, Lars-Anders; Lard, Mercy; Frohm, Birgitta; Linse, Sara

    2012-01-01

    Nano-sized (10(-9)-10(-7) m) particles offer many technical and biomedical advances over the bulk material. The use of nanoparticles in cosmetics, detergents, food and other commercial products is rapidly increasing despite little knowledge of their effect on organism metabolism. We show here that commercially manufactured polystyrene nanoparticles, transported through an aquatic food chain from algae, through zooplankton to fish, affect lipid metabolism and behaviour of the top consumer. At least three independent metabolic parameters differed between control and test fish: the weight loss, the triglycerides∶cholesterol ratio in blood serum, and the distribution of cholesterol between muscle and liver. Moreover, we demonstrate that nanoparticles bind to apolipoprotein A-I in fish serum in-vitro, thereby restraining them from properly utilising their fat reserves if absorbed through ingestion. In addition to the metabolic effects, we show that consumption of nanoparticle-containing zooplankton affects the feeding behaviour of the fish. The time it took the fish to consume 95% of the food presented to them was more than doubled for nanoparticle-exposed compared to control fish. Since many nano-sized products will, through the sewage system, end up in freshwater and marine habitats, our study provides a potential bioassay for testing new nano-sized material before manufacturing. In conclusion, our study shows that from knowledge of the molecular composition of the protein corona around nanoparticles it is possible to make a testable molecular hypothesis and bioassay of the potential biological risks of a defined nanoparticle at the organism and ecosystem level.

  9. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases

    PubMed Central

    Ruchat, Stephanie-May; Houde, Andrée-Anne; Voisin, Grégory; St-Pierre, Julie; Perron, Patrice; Baillargeon, Jean-Patrice; Gaudet, Daniel; Hivert, Marie-France; Brisson, Diane; Bouchard, Luigi

    2013-01-01

    Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring’s methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24–28 weeks of pregnancy. DNA methylation was measured at > 485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10−06; none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10−13 < p < 4.0 × 10−03; including diabetes mellitus p = 4.3 × 10−11). Among the differentially methylated genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming. PMID:23975224

  10. Green Tea minimally affects Biomarkers of Inflammation in Obese Subjects with Metabolic Syndrome

    PubMed Central

    Basu, Arpita; Du, Mei; Sanchez, Karah; Leyva, Misti J.; Betts, Nancy M.; Blevins, Steve; Wu, Mingyuan; Aston, Christopher E.; Lyons, Timothy J.

    2010-01-01

    Objective Green tea (Camellia sinensis) has shown to exert cardio-protective benefits in observational studies. The objective of this clinical trial was to assess the effects of green tea on features of metabolic syndrome and inflammation in obese subjects. Methods We conducted a randomized controlled trial in obese subjects with metabolic syndrome. Thirty-five subjects [age (mean±SE) 42.5±1.7 years, BMI 36.1±1.3 kg/m2] completed the 8-week study and were randomly assigned to receive green tea (4 cups/day), green tea extract (2 capsules and 4 cups water/day), or no treatment (4 cups water/day). Both the beverage and extract groups had similar dosing of epigallocatechin-3-gallate (EGCG), the active green tea polyphenol. Fasting blood samples were collected at screening, four, and eight weeks of the study. Results Green tea beverage or extract supplementation did not significantly alter features of metabolic syndrome or biomarkers of inflammation including adiponectin, C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-1β (IL-1β), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1), leptin, or leptin:adiponectin ratio. However, both green tea beverage and extracts significantly reduced plasma serum amyloid alpha (SAA) versus no treatment (p<0.005). Conclusion This study suggests that the daily consumption of green tea beverage or extracts for 8 weeks was well tolerated but did not affect the features of metabolic syndrome. However, green tea significantly reduced plasma SAA, an independent CVD risk factor, in obese subjects with metabolic syndrome. PMID:20605696

  11. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages.

    PubMed

    Ramesh, Vignesh; Ganesan, Kumaresan

    2016-08-15

    Hepatocellular carcinoma (HCC) is a highly heterogeneous disease and the development of targeted therapeutics is still at an early stage. The 'omics' based genome-wide profiling comprising the transcriptome, miRNome and proteome are highly useful in identifying the deregulated molecular processes involved in hepatocarcinogenesis. One of the end products and processes of the central dogma being the metabolites and metabolic processes mediate the cellular functions. In recent years, metabolomics based investigations have revealed the major deregulated metabolic processes involved in carcinogenesis. However, the integrative analysis of the holistic metabolic processes with genomics is at an early stage. Since the gene-sets are highly useful in assessing the biological processes and pathways, we made an attempt to infer the deregulated cellular metabolic processes involved in HCC by employing metabolism associated gene-set enrichment analysis. Further, the metabolic process enrichment scores were integrated with the transcriptome profiles of HCC. Integrative analysis shows three distinct metabolic deregulations: i) hepatocyte function related molecular processes involving lipid/fatty acid/bile acid synthesis, ii) inflammatory processes with cytokine, sphingolipid & chondriotin sulphate metabolism and iii) enriched nucleotide metabolic process involving purine/pyrimidine & glucose mediated catabolic process, in hepatocarcinogenesis. The three distinct metabolic processes were found to occur both in tumor and liver cancer cell line profiles. Unsupervised hierarchical clustering of the metabolic processes along with clinical sample information has identified two major clusters based on AFP (alpha-fetoprotein) and metastasis. The study reveals the three major regulatory processes involved in HCC stages. PMID:27107678

  12. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages.

    PubMed

    Ramesh, Vignesh; Ganesan, Kumaresan

    2016-08-15

    Hepatocellular carcinoma (HCC) is a highly heterogeneous disease and the development of targeted therapeutics is still at an early stage. The 'omics' based genome-wide profiling comprising the transcriptome, miRNome and proteome are highly useful in identifying the deregulated molecular processes involved in hepatocarcinogenesis. One of the end products and processes of the central dogma being the metabolites and metabolic processes mediate the cellular functions. In recent years, metabolomics based investigations have revealed the major deregulated metabolic processes involved in carcinogenesis. However, the integrative analysis of the holistic metabolic processes with genomics is at an early stage. Since the gene-sets are highly useful in assessing the biological processes and pathways, we made an attempt to infer the deregulated cellular metabolic processes involved in HCC by employing metabolism associated gene-set enrichment analysis. Further, the metabolic process enrichment scores were integrated with the transcriptome profiles of HCC. Integrative analysis shows three distinct metabolic deregulations: i) hepatocyte function related molecular processes involving lipid/fatty acid/bile acid synthesis, ii) inflammatory processes with cytokine, sphingolipid & chondriotin sulphate metabolism and iii) enriched nucleotide metabolic process involving purine/pyrimidine & glucose mediated catabolic process, in hepatocarcinogenesis. The three distinct metabolic processes were found to occur both in tumor and liver cancer cell line profiles. Unsupervised hierarchical clustering of the metabolic processes along with clinical sample information has identified two major clusters based on AFP (alpha-fetoprotein) and metastasis. The study reveals the three major regulatory processes involved in HCC stages.

  13. L-Carnosine Affects the Growth of Saccharomyces cerevisiae in a Metabolism-Dependent Manner

    PubMed Central

    Cartwright, Stephanie P.; Bill, Roslyn M.; Hipkiss, Alan R.

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10–30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. PMID:22984600

  14. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism.

    PubMed

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-01-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L(-1), reaching 80% and 100% inhibition at 10 mg L(-1) and 50 mg L(-1), respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry. PMID:27629523

  15. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    PubMed

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  16. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance

    PubMed Central

    Caron, Alexandre; Labbé, Sébastien M.; Mouchiroud, Mathilde; Huard, Renaud; Richard, Denis

    2016-01-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. PMID:27097662

  17. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    PubMed Central

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-01-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L−1, reaching 80% and 100% inhibition at 10 mg L−1 and 50 mg L−1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry. PMID:27629523

  18. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism.

    PubMed

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-15

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L(-1), reaching 80% and 100% inhibition at 10 mg L(-1) and 50 mg L(-1), respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  19. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. PMID:27147100

  20. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species.

  1. Developing Worksheet Based on Science Process Skills: Factors Affecting Solubility

    ERIC Educational Resources Information Center

    Karsli, Fethiye; Sahin, Cigdem

    2009-01-01

    The purpose of this study is to develop a worksheet about the factors affecting solubility, which could be useful for the prospective science teachers (PST) to remind and regain their science process skills (SPS). The pilot study of the WS was carried out with 32 first grade PST during the 2007-2008 academic year in the education department at…

  2. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model

    PubMed Central

    Tegtmeier, Dorothee; Thompson, Claire L.; Schauer, Christine

    2015-01-01

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success. PMID:26637604

  3. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated.

  4. Dietary carbohydrate and lipid source affect cholesterol metabolism of European sea bass (Dicentrarchus labrax) juveniles.

    PubMed

    Castro, Carolina; Corraze, Geneviève; Pérez-Jiménez, Amalia; Larroquet, Laurence; Cluzeaud, Marianne; Panserat, Stéphane; Oliva-Teles, Aires

    2015-10-28

    Plant feedstuffs (PF) are rich in carbohydrates, which may interact with lipid metabolism. Thus, when considering dietary replacement of fishery by-products with PF, knowledge is needed on how dietary lipid source (LS) and carbohydrates affect lipid metabolism and other metabolic pathways. For that purpose, a 73-d growth trial was performed with European sea bass juveniles (IBW 74 g) fed four diets differing in LS (fish oil (FO) or a blend of vegetable oils (VO)) and carbohydrate content (0 % (CH-) or 20 % (CH+) gelatinised starch). At the end of the trial no differences among diets were observed on growth and feed utilisation. Protein efficiency ratio was, however, higher in the CH+ groups. Muscle and liver fatty acid profiles reflected the dietary LS. Dietary carbohydrate promoted higher plasma cholesterol and phospholipids (PL), whole-body and hepatic (mainly 16 : 0) lipids and increased muscular and hepatic glycogen. Except for PL, which were higher in the FO groups, no major alterations between FO and VO groups were observed on plasma metabolites (glucose, TAG, cholesterol, PL), liver and muscle glycogen, and lipid and cholesterol contents. Activities of glucose-6-phosphate dehydrogenase and malic enzyme - lipogenesis-related enzymes - increased with carbohydrate intake. Hepatic expression of genes involved in cholesterol metabolism was up-regulated with carbohydrate (HMGCR and CYP3A27) and VO (HMGCR and CYP51A1) intake. No dietary regulation of long-chain PUFA biosynthesis at the transcriptional level was observed. Overall, very few interactions between dietary carbohydrates and LS were observed. However, important insights on the direct relation between dietary carbohydrate and the cholesterol biosynthetic pathway in European sea bass were demonstrated. PMID:26306559

  5. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model.

    PubMed

    Tegtmeier, Dorothee; Thompson, Claire L; Schauer, Christine; Brune, Andreas

    2016-02-01

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success. PMID:26637604

  6. Oxygen Affects Gut Bacterial Colonization and Metabolic Activities in a Gnotobiotic Cockroach Model.

    PubMed

    Tegtmeier, Dorothee; Thompson, Claire L; Schauer, Christine; Brune, Andreas

    2015-12-04

    The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.

  7. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  8. Litter Environment Affects Behavior and Brain Metabolic Activity of Adult Knockout Mice

    PubMed Central

    Crews, David; Rushworth, David; Gonzalez-Lima, Francisco; Ogawa, Sonoko

    2009-01-01

    In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s), the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual's behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for sex ratio and genotype ratio (wild type pups versus pups lacking a functional estrogen receptor α). In both males and females, the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks. PMID:19707539

  9. Investigating facial affect processing in psychosis: a study using the Comprehensive Affective Testing System.

    PubMed

    Rossell, Susan L; Van Rheenen, Tamsyn E; Joshua, Nicole R; O'Regan, Alison; Gogos, Andrea

    2014-08-01

    Facial affect processing (FAP) deficits in schizophrenia (SZ) and bipolar disorder (BD) have been widely reported; although effect sizes vary across studies, and there are limited direct comparisons of the two groups. Further, there is debate as to the influence of both psychotic and mood symptoms on FAP. This study aimed to address these limitations by recruiting groups of psychosis patients with either a diagnosis of SZ or BD and comparing them to healthy controls (HC) on a well validated battery of four FAP subtests: affect discrimination, name affect, select affect and match affect. Overall, both groups performed more poorly than controls in terms of accuracy. In SZ, this was largely driven by impairments on three of the four subtests. The BD patients showed impaired performance specifically on the match affect subtest, a task that had a high cognitive load. FAP performance in the psychosis patients was correlated with severity of positive symptoms and mania. This study confirmed that FAP deficits are a consistent finding in SZ that occur independent of task specific methodology; whilst FAP deficits in BD are more subtle. Further work in this group is needed to replicate these results.

  10. Viral affects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection

    PubMed Central

    Yu, Yongjun; Clippinger, Amy J.; Alwine, James C.

    2011-01-01

    Human cytomegalovirus (HCMV) infection causes dramatic alterations of intermediary metabolism, similar to those found in tumor cells. In infected cells, glucose carbon is not completely broken down by the tricarboxylic acid (TCA) cycle for energy; instead it is used biosynthetically. This process requires increased glucose uptake, increased glycolysis and the diversion of glucose carbon, in the form of citrate, from the TCA cycle for use in HCMV-induced fatty acid biosynthesis. The diversion of citrate from the TCA cycle (cataplerosis) requires induction of enzymes to promote glutaminolysis, the conversion of glutamine to -ketoglutarate in order to maintain the TCA cycle (anaplerosis) and ATP production. Such changes could result in heretofore uncharacterized pathogenesis, potentially implicating HCMV as a subtle co-factor in many maladies, including oncogenesis. Recognition of the effects of HCMV, and other viruses, on host cell metabolism will provide new understanding of viral pathogenesis and novel avenues for antiviral therapy. PMID:21570293

  11. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  12. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.).

    PubMed

    Ould-Ahmed, Marouf; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Lafrenière, Carole; Drouin, Pascal

    2014-10-15

    Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in

  13. Electrophysiological differences in the processing of affect misattribution.

    PubMed

    Hashimoto, Yohei; Minami, Tetsuto; Nakauchi, Shigeki

    2012-01-01

    The affect misattribution procedure (AMP) was proposed as a technique to measure an implicit attitude to a prime image [1]. In the AMP, neutral symbols (e.g., a Chinese pictograph, called the target) are presented, following an emotional stimulus (known as the prime). Participants often misattribute the positive or negative affect of the priming images to the targets in spite of receiving an instruction to ignore the primes. The AMP effect has been investigated using behavioral measures; however, it is difficult to identify when the AMP effect occurs in emotional processing-whether the effect may occur in the earlier attention allocation stage or in the later evaluation stage. In this study, we examined the neural correlates of affect misattribution, using event-related potential (ERP) dividing the participants into two groups based on their tendency toward affect misattribution. The ERP results showed that the amplitude of P2 was larger for the prime at the parietal location in participants showing a low tendency to misattribution than for those showing a high tendency, while the effect of judging neutral targets amiss according to the primes was reflected in the late processing of targets (LPP). In addition, the topographic pattern analysis revealed that EPN-like component to targets was correlated with the difference of AMP tendency as well as P2 to primes and LPP to targets. Taken together, the mechanism of the affective misattribution was closely related to the attention allocation processing. Our findings provide neural evidence that evaluations of neutral targets are misattributed to emotional primes.

  14. Spelling-to-sound correspondences affect acronym recognition processes.

    PubMed

    Playfoot, David; Izura, Cristina

    2015-01-01

    A large body of research has examined the factors that affect the speed with which words are recognized in lexical decision tasks. Nothing has yet been reported concerning the important factors in differentiating acronyms (e.g., BBC, HIV, NASA) from nonwords. It appears that this task poses little problem for skilled readers, in spite of the fact that acronyms have uncommon, even illegal, spellings in English. We used regression techniques to examine the role of a number of lexical and nonlexical variables known to be important in word processing in relation to lexical decision for acronym targets. Findings indicated that acronym recognition is affected by age of acquisition and imageability. In a departure from findings in word recognition, acronym recognition was not affected by frequency. Lexical decision responses for acronyms were also affected by the relationship between spelling and sound-a pattern not usually observed in word recognition. We argue that the complexity of acronym recognition means that the process draws phonological information in addition to semantics. PMID:25337636

  15. Processes affecting the oceanic distributions of dissolved calcium and alkalinity

    SciTech Connect

    Shiller, A.M.; Gieskes, J.M.

    1980-05-20

    Recent studies of the CO/sub 2/ system have suggested that chemical processes in addition to the dissolution and precipitation of calcium carbonate affect the oceanic calcium and alkalinity distributions. Calcium and alkalinity data from the North Pacific have been examined both by using the simple physical-chemical model of previous workers and by a study involving the broader oceanographic context of these data. The simple model is shown to be an inadequate basis for these studies. Although a proton flux associated with organic decomposition may affect the alkalinity, previously reported deviations of calcium-alkalinity correlations from expected trends appear to be related to boundary processes that have been neglected rather than to this proton flux. The distribution of calcium in the surface waters of the Pacific Ocean is examined.

  16. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    PubMed Central

    Dufault, Renee; Schnoll, Roseanne; Lukiw, Walter J; LeBlanc, Blaise; Cornett, Charles; Patrick, Lyn; Wallinga, David; Gilbert, Steven G; Crider, Raquel

    2009-01-01

    Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body. PMID:19860886

  17. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc.

  18. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc. PMID:27102086

  19. Increasing Phosphatidylinositol (4,5)-Bisphosphate Biosynthesis Affects Basal Signaling and Chloroplast Metabolism in Arabidopsis thaliana

    PubMed Central

    Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.

    2014-01-01

    One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490

  20. Maternal Obesity Affects Fetal Neurodevelopmental and Metabolic Gene Expression: A Pilot Study

    PubMed Central

    Edlow, Andrea G.; Vora, Neeta L.; Hui, Lisa; Wick, Heather C.; Cowan, Janet M.; Bianchi, Diana W.

    2014-01-01

    Objective One in three pregnant women in the United States is obese. Their offspring are at increased risk for neurodevelopmental and metabolic morbidity. Underlying molecular mechanisms are poorly understood. We performed a global gene expression analysis of mid-trimester amniotic fluid cell-free fetal RNA in obese versus lean pregnant women. Methods This prospective pilot study included eight obese (BMI≥30) and eight lean (BMI<25) women undergoing clinically indicated mid-trimester genetic amniocentesis. Subjects were matched for gestational age and fetal sex. Fetuses with abnormal karyotype or structural anomalies were excluded. Cell-free fetal RNA was extracted from amniotic fluid and hybridized to whole genome expression arrays. Genes significantly differentially regulated in 8/8 obese-lean pairs were identified using paired t-tests with the Benjamini-Hochberg correction (false discovery rate of <0.05). Biological interpretation was performed with Ingenuity Pathway Analysis and the BioGPS gene expression atlas. Results In fetuses of obese pregnant women, 205 genes were significantly differentially regulated. Apolipoprotein D, a gene highly expressed in the central nervous system and integral to lipid regulation, was the most up-regulated gene (9-fold). Apoptotic cell death was significantly down-regulated, particularly within nervous system pathways involving the cerebral cortex. Activation of the transcriptional regulators estrogen receptor, FOS, and STAT3 was predicted in fetuses of obese women, suggesting a pro-estrogenic, pro-inflammatory milieu. Conclusion Maternal obesity affects fetal neurodevelopmental and metabolic gene expression as early as the second trimester. These findings may have implications for postnatal neurodevelopmental and metabolic abnormalities described in the offspring of obese women. PMID:24558408

  1. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  2. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    PubMed

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  3. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  4. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.

    PubMed

    Heeman, Bavo; Van den Haute, Chris; Aelvoet, Sarah-Ann; Valsecchi, Federica; Rodenburg, Richard J; Reumers, Veerle; Debyser, Zeger; Callewaert, Geert; Koopman, Werner J H; Willems, Peter H G M; Baekelandt, Veerle

    2011-04-01

    Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the role of PINK1 in mitochondrial and cellular functioning in physiological conditions is still incompletely understood. Here, we investigate mitochondrial and cellular calcium (Ca(2+)) homeostasis in PINK1-knockdown and PINK1-knockout mouse cells, both in basal metabolic conditions and after physiological stimulation, using unbiased automated live single-cell imaging in combination with organelle-specific fluorescent probes. Our data reveal that depletion of PINK1 induces moderate fragmentation of the mitochondrial network, mitochondrial membrane depolarization and increased production of reactive oxygen species. This results in reduced uptake of Ca(2+) by mitochondria after physiological stimulation. As a consequence, cells with knockdown or knockout of PINK1 display impaired mitochondrial ATP synthesis, which is exacerbated under conditions of increased ATP demand, thereby affecting cytosolic Ca(2+) extrusion. The impairment in energy maintenance was confirmed in the brain of PINK1-knockout mice by in vivo bioluminescence imaging. Our findings demonstrate a key role for PINK1 in the regulation of mitochondrial homeostasis and energy metabolism under physiological conditions. PMID:21385841

  5. Incubation temperature affects growth and energy metabolism in blue tit nestlings.

    PubMed

    Nord, Andreas; Nilsson, Jan-Åke

    2011-11-01

    Because the maintenance of proper developmental temperatures during avian incubation is costly to parents, embryos of many species experience pronounced variation in incubation temperature. However, the effects of such temperature variation on nestling development remain relatively unexplored. To investigate this, we artificially incubated wild blue tit (Cyanistes caeruleus L.) clutches at 35.0°, 36.5°, or 38.0°C for two-thirds of the incubation period. We returned clutches to their original nests before hatching and subsequently recorded nestling growth and resting metabolic rate. The length of the incubation period decreased with temperature, whereas hatching success increased. Nestlings from the lowest incubation temperature group had shorter tarsus lengths at 2 weeks of age, but body mass and wing length were not affected by temperature. In addition, nestlings from the lowest temperature group had a significantly higher resting metabolic rate compared with mid- and high-temperature nestlings, which may partly explain observed size differences between the groups. These findings suggest that nest microclimate can influence nestling phenotype, but whether observed differences carry over to later life-history stages remains unknown.

  6. Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism.

    PubMed

    Martello, M D; David, N; Matuo, R; Carvalho, P C; Navarro, S D; Monreal, A C D; Cunha-Laura, A L; Cardoso, C A L; Kassuya, C A L; Oliveira, R J

    2016-01-01

    Campomanesia adamantium (Cambess.) O. Berg. is originally from Brazil. Its leaves and fruits have medicinal properties such as anti-inflammatory, antidiarrheal and antiseptic properties. However, the mutagenic potential of this species has been reported in few studies. This study describes the mutagenic/antimutagenic, splenic phagocytic, and apoptotic activities of C. adamantium hydroethanolic extract with or without cyclophosphamide in Swiss mice. The animals orally received the hydroethanolic extract at doses of 30, 100, or 300 mg/kg with or without 100 mg/kg cyclophosphamide. Mutagenesis was evaluated by performing the micronucleus assay after treatment for 24, 48, and 72 h, while splenic phagocytic and apoptotic effects were investigated after 72 h. Short-term exposure of 30 and 100 mg/kg extract induced mild clastogenic/aneugenic effects and increased splenic phagocytosis and apoptosis in the liver, spleen, and kidneys. When the extract was administered in combination with cyclophosphamide, micronucleus frequency and apoptosis reduced. Extract components might affect cyclophosphamide metabolism, which possibly leads to increased clearance of this chemotherapeutic agent. C. adamantium showed mutagenic activity and it may decrease the effectiveness of drugs with metabolic pathways similar to those associated with cyclophosphamide. Thus, caution should be exercised while consuming these extracts, especially when received in combination with other drugs. PMID:27173259

  7. Failure of caffeine to affect metabolism during 60 min submaximal exercise.

    PubMed

    Titlow, L W; Ishee, J H; Riggs, C E

    1991-01-01

    Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise.

  8. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle.

    PubMed

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel; Brzezinska, Zofia; Klapcinska, Barbara; Galbo, Henrik; Gorski, Jan

    2010-09-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.

  9. Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism.

    PubMed

    Martello, M D; David, N; Matuo, R; Carvalho, P C; Navarro, S D; Monreal, A C D; Cunha-Laura, A L; Cardoso, C A L; Kassuya, C A L; Oliveira, R J

    2016-04-26

    Campomanesia adamantium (Cambess.) O. Berg. is originally from Brazil. Its leaves and fruits have medicinal properties such as anti-inflammatory, antidiarrheal and antiseptic properties. However, the mutagenic potential of this species has been reported in few studies. This study describes the mutagenic/antimutagenic, splenic phagocytic, and apoptotic activities of C. adamantium hydroethanolic extract with or without cyclophosphamide in Swiss mice. The animals orally received the hydroethanolic extract at doses of 30, 100, or 300 mg/kg with or without 100 mg/kg cyclophosphamide. Mutagenesis was evaluated by performing the micronucleus assay after treatment for 24, 48, and 72 h, while splenic phagocytic and apoptotic effects were investigated after 72 h. Short-term exposure of 30 and 100 mg/kg extract induced mild clastogenic/aneugenic effects and increased splenic phagocytosis and apoptosis in the liver, spleen, and kidneys. When the extract was administered in combination with cyclophosphamide, micronucleus frequency and apoptosis reduced. Extract components might affect cyclophosphamide metabolism, which possibly leads to increased clearance of this chemotherapeutic agent. C. adamantium showed mutagenic activity and it may decrease the effectiveness of drugs with metabolic pathways similar to those associated with cyclophosphamide. Thus, caution should be exercised while consuming these extracts, especially when received in combination with other drugs.

  10. Failure of caffeine to affect metabolism during 60 min submaximal exercise.

    PubMed

    Titlow, L W; Ishee, J H; Riggs, C E

    1991-01-01

    Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise. PMID:1856908

  11. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    PubMed

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  12. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    PubMed Central

    2011-01-01

    Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age. PMID:21943199

  13. Neural Correlates of Affect Processing and Aggression in Methamphetamine Dependence

    PubMed Central

    Payer, Doris E.; Lieberman, Matthew D.; London, Edythe D.

    2012-01-01

    Context Methamphetamine abuse is associated with high rates of aggression, but few studies have addressed the contributing neurobiological factors. Objective To quantify aggression, investigate function of the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. Design In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Setting Participants were recruited from the general community to an academic research center. Participants Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. Main outcome measures We measured self-reported and perpetrated aggression, and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching), and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Results Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation, but found lower activation in methamphetamine-dependent than control participants in bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling

  14. Application of ultrasound processed images in space: assessing diffuse affectations

    NASA Astrophysics Data System (ADS)

    Pérez-Poch, A.; Bru, C.; Nicolau, C.

    The purpose of this study was to evaluate diffuse affectations in the liver using texture image processing techniques. Ultrasound diagnose equipments are the election of choice to be used in space environments as they are free from hazardous effects on health. However, due to the need for highly trained radiologists to assess the images, this imaging method is mainly applied on focal lesions rather than on non-focal ones. We have conducted a clinical study on 72 patients with different degrees of chronic hepatopaties and a group of control of 18 individuals. All subjects' clinical reports and results of biopsies were compared to the degree of affectation calculated by our computer system , thus validating the method. Full statistical results are given in the present paper showing a good correlation (r=0.61) between pathologist's report and analysis of the heterogenicity of the processed images from the liver. This computer system to analyze diffuse affectations may be used in-situ or via telemedicine to the ground.

  15. Global proteomic analysis of protein acetylation affecting metabolic regulation in Daphnia pulex.

    PubMed

    Kwon, Oh Kwang; Sim, Juhee; Kim, Sun Ju; Oh, Hye Ryeung; Nam, Doo Hyun; Lee, Sangkyu

    2016-02-01

    Daphnia (Daphnia pulex) is a small planktonic crustacean and a key constituent of aquatic ecosystems. It is generally used as a model organism to study environmental toxic problems. In the past decade, genomic and proteomic datasets of Daphnia have been developed. The proteomic dataset allows for the investigation of toxicological effects in the context of "Daphnia proteomics," resulting in greater insights for toxicological research. To exploit Daphnia for ecotoxicological research, information on the post-translational modification (PTM) of proteins is necessary, as this is a critical regulator of biological processes. Acetylation of lysine (Kac) is a reversible and highly regulated PTM that is associated with diverse biological functions. However, a comprehensive description of Kac in Daphnia is not yet available. To understand the cellular distribution of lysine acetylation in Daphnia, we identified 98 acetylation sites in 65 proteins by immunoprecipitation using an anti-acetyllysine antibody and a liquid chromatography system supported by mass spectroscopy. We identified 28 acetylated sites related to metabolic proteins and six acetylated enzymes associated with the TCA cycle in Daphnia. From GO and KEGG enrichment analyses, we showed that Kac in D. pulex is highly enriched in proteins associated with metabolic processes. Our data provide the first global analysis of Kac in D. pulex and is an important resource for the functional analysis of Kac in this organism. PMID:26700148

  16. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    PubMed

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (P<0.05); VO2peak was not different between the T and UT thighs with glutamate infusion. Peak exercise under control conditions revealed a greater glutamate uptake in the T thigh compared with rest (7.3+/-3.7 vs. 1.0+/-0.1 micromol.min(-1).kg wet wt(-1), P<0.05) without increase in TCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), P<0.05) and malate (2.2+/-0.4 vs. 0.5+/-0.03 mmol/kg dw, P<0.05) and a decrease in 2-oxoglutarate (12.2+/-1.6 vs. 32.4+/-6.8 micromol/kg dw, P<0.05). Overall, glutamate infusion increased arterial glutamate (P<0.05) and maintained this increase. Glutamate infusion coincided with elevated fumarate and malate (P<0.05) and decreased 2-oxoglutarate (P<0.05) at peak exercise relative to rest in the T thigh; there were no further changes in the UT thigh. Although glutamate may have a role in the expansion of the TCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  17. Processing of affective speech prosody is impaired in Asperger syndrome.

    PubMed

    Korpilahti, Pirjo; Jansson-Verkasalo, Eira; Mattila, Marja-Leena; Kuusikko, Sanna; Suominen, Kalervo; Rytky, Seppo; Pauls, David L; Moilanen, Irma

    2007-09-01

    Many people with the diagnosis of Asperger syndrome (AS) show poorly developed skills in understanding emotional messages. The present study addressed discrimination of speech prosody in children with AS at neurophysiological level. Detection of affective prosody was investigated in one-word utterances as indexed by the N1 and the mismatch negativity (MMN) of auditory event-related potentials (ERPs). Data from fourteen boys with AS were compared with those for thirteen typically developed boys. These results suggest atypical neural responses to affective prosody in children with AS and their fathers, especially over the RH, and that this impairment can already be seen at low-level information processes. Our results provide evidence for familial patterns of abnormal auditory brain reactions to prosodic features of speech.

  18. Agricultural management affects evolutionary processes in a migratory songbird

    USGS Publications Warehouse

    Perlut, N.G.; Freeman-Gallant, C. R.; Strong, A.M.; Donovan, T.M.; Kilpatrick, C.W.; Zalik, N.J.

    2008-01-01

    Hay harvests have detrimental ecological effects on breeding songbirds, as harvesting results in nest failure. Importantly, whether harvesting also affects evolutionary processes is not known. We explored how hay harvest affected social and genetic mating patterns, and thus, the overall opportunity for sexual selection and evolutionary processes for a ground-nesting songbird, the Savannah sparrow (Passerculus sandwichensis). On an unharvested field, 55% of females were in polygynous associations, and social polygyny was associated with greater rates of extra-pair paternity (EPP). In this treatment, synchrony explained variation in EPP rates, as broods by more synchronous females had more EPP than broods by asynchronous females. In contrast, on a harvested field, simultaneous nest failure caused by haying dramatically decreased the overall incidence of EPP by increasing the occurrence of social monogamy and, apparently, the ability of polygynous males to maintain paternity in their own nests. Despite increased social and genetic monogamy, these haying-mediated changes in mating systems resulted in greater than twofold increase in the opportunity for sexual selection. This effect arose, in part, from a 30% increase in the variance associated with within-pair fertilization success, relative to the unharvested field. This effect was caused by a notable increase (+110%) in variance associated with the quality of social mates following simultaneous nest failure. Because up to 40% of regional habitat is harvested by early June, these data may demonstrate a strong population-level effect on mating systems, sexual selection, and consequently, evolutionary processes. ?? 2008 The Authors.

  19. Processes affecting the remediation of chromium-contaminated sites.

    PubMed Central

    Palmer, C D; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitation/dissolution reactions control the transformation and mobility of chromium. The reduction of CrVI to CrIII can occur in the presence of ferrous iron in solution or in mineral phases, reduced sulfur compounds, or soil organic matter. At neutral to alkaline pH, the CrIII precipitates as amorphous hydroxides or forms complexes with organic matter. CrIII is oxidized by manganese dioxide, a common mineral found in many soils. Solid-phase precipitates of hexavalent chromium such as barium chromate can serve either as sources or sinks for CrVI. Adsorption of CrVI in soils increases with decreasing chromium concentration, making it more difficult to remove the chromium as the concentration decreases during pump-and-treat remediation. Knowledge of these chemical and physical processes is important in developing and selecting effective, cost-efficient remediation designs for chromium-contaminated sites. PMID:1935849

  20. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species.

    PubMed

    Klie, Sebastian; Osorio, Sonia; Tohge, Takayuki; Drincovich, María F; Fait, Aaron; Giovannoni, James J; Fernie, Alisdair R; Nikoloski, Zoran

    2014-01-01

    Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species. PMID:24243932

  1. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species.

    PubMed

    Klie, Sebastian; Osorio, Sonia; Tohge, Takayuki; Drincovich, María F; Fait, Aaron; Giovannoni, James J; Fernie, Alisdair R; Nikoloski, Zoran

    2014-01-01

    Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species.

  2. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. PMID:26627126

  3. Diet affects resting, but not basal metabolic rate of normothermic Siberian hamsters acclimated to winter.

    PubMed

    Gutowski, Jakub P; Wojciechowski, Michał S; Jefimow, Małgorzata

    2011-12-01

    We examined the effect of different dietary supplements on seasonal changes in body mass (m(b)), metabolic rate (MR) and nonshivering thermogenesis (NST) capacity in normothermic Siberian hamsters housed under semi-natural conditions. Once a week standard hamster food was supplemented with either sunflower and flax seeds, rich in polyunsaturated fatty acids (FA), or mealworms, rich in saturated and monounsaturated FA. We found that neither of these dietary supplements affected the hamsters' normal winter decrease in m(b) and fat content nor their basal MR or NST capacity. NST capacity of summer-acclimated hamsters was lower than that of winter-acclimated ones. The composition of total body fat reflected the fat composition of the dietary supplements. Resting MR below the lower critical temperature of the hamsters, and their total serum cholesterol concentration were lower in hamsters fed a diet supplemented with mealworms than in hamsters fed a diet supplemented with seeds. These results indicate that in mealworm-fed hamsters energy expenditure in the cold is lower than in animals eating a seed-supplemented diet, and that the degree of FA unsaturation of diet affects energetics of heterotherms, not only during torpor, but also during normothermy.

  4. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    PubMed

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction.

  5. Effect of chronic stress on behavior and cerebral oxidative metabolism in rats with high or low positive affect.

    PubMed

    Mällo, T; Matrov, D; Kõiv, K; Harro, J

    2009-12-15

    The 50 kHz ultrasonic vocalizations (USVs) in rats have been associated with positive affect and rewarding experience. We have previously reported that stable inter-individual differences exist in the expression of these USVs (chirps). We have examined the effect of four weeks of chronic variable stress on cerebral oxidative metabolism, and depression and anxiety related behavior in male and female high (HC) and low (LC) chirping rats. Significant differences in regional oxidative metabolic activity as measured by cytochrome c oxidase (COX) histochemistry were found between male and female rats: Females had lower oxidative metabolism in several brainstem areas such as dorsal and median raphe and pontine nucleus, some cortical areas, and reward-related forebrain regions such as striatum and nucleus accumbens, but higher oxidative metabolism in amygdala and related limbic regions. Chronic stress increased oxidative metabolism in several depression-related brain regions in male but not female LC-rats such as amygdala, hippocampus and anterior thalamus. No systematic behavioral effect of stress was evident in females. In LC males, stress elicited increased levels of 22-kHz USVs, earlier and more stable reduction of weight gain, persistently lower sucrose intake and preference, and higher levels of immobility in the forced swimming test. These behavioral changes, accompanied by increased oxidative metabolism in limbic brain regions, indicate greater vulnerability to stress of male LC-rats, and suggest that in males low inherent positive affectivity predisposes to anxiety and affective disorders.

  6. Aerobic and anaerobic metabolism of bovine ciliary process: effects of metabolic and transport inhibitors.

    PubMed

    Braunagel, S C; Yorio, T

    1987-01-01

    In the present study we have measured the oxygen consumption and lactic acid production, under aerobic and anaerobic conditions, in the bovine ciliary process epithelium (CPE) in the presence and absence of transport modifiers. Basal oxygen consumption was 8-15 microliters O2 consumed/mg protein/hr and decreased by 35% when sodium was removed or ouabain was added to the media. Anaerobic metabolism as measured by lactate production was also attenuated by sodium-free or ouabain treatment. When O2 consumption was severely limited by cyanide, lactic acid production increased significantly ("Pasteur effect"), whereas 2-deoxyglucose reduced lactate formation. Both chloride-free and acetazolamide treated CPE increased their dependency on aerobic glycolysis, and this response was also observed under anaerobic conditions, suggesting the presence of an anion transport mechanism. A net lactate production was also found to occur across the aqueous epithelium under aerobic and anaerobic conditions. These results are consistent with the presence of a bicarbonate-sensitive anion transport system located in the ciliary process epithelium.

  7. Effects of processing style on responsiveness to affective stimuli and processing fluency.

    PubMed

    Dijkstra, Koen A; van der Pligt, Joop; van Kleef, Gerben A

    2014-01-01

    In the present study, we provide direct evidence for effects of global versus local processing on responsiveness to and reliance on affective information in judgement and decision-making. Results of Experiments 1 and 2 showed an increased responsiveness to affective stimuli among participants in a global processing mode. Experiment 3 showed similar effects for processing fluency; participants adopting a global processing style showed an increased reliance on fluency. Experiment 4 replicated our findings in a more mundane judgement task in which participants judged apartments. We discuss our findings in relation to the distinction between intuitive versus deliberative modes of thinking.

  8. Decreased Zinc Availability Affects Glutathione Metabolism in Neuronal Cells and in the Developing Brain

    PubMed Central

    Omata, Yo; Salvador, Gabriela A.; Oteiza, Patricia I.

    2013-01-01

    A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors. PMID:23377617

  9. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

    PubMed

    Menzies, Allyson K; Webber, Quinn M R; Baloun, Dylan E; McGuire, Liam P; Muise, Kristina A; Coté, Damien; Tinkler, Samantha; Willis, Craig K R

    2016-10-01

    Torpor is an adaptation that allows many endotherms to save energy by abandoning the energetic cost of maintaining elevated body temperatures. Although torpor reduces energy consumption, the metabolic heat production required to arouse from torpor is energetically expensive and can impact the overall cost of torpor. The rate at which rewarming occurs can impact the cost of arousal, therefore, factors influencing rewarming rates of heterothermic endotherms could have influenced the evolution of rewarming rates and overall energetic costs of arousal from torpor. Bats are a useful taxon for studies of ecological and behavioral correlates of rewarming rate because of the widespread expression of heterothermy and ecological diversity across the >1200 known species. We used a comparative analysis of 45 bat species to test the hypothesis that ecological, behavioral, and physiological factors affect rewarming rates. We used basal metabolic rate (BMR) as an index of thermogenic capacity, and local climate (i.e., latitude of geographic range), roost stability and maximum colony size as ecological and behavioral predictors of rewarming rate. After controlling for phylogeny, high BMR was associated with rapid rewarming while species that live at higher absolute latitudes and in less thermally stable roosts also rewarmed most rapidly. These patterns suggests that some bat species rely on passive rewarming and social thermoregulation to reduce costs of rewarming, while others might rely on thermogenic capacity to maintain rapid rewarming rates in order to reduce energetic costs of arousal. Our results highlight species-specific traits associated with maintaining positive energy balance in a wide range of climates, while also providing insight into possible mechanisms underlying the evolution of heterothermy in endotherms.

  10. Metabolic rate, latitude and thermal stability of roosts, but not phylogeny, affect rewarming rates of bats.

    PubMed

    Menzies, Allyson K; Webber, Quinn M R; Baloun, Dylan E; McGuire, Liam P; Muise, Kristina A; Coté, Damien; Tinkler, Samantha; Willis, Craig K R

    2016-10-01

    Torpor is an adaptation that allows many endotherms to save energy by abandoning the energetic cost of maintaining elevated body temperatures. Although torpor reduces energy consumption, the metabolic heat production required to arouse from torpor is energetically expensive and can impact the overall cost of torpor. The rate at which rewarming occurs can impact the cost of arousal, therefore, factors influencing rewarming rates of heterothermic endotherms could have influenced the evolution of rewarming rates and overall energetic costs of arousal from torpor. Bats are a useful taxon for studies of ecological and behavioral correlates of rewarming rate because of the widespread expression of heterothermy and ecological diversity across the >1200 known species. We used a comparative analysis of 45 bat species to test the hypothesis that ecological, behavioral, and physiological factors affect rewarming rates. We used basal metabolic rate (BMR) as an index of thermogenic capacity, and local climate (i.e., latitude of geographic range), roost stability and maximum colony size as ecological and behavioral predictors of rewarming rate. After controlling for phylogeny, high BMR was associated with rapid rewarming while species that live at higher absolute latitudes and in less thermally stable roosts also rewarmed most rapidly. These patterns suggests that some bat species rely on passive rewarming and social thermoregulation to reduce costs of rewarming, while others might rely on thermogenic capacity to maintain rapid rewarming rates in order to reduce energetic costs of arousal. Our results highlight species-specific traits associated with maintaining positive energy balance in a wide range of climates, while also providing insight into possible mechanisms underlying the evolution of heterothermy in endotherms. PMID:27317837

  11. Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB gene regulation.

    PubMed Central

    Lundrigan, M D; Kadner, R J

    1989-01-01

    Synthesis of the Escherichia coli outer membrane protein BtuB, which mediates the binding and transport of vitamin B12, is repressed when cells are grown in the presence of vitamin B12. Expression of btuB-lacZ fusions was also found to be repressed, and selection for constitutive production of beta-galactosidase in the presence of vitamin B12 yielded mutations at btuR. The btuR locus, at 27.9 min on the chromosome map, was isolated on a 952-base-pair EcoRV fragment, and its nucleotide sequence was determined. The BtuR protein was identified in maxicells as a 22,000-dalton polypeptide, as predicted from the nucleotide sequence. Strains mutant at btuR had negligible pools of adenosylcobalamin but did convert vitamin B12 into other derivatives. Although btuB expression in a btuR strain could not be repressed by cyano- or methylcobalamin, it was repressed by adenosylcobalamin. Growth on ethanolamine as the sole nitrogen source requires adenosylcobalamin. btuR mutants grew on ethanolamine but were affected in the length of the lag period before initiation of growth, which suggested that an alternative route for adenosylcobalamin synthesis might exist. No mutations were found that conferred constitutive btuB expression in the presence of adenosylcobalamin. Other genes near btuR may also be involved in cobalamin metabolism, as suggested from the complementation behavior of strains generated by excision of the Tn10 element in btuR. These results indicated that the btuR product is involved in the metabolism of adenosylcobalamin and that this cofactor, or some derivative, controls btuB expression. Images PMID:2644187

  12. Multiple dietary supplements do not affect metabolic and cardio-vascular health.

    PubMed

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2014-02-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m(2)) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals.

  13. Development of brain mechanisms for processing affective touch

    PubMed Central

    Björnsdotter, Malin; Gordon, Ilanit; Pelphrey, Kevin A.; Olausson, Håkan; Kaiser, Martha D.

    2014-01-01

    Affective tactile stimulation plays a key role in the maturation of neural circuits, but the development of brain mechanisms processing touch is poorly understood. We therefore used functional magnetic resonance imaging (fMRI) to study brain responses to soft brush stroking of both glabrous (palm) and hairy (forearm) skin in healthy children (5–13 years), adolescents (14–17 years), and adults (25–35 years). Adult-defined regions-of-interests in the primary somatosensory cortex (SI), secondary somatosensory cortex (SII), insular cortex and right posterior superior temporal sulcus (pSTS) were significantly and similarly activated in all age groups. Whole-brain analyses revealed that responses in the ipsilateral SII were positively correlated with age in both genders, and that responses in bilateral regions near the pSTS correlated significantly and strongly with age in females but not in males. These results suggest that brain mechanisms associated with both sensory-discriminative and affective-motivational aspects of touch are largely established in school-aged children, and that there is a general continuing maturation of SII and a female-specific increase in pSTS sensitivity with age. Our work establishes a groundwork for future comparative studies of tactile processing in developmental disorders characterized by disrupted social perception such as autism. PMID:24550800

  14. Processes affecting the distribution and speciation of selenium in seawater

    SciTech Connect

    Cutter, G.A.

    1982-01-01

    The analyses of dissolved selenium species in the Pacific Ocean and anoxic waters of the Saanich Inlet, selenium in fluxing particles, and the regeneration of selenium from biogenic matter has been undertaken in order to evaluate the processes affecting selenium in the ocean. Analyses of oceanic surface waters show selenite to be severely depleted, and the degree of selenate depletion, a function of the oceanic regime (i.e. most depleted in oligotrophic regions). Both species are enriched in deeper waters with an approximately 60:40 ratio of Se +6 to +4. A major species in surface waters and the upper thermocline is organic selenide. A secondary maximum of organic selenide is seen in the suboxic oxygen minimum of the eastern tropical Pacific, while selenite shows a negative anomaly. The regeneration of selenium from biogenic matter shows a multistep behavior, with organic selenide being released rapidly and primarily, selenite and selenate being produced by the slow oxidation of this fraction. Selenium in the ocean is affected by several processes. First organisms preferentially take-up selenite over selenate. This incorporation of selenium into biological material involves reduction to selenide. As selenium is regenerated from biogenic matter, first organic selenide is released, which in turn oxidizes to selenite, which then oxidizes very slowly to selenate. Finally, selenium does appear to undergo redox reactions in anoxic systems, but the products of the reactions remain unidentified.

  15. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein’s Beneficial Roles on Lipid Metabolism

    PubMed Central

    Fan, Ying; Li, Hongyu; Zhao, Nana; Yang, Huiqin; Ye, Xiaolei; He, Dongliang; Yang, Hui; Jin, Xin; Tian, Chong; Ying, Chenjiang

    2016-01-01

    Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein’s beneficial function on hepatic lipid metabolism. PMID:27171397

  16. Environmentally Relevant Dose of Bisphenol A Does Not Affect Lipid Metabolism and Has No Synergetic or Antagonistic Effects on Genistein's Beneficial Roles on Lipid Metabolism.

    PubMed

    Ding, Shibin; Zuo, Xuezhi; Fan, Ying; Li, Hongyu; Zhao, Nana; Yang, Huiqin; Ye, Xiaolei; He, Dongliang; Yang, Hui; Jin, Xin; Tian, Chong; Ying, Chenjiang

    2016-01-01

    Both bisphenol A (BPA, an endocrine disrupting chemicals) and genistein (a phytoestrogen mainly derived from leguminosae) are able to bind to estrogen receptors, but they are considered to have different effects on metabolic syndrome, surprisingly. We here investigate the effects of an environmentally relevant dose of BPA alone and the combined effects with genistein on lipid metabolism in rats. Eight groups of adult male Wistar rats, fed with either standard chow diet or high-fat diet, were treated with BPA (50μg/kg/day), genistein (10mg/kg/day), and BPA plus genistein for 35 weeks, respectively. Metabolic parameters in serum and liver were determined; the hematoxylin/eosin and oil Red O staining were used to observe liver histologically; gene expressions related to hepatic lipid metabolism were analyzed by Real-time PCR; protein expressions of PPARγ, PPARα and LC3 in liver were analyzed by western blotting. No difference of body weight gain, total energy intake, liver weight/body weight or body fat percentage in both STD- and HFD-fed sub-groups was observed after treatment with BPA, genistein, or BPA plus genistein (P>0.05). Genistein alleviated lipid metabolism disorder and decreased the mRNA and protein expression of PPARγ (P<0.05), and increased the protein expression of LC3II (P<0.05) in liver of HFD-fed rats. However, BPA treatment had no effect on lipid metabolism in rats alone (P>0.05) or combined with genistein. Our findings suggest that long-term environmentally relevant dose of BPA did not affect lipid metabolism, and had no synergetic or antagonistic roles on genistein's beneficial function on hepatic lipid metabolism. PMID:27171397

  17. Silicification of Thermophilic Biofilms: Do Aquificales Affect the Mineralisation Process?

    NASA Astrophysics Data System (ADS)

    Konhauser, K.; Lalonde, S.; Aguiar, P.; Reysenbach, A.

    2003-12-01

    In geothermal environments, biomineralisation is an inevitable consequence of microbes growing in solute-rich waters. The process of silicification is of particular interest due to (1) apparent discrepancies between natural and laboratory silicification rates and (2) siliceous microfossils currently serve as the earliest physical evidence for life on Earth. Although mesophilic microbe-silica interactions have been studied in great detail, there is a paucity of information on the role that thermophiles play in the silicification process, i.e., does their metabolism in any way facilitate silicification and do their cellular remains fossilise? To help resolve some of these uncertainties, a thermophilic, biofilm-forming member of the Aquificales order, Sulfurihydrogenobium azorense, was grown in the presence of various concentrations of silica, ranging from undersaturated to those extremely supersaturated with respect to amorphous silica. Since the chemolithoautotrophic Aquificales use of a wide range and combination of electron donors and acceptors, the bacteria cultured were grown in the presence of H2 with O2, S and Fe(III) as terminal electron acceptors. This study focused on the rates of pH-induced silica polymerisation during a 48 hour interval, when the soluble silica phase was at its most reactive stage, and when the greatest amount of silica immobilisation was likely to occur. S. azorense was found to have no detectable effect on the polymerisation rate of silica under any condition tested, nor did it cause silica to precipitate in undersaturated conditions. In addition, transmission electron microscopy showed that although silica did indeed precipitate from solution, there was no obvious association between solid-phase silica and the cells walls. This suggests that under high silica levels there is such a strong chemical driving force for silica polymerisation, homogeneous nucleation, and ultimately silica precipitation that there is no obvious need for

  18. Affective and executive network processing associated with persuasive antidrug messages.

    PubMed

    Ramsay, Ian S; Yzer, Marco C; Luciana, Monica; Vohs, Kathleen D; MacDonald, Angus W

    2013-07-01

    Previous research has highlighted brain regions associated with socioemotional processes in persuasive message encoding, whereas cognitive models of persuasion suggest that executive brain areas may also be important. The current study aimed to identify lateral prefrontal brain areas associated with persuasive message viewing and understand how activity in these executive regions might interact with activity in the amygdala and medial pFC. Seventy adolescents were scanned using fMRI while they watched 10 strongly convincing antidrug public service announcements (PSAs), 10 weakly convincing antidrug PSAs, and 10 advertisements (ads) unrelated to drugs. Antidrug PSAs compared with nondrug ads more strongly elicited arousal-related activity in the amygdala and medial pFC. Within antidrug PSAs, those that were prerated as strongly persuasive versus weakly persuasive showed significant differences in arousal-related activity in executive processing areas of the lateral pFC. In support of the notion that persuasiveness involves both affective and executive processes, functional connectivity analyses showed greater coactivation between the lateral pFC and amygdala during PSAs known to be strongly (vs. weakly) convincing. These findings demonstrate that persuasive messages elicit activation in brain regions responsible for both emotional arousal and executive control and represent a crucial step toward a better understanding of the neural processes responsible for persuasion and subsequent behavior change.

  19. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    PubMed

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). PMID:25530015

  20. The "Musical Emotional Bursts": a validated set of musical affect bursts to investigate auditory affective processing.

    PubMed

    Paquette, Sébastien; Peretz, Isabelle; Belin, Pascal

    2013-01-01

    The Musical Emotional Bursts (MEB) consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear) and neutrality. These musical bursts were designed to be the musical analog of the Montreal Affective Voices (MAV)-a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 s) improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (10 stimuli × 4 [3 emotions + neutral]), or a clarinet (10 stimuli × 4 [3 emotions + neutral]). The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, non-linguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli [30 stimuli × 4 (3 emotions + neutral) × 2 instruments] by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task); 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80) was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0%) and fearful or sad violin (88.0% each) MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems. PMID:23964255

  1. Diet-Induced Alterations of Host Cholesterol Metabolism Are Likely To Affect the Gut Microbiota Composition in Hamsters

    PubMed Central

    Martínez, Inés; Perdicaro, Diahann J.; Brown, Andrew W.; Hammons, Susan; Carden, Trevor J.; Carr, Timothy P.; Eskridge, Kent M.

    2013-01-01

    The gastrointestinal microbiota affects the metabolism of the mammalian host and has consequences for health. However, the complexity of gut microbial communities and host metabolic pathways make functional connections difficult to unravel, especially in terms of causation. In this study, we have characterized the fecal microbiota of hamsters whose cholesterol metabolism was extensively modulated by the dietary addition of plant sterol esters (PSE). PSE intake induced dramatic shifts in the fecal microbiota, reducing several bacterial taxa within the families Coriobacteriaceae and Erysipelotrichaceae. The abundance of these taxa displayed remarkably high correlations with host cholesterol metabolites. Most importantly, the associations between several bacterial taxa with fecal and biliary cholesterol excretion showed an almost perfect fit to a sigmoidal nonlinear model of bacterial inhibition, suggesting that host cholesterol excretion can shape microbiota structure through the antibacterial action of cholesterol. In vitro experiments suggested a modest antibacterial effect of cholesterol, and especially of cholesteryl-linoleate, but not plant sterols when included in model bile micelles. The findings obtained in this study are relevant to our understanding of gut microbiota-host lipid metabolism interactions, as they provide the first evidence for a role of cholesterol excreted with the bile as a relevant host factor that modulates the gut microbiota. The findings further suggest that the connections between Coriobacteriaceae and Erysipelotrichaceae and host lipid metabolism, which have been observed in several studies, could be caused by a metabolic phenotype of the host (cholesterol excretion) affecting the gut microbiota. PMID:23124234

  2. Breathing and affective picture processing across the adult lifespan.

    PubMed

    Gomez, Patrick; Filippou, Dimitra; Pais, Bruno; von Gunten, Armin; Danuser, Brigitta

    2016-09-01

    The present study investigated differences between healthy younger, middle-aged, and older adults in their respiratory responses to pictures of different valence and arousal. Expiratory time shortened and end-tidal PCO2 decreased with increasing arousal in all age groups; yet, compared to younger adults, older adults' overall change from baseline was smaller for expiratory time and larger for end-tidal PCO2. Contrary to their younger counterparts, older adults' inspiratory time did not shorten with increasing arousal. Inspiratory duty cycle did not covary with affective ratings for younger adults, increased with unpleasantness for middle-aged adults, and increased with arousal for older adults. Thoracic breathing increased with increasing unpleasantness only among older adults. Age had no effects on mean inspiratory flow and minute ventilation, which both augmented as arousal increased. We discuss how age effects on respiratory response magnitude and pattern may depend on age-associated biological changes or reflect age-related differences in emotional processing.

  3. Alkyl-methylimidazolium ionic liquids affect the growth and fermentative metabolism of Clostridium sp

    SciTech Connect

    Nancharaiah, Y.V.; Francis, A.

    2011-06-01

    In this study, the effect of ionic liquids, 1-ethyl-3-methylimidazolium acetate [EMIM][Ac], 1-ethyl-3-methylimidazolium diethylphosphate [EMIM][DEP], and 1-methyl-3-methylimidazolium dimethylphosphate [MMIM][DMP] on the growth and glucose fermentation of Clostridium sp. was investigated. Among the three ionic liquids tested, [MMIM][DMP] was found to be least toxic. Growth of Clostridium sp. was not inhibited up to 2.5, 4 and 4 g L{sup -1} of [EMIM][Ac], [EMIM][DEP] and [MMIM][DMP], respectively. [EMIM][Ac] at <2.5 g L{sup -1}, showed hormetic effect and stimulated the growth and fermentation by modulating medium pH. Total organic acid production increased in the presence of 2.5 and 2 g L{sup -1} of [EMIM][Ac] and [MMIM][DMP]. Ionic liquids had no significant influence on alcohol production at <2.5 g L{sup -1}. Total gas production was affected by ILs at {ge}2.5 g L{sup -1} and varied with type of methylimidazolium IL. Overall, the results show that the growth and fermentative metabolism of Clostridium sp. is not impacted by ILs at concentrations below 2.5 g L{sup -1}.

  4. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats.

    PubMed

    Silva, Ana Paula S; Guimarães, Daniella E D; Mizurini, Daniella M; Maia, Ingrid C; Ortiz-Costa, Susana; Sardinha, Fátima L; do Carmo, Maria G Tavares

    2006-06-01

    The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources--partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)--were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.

  5. Zinc deficiency (ZD) without starvation affects thyroid hormone metabolism of rats

    SciTech Connect

    Lukaski, H.C.; Smith, S.M.; Hall, C.B.; Bucher, D.R. )

    1991-03-15

    Young rats fed diets severely deficient in Zn exhibit impaired growth and endocrine function. These hormone effects may be confounded by cyclical feeding and starvation. To examine the effects of zinc deficiency (ZD) with and without starvation, 40 male weanling Sprague-Dawley rats were fed a semipurified diet containing all essential nutrients and 30 ppm Zn until they weighed 150 g, then were matched by weight into four groups and were fed one of the following diets for 28d: ad lib control Zn diet, marginal ZD diet, severe ZD diet, and C diet pair-fed (PF) in amounts consumed by matched ZD1 rat. Food intake was depressed in ZD1; body weights were reduced in ZD1 and PF. There was no difference in either food intake or weight gain between C and ZD6. ZD reduced liver and femur Zn concentrations. Plasma thyroxine (T{sub 4}) concentration was greater in ZD6 then ZD1 or PF, but less than C; triodothyronine concentration was less in PF than C, but similar to ZD1 and ZD6. Hepatic T{sub 4}-5{prime}-deiodinase activity was greater in ZD6 than ZD1 or PF, but less than C. These findings indicate that altered thyroid hormone metabolism of severe ZD is related to Zn intake and starvation, whereas ZD uncomplicated by starvation affects peripheral deiodination of T{sub 4}, and suggests altered rates of thyroid hormone synthesis or degradation.

  6. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. PMID:27380366

  7. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism.

    PubMed

    Kusch, Ute; Harms, Karsten; Rausch, Thomas; Greiner, Steffen

    2009-01-01

    Plant fructan active enzymes (FAZYs), including the enzymes involved in inulin metabolism, namely sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) and fructan 1-exohydrolase (1-FEH; EC 3.2.1.153), are evolutionarily related to acid invertases (AIs), that is, plant cell wall invertase (CWI) and vacuolar invertase (VI). Acid invertases are post-translationally controlled by proteinaceous inhibitors. Whether FAZYs are subject to similar controls is not known. To probe their possible interactions with invertase inhibitors, we transiently expressed chicory (Cichorium intybus) FAZYs, as well as several previously characterized invertase inhibitors from nonfructan species, and the C. intybus cell wall/vacuolar inhibitor of fructosidase (CiC/VIF), a putative invertase inhibitor of a fructan-accumulating plant, in leaves of Nicotiana benthamiana. Leaf extracts containing recombinant, enzymatically active FAZYs were used to explore the interaction with invertase inhibitors. Neither heterologous inhibitors nor CiC/VIF affected FAZY activities. CiC/VIF was confirmed as an AI inhibitor with a stronger effect on CWI than on VI. Its expression in planta was developmentally regulated (high in taproots, and undetectable in leaves and flowers). In agreement with its target specificities, CiC/VIF was associated with the cell wall. It is concluded that subtle structural differences between AIs and FAZYs result in pronounced selectivity of inhibitor action.

  8. Hepatitis B virus (HBV) X protein-mediated regulation of hepatocyte metabolic pathways affects viral replication.

    PubMed

    Bagga, Sumedha; Rawat, Siddhartha; Ajenjo, Marcia; Bouchard, Michael J

    2016-11-01

    Chronic HBV infection is a risk factor for hepatocellular carcinoma (HCC). The HBV HBx protein stimulates HBV replication and likely influences the development of HBV-associated HCC. Whether HBx affects regulators of metabolism in normal hepatocytes has not been addressed. We used an ex vivo, cultured primary rat hepatocyte system to assess the interplay between HBV replication and mechanistic target of rapamycin complex 1 (mTORC1) signaling. HBx activated mTORC1 signaling; however, inhibition of mTORC1 enhanced HBV replication. HBx also decreased ATP levels and activated the energy-sensing factor AMP-activated protein kinase (AMPK). Inhibition of AMPK decreased HBV replication. Inhibition of AMPK activates mTORC1, and we showed that activated mTORC1 is one factor that reduces HBV replication when AMPK is inhibited. HBx activation of both AMPK and mTORC1 suggests that these activities could provide a balancing mechanism to facilitate persistent HBV replication. HBx activation of mTORC1 and AMPK could also influence HCC development.

  9. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants.

  10. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley.

    PubMed

    Ghaffari, Mohammad Reza; Ghabooli, Mehdi; Khatabi, Behnam; Hajirezaei, Mohammad Reza; Schweizer, Patrick; Salekdeh, Ghasem Hosseini

    2016-04-01

    The root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants. To this end, leaf samples were harvested at control (0 mM NaCl) and severe salt stress (300 mM NaCl) in P. indica-colonized and non-inoculated barley plants 4 weeks after fungal inoculation. The metabolome analysis resulted in an identification of a signature containing 14 metabolites and ions conferring tolerance to salt stress. Gene expression analysis has led to the identification of 254 differentially expressed genes at 0 mM NaCl and 391 genes at 300 mM NaCl in P. indica-colonized compared to non-inoculated samples. The integration of metabolome and transcriptome analysis indicated that the major and minor carbohydrate metabolism, nitrogen metabolism, and ethylene biosynthesis pathway might play a role in systemic salt-tolerance in leaf tissue induced by the root-colonized fungus.

  11. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley.

    PubMed

    Ghaffari, Mohammad Reza; Ghabooli, Mehdi; Khatabi, Behnam; Hajirezaei, Mohammad Reza; Schweizer, Patrick; Salekdeh, Ghasem Hosseini

    2016-04-01

    The root endophytic fungus Piriformospora indica enhances plant adaptation to environmental stress based on general and non-specific plant species mechanisms. In the present study, we integrated the ionomics, metabolomics, and transcriptomics data to identify the genes and metabolic regulatory networks conferring salt tolerance in P. indica-colonized barley plants. To this end, leaf samples were harvested at control (0 mM NaCl) and severe salt stress (300 mM NaCl) in P. indica-colonized and non-inoculated barley plants 4 weeks after fungal inoculation. The metabolome analysis resulted in an identification of a signature containing 14 metabolites and ions conferring tolerance to salt stress. Gene expression analysis has led to the identification of 254 differentially expressed genes at 0 mM NaCl and 391 genes at 300 mM NaCl in P. indica-colonized compared to non-inoculated samples. The integration of metabolome and transcriptome analysis indicated that the major and minor carbohydrate metabolism, nitrogen metabolism, and ethylene biosynthesis pathway might play a role in systemic salt-tolerance in leaf tissue induced by the root-colonized fungus. PMID:26951140

  12. Processes Controlling Temporal Changes in Agriculturally-Affected Groundwater

    NASA Astrophysics Data System (ADS)

    Burow, K. R.; Belitz, K.; Jurgens, B. C.

    2014-12-01

    The National Water Quality Assessment (NAWQA) program of the U.S. Geological Survey includes assessment of groundwater-quality changes with time. To better understand changes at a national scale, NAWQA has implemented smaller scale flow-path studies to evaluate the processes affecting these changes. Flow path studies are designed to sample groundwater of different ages. Wells are sampled for a suite of constituents, including tracers of groundwater age. In the 1990s, a 4.6 km transect of monitoring wells was installed near Fresno in the southern Central Valley of California. The region is dominated by intensive agriculture. The wells were sampled in 1994-95, 2003, and 2013 to provide data on changes in water quality and groundwater age. In 2013, the flow path was extended to a regional scale (30 km) by using existing production wells. Preliminary interpretation of the local-scale flow path indicates that nitrate concentrations in the upper 25 m of the aquifer are higher than the USEPA Maximum Contaminant Level (MCL) for drinking water and variably increase or decrease with time. At intermediate depths (25-40 m), nitrate concentrations are lower and show small to moderate increases. The legacy pesticide 1,2-dibromo-3-chloropropane (DBCP) is degrading at a half-life of about 4-6 years. DBCP is present above the MCL at intermediate depths even though it is has been banned from use for more than 30 years. Both nitrate and DBCP appear to be moving vertically downward through the aquifer. Whereas uranium concentrations are generally below the MCL in the local-scale flow path, concentrations increase along the regional transect, with concentrations nearly an order of magnitude above the MCL in some wells. Further evaluation of processes affecting these constituents (such as source, redox, and mobilization factors) will provide important insight that can be applied to other regions and will assist local water managers.

  13. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    PubMed

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  14. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  15. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  16. Culture surfaces coated with various implant materials affect chondrocyte growth and metabolism.

    PubMed

    Hambleton, J; Schwartz, Z; Khare, A; Windeler, S W; Luna, M; Brooks, B P; Dean, D D; Boyan, B D

    1994-07-01

    to culture surface was comparable, differing primarily in magnitude. Cell maturation-dependent effects were evident when enzyme activity in trypsinized and scraped cells was compared. These results indicate that different surface materials affect chondrocyte metabolism and phenotypic expression in vitro and suggest that implant materials may modulate the phenotypic expression of cells in vivo. PMID:7520486

  17. How processing digital elevation models can affect simulated water budgets

    USGS Publications Warehouse

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  18. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy.

    PubMed

    Holmbäck, Ulf; Forslund, Anders; Forslund, Jeanette; Hambraeus, Leif; Lennernäs, Maria; Lowden, Arne; Stridsberg, Mats; Akerstedt, Torbjörn

    2002-07-01

    Because night work is becoming more prevalent, we studied whether feeding at different times of a 24-h period would elicit different metabolic responses and whether dietary macronutrient composition would affect these responses. Seven men (26-43 y, 19.9-26.6 kg/m(2)) consumed two isocaloric diets, in a crossover design. The diets were a high carbohydrate (HC) diet [65 energy % (E%) carbohydrates, 20E% fat] and a high fat (HF) diet (40E% carbohydrates, 45E% fat). After a 6-d diet-adjustment period, the men were kept awake for 24 h and the food (continuation of respective diet) was provided as six isocaloric meals (i.e., every 4 h). Energy and substrate turnover, heart rate, mean arterial pressure (MAP), blood glucose, triacylglycerol (TAG), nonesterified fatty acid (NEFA) and glycerol were measured throughout the 24-h period. Significantly higher energy expenditure and NEFA concentration, and lower blood glucose and TAG concentrations were observed when the men consumed the HF diet than when they consumed the HC diet. Significant circadian patterns were seen in body and skin temperature (nadir, 0400-0500 h). When the men consumed the HF diet, significant circadian patterns were seen in fat oxidation (nadir, 0800-1200 h; plateau, 1200-0800 h), heat release (nadir, 0800-1200 h; plateau, 1600-0800 h), heart rate (nadir, 0000 h), blood glucose (nadir, 0800-1200 h; peak, 0000-0400 h), NEFA (nadir, 0800-1200 h; peak, 1200-2000 h) and TAG (nadir, 0800-1200 h; peak, 0400-0800 h) concentrations. Energy expenditure, carbohydrate oxidation, MAP and glycerol concentration did not display circadian patterns. Unequal variances eradicated most circadian effects in the HC-diet data. The increased TAG concentration in response to feeding at 0400 h might be involved in the higher TAG concentrations seen in shift workers. Distinct macronutrient/circadian-dependent postprandial responses were seen in most studied variables.

  19. Wilson disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease

    PubMed Central

    Medici, Valentina; Shibata, Noreene M.; Kharbanda, Kusum K.; LaSalle, Janine M.; Woods, Rima; Liu, Sarah; Engelberg, Jesse A.; Devaraj, Sridevi; Török, Natalie J.; Jiang, Joy X.; Havel, Peter J.; Lönnerdal, Bo; Kim, Kyoungmi; Halsted, Charles H.

    2012-01-01

    Hepatic methionine metabolism may play an essential role in regulating methylation status and liver injury in Wilson disease (WD) through the inhibition of S-adenosylhomocysteine hydrolase (SAHH) by copper (Cu) and the consequent accumulation of S-adenosylhomocysteine (SAH). We studied the transcript levels of selected genes related to liver injury, levels of SAHH, SAH, DNA methyltransferases genes (Dnmt1, Dnmt3a, Dnmt3b) and global DNA methylation in the tx-j mouse (tx-j), an animal model of WD. Findings were compared to those in control C3H mice, and in response to Cu chelation by penicillamine (PCA) and dietary supplementation of the methyl donor betaine to modulate inflammatory and methylation status. Transcript levels of selected genes related to endoplasmic reticulum stress, lipid synthesis, and fatty acid oxidation were down-regulated at baseline in tx-j mice, further down-regulated in response to PCA, and showed little to no response to betaine. Hepatic Sahh transcript and protein levels were reduced in tx-j mice with consequent increase of SAH levels. Hepatic Cu accumulation was associated with inflammation, as indicated by histopathology and elevated serum ALT and liver tumor necrosis factor alpha (Tnf-α) levels. Dnmt3b was down-regulated in tx-j mice together with global DNA hypomethylation. PCA treatment of tx-j mice reduced Tnf-α and ALT levels, betaine treatment increased S-adenosylmethionine and up-regulated Dnmt3b levels, and both treatments restored global DNA methylation levels. Conclusion: reduced hepatic Sahh expression was associated with increased liver SAH levels in the tx-j model of WD, with consequent global DNA hypomethylation. Increased global DNA methylation was achieved by reducing inflammation by Cu chelation or by providing methyl groups. We propose that increased SAH levels and inflammation affect widespread epigenetic regulation of gene expression in WD. PMID:22945834

  20. Metabolic responses to nocturnal eating in men are affected by sources of dietary energy.

    PubMed

    Holmbäck, Ulf; Forslund, Anders; Forslund, Jeanette; Hambraeus, Leif; Lennernäs, Maria; Lowden, Arne; Stridsberg, Mats; Akerstedt, Torbjörn

    2002-07-01

    Because night work is becoming more prevalent, we studied whether feeding at different times of a 24-h period would elicit different metabolic responses and whether dietary macronutrient composition would affect these responses. Seven men (26-43 y, 19.9-26.6 kg/m(2)) consumed two isocaloric diets, in a crossover design. The diets were a high carbohydrate (HC) diet [65 energy % (E%) carbohydrates, 20E% fat] and a high fat (HF) diet (40E% carbohydrates, 45E% fat). After a 6-d diet-adjustment period, the men were kept awake for 24 h and the food (continuation of respective diet) was provided as six isocaloric meals (i.e., every 4 h). Energy and substrate turnover, heart rate, mean arterial pressure (MAP), blood glucose, triacylglycerol (TAG), nonesterified fatty acid (NEFA) and glycerol were measured throughout the 24-h period. Significantly higher energy expenditure and NEFA concentration, and lower blood glucose and TAG concentrations were observed when the men consumed the HF diet than when they consumed the HC diet. Significant circadian patterns were seen in body and skin temperature (nadir, 0400-0500 h). When the men consumed the HF diet, significant circadian patterns were seen in fat oxidation (nadir, 0800-1200 h; plateau, 1200-0800 h), heat release (nadir, 0800-1200 h; plateau, 1600-0800 h), heart rate (nadir, 0000 h), blood glucose (nadir, 0800-1200 h; peak, 0000-0400 h), NEFA (nadir, 0800-1200 h; peak, 1200-2000 h) and TAG (nadir, 0800-1200 h; peak, 0400-0800 h) concentrations. Energy expenditure, carbohydrate oxidation, MAP and glycerol concentration did not display circadian patterns. Unequal variances eradicated most circadian effects in the HC-diet data. The increased TAG concentration in response to feeding at 0400 h might be involved in the higher TAG concentrations seen in shift workers. Distinct macronutrient/circadian-dependent postprandial responses were seen in most studied variables. PMID:12097665

  1. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome.

    PubMed

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  2. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome

    PubMed Central

    Ravera, Silvia; Dufour, Carlo; Cesaro, Simone; Bottega, Roberta; Faleschini, Michela; Cuccarolo, Paola; Corsolini, Fabio; Usai, Cesare; Columbaro, Marta; Cipolli, Marco; Savoia, Anna; Degan, Paolo; Cappelli, Enrico

    2016-01-01

    Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca2+]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials. PMID:27146429

  3. Early life stress affects cerebral glucose metabolism in adult rhesus monkeys (Macaca mulatta).

    PubMed

    Parr, Lisa A; Boudreau, Matthew; Hecht, Erin; Winslow, James T; Nemeroff, Charles B; Sánchez, Mar M

    2012-01-01

    Early life stress (ELS) is a risk factor for anxiety, mood disorders and alterations in stress responses. Less is known about the long-term neurobiological impact of ELS. We used [(18)F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) to assess neural responses to a moderate stress test in adult monkeys that experienced ELS as infants. Both groups of monkeys showed hypothalamic-pituitary-adrenal (HPA) axis stress-induced activations and cardiac arousal in response to the stressor. A whole brain analysis detected significantly greater regional cerebral glucose metabolism (rCGM) in superior temporal sulcus, putamen, thalamus, and inferotemporal cortex of ELS animals compared to controls. Region of interest (ROI) analyses performed in areas identified as vulnerable to ELS showed greater activity in the orbitofrontal cortex of ELS compared to control monkeys, but greater hippocampal activity in the control compared to ELS monkeys. Together, these results suggest hyperactivity in emotional and sensory processing regions of adult monkeys with ELS, and greater activity in stress-regulatory areas in the controls. Despite these neural responses, no group differences were detected in neuroendocrine, autonomic or behavioral responses, except for a trend towards increased stillness in the ELS monkeys. Together, these data suggest hypervigilance in the ELS monkeys in the absence of immediate danger. PMID:22682736

  4. Emotional Language Processing: How Mood Affects Integration Processes during Discourse Comprehension

    ERIC Educational Resources Information Center

    Egidi, Giovanna; Nusbaum, Howard C.

    2012-01-01

    This research tests whether mood affects semantic processing during discourse comprehension by facilitating integration of information congruent with moods' valence. Participants in happy, sad, or neutral moods listened to stories with positive or negative endings during EEG recording. N400 peak amplitudes showed mood congruence for happy and sad…

  5. Processes Affecting Nitrogen Speciation in a Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Wong, C. I.

    2011-12-01

    Like many karst aquifers, the Barton Springs segment of the Edwards aquifer, in central Texas, is in an area undergoing rapid growth in population, and there is concern as to how increased amounts of wastewater might affect groundwater quality. We measured concentrations and estimated loads of nitrogen (N) species in recharge to and discharge from the Barton Springs segment of the Edwards aquifer, central Texas, to evaluate processes affecting the transport and fate of N species in groundwater. Water samples were collected during 17 months (November 2008-March 2010) from five streams that contribute about 85% of recharge to the aquifer segment and from Barton Springs, the principal point of discharge from the segment. The sampling period spanned a range of climatic conditions from exceptional drought to above-normal rainfall. Samples were analyzed for N species (organic N + ammonia, ammonia, nitrate + nitrite, nitrite); loads of organic N and nitrate were estimated with LOADEST, a regression-based model that uses a time series of streamflow and measured constituent concentrations to estimate constituent loads. Concentrations of organic nitrogen and dissolved oxygen were higher and concentrations of nitrate were lower in surface water than in spring discharge, consistent with conversion of organic nitrogen to nitrate and associated consumption of dissolved oxygen in the aquifer. During the period of the study, the estimated load of organic N in recharge from streams (average daily load [adl] of 39 kg/d) was about 10 times that in Barton Springs discharge (adl of 9.4 kg/d), whereas the estimated load of nitrate in recharge from streams (adl of 123 kg/d) was slightly less than that in Barton Springs discharge (adl of 148 kg/d). The total average N load in recharge from streams and discharge from Barton Springs was not significantly different (adl of 162 and 157 kg/d, respectively), indicating that surface-water recharge can account for all of the N in Barton Springs

  6. Sources and Processes Affecting Particulate Matter Pollution over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  7. Addiction Motivation Reformulated: An Affective Processing Model of Negative Reinforcement

    ERIC Educational Resources Information Center

    Baker, Timothy B.; Piper, Megan E.; McCarthy, Danielle E.; Majeskie, Matthew R.; Fiore, Michael C.

    2004-01-01

    This article offers a reformulation of the negative reinforcement model of drug addiction and proposes that the escape and avoidance of negative affect is the prepotent motive for addictive drug use. The authors posit that negative affect is the motivational core of the withdrawal syndrome and argue that, through repeated cycles of drug use and…

  8. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor

    PubMed Central

    Choi, Bom-Ie; Harvey, Alexandra J.; Green, Mark P.

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  9. Bisphenol A affects early bovine embryo development and metabolism that is negated by an oestrogen receptor inhibitor.

    PubMed

    Choi, Bom-Ie; Harvey, Alexandra J; Green, Mark P

    2016-01-01

    Increasing evidence supports an association between exposure to endocrine disruptors, such as the xenoestrogen bisphenol A (BPA), a commonly used plasticiser, and the developmental programming of offspring health. To date however animal studies to investigate a direct causal have mainly focussed on supra-environmental BPA concentrations, without investigating the effect on the early embryo. In this study we investigated the effect of acute BPA exposure (days 3.5 to 7.5 post-fertilisation) at environmentally relevant concentrations (1 and 10 ng/mL) on in vitro bovine embryo development, quality and metabolism. We then examined whether culturing embryos in the presence of the oestrogen receptor inhibitor fulvestrant could negate effects of BPA and 17β-oestradiol (E2). Exposure to BPA or E2 (10 ng/mL) decreased blastocyst rate and the percentage of transferrable quality embryos, without affecting cell number, lineage allocation or metabolic gene expression compared to untreated embryos. Notably, blastocysts exposed to BPA and E2 (10 ng/mL) displayed an increase in glucose consumption. The presence of fulvestrant however negated the adverse developmental and metabolic effects, suggesting BPA elicits its effects via oestrogen-mediated pathways. This study demonstrates that even acute exposure to an environmentally relevant BPA concentration can affect early embryo development and metabolism. These may have long-term health consequences on an individual. PMID:27384909

  10. The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health?

    PubMed

    De Preter, Vicky; Hamer, Henrike M; Windey, Karen; Verbeke, Kristin

    2011-01-01

    Since many years, the role of the colonic microbiota in maintaining the host's overall health and well-being has been recognized. Dietary modulation of the microbiota composition and activity has been achieved by the use of pre-, pro- and synbiotics. In this review, we will summarize the available evidence on the modification of bacterial metabolism by dietary intervention with pre-, pro- and synbiotics. Enhanced production of SCFA as a marker of increased saccharolytic fermentation is well documented in animal and in vitro studies. Decreased production of potentially toxic protein fermentation metabolites, such as sulfides, phenolic and indolic compounds, has been less frequently demonstrated. Besides, pre-, pro- and synbiotics also affect other metabolic pathways such as the deconjugation of secondary bile acids, bacterial enzyme activities and mineral absorption. Data from human studies are less conclusive. The emergence of new analytical techniques such as metabolite profiling has revealed new pathways affected by dietary intervention. However, an important challenge for current and future research is to relate changes in bacterial metabolism to concrete health benefits. Potential targets and expected benefits have been identified: reduced risk for the metabolic syndrome and prevention of colorectal cancer. PMID:21207512

  11. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  12. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    PubMed

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. PMID:21605693

  13. Thermal conditions experienced during differentiation affect metabolic and contractile phenotypes of mouse myotubes.

    PubMed

    Little, Alex G; Seebacher, Frank

    2016-09-01

    Central pathways regulate metabolic responses to cold in endotherms to maintain relatively stable internal core body temperatures. However, peripheral muscles routinely experience temperatures lower than core body temperature, so that it would be advantageous for peripheral tissues to respond to temperature changes independently from core body temperature regulation. Early developmental conditions can influence offspring phenotypes, and here we tested whether developing muscle can compensate locally for the effects of cold exposure independently from central regulation. Muscle myotubes originate from undifferentiated myoblasts that are laid down during embryogenesis. We show that in a murine myoblast cell line (C2C12), cold exposure (32°C) increased myoblast metabolic flux compared with 37°C control conditions. Importantly, myotubes that differentiated at 32°C compensated for the thermodynamic effects of low temperature by increasing metabolic rates, ATP production, and glycolytic flux. Myotube responses were also modulated by the temperatures experienced by "parent" myoblasts. Myotubes that differentiated under cold exposure increased activity of the AMP-stimulated protein kinase (AMPK), which may mediate metabolic changes in response cold exposure. Moreover, cold exposure shifted myosin heavy chains from slow to fast, presumably to overcome slower contractile speeds resulting from low temperatures. Adjusting thermal sensitivities locally in peripheral tissues complements central thermoregulation and permits animals to maintain function in cold environments. Muscle also plays a major metabolic role in adults, so that developmental responses to cold are likely to influence energy expenditure later in life. PMID:27385733

  14. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  15. MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation

    PubMed Central

    Desideri, Enrico; Vegliante, Rolando; Cardaci, Simone; Nepravishta, Ridvan; Paci, Maurizio; Ciriolo, Maria Rosa

    2014-01-01

    Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation. PMID:25046111

  16. Assessment of metabolic flux distribution in the thermophilic hydrogen producer Caloramator celer as affected by external pH and hydrogen partial pressure

    PubMed Central

    2014-01-01

    Background Caloramator celer is a strict anaerobic, alkalitolerant, thermophilic bacterium capable of converting glucose to hydrogen (H2), carbon dioxide, acetate, ethanol and formate by a mixed acid fermentation. Depending on the growth conditions C. celer can produce H2 at high yields. For a biotechnological exploitation of this bacterium for H2 production it is crucial to understand the factors that regulate carbon and electron fluxes and therefore the final distribution of metabolites to channel the metabolic flux towards the desired product. Results Combining experimental results from batch fermentations with genome analysis, reconstruction of central carbon metabolism and metabolic flux analysis (MFA), this study shed light on glucose catabolism of the thermophilic alkalitolerant bacterium C. celer. Two innate factors pertaining to culture conditions have been identified to significantly affect the metabolic flux distribution: culture pH and partial pressures of H2 (PH2). Overall, at alkaline to neutral pH the rate of biomass synthesis was maximized, whereas at acidic pH the lower growth rate and the less efficient biomass formation are accompanied with more efficient energy recovery from the substrate indicating high cell maintenance possibly to sustain intracellular pH homeostasis. Higher H2 yields were associated with fermentation at acidic pH as a consequence of the lower synthesis of other reduced by-products such as formate and ethanol. In contrast, PH2 did not affect the growth of C. celer on glucose. At high PH2 the cellular redox state was balanced by rerouting the flow of carbon and electrons to ethanol and formate production allowing unaltered glycolytic flux and growth rate, but resulting in a decreased H2 synthesis. Conclusion C. celer possesses a flexible fermentative metabolism that allows redistribution of fluxes at key metabolic nodes to simultaneously control redox state and efficiently harvest energy from substrate even under unfavorable

  17. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory.

    PubMed

    Pettersen, Amanda K; White, Craig R; Marshall, Dustin J

    2015-11-22

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects-larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed.

  18. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory.

    PubMed

    Pettersen, Amanda K; White, Craig R; Marshall, Dustin J

    2015-11-22

    Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects-larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. PMID:26559952

  19. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  20. Genotypic variation in tomatoes affecting processing and antioxidant attributes.

    PubMed

    Siddiqui, Mohammed Wasim; Ayala-Zavala, J F; Dhua, R S

    2015-01-01

    Tomatoes are widely consumed either raw or after processing and can provide a significant proportion of the total antioxidants in the diet associated with beneficial health properties. Over the last two or three decades an increasing interest for processing and antioxidant attributes in tomatoes has arisen. The screening of processing attributes of tomatoes is subject of a large number of articles; however, special interest has been addressed to the biochemical composition. The postharvest and industrial processing of tomato in tomato-based products includes several steps. Processing and antioxidant characteristics of the raw fruit are important considering the processing steps and final product. To respond to consumer and industrial complaints, breeders should know the range of genetic variability available in tomato resources, including local genotypes, for improving the mentioned attributes. Characterization and conservation of traditional and modern varieties is a major goal for their preservation and utilization. The bioactive contents have an impact on the processed destines so their stability must be contemplated while selecting the tomato fruits for processing. The endeavor of this review was to examine comprehensively the variation in processing and antioxidant attributes among tomatoes. Role of tomato peel in terms of bioactive contents and information on high pigment (hp) tomato mutants are also touched to some extent. Probably, patterns of variation identified/discussed in this paper would give impetus for planning breeding strategies to develop and improve the new processing cultivars with good antioxidant status.

  1. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    PubMed Central

    de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain

    2015-01-01

    Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389

  2. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy.

    PubMed

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-03-25

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical (in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an anti-osteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint.

  3. Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy

    PubMed Central

    McCarthy, Antonio Desmond; Cortizo, Ana María; Sedlinsky, Claudia

    2016-01-01

    Patients with long-term type 1 and type 2 diabetes mellitus (DM) can develop skeletal complications or “diabetic osteopathy”. These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphate-activated protein kinase (AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical (in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an anti-osteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint. PMID:27022443

  4. Improvement of Oxidative and Metabolic Parameters by Cellfood Administration in Patients Affected by Neurodegenerative Diseases on Chelation Treatment

    PubMed Central

    Fulgenzi, Alessandro; Giuseppe, Rachele De; Bamonti, Fabrizia; Ferrero, Maria Elena

    2014-01-01

    Objective. This prospective pilot study aimed at evaluating the effects of therapy with antioxidant compounds (Cellfood, and other antioxidants) on patients affected by neurodegenerative diseases (ND), who displayed toxic metal burden and were subjected to chelation treatment with the chelating agent calcium disodium ethylenediaminetetraacetic acid (CaNa2EDTA or EDTA). Methods. Two groups of subjects were studied: (a) 39 patients affected by ND and (b) 11 subjects unaffected by ND (controls). The following blood parameters were analyzed before and after three months' treatment with chelation + Cellfood or chelation + other antioxidants: oxidative status (reactive oxygen species, ROS; total antioxidant capacity, TAC; oxidized LDL, oxLDL; glutathione), homocysteine, vitamin B12, and folate. Results. After 3-months' chelation + Cellfood administration oxLDL decreased, ROS levels were significantly lower, and TAC and glutathione levels were significantly higher than after chelation + other antioxidants treatment, both in ND patients and in controls. Moreover, homocysteine metabolism had also improved in both groups. Conclusions. Chelation + Cellfood treatment was more efficient than chelation + other antioxidants improving oxidative status and homocysteine metabolism significantly in ND patients and controls. Although limited to a small number of cases, this study showed how helpful antioxidant treatment with Cellfood was in improving the subjects' metabolic conditions. PMID:25114898

  5. How Word Frequency Affects Morphological Processing in Monolinguals and Bilinguals

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Laine, Matti

    2003-01-01

    The present study investigated processing of morphologically complex words in three different frequency ranges in monolingual Finnish speakers and Finnish-Swedish bilinguals. By employing a visual lexical decision task, we found a differential pattern of results in monolinguals vs. bilinguals. Monolingual Finns seemed to process low frequency and…

  6. Polysaccharide from seeds of Plantago asiatica L. affects lipid metabolism and colon microbiota of mouse.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Wu, Qi-Meng; Li, Chang; Fu, Zhi-Hong; Gong, Joshua; Cui, Steve W; Xie, Ming-Yong

    2014-01-01

    Polysaccharide from the seeds of Plantago asiatica L. was given via oral administration to mice (0.4 g/kg body weight, 30 days) to observe its effects on mouse nutrient metabolism and colon microbiota. It was found the polysaccharide intake could lower the apparent absorption of lipid. Total triglyceride, cholesterol, and atherogenic index in blood serum with total lipid and cholesterol levels in liver of polysaccharide group mice were all significantly lower than those of the control group (p < 0.05). Furthermore, the effect of the polysaccharide intake on mouse colon bacterial communities was investigated. Mice from the polysaccharide group showed a higher colon bacterial diversity than the control group. Bacteroides sp., Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probiotics Bifidobacterium bifidum , Lactobacillus fermentum , and Lactobacillus reuteri in mouse colon were all increased after polysaccharide intake. These indicated that the intake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolism and colon microbiota. PMID:24341731

  7. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    PubMed Central

    Oliveira, Jose Henrique M.; Gonçalves, Renata L.S.; Oliveira, Giselle A.; Oliveira, Pedro L.; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when State-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of P. berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  8. Factors Affecting Location Decisions of Food Processing Plants

    NASA Astrophysics Data System (ADS)

    Turhan, Sule; Canan Ozbag, Basak; Cetin, Bahattin

    The main aim of this study is to examine the determinants of location choices for food processing plants using the results of 59 personal surveys. The 61.3% of the food processing plants that were interviewed are small scale plants, 9.1% are large scale plants and 29.6% are medium scale plants. Sixteen of the firms process vegetables, 12 process poultry, 12 process dairy and 9 process seafood products. Business climate factors are divided into six categories (market, infrastructure, raw material, labor, personal and environmental) and 17 specific location factors are considered. The survey responses are analyzed by types of raw materials processed and by plant size. 43.7, 55.3 and 42.2% of the respondents cited categories of Market, Raw Material and Infrastructure respectively as important, while 44.3, 50.7 and 74.4% of the respondents cited, labor, personal and environmental regulation categories of as not important. Thus survey findings indicate that plant location choices are mainly driven by market, raw material and infra structural factors. Environmental factors such as environmental regulations and permissions are relatively insignificant.

  9. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria.

  10. Vocal performance affects metabolic rate in dolphins: implications for animals communicating in noisy environments.

    PubMed

    Holt, Marla M; Noren, Dawn P; Dunkin, Robin C; Williams, Terrie M

    2015-06-01

    Many animals produce louder, longer or more repetitious vocalizations to compensate for increases in environmental noise. Biological costs of increased vocal effort in response to noise, including energetic costs, remain empirically undefined in many taxa, particularly in marine mammals that rely on sound for fundamental biological functions in increasingly noisy habitats. For this investigation, we tested the hypothesis that an increase in vocal effort would result in an energetic cost to the signaler by experimentally measuring oxygen consumption during rest and a 2 min vocal period in dolphins that were trained to vary vocal loudness across trials. Vocal effort was quantified as the total acoustic energy of sounds produced. Metabolic rates during the vocal period were, on average, 1.2 and 1.5 times resting metabolic rate (RMR) in dolphin A and B, respectively. As vocal effort increased, we found that there was a significant increase in metabolic rate over RMR during the 2 min following sound production in both dolphins, and in total oxygen consumption (metabolic cost of sound production plus recovery costs) in the dolphin that showed a wider range of vocal effort across trials. Increases in vocal effort, as a consequence of increases in vocal amplitude, repetition rate and/or duration, are consistent with behavioral responses to noise in free-ranging animals. Here, we empirically demonstrate for the first time in a marine mammal, that these vocal modifications can have an energetic impact at the individual level and, importantly, these data provide a mechanistic foundation for evaluating biological consequences of vocal modification in noise-polluted habitats.

  11. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.).

    PubMed

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m(-2) s(-1)) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower (15)N-nitrate in root but higher in shoot and the higher (15)N-glycine in root but lower in shoot suggested that most (15)N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  12. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    PubMed Central

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m−2 s−1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  13. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m‑2 s‑1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  14. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  15. Deletion of TRAAK Potassium Channel Affects Brain Metabolism and Protects against Ischemia

    PubMed Central

    Laigle, Christophe; Confort-Gouny, Sylviane; Le Fur, Yann; Cozzone, Patrick J.; Viola, Angèle

    2012-01-01

    Cerebral stroke is a worldwide leading cause of disability. The two-pore domain K+ channels identified as background channels are involved in many functions in brain under physiological and pathological conditions. We addressed the hypothesis that TRAAK, a mechano-gated and lipid-sensitive two-pore domain K+ channel, is involved in the pathophysiology of brain ischemia. We studied the effects of TRAAK deletion on brain morphology and metabolism under physiological conditions, and during temporary focal cerebral ischemia in Traak−/− mice using a combination of in vivo magnetic resonance imaging (MRI) techniques and multinuclear magnetic resonance spectroscopy (MRS) methods. We provide the first in vivo evidence establishing a link between TRAAK and neurometabolism. Under physiological conditions, Traak−/− mice showed a particular metabolic phenotype characterized by higher levels of taurine and myo-inositol than Traak+/+ mice. Upon ischemia, Traak−/− mice had a smaller infarcted volume, with lower contribution of cellular edema than Traak+/+ mice. Moreover, brain microcirculation was less damaged, and brain metabolism and pH were preserved. Our results show that expression of TRAAK strongly influences tissue levels of organic osmolytes. Traak−/− mice resilience to cellular edema under ischemia appears related to their physiologically high levels of myo-inositol and of taurine, an aminoacid involved in the modulation of mitochondrial activity and cell death. The beneficial effects of TRAAK deletion designate this channel as a promising pharmacological target for the treatment against stroke. PMID:23285272

  16. Retrospective surveillance of metabolic parameters affecting reproductive performance of Japanese Black breeding cows

    PubMed Central

    Watanabe, Urara; Yamato, Osamu; Otoi, Takeshige; Okamoto, Koji

    2014-01-01

    This retrospective study was conducted to confirm the relationship between pre- and postpartum metabolic parameters and postpartum reproductive performance and to clarify seasonal characteristics of the metabolic parameters by using our metabolic profile test (MPT) database of Japanese Black breeding herds. In evaluation 1, MPT databases of blood samples from multiparous cows collected prepartum and postpartum were divided into two groups according to calving interval, and each MPT parameter was compared. In evaluation 2, the same MPT databases used in evaluation 1 were divided into two groups according to the sampling period. Significant differences were found in the prepartal total protein and postpartal γ-glutamyltransferase in evaluation 1. In evaluation 2, significant differences were found in the prepartal and postpartal total protein, albumin/globulin ratio, and glucose. Clear seasonal differences in MPT results emphasized the usefulness of the MPT in breeding cattle herds fed home-pasture roughage and suggest that unsatisfactory reproductive performance during hot periods reflects inadequate nutritional content of the diet and possible reduced feed intake due to heat stress. PMID:24675835

  17. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism[W

    PubMed Central

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R.; Blaby, Ian K.; Casero, David; Mettler, Tabea; Moseley, Jeffrey L.; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R.; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S.

    2014-01-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency. PMID:24748044

  18. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    PubMed

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils. PMID:25938176

  19. Maple Bark Biochar Affects Rhizoctonia solani Metabolism and Increases Damping-Off Severity.

    PubMed

    Copley, Tanya R; Aliferis, Konstantinos A; Jabaji, Suha

    2015-10-01

    Many studies have investigated the effect of biochar on plant yield, nutrient uptake, and soil microbial populations; however, little work has been done on its effect on soilborne plant diseases. To determine the effect of maple bark biochar on Rhizoctonia damping-off, 11 plant species were grown in a soilless potting substrate amended with different concentrations of biochar and inoculated or not with Rhizoctonia solani anastomosis group 4. Additionally, the effect of biochar amendment on R. solani growth and metabolism in vitro was evaluated. Increasing concentrations of maple bark biochar increased Rhizoctonia damping-off of all 11 plant species. Using multivariate analyses, we observed positive correlations between biochar amendments, disease severity and incidence, abundance of culturable bacterial communities, and physicochemical parameters. Additionally, biochar amendment significantly increased R. solani growth and hyphal extension in vitro, and altered its primary metabolism, notably the mannitol and tricarboxylic acid cycles and the glycolysis pathway. One or several organic compounds present in the biochar, as identified by gas chromatography-mass spectrometry analysis, may be metabolized by R. solani. Taken together, these results indicate that future studies on biochar should focus on the effect of its use as an amendment on soilborne plant pathogens before applying it to soils.

  20. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele

    PubMed Central

    Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-01-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia–cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia–cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons (‘mirror neurons’) in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia–cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger

  1. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  2. Process Formulations And Curing Conditions That Affect Saltstone Properties

    SciTech Connect

    Reigel, M. M.; Pickenheim, B. R.; Daniel, W. E.

    2012-09-28

    The first objective of this study was to analyze saltstone fresh properties to determine the feasibility of reducing the formulation water to premix (w/p) ratio while varying the amount of extra water and admixtures used during processing at the Saltstone Production Facility (SPF). The second part of this study was to provide information for understanding the impact of curing conditions (cure temperature, relative humidity (RH)) and processing formulation on the performance properties of cured saltstone.

  3. Studies of dynamical processes affecting the distribution of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1993-01-01

    The purpose of the research was to understand large-scale tracer transport processes in the stratosphere. Two approaches were taken. The first is analysis of tracer observations, especially satellite observations of ozone concentration and total column ozone. The second is numerical simulation of tracer transport processes. Topics researched include: quasi-biennial oscillation (QBO) and stratospheric ozone; mixing in the polar vortices; polar stratospheric clouds (PSC) properties from Antarctic lidar data; and statistical methods for numerical experiments.

  4. In Ovo Injection of Betaine Affects Hepatic Cholesterol Metabolism through Epigenetic Gene Regulation in Newly Hatched Chicks

    PubMed Central

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations. PMID:25860502

  5. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism.

    PubMed

    Christensen, Lise Lotte; True, Kirsten; Hamilton, Mark P; Nielsen, Morten M; Damas, Nkerorema D; Damgaard, Christian K; Ongen, Halit; Dermitzakis, Emmanouil; Bramsen, Jesper B; Pedersen, Jakob S; Lund, Anders H; Vang, Søren; Stribolt, Katrine; Madsen, Mogens R; Laurberg, Søren; McGuire, Sean E; Ørntoft, Torben F; Andersen, Claus L

    2016-10-01

    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16 indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved in lipid metabolism was also observed in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO-CLIP) demonstrated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA) "sponging" miRNAs off their cognate targets. Most interestingly, half of the miRNA families with high confidence targets on SNHG16 also target the 3'UTR of Stearoyl-CoA Desaturase (SCD). SCD is involved in lipid metabolism and is down-regulated upon SNHG16 silencing. In conclusion, up-regulation of SNHG16 is a frequent event in CRC, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms.

  6. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants.

    PubMed

    Tan, Qiumin; Zhang, Lizhi; Grant, Jan; Cooper, Pauline; Tegeder, Mechthild

    2010-12-01

    Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set.

  7. In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks.

    PubMed

    Hu, Yun; Sun, Qinwei; Li, Xiaoliang; Wang, Min; Cai, Demin; Li, Xi; Zhao, Ruqian

    2015-01-01

    Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations.

  8. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    PubMed

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M; Esguerra, Camila V; Blust, Ronny; Darras, Veerle M; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  9. Deiodinase Knockdown during Early Zebrafish Development Affects Growth, Development, Energy Metabolism, Motility and Phototransduction

    PubMed Central

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M.; Esguerra, Camila V.; Blust, Ronny; Darras, Veerle M.; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  10. Fish oil and the pan-PPAR agonist tetradecylthioacetic acid affect the amino acid and carnitine metabolism in rats.

    PubMed

    Bjørndal, Bodil; Brattelid, Trond; Strand, Elin; Vigerust, Natalya Filipchuk; Svingen, Gard Frodahl Tveitevåg; Svardal, Asbjørn; Nygård, Ottar; Berge, Rolf Kristian

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms. PMID:23826175

  11. Personality interacts with implicit affect to predict performance in analytic versus holistic processing.

    PubMed

    Kazén, Miguel; Kuhl, Julius; Quirin, Markus

    2015-06-01

    Both theoretical approaches and empirical evidence suggest that negative affect fosters analytic processing, whereas positive affect fosters holistic processing, but these effects are inconsistent. We aim to show that (a) differences in affect regulation abilities ("action orientation") and (b) implicit more so than self-reported affect assessment need to be considered to advance our understanding of these processes. Forty participants were asked to verify whether a word was correctly or incorrectly spelled to measure analytic processing, as well as to intuitively assess whether sets of three words were coherent (remote associates task) to measure holistic processing. As expected, implicit but not explicit negative affect interacted with low action orientation ("state orientation") to predict higher d' performance in word spelling, whereas implicit but not explicit positive affect interacted with high action orientation to predict higher d' performance in coherence judgments for word triads. Results are interpreted according to personality systems interaction theory. These findings suggest that affect and affect changes should be measured explicitly and implicitly to investigate affect-cognition interactions. Moreover, they suggest that good affect regulators benefit from positive affect for holistic processing, whereas bad affect regulators benefit from negative affect for analytical processing. PMID:24725069

  12. Psychometric Characteristics of the EEAA (Scale of Affective Strategies in the Learning Process)

    ERIC Educational Resources Information Center

    Villardón-Gallego, Lourdes; Yániz, Concepción

    2014-01-01

    Introduction: Affective strategies for coping with affective states linked to the learning process may be oriented toward controlling emotions or toward controlling motivation. Both types affect performance, directly and indirectly. The objective of this research was to design an instrument for measuring the affective strategies used by university…

  13. Untangling hyporheic residence time distributions and whole stream metabolisms using a hydrological process model

    NASA Astrophysics Data System (ADS)

    Altenkirch, Nora; Mutz, Michael; Molkenthin, Frank; Zlatanovic, Sanja; Trauth, Nico

    2016-04-01

    The interaction of the water residence time in hyporheic sediments with the sediment metabolic rates is believed to be a key factor controlling whole stream metabolism. However, due to the methodological difficulties, there is little data that investigates this fundamental theory of aquatic ecology. Here, we report on progress made to combine numerical modeling with a series of manipulation to laboratory flumes overcoming methodological difficulties. In these flumes, hydraulic conditions were assessed using non-reactive tracer and heat pulse sensor. Metabolic activity was measured as the consumption and production of oxygen and the turnover of reactive tracers. Residence time and metabolic processes were modeled using a multicomponent reactive transport code called Min3P and calibrated with regard to the hydraulic conditions using the results obtained from the flume experiments. The metabolic activity was implemented in the model via Monod type expressions e.g. for aerobic respiration rates. A number of sediment structures differing in residence time distributions were introduced in both, the model and the flumes, specifically to model the biogeochemical performance and to validate the model results. Furthermore, the DOC supply and surface water flow velocity were altered to test the whole stream metabolic response. Using the results of the hydrological process model, a sensitivity analysis of the impact of residence time distributions on the metabolic activity could yield supporting proof of an existing link between the two.

  14. Can Process Portfolios Affect Students' Writing Self-Efficacy?

    ERIC Educational Resources Information Center

    Nicolaidou, Iolie

    2012-01-01

    Can process portfolios that support students in goal setting, reflection, self-evaluation and feedback have a positive impact on students' writing self-efficacy? This article presents the findings of a yearlong study conducted in three 4th grade elementary classes in Cyprus where paper-based and web-based portfolios were implemented to help…

  15. Factors Affecting the Processing of Epoxy Film Adhesives

    NASA Technical Reports Server (NTRS)

    Pike, R. A.

    1985-01-01

    The increasing awareness that adhesive performance is controlled not only by the condition of the adherend surface but also the condition or state of the adhesive and the process parameters used during fabrication is expected to result in improved reliability, as well as bond performance. The critical process variables which have been found to control adhesive bond formation and ultimate bond strength in 250F and 350F curing epoxy adhesives are described in terms of fabrication parameters and adhesive characteristics. These include the heat-up rate and cure temperature during processing and the adhesive moisture content and age condition (degree of advancement). The diagnostic methods used to delineate the effects of these process variables on adhesive performance are illustrated. These are dielectric, thermomechanical (TMA) and dynamic mechanical (DMA) analyses. Correlation of test results with measured mechanical tensile lap shear strengths of bonded joints is presented and the results briefly discussed in terms of the additives and hardeners used in the adhesive systems.

  16. Stimulus Characteristics Affect Humor Processing in Individuals with Asperger Syndrome

    ERIC Educational Resources Information Center

    Samson, Andrea C.; Hegenloh, Michael

    2010-01-01

    The present paper aims to investigate whether individuals with Asperger syndrome (AS) show global humor processing deficits or whether humor comprehension and appreciation depends on stimulus characteristics. Non-verbal visual puns, semantic and Theory of Mind cartoons were rated on comprehension, funniness and the punchlines were explained. AS…

  17. Distal Prosodic Context Affects Word Segmentation and Lexical Processing

    ERIC Educational Resources Information Center

    Dilley, Laura C.; McAuley, J. Devin

    2008-01-01

    Three experiments investigated the role of distal (i.e., nonlocal) prosody in word segmentation and lexical processing. In Experiment 1, prosodic characteristics of the initial five syllables of eight-syllable sequences were manipulated; the final portions of these sequences were lexically ambiguous (e.g., "note bookworm", "notebook worm"). Distal…

  18. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    PubMed

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging. PMID:26965008

  19. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    PubMed

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability.

  20. Critical processes affecting Cryptosporidium oocyst survival in the environment.

    PubMed

    King, B J; Monis, P T

    2007-03-01

    Cryptosporidium are parasitic protozoans that cause gastrointestinal disease and represent a significant risk to public health. Cryptosporidium oocysts are prevalent in surface waters as a result of human, livestock and native animal faecal contamination. The resistance of oocysts to the concentrations of chlorine and monochloramine used to disinfect potable water increases the risk of waterborne transmission via drinking water. In addition to being resistant to commonly used disinfectants, it is thought that oocysts can persist in the environment and be readily mobilized by precipitation events. This paper will review the critical processes involved in the inactivation or removal of oocysts in the terrestrial and aquatic environments and consider how these processes will respond in the context of climate change. PMID:17096874

  1. Brain responses during sentence reading: visual input affects central processes.

    PubMed

    Gunter, T C; Friederici, A D; Hahne, A

    1999-10-19

    The effect of visual contrast on sentence reading was investigated using event-related brain potentials (ERPs). Under the low contrast condition semantic integration as reflected in the N400 ERP component was delayed to some degree. The left anterior negativity (LAN) reflecting initial syntactic processes, in contrast, seemed to change its characteristics as a function of visual input. In the high contrast condition the LAN preceded the P200 component whereas in the low contrast condition it was present after this component. These ERP-data from word-by-word sentence reading together with prior results from sentence listening suggest that the physical characteristics of the input must fall within a certain optimal range to guarantee ERP-effects of fast initial syntactic processes.

  2. Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism.

    PubMed

    Michalski, M C; Genot, C; Gayet, C; Lopez, C; Fine, F; Joffre, F; Vendeuvre, J L; Bouvier, J; Chardigny, J M; Raynal-Ljutovac, K

    2013-10-01

    On a nutritional standpoint, lipids are now being studied beyond their energy content and fatty acid (FA) profiles. Dietary FA are building blocks of a huge diversity of more complex molecules such as triacylglycerols (TAG) and phospholipids (PL), themselves organised in supramolecular structures presenting different thermal behaviours. They are generally embedded in complex food matrixes. Recent reports have revealed that molecular and supramolecular structures of lipids and their liquid or solid state at the body temperature influence both the digestibility and metabolism of dietary FA. The aim of the present review is to highlight recent knowledge on the impact on FA digestion, absorption and metabolism of: (i) the intramolecular structure of TAG; (ii) the nature of the lipid molecules carrying FA; (iii) the supramolecular organization and physical state of lipids in native and formulated food products and (iv) the food matrix. Further work should be accomplished now to obtain a more reliable body of evidence and integrate these data in future dietary recommendations. Additionally, innovative lipid formulations in which the health beneficial effects of either native or recomposed structures of lipids will be taken into account can be foreseen.

  3. [How do transport and metabolism affect the biological effects of polycyclic aromatic hydrocarbons?].

    PubMed

    Bekki, Kanae; Toriba, Akira; Tang, Ning; Kameda, Takayuki; Takigami, Hidetaka; Suzuki, Go; Hayakawa, Kazuichi

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs), some of which are carcinogenic/mutagenic, are generated by combustion of fossil fuels and also released through tanker or oilfield accident to cause a large scale environmental pollution. PAHs concentration in China is especially high in East Asia because of many kinds of generation sources such as coal heating systems, vehicles and factories without exhaust gas/particulate treatment systems. So, the atmospheric pollution caused by PAHs in China has been seriously concerned from the view point of health effects. Like yellow sand and sulfur oxide, PAHs exhausted in China are also transported to Japan. Additionally, strongly mutagenic nitrated PAHs (NPAHs), estrogenic/antiestrogenic PAH hydroxides (PAHOHs) and reactive oxygen species-producing PAH quinones (PAHQs) are formed from PAHs by the chemical reaction during the transport. Furthermore these PAHOHs and PAHQs are produced by the metabolism in animal body. In the biological activities caused by the above PAH derivatives, the structure-activity relationship was observed. In this review, our recent results on the generation of PAH derivatives by atmospheric transport and metabolism are reported. Also, the existing condition of PAHs as atmospheric pollutants is considered.

  4. Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes

    PubMed Central

    Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

    2014-01-01

    Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. ‘indicator model’ and ‘trade-off model’). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. PMID:25377463

  5. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli

    PubMed Central

    Castaño-Cerezo, Sara; Bernal, Vicente; Post, Harm; Fuhrer, Tobias; Cappadona, Salvatore; Sánchez-Díaz, Nerea C; Sauer, Uwe; Heck, Albert JR; Altelaar, AF Maarten; Cánovas, Manuel

    2014-01-01

    Although protein acetylation is widely observed, it has been associated with few specific regulatory functions making it poorly understood. To interrogate its functionality, we analyzed the acetylome in Escherichia coli knockout mutants of cobB, the only known sirtuin-like deacetylase, and patZ, the best-known protein acetyltransferase. For four growth conditions, more than 2,000 unique acetylated peptides, belonging to 809 proteins, were identified and differentially quantified. Nearly 65% of these proteins are related to metabolism. The global activity of CobB contributes to the deacetylation of a large number of substrates and has a major impact on physiology. Apart from the regulation of acetyl-CoA synthetase, we found that CobB-controlled acetylation of isocitrate lyase contributes to the fine-tuning of the glyoxylate shunt. Acetylation of the transcription factor RcsB prevents DNA binding, activating flagella biosynthesis and motility, and increases acid stress susceptibility. Surprisingly, deletion of patZ increased acetylation in acetate cultures, which suggests that it regulates the levels of acetylating agents. The results presented offer new insights into functional roles of protein acetylation in metabolic fitness and global cell regulation. PMID:25518064

  6. Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes.

    PubMed

    Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

    2014-12-22

    Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. 'indicator model' and 'trade-off model'). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes.

  7. Understanding processes affecting mineral deposits in humid environments

    USGS Publications Warehouse

    Seal, Robert R., II; Ayuso, Robert A.

    2011-01-01

    Recent interdisciplinary studies by the U.S. Geological Survey have resulted in substantial progress toward understanding the influence that climate and hydrology have on the geochemical signatures of mineral deposits and the resulting mine wastes in the eastern United States. Specific areas of focus include the release, transport, and fate of acid, metals, and associated elements from inactive mines in temperate coastal areas and of metals from unmined mineral deposits in tropical to subtropical areas; the influence of climate, geology, and hydrology on remediation options for abandoned mines; and the application of radiogenic isotopes to uniquely apportion source contributions that distinguish natural from mining sources and extent of metal transport. The environmental effects of abandoned mines and unmined mineral deposits result from a complex interaction of a variety of chemical and physical factors. These include the geology of the mineral deposit, the hydrologic setting of the mineral deposit and associated mine wastes, the chemistry of waters interacting with the deposit and associated waste material, the engineering of a mine as it relates to the reactivity of mine wastes, and climate, which affects such factors as temperature and the amounts of precipitation and evapotranspiration; these factors, in turn, influence the environmental behavior of mineral deposits. The role of climate is becoming increasingly important in environmental investigations of mineral deposits because of the growing concerns about climate change.

  8. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction.

    PubMed

    Talbert, Matthew E; Barnett, Brittany; Hoff, Robert; Amella, Maria; Kuczynski, Kate; Lavington, Erik; Koury, Spencer; Brud, Evgeny; Eanes, Walter F

    2015-09-22

    There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.

  9. The stoichiometry of the chloroplast ATP synthase oligomer III in Chlamydomonas reinhardtii is not affected by the metabolic state.

    PubMed

    Meyer Zu Tittingdorf, Jürgen M W; Rexroth, Sascha; Schäfer, Eva; Schlichting, Ralf; Giersch, Christoph; Dencher, Norbert A; Seelert, Holger

    2004-11-01

    The chloroplast H(+)-ATP synthase is a key component for the energy supply of higher plants and green algae. An oligomer of identical protein subunits III is responsible for the conversion of an electrochemical proton gradient into rotational motion. It is highly controversial if the oligomer III stoichiometry is affected by the metabolic state of any organism. Here, the intact oligomer III of the ATP synthase from Chlamydomonas reinhardtii has been isolated for the first time. Due to the importance of the subunit III stoichiometry for energy conversion, a gradient gel system was established to distinguish oligomers with different stoichiometries. With this methodology, a possible alterability of the stoichiometry in respect to the metabolic state of the cells was examined. Several growth parameters, i.e., light intensity, pH value, carbon source, and CO(2) concentration, were varied to determine their effects on the stoichiometry. Contrary to previous suggestions for E. coli, the oligomer III of the chloroplast H(+)-ATP synthase always consists of a constant number of monomers over a wide range of metabolic states. Furthermore, mass spectrometry indicates that subunit III from C. reinhardtii is not modified posttranslationally. Data suggest a subunit III stoichiometry of the algae ATP synthase divergent from higher plants.

  10. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    PubMed

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  11. Diesel oil volatilization processes affected by selected porous media.

    PubMed

    Ma, Yanfei; Zheng, Xilai; Anderson, S H; Lu, Jie; Feng, Xuedong

    2014-03-01

    Volatilization plays an important role in attenuating petroleum products in contaminated soils. The objective of this study was to evaluate the influence of wind speed, vessel diameter and mean grain size of porous media on diesel oil volatilization. Experiments were conducted to investigate the volatilization behavior of diesel oil from porous media by weighing contaminated samples pre- and post-volatilization. Three selected field porous media materials were evaluated: Silty Clay Loam, Fine Sand, and Coarse Sand along with six individual sand fractions of the Coarse Sand. Results indicate that increasing wind speed accelerates the diesel oil volatilization process, especially for wind speeds below 2.10ms(-1). The low-carbon components of diesel oil volatilize more rapidly, with the effects of wind speed more pronounced on C10 to C15 volatilization than on C16 and higher. The volatilization rate coefficient of diesel oil increases with decreasing mean grain size of porous media, and with increasing vessel diameter. A power function expressed the relationship with mean grain size. All processes (wind speed, vessel diameter, and mean grain size) were included in an equation which explained over 92% of the measured diesel oil volatilization rate coefficient variations for the experiments. Diesel oil volatilization appears to be boundary-layer regulated to some extent.

  12. From neurons to epidemics: How trophic coherence affects spreading processes

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  13. Does Signal Degradation Affect Top-Down Processing of Speech?

    PubMed

    Wagner, Anita; Pals, Carina; de Blecourt, Charlotte M; Sarampalis, Anastasios; Başkent, Deniz

    2016-01-01

    Speech perception is formed based on both the acoustic signal and listeners' knowledge of the world and semantic context. Access to semantic information can facilitate interpretation of degraded speech, such as speech in background noise or the speech signal transmitted via cochlear implants (CIs). This paper focuses on the latter, and investigates the time course of understanding words, and how sentential context reduces listeners' dependency on the acoustic signal for natural and degraded speech via an acoustic CI simulation.In an eye-tracking experiment we combined recordings of listeners' gaze fixations with pupillometry, to capture effects of semantic information on both the time course and effort of speech processing. Normal-hearing listeners were presented with sentences with or without a semantically constraining verb (e.g., crawl) preceding the target (baby), and their ocular responses were recorded to four pictures, including the target, a phonological (bay) competitor and a semantic (worm) and an unrelated distractor.The results show that in natural speech, listeners' gazes reflect their uptake of acoustic information, and integration of preceding semantic context. Degradation of the signal leads to a later disambiguation of phonologically similar words, and to a delay in integration of semantic information. Complementary to this, the pupil dilation data show that early semantic integration reduces the effort in disambiguating phonologically similar words. Processing degraded speech comes with increased effort due to the impoverished nature of the signal. Delayed integration of semantic information further constrains listeners' ability to compensate for inaudible signals. PMID:27080670

  14. The HIV Tat protein affects processing of ribosomal RNA precursor

    PubMed Central

    Ponti, Donatella; Troiano, Maria; Bellenchi, Gian Carlo; Battaglia, Piero A; Gigliani, Franca

    2008-01-01

    Background Inside the cell, the HIV Tat protein is mainly found in the nucleus and nucleolus. The nucleolus, the site of ribosome biogenesis, is a highly organized, non-membrane-bound sub-compartment where proteins with a high affinity for nucleolar components are found. While it is well known that Tat accumulates in the nucleolus via a specific nucleolar targeting sequence, its function in this compartment it still unknown. Results To clarify the significance of the Tat nucleolar localization, we induced the expression of the protein during oogenesis in Drosophila melanogaster strain transgenic for HIV-tat gene. Here we show that Tat localizes in the nucleoli of Drosophila oocyte nurse cells, where it specifically co-localizes with fibrillarin. Tat expression is accompanied by a significant decrease of cytoplasmic ribosomes, which is apparently related to an impairment of ribosomal rRNA precursor processing. Such an event is accounted for by the interaction of Tat with fibrillarin and U3 snoRNA, which are both required for pre-rRNA maturation. Conclusion Our data contribute to understanding the function of Tat in the nucleolus, where ribosomal RNA synthesis and cell cycle control take place. The impairment of nucleolar pre-rRNA maturation through the interaction of Tat with fibrillarin-U3snoRNA complex suggests a process by which the virus modulates host response, thus contributing to apoptosis and protein shut-off in HIV-uninfected cells. PMID:18559082

  15. From neurons to epidemics: How trophic coherence affects spreading processes.

    PubMed

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes. PMID:27368799

  16. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles.

    PubMed

    Maradonna, F; Nozzi, V; Santangeli, S; Traversi, I; Gallo, P; Fattore, E; Mita, D G; Mandich, A; Carnevali, O

    2015-10-01

    The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes encoding cyclooxygenase 2 (cox2) and 5-lipoxygenase (5 lox), the products of which are involved in the inflammatory response, transcriptions were significantly upregulated in NP and BPA fish, whereas they were unchanged in t

  17. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles.

    PubMed

    Maradonna, F; Nozzi, V; Santangeli, S; Traversi, I; Gallo, P; Fattore, E; Mita, D G; Mandich, A; Carnevali, O

    2015-10-01

    The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes encoding cyclooxygenase 2 (cox2) and 5-lipoxygenase (5 lox), the products of which are involved in the inflammatory response, transcriptions were significantly upregulated in NP and BPA fish, whereas they were unchanged in t

  18. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    PubMed

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  19. Iodine Affects Differentiation and Migration Process in Trophoblastic Cells.

    PubMed

    Olivo-Vidal, Zendy Evelyn; Rodríguez, Roció Coutiño; Arroyo-Helguera, Omar

    2016-02-01

    Iodine deficiency is associated with oxidative stress increase and preeclampsia during gestation, suggesting that iodine concentration plays an important role in the normal placenta physiology. The question raised is to analyze the effect of iodine deficiency on oxidative stress, viability, differentiation, and migration process and changes in the expression of differentiation and migration markers. Iodine deprivation was done using potassium perchlorate (KCLO4) to block sodium iodide symporter (NIS) transporter and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid DIDS to inhibit pendrine (PEN) transport for 3-48 h. Then trophoblast cells were treated with low iodine doses of 5-500 μM and high iodine doses of 100-5000 μM. Oxidative stress, viability, and human chorionic gonadotropin (hGC) were measured by colorimetric methods. Migration throphoblast cells were evaluated by both wound healing and Boyden chamber assays. Changes in mRNA expression were analyzed by real-time RT-PCR. Iodine deprivation induces a significant increase of reactive oxygen species (ROS), viability, and migration process vs control cells. We found a significant overregulation in the mRNA's peroxisome proliferator-activated receptor (PPAR-gamma), Snail, and matrix metalloproteinase-9 (MMP-9) mRNA's in cells deprived of iodine, as well as a down glial cell missing-1 (GCM-1) regulation, hGC, pregnancy-associated plasma protein-A (PAPP-A), and E-cadherin mRNA expression. The expression of hypoxic induction factor alpha (HIFα) mRNA does not change with iodine deprivation. In cells deprived of iodine, supplementing low iodine doses (5-500 μM) does not induce any significant changes in viability. However, ROS and migration process were decreased, although we found an increased human chorionic gonadotropin (hCG) secretion as a differentiation marker. In addition, we found that PPAR-gamma, Snail, and MPP-9 mRNAs expression are downregulated with low iodine doses, in contrast with GCM-1, PAPP

  20. Beta Thalassemia: mutations which affect processing of the beta-Globin mRNA precursor.

    PubMed

    Kantor, J A; Turner, P H; Nienhuis, A W

    1980-08-01

    To define the molecular lesion which causes decreased beta-globin synthesis in beta+ thalessemia, four patients of diverse ethnic origin were studied. Each had a 2--3 fold higher concentration of beta-globin mRNA precursor than that found in control bone marrow cells from patients with sickle cell anemia. Globin RNA metabolism was analyzed in two of these patients. Transcription of the beta-globin gene appeared to be normal, since analysis of nuclear RNA indicated that beta-globin mRNA synthesis exceeded that of alpha in a 2 hr pulse but the cytoplasm contained a relative deficiency of labeled beta-globin mRNA. An abnormal RNA species approximately 650 nucleotides in length, which contained sequences transcribed from both the large intron and coding portions of the beta-globin gene, was found in one patient's bone marrow cells. The second patient's cells contained a significant amount of a 1320 nucleotide RNA species, not initially evident in normal cells, from which part but not all of the large intervening sequence had been removed. Our data thus indicate that mutations which affect RNA processing cause beta thalessemia.

  1. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    PubMed

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation. PMID:25313461

  2. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat

    PubMed Central

    Palmnäs, Marie S. A.; Cowan, Theresa E.; Bomhof, Marc R.; Su, Juliet; Reimer, Raylene A.; Vogel, Hans J.; Hittel, Dustin S.; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5–7 mg/kg/d in drinking water) treatments for 8 week (n = 10–12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation. PMID:25313461

  3. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    PubMed

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05). Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  4. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism.

    PubMed

    Shaik, Shahnoor S; Obata, Toshihiro; Hebelstrup, Kim H; Schwahn, Kevin; Fernie, Alisdair R; Mateiu, Ramona V; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD.

  5. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  6. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism.

    PubMed

    Shaik, Shahnoor S; Obata, Toshihiro; Hebelstrup, Kim H; Schwahn, Kevin; Fernie, Alisdair R; Mateiu, Ramona V; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  7. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    PubMed Central

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H.; Schwahn, Kevin; Fernie, Alisdair R.; Mateiu, Ramona V.; Blennow, Andreas

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD. PMID:26891365

  8. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    PubMed Central

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  9. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse.

    PubMed

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  10. Quantitative evolution of volcanic surfaces affected by erosional processes

    NASA Astrophysics Data System (ADS)

    Lahitte, Pierre; Boillot-Airaksinen, Kim; Germa, Aurélie; Lavigne, Franck

    2016-04-01

    Variations through time of erosion dynamics, a key point to investigate correlation between climates and landform evolution, still remains poorly documented. One of the main issue in this type of study is the difficulty in determining for how long the erosion has operated. For this purpose, volcanic contexts are particularly suitable for defining the temporal dynamics governing erosion since the age of volcanic activity also constrains the age of emplacement of the surface today eroded, and thus the erosion duration. Furthermore, quantitative analysis of river profiles offers the opportunity to discriminate, among the wide variety of geological phenomena influencing erosion, their respective influence. Quantification of erosion processes and constrain of their signature on reliefs can be addressed by a morphometric approach of river profiles in volcanic environment through the analysis of digital topography (DEM). Break in slope zones, the so-called knickpoints, are usually related to a retreat of the point between the relict channel, upstream, and the adjusted channel, downstream. They are induced by either a lithological contrast, a change in the base level, uplift or eustatism, or a rejuvenation of the age of the volcanic surface. The stream long-profile and its watershed is also investigated by their concavity and hypsometric indexes to determine for how long the complexity and its heterogeneity along the valley incision remain visible. The present study focusses on the erosion of volcanoes in the Lesser Antilles, Reunion Island and Lombok Island (Indonesia). All located in tropical environments, these volcanoes offer a wide diversity of age (30 - 0 Ma) and lithology for investigating the respective influence of geological processes that have induced a large variety of shapes and volcanic history that we try to correlate to geometry of river profiles.

  11. Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?

    PubMed

    Brumas, V; Hacht, B; Filella, M; Berthon, G

    1992-07-01

    N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose. PMID:1529808

  12. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  13. Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?

    PubMed

    Brumas, V; Hacht, B; Filella, M; Berthon, G

    1992-07-01

    N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose.

  14. Do glucose and lipid metabolism affect cancer development in Nagasaki atomic bomb survivors?

    PubMed

    Hida, Ayumi; Akahoshi, Masazumi; Toyama, Kyoko; Imaizumi, Misa; Soda, Midori; Maeda, Renju; Ichimaru, Shinichiro; Nakashima, Eiji; Eguchi, Katsumi

    2005-01-01

    The relationship between lipid or glucose metabolism and cancer has not yet been elucidated. We conducted 75-g oral glucose tolerance tests (75-g OGTTs) and lipid measurements between 1983 and 1985 in 516 Nagasaki atomic bomb survivors. Excluding those who already had cancer at the baseline examinations and those who developed cancers or died of any cause within 5 yr after the baseline examinations, we determined incident cancer cases until 2000 in the remaining 451 subjects (214 males and 237 females) and evaluated, by means of the Cox proportional hazard model, whether glucose or lipid metabolism predicts cancer development. The age- and sex-adjusted relative risk (RR) for incident cancer was 0.903 (95% confidence interval, CI = 0.842-0.968), 1.740 (95% CI = 1.238-2.446), 1.653 (95% CI = 0.922-2.965), and 1.024 (95% CI = 0.996-1.053) for total cholesterol (10 mg/dl), radiation dose (1 Sv), smoking, and 1-h blood glucose (1-h BG; 10 mg/dl) in 75-g OGTTs, respectively. Multiple regression analysis of age, sex, smoking, body mass index, 1-h BG, triglycerides, total cholesterol, high-density lipoprotein cholesterol, and radiation dose also showed that total cholesterol was negatively (RR = 0.872; 95% CI = 0.793-0.958) and radiation dose positively (RR = 1.809; 95% CI = 1.252-2.613) related to incident cancer. Cholesterol could be negatively and radiation dose positively associated with cancer development independently.

  15. Prolonged hyperinsulinemia affects metabolic signal transduction markers in a tissue specific manner.

    PubMed

    Campolo, A; de Laat, M A; Keith, L; Gruntmeir, K J; Lacombe, V A

    2016-04-01

    Insulin dysregulation is common in horses although the mechanisms of metabolic dysfunction are poorly understood. We hypothesized that insulin signaling in striated (cardiac and skeletal) muscle and lamellae may be mediated through different receptors as a result of receptor content, and that transcriptional regulation of downstream signal transduction and glucose transport may also differ between tissues sites during hyperinsulinemia. Archived samples from horses treated with a prolonged insulin infusion or a balanced electrolyte solution were used. All treated horses developed marked hyperinsulinemia and clinical laminitis. Protein expression was compared across tissues for the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) by immunoblotting. Gene expression of metabolic insulin-signaling markers (insulin receptor substrate 1, Akt2, and glycogen synthase kinase 3 beta [GSK-3β]) and glucose transport (basal glucose transporter 1 and insulin-sensitive glucose transporter 4) was evaluated using real-time reverse transcription polymerase chain reaction. Lamellar tissue contained significantly more IGF-1R protein than skeletal muscle, indicating the potential significance of IGF-1R signaling for this tissue. Gene expression of the selected markers of insulin signaling and glucose transport in skeletal muscle and lamellar tissues was unaffected by prolonged hyperinsulinemia. In contrast, the significant upregulation of Akt2, GSK-3β, GLUT1, and GLUT4 gene expression in cardiac tissue suggested that the prolonged hyperinsulinemia induced an increase in insulin sensitivity and a transcriptional activation of glucose transport. Responses to insulin are tissue-specific, and extrapolation of data across tissue sites is inappropriate. PMID:26773366

  16. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance.

    PubMed

    Luttgeharm, Kyle D; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E; Markham, Jonathan E; Cahoon, Edgar B

    2015-10-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  17. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  18. Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis)

    PubMed Central

    Owerkowicz, Tomasz; Elsey, Ruth M.; Hicks, James W.

    2009-01-01

    Summary Recent palaeoatmospheric models suggest large-scale fluctuations in ambient oxygen level over the past 550 million years. To better understand how global hypoxia and hyperoxia might have affected the growth and physiology of contemporary vertebrates, we incubated eggs and raised hatchlings of the American alligator. Crocodilians are one of few vertebrate taxa that survived these global changes with distinctly conservative morphology. We maintained animals at 30°C under chronic hypoxia (12% O2), normoxia (21% O2) or hyperoxia (30% O2). At hatching, hypoxic animals were significantly smaller than their normoxic and hyperoxic siblings. Over the course of 3 months, post-hatching growth was fastest under hyperoxia and slowest under hypoxia. Hypoxia, but not hyperoxia, caused distinct scaling of major visceral organs–reduction of liver mass, enlargement of the heart and accelerated growth of lungs. When absorptive and post-absorptive metabolic rates were measured in juvenile alligators, the increase in oxygen consumption rate due to digestion/absorption of food was greatest in hyperoxic alligators and smallest in hypoxic ones. Hyperoxic alligators exhibited the lowest breathing rate and highest oxygen consumption per breath. We suggest that, despite compensatory cardiopulmonary remodelling, growth of hypoxic alligators is constrained by low atmospheric oxygen supply, which may limit their food utilisation capacity. Conversely, the combination of elevated metabolism and low cost of breathing in hyperoxic alligators allows for a greater proportion of metabolised energy to be available for growth. This suggests that growth and metabolic patterns of extinct vertebrates would have been significantly affected by changes in the atmospheric oxygen level. PMID:19376944

  19. Early Social Experience Affects the Development of Eye Gaze Processing.

    PubMed

    Senju, Atsushi; Vernetti, Angélina; Ganea, Natasa; Hudry, Kristelle; Tucker, Leslie; Charman, Tony; Johnson, Mark H

    2015-12-01

    Eye gaze is a key channel of non-verbal communication in humans. Eye contact with others is present from birth, and eye gaze processing is crucial for social learning and adult-infant communication. However, little is known about the effect of selectively different experience of eye contact and gaze communication on early social and communicative development. To directly address this question, we assessed 14 sighted infants of blind parents (SIBPs) longitudinally at 6-10 and 12-16 months. Face scanning and gaze following were assessed using eye tracking. In addition, naturalistic observations were made when the infants were interacting with their blind parent and with an unfamiliar sighted adult. Established measures of emergent autistic-like behaviors and standardized tests of cognitive, motor, and linguistic development were also collected. These data were then compared with those obtained from a group of infants of sighted parents. Despite showing typical social skills development overall, infants of blind parents allocated less attention to adult eye movements and gaze direction, an effect that increased between 6-10 and 12-16 months of age. The results suggest that infants adjust their use of adults' eye gaze depending on gaze communication experience from early in life. The results highlight that human functional brain development shows selective experience-dependent plasticity adaptive to the individual's specific social environment.

  20. Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans.

    PubMed

    Truchado, Pilar; Larrosa, Mar; García-Conesa, María Teresa; Cerdá, Begoña; Vidal-Guevara, María Luisa; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2012-06-13

    The study of fruit and vegetable processing and its effects on the levels of health-promoting constituents and their bioavailability and metabolism is very relevant to understanding the role of these constituents in human health. Strawberry polyphenols, and particularly ellagitannins and ellagic acid, have been associated with the health benefits of this berry for humans. These compounds are transformed into urolithins by the gut microbiota, and these metabolites exert several biological activities that could be responsible for the health effects of strawberries. Processing potentially increases the extraction of ellagitannins from the strawberry achenes and the release of ellagic acid from ellagitannins. It is of interest to evaluate the effect of processing on strawberry ellagitannin microbial metabolism compared with fresh strawberries. This study shows that no significant differences in the production and excretion of urolithins were found between the intake of fresh strawberries and that of a thermally processed strawberry puree containing the same amount of strawberries. Processing increases the amount of free ellagic acid 2.5-fold, but this had no effect on the transformation in urolithins by the gut microbiota or in the excretion of urolithin metabolites (urolithin glucuronides) in urine, showing that the release of ellagic acid from ellagitannins is not a relevant factor affecting the microbial metabolism. All of the volunteers produced urolithin A, but only 3 of 20 volunteers produced and excreted urolithin B. It is confirmed that some volunteers were efficient producers of urolithins, whereas other produced much lower amounts. These results show that processing does not modify the potential health effects of strawberry polyphenols.

  1. Processes affecting the CO2 concentrations measured in Greenland ice

    NASA Astrophysics Data System (ADS)

    Anklin, Martin; Barnola, Jean-Marc; Schwander, Jakob; Stauffer, Bernhard; Raynaud, Dominique

    1995-09-01

    Detailed CO2 measurements on ice cores from Greenland and Antarctica show different mean CO2 concentrations for samples at the same gas age. The deviation between Antarctic and Greenland CO2 records raises up to 20 ppmv during the last millennium. Based on the present knowledge of the global carbon cycle we can exclude such a high mean interhemispheric difference of the CO2 concentration between high northern and southern latitudes. Diffusive mixing of the air in the firn smoothes out short term variations of the atmospheric CO2 Concentration. Nevertheless, we observe short term CO2 variations in Greenland ice in the range of 10 20 ppmv, which cannot represent atmospheric CO2 variations. Due to the low temperature at Summit, meltlayers can be excluded for most of the ice and they cannot account for the frequent anomalous short term CO2 variations and the elevated mean CO2 concentration in the Greenland ice. In this work we give some clues, that in situ production of CO2 in Greenland ice could build up excess CO2 after pore close of. Possible chemical reactions are the oxidation of organic carbon and the reaction between acidity and carbonate. We conclude that the carbonate-acidity reaction is the most probable process to explain the excess CO2 in the bubbles. The reaction could take place in very small liquid-like veins in cold ice, where the mobility of impurities is higher than in the ice lattice. At present, there exists no technique to measure the carbonate concentration in the ice directly. However, a comparison of CO2 analyses performed with a dry- and a wet-extraction technique allows to estimate the carbonate content of the ice. This estimate indicates a carbonate concentration in Greenland ice of about 0.4±0.2µmol/l and a much lower concentration in Antarctic ice.

  2. Prepartal dietary energy level affects peripartal bovine blood neutrophil metabolic, antioxidant, and inflammatory gene expression.

    PubMed

    Zhou, Z; Bu, D P; Vailati Riboni, M; Khan, M J; Graugnard, D E; Luo, J; Cardoso, F C; Loor, J J

    2015-08-01

    During the dry period, cows can easily overconsume higher-grain diets, a scenario that could impair immune function during the peripartal period. Objectives were to investigate the effects of energy overfeeding on expression profile of genes associated with inflammation, lipid metabolism, and neutrophil function, in 12 multiparous Holstein cows (n=6/dietary group) fed control [CON, 1.34 Mcal/kg of dry matter (DM)] or higher-energy (HE, 1.62 Mcal/kg of DM) diets during the last 45 d of pregnancy. Blood was collected to evaluate 43 genes in polymorphonuclear neutrophil leukocytes (PMNL) isolated at -14, 7, and 14 d relative to parturition. We detected greater expression of inflammatory-related cytokines (IL1B, STAT3, NFKB1) and eicosanoid synthesis (ALOX5AP and PLA2G4A) in HE cows than in CON cows. Around parturition, all cows had a close balance in mRNA expression of the pro-inflammatory IL1B and the anti-inflammatory IL10, with greater expression of both in cows fed HE than CON. The expression of CCL2, LEPR, TLR4, IL6, and LTC4S was undetectable. Cows in the HE group had greater expression of genes involved in PMNL adhesion, motility, migration, and phagocytosis, which was similar to expression of genes related to the pro-inflammatory cytokine. This response suggests that HE cows experienced a chronic state of inflammation. The greater expression of G6PD in HE cows could have been associated with the greater plasma insulin, which would have diverted glucose to other tissues. Cows fed the HE diet also had greater expression of transcription factors involved in metabolism of long-chain fatty acids (PPARD, RXRA), suggesting that immune cells might be predisposed to use endogenous ligands such as nonesterified fatty acids available in the circulation when glucose is in high demand for milk synthesis. The lower overall expression of SLC2A1 postpartum than prepartum supports this suggestion. Targeting interleukin-1β signaling might be of value in terms of controlling

  3. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-01

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment.

  4. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-01

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment. PMID:27493184

  5. Affective context interferes with brain responses during cognitive processing in borderline personality disorder: fMRI evidence

    PubMed Central

    Soloff, Paul H.; White, Richard; Omari, Amro; Ramaseshan, Karthik; Diwadka, Vaibhav A.

    2015-01-01

    Emotion dysregulation in borderline personality disorder (BPD) is associated with loss of cognitive control in the face of intense negative emotion. Negative emotional context may interfere with cognitive processing through the dysmodulation of brain regions involved in regulation of emotion, impulse control, executive function and memory. Structural and metabolic brain abnormalities have been reported in these regions in BPD. Using novel fMRI protocols, we investigated the neural basis of negative affective interference with cognitive processing targeting these regions. Attention-driven Go No-Go and X-CPT (continuous performance test) protocols, using positive, negative and neutral Ekman faces, targeted the orbital frontal cortex (OFC) and the anterior cingulate cortex (ACC), respectively. A stimulus-driven Episodic Memory task, using images from the International Affective Pictures System, targeted the hippocampus (HIP). Participants comprised 23 women with BPD, who were compared with 15 healthy controls. When Negative>Positive faces were compared in the Go No-Go task, BPD subjects had hyper-activation relative to controls in areas reflecting task-relevant processing: the superior parietal/precuneus and thebasal ganglia. Decreased activation was also noted in the OFC, and increased activation in the amygdala (AMY). In the X-CPT, BPD subjects again showed hyper-activation in task-relevant areas: the superior parietal/precuneus and the ACC. In the stimulus-driven Episodic Memory task, BPD subjects had decreased activation relative to controls in the HIP, ACC, superior parietal/precuneus, and dorsal prefrontal cortex (dPFC) (for encoding), and the ACC, dPFC, and HIP for retrieval of Negative>Positive pictures, reflecting impairment of task-relevant functions. Negative affective interference with cognitive processing in BPD differs from that in healthy controls and is associated with functional abnormalities in brain networks reported to have structural or metabolic

  6. [Metabolic Syndrome and Bipolar Affective Disorder: A Review of the Literature].

    PubMed

    Jaramillo, Carlos López; Mejía, Adelaida Castaño; Velásquez, Alicia Henao; Restrepo Palacio, Tomás Felipe; Zuluaga, Julieta Osorio

    2013-09-01

    Bipolar disorder (BD) is a chronic psychiatric disorder that is found within the first ten causes of disability and premature mortality. The metabolic syndrome (MS) is a group of risk factors (RF) that predispose to cardiovascular disease (CV), diabetes and early mortality. Both diseases generate high costs to the health system. Major studies have shown that MS has a higher prevalence in patients with mental disorders compared to the general population. The incidence of MS in BD is multifactorial, and due to iatrogenic, genetic, economic, psychological, and behavioral causes related to the health system. The most common RF found is these patients was an increased abdominal circumference, and it was found that the risk of suffering this disease was greater in women and Hispanic patients. As regards the increase in RF to develop a CV in patients with BD, there have been several explanations based on the risky behavior of patients with mental illness, included tobacco abuse, physical inactivity and high calorie diets. An additional explanation described in literature is the view of BD as a multisystemic inflammatory illness, supported by the explanation that inflammation is a crucial element in atherosclerosis, endothelial dysfunction, platelet rupture, and thrombosis. The pathophysiology of MS and BD include factors such as adrenal, thyroid and sympathetic nervous system dysfunction, as well as poor lifestyle and medication common in these patients. This article attempts to give the reader an overall view of the information published in literature to date, as regards the association between BD and MS. PMID:26572949

  7. Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum

    PubMed Central

    Livermore, Thomas Miles; Chubb, Jonathan Robert; Saiardi, Adolfo

    2016-01-01

    Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP. PMID:26755590

  8. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    PubMed

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars.

  9. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways

    PubMed Central

    2013-01-01

    Background myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. Results We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19% - 35% average

  10. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model

    PubMed Central

    Šedová, Lucie; Pravenec, Michal; Křenová, Drahomíra; Kazdová, Ludmila; Zídek, Václav; Krupková, Michaela; Liška, František; Křen, Vladimír; Šeda, Ondřej

    2016-01-01

    Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18–28 mmHg difference) and diastolic (10–15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome

  11. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    PubMed

    Šedová, Lucie; Pravenec, Michal; Křenová, Drahomíra; Kazdová, Ludmila; Zídek, Václav; Krupková, Michaela; Liška, František; Křen, Vladimír; Šeda, Ondřej

    2016-01-01

    Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.

  12. Isolation and Expression Analysis of STAT Members from Synechogobius hasta and Their Roles in Leptin Affecting Lipid Metabolism

    PubMed Central

    Wu, Kun; Tan, Xiao-Ying; Wei, Chuan-Chuan; You, Wen-Jing; Zhuo, Mei-Qin; Song, Yu-Feng

    2016-01-01

    Signal transducers and activators of transcription proteins (STATs) act as important mediators in multiple biological processes induced by a large number of cytokines. In the present study, full-length cDNA sequences of seven STAT members, including some splicing variants different from those in mammals, were obtained from Synechogobius hasta. The phylogenetic analysis revealed that the seven STAT members were derived from paralogous genes that might have arisen by whole genome duplication (WGD) events during vertebrate evolution. All of these members share similar domain structure compared with those of mammals, and were widely expressed across the tested tissues (brain, gill, heart, intestine, liver, muscle and spleen), but at variable levels. Incubation in vitro of recombinant human leptin changed the intracellular triglyceride (TG) content and mRNA levels of several STATs members, as well as expressions and activities of genes involved in lipid metabolism. Furthermore, Tyrphostin B42 (AG490), a specific inhibitor of the Janus Kinase 2(JAK2)-STAT pathway, partially reversed leptin-induced change on STAT3 and its two spliced isoforms expression, as well as expressions and activities of genes involved in lipid metabolism. As a consequence, the decrease of TG content was also reversed. Thus, our study suggests that STAT3 is the requisite for the leptin signal and the activation of the STAT3 member may account for the leptin-induced changes in lipid metabolism in S. hasta. PMID:27011172

  13. Isolation and Expression Analysis of STAT Members from Synechogobius hasta and Their Roles in Leptin Affecting Lipid Metabolism.

    PubMed

    Wu, Kun; Tan, Xiao-Ying; Wei, Chuan-Chuan; You, Wen-Jing; Zhuo, Mei-Qin; Song, Yu-Feng

    2016-01-01

    Signal transducers and activators of transcription proteins (STATs) act as important mediators in multiple biological processes induced by a large number of cytokines. In the present study, full-length cDNA sequences of seven STAT members, including some splicing variants different from those in mammals, were obtained from Synechogobius hasta. The phylogenetic analysis revealed that the seven STAT members were derived from paralogous genes that might have arisen by whole genome duplication (WGD) events during vertebrate evolution. All of these members share similar domain structure compared with those of mammals, and were widely expressed across the tested tissues (brain, gill, heart, intestine, liver, muscle and spleen), but at variable levels. Incubation in vitro of recombinant human leptin changed the intracellular triglyceride (TG) content and mRNA levels of several STATs members, as well as expressions and activities of genes involved in lipid metabolism. Furthermore, Tyrphostin B42 (AG490), a specific inhibitor of the Janus Kinase 2(JAK2)-STAT pathway, partially reversed leptin-induced change on STAT3 and its two spliced isoforms expression, as well as expressions and activities of genes involved in lipid metabolism. As a consequence, the decrease of TG content was also reversed. Thus, our study suggests that STAT3 is the requisite for the leptin signal and the activation of the STAT3 member may account for the leptin-induced changes in lipid metabolism in S. hasta. PMID:27011172

  14. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals.

    PubMed

    McClelland, Erin E; Ramagopal, Udupi A; Rivera, Johanna; Cox, James; Nakouzi, Antonio; Prabu, Moses M; Almo, Steven C; Casadevall, Arturo

    2016-09-01

    The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism. PMID:27583447

  15. A Small Protein Associated with Fungal Energy Metabolism Affects the Virulence of Cryptococcus neoformans in Mammals

    PubMed Central

    Cox, James; Nakouzi, Antonio; Prabu, Moses M.; Almo, Steven C.

    2016-01-01

    The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism. PMID:27583447

  16. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  17. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.

    PubMed

    Palomer, Xavier; Salvadó, Laia; Barroso, Emma; Vázquez-Carrera, Manuel

    2013-10-01

    Metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus are all linked to cardiovascular diseases such as cardiac hypertrophy and heart failure. Diabetic cardiomyopathy in particular, is characterized by structural and functional alterations in the heart muscle of people with diabetes that finally lead to heart failure, and which is not directly attributable to coronary artery disease or hypertension. Several mechanisms have been involved in the pathogenesis of diabetic cardiomyopathy, such as alterations in myocardial energy metabolism and calcium signaling. Metabolic disturbances during diabetic cardiomyopathy are characterized by increased lipid oxidation, intramyocardial triglyceride accumulation, and reduced glucose utilization. Overall changes result in enhanced oxidative stress, mitochondrial dysfunction and apoptosis of the cardiomyocytes. On the other hand, the progression of heart failure and cardiac hypertrophy usually entails a local rise in cytokines in cardiac cells and the activation of the proinflammatory transcription factor nuclear factor (NF)-κB. Interestingly, increasing evidences are arising in the recent years that point to a potential link between chronic low-grade inflammation in the heart and metabolic dysregulation. Therefore, in this review we summarize recent new insights into the crosstalk between inflammatory processes and metabolic dysregulation in the failing heart during diabetes, paying special attention to the role of NF-κB and peroxisome proliferator activated receptors (PPARs). In addition, we briefly describe the role of the AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1) and other pathways regulating cardiac energy metabolism, as well as their relationship with diabetic cardiomyopathy. PMID:23932046

  18. Corticosterone metabolism by chicken follicle cells does not affect ovarian reproductive hormone synthesis in vitro

    PubMed Central

    Rettenbacher, Sophie; Henriksen, Rie; Groothuids, Ton G.; Lepschy, Michael

    2013-01-01

    Glucocorticoids affect reproductive hormone production in many species. In chickens, elevated plasma corticosterone down-regulates testosterone and progesterone concentrations in plasma, but also in egg yolk. This suppression could be mediated via the hypothalamic-pituitary system but also via local inhibition of gonadal activity by glucocorticoids. As the latter has not been tested in birds yet, we tested if corticosterone directly inhibits ovarian steroid synthesis under in vitro conditions. We hypothesized that degradation of corticosterone by follicular cells impairs their ability to synthesize reproductive hormones due to either inhibition of enzymes or competition for common co-factors. Therefore, we first established whether follicles degrade corticosterone. Follicular tissue was harvested from freshly euthanized laying hens and incubated with radiolabelled corticosterone. Radioactive metabolites were visualized and quantified by autoradiography. Follicles converted corticosterone in a time-dependent manner into metabolites with a higher polarity than corticosterone. The predominant metabolite co-eluted with 20β-dihydrocorticosterone. Other chicken tissues mostly formed the same metabolite when incubated with corticosterone. In a second experiment, follicles were incubated with either progesterone or dehydroepiandrosterone. Corticosterone was added in increasing dosages up to 1000 ng per ml medium. Corticosterone did not inhibit the conversion of progesterone and dehydroepiandrosterone into a number of different metabolites, including 17α-hydroxyprogesterone, androstenedione and testosterone. In conclusion, avian tissues degrade corticosterone mostly to 20β-dihydrocorticosterone and even high corticosterone dosages do not affect follicular hormone production under in vitro conditions. PMID:23333751

  19. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  20. Milk protein yield and mammary metabolism are affected by phenylalanine deficiency but not by threonine or tryptophan deficiency.

    PubMed

    Doepel, L; Hewage, I I; Lapierre, H

    2016-04-01

    Efficient milk protein synthesis requires that the essential AA be presented to the mammary gland in the right amount and proportion to maximize protein synthesis and minimize losses. This study investigated the effects of individual AA deficiencies on cow productivity, mammary metabolism, and glucose whole-body rate of appearance. Five Holstein cows were used in a 5 × 5 Latin square design trial with 10-d periods. Treatments were abomasal infusions of (1) water (CTL); (2) complete AA mixture (TAA); (3) TAA without Phe (No-Phe); (4) TAA without Thr (No-Thr); and (5) TAA without Trp (No-Trp). Each treatment was compared with TAA. Treatment did not affect milk, fat, or lactose yields. Arterial concentrations of Phe, Thr, and Trp decreased with their respective deletions by 60, 76, and 69%. In response to the decreased arterial supply of the deleted AA, mammary plasma flow significantly increased by 55% with No-Thr but did not increase with No-Phe or No-Trp. Mammary uptake of Phe was reduced by No-Phe, accompanied by a reduced milk protein yield; uptakes of Thr and Trp were not affected by their respective deletions, and milk protein yield did not decrease with these treatments. Deletion of Phe tended to reduce its mammary uptake relative to milk output (U:O), accompanied by an increased U:O of Tyr, but deletion of Thr and Trp did not affect the U:O of the corresponding AA. Plasma urea-N concentration was lower with CTL and tended to be higher with No-Phe. Arterial concentrations and mammary uptake of acetate, β-hydroxybutyrate, glucose, and lactate were unaffected by treatment. Treatment had no effect on glucose rate of appearance at the whole-body level. Lactose output as a percentage of glucose whole-body rate of appearance was not affected by treatment. Overall, the study indicated that a deficiency of Phe negatively affected productivity and mammary metabolism but that a deficiency of Thr or Trp did not.

  1. Generalizability of Gottman and Colleagues' Affective Process Models Of Couples' Relationship Outcomes

    ERIC Educational Resources Information Center

    Kim, Hyoun K.; Capaldi, Deborah M.; Crosby, Lynn

    2007-01-01

    The generalizability of the affective process models of J. M. Gottman et al. (1998) was examined using a community-based sample of 85 married or cohabiting couples with at-risk backgrounds. Predictive associations between affective processes assessed at about age 21 years and relationship status and satisfaction assessed approximately 2.5 years…

  2. Markers of Bone Metabolism Are Affected by Renal Function and Growth Hormone Therapy in Children with Chronic Kidney Disease

    PubMed Central

    Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz

    2015-01-01

    Objectives The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Methods Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6–18 years with an estimated glomerular filtration rate (eGFR) of 10–60 ml/min/1.73m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Results Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Conclusion Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity. PMID:25659076

  3. The GEF1 proton-chloride exchanger affects tombusvirus replication via regulation of copper metabolism in yeast.

    PubMed

    Sasvari, Zsuzsanna; Kovalev, Nikolay; Nagy, Peter D

    2013-02-01

    Replication of plus-strand RNA viruses [(+)RNA viruses] is performed by viral replicases, whose function is affected by many cellular factors in infected cells. In this paper, we demonstrate a surprising role for Gef1p proton-chloride exchanger in replication of Tomato bushy stunt virus (TBSV) model (+)RNA virus. A genetic approach revealed that Gef1p, which is the only proton-chloride exchanger in Saccharomyces cerevisiae, is required for TBSV replication in the yeast model host. We also show that the in vitro activity of the purified tombusvirus replicase from gef1Δ yeast was low and that the in vitro assembly of the viral replicase in a cell extract was inhibited by the cytosolic fraction obtained from gef1Δ yeast. Altogether, our data reveal that Gef1p modulates TBSV replication via regulating Cu(2+) metabolism in the cell. This conclusion is supported by several lines of evidence, including the direct inhibitory effect of Cu(2+) ions on the in vitro assembly of the viral replicase, on the activity of the viral RNA-dependent RNA polymerase, and an inhibitory effect of deletion of CCC2 copper pump on TBSV replication in yeast, while altered iron metabolism did not reduce TBSV replication. In addition, applying a chloride channel blocker impeded TBSV replication in Nicotiana benthamiana protoplasts or in whole plants. Overall, blocking Gef1p function seems to inhibit TBSV replication through altering Cu(2+) ion metabolism in the cytosol, which then inhibits the normal functions of the viral replicase.

  4. Biochemical aspects of overtraining in endurance sports : the metabolism alteration process syndrome.

    PubMed

    Petibois, Cyril; Cazorla, Georges; Poortmans, Jacques-Rémi; Déléris, Gérard

    2003-01-01

    Recent studies have shown that endurance overtraining could result from successive and cumulative alterations in metabolism, which become chronic during training. The onset of this process is a biochemical alteration in carbohydrate (saccharide) metabolism. During endurance exercises, the amount of saccharide chains from two blood glycoproteins (alpha(2)-macroglobulin and alpha(1)-acid glycoprotein) was found to have decreased, i.e. concentrations of these proteins remained unchanged but their quality changed. These saccharide chains were probably used for burning liver glycogen stores during exercise. This step was followed by alterations in lipid metabolism. The most relevant aspect of this step was that the mean chain length of blood fatty acids decreased, i.e. the same amount of fatty acids were found within the blood, but overtrained individuals presented shorter fatty acids than well-trained individuals. This suggests that alterations appeared in the liver synthesis of long-chain fatty acids or that higher peroxidation of blood lipoparticles occurred. For the final step of this overtraining process, it was found that these dysfunctions in carbohydrate/lipid metabolism led to the higher use of amino acids, which probably resulted from protein catabolism. The evolution of three protein concentrations (alpha(1)-acid glycoprotein, alpha(2)-macroglobulin and IgG(3)) correlated with this amino acid concentration increase, suggesting a specific catabolism of these proteins. At this time only, overtraining was clinically diagnosed through conventional symptoms. Therefore, this process described successive alterations in exercise metabolism that shifted from the main energetic stores of exercise (carbohydrates and lipids) towards molecular pools (proteins) normally not substantially used for the energetic supply of skeletal muscles. Now, a general biochemical model of the overtraining process may be proposed which includes most of the previously identified metabolic

  5. Continual feeding of two types of microalgal biomass affected protein digestion and metabolism in laying hens.

    PubMed

    Ekmay, R D; Chou, K; Magnuson, A; Lei, X G

    2015-01-01

    A 14-wk study was conducted to determine the nutritional efficacy and ssmetabolic impact of 2 types of microalgal biomass as alternative protein sources in laying hen diets. Shaver hens (total = 150 and 26 wk old) were fed 1 of 5 diets: a control or a defatted green microalgal biomass (DG; Desmodesmus spp.) at 25% and a full-fatted diatom biomass (FD; Staurosira spp.) at 11.7% inclusion with or without protease. This experiment consisted of 5 replicates per treatment and each replicate contained 6 hens individually reared in cages (1 hen for biochemical data/replicate). Despite decreased ADFI (P = 0.03), hens fed DG or FD had final BW, overall hen-day egg production, and egg quality similar to the controls. Feeding DG or FD did not alter plasma concentrations of insulin, glutamine, and uric acid or alkaline phosphatase activity at wk 8 or 14 but decreased plasma 3-methyhistine concentrations (P = 0.03) and tartrate-resistant acid phosphatase (TRAP) activities (P < 0.001) at wk 14 and improved (P = 0.002) ileal total AA digestibility. Although DG or FD exhibited moderate effects on intestinal brush border protease activities and mRNA levels of duodenal transporters Pept1, Lat1, and Cat1, both substantially enhanced (P < 0.05) phosphorylation of hepatic protein synthesis key regulator S6 ribosomal protein (S6) and the ratio of phospho-S6 to S6 in the liver of hens. However, DG and FD manifested with different impacts on weights of egg and egg albumen, proteolytic activity of jejunal digesta, plasma TRAP activity, ileal total AA digestibility, and several intestinal genes and hepatic proteins. Supplemental protease in the DG and FD diets produced mixed effects on a number of measures. In conclusion, our findings revealed the feasibility of including greater levels of microalgal biomass as a source of feed protein for laying hens and a novel potential of the biomass in improving dietary protein digestion and body protein metabolism than previously perceived. PMID

  6. Continual feeding of two types of microalgal biomass affected protein digestion and metabolism in laying hens.

    PubMed

    Ekmay, R D; Chou, K; Magnuson, A; Lei, X G

    2015-01-01

    A 14-wk study was conducted to determine the nutritional efficacy and ssmetabolic impact of 2 types of microalgal biomass as alternative protein sources in laying hen diets. Shaver hens (total = 150 and 26 wk old) were fed 1 of 5 diets: a control or a defatted green microalgal biomass (DG; Desmodesmus spp.) at 25% and a full-fatted diatom biomass (FD; Staurosira spp.) at 11.7% inclusion with or without protease. This experiment consisted of 5 replicates per treatment and each replicate contained 6 hens individually reared in cages (1 hen for biochemical data/replicate). Despite decreased ADFI (P = 0.03), hens fed DG or FD had final BW, overall hen-day egg production, and egg quality similar to the controls. Feeding DG or FD did not alter plasma concentrations of insulin, glutamine, and uric acid or alkaline phosphatase activity at wk 8 or 14 but decreased plasma 3-methyhistine concentrations (P = 0.03) and tartrate-resistant acid phosphatase (TRAP) activities (P < 0.001) at wk 14 and improved (P = 0.002) ileal total AA digestibility. Although DG or FD exhibited moderate effects on intestinal brush border protease activities and mRNA levels of duodenal transporters Pept1, Lat1, and Cat1, both substantially enhanced (P < 0.05) phosphorylation of hepatic protein synthesis key regulator S6 ribosomal protein (S6) and the ratio of phospho-S6 to S6 in the liver of hens. However, DG and FD manifested with different impacts on weights of egg and egg albumen, proteolytic activity of jejunal digesta, plasma TRAP activity, ileal total AA digestibility, and several intestinal genes and hepatic proteins. Supplemental protease in the DG and FD diets produced mixed effects on a number of measures. In conclusion, our findings revealed the feasibility of including greater levels of microalgal biomass as a source of feed protein for laying hens and a novel potential of the biomass in improving dietary protein digestion and body protein metabolism than previously perceived.

  7. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  8. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  9. Exogenous administration of chronic corticosterone affects hepatic cholesterol metabolism in broiler chickens showing long or short tonic immobility.

    PubMed

    Liu, Jie; Duan, Yujing; Hu, Yun; Sun, Lili; Wang, Song; Fu, Wenyan; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    Tonic immobility (TI) is an innate characteristic of animals related to fear or stress response. Animals can be classified into long TI (LTI) and short TI (STI) phenotypes based on TI test duration. In this study, effect of TI phenotype, chronic corticosterone administration (CORT), and their interaction on cholesterol metabolism in liver was evaluated in broilers. LTI broilers showed higher level of cholesterol in liver compared to STI chickens (p<0.05), and CORT significantly increased hepatic cholesterol content (p<0.01). Real-time PCR results showed that both TI and CORT potentially altered ABCA1 and CYP7A1 gene expressions (0.05affected hepatic HMGCR protein expression, and LTI broilers showed higher level of HMGCR protein expression in liver than STI (p<0.05). These results indicate that chronic CORT administration causes hepatic cholesterol accumulation in broiler chickens mainly by enhancing cholesterol synthesis and uptake into liver. LTI chickens had higher amount of total cholesterol in liver, which might be associated with an increase of hepatic HMGCR protein expression. However, there is no interaction between TI and CORT on cholesterol metabolism in liver of broilers.

  10. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.

    PubMed

    Hofvander, Per; Ischebeck, Till; Turesson, Helle; Kushwaha, Sandeep K; Feussner, Ivo; Carlsson, Anders S; Andersson, Mariette

    2016-09-01

    Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil. From a nutritional as well as economic aspect, it would be of interest to utilize the high yield capacity of tuber or root crops for oil accumulation similar to yellow nutsedge. The transcription factor WRINKLED1 from Arabidopsis thaliana, which in seed embryos induce fatty acid synthesis, has been shown to be a major factor for oil accumulation. WRINKLED1 was expressed in potato (Solanum tuberosum) tubers to explore whether this factor could impact tuber metabolism. This study shows that a WRINKLED1 transcription factor could induce triacylglycerol accumulation in tubers of transformed potato plants grown in field (up to 12 nmol TAG/mg dry weight, 1% of dry weight) together with a large increase in polar membrane lipids. The changes in metabolism further affected starch accumulation and composition concomitant with massive increases in sugar content.

  11. Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.

    PubMed

    Hofvander, Per; Ischebeck, Till; Turesson, Helle; Kushwaha, Sandeep K; Feussner, Ivo; Carlsson, Anders S; Andersson, Mariette

    2016-09-01

    Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil. From a nutritional as well as economic aspect, it would be of interest to utilize the high yield capacity of tuber or root crops for oil accumulation similar to yellow nutsedge. The transcription factor WRINKLED1 from Arabidopsis thaliana, which in seed embryos induce fatty acid synthesis, has been shown to be a major factor for oil accumulation. WRINKLED1 was expressed in potato (Solanum tuberosum) tubers to explore whether this factor could impact tuber metabolism. This study shows that a WRINKLED1 transcription factor could induce triacylglycerol accumulation in tubers of transformed potato plants grown in field (up to 12 nmol TAG/mg dry weight, 1% of dry weight) together with a large increase in polar membrane lipids. The changes in metabolism further affected starch accumulation and composition concomitant with massive increases in sugar content. PMID:26914183

  12. 76 FR 30509 - Court Orders and Legal Processes Affecting Thrift Savings Plan Accounts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... Part 1653 Court Orders and Legal Processes Affecting Thrift Savings Plan Accounts AGENCY: Federal... finalize the process by which TSP accounts may be garnished efficiently--consistent with law and regulation... is trying to process more than 7,000 child support orders. If the Agency processes these orders...

  13. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  14. Calcium-Vitamin D Co-supplementation Affects Metabolic Profiles, but not Pregnancy Outcomes, in Healthy Pregnant Women

    PubMed Central

    Asemi, Zatollah; Samimi, Mansooreh; Siavashani, Mehrnush Amiri; Mazloomi, Maryam; Tabassi, Zohreh; Karamali, Maryam; Jamilian, Mehri; Esmaillzadeh, Ahmad

    2016-01-01

    Background: Pregnancy is associated with unfavorable metabolic profile, which might in turn result in adverse pregnancy outcomes. The current study was designed to evaluate the effects of calcium plus Vitamin D administration on metabolic status and pregnancy outcomes in healthy pregnant women. Methods: This randomized double-blind placebo-controlled clinical trial was performed among 42 pregnant women aged 18–40 years who were at week 25 of gestation. Subjects were randomly allocated to consume either 500 mg calcium-200 IU cholecalciferol supplements (n = 21) or placebo (n = 21) for 9 weeks. Blood samples were obtained at the onset of the study and after 9-week trial to determine related markers. Post-delivery, the newborn's weight, length, and head circumference were measured during the first 24 h after birth. Results: Consumption of calcium-Vitamin D co-supplements resulted in a significant reduction of serum high-sensitivity C-reactive protein levels compared with placebo (−1856.8 ± 2657.7 vs. 707.1 ± 3139.4 μg/mL, P = 0.006). We also found a significant elevation of plasma total antioxidant capacity (89.3 ± 118.0 vs. −9.4 ± 164.9 mmol/L, P = 0.03), serum 25-hydroxyvitamin D (2.5 ± 3.5 vs. −1.7 ± 1.7 ng/mL, P < 0.0001), and calcium levels (0.6 ± 0.6 vs. −0.1 ± 0.4 mg/dL, P < 0.0001). The supplementation led to a significant decrease in diastolic blood pressure (−1.9 ± 8.3 vs. 3.1 ± 5.2 mmHg, P = 0.02) compared with placebo. No significant effect of calcium-Vitamin D co-supplements was seen on other metabolic profiles. We saw no significant change of the co-supplementation on pregnancy outcomes as well. Conclusions: Although calcium-Vitamin D co-supplementation for 9 weeks in pregnant women resulted in improved metabolic profiles, it did not affect pregnancy outcomes. PMID:27076887

  15. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    PubMed

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  16. Early infancy microbial and metabolic alterations affect risk of childhood asthma.

    PubMed

    Arrieta, Marie-Claire; Stiemsma, Leah T; Dimitriu, Pedro A; Thorson, Lisa; Russell, Shannon; Yurist-Doutsch, Sophie; Kuzeljevic, Boris; Gold, Matthew J; Britton, Heidi M; Lefebvre, Diana L; Subbarao, Padmaja; Mandhane, Piush; Becker, Allan; McNagny, Kelly M; Sears, Malcolm R; Kollmann, Tobias; Mohn, William W; Turvey, Stuart E; Finlay, B Brett

    2015-09-30

    Asthma is the most prevalent pediatric chronic disease and affects more than 300 million people worldwide. Recent evidence in mice has identified a "critical window" early in life where gut microbial changes (dysbiosis) are most influential in experimental asthma. However, current research has yet to establish whether these changes precede or are involved in human asthma. We compared the gut microbiota of 319 subjects enrolled in the Canadian Healthy Infant Longitudinal Development (CHILD) Study, and show that infants at risk of asthma exhibited transient gut microbial dysbiosis during the first 100 days of life. The relative abundance of the bacterial genera Lachnospira, Veillonella, Faecalibacterium, and Rothia was significantly decreased in children at risk of asthma. This reduction in bacterial taxa was accompanied by reduced levels of fecal acetate and dysregulation of enterohepatic metabolites. Inoculation of germ-free mice with these four bacterial taxa ameliorated airway inflammation in their adult progeny, demonstrating a causal role of these bacterial taxa in averting asthma development. These results enhance the potential for future microbe-based diagnostics and therapies, potentially in the form of probiotics, to prevent the development of asthma and other related allergic diseases in children.

  17. Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    PubMed Central

    Spivak, Amanda C.; Canuel, Elizabeth A.; Duffy, J. Emmett; Richardson, J. Paul

    2009-01-01

    Background Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood. Methodology/Principal Findings Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments. Conclusions/Significance Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing

  18. [Effect of extreme conditions on seasonal patterns of endocrine and metabolic processes].

    PubMed

    Barabash, L V; Levitskiĭ, E F; Khon, V B; Zaĭtsev, A A

    2009-01-01

    The study was designed to clarify seasonal patterns of endocrine and metabolic processes and their changes under extreme conditions in Special Police Force servicemen. Hormonal status, lipid spectra, activity of lipid peroxidation and nonspecific protection systems were assessed during transition seasons. It was shown that the stay in a local armed conflict zone had marked effect on the structure of adaptive reactions. Hormonal dysregulation and impaired efficiency of protective systems were most pronounced during the autumn/winter season. Disturbed endocrine regulation in winter/spring resulted in undesirable changes of lipid metabolism and increased load on the protective function mediated through bioactive radicals. PMID:19705792

  19. Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.).

    PubMed

    Mihaljević, Snježana; Radić, Sandra; Bauer, Nataša; Garić, Rade; Mihaljević, Branka; Horvat, Gordana; Leljak-Levanić, Dunja; Jelaska, Sibila

    2011-11-01

    Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1mM ammonium (NH(4)(+)) as the sole source of nitrogen. Growth of NH(4)(+)-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH(4)(+) medium with 25mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH(4)(+) induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH(4)(+) as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20mM) or Gln (10mM) in combination with NH(4)(+) (1mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin.

  20. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  1. Modeling Central Carbon Metabolic Processes in Soil Microbial Communities: Comparing Measured With Modeled

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Fairbanks, D.; Miller, E.; Salpas, E.; Hagerty, S.

    2013-12-01

    Understanding the mechanisms regulating C cycling is hindered by our inability to directly observe and measure the biochemical processes of glycolysis, pentose phosphate pathway, and TCA cycle in intact and complex microbial communities. Position-specific 13C labeled metabolic tracer probing is proposed as a new way to study microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the quantification of C fluxes through the central C metabolic network processes (Dijkstra et al 2011a,b). We determined the 13CO2 production from U-13C, 1-13C, 2-13C, 3-13C, 4-13C, 5-13C, and 6-13C labeled glucose and 1-13C and 2,3-13C pyruvate in parallel incubations in three soils along an elevation gradient. Qualitative and quantitative interpretation of the results indicate a high pentose phosphate pathway activity in soils. Agreement between modeled and measured CO2 production rates for the six C-atoms of 13C-labeled glucose indicate that the metabolic model used is appropriate for soil community processes, but that improvements can be made. These labeling and modeling techniques may improve our ability to analyze the biochemistry and (eco)physiology of intact microbial communities. Dijkstra, P., Blankinship, J.C., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011a. Probing C flux patterns of soil microbial metabolic networks using parallel position-specific tracer labeling. Soil Biology & Biochemistry 43, 126-132. Dijkstra, P., Dalder, J.J., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011b. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biology & Biochemistry 43, 1848-1857.

  2. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    PubMed

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  3. Lipid mobilisation and oxidative stress as metabolic adaptation processes in dairy heifers during transition period.

    PubMed

    Turk, R; Podpečan, O; Mrkun, J; Kosec, M; Flegar-Meštrić, Z; Perkov, S; Starič, J; Robić, M; Belić, M; Zrimšek, P

    2013-10-01

    The objective of this study was to evaluate metabolic disorders and oxidative stress in dairy heifers during the transition period. Possible relationships between lipid mobilisation indicators and oxidative stress markers were investigated as well. Nineteen dairy heifers were included in the study. Blood samples were collected at the time of estrus synchronisation in heifers, at insemination, three weeks after insemination, one week before calving, at calving and 1, 2, 4 and 8 weeks postpartum. Common metabolic parameters, beta-hydroxybutyrate (BHB), free fatty acids (FFA), paraoxonase-1 (PON1) activity and total antioxidative status (TAS) were analysed. Around insemination, no significant difference was observed in the majority of tested parameters (P>0.05). However, the transition period markedly affected the concentration of triglycerides, total cholesterol, HDL-C, BHB, FFA, TAS and PON1activity. Positive correlations between PON1 activity and total cholesterol, HDL-C and triglycerides were noted but inverse correlations with FFA, BHB and bilirubin were found indicating that PON1 activity changed with lipid metabolism and was influenced by negative energy balance. These findings suggest that lipid mobilisation and oxidative stress are part of a complex metabolic adaptation to low energy balance which reaches equilibrium later in advanced lactation.

  4. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity

    PubMed Central

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-01-01

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut−/−) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut−/− mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut−/− mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut−/− mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis. PMID:25331291

  5. Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity.

    PubMed

    Sakamoto, Shohei; Miyaji, Takaaki; Hiasa, Miki; Ichikawa, Reiko; Uematsu, Akira; Iwatsuki, Ken; Shibata, Atsushi; Uneyama, Hisayuki; Takayanagi, Ryoichi; Yamamoto, Akitsugu; Omote, Hiroshi; Nomura, Masatoshi; Moriyama, Yoshinori

    2014-10-21

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.

  6. Study of individual and group affective processes in the crew of a simulated mission to Mars: Positive affectivity as a valuable indicator of changes in the crew affectivity

    NASA Astrophysics Data System (ADS)

    Poláčková Šolcová, Iva; Lačev, Alek; Šolcová, Iva

    2014-07-01

    The success of a long-duration space mission depends on various technical demands as well as on the psychological (cognitive, affective, and motivational) adaptation of crewmembers and the quality of interactions within the crew. We examined the ways crewmembers of a 520-day simulated spaceflight to Mars (held in the Institute for Biomedical Problems, in Moscow) experienced and regulated their moods and emotions. Results show that crewmembers experienced predominantly positive emotions throughout their 520-day isolation and the changes in mood of the crewmembers were asynchronous and balanced. The study suggests that during the simulation, crewmembers experienced and regulated their emotions differently than they usually do in their everyday life. In isolation, crewmembers preferred to suppress and neutralize their negative emotions and express overtly only emotions with positive valence. Although the affective processes were almost invariable throughout the simulation, two periods of time when the level of positive emotions declined were identified. Regarding the findings, the paper suggests that changes in positive affectivity could be a more valuable indicator of human experience in demanding but professional environments than changes in negative affectivity. Finally, the paper discusses the phenomenology of emotions during a real space mission.

  7. Factors Affecting Development of Peroxisomes and Glycolate Metabolism among Algae of Different Evolutionary Lines of the Prasinophyceae.

    PubMed

    Kehlenbeck, P.; Goyal, A.; Tolbert, N. E.

    1995-12-01

    Leaf-type peroxisomes are not present in the primitive unicellular Prasinophycean line of algae but are present in the multicellular algae Mougeotia, Chara, and Nitella, which are in the one evolutionary line, Charophyceae, that led to higher plants. Processes related to glycolate metabolism that may have been modified or induced with the appearance of peroxisomes have been examined. The algal dissolved inorganic carbon-concentrating mechanism and alkalization of the medium during photosynthesis were not lost when peroxisomes appeared in the members of the Charophycean line of algae. Therefore, it is unlikely that lowering of the CO2 concentration in the environment was a major factor in the evolutionary appearance of peroxisomes. Multicellular Mougeotia, early members of the Charophycean line of algae, have peroxisomes, but they excrete excess glycolate into the medium. The cytosolic pyruvate reductase for D-lactate synthesis and the glycolate dehydrogenase activity almost disappeared when peroxisomal glycolate oxidase, which also oxidizes L-lactate, appeared. These biochemical changes do not indicate what caused the induction of leaf-type peroxisomes in this evolutionary line of algae. The oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and glycolate oxidase require about 200 to 400 [mu]M O2 for 0.5 Vmax. These high-O2-requiring steps in glycolate metabolism would have functioned faster with increasing atmospheric O2, which might have been the causative factor in the induction of peroxisomes.

  8. Interplay Between Metabolism and Oncogenic Process: Role of microRNAs

    PubMed Central

    Arora, Aastha; Singh, Saurabh; Bhatt, Anant Narayan; Pandey, Sanjay; Sandhir, Rajat; Dwarakanath, Bilikere S.

    2015-01-01

    Cancer is a complex disease that arises from the alterations in the composition and regulation of several genes leading to the disturbances in signaling pathways, resulting in the dysregulation of cell proliferation and death as well as the ability of transformed cells to invade the host tissue and metastasize. It is increasingly becoming clear that metabolic reprograming plays a critical role in tumorigenesis and metastasis. Therefore, targeting this phenotype is considered as a promising approach for the development of therapeutics and adjuvants. The process of metabolic reprograming is linked to the activation of oncogenes and/or suppression of tumor suppressor genes, which are further regulated by microRNAs (miRNAs) that play important roles in the interplay between oncogenic process and metabolic reprograming. Looking at the advances made in the recent past, it appears that the translation of knowledge from research in the areas of metabolism, miRNA, and therapeutic response will lead to paradigm shift in the management of this disease. PMID:26740741

  9. Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes

    SciTech Connect

    Stockel, Jana; Welsh, Eric A.; Liberton, Michelle L.; Kunnavakkam, Rangesh V.; Aurora, Rajeev; Pakrasi, Himadri B.

    2008-04-22

    Cyanobacteria are oxygenic photosynthetic organisms, and the only prokaryotes known to have a circadian cycle. Unicellular diazotrophic cyanobacteria such as Cyanothece 51142 can fix atmospheric nitrogen, a process exquisitely sensitive to oxygen. Thus, the intracellular environment of Cyanothece oscillates between aerobic and anaerobic conditions during a day-night cycle. This is accomplished by temporal separation of two processes: photosynthesis during the day, and nitrogen fixation at night. While previous studies have examined periodic changes transcript levels for a limited number of genes in Cyanothece and other unicellular diazotrophic cyanobacteria, a comprehensive study of transcriptional activity in a nitrogen-fixing cyanobacterium is necessary to understand the impact of the temporal separation of photosynthesis and nitrogen fixation on global gene regulation and cellular metabolism. We have examined the expression patterns of nearly 5000 genes in Cyanothece 51142 during two consecutive diurnal periods. We found that ~30% of these genes exhibited robust oscillating expression profiles. Interestingly, this set included genes for almost all central metabolic processes in Cyanothece. A transcriptional network of all genes with significantly oscillating transcript levels revealed that the majority of genes in numerous individual pathways, such as glycolysis, pentose phosphate pathway and glycogen metabolism, were co-regulated and maximally expressed at distinct phases during the diurnal cycle. Our analyses suggest that the demands of nitrogen fixation greatly influence major metabolic activities inside Cyanothece cells and thus drive various cellular activities. These studies provide a comprehensive picture of how a physiologically relevant diurnal light-dark cycle influences the metabolism in a photosynthetic bacterium

  10. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?

    PubMed

    Jacobs, Arthur M; Võ, Melissa L-H; Briesemeister, Benny B; Conrad, Markus; Hofmann, Markus J; Kuchinke, Lars; Lüdtke, Jana; Braun, Mario

    2015-01-01

    Reading is not only "cold" information processing, but involves affective and aesthetic processes that go far beyond what current models of word recognition, sentence processing, or text comprehension can explain. To investigate such "hot" reading processes, standardized instruments that quantify both psycholinguistic and emotional variables at the sublexical, lexical, inter-, and supralexical levels (e.g., phonological iconicity, word valence, arousal-span, or passage suspense) are necessary. One such instrument, the Berlin Affective Word List (BAWL) has been used in over 50 published studies demonstrating effects of lexical emotional variables on all relevant processing levels (experiential, behavioral, neuronal). In this paper, we first present new data from several BAWL studies. Together, these studies examine various views on affective effects in reading arising from dimensional (e.g., valence) and discrete emotion features (e.g., happiness), or embodied cognition features like smelling. Second, we extend our investigation of the complex issue of affective word processing to words characterized by a mixture of affects. These words entail positive and negative valence, and/or features making them beautiful or ugly. Finally, we discuss tentative neurocognitive models of affective word processing in the light of the present results, raising new issues for future studies.

  11. 10 years of BAWLing into affective and aesthetic processes in reading: what are the echoes?

    PubMed Central

    Jacobs, Arthur M.; Võ, Melissa L.-H.; Briesemeister, Benny B.; Conrad, Markus; Hofmann, Markus J.; Kuchinke, Lars; Lüdtke, Jana; Braun, Mario

    2015-01-01

    Reading is not only “cold” information processing, but involves affective and aesthetic processes that go far beyond what current models of word recognition, sentence processing, or text comprehension can explain. To investigate such “hot” reading processes, standardized instruments that quantify both psycholinguistic and emotional variables at the sublexical, lexical, inter-, and supralexical levels (e.g., phonological iconicity, word valence, arousal-span, or passage suspense) are necessary. One such instrument, the Berlin Affective Word List (BAWL) has been used in over 50 published studies demonstrating effects of lexical emotional variables on all relevant processing levels (experiential, behavioral, neuronal). In this paper, we first present new data from several BAWL studies. Together, these studies examine various views on affective effects in reading arising from dimensional (e.g., valence) and discrete emotion features (e.g., happiness), or embodied cognition features like smelling. Second, we extend our investigation of the complex issue of affective word processing to words characterized by a mixture of affects. These words entail positive and negative valence, and/or features making them beautiful or ugly. Finally, we discuss tentative neurocognitive models of affective word processing in the light of the present results, raising new issues for future studies. PMID:26089808

  12. Self-selected unrefined and refined carbohydrate diets do not affect metabolic control in pump-treated diabetic patients.

    PubMed

    Venhaus, A; Chantelau, E

    1988-03-01

    This study investigated whether unrefined or refined carbohydrate diets have any effect on metabolic control and on insulin requirement in near-normoglycaemic Type 1 (insulin-dependent) diabetic out-patients on continuous subcutaneous insulin infusion therapy. Two females and 8 males (aged 27 +/- 9 years; diabetes duration 13 +/- 8 years; duration of insulin pump therapy 22 +/- 5 months; means +/- SD) participated in a randomised cross-over study with two 6-week periods on self-selected refined and unrefined carbohydrate diets respectively. As a result, energy intake differed between the experimental diets (2372 +/- 669 kcal/day on unrefined diet vs 2757 +/- 654 kcal/day on refined diet, p = 0.04), as did the fibre intake (18 +/- 5 g/day with the refined carbohydrate diet vs 35 +/- 13 g/day with the unrefined carbohydrate diet, p = 0.02). The composition of nutrients was approximately 40% carbohydrate, 45% fat, and 13% protein with both diets. Body weight, HbA1c, daily mean blood glucose (7.2 +/- 0.6 mmol/l) and serum lipids remained virtually unchanged during the entire study. Insulin requirement varied between 40.1 +/- 7.9 U/day with the unrefined carbohydrate diet, and 42.5 +/- 10.1 U/day with the refined carbohydrate diet (NS). Thus, neither the refined nor the unrefined carbohydrate diet affected insulin requirement and metabolic control in these near-normoglycaemic, normolipaemic, non-obese, insulin-pump-treated Type 1 diabetic patients.

  13. N-3 polyunsaturated fatty acids supplementation does not affect changes of lipid metabolism induced in rats by altered thyroid status.

    PubMed

    Rauchová, H; Vokurková, M; Pavelka, S; Behuliak, M; Tribulová, N; Soukup, T

    2013-07-01

    Epidemiological studies have demonstrated that n-3 polyunsaturated fatty acid (PUFA) consumption is associated with a reduced risk of atherosclerosis and hyperlipidemia. It is well known that lipid metabolism is also influenced by thyroid hormones. The aim of our study was to test whether n-3 PUFA supplementation (200 mg/kg of body weight/day for 6 weeks given intragastrically) would affect lipid metabolism in Lewis male rats with altered thyroid status. Euthyroid, hypothyroid, and hyperthyroid status of experimental groups was well defined by plasma levels of triiodothyronine, the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase, and by relative heart weight. Fasting blood glucose levels were significantly higher in the hyperthyroid compared to the euthyroid and hypothyroid rats (5.0±0.2 vs. 3.7±0.4 and 4.4±0.2 mmol/l, respectively). In hyperthyroid animals, the concentration of plasma postprandial triglycerides was also increased compared to euthyroid and hypothyroid rats (0.9±0.1 vs. 0.5±0.1 and 0.4±0.1 mmol/l, respectively). On the other hand, hypothyroidism compared to euthyroid and hyperthyroid status was associated with elevated plasma levels of total cholesterol (2.6±0.2 vs. 1.5±0.1 and 1.6±0.1 mmol/l, respectively), LDL cholesterol (0.9±0.1 vs. 0.4±0.1 and 0.2±0.1 mmol/l, respectively) as well as HDL cholesterol (1.6±0.1 vs. 1.0±0.1 and 1.3±0.1 mmol/l, respectively). Supplementation of n-3 PUFA in the present study did not significantly modify either relative heart weight or glucose and lipid levels in any thyroid status.

  14. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    PubMed

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-01

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  15. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    PubMed

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-01

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  16. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows.

    PubMed

    Akbar, H; Grala, T M; Vailati Riboni, M; Cardoso, F C; Verkerk, G; McGowan, J; Macdonald, K; Webster, J; Schutz, K; Meier, S; Matthews, L; Roche, J R; Loor, J J

    2015-02-01

    , STAT3, HP, and SAA3 coupled with the increase in ALB on wk 3 in MBCS cows were consistent with blood measures. Overall, results suggest that the greater milk production of cows with higher calving BCS is associated with a proinflammatory response without negatively affecting expression of genes related to metabolism and the growth hormone/insulin-like growth factor-1 axis. Results highlight the sensitivity of indicators of metabolic health and inflammatory state to subtle changes in calving BCS and, collectively, indicate a suboptimal health status in cows calving at either BCS 3.5 or 5.5 relative to BCS 4.5. PMID:25497809

  17. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows.

    PubMed

    Akbar, H; Grala, T M; Vailati Riboni, M; Cardoso, F C; Verkerk, G; McGowan, J; Macdonald, K; Webster, J; Schutz, K; Meier, S; Matthews, L; Roche, J R; Loor, J J

    2015-02-01

    , STAT3, HP, and SAA3 coupled with the increase in ALB on wk 3 in MBCS cows were consistent with blood measures. Overall, results suggest that the greater milk production of cows with higher calving BCS is associated with a proinflammatory response without negatively affecting expression of genes related to metabolism and the growth hormone/insulin-like growth factor-1 axis. Results highlight the sensitivity of indicators of metabolic health and inflammatory state to subtle changes in calving BCS and, collectively, indicate a suboptimal health status in cows calving at either BCS 3.5 or 5.5 relative to BCS 4.5.

  18. Key factors, Soil N Processes, and nitrite accumulation affecting nitrous oxide emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of the key factors affecting nitrous oxide (N2O) emission and potential mitigation strategies is essential for sustainable agriculture. The objective of this study was to examine the important factors affecting N2O emissions, soil processes involved, and potential mitigation s...

  19. Searching for Judy: How Small Mysteries Affect Narrative Processes and Memory

    ERIC Educational Resources Information Center

    Love, Jessica; McKoon, Gail; Gerrig, Richard J.

    2010-01-01

    Current theories of text processing say little about how authors' narrative choices, including the introduction of small mysteries, can affect readers' narrative experiences. Gerrig, Love, and McKoon (2009) provided evidence that 1 type of small mystery--a character introduced without information linking him or her to the story--affects readers'…

  20. The Impact of Affect on Out-Group Judgments Depends on Dominant Information-Processing Styles: Evidence From Incidental and Integral Affect Paradigms.

    PubMed

    Isbell, Linda M; Lair, Elicia C; Rovenpor, Daniel R

    2016-04-01

    Two studies tested the affect-as-cognitive-feedback model, in which positive and negative affective states are not uniquely associated with particular processing styles, but rather serve as feedback about currently accessible processing styles. The studies extend existing work by investigating (a) both incidental and integral affect, (b) out-group judgments, and (c) downstream consequences. We manipulated processing styles and either incidental (Study 1) or integral (Study 2) affect and measured perceptions of out-group homogeneity. Positive (relative to negative) affect increased out-group homogeneity judgments when global processing was primed, but under local priming, the effect reversed (Studies 1 and 2). A similar interactive effect emerged on attributions, which had downstream consequences for behavioral intentions (Study 2). These results demonstrate that both incidental and integral affect do not directly produce specific processing styles, but rather influence thinking by providing feedback about currently accessible processing styles. PMID:26984013

  1. Halothane effects on metabolic processes in cholinergic synaptosomes prepared from rat cerebra

    SciTech Connect

    Johnson, G.V.W.

    1984-01-01

    Synaptosomes are an excellent model system for examining metabolic processes that occur in nerve endings. In this study they were used to examine the effects of halothane, an inhalational anesthetic, on metabolic processes associated with the synthesis of the neurotransmitter, acetylcholine. They were also used to study possible mechanisms involved with supplying the cytosol with activated acetyl groups produced in the mitochondria. In synaptosomes, halothane reversibly inhibits acetylcholine synthesis, and inhibits choline uptake in a competitive-like manner. It also depresses /sup 14/CO/sub 2/ evolution from labeled pyruvate, glucose and succinate, decreases the activity of ATP-citrate lyase and pyruvate dehydrogenase, and completely inhibits pentose phosphate pathway activity. Halothane also significantly enhances glucose utilization and lactate production. However, halothane has no effect on choline acetyltransferases activity or total synaptosomal acetyl CoA levels. These alterations of metabolic processes leads to the suggestion that the primary effect of halothane is to decrease the NAD/sup +//NADH potential, possibly resulting from mitochondrial NADH-CoQ reductase inhibition. This in combination with halothane's inhibition of choline transport would reduce the availability of both choline and acetyl CoA, precursors required for acetylcholine synthesis.

  2. Self-organization and fractality in a metabolic processes of the Krebs cycle.

    PubMed

    Grytsay, V I; Musatenko, I V

    2013-01-01

    The metabolic processes of the Krebs cycle is studied with the help of a mathematical model. The autocatalytic processes resulting in both the formation of the self-organization in the Krebs cycle and the appearance of a cyclicity of its dynamics are determined. Some structural-functional connections creating the synchronism of an autoperiodic functioning at the transport in the respiratory chain and the oxidative phosphorylation are investigated. The conditions for breaking the synchronization of processes, increasing the multiplicity of cyclicity, and for the appearance of chaotic modes are analyzed. The phase-parametric diagram of a cascade of bifurcations showing the transition to a chaotic mode by the Feigenbaum scenario is obtained. The fractal nature of the revealed cascade of bifurcations is demonstrated. The strange attractors formed as a result of the folding are obtained. The results obtained give the idea of structural-functional connections, due to which the self-organization appears in the metabolism running in a cell. The constructed mathematical model can be applied to the study of the toxic and allergic effects of drugs and various substances on cell metabolism.

  3. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    SciTech Connect

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-11-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate.

  4. Information-Processing and Perceptions of Control: How Attribution Style Affects Task-Relevant Processing

    ERIC Educational Resources Information Center

    Yeigh, Tony

    2007-01-01

    This study investigated the effects of perceived controllability on information processing within Weiner's (1985, 1986) attributional model of learning. Attributional style was used to identify trait patterns of controllability for 37 university students. Task-relevant feedback on an information-processing task was then manipulated to test for…

  5. The “Musical Emotional Bursts”: a validated set of musical affect bursts to investigate auditory affective processing

    PubMed Central

    Paquette, Sébastien; Peretz, Isabelle; Belin, Pascal

    2013-01-01

    The Musical Emotional Bursts (MEB) consist of 80 brief musical executions expressing basic emotional states (happiness, sadness and fear) and neutrality. These musical bursts were designed to be the musical analog of the Montreal Affective Voices (MAV)—a set of brief non-verbal affective vocalizations portraying different basic emotions. The MEB consist of short (mean duration: 1.6 s) improvisations on a given emotion or of imitations of a given MAV stimulus, played on a violin (10 stimuli × 4 [3 emotions + neutral]), or a clarinet (10 stimuli × 4 [3 emotions + neutral]). The MEB arguably represent a primitive form of music emotional expression, just like the MAV represent a primitive form of vocal, non-linguistic emotional expression. To create the MEB, stimuli were recorded from 10 violinists and 10 clarinetists, and then evaluated by 60 participants. Participants evaluated 240 stimuli [30 stimuli × 4 (3 emotions + neutral) × 2 instruments] by performing either a forced-choice emotion categorization task, a valence rating task or an arousal rating task (20 subjects per task); 40 MAVs were also used in the same session with similar task instructions. Recognition accuracy of emotional categories expressed by the MEB (n:80) was lower than for the MAVs but still very high with an average percent correct recognition score of 80.4%. Highest recognition accuracies were obtained for happy clarinet (92.0%) and fearful or sad violin (88.0% each) MEB stimuli. The MEB can be used to compare the cerebral processing of emotional expressions in music and vocal communication, or used for testing affective perception in patients with communication problems. PMID:23964255

  6. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    PubMed

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells.

  7. Epilithic community metabolism as an indicator of impact and recovery in streams affected by acid mine drainage.

    PubMed

    DeNicola, Dean M; Layton, Lee; Czapski, Tiffaney R

    2012-12-01

    We measured biomass and metabolism of epilithic communities on five dates in different seasons at four sites in a watershed that has received extensive restoration for acid mine drainage (AMD) through the construction of passive treatment systems. Chlorophyll a biomass and productivity directly corresponded to AMD stress from coal mining. The site downstream of extensive passive treatment had significantly greater biomass and gross primary productivity rates than the site receiving only untreated AMD, but values were below those for two reference sites, indicating incomplete recovery. The degree of difference in these metrics among sites varied seasonally, primarily related to differences in canopy cover changes, but the ranking of sites in terms of stress generally was consistent. Reference sites had a significantly greater chlorophyll a/pheophytin ratio than untreated and treated sites, also indicating AMD stressed the communities. Community respiration was less affected by AMD stress than productivity or chlorophyll a. Productivity measures are not widely used to assess AMD impacts, and have been shown to both increase and decrease with AMD stress. The elimination of herbivores in AMD-impacted streams can increase productivity in the benthic algal community. Our study found productivity decreased with increasing AMD stress. Although sites with AMD stress had reduced herbivore populations, light, nutrients and metal precipitates appear to have limited growth of AMD-tolerant algal taxa. Therefore, it appears changes in food web structure due to AMD stress had less of an effect on epilithic productivity than environmental conditions within the stream.

  8. How Does Tele-Mental Health Affect Group Therapy Process? Secondary Analysis of a Noninferiority Trial

    ERIC Educational Resources Information Center

    Greene, Carolyn J.; Morland, Leslie A.; Macdonald, Alexandra; Frueh, B. Christopher; Grubbs, Kathleen M.; Rosen, Craig S.

    2010-01-01

    Objective: Video teleconferencing (VTC) is used for mental health treatment delivery to geographically remote, underserved populations. However, few studies have examined how VTC affects individual or group psychotherapy processes. This study compares process variables such as therapeutic alliance and attrition among participants receiving anger…

  9. Ecological and Dynamical Study of the Creative Process and Affects of Scientific Students Working in Groups

    ERIC Educational Resources Information Center

    Peilloux, Aurélien; Botella, Marion

    2016-01-01

    Although creativity has drawn the attention of researchers during the past century, collaborative processes have barely been investigated. In this article, the collective dimension of a creative process is investigated, based on a dynamic and ecological approach that includes an affective component. "Dynamic" means that the creative…

  10. Interleukin 1B genetic polymorphisms interact with polyunsaturated fatty acids to affect risk of the metabolic syndrome in the GOLDN Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic inflammation has been identified as an important component of the metabolic syndrome (MetS). Therefore, environmental and genetic factors contributing to the variation of inflammatory responses could affect individuals’ susceptibility to the MetS. We investigated the association between comm...

  11. The Mechanism of Valence-Space Metaphors: ERP Evidence for Affective Word Processing

    PubMed Central

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say “feeling down” or “cheer up” in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding

  12. The mechanism of valence-space metaphors: ERP evidence for affective word processing.

    PubMed

    Xie, Jiushu; Wang, Ruiming; Chang, Song

    2014-01-01

    Embodied cognition contends that the representation and processing of concepts involve perceptual, somatosensory, motoric, and other physical re-experiencing information. In this view, affective concepts are also grounded in physical information. For instance, people often say "feeling down" or "cheer up" in daily life. These phrases use spatial information to understand affective concepts. This process is referred to as valence-space metaphor. Valence-space metaphors refer to the employment of spatial information (lower/higher space) to elaborate affective concepts (negative/positive concepts). Previous studies have demonstrated that processing affective words affects performance on a spatial detection task. However, the mechanism(s) behind this effect remain unclear. In the current study, we hypothesized that processing affective words might produce spatial information. Consequently, spatial information would affect the following spatial cue detection/discrimination task. In Experiment 1, participants were asked to remember an affective word. Then, they completed a spatial cue detection task while event-related potentials were recorded. The results indicated that the top cues induced enhanced amplitude of P200 component while participants kept positive words relative to negative words in mind. On the contrary, the bottom cues induced enhanced P200 amplitudes while participants kept negative words relative to positive words in mind. In Experiment 2, we conducted a behavioral experiment that employed a similar paradigm to Experiment 1, but used arrows instead of dots to test the attentional nature of the valence-space metaphor. We found a similar facilitation effect as found in Experiment 1. Positive words facilitated the discrimination of upper arrows, whereas negative words facilitated the discrimination of lower arrows. In summary, affective words might activate spatial information and cause participants to allocate their attention to corresponding locations

  13. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations.

    PubMed

    Xu, Sen; Hoshan, Linda; Chen, Hao

    2016-11-01

    In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at <0.2 mM, and supplementing medium with copper sulfate, were found to be effective in reducing lactate accumulation. Among them, copper sulfate supplementation was found to be critical for process optimization when glucose was in excess. When copper sulfate was supplemented in the new process, two-fold increase in cell density (66.5 ± 8.4 × 10(6) cells/mL) and titer (11.9 ± 0.6 g/L) was achieved. Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

  14. Improved Release and Metabolism of Flavonoids by Steered Fermentation Processes: A Review

    PubMed Central

    Nguyen Thai, Huynh; Van Camp, John; Smagghe, Guy; Raes, Katleen

    2014-01-01

    This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices. PMID:25347275

  15. On whether mirror neurons play a significant role in processing affective prosody.

    PubMed

    Ramachandra, Vijayachandra

    2009-02-01

    Several behavioral and neuroimaging studies have indicated that both right and left cortical structures and a few subcortical ones are involved in processing affective prosody. Recent investigations have shown that the mirror neuron system plays a crucial role in several higher-level functions such as empathy, theory of mind, language, etc., but no studies so far link the mirror neuron system with affective prosody. In this paper is a speculation that the mirror neuron system, which serves as a common neural substrate for different higher-level functions, may play a significant role in processing affective prosody via its connections with the limbic lobe. Actual research must apply electrophysiological and neuroimaging techniques to assess whether the mirror neuron systems underly affective prosody in humans.

  16. Extreme sensory processing patterns and their relation with clinical conditions among individuals with major affective disorders.

    PubMed

    Engel-Yeger, Batya; Muzio, Caterina; Rinosi, Giorgio; Solano, Paola; Geoffroy, Pierre Alexis; Pompili, Maurizio; Amore, Mario; Serafini, Gianluca

    2016-02-28

    Previous studies highlighted the involvement of sensory perception in emotional processes. However, the role of extreme sensory processing patterns expressed in hyper- or hyposensitivity was not thoroughly considered. The present study, in real life conditions, examined the unique sensory processing patterns of individuals with major affective disorders and their relationship with psychiatric symptomatology. The sample consisted of 105 participants with major affective conditions ranging in age from 20 to 84 years (mean=56.7±14.6). All participants completed the Temperament Evaluation of Memphis, Pisa, Paris and San Diego (TEMPS-A), the second version of the Beck Depression Inventory (BDI-II), and Adolescent/Adult Sensory Profile (AASP). Sensory sensitivity/avoiding hypersensitivity patterns and low registration (a hyposensitivity pattern) were prevalent among our sample as compared to normative data. About seventy percent of the sample showed lower seeking tendency. Stepwise regression analyses revealed that depression and anxious/cyclothymic affective temperaments were predicted by sensory sensory/avoiding. Anxious and irritable affective temperaments were predicted by low registration. Hyperthymic affective temperament and lower severity of depression were predicted by sensation seeking. Hyposensitivity or hypersensitivity may be "trait" markers of individuals with major affective disorders. Interventions should refer to the individual unique sensory profiles and their behavioral and functional impact in the context of real life.

  17. Affective priming effects of musical sounds on the processing of word meaning.

    PubMed

    Steinbeis, Nikolaus; Koelsch, Stefan

    2011-03-01

    Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.

  18. No effect of inversion on attentional and affective processing of facial expressions.

    PubMed

    Lipp, Ottmar V; Price, Sarah M; Tellegen, Cassandra L

    2009-04-01

    The decrease in recognition performance after face inversion has been taken to suggest that faces are processed holistically. Three experiments, 1 with schematic and 2 with photographic faces, were conducted to assess whether face inversion also affected visual search for and implicit evaluation of facial expressions of emotion. The 3 visual search experiments yielded the same differences in detection speed between different facial expressions of emotion for upright and inverted faces. Threat superiority effects, faster detection of angry than of happy faces among neutral background faces, were evident in 2 experiments. Face inversion did not affect explicit or implicit evaluation of face stimuli as assessed with verbal ratings and affective priming. Happy faces were evaluated as more positive than angry, sad, or fearful/scheming ones regardless of orientation. Taken together these results seem to suggest that the processing of facial expressions of emotion is not impaired if holistic processing is disrupted.

  19. Intuitive (in)coherence judgments are guided by processing fluency, mood and affect.

    PubMed

    Sweklej, Joanna; Balas, Robert; Pochwatko, Grzegorz; Godlewska, Małgorzata

    2014-01-01

    Recently proposed accounts of intuitive judgments of semantic coherence assume that processing fluency results in a positive affective response leading to successful assessment of semantic coherence. The present paper investigates whether processing fluency may indicate semantic incoherence as well. In two studies, we employ a new paradigm in which participants have to detect an incoherent item among semantically coherent words. In Study 1, we show participants accurately indicating an incoherent item despite not being able to provide an accurate solution to coherent words. Further, this effect is modified by affective valence of solution words that are not retrieved from memory. Study 2 replicates those results and extend them by showing that mood moderates incoherence judgments independently of affective valence of solutions. The results support processing fluency account of intuitive semantic coherence judgments and show that it is not fluency per se but fluency variations that drive judgments.

  20. Proposal for field sampling of plants and processing in the lab for environmental metabolic fingerprinting

    PubMed Central

    2010-01-01

    Background Samples for plant metabolic fingerprinting are prepared generally by metabolism quenching, grinding of plant material and extraction of metabolites in solvents. Further concentration and derivatisation steps follow in dependence of the sample nature and the available analytical platform. For plant material sampled in the field, several methods are not applicable, such as, e.g., collection in liquid nitrogen. Therefore, a protocol was established for sample pre-treatment, grinding, extraction and storage, which can be used for analysis of field-collected plant material, which is further processed in the laboratory. Ribwort plantain (Plantago lanceolata L., Plantaginaceae) was used as model plant. The quality criteria for method suitability were high reproducibility, extraction efficiency and handling comfort of each subsequent processing step. Results Highest reproducibility of results was achieved by sampling fresh plant material in a solvent mixture of methanol:dichloromethane (2:1), crushing the tissue with a hand-held disperser and storing the material until further processing. In the laboratory the material was extracted threefold at different pH. The gained extracts were separated with water (2:1:1 methanol:dichloromethane:water) and the aqueous phases used for analysis by LC-MS, because the polar metabolites were in focus. Chromatograms were compared by calculating a value Ξ for similarities. Advantages and disadvantages of different sample pre-treatment methods, use of solvents and solvent mixtures, influence of pH, extraction frequency and duration, and storing temperature are discussed with regard to the quality criteria. Conclusions The proposed extraction protocol leads to highly reproducible metabolic fingerprints and allows optimal handling of field-collected plant material and further processing in the laboratory, which is demonstrated for an exemplary field data-set. Calculation of Ξ values is a useful tool to judge similarities between

  1. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism.

    PubMed

    Mahjoub, Ali; Hernould, Michel; Joubès, Jérôme; Decendit, Alain; Mars, Mohamed; Barrieu, François; Hamdi, Saïd; Delrot, Serge

    2009-07-01

    Although the terpenoid pathway constitutes, with the phenylpropanoid metabolism, the major pathway of secondary metabolism in plants, little is known about its regulation. Overexpression of a Vitis vinifera R2R3-MYB transcription factor (VvMYB5b) in tomato induced pleiotropic changes including dwarfism, modified leaf structure, alterations of floral morphology, pigmented and glossy fruits at the "green-mature" stage and impaired seed germination. Two main branches of secondary metabolism, which profoundly influence the organoleptic properties of the fruit, were affected in the opposite way by VvMYB5b overexpression. Phenylpropanoid metabolism was down regulated whereas the amount of beta-carotene was up regulated. This is the first example of the independent regulation of phenylpropanoid and carotenoid metabolism. The strongest modification concerns a decrease in beta-amyrin, the precursor of the oleanolic acid, which is the major component of grape waxes. Scanning electron microscopy analysis of fruits and leaves confirms the alteration of wax metabolism and a modification of cell size and shape. This may potentially impact resistance/tolerance to biotic and abiotic stresses. The results are compared with a similar approach using heterologous expression of VvMYB5b in tobacco. PMID:19375343

  2. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    PubMed

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment. PMID:26530987

  3. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. PMID:25421565

  4. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation.

  5. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner.

    PubMed

    Liu, Yingying; Li, Fengna; He, Lingyun; Tan, Bie; Deng, Jinping; Kong, Xiangfeng; Li, Yinghui; Geng, Meimei; Yin, Yulong; Wu, Guoyao

    2015-04-14

    Skeletal muscle is a major site for the oxidation of fatty acids (FA) in mammals, including humans. Using a swine model, we tested the hypothesis that dietary protein intake regulates the expression of key genes for lipid metabolism in skeletal muscle. A total of ninety-six barrows (forty-eight pure-bred Bama mini-pigs (fatty genotype) and forty-eight Landrace pigs (lean genotype)) were fed from 5 weeks of age to market weight. Pigs of fatty or lean genotype were randomly assigned to one of two dietary treatments (low- or adequate-protein diet), with twenty-four individually fed pigs per treatment. Our data showed that dietary protein levels affected the expression of genes involved in the anabolism and catabolism of lipids in the longissimus dorsi and biceps femoris muscles in a genotype-dependent manner. Specifically, Bama mini-pigs had more intramuscular fat, SFA and MUFA, as well as elevated mRNA expression levels of lipogenic genes, compared with Landrace pigs. In contrast, Bama mini-pigs had lower mRNA expression levels of lipolytic genes than Landrace pigs fed an adequate-protein diet in the growing phase. These data are consistent with higher white-fat deposition in Bama mini-pigs than in Landrace pigs. In conclusion, adequate provision of dietary protein (amino acids) plays an important role in regulating the expression of key lipogenic genes, and the growth of white adipose tissue, in a genotype- and tissue-specific manner. These findings have important implications for developing novel dietary strategies in pig production.

  6. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis.

    PubMed

    Agrimi, Gennaro; Brambilla, Luca; Frascotti, Gianni; Pisano, Isabella; Porro, Danilo; Vai, Marina; Palmieri, Luigi

    2011-04-01

    The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.

  7. Natural and abrupt involution of the mammary gland affects differently the metabolic and health consequences of weaning.

    PubMed

    Silanikove, Nissim

    2014-04-25

    In most mammals under natural conditions weaning is gradual. Weaning occurs after the mammary gland naturally produces much less milk than it did at peak and established lactation. Involution occurs following the cessation of milk evacuation from the mammary glands. The abrupt termination of the evacuation of milk from the mammary gland at peak and established lactation induces abrupt involution. Evidence on mice has shown that during abrupt involution, mammary gland utilizes some of the same tissue remodeling programs that are activated during wound healing. These results led to the proposition of the "involution hypothesis". According to the involution hypothesis, involution is associated with increased risk for developing breast cancer. However, the involution hypothesis is challenged by the metabolic and immunological events that characterize the involution process that follows gradual weaning. It has been shown that gradual weaning is associated with pre-adaption to the forthcoming break between dam and offspring and is followed by an orderly reprogramming of the mammary gland tissue. As discussed herein, such response may actually protect the mammary glands against the development of breast cancer and thus, may explain the protective effect of extended breastfeeding. On the other hand, the termination of breastfeeding during the first 6 months of lactation is likely associated with an abrupt involution and thus with an increased risk for developing breast cancer. Review of the literature on the epidemiology of breast cancer principally supports those conclusions.

  8. Exposure of human lymphocytes and lymphoblastoid cells to simulated microgravity strongly affects energy metabolism and DNA repair.

    PubMed

    Degan, Paolo; Sancandi, Monica; Zunino, Annalisa; Ottaggio, Laura; Viaggi, Silvia; Cesarone, Federico; Pippia, Proto; Galleri, Grazia; Abbondandolo, Angelo

    2005-02-15

    Exposure of freshly drawn lymphocytes and lymphoblastoid cells (LB and COR3) to simulated microgravity decreased the intracellular ATP concentration to 50%-40% of the value found in normal growth conditions. The decrease was reversible although recovery to normal values occurred only slowly both in lymphocytes and in lymphoblastoid cells. Poly(ADP-ribose) polymerase (PARP ) activity was increased indicating that cells exposed to conditions of reduced gravitation experience stress. Exposure to microgravity forces cells into a condition of metabolic quiescence in which they appear to be particularly sensitive to subsequent exposures to a genotoxic agent. Thus, treatment of cells with the strong redox agent potassium bromate under microgravity conditions, indicated an impairment in repair of DNA 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidized derivative of deoxyguanosine. We conclude that gravitational modulation of the kind routinely obtained under laboratory conditions and during spaceflights is a stressful process to which cells appear to be extremely sensitive. These effects may reflect the physiological alterations observed in astronauts and in animals following spaceflights or exposure to conditions of simulated microgravity.

  9. Affective processing of loved familiar faces: integrating central and peripheral electrophysiological measures.

    PubMed

    Guerra, Pedro; Vico, Cynthia; Campagnoli, Rafaela; Sánchez, Alicia; Anllo-Vento, Lourdes; Vila, Jaime

    2012-07-01

    A major problem in the electrophysiological studies of emotional processing linked to recognition of familiar faces is the unambiguous differentiation of effects due to emotional valence, arousal, and familiarity. The present paper summarizes a set of three studies aimed at investigating the affective processing of loved familiar faces using Lang's picture-viewing paradigm, with a special emphasis on teasing apart the individual contributions of affective valence, undifferentiated emotional arousal, and familiarity The results of the three studies support the conclusion that viewing the faces of familiar loved ones elicits an intense positive emotional reaction that cannot be explained either by familiarity or arousal alone. PMID:21689694

  10. Low spatial frequency filtering modulates early brain processing of affective complex pictures.

    PubMed

    Alorda, Catalina; Serrano-Pedraza, Ignacio; Campos-Bueno, J Javier; Sierra-Vázquez, Vicente; Montoya, Pedro

    2007-11-01

    Recent research on affective processing has suggested that low spatial frequency information of fearful faces provide rapid emotional cues to the amygdala, whereas high spatial frequencies convey fine-grained information to the fusiform gyrus, regardless of emotional expression. In the present experiment, we examined the effects of low (LSF, <15 cycles/image width) and high spatial frequency filtering (HSF, >25 cycles/image width) on brain processing of complex pictures depicting pleasant, unpleasant, and neutral scenes. Event-related potentials (ERP), percentage of recognized stimuli and response times were recorded in 19 healthy volunteers. Behavioral results indicated faster reaction times in response to unpleasant LSF than to unpleasant HSF pictures. Unpleasant LSF pictures and pleasant unfiltered pictures also elicited significant enhancements of P1 amplitudes at occipital electrodes as compared to neutral LSF and unfiltered pictures, respectively; whereas no significant effects of affective modulation were found for HSF pictures. Moreover, mean ERP amplitudes in the time between 200 and 500ms post-stimulus were significantly greater for affective (pleasant and unpleasant) than for neutral unfiltered pictures; whereas no significant affective modulation was found for HSF or LSF pictures at those latencies. The fact that affective LSF pictures elicited an enhancement of brain responses at early, but not at later latencies, suggests the existence of a rapid and preattentive neural mechanism for the processing of motivationally relevant stimuli, which could be driven by LSF cues. Our findings confirm thus previous results showing differences on brain processing of affective LSF and HSF faces, and extend these results to more complex and social affective pictures.

  11. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer.

    PubMed

    Jan, Chia-Ing; Tsai, Ming-Hsui; Chiu, Chang-Fang; Huang, Yi-Ping; Liu, Chia Jen; Chang, Nai Wen

    2016-01-01

    One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. Fenofibrate induced cytotoxicity by decreasing oxygen consumption rate (OCR) that was accompanied with increasing extracellular acidification rate (ECAR) and reducing ATP content. Moreover, fenofibrate caused changes in the protein expressions of hexokinase II (HK II), pyruvate kinase, pyruvate dehydrogenase, and voltage-dependent anion channel (VDAC), which are associated with the Warburg effect. In addition, fenofibrate reprogrammed the metabolic pathway by interrupting the binding of HK II to VDAC. In an oral cancer mouse model, fenofibrate exhibited both preventive and therapeutic efficacy on oral tumorigenesis. Fenofibrate administration suppressed the incidence rate of tongue lesions, reduced the tumor sizes, decreased the tumor multiplicity, and decreased the immunoreactivities of VDAC and mTOR. The molecular mechanisms involved in fenofibrate's ability to delay tumor development included the down-regulation of mTOR activity via TSC1/2-dependent signaling through activation of AMPK and inactivation of Akt, or via a TSC1/2-independent pathway through direct suppression of raptor. Our findings provide a molecular rationale whereby fenofibrate exerts anticancer and additional beneficial effects for the treatment of oral cancer patients. PMID:27313493

  12. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer

    PubMed Central

    Jan, Chia-Ing; Tsai, Ming-Hsui; Chiu, Chang-Fang; Huang, Yi-Ping; Liu, Chia Jen; Chang, Nai Wen

    2016-01-01

    One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. Fenofibrate induced cytotoxicity by decreasing oxygen consumption rate (OCR) that was accompanied with increasing extracellular acidification rate (ECAR) and reducing ATP content. Moreover, fenofibrate caused changes in the protein expressions of hexokinase II (HK II), pyruvate kinase, pyruvate dehydrogenase, and voltage-dependent anion channel (VDAC), which are associated with the Warburg effect. In addition, fenofibrate reprogrammed the metabolic pathway by interrupting the binding of HK II to VDAC. In an oral cancer mouse model, fenofibrate exhibited both preventive and therapeutic efficacy on oral tumorigenesis. Fenofibrate administration suppressed the incidence rate of tongue lesions, reduced the tumor sizes, decreased the tumor multiplicity, and decreased the immunoreactivities of VDAC and mTOR. The molecular mechanisms involved in fenofibrate's ability to delay tumor development included the down-regulation of mTOR activity via TSC1/2-dependent signaling through activation of AMPK and inactivation of Akt, or via a TSC1/2-independent pathway through direct suppression of raptor. Our findings provide a molecular rationale whereby fenofibrate exerts anticancer and additional beneficial effects for the treatment of oral cancer patients. PMID:27313493

  13. Early visual processing deficits in patients with schizophrenia during spatial frequency-dependent facial affect processing.

    PubMed

    Kim, Do-Won; Shim, Miseon; Song, Myeong Ju; Im, Chang-Hwan; Lee, Seung-Hwan

    2015-02-01

    Abnormal facial emotion recognition is considered as one of the key symptoms of schizophrenia. Only few studies have considered deficits in the spatial frequency (SF)-dependent visual pathway leading to abnormal facial emotion recognition in schizophrenia. Twenty-one patients with schizophrenia and 19 matched healthy controls (HC) were recruited for this study. Event-related potentials (ERP) were measured during presentation of SF-modulated face stimuli and their source imaging was analyzed. The patients showed reduced P100 amplitude for low-spatial frequency (LSF) pictures of fearful faces compared with the HC group. The P100 amplitude for high-spatial frequency (HSF) pictures of neutral faces was increased in the schizophrenia group, but not in the HC group. The neural source activities of the LSF fearful faces and HSF neutral faces led to hypo- and hyperactivation of the frontal lobe of subjects from the schizophrenia group and HC group, respectively. In addition, patients with schizophrenia showed enhanced N170 activation in the right hemisphere in the LSF condition, while the HC group did not. Our results suggest that deficits in the LSF-dependent visual pathway, which involves magnocellular neurons, impair early visual processing leading to dysfunctional facial emotion recognition in schizophrenia. Moreover, it suggests impaired bottom-up processing rather than top-down dysfunction for facial emotion recognition in these patients.

  14. Susceptibility of Candida albicans biofilms to caspofungin and anidulafungin is not affected by metabolic activity or biomass production.

    PubMed

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2016-02-01

    Micafungin is more active against biofilms with high metabolic activity; however, it is unknown whether this observation applies to caspofungin and anidulafungin and whether it is also dependent on the biomass production. We compare the antifungal activity of anidulafungin, caspofungin, and micafungin against preformed Candida albicans biofilms with different degrees of metabolic activity and biomass production from 301 isolates causing fungemia in patients admitted to Gregorio Marañon Hospital (January 2007 to September 2014). Biofilms were classified as having low, moderate, or high metabolic activity according XTT reduction assay or having low, moderate, or high biomass according to crystal violet assay. Echinocandin MICs for planktonic and sessile cells were measured using the EUCAST E.Def 7.2 procedure and XTT reduction assay, respectively. Micafungin showed the highest activity against biofilms classified according to the metabolic activity and biomass production (P < .001). The activity of caspofungin and anidulafungin was not dependent on the metabolic activity of the biofilm or the biomass production. These observations were confirmed by scanning electron microscopy. None of the echinocandins produced major changes in the structure of biofilms with low metabolic activity and biomass production when compared with the untreated biofilms. However, biofilm with high metabolic activity or high biomass production was considerably more susceptible to micafungin; this effect was not shown by caspofungin or anidulafungin. PMID:26543157

  15. Susceptibility of Candida albicans biofilms to caspofungin and anidulafungin is not affected by metabolic activity or biomass production.

    PubMed

    Marcos-Zambrano, Laura Judith; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2016-02-01

    Micafungin is more active against biofilms with high metabolic activity; however, it is unknown whether this observation applies to caspofungin and anidulafungin and whether it is also dependent on the biomass production. We compare the antifungal activity of anidulafungin, caspofungin, and micafungin against preformed Candida albicans biofilms with different degrees of metabolic activity and biomass production from 301 isolates causing fungemia in patients admitted to Gregorio Marañon Hospital (January 2007 to September 2014). Biofilms were classified as having low, moderate, or high metabolic activity according XTT reduction assay or having low, moderate, or high biomass according to crystal violet assay. Echinocandin MICs for planktonic and sessile cells were measured using the EUCAST E.Def 7.2 procedure and XTT reduction assay, respectively. Micafungin showed the highest activity against biofilms classified according to the metabolic activity and biomass production (P < .001). The activity of caspofungin and anidulafungin was not dependent on the metabolic activity of the biofilm or the biomass production. These observations were confirmed by scanning electron microscopy. None of the echinocandins produced major changes in the structure of biofilms with low metabolic activity and biomass production when compared with the untreated biofilms. However, biofilm with high metabolic activity or high biomass production was considerably more susceptible to micafungin; this effect was not shown by caspofungin or anidulafungin.

  16. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray.

    PubMed

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Li, Sha; Xu, Hong

    2016-08-17

    Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants. PMID:27465513

  17. Gene regulatory and metabolic adaptation processes of Dinoroseobacter shibae DFL12T during oxygen depletion.

    PubMed

    Laass, Sebastian; Kleist, Sarah; Bill, Nelli; Drüppel, Katharina; Kossmehl, Sebastian; Wöhlbrand, Lars; Rabus, Ralf; Klein, Johannes; Rohde, Manfred; Bartsch, Annekathrin; Wittmann, Christoph; Schmidt-Hohagen, Kerstin; Tielen, Petra; Jahn, Dieter; Schomburg, Dietmar

    2014-05-01

    Metabolic flexibility is the key to the ecological success of the marine Roseobacter clade bacteria. We investigated the metabolic adaptation and the underlying changes in gene expression of Dinoroseobacter shibae DFL12(T) to anoxic life by a combination of metabolome, proteome, and transcriptome analyses. Time-resolved studies during continuous oxygen depletion were performed in a chemostat using nitrate as the terminal electron acceptor. Formation of the denitrification machinery was found enhanced on the transcriptional and proteome level, indicating that D. shibae DFL12(T) established nitrate respiration to compensate for the depletion of the electron acceptor oxygen. In parallel, arginine fermentation was induced. During the transition state, growth and ATP concentration were found to be reduced, as reflected by a decrease of A578 values and viable cell counts. In parallel, the central metabolism, including gluconeogenesis, protein biosynthesis, and purine/pyrimidine synthesis was found transiently reduced in agreement with the decreased demand for cellular building blocks. Surprisingly, an accumulation of poly-3-hydroxybutanoate was observed during prolonged incubation under anoxic conditions. One possible explanation is the storage of accumulated metabolites and the regeneration of NADP(+) from NADPH during poly-3-hydroxybutanoate synthesis (NADPH sink). Although D. shibae DFL12(T) was cultivated in the dark, biosynthesis of bacteriochlorophyll was increased, possibly to prepare for additional energy generation via aerobic anoxygenic photophosphorylation. Overall, oxygen depletion led to a metabolic crisis with partly blocked pathways and the accumulation of metabolites. In response, major energy-consuming processes were reduced until the alternative respiratory denitrification machinery was operative. PMID:24648520

  18. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... negative pressure at all times while the process unit or affected facility is in operation to ensure that... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of...-vented process units or affected facilities. (a) Use of closed vent system and control device....

  19. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    PubMed

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  20. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    PubMed

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  1. The sound of emotions-Towards a unifying neural network perspective of affective sound processing.

    PubMed

    Frühholz, Sascha; Trost, Wiebke; Kotz, Sonja A

    2016-09-01

    Affective sounds are an integral part of the natural and social environment that shape and influence behavior across a multitude of species. In human primates, these affective sounds span a repertoire of environmental and human sounds when we vocalize or produce music. In terms of neural processing, cortical and subcortical brain areas constitute a distributed network that supports our listening experience to these affective sounds. Taking an exhaustive cross-domain view, we accordingly suggest a common neural network that facilitates the decoding of the emotional meaning from a wide source of sounds rather than a traditional view that postulates distinct neural systems for specific affective sound types. This new integrative neural network view unifies the decoding of affective valence in sounds, and ascribes differential as well as complementary functional roles to specific nodes within a common neural network. It also highlights the importance of an extended brain network beyond the central limbic and auditory brain systems engaged in the processing of affective sounds.

  2. The sound of emotions-Towards a unifying neural network perspective of affective sound processing.

    PubMed

    Frühholz, Sascha; Trost, Wiebke; Kotz, Sonja A

    2016-09-01

    Affective sounds are an integral part of the natural and social environment that shape and influence behavior across a multitude of species. In human primates, these affective sounds span a repertoire of environmental and human sounds when we vocalize or produce music. In terms of neural processing, cortical and subcortical brain areas constitute a distributed network that supports our listening experience to these affective sounds. Taking an exhaustive cross-domain view, we accordingly suggest a common neural network that facilitates the decoding of the emotional meaning from a wide source of sounds rather than a traditional view that postulates distinct neural systems for specific affective sound types. This new integrative neural network view unifies the decoding of affective valence in sounds, and ascribes differential as well as complementary functional roles to specific nodes within a common neural network. It also highlights the importance of an extended brain network beyond the central limbic and auditory brain systems engaged in the processing of affective sounds. PMID:27189782

  3. [The effect of subchronic inhalations of nitric oxide on metabolic processes in blood of experimental animals].

    PubMed

    Soloveva, A G; Peretyagin, S P

    2016-01-01

    Metabolic processes were investigated in plasma and erythrocytes of Wistar rats exposed to daily 10-min sessions of NO inhalation for 30 days. These included determination of glucose and lactate, catalase activity, and activities of aldehyde dehydrogenase (ALDH), lactate dehydrogenase (LDH), and catalase. NO inhalation in a concentration of 20 ppm, 50 ppm and 100 ppm caused an increase in glucose and lactate. Inhalation of 100 ppm NO also increased catalase activity. Inhalation of all NO concentrations resulted in a decrease of ALDH activity, while the decrease in LDH activity was observed at NO concentrations of 50-100 ppm.

  4. Effect of excessive saccharose administration on metabolic processes in the liver of rabbits with restricted mobility

    NASA Technical Reports Server (NTRS)

    Rylnikov, Y. P.

    1980-01-01

    The administration of saccharose (3 g per 1 kg for 2 months) intensified changes encountered in hypokinesia. There was a more marked increase in the content of cholesterol, pre-beta and beta-lipoproteins, phospholipids, and glycosaminoglycans in the blood. At the same time, the administration of saccharose improved the course of metabolic processes in the liver of immobilized rabbits, restored to normal levels the reduced glycogen level, the rate of glycolysis and the conversion of cholesterol to bile acids and their discharge in the cystic bile.

  5. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis

    PubMed Central

    Miller, Marcus J.; Barrett-Wilt, Gregory A.; Hua, Zhihua; Vierstra, Richard D.

    2010-01-01

    The covalent attachment of SUMO (small ubiquitin-like modifier) to other intracellular proteins affects a broad range of nuclear processes in yeast and animals, including chromatin maintenance, transcription, and transport across the nuclear envelope, as well as protects proteins from ubiquitin addition. Substantial increases in SUMOylated proteins upon various stresses have also implicated this modification in the general stress response. To help understand the role(s) of SUMOylation in plants, we developed a stringent method to isolate SUMO-protein conjugates from Arabidopsis thaliana that exploits a tagged SUMO1 variant that faithfully replaces the wild-type protein. Following purification under denaturing conditions, SUMOylated proteins were identified by tandem mass spectrometry from both nonstressed plants and those exposed to heat and oxidative stress. The list of targets is enriched for factors that direct SUMOylation and for nuclear proteins involved in chromatin remodeling/repair, transcription, RNA metabolism, and protein trafficking. Targets of particular interest include histone H2B, components in the LEUNIG/TOPLESS corepressor complexes, and proteins that control histone acetylation and DNA methylation, which affect genome-wide transcription. SUMO attachment site(s) were identified in a subset of targets, including SUMO1 itself to confirm the assembly of poly-SUMO chains. SUMO1 also becomes conjugated with ubiquitin during heat stress, thus connecting these two posttranslational modifications in plants. Taken together, we propose that SUMOylation represents a rapid and global mechanism for reversibly manipulating plant chromosomal functions, especially during environmental stress. PMID:20813957

  6. A data processing pipeline for mammalian proteome dynamics studies using stable isotope metabolic labeling.

    PubMed

    Guan, Shenheng; Price, John C; Prusiner, Stanley B; Ghaemmaghami, Sina; Burlingame, Alma L

    2011-12-01

    In a recent study, in vivo metabolic labeling using (15)N traced the rate of label incorporation among more than 1700 proteins simultaneously and enabled the determination of individual protein turnover rate constants over a dynamic range of three orders of magnitude (Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B., and Ghaemmaghami, S. (2010) Analysis of proteome dynamics in the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107, 14508-14513). These studies of protein dynamics provide a deeper understanding of healthy development and well-being of complex organisms, as well as the possible causes and progression of disease. In addition to a fully labeled food source and appropriate mass spectrometry platform, an essential and enabling component of such large scale investigations is a robust data processing and analysis pipeline, which is capable of the reduction of large sets of liquid chromatography tandem MS raw data files into the desired protein turnover rate constants. The data processing pipeline described in this contribution is comprised of a suite of software modules required for the workflow that fulfills such requirements. This software platform includes established software tools such as a mass spectrometry database search engine together with several additional, novel data processing modules specifically developed for (15)N metabolic labeling. These fulfill the following functions: (1) cross-extraction of (15)N-containing ion intensities from raw data files at varying biosynthetic incorporation times, (2) computation of peptide (15)N isotopic incorporation distributions, and (3) aggregation of relative isotope abundance curves for multiple peptides into single protein curves. In addition, processing parameter optimization and noise reduction procedures were found to be necessary in the processing modules in order to reduce propagation of errors in the long chain of the processing steps of the entire workflow. PMID:21937731

  7. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    PubMed

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism.

  8. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  9. Combined unilateral lesions of the amygdala and orbital prefrontal cortex impair affective processing in rhesus monkeys.

    PubMed

    Izquierdo, Alicia; Murray, Elisabeth A

    2004-05-01

    The amygdala and orbital prefrontal cortex (PFo) interact as part of a system for affective processing. To assess whether there is a hemispheric functional specialization for the processing of emotion or reward or both in nonhuman primates, rhesus monkeys (Macaca mulatta) with combined lesions of the amygdala and PFo in one hemisphere, either left or right, were compared with unoperated controls on a battery of tasks that tax affective processing, including two tasks that tax reward processing and two that assess emotional reactions. Although the two operated groups did not differ from each other, monkeys with unilateral lesions, left and right, showed altered reward-processing abilities as evidenced by attenuated reinforcer devaluation effects and an impairment in object reversal learning relative to controls. In addition, both operated groups showed blunted emotional reactions to a rubber snake. By contrast, monkeys with unilateral lesions did not differ from controls in their responses to an unfamiliar human (human "intruder"). Although the results provide no support for a hemispheric specialization of function, they yield the novel finding that unilateral lesions of the amygdala-orbitofrontal cortical circuit in monkeys are sufficient to significantly disrupt affective processing. PMID:14711973

  10. Depletion of the "gamma-type carbonic anhydrase-like" subunits of complex I affects central mitochondrial metabolism in Arabidopsis thaliana.

    PubMed

    Fromm, Steffanie; Göing, Jennifer; Lorenz, Christin; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-01-01

    "Gamma-type carbonic anhydrase-like" (CAL) proteins form part of complex I in plants. Together with "gamma carbonic anhydrase" (CA) proteins they form an extra domain which is attached to the membrane arm of complex I on its matrix exposed side. In Arabidopsis two CAL and three CA proteins are present, termed CAL1, CAL2, CA1, CA2 and CA3. It has been proposed that the carbonic anhydrase domain of complex I is involved in a process mediating efficient recycling of mitochondrial CO2 for photosynthetic carbon fixation which is especially important during growth conditions causing increased photorespiration. Depletion of CAL proteins has been shown to significantly affect plant development and photomorphogenesis. To better understand CAL function in plants we here investigated effects of CAL depletion on the mitochondrial compartment. In mutant lines and cell cultures complex I amount was reduced by 90-95% but levels of complexes III and V were unchanged. At the same time, some of the CA transcripts were less abundant. Proteome analysis of CAL depleted cells revealed significant reduction of complex I subunits as well as proteins associated with photorespiration, but increased amounts of proteins participating in amino acid catabolism and stress response reactions. Developmental delay of the mutants was slightly alleviated if plants were cultivated at high CO2. Profiling of selected metabolites revealed defined changes in intermediates of the citric acid cycle and amino acid catabolism. It is concluded that CAL proteins are essential for complex I assembly and that CAL depletion specifically affects central mitochondrial metabolism.

  11. Facial Affect Processing and Depression Susceptibility: Cognitive Biases and Cognitive Neuroscience

    ERIC Educational Resources Information Center

    Bistricky, Steven L.; Ingram, Rick E.; Atchley, Ruth Ann

    2011-01-01

    Facial affect processing is essential to social development and functioning and is particularly relevant to models of depression. Although cognitive and interpersonal theories have long described different pathways to depression, cognitive-interpersonal and evolutionary social risk models of depression focus on the interrelation of interpersonal…

  12. Social Information Processing in Children: Specific Relations to Anxiety, Depression, and Affect

    ERIC Educational Resources Information Center

    Luebbe, Aaron M.; Bell, Debora J.; Allwood, Maureen A.; Swenson, Lance P.; Early, Martha C.

    2010-01-01

    Two studies examined shared and unique relations of social information processing (SIP) to youth's anxious and depressive symptoms. Whether SIP added unique variance over and above trait affect in predicting internalizing symptoms was also examined. In Study 1, 215 youth (ages 8-13) completed symptom measures of anxiety and depression and a…

  13. 43 CFR 2.4 - Does where you send your request affect its processing?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF INFORMATION ACT; RECORDS AND TESTIMONY How To Make a Request § 2.4 Does where you send your request affect its processing? (a) A request to a particular bureau component (for example, a request addressed to a regional or field office) will be presumed to seek only records from that...

  14. 43 CFR 2.6 - How will fee information affect the processing of your request?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FREEDOM OF INFORMATION ACT; RECORDS AND TESTIMONY How To Make a Request § 2.6 How will fee information... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false How will fee information affect the... associated with processing the request, that you will pay fees up to a specified amount, and/or that you...

  15. 43 CFR 2.6 - How will fee information affect the processing of your request?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FREEDOM OF INFORMATION ACT; RECORDS AND TESTIMONY How To Make a Request § 2.6 How will fee information... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false How will fee information affect the... associated with processing the request, that you will pay fees up to a specified amount, and/or that you...

  16. 43 CFR 2.4 - Does where you send your request affect its processing?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF INFORMATION ACT; RECORDS AND TESTIMONY How To Make a Request § 2.4 Does where you send your request affect its processing? (a) A request to a particular bureau component (for example, a request addressed to a regional or field office) will be presumed to seek only records from that...

  17. Factors Affecting Christian Parents' School Choice Decision Processes: A Grounded Theory Study

    ERIC Educational Resources Information Center

    Prichard, Tami G.; Swezey, James A.

    2016-01-01

    This study identifies factors affecting the decision processes for school choice by Christian parents. Grounded theory design incorporated interview transcripts, field notes, and a reflective journal to analyze themes. Comparative analysis, including open, axial, and selective coding, was used to reduce the coded statements to five code families:…

  18. Approaching the Affective Factors of Information Seeking: The Viewpoint of the Information Search Process Model

    ERIC Educational Resources Information Center

    Savolainen, Reijo

    2015-01-01

    Introduction: The article contributes to the conceptual studies of affective factors in information seeking by examining Kuhlthau's information search process model. Method: This random-digit dial telephone survey of 253 people (75% female) living in a rural, medically under-serviced area of Ontario, Canada, follows-up a previous interview study…

  19. Transactional Distance among Open University Students: How Does it Affect the Learning Process?

    ERIC Educational Resources Information Center

    Kassandrinou, Amanda; Angelaki, Christina; Mavroidis, Ilias

    2014-01-01

    This study examines the presence of transactional distance among students, the factors affecting it, as well as the way it influences the learning process of students in a blended distance learning setting in Greece. The present study involved 12 postgraduate students of the Hellenic Open University (HOU). A qualitative research was conducted,…

  20. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  1. Atypical Sensory Processing in Adolescents with an Autism Spectrum Disorder and Their Non-Affected Siblings

    ERIC Educational Resources Information Center

    De la Marche, Wouter; Steyaert, Jean; Noens, Ilse

    2012-01-01

    Atypical sensory processing is common in autism spectrum disorders (ASD). Specific profiles have been proposed in different age groups, but no study has focused specifically on adolescents. Identifying traits of ASD that are shared by individuals with ASD and their non-affected family members can shed light on the genetic underpinnings of ASD.…

  2. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    PubMed

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  3. Low body temperature affects associative processes in long-trace conditioned flavor aversion.

    PubMed

    Misanin, J R; Wilson, H A; Schwarz, P R; Tuschak, J B; Hinderliter, C F

    1998-12-01

    A series of experiments examined the effect of low body temperature on the associative process in long-trace conditioned flavor aversion. Experiment 1 demonstrated that maintaining a low body temperature between conditioned stimulus (CS) and unconditioned stimulus (US) administration facilitates the associative process and allows a flavor aversion to be conditioned in young rats over an interval that would normally not support conditioning. Experiments 2 and 3 demonstrated that this was due neither to lingering systemic saccharin serving as a CS nor to a cold induced enhancement of US intensity. Experiment 4 demonstrated that inducing hypothermia at various times during a 3-h CS-US interval results in an apparent delay of reinforcement gradient. We propose that a cold induced decrease in metabolic rate slows the internal clock that governs the perception of time and that the CS-US association depends upon perceived contiguity rather than upon an external clock-referenced contiguity.

  4. Soil-inhabiting fungal community composition as qualitative indicator of C metabolism processes

    NASA Astrophysics Data System (ADS)

    Manici, L.; Ciavatta, C.; Caputo, F.

    2009-04-01

    growth may depend on readily available energy sources, such as soluble carbohydrates (Hudson, 1968). The high ratio of Ascomycetes in the top layer where crop residues of the recurrent had represented the main substrate for saprophytic fungi could explain these results. On the contrary, Basidiomycetes are the most important synthesizing biomass organisms in forest soils as well as the most effective organisms in lignin decomposition with an important role in humic substances processes (Hurst et al., 1963; Cook and Rayner, 1986). Preliminary results of this study suggest that the composition of soil-inhabiting fungal communities, which are the organisms most involved in C metabolism processes, could represents an useful indicator in programs aimed to increase the quality of organic matter in arable soils. Bailey V., Smith L., Bolton Jr K. 2002. Fungal-to-bacteria ratio investigated for enhanced C sequestration. Soil Biol. Biochem. 34, 997-1007. Cook R., Rayner A.D.M. 1984. Ecology of Saprotrophic Fungi. Longman, London, New York, 415 pp. Gardes M., Bruns T.D. 1993. ITS primers with enhanced specificity for Basidiomycetes: application to the identification of mycorrhizae and rusts. Molec. Ecol. 2, 113-118. Hudson H.J. 1968. The ecology of fungi on plant remains above the soil. New Phytol. 67, 837-874. Hurst H.M., A. Burges, P. Latter. 1963. Some aspects of the biochemistry of humic acid decomposition by fungi. Phytochem. 1, 227-231. Larena I., Salazar O., González V, Julián M.C., Rubio V. 1999. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for Ascomycetes. J. Biotech. 75, 187-194. Osolko T., Fukasawa Y., Takeda H. 2003. Roles of diverse fungi in Larch neerle-litter decomposition. Mycologia 95, 820-826.

  5. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    PubMed

    Bertagnolli, Nicolas M; Drake, Justin A; Tennessen, Jason M; Alter, Orly

    2013-01-01

    To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD) to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM) or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  6. [Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa].

    PubMed

    Guo, Dong-Hui; Yi, Yue-Yuan; Zhao, Lei; Guo, Wei-Dong

    2012-06-01

    The metabolic processes of jellyfish can produce dissolved organic matter (DOM) which will influence the functioning of the aquatic ecosystems, yet the optical properties of DOM released by jellyfish are unknown. Here we report the absorption and fluorescence properties of DOM released by a medusa species Black fordia virginica during a 24 h incubation experiment. Compared with the control group, an obvious increase in the concentrations of dissolved organic carbon (DOC), absorption coefficient (a280) and total dissolved nitrogen (TDN) was observed in incubation group. This clearly demonstrated the release of DOM, chromophoric DOM (CDOM) and dissolved nutrients by B. virginica which feed on enough of Artemia sp. before the experiment. The increase in spectral slope ratio (SR) and decrease in humification index (HIX) indicated that the released DOM was less-humified and had relatively lower molecular weight. Parallel factor analysis (PARAFAC) decomposed the fluorescence matrices of DOM into three humic-like components (C1-C3) and one protein-like component (C4). The Fmax of two components (C2: < 250, 295/386 nm; C4: 275/334 nm) with the emission wavelength < 400 nm increased significantly during the metabolic process of B. virginica. However, the Fmax of the other two components with the emission wavelength > 400 nm showed little changes. Thus, we suggested a zooplankton index (ZIX) to trace and characterize the DOM excreted by metabolic activity of zooplankton, which is calculated as the ratio of the sum of Fmax of all fluorescence components with the emission wavelength < 400 nm to the sum of Fmax of the other components with the emission wavelength > 400 nm. PMID:22870644

  7. Phosphorus Effects on Metabolic Processes in Monoxenic Arbuscular Mycorrhiza Cultures1

    PubMed Central

    Olsson, Pål Axel; van Aarle, Ingrid M.; Allaway, William G.; Ashford, Anne E.; Rouhier, Hervé

    2002-01-01

    The influence of external phosphorus (P) on carbon (C) allocation and metabolism as well as processes related to P metabolism was studied in monoxenic arbuscular mycorrhiza cultures of carrot (Daucus carota). Fungal hyphae of Glomus intraradices proliferated from the solid minimal medium containing the colonized roots into C-free liquid minimal medium with different P treatments. The fungus formed around three times higher biomass in P-free liquid medium than in medium with 2.5 mm inorganic P (high-P). Mycelium in the second experiment was harvested at an earlier growth stage to study metabolic processes when the mycelium was actively growing. P treatment influenced the root P content and [13C]glucose administered to the roots 7 d before harvest gave a negative correlation between root P content and 13C enrichment in arbuscular mycorrhiza fungal storage lipids in the extraradical hyphae. Eighteen percent of the enriched 13C in extraradical hyphae was recovered in the fatty acid 16:1ω5 from neutral lipids. Polyphosphate accumulated in hyphae even in P-free medium. No influence of P treatment on fungal acid phosphatase activity was observed, whereas the proportion of alkaline-phosphatase-active hyphae was highest in high-P medium. We demonstrated the presence of a motile tubular vacuolar system in G. intraradices. This system was rarely seen in hyphae subjected to the highest P treatment. We concluded that the direct responses of the extraradical hyphae to the P concentration in the medium are limited. The effects found in hyphae seemed instead to be related to increased availability of P to the host root. PMID:12427983

  8. Rapid communication: Global-local processing affects recognition of distractor emotional faces.

    PubMed

    Srinivasan, Narayanan; Gupta, Rashmi

    2011-03-01

    Recent studies have shown links between happy faces and global, distributed attention as well as sad faces to local, focused attention. Emotions have been shown to affect global-local processing. Given that studies on emotion-cognition interactions have not explored the effect of perceptual processing at different spatial scales on processing stimuli with emotional content, the present study investigated the link between perceptual focus and emotional processing. The study investigated the effects of global-local processing on the recognition of distractor faces with emotional expressions. Participants performed a digit discrimination task with digits at either the global level or the local level presented against a distractor face (happy or sad) as background. The results showed that global processing associated with broad scope of attention facilitates recognition of happy faces, and local processing associated with narrow scope of attention facilitates recognition of sad faces. The novel results of the study provide conclusive evidence for emotion-cognition interactions by demonstrating the effect of perceptual processing on emotional faces. The results along with earlier complementary results on the effect of emotion on global-local processing support a reciprocal relationship between emotional processing and global-local processing. Distractor processing with emotional information also has implications for theories of selective attention.

  9. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner.

    PubMed

    Almeida, Juliana; Azevedo, Mariana da Silva; Spicher, Livia; Glauser, Gaétan; vom Dorp, Katharina; Guyer, Luzia; del Valle Carranza, Andrea; Asis, Ramón; de Souza, Amanda Pereira; Buckeridge, Marcos; Demarco, Diego; Bres, Cécile; Rothan, Christophe; Peres, Lázaro Eustáquio Pereira; Hörtensteiner, Stefan; Kessler, Félix; Dörmann, Peter; Carrari, Fernando; Rossi, Magdalena

    2016-02-01

    Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality.

  10. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner

    PubMed Central

    Almeida, Juliana; Azevedo, Mariana da Silva; Spicher, Livia; Glauser, Gaétan; vom Dorp, Katharina; Guyer, Luzia; del Valle Carranza, Andrea; Asis, Ramón; de Souza, Amanda Pereira; Buckeridge, Marcos; Demarco, Diego; Bres, Cécile; Rothan, Christophe; Peres, Lázaro Eustáquio Pereira; Hörtensteiner, Stefan; Kessler, Félix; Dörmann, Peter; Carrari, Fernando; Rossi, Magdalena

    2016-01-01

    Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality. PMID:26596763

  11. Chronic oral nicotine administration affects the circadian rhythm of dopamine and 5-hydroxytryptamine metabolism in the striata of mice.

    PubMed

    Pietila, K; Laakso, I; Ahtee, L

    1995-12-01

    The effect of chronic oral administration of nicotine on the circadian rhythm of striatal dopamine (DA) and 5-hydroxytryptamine (5-HT) was studied in mice. Mice receiving nicotine in their drinking water and control mice drinking tap water were killed at 05:00, 11:00, 15:00 or 21:00 hours on the 50th day of chronic administration. The plasma concentrations of nicotine and cotinine, as well the striatal concentrations of DA, 5-HT and their metabolites 3,4 dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanilic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were estimated. The largest plasma concentrations of nicotine and cotinine were found at 05:00, when they were more than double the concentrations found at the other times studied. This indicates that the mice, typically for nocturnal animals, consumed most of their daily drinking water at night. In the control mice, the striatal DA and 3-MT concentrations showed circadian variation and were lowest at 11:00. The 5-HIAA concentrations also varied, being highest at 11:00. In the nicotine-treated mice the circadian variations in striatal monoamines were altered and more pronounced than in the controls. The concentrations of DA, DOPAC, HVA and 5-HIAA were highest at 11:00 and that of 5-HT at 21:00. The striatal DA, DOPAC, HVA and 5-HIAA concentrations in the nicotine-treated mice were significantly higher at 11:00 and the 5-HT concentrations at 21:00 than in the control mice, and, in contrast to the control mice, in the mice treated with chronic nicotine no circadian rhythm was observed in the 3-MT. No elevation of striatal DA metabolites occurred in the nicotine-treated mice compared with the controls when the plasma nicotine concentration was at its peak at 05:00. This finding suggests development of tolerance to the nicotine-induced changes in striatal DA metabolism. Further, our findings suggest that the chronic administration of nicotine in the drinking water of mice alters the circadian

  12. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches.

    PubMed

    Beamonte-Barrientos, Rene; Verhulst, Simon

    2013-07-01

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is therefore often assumed that oxidative stress is proportional to energy consumption. In mammals, an increased metabolic rate induced by cold exposure generally increases oxidative stress. However, compared to mammals, birds generate fewer free radicals per ATP produced and hence it is not obvious that, in birds, a cold-induced increase of metabolic rate increase oxidative stress. We tested whether cold-induced increase in metabolic rate increased oxidative stress in zebra finches by exposing individuals to cold and warm overnight temperatures. We registered metabolic rate and plasma levels of non-enzymatic antioxidants and reactive oxygen metabolites (ROMs), a measure of oxidative damage. Metabolic rate was on average 88 % higher in cold compared to warm temperature, with females being stronger affected than males. However, temperature had no effect on plasma antioxidants or our measure of oxidative damage. Middle-age birds had higher levels of plasma antioxidants than younger and older birds, but age was unrelated to ROMs. Birds showed repeatability of plasma ROMs across temperatures but not of non-enzymatic antioxidants. In contrast to similar studies in mammals, our results do not show evidence of increased oxidative stress in plasma after an acute cold-induced increase of metabolic rate but research in more bird species is needed to assess the generality of this pattern.

  13. Facial affect processing deficits in schizophrenia: A meta-analysis of antipsychotic treatment effects

    PubMed Central

    Kempton, Matthew J; Mehta, Mitul A

    2015-01-01

    Social cognition, including emotion processing, is a recognised deficit observed in patients with schizophrenia. It is one cognitive domain which has been emphasised as requiring further investigation, with the efficacy of antipsychotic treatment on this deficit remaining unclear. Nine studies met our criteria for entry into a meta-analysis of the effects of medication on facial affect processing, including data from 1162 patients and six antipsychotics. Overall we found a small, positive effect (Hedge’s g = 0.13, 95% CI 0.05 to 0.21, p = 0.002). In a subgroup analysis this was statistically significant for atypical, but not typical, antipsychotics. It should be noted that the pooled sample size of the typical subgroup was significantly lower than the atypical. Meta-regression analyses revealed that age, gender and changes in symptom severity were not moderating factors. For the small, positive effect on facial affect processing, the clinical significance is questionable in terms of treating deficits in emotion identification in schizophrenia. We show that antipsychotic medications are poor at improving facial affect processing compared to reducing symptoms. This highlights the need for further investigation into the neuropharmacological mechanisms associated with accurate emotion processing, to inform treatment options for these deficits in schizophrenia. PMID:25492885

  14. Theta phase coherence in affective picture processing reveals dysfunctional sensory integration in psychopathic offenders.

    PubMed

    Tillem, Scott; Ryan, Jonathan; Wu, Jia; Crowley, Michael J; Mayes, Linda C; Baskin-Sommers, Arielle

    2016-09-01

    Psychopathic offenders are described as emotionally cold, displaying deficits in affective responding. However, research demonstrates that many of the psychopathy-related deficits are moderated by attention, such that under conditions of high attentional and perceptual load psychopathic offenders display deficits in affective responses, but do not in conditions of low load. To date, most studies use measures of defensive reflex (i.e., startle) and conditioning manipulations to examine the impact of load on psychopathy-related processing, but have not examined more direct measures of attention processing. In a sample of adult male offenders, the present study examined time-frequency EEG phase coherence in response to a picture-viewing paradigm that manipulated picture familiarity to assess neural changes in processing based on perceptual demands. Results indicated psychopathy-related differences in the theta response, an index of readiness to perceive and integrate sensory information. These data provide further evidence that psychopathic offenders have disrupted integration of sensory information.

  15. Process engineering for bioflavour production with metabolically active yeasts - a mini-review.

    PubMed

    Carlquist, Magnus; Gibson, Brian; Karagul Yuceer, Yonca; Paraskevopoulou, Adamantini; Sandell, Mari; Angelov, Angel I; Gotcheva, Velitchka; Angelov, Angel D; Etschmann, Marlene; de Billerbeck, Gustavo M; Lidén, Gunnar

    2015-01-01

    Flavours are biologically active molecules of large commercial interest in the food, cosmetics, detergent and pharmaceutical industries. The production of flavours can take place by either extraction from plant materials, chemical synthesis, biological conversion of precursor molecules or de novo biosynthesis. The latter alternatives are gaining importance through the rapidly growing fields of systems biology and metabolic engineering, giving efficient production hosts for the so-called 'bioflavours', which are natural flavour and/or fragrance compounds obtained with cell factories or enzymatic systems. Yeasts are potential production hosts for bioflavours. In this mini-review, we give an overview of bioflavour production in yeasts from the process-engineering perspective. Two specific examples, production of 2-phenylethanol and vanillin, are used to illustrate the process challenges and strategies used.

  16. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  17. Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces

    PubMed Central

    Duke, Devin; Fiacconi, Chris M.; Köhler, Stefan

    2014-01-01

    According to attribution models of familiarity assessment, people can use a heuristic in recognition-memory decisions, in which they attribute the subjective ease of processing of a memory probe to a prior encounter with the stimulus in question. Research in social cognition suggests that experienced positive affect may be the proximal cue that signals fluency in various experimental contexts. In the present study, we compared the effects of positive affect and fluency on recognition-memory judgments for faces with neutral emotional expression. We predicted that if positive affect is indeed the critical cue that signals processing fluency at retrieval, then its manipulation should produce effects that closely mirror those produced by manipulations of processing fluency. In two experiments, we employed a masked-priming procedure in combination with a Remember-Know (RK) paradigm that aimed to separate familiarity- from recollection-based memory decisions. In addition, participants performed a prime-discrimination task that allowed us to take inter-individual differences in prime awareness into account. We found highly similar effects of our priming manipulations of processing fluency and of positive affect. In both cases, the critical effect was specific to familiarity-based recognition responses. Moreover, in both experiments it was reflected in a shift toward a more liberal response bias, rather than in changed discrimination. Finally, in both experiments, the effect was found to be related to prime awareness; it was present only in participants who reported a lack of such awareness on the prime-discrimination task. These findings add to a growing body of evidence that points not only to a role of fluency, but also of positive affect in familiarity assessment. As such they are consistent with the idea that fluency itself may be hedonically marked. PMID:24795678

  18. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening.

    PubMed

    Centeno, Danilo C; Osorio, Sonia; Nunes-Nesi, Adriano; Bertolo, Ana L F; Carneiro, Raphael T; Araújo, Wagner L; Steinhauser, Marie-Caroline; Michalska, Justyna; Rohrmann, Johannes; Geigenberger, Peter; Oliver, Sandra N; Stitt, Mark; Carrari, Fernando; Rose, Jocelyn K C; Fernie, Alisdair R

    2011-01-01

    Despite the fact that the organic acid content of a fruit is regarded as one of its most commercially important quality traits when assessed by the consumer, relatively little is known concerning the physiological importance of organic acid metabolism for the fruit itself. Here, we evaluate the effect of modifying malate metabolism in a fruit-specific manner, by reduction of the activities of either mitochondrial malate dehydrogenase or fumarase, via targeted antisense approaches in tomato (Solanum lycopersicum). While these genetic perturbations had relatively little effect on the total fruit yield, they had dramatic consequences for fruit metabolism, as well as unanticipated changes in postharvest shelf life and susceptibility to bacterial infection. Detailed characterization suggested that the rate of ripening was essentially unaltered but that lines containing higher malate were characterized by lower levels of transitory starch and a lower soluble sugars content at harvest, whereas those with lower malate contained higher levels of these carbohydrates. Analysis of the activation state of ADP-glucose pyrophosphorylase revealed that it correlated with the accumulation of transitory starch. Taken together with the altered activation state of the plastidial malate dehydrogenase and the modified pigment biosynthesis of the transgenic lines, these results suggest that the phenotypes are due to an altered cellular redox status. The combined data reveal the importance of malate metabolism in tomato fruit metabolism and development and confirm the importance of transitory starch in the determination of agronomic yield in this species.

  19. Do local adaptation and the reproductive tactic of Atlantic salmon (Salmo salar L.) affect offspring metabolic capacities?

    PubMed

    Rossignol, O; Dodson, J J; Marquilly, C; Guderley, H

    2010-01-01

    Atlantic salmon (Salmo salar L.) is an iteroparous, anadromous species that exhibits some of the greatest within-population variability in size and age at maturity of all vertebrates. In the conditional reproductive strategy of salmonids, the male reproductive tactic expressed is believed to depend on an individual male's status relative to others in the population and therefore depends on his capacity to attain a physiological threshold, the exact nature of which is unknown. Although the threshold is influenced by local biotic and abiotic conditions, it is likely to be under genetic control. Our study examined whether the early growth, muscle metabolic capacities, routine metabolic rate, and spontaneous swimming of salmon alevins reared in laboratory conditions varied with the population of origin, maternal investment, and the paternal reproductive tactic. Our experimental design allowed us to establish that neither the population of origin nor the paternal reproductive tactic influenced the physiological capacities of alevins. The strong influence of the mother on alevin metabolic capacities suggests that the bioenergetic differences in metabolic capacities, realized metabolic rates, and activity levels that could eventually dictate the reproductive tactic of male offspring may originate in maternal effects. PMID:20350165

  20. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Gründel, Marianne; Scheunemann, Ramon; Lockau, Wolfgang; Zilliges, Yvonne

    2012-12-01

    The biosynthesis of glycogen or starch is one of the main strategies developed by living organisms for the intracellular storage of carbon and energy. In phototrophic organisms, such polyglucans accumulate due to carbon fixation during photosynthesis and are used to provide maintenance energy for cell integrity, function and viability in dark periods. Moreover, it is assumed that glycogen enables cyanobacteria to cope with transient starvation conditions, as observed in most micro-organisms. Here, glycogen accumulates when an appropriate carbon source is available in sufficient amounts but growth is inhibited by lack of other nutrients. In this study, the role of glycogen in energy and carbon metabolism of phototrophic cyanobacteria was first analysed via a comparative physiological and metabolic characterization of knockout mutants defective in glycogen synthesis. We first proved the role of glycogen as a respiratory substrate in periods of darkness, the role of glycogen as a reserve to survive starvation periods such as nitrogen depletion and the role of glycogen synthesis as an ameliorator of carbon excess conditions in the model organism Synechocystis sp. PCC 6803. We provide striking new insights into the complex carbon and nitrogen metabolism of non-diazotrophic cyanobacteria: a phenotype of sensitivity to photomixotrophic conditions and of reduced glucose uptake, a non-bleaching phenotype based on an impaired acclimation response to nitrogen depletion and furthermore a phenotype of energy spilling. This study shows that the analysis of deficiencies in glycogen metabolism is a valuable tool for the identification of metabolic regulatory principles and signals.

  1. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis.

    PubMed

    Fernandez-Marcos, Pablo J; Jeninga, Ellen H; Canto, Carles; Harach, Taoufiq; de Boer, Vincent C J; Andreux, Penelope; Moullan, Norman; Pirinen, Eija; Yamamoto, Hiroyasu; Houten, Sander M; Schoonjans, Kristina; Auwerx, Johan

    2012-01-01

    Sirt3 is a mitochondrial sirtuin, predominantly expressed in highly metabolic tissues. Germline ablation of Sirt3 has major metabolic consequences, including increased susceptibility to metabolic damage and oxidative stress after high fat feeding. In order to determine the contribution of liver and skeletal muscle to these phenotypes, we generated muscle-specific Sirt3 (Sirt3(skm-/-)) and liver-specific Sirt3 (Sirt3(hep-/-)) knock-out mice. Despite a marked global hyperacetylation of mitochondrial proteins, Sirt3(skm-/-) and Sirt3(hep-/-) mice did not manifest any overt metabolic phenotype under either chow or high fat diet conditions. Similarly, there was no evidence for increased oxidative stress in muscle or liver when Sirt3 was ablated in a tissue-specific manner. These observations suggest that the mitochondrial hyperacetylation induced by Sirt3-deletion in a tissue specific manner is not necessarily linked to mitochondrial dysfunction and does not recapitulate the metabolic abnormalities observed in the germline Sirt3 knock-out mice. PMID:22645641

  2. The mvp2 mutation affects the generative transition through the modification of transcriptome pattern, salicylic acid and cytokinin metabolism in Triticum monococcum.

    PubMed

    Boldizsár, Ákos; Vanková, Radomíra; Novák, Aliz; Kalapos, Balázs; Gulyás, Zsolt; Pál, Magda; Floková, Kristyna; Janda, Tibor; Galiba, Gábor; Kocsy, Gábor

    2016-09-01

    Wild type and mvp2 (maintained vegetative phase) deletion mutant T. monococcum plants incapable of flowering were compared in order to determine the effect of the deleted region of chromosome 5A on transcript profile and hormone metabolism. This region contains the vernalization1 (VRN1) gene, a major regulator of the vegetative/generative transition. Transcript profiling in the crowns of T. monococcum during the transition and the subsequent formation of flower primordia showed that 306 genes were affected by the mutation, 198 by the developmental phase and 14 by the interaction of these parameters. In addition, 546 genes were affected by two or three factors. The genes controlled by the deleted region encode transcription factors, antioxidants and enzymes of hormone, carbohydrate and amino acid metabolism. The observed changes in the expression of the gene encoding phenylalanine ammonia lyase (PAL) might indicate the effect of mvp2 mutation on the metabolism of salicylic acid, which was corroborated by the differences in 2-hydroxycinnamic acid and cinnamic acid contents in both of the leaves and crowns, and in the concentrations of salicylic acid and benzoic acid in crowns during the vegetative/generative transition. The amount and ratio of active cytokinins and their derivatives (ribosides, glucosides and phosphates) were affected by developmental changes as well as by mvp2 mutation, too. PMID:27450491

  3. Extraversion and reward-related processing: probing incentive motivation in affective priming tasks.

    PubMed

    Robinson, Michael D; Moeller, Sara K; Ode, Scott

    2010-10-01

    Based on an incentive motivation theory of extraversion (Depue & Collins, 1999), it was hypothesized that extraverts (relative to introverts) would exhibit stronger positive priming effects in affective priming tasks, whether involving words or pictures. This hypothesis was systematically supported in four studies involving 229 undergraduates. In each of the four studies, and in a subsequent combined analysis, extraversion was positively predictive of positive affective priming effects, but was not predictive of negative affective priming effects. The results bridge an important gap in the literature between biological and trait models of incentive motivation and do so in a way that should be informative to subsequent efforts to understand the processing basis of extraversion as well as incentive motivation.

  4. Performance processes within affect-related performance zones: a multi-modal investigation of golf performance.

    PubMed

    van der Lei, Harry; Tenenbaum, Gershon

    2012-12-01

    Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.

  5. Abnormal neural processing during emotional salience attribution of affective asymmetry in patients with schizophrenia.

    PubMed

    Lee, Seon-Koo; Chun, Ji Won; Lee, Jung Suk; Park, Hae-Jeong; Jung, Young-Chul; Seok, Jeong-Ho; Kim, Jae-Jin

    2014-01-01

    Aberrant emotional salience attribution has been reported to be an important clinical feature in patients with schizophrenia. Real life stimuli that incorporate both positive and negative emotional traits lead to affective asymmetry such as negativity bias and positivity offset. In this study, we investigated the neural correlates of emotional salience attribution in patients with schizophrenia when affective asymmetry was processed. Fifteen patients with schizophrenia and 14 healthy controls were scanned using functional magnetic resonance imaging (fMRI) while performing an emotion judgment task in which two pictures were juxtaposed. The task consisted of responding to affective asymmetry condition (ambivalent and neutral) and affective symmetry conditions (positive and negative), and group comparisons were performed for each condition. Significantly higher activity in the medial prefrontal cortex and inferior frontal gyrus was observed for the ambivalent condition than for the other conditions in controls, but not in patients. Compared with controls, patients showed decreased activities in the dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, insula, and putamen for the ambivalent condition, but no changes were observed for the neutral condition. Multiple prefrontal hypoactivities during salience attribution of negativity bias in schizophrenia may underlie deficits in the integrative processing of emotional information. Regional abnormalities in the salience network may be the basis of defective emotional salience attribution in schizophrenia, which is likely involved in symptom formation and social dysfunction.

  6. Advancing the Assessment of Personality Pathology With the Cognitive-Affective Processing System.

    PubMed

    Huprich, Steven K; Nelson, Sharon M

    2015-01-01

    The Cognitive-Affective Processing System (CAPS) is a dynamic and expansive model of personality proposed by Mischel and Shoda (1995) that incorporates dispositional and processing frameworks by considering the interaction of the individual and the situation, and the patterns of variation that result. These patterns of cognition, affect, and behavior are generally defined through the use of if … then statements, and provide a rich understanding of the individual across varying levels of assessment. In this article, we describe the CAPS model and articulate ways in which it can be applied to conceptualizing and assessing personality pathology. We suggest that the CAPS model is an ideal framework that integrates a number of current theories of personality pathology, and simultaneously overcomes a number of limits that have been empirically identified in the past.

  7. Advancing the Assessment of Personality Pathology With the Cognitive-Affective Processing System.

    PubMed

    Huprich, Steven K; Nelson, Sharon M

    2015-01-01

    The Cognitive-Affective Processing System (CAPS) is a dynamic and expansive model of personality proposed by Mischel and Shoda (1995) that incorporates dispositional and processing frameworks by considering the interaction of the individual and the situation, and the patterns of variation that result. These patterns of cognition, affect, and behavior are generally defined through the use of if … then statements, and provide a rich understanding of the individual across varying levels of assessment. In this article, we describe the CAPS model and articulate ways in which it can be applied to conceptualizing and assessing personality pathology. We suggest that the CAPS model is an ideal framework that integrates a number of current theories of personality pathology, and simultaneously overcomes a number of limits that have been empirically identified in the past. PMID:26214351

  8. Positive Affect Processing and Joint Attention in Infants at High Risk for Autism: An Exploratory Study.

    PubMed

    Key, Alexandra P; Ibanez, Lisa V; Henderson, Heather A; Warren, Zachary; Messinger, Daniel S; Stone, Wendy L

    2015-12-01

    Few behavioral indices of risk for autism spectrum disorders (ASD) are present before 12 months, and potential biomarkers remain largely unexamined. This prospective study of infant siblings of children with ASD (n = 16) and low-risk comparison infants (n = 15) examined group differences in event-related potentials (ERPs) indexing processing of facial positive affect (N290/P400, Nc) at 9 months and their relation to joint attention at 15 months. Group differences were most pronounced for subtle facial expressions, in that the low-risk group exhibited relatively longer processing (P400 latency) and greater attention resource allocation (Nc amplitude). Exploratory analyses found associations between ERP responses and later joint attention, suggesting that attention to positive affect cues may support the development of other social competencies.

  9. Relationship of blood flow and metabolism to acoustic processing centers of the dolphin brain.

    PubMed

    Houser, Dorian S; Moore, Patrick W; Johnson, Shawn; Lutmerding, Betsy; Branstetter, Brian; Ridgway, Sam H; Trickey, Jennifer; Finneran, James J; Jensen, Eric; Hoh, Carl

    2010-09-01

    Odontocete brain tissues associated with auditory processing are hypertrophied and modified relative to their terrestrial counterparts. The relationship between the functional demand on these tissues and metabolic substrate requirements is unknown. Using positron emission tomography (PET), relative cerebral blood flow was measured in a bottlenose dolphin. Approximately 60 mCi (13)NH(3) was administered to the dolphin via a catheter inserted into the hepatic vein and threaded proximate to the vena cava. Radiolabel initially appeared as distributed focal points in the cerebellum. Increasing scan time resulted in an increase in the number of focal regions and in the diffusivity of label activity throughout the brain. The time course and spatial distribution of radiolabel was consistent with a cerebral blood supply dominated by the spinal meningeal arteries. Blood flow was predominantly observed in the cerebellum and neocortex, particularly the auditory and visual cortex. Differential brain glucose uptake, previously measured in a separate dolphin, showed good agreement with the differential supply of blood to brain tissues. Rates of blood supply and glucose uptake in the auditory cortex, inferior colliculus, and cerebellum are consistent with a high metabolic demand of tissues which are important to the integration of auditory and other sensory inputs. PMID:20815480

  10. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers

    PubMed Central

    Kächele, Martin; Hennige, Anita M.; Machann, Jürgen; Hieronimus, Anja; Lamprinou, Apostolia; Machicao, Fausto; Schick, Fritz; Fritsche, Andreas; Stefan, Norbert; Nürnberg, Bernd; Häring, Hans-Ulrich; Staiger, Harald

    2015-01-01

    Objective Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an important signaling role in inflammatory processes. Since subclinical inflammation is a hallmark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis. Study Design Using a tagging single nucleotide polymorphism (SNP) approach, we analyzed genotype-phenotype associations in 2,068 German subjects genotyped for 10 PIK3CG SNPs and characterized by oral glucose tolerance tests. In subgroups, data from hyperinsulinaemic-euglycaemic clamps, magnetic resonance spectroscopy of the liver, whole-body magnetic resonance imaging, and intravenous glucose tolerance tests were available, and peripheral blood mononuclear cells (PBMCs) were used for gene expression analysis. Results After appropriate adjustment, none of the PIK3CG tagging SNPs was significantly associated with body fat content/distribution, adipokine/cytokine concentrations, insulin sensitivity, insulin secretion, or blood glucose concentrations (p>0.0127, all; Bonferroni-corrected α-level: 0.0051). However, six non-linked SNPs displayed at least nominal associations with plasma HDL-cholesterol concentrations, two of them (rs4288294 and rs116697954) reaching the level of study-wide significance (p = 0.0003 and p = 0.0004, respectively). More precisely, rs4288294 and rs116697954 influenced HDL2-, but not HDL3-, cholesterol. With respect to the SNPs’ in vivo functionality, rs4288294 was significantly associated with PIK3CG mRNA expression in PBMCs. Conclusions We could demonstrate that common genetic variation in the PIK3CG locus, possibly

  11. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    PubMed

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  12. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    PubMed

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  13. Regulation of electron transfer processes affects phototrophic mat structure and activity

    PubMed Central

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  14. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Rolland, Marine; Skov, Peter V; Larsen, Bodil K; Holm, Jørgen; Gómez-Requeni, Pedro; Dalsgaard, Johanne

    2016-08-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signalling factor in different metabolic pathways. The study investigated the effect of increasing dietary methionine intake on the intermediary metabolism in the liver of juvenile rainbow trout. For this purpose, five diets were formulated with increasing methionine levels from 0.60 to 1.29% dry matter. The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine concentrations. The transcript levels of enzymes involved in lipid metabolism (fatty acid synthase, glucose 6 phosphate dehydrogenase and carnitine palmitoyl transferase 1 a), gluconeogenesis (fructose-1,6-biphosphatase) and amino acid catabolism (alanine amino transferase and glutamate dehydrogenase) were significantly affected by the increase in dietary methionine. Changes in gene expression reflected to some extent the decrease in ammonia excretion (P=0.022) and in the hepatosomatic index (HSI; P<0.001) when dietary methionine increased. Postprandial plasma methionine concentrations correlated positively with the dietary level (P<0.001) at the different sampling points. The study shows that the expression of several genes related to the hepatic intermediary metabolism in rainbow trout responded in a dose-dependent manner to increasing levels of dietary methionine.

  15. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Rolland, Marine; Skov, Peter V; Larsen, Bodil K; Holm, Jørgen; Gómez-Requeni, Pedro; Dalsgaard, Johanne

    2016-08-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signalling factor in different metabolic pathways. The study investigated the effect of increasing dietary methionine intake on the intermediary metabolism in the liver of juvenile rainbow trout. For this purpose, five diets were formulated with increasing methionine levels from 0.60 to 1.29% dry matter. The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine concentrations. The transcript levels of enzymes involved in lipid metabolism (fatty acid synthase, glucose 6 phosphate dehydrogenase and carnitine palmitoyl transferase 1 a), gluconeogenesis (fructose-1,6-biphosphatase) and amino acid catabolism (alanine amino transferase and glutamate dehydrogenase) were significantly affected by the increase in dietary methionine. Changes in gene expression reflected to some extent the decrease in ammonia excretion (P=0.022) and in the hepatosomatic index (HSI; P<0.001) when dietary methionine increased. Postprandial plasma methionine concentrations correlated positively with the dietary level (P<0.001) at the different sampling points. The study shows that the expression of several genes related to the hepatic intermediary metabolism in rainbow trout responded in a dose-dependent manner to increasing levels of dietary methionine. PMID:27105833

  16. Integrative Processing of Touch and Affect in Social Perception: An fMRI Study

    PubMed Central

    Ebisch, Sjoerd J. H.; Salone, Anatolia; Martinotti, Giovanni; Carlucci, Leonardo; Mantini, Dante; Perrucci, Mauro G.; Saggino, Aristide; Romani, Gian Luca; Di Giannantonio, Massimo; Northoff, Georg; Gallese, Vittorio

    2016-01-01

    Social perception commonly employs multiple sources of information. The present study aimed at investigating the integrative processing of affective social signals. Task-related and task-free functional magnetic resonance imaging was performed in 26 healthy adult participants during a social perception task concerning dynamic visual stimuli simultaneousl