Sample records for metabolic profiling techniques

  1. A Comprehensive Workflow of Mass Spectrometry-Based Untargeted Metabolomics in Cancer Metabolic Biomarker Discovery Using Human Plasma and Urine

    PubMed Central

    Zou, Wei; She, Jianwen; Tolstikov, Vladimir V.

    2013-01-01

    Current available biomarkers lack sensitivity and/or specificity for early detection of cancer. To address this challenge, a robust and complete workflow for metabolic profiling and data mining is described in details. Three independent and complementary analytical techniques for metabolic profiling are applied: hydrophilic interaction liquid chromatography (HILIC–LC), reversed-phase liquid chromatography (RP–LC), and gas chromatography (GC). All three techniques are coupled to a mass spectrometer (MS) in the full scan acquisition mode, and both unsupervised and supervised methods are used for data mining. The univariate and multivariate feature selection are used to determine subsets of potentially discriminative predictors. These predictors are further identified by obtaining accurate masses and isotopic ratios using selected ion monitoring (SIM) and data-dependent MS/MS and/or accurate mass MSn ion tree scans utilizing high resolution MS. A list combining all of the identified potential biomarkers generated from different platforms and algorithms is used for pathway analysis. Such a workflow combining comprehensive metabolic profiling and advanced data mining techniques may provide a powerful approach for metabolic pathway analysis and biomarker discovery in cancer research. Two case studies with previous published data are adapted and included in the context to elucidate the application of the workflow. PMID:24958150

  2. Observability of Plant Metabolic Networks Is Reflected in the Correlation of Metabolic Profiles.

    PubMed

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel J; Fernie, Alisdair R; Nikoloski, Zoran

    2016-10-01

    Understanding whether the functionality of a biological system can be characterized by measuring few selected components is key to targeted phenotyping techniques in systems biology. Methods from observability theory have proven useful in identifying sensor components that have to be measured to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state-of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report.

    PubMed

    Piotto, Martial; Moussallieh, François-Marie; Neuville, Agnès; Bellocq, Jean-Pierre; Elbayed, Karim; Namer, Izzie Jacques

    2012-01-18

    Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  4. Organogenic nodule development in hop (Humulus lupulus L.): Transcript and metabolic responses

    PubMed Central

    Fortes, Ana M; Santos, Filipa; Choi, Young H; Silva, Marta S; Figueiredo, Andreia; Sousa, Lisete; Pessoa, Fernando; Santos, Bartolomeu A; Sebastiana, Mónica; Palme, Klaus; Malhó, Rui; Verpoorte, Rob; Pais, Maria S

    2008-01-01

    Background Hop (Humulus lupulus L.) is an economically important plant forming organogenic nodules which can be used for genetic transformation and micropropagation. We are interested in the mechanisms underlying reprogramming of cells through stress and hormone treatments. Results An integrated molecular and metabolomic approach was used to investigate global gene expression and metabolic responses during development of hop's organogenic nodules. Transcript profiling using a 3,324-cDNA clone array revealed differential regulation of 133 unigenes, classified into 11 functional categories. Several pathways seem to be determinant in organogenic nodule formation, namely defense and stress response, sugar and lipid metabolism, synthesis of secondary metabolites and hormone signaling. Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, lipid and sugar metabolism and secondary metabolism in organogenic nodule formation. Conclusion The expression profile of genes pivotal for energy metabolism, together with metabolites profile, suggested that these morphogenic structures gain energy through a heterotrophic, transport-dependent and sugar-degrading anaerobic metabolism. Polyamines and auxins are likely to be involved in the regulation of expression of many genes related to organogenic nodule formation. These results represent substantial progress toward a better understanding of this complex developmental program and reveal novel information regarding morphogenesis in plants. PMID:18823540

  5. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    PubMed Central

    2012-01-01

    Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9) originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample). Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater. PMID:22257563

  6. Informatics for Metabolomics.

    PubMed

    Kusonmano, Kanthida; Vongsangnak, Wanwipa; Chumnanpuen, Pramote

    2016-01-01

    Metabolome profiling of biological systems has the powerful ability to provide the biological understanding of their metabolic functional states responding to the environmental factors or other perturbations. Tons of accumulative metabolomics data have thus been established since pre-metabolomics era. This is directly influenced by the high-throughput analytical techniques, especially mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques. Continuously, the significant numbers of informatics techniques for data processing, statistical analysis, and data mining have been developed. The following tools and databases are advanced for the metabolomics society which provide the useful metabolomics information, e.g., the chemical structures, mass spectrum patterns for peak identification, metabolite profiles, biological functions, dynamic metabolite changes, and biochemical transformations of thousands of small molecules. In this chapter, we aim to introduce overall metabolomics studies from pre- to post-metabolomics era and their impact on society. Directing on post-metabolomics era, we provide a conceptual framework of informatics techniques for metabolomics and show useful examples of techniques, tools, and databases for metabolomics data analysis starting from preprocessing toward functional interpretation. Throughout the framework of informatics techniques for metabolomics provided, it can be further used as a scaffold for translational biomedical research which can thus lead to reveal new metabolite biomarkers, potential metabolic targets, or key metabolic pathways for future disease therapy.

  7. Metabolic Profiling in Patients with Pneumonia on Intensive Care.

    PubMed

    Antcliffe, David; Jiménez, Beatriz; Veselkov, Kirill; Holmes, Elaine; Gordon, Anthony C

    2017-04-01

    Clinical features and investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and when patients develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for metabolic profiling to aid the diagnosis in critical care. In this prospective observational study ventilated patients with brain injuries or pneumonia were recruited in the intensive care unit and serum samples were collected soon after the start of ventilation. Metabolic profiles were produced using 1D 1 H NMR spectra. Metabolic data were compared using multivariate statistical techniques including Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). We recruited 15 patients with pneumonia and 26 with brain injuries, seven of whom went on to develop VAP. Comparison of metabolic profiles using OPLS-DA differentiated those with pneumonia from those with brain injuries (R 2 Y=0.91, Q 2 Y=0.28, p=0.02) and those with VAP from those without (R 2 Y=0.94, Q 2 Y=0.27, p=0.05). Metabolites that differentiated patients with pneumonia included lipid species, amino acids and glycoproteins. Metabolic profiling shows promise to aid in the diagnosis of pneumonia in ventilated patients and may allow a more timely diagnosis and better use of antibiotics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Translating Metabolomics to Cardiovascular Biomarkers

    PubMed Central

    Senn, Todd; Hazen, Stanley L.; Tang, W. H. Wilson

    2012-01-01

    Metabolomics is the systematic study of the unique chemical fingerprints of small-molecules, or metabolite profiles, that are related to a variety of cellular metabolic processes in a cell, organ, or organism. While mRNA gene expression data and proteomic analyses do not tell the whole story of what might be happening in a cell, metabolic profiling provides direct and indirect physiologic insights that can potentially be detectable in a wide range of biospecimens. Although not specific to cardiac conditions, translating metabolomics to cardiovascular biomarkers has followed the traditional path of biomarker discovery from identification and confirmation to clinical validation and bedside testing. With technological advances in metabolomic tools (such as nuclear magnetic resonance spectroscopy and mass spectrometry) and more sophisticated bioinformatics and analytical techniques, the ability to measure low-molecular-weight metabolites in biospecimens provides a unique insight into established and novel metabolic pathways. Systemic metabolomics may provide physiologic understanding of cardiovascular disease states beyond traditional profiling, and may involve descriptions of metabolic responses of an individual or population to therapeutic interventions or environmental exposures. PMID:22824112

  9. Integrated strategy based on high-resolution mass spectrometry coupled with multiple data mining techniques for the metabolic profiling of Xanthoceras sorbifolia Bunge husks in rat plasma, urine, and feces.

    PubMed

    Rong, Weiwei; Guo, Sirui; Ding, Kewen; Yuan, Ziyue; Li, Qing; Bi, Kaishun

    2018-04-25

    An integrated strategy based on high-resolution mass spectrometry coupled with multiple data mining techniques was developed to screen the metabolites in rat biological fluids after the oral administration of Xanthoceras sorbifolia Bunge husks. Mass defect filtering, product ion filtering, and neutral loss filtering were applied to detect metabolites from the complex matrix. As a result, 55 metabolites were tentatively identified, among which 45 barrigenol-type triterpenoid metabolites were detected in the feces, and six flavonoids and four coumarins metabolites were in the urine. Moreover, eight prototype constituents in plasma, 36 in urine and 23 in feces were also discovered. Due to the poor bioavailability of barrigenol type triterpenoids, most of them were metabolized by intestinal flora. Phase I metabolic reactions such as deglycosylation, oxidation, demethylation, dehydrogenation, and internal hydrolysis were supposed to be their principal metabolic pathways. Coumarins were found in all the biosamples, whereas flavonoids were mainly in the urine. Unlike the saponins, they were mainly metabolized through phase II metabolic reactions like glucuronidation and sulfonation, which made them eliminated more easily by urine. This work suggested the metabolic profile of X. sorbifolia husks for the first time, which will be very valuable for its further development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparison of identification methods for oral asaccharolytic Eubacterium species.

    PubMed

    Wade, W G; Slayne, M A; Aldred, M J

    1990-12-01

    Thirty one strains of oral, asaccharolytic Eubacterium spp. and the type strains of E. brachy, E. nodatum and E. timidum were subjected to three identification techniques--protein-profile analysis, determination of metabolic end-products, and the API ATB32A identification kit. Five clusters were obtained from numerical analysis of protein profiles and excellent correlations were seen with the other two methods. Protein profiles alone allowed unequivocal identification.

  11. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance of Intact Zebrafish Embryos Detects Metabolic Changes Following Exposure to Teratogenic Polymethoxyalkenes from Algae

    PubMed Central

    Roy, Upasana; Jaja-Chimedza, Asha; Sanchez, Kristel; Matysik, Joerg

    2016-01-01

    Abstract Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)—a recently identified family of teratogenic compounds from freshwater algae—as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications. PMID:27348393

  12. Discriminating gastric cancer and gastric ulcer using human plasma amino acid metabolic profile.

    PubMed

    Jing, Fangyu; Hu, Xin; Cao, Yunfeng; Xu, Minghao; Wang, Yuanyuan; Jing, Yu; Hu, Xiaodan; Gao, Yu; Zhu, Zhitu

    2018-06-01

    Patients with gastric ulcer (GU) have a significantly higher risk of developing gastric cancer (GC), especially within 2 years after diagnosis. The main way to improve the prognosis of GC is to predict the tumorigenesis and metastasis in the early stage. The objective of this study was to demonstrate the ability of human plasma amino acid metabolic profile for discriminating GC and GU. In this study, we first used liquid chromatography-tandem mass spectrometry technique to characterize the plasma amino acid metabolism in GC and GU patients. Plasma samples were collected from 84 GC patients and 82 GU patients, and 22 amino acids were detected in each patient. Partial least squares-discriminant analysis model was performed to analyze the data of these amino acids. We observed seven differential amino acids between GC and GU. A regression analysis model was established using these seven amino acids. Finally, a panel of five differential amino acids, including glutamine, ornithine, histidine, arginine and tryptophan, was identified for discriminating GC and GU with good specificity and sensitivity. The receiver operating characteristic curve was used to evaluate diagnostic ability of the regression model and area under the curve was 0.922. In conclusion, this study demonstrated the potential values of plasma amino acid metabolic profile and metabolomic analysis technique in assisting diagnosis of GC. More studies are needed to highlight the theoretical strengths of metabolomics to understand the potential metabolic mechanisms in GC. © 2018 IUBMB Life, 70(6):553-562, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  13. Strategies for the Assessment of Metabolic Profiles of Steroid Hormones in View of Diagnostics and Drug Monitoring: Analytical Problems and Challenges.

    PubMed

    Plenis, Alina; Oledzka, Ilona; Kowalski, Piotr; Baczek, Tomasz

    2016-01-01

    During the last few years there has been a growing interest in research focused on the metabolism of steroid hormones despite that the study of metabolic hormone pathways is still a difficult and demanding task because of low steroid concentrations and a complexity of the analysed matrices. Thus, there has been an increasing interest in the development of new, more selective and sensitive methods for monitoring these compounds in biological samples. A lot of bibliographic databases for world research literature were structurally searched using selected review question and inclusion/exclusion criteria. Next, the reports of the highest quality were selected using standard tools (181) and they were described to evaluate the advantages and limitations of different approaches in the measurements of the steroids and their metabolites. The overview of the analytical challenges, development of methods used in the assessment of the metabolic pathways of steroid hormones, and the priorities for future research with a special consideration for liquid chromatography (LC) and capillary electrophoresis (CE) techniques have been presented. Moreover, many LC and CE applications in pharmacological and psychological studies as well as endocrinology and sports medicine, taking into account the recent progress in the area of the metabolic profiling of steroids, have been critically discussed. The latest reports show that LC systems coupled with mass spectrometry have the predominant position in the research of steroid profiles. Moreover, CE techniques are going to gain a prominent position in the diagnosis of hormone levels in the near future.

  14. Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS.

    PubMed

    Orrego-Lagarón, Naiara; Vallverdú-Queralt, Anna; Martínez-Huélamo, Miriam; Lamuela-Raventos, Rosa M; Escribano-Ferrer, Elvira

    2016-02-20

    Several biological activities (antioxidant, anti-inflammatory, anticarcinogenic) are attributed to naringenin (NAR)-a predominant flavonoid of citrus fruit and tomato-despite its low bioavailability after ingestion. NAR undergoes extensive metabolism when crossing the gastrointestinal tract, resulting in enteric, hepatic and microbial metabolites, some of them with recognized beneficial effects on human health. This study sought to provide new insights into the metabolism of NAR in regions of the gastrointestinal tract where it has been less studied: the stomach and colon. With this purpose, liquid chromatography coupled with an electrospray ionization hybrid linear ion trap quadrupole Orbitrap mass spectrometry technique (LC-ESI-LTQ-Orbitrap-MS) was used for an accurate identification of NAR metabolites, and liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) on a triple quadrupole was used for their identification and quantification. The combination of both analytical techniques provided a broader metabolic profile of NAR. As far as we know, this is the first in-depth metabolic profiling study of NAR in the stomach of mice. Three of the metabolites determined using the LC-LTQ-Orbitrap could not be identified by LC-ESI-MS/MS in stomach perfusion samples: apigenin, 3-(4-hydroxyphenyl) propionic acid and phloroglucinol. The number of colonic metabolites determined using the LTQ-Orbitrap-MS was more than twice the number identified by LC-ESI-MS/MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea.

    PubMed

    Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi

    2017-09-27

    Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.

  16. High-Resolution Metabolic Phenotyping of Genetically and Environmentally Diverse Potato Tuber Systems. Identification of Phenocopies

    PubMed Central

    Roessner, Ute; Willmitzer, Lothar; Fernie, Alisdair R.

    2001-01-01

    We conducted a comprehensive metabolic phenotyping of potato (Solanum tuberosum L. cv Desiree) tuber tissue that had been modified either by transgenesis or exposure to different environmental conditions using a recently developed gas chromatography-mass spectrometry profiling protocol. Applying this technique, we were able to identify and quantify the major constituent metabolites of the potato tuber within a single chromatographic run. The plant systems that we selected to profile were tuber discs incubated in varying concentrations of fructose, sucrose, and mannitol and transgenic plants impaired in their starch biosynthesis. The resultant profiles were then compared, first at the level of individual metabolites and then using the statistical tools hierarchical cluster analysis and principal component analysis. These tools allowed us to assign clusters to the individual plant systems and to determine relative distances between these clusters; furthermore, analyzing the loadings of these analyses enabled identification of the most important metabolites in the definition of these clusters. The metabolic profiles of the sugar-fed discs were dramatically different from the wild-type steady-state values. When these profiles were compared with one another and also with those we assessed in previous studies, however, we were able to evaluate potential phenocopies. These comparisons highlight the importance of such an approach in the functional and qualitative assessment of diverse systems to gain insights into important mediators of metabolism. PMID:11706160

  17. Deciphering the Duality of Clock and Growth Metabolism in a Cell Autonomous System Using NMR Profiling of the Secretome.

    PubMed

    Sengupta, Arjun; Krishnaiah, Saikumari Y; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O; Van Dang, Chi; Hogenesch, John B; Weljie, Aalim M

    2016-07-27

    Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations.

  18. Deciphering the Duality of Clock and Growth Metabolism in a Cell Autonomous System Using NMR Profiling of the Secretome

    PubMed Central

    Sengupta, Arjun; Krishnaiah, Saikumari Y.; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O.; Van Dang, Chi; Hogenesch, John B.; Weljie, Aalim M.

    2016-01-01

    Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations. PMID:27472375

  19. Spectroscopic and Statistical Techniques for Information Recovery in Metabonomics and Metabolomics

    NASA Astrophysics Data System (ADS)

    Lindon, John C.; Nicholson, Jeremy K.

    2008-07-01

    Methods for generating and interpreting metabolic profiles based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and chemometric analysis methods are summarized and the relative strengths and weaknesses of NMR and chromatography-coupled MS approaches are discussed. Given that all data sets measured to date only probe subsets of complex metabolic profiles, we describe recent developments for enhanced information recovery from the resulting complex data sets, including integration of NMR- and MS-based metabonomic results and combination of metabonomic data with data from proteomics, transcriptomics, and genomics. We summarize the breadth of applications, highlight some current activities, discuss the issues relating to metabonomics, and identify future trends.

  20. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics.

    PubMed

    Lindon, John C; Nicholson, Jeremy K

    2008-01-01

    Methods for generating and interpreting metabolic profiles based on nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and chemometric analysis methods are summarized and the relative strengths and weaknesses of NMR and chromatography-coupled MS approaches are discussed. Given that all data sets measured to date only probe subsets of complex metabolic profiles, we describe recent developments for enhanced information recovery from the resulting complex data sets, including integration of NMR- and MS-based metabonomic results and combination of metabonomic data with data from proteomics, transcriptomics, and genomics. We summarize the breadth of applications, highlight some current activities, discuss the issues relating to metabonomics, and identify future trends.

  1. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar.

    PubMed

    Suberu, John; Gromski, Piotr S; Nordon, Alison; Lapkin, Alexei

    2016-01-05

    An improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol for rapid analysis of co-metabolites of A. annua in raw extracts was developed and extensively characterized. The new method was used to analyse metabolic profiles of 13 varieties of A. annua from an in-field growth programme in Madagascar. Several multivariate data analysis techniques consistently show the association of artemisinin with dihydroartemisinic acid. These data support the hypothesis of dihydroartemisinic acid being the late stage precursor to artemisinin in its biosynthetic pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Radical scavenging activity and LC-MS metabolic profiling of petals, stamens, and flowers of Crocus sativus L.

    PubMed

    Montoro, Paola; Maldini, Mariateresa; Luciani, Leonilda; Tuberoso, Carlo I G; Congiu, Francesca; Pizza, Cosimo

    2012-08-01

    Radical scavenging activities of Crocus sativus petals, stamens and entire flowers, which are waste products in the production of the spice saffron, by employing ABTS radical scavenging method, were determined. At the same time, the metabolic profiles of different extract (obtained by petals, stamens and flowers) were obtained by LC-ESI-IT MS (liquid chromatography coupled with electrospray mass spectrometry equipped with Ion Trap analyser). LC-ESI-MS is a techniques largely used nowadays for qualitative fingerprint of herbal extracts and particularly for phenolic compounds. To compare the different extracts under an analytical point of view a specific method for qualitative LC-MS analysis was developed. The high variety of glycosylated flavonoids found in the metabolic profiles could give value to C. sativus petals, stamens and entire flowers. Waste products obtained during saffron production, could represent an interesting source of phenolic compounds, with respect to the high variety of compounds and their free radical scavenging activity. © 2012 Institute of Food Technologists®

  3. Promising application of dynamic nuclear polarization for in vivo (13)C MR imaging.

    PubMed

    Yen, Yi-Fen; Nagasawa, Kiyoshi; Nakada, Tsutomu

    2011-01-01

    Use of hyperpolarized (13)C in magnetic resonance (MR) imaging is a new technique that enhances signal tens of thousands-fold. Recent in vivo animal studies of metabolic imaging that used hyperpolarized (13)C demonstrated its potential in many applications for disease indication, metabolic profiling, and treatment monitoring. We review the basic physics for dynamic nuclear polarization (DNP) and in vivo studies reported in prostate cancer research, hepatocellular carcinoma research, diabetes and cardiac applications, brain metabolism, and treatment response as well as investigations of various DNP (13)C substrates.

  4. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    PubMed

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets.

  5. Data Reduction Approaches for Dissecting Transcriptional Effects on Metabolism

    PubMed Central

    Schwahn, Kevin; Nikoloski, Zoran

    2018-01-01

    The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approaches determine the partial correlation between two metabolite data profiles upon control of given principal components extracted from transcriptomics data profiles. Therefore, they allow us to investigate both data types with all features simultaneously without doing preselection of genes. The proposed approaches allow us to categorize the relation between pairs of metabolites as being under transcriptional or post-transcriptional regulation. The resulting classification is compared to existing literature and accumulated evidence about regulatory mechanism of reactions and pathways in the cases of Escherichia coli, Saccharomycies cerevisiae, and Arabidopsis thaliana. PMID:29731765

  6. Application of 1H NMR for the characterisation of cocoa beans of different geographical origins and fermentation levels.

    PubMed

    Caligiani, Augusta; Palla, Luigi; Acquotti, Domenico; Marseglia, Angela; Palla, Gerardo

    2014-08-15

    This study reports for the first time the use of (1)H NMR technique combined with chemometrics to study the metabolic profile of cocoa (Theobroma cacao L.) beans of different varieties, origin and fermentation levels. Results of PCA applied to cocoa bean (1)H NMR dataset showed that the main factor influencing the cocoa bean metabolic profile is the fermentation level. In fact well fermented brown beans form a group clearly separated from unfermented, slaty, and underfermented, violet, beans, independently of the variety or geographical origin. Considering only well fermented beans, the metabolic profile obtained by (1)H NMR permitted to discriminate between some classes of samples. The National cocoa of Ecuador, known as Arriba, showed the most peculiar characteristics, while the samples coming from the African region showed some similar traits. The dataset obtained, representative of all the classes of soluble compounds of cocoa, was therefore useful to characterise fermented cocoa beans as a function of their origin and fermentation level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota

    PubMed Central

    Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun

    2013-01-01

    Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554

  8. GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats

    PubMed Central

    Ma, Bo; Zhang, Qi; Wang, Guang-ji; A, Ji-ye; Wu, Di; Liu, Ying; Cao, Bei; Liu, Lin-sheng; Hu, Ying-ying; Wang, Yong-lu; Zheng, Ya-ya

    2011-01-01

    Aim: To explore the alteration of endogenous metabolites and identify potential biomarkers using metabolomic profiling with gas chromatography coupled a time-of-flight mass analyzer (GC/TOF-MS) in a rat model of estrogen-deficiency-induced obesity. Methods: Twelve female Sprague-Dawley rats six month of age were either sham-operated or ovariectomized (OVX). Rat blood was collected, and serum was analyzed for biomarkers using standard colorimetric methods with commercial assay kits and a metabolomic approach with GC/TOF-MS. The data were analyzed using multivariate statistical techniques. Results: A high body weight and body mass index inversely correlated with serum estradiol (E2) in the OVX rats compared to the sham rats. Estrogen deficiency also significantly increased serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol. Utilizing GC/TOF-MS-based metabolomic analysis and the partial least-squares discriminant analysis, the OVX samples were discriminated from the shams. Elevated levels of cholesterol, glycerol, glucose, arachidonic acid, glutamic acid, glycine, and cystine and reduced alanine levels were observed. Serum glucose metabolism, energy metabolism, lipid metabolism, and amino acid metabolism were involved in estrogen-deficiency-induced obesity in OVX rats. Conclusion: The series of potential biomarkers identified in the present study provided fingerprints of rat metabolomic changes during obesity and an overview of multiple metabolic pathways during the progression of obesity involving glucose metabolism, lipid metabolism, and amino acid metabolism. PMID:21293480

  9. Metabonomics and its role in amino acid nutrition research.

    PubMed

    He, Qinghua; Yin, Yulong; Zhao, Feng; Kong, Xiangfeng; Wu, Guoyao; Ren, Pingping

    2011-06-01

    Metabonomics combines metabolic profiling and multivariate data analysis to facilitate the high-throughput analysis of metabolites in biological samples. This technique has been developed as a powerful analytical tool and hence has found successful widespread applications in many areas of bioscience. Metabonomics has also become an important part of systems biology. As a sensitive and powerful method, metabonomics can quantitatively measure subtle dynamic perturbations of metabolic pathways in organisms due to changes in pathophysiological, nutritional, and epigenetic states. Therefore, metabonomics holds great promise to enhance our understanding of the complex relationship between amino acids and metabolism to define the roles for dietary amino acids in maintaining health and the development of disease. Such a technique also aids in the studies of functions, metabolic regulation, safety, and individualized requirements of amino acids. Here, we highlight the common workflow of metabonomics and some of the applications to amino acid nutrition research to illustrate the great potential of this exciting new frontier in bioscience.

  10. OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles

    PubMed Central

    Vermeersch, Kathleen A.; Wang, Lijuan; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.

    2015-01-01

    Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the first time that metabolism in an ovarian cancer stem cell line is distinct from that of more differentiated isogenic cancer cells, supporting the potential importance of metabolism in the differences between cancer cells and cancer stem cells. PMID:25688563

  11. Statistical inference methods for sparse biological time series data.

    PubMed

    Ndukum, Juliet; Fonseca, Luís L; Santos, Helena; Voit, Eberhard O; Datta, Susmita

    2011-04-25

    Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles. The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001). We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on ANOVA likelihood ratio tests, for testing the significance of differences between short time course data under different biological perturbations.

  12. Metabolomics Based Profiling of Dexamethasone Side Effects in Rats

    PubMed Central

    Malkawi, Abeer K.; Alzoubi, Karem H.; Jacob, Minnie; Matic, Goran; Ali, Asmaa; Al Faraj, Achraf; Almuhanna, Falah; Dasouki, Majed; Abdel Rahman, Anas M.

    2018-01-01

    Dexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its in vivo non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats. The Dex-treated rats suffered from a ∼20% reduction in weight gain, hyperglycemia (145 mg/dL), changes in serum lipids, and reduction in total serum alkaline phosphatase (ALP) (∼600 IU/L). Also, compared to controls, Dex-treated rats showed a distinctive metabolomics profile. In particular, serum amino acids metabolism showed six-fold reduction in phenylalanine, lysine, and arginine levels and upregulation of tyrosine and hydroxyproline reflecting perturbations in gluconeogenesis and protein catabolism which together lead to weight loss and abnormal bone metabolism. Sorbitol level was markedly elevated secondary to hyperglycemia and reflecting activation of the polyol metabolism pathway causing a decrease in the availability of reducing molecules (glutathione, NADPH, NAD+). Overexpression of succinylacetone (4,6-dioxoheptanoic acid) suggests a novel inhibitory effect of Dex on hepatic fumarylacetoacetate hydrolase. The acylcarnitines, mainly the very long chain species (C12, C14:1, C18:1) were significantly increased after Dex treatment which reflects degradation of the adipose tissue. In conclusion, long-term Dex therapy in rats is associated with a distinctive metabolic profile which correlates with its side effects. Therefore, metabolomics based profiling may predict Dex treatment-related side effects and may offer possible novel therapeutic interventions. PMID:29503615

  13. Metabolomics Based Profiling of Dexamethasone Side Effects in Rats.

    PubMed

    Malkawi, Abeer K; Alzoubi, Karem H; Jacob, Minnie; Matic, Goran; Ali, Asmaa; Al Faraj, Achraf; Almuhanna, Falah; Dasouki, Majed; Abdel Rahman, Anas M

    2018-01-01

    Dexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its in vivo non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats. The Dex-treated rats suffered from a ∼20% reduction in weight gain, hyperglycemia (145 mg/dL), changes in serum lipids, and reduction in total serum alkaline phosphatase (ALP) (∼600 IU/L). Also, compared to controls, Dex-treated rats showed a distinctive metabolomics profile. In particular, serum amino acids metabolism showed six-fold reduction in phenylalanine, lysine, and arginine levels and upregulation of tyrosine and hydroxyproline reflecting perturbations in gluconeogenesis and protein catabolism which together lead to weight loss and abnormal bone metabolism. Sorbitol level was markedly elevated secondary to hyperglycemia and reflecting activation of the polyol metabolism pathway causing a decrease in the availability of reducing molecules (glutathione, NADPH, NAD + ). Overexpression of succinylacetone (4,6-dioxoheptanoic acid) suggests a novel inhibitory effect of Dex on hepatic fumarylacetoacetate hydrolase. The acylcarnitines, mainly the very long chain species (C12, C14:1, C18:1) were significantly increased after Dex treatment which reflects degradation of the adipose tissue. In conclusion, long-term Dex therapy in rats is associated with a distinctive metabolic profile which correlates with its side effects. Therefore, metabolomics based profiling may predict Dex treatment-related side effects and may offer possible novel therapeutic interventions.

  14. Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%).

    PubMed

    Sutton-McDowall, Melanie L; Gosnell, Martin; Anwer, Ayad G; White, Melissa; Purdey, Malcolm; Abell, Andrew D; Goldys, Ewa M; Thompson, Jeremy G

    2017-10-01

    Can we separate embryos cultured under either 7% or 20% oxygen atmospheres by measuring their metabolic heterogeneity? Metabolic heterogeneity and changes in metabolic profiles in morula exposed to two different oxygen concentrations were not detectable using traditional fluorophore and two-channel autofluorescence but were detectable using hyperspectral microscopy. Increased genetic and morphological blastomere heterogeneity is associated with compromised developmental competence of embryos and currently forms the basis for embryo scoring within the clinic. However, there remains uncertainty over the accuracy of current techniques, such as PGS and time-lapse microscopy, to predict subsequent pregnancy establishment. The impact of two oxygen concentrations (7% = optimal and 20% = stressed) during post-fertilisation embryo culture was assessed. Cattle embryos were exposed to the different oxygen concentrations for 8 days (D8; embryo developmental competence) or 5 days (D5; metabolism measurements). Between 3 and 4 experimental replicates were performed, with 40-50 embryos per replicate used for the developmental competency experiment, 10-20 embryos per replicate for the fluorophore and two-channel autofluorescence experiments and a total of 21-22 embryos used for the hyperspectral microscopy study. In-vitro produced (IVP) cattle embryos were utilised for this study. Post-fertilisation, embryos were exposed to 7% or 20% oxygen. To determine impact of oxygen concentrations on embryo viability, blastocyst development was assessed on D8. On D5, metabolic heterogeneity was assessed in morula (on-time) embryos using fluorophores probes (active mitochondria, hydrogen peroxide and reduced glutathione), two-channel autofluorescence (FAD and NAD(P)H) and 18-channel hyperspectral microscopy. Exposure to 20% oxygen following fertilisation significantly reduced total blastocyst, expanded and hatched blastocyst rates by 1.4-, 1.9- and 2.8-fold, respectively, compared to 7% oxygen (P < 0.05), demonstrating that atmospheric oxygen was a viable model for studying mild metabolic stress. The metabolic profiles of D5 embryos was determined and although metabolic heterogeneity was evident within the cleavage stage (i.e. arrested) embryos exposed to fluorophores, there were no detectable difference in fluorescence intensity and pattern localisation in morula exposed to the two different oxygen concentrations (P > 0.05). While there were no significant differences in two-channel autofluorescent profiles of morula exposed to 7% and 20% oxygen (main effect, P > 0.05), morula that subsequently progressed to the blastocyst stage had significantly higher levels of FAD and NAD(P)H fluorescence compared to arrested morula (P < 0.05), with no change in the redox ratio. Hyperspectral autofluorescence imaging (in 18-spectral channels) of the D5 morula revealed highly significant differences in four features of the metabolic profiles of morula exposed to the two different oxygen concentrations (P < 0.001). These four features were weighted and their linear combination revealed clear discrimination between the two treatment groups. Metabolic profiles were assessed at a single time point (morula), and as such further investigation is required to determine if differences in hyperspectral signatures can be detected in pre-compaction embryos and oocytes, using both cattle and subsequently human models. Furthermore, embryo transfers should be performed to determine the relationship between metabolic profiles and pregnancy success. Advanced autofluorescence imaging techniques, such as hyperspectral microscopy, may provide clinics with additional tools to improve the assessment of embryos prior to transfer. This study was funded by the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). The Fluoview FV10i confocal microscope was purchased as part of the Sensing Technologies for Advanced Reproductive Research (STARR) facility, funded by the South Australian Premier's Science and Research Fund. The authors declare there are no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. CE-MS for metabolomics: developments and applications in the period 2012-2014.

    PubMed

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2015-01-01

    In the field of metabolomics, CE-MS is now regarded as a useful complementary analytical technique for the profiling of (highly) polar ionogenic metabolites in biological samples. Over the past few years, significant advancements have been made in CE-MS approaches for metabolic profiling studies. This paper, which is a follow-up of three previous review papers covering the years 2000-2012 [Electrophoresis 2009, 30, 276-291; Electrophoresis 2011, 32, 52-65; Electrophoresis 2013, 34, 86-98], provides an update of these developments covering the scientific literature from July 2012 to June 2014. Attention will be paid to novel interfacing techniques for coupling CE to MS and their implications for metabolomics studies. The potential of CEC-MS and MEKC-MS are also considered, and CE-MS systems for high-throughput metabolic profiling are discussed. The applicability of CE-MS for metabolomics studies is demonstrated by representative examples in the fields of biomedical, clinical, microbial, plant, environmental, and food metabolomics. An overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings, and MS detection mode. Finally, general conclusions and perspectives are given. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    PubMed

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which cannot be described by transcriptional profiling approaches alone. In this study, within the overall objective of profiling differential protein abundance in developing J. curcas seeds, we provide a setting of physiological data with dynamic proteomic and qRT-PCR analysis to characterize the metabolic pathways and the relationship between mRNA and protein patterns from early stage to seed filling during the seed development of J. curcas. The construction of J. curcas seed development proteome profiles will significantly increase our understanding of the process of seed development and provide a foundation to examine the dynamic changes of the metabolic network during seed development process and certainly suggest some clues to improve the lipid content of J. curcas seeds. © 2013. Published by Elsevier B.V. All rights reserved.

  17. Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity.

    PubMed

    Aggio, Raphael B M; Ruggiero, Katya; Villas-Bôas, Silas Granato

    2010-12-01

    Metabolomics is one of the most recent omics-technologies and uses robust analytical techniques to screen low molecular mass metabolites in biological samples. It has evolved very quickly during the last decade. However, metabolomics datasets are considered highly complex when used to relate metabolite levels to metabolic pathway activity. Despite recent developments in bioinformatics, which have improved the quality of metabolomics data, there is still no straightforward method capable of correlating metabolite level to the activity of different metabolic pathways operating within the cells. Thus, this kind of analysis still depends on extremely laborious and time-consuming processes. Here, we present a new algorithm Pathway Activity Profiling (PAPi) with which we are able to compare metabolic pathway activities from metabolite profiles. The applicability and potential of PAPi was demonstrated using a previously published data from the yeast Saccharomyces cerevisiae. PAPi was able to support the biological interpretations of the previously published observations and, in addition, generated new hypotheses in a straightforward manner. However, PAPi is time consuming to perform manually. Thus, we also present here a new R-software package (PAPi) which implements the PAPi algorithm and facilitates its usage to quickly compare metabolic pathways activities between different experimental conditions. Using the identified metabolites and their respective abundances as input, the PAPi package calculates pathways' Activity Scores, which represents the potential metabolic pathways activities and allows their comparison between conditions. PAPi also performs principal components analysis and analysis of variance or t-test to investigate differences in activity level between experimental conditions. In addition, PAPi generates comparative graphs highlighting up- and down-regulated pathway activity. These datasets are available in http://www.4shared.com/file/hTWyndYU/extra.html and http://www.4shared.com/file/VbQIIDeu/intra.html. PAPi package is available in: http://www.4shared.com/file/s0uIYWIg/PAPi_10.html s.villas-boas@auckland.ac.nz Supplementary data are available at Bioinformatics online.

  18. Raman-based noninvasive metabolic profile evaluation of in vitro bovine embryos

    NASA Astrophysics Data System (ADS)

    dos Santos, Érika Cristina; Martinho, Herculano; Annes, Kelly; da Silva, Thais; Soares, Carlos Alexandre; Leite, Roberta Ferreira; Milazzotto, Marcella Pecora

    2016-07-01

    The timing of the first embryonic cell divisions may predict the ability of an embryo to establish pregnancy. Similarly, metabolic profiles may be markers of embryonic viability. However, in bovine, data about the metabolomics profile of these embryos are still not available. In the present work, we describe Raman-based metabolomic profiles of culture media of bovine embryos with different developmental kinetics (fast x slow) throughout the in vitro culture. The principal component analysis enabled us to classify embryos with different developmental kinetics since they presented specific spectroscopic profiles for each evaluated time point. We noticed that bands at 1076 cm-1 (lipids), 1300 cm-1 (Amide III), and 2719 cm-1 (DNA nitrogen bases) gave the most relevant spectral features, enabling the separation between fast and slow groups. Bands at 1001 cm-1 (phenylalanine) and 2892 cm-1 (methylene group of the polymethylene chain) presented specific patterns related to embryonic stage and can be considered as biomarkers of embryonic development by Raman spectroscopy. The culture media analysis by Raman spectroscopy proved to be a simple and sensitive technique that can be applied with high efficiency to characterize the profiles of in vitro produced bovine embryos with different development kinetics and different stages of development.

  19. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    von Roepenack-Lahaye, Edda; Degenkolb, Thomas; Zerjeski, Michael; Franz, Mathias; Roth, Udo; Wessjohann, Ludger; Schmidt, Jürgen; Scheel, Dierk; Clemens, Stephan

    2004-02-01

    Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.

  20. Impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. Introduction of a multi-institutional research project.

    PubMed

    Zips, Daniel; Adam, Markus; Flentje, Michael; Haase, Axel; Molls, Michael; Mueller-Klieser, Wolfgang; Petersen, Cordula; Philbrook, Christine; Schmitt, Peter; Thews, Oliver; Walenta, Stefan; Baumann, Michael

    2004-10-01

    Recent developments in imaging technology and tumor biology have led to new techniques to detect hypoxia and related alterations of the metabolic microenvironment in tumors. However, whether these new methods can predict radiobiological hypoxia and outcome after fractionated radiotherapy still awaits experimental evaluation. The present article will introduce a multi-institutional research project addressing the impact of hypoxia and the metabolic microenvironment on radiotherapy of solid tumors. The four laboratories involved are situated at the universities of Dresden, Mainz, Munich and Würzburg, Germany. The joint scientific project started to collect data obtained on a set of ten different human tumor xenografts growing in nude mice by applying various imaging techniques to detect tumor hypoxia and related parameters of the metabolic microenvironment. These techniques include magnetic resonance imaging and spectroscopy, metabolic mapping with quantitative bioluminescence and single-photon imaging, histological multiparameter analysis of biochemical hypoxia, perfusion and vasculature, and immunohistochemistry of factors related to angiogenesis, invasion and metastasis. To evaluate the different methods, baseline functional radiobiological data including radiobiological hypoxic fraction and outcome after fractionated irradiation will be determined. Besides increasing our understanding of tumor biology, the project will focus on new, clinically applicable strategies for microenvironment profiling and will help to identify those patients that might benefit from targeted interventions to improve tumor oxygenation.

  1. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond

    PubMed Central

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-01-01

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the ‘Warburg effect’. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases. PMID:27271597

  2. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond.

    PubMed

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-06-02

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the 'Warburg effect'. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases.

  3. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    PubMed

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  4. Exhaled volatile substances mirror clinical conditions in pediatric chronic kidney disease

    PubMed Central

    Obermeier, Juliane; Trefz, Phillip; Happ, Josephine; Schubert, Jochen K.; Staude, Hagen

    2017-01-01

    Monitoring metabolic adaptation to chronic kidney disease (CKD) early in the time course of the disease is challenging. As a non-invasive technique, analysis of exhaled breath profiles is especially attractive in children. Up to now, no reports on breath profiles in this patient cohort are available. 116 pediatric subjects suffering from mild-to-moderate CKD (n = 48) or having a functional renal transplant KTx (n = 8) and healthy controls (n = 60) matched for age and sex were investigated. Non-invasive quantitative analysis of exhaled breath profiles by means of a highly sensitive online mass spectrometric technique (PTR-ToF) was used. CKD stage, the underlying renal disease (HUS; glomerular diseases; abnormalities of kidney and urinary tract or polycystic kidney disease) and the presence of a functional renal transplant were considered as classifiers. Exhaled volatile organic compound (VOC) patterns differed between CKD/ KTx patients and healthy children. Amounts of ammonia, ethanol, isoprene, pentanal and heptanal were higher in patients compared to healthy controls (556, 146, 70.5, 9.3, and 5.4 ppbV vs. 284, 82.4, 49.6, 5.30, and 2.78 ppbV). Methylamine concentrations were lower in the patient group (6.5 vs 10.1 ppbV). These concentration differences were most pronounced in HUS and kidney transplanted patients. When patients were grouped with respect to degree of renal failure these differences could still be detected. Ammonia accumulated already in CKD stage 1, whereas alterations of isoprene (linked to cholesterol metabolism), pentanal and heptanal (linked to oxidative stress) concentrations were detectable in the breath of patients with CKD stage 2 to 4. Only weak associations between serum creatinine and exhaled VOCs were noted. Non-invasive breath testing may help to understand basic mechanisms and metabolic adaptation accompanying progression of CKD. Our results support the current notion that metabolic adaptation occurs early during the time course of CKD. PMID:28570715

  5. Mass spectrometric profiling of low-molecular-weight volatile compounds--diagnostic potential and latest applications.

    PubMed

    Lechner, Matthias; Rieder, Josef

    2007-01-01

    The theoretical use of mass spectrometric profiling of low-molecular-weight volatile compounds, as one possible method to non-invasively and rapidly diagnose a variety of diseases, such as cancer, infection, and metabolic disorders has greatly raised the profile of this technique over the last ten years. Despite a number of promising results, this technique has not been introduced into common clinical practice yet. The use of mass spectrometric profiling of exhaled air is particularly hampered by various technical problems and basic methodological issues which have only been partially overcome. However, breath analysis aside, recently published studies reveal completely new ideas and concepts on how to establish fast and reliable diagnosis by using this valuable tool. These studies focussed on the headspace screening of various bodily fluids and sample fluids obtained during diagnostic procedures, as well as microbial cell cultures and demonstrated the vast diagnostic potential of this technique in a wide variety of settings, predominantly in vitro. It is the aim of the present review to discuss the most commonly detected low-molecular-weight volatile compounds and to summarize the current potential applications, latest developments and future perspectives of this promising diagnostic approach.

  6. Activity-Based Protein Profiling of Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Wright, Aaron T.

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include:more » enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.« less

  7. Metabolomic profile of systemic sclerosis patients.

    PubMed

    Murgia, Federica; Svegliati, Silvia; Poddighe, Simone; Lussu, Milena; Manzin, Aldo; Spadoni, Tatiana; Fischetti, Colomba; Gabrielli, Armando; Atzori, Luigi

    2018-05-16

    Systemic sclerosis (SSc) is an autoimmune disease of unknown aetiology characterized by vascular lesions, immunological alterations and diffuse fibrosis of the skin and internal organs. Since recent evidence suggests that there is a link between metabolomics and immune mediated disease, serum metabolic profile of SSc patients and healthy controls was investigated by 1 H-NMR and GC-MS techniques. The results indicated a lower level of aspartate, alanine, choline, glutamate, and glutarate in SSc patients compared with healthy controls. Moreover, comparing patients affected by limited SSc (lcSSc) and diffuse SSc (dcSSc), 6 discriminant metabolites were identified. The multivariate analysis performed using all the metabolites significantly different revealed glycolysis, gluconeogenesis, energetic pathways, glutamate metabolism, degradation of ketone bodies and pyruvate metabolism as the most important networks. Aspartate, alanine and citrate yielded a high area under receiver-operating characteristic (ROC) curves (AUC of 0.81; CI 0.726-0.93) for discriminating SSc patients from controls, whereas ROC curve generated with acetate, fructose, glutamate, glutamine, glycerol and glutarate (AUC of 0.84; CI 0.7-0.98) discriminated between lcSSc and dcSSc. These results indicated that serum NMR-based metabolomics profiling method is sensitive and specific enough to distinguish SSc from healthy controls and provided a feasible diagnostic tool for the diagnosis and classification of the disease.

  8. Applications of LC-MS in PET Radioligand Development and Metabolic Elucidation

    PubMed Central

    Ma, Ying; Kiesewetter, Dale O.; Lang, Lixin; Gu, Dongyu; Chen, Xiaoyuan

    2013-01-01

    Positron emission tomography (PET) is a very sensitive molecular imaging technique that when employed with an appropriate radioligand has the ability to quantititate physiological processes in a non-invasive manner. Since the imaging technique detects all radioactive emissions in the field of view, the presence and biological activity of radiolabeled metabolites must be determined for each radioligand in order to validate the utility of the radiotracer for measuring the desired physiological process. Thus, the identification of metabolic profiles of radiolabeled compounds is an important aspect of design, development, and validation of new radiopharmaceuticals and their applications in drug development and molecular imaging. Metabolite identification for different chemical classes of radiopharmaceuticals allows rational design to minimize the formation and accumulation of metabolites in the target tissue, either through enhanced excretion or minimized metabolism. This review will discuss methods for identifying and quantitating metabolites during the pre-clinical development of radiopharmaceuticals with special emphasis on the application of LC/MS. PMID:20540692

  9. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation1

    PubMed Central

    Tohge, Takayuki; Scossa, Federico; Fernie, Alisdair R.

    2015-01-01

    Huge insight into molecular mechanisms and biological network coordination have been achieved following the application of various profiling technologies. Our knowledge of how the different molecular entities of the cell interact with one another suggests that, nevertheless, integration of data from different techniques could drive a more comprehensive understanding of the data emanating from different techniques. Here, we provide an overview of how such data integration is being used to aid the understanding of metabolic pathway structure and regulation. We choose to focus on the pairwise integration of large-scale metabolite data with that of the transcriptomic, proteomics, whole-genome sequence, growth- and yield-associated phenotypes, and archival functional genomic data sets. In doing so, we attempt to provide an update on approaches that integrate data obtained at different levels to reach a better understanding of either single gene function or metabolic pathway structure and regulation within the context of a broader biological process. PMID:26371234

  10. Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes

    PubMed Central

    Zhou, Qiong; Zheng, Zhijie; Xia, Bijun; Tang, Lan; Lv, Chang; Liu, Wei; Liu, Zhongqiu; Hu, Ming

    2010-01-01

    Purposes Glucuronidation via UDP-glucuronosyltransferases (or UGTs) is a major metabolic pathway. The purposes of this study are to determine the UGT-isoform specific metabolic fingerprint (or GSMF) of wogonin and oroxylin A, and to use isoform-specific metabolism rates and kinetics to determine and describe their glucuronidation behaviors in tissue microsomes. Methods In vitro glucuronidation rates and profiles were measured using expressed UGTs and human intestinal and liver microsomes. Results GSMF experiments indicated that both flavonoids were metabolized mainly by UGT1As, with major contributions from UGT1A3 and UGT1A7-1A10. Isoform-specific metabolism showed that kinetic profiles obtained using expressed UGT1A3 and UGT1A7-1A10 could fit to known kinetic models. Glucuronidation of both flavonoids in human intestinal and liver microsomes followed simple Michaelis-Menten kinetics. A comparison of the kinetic parameters and profiles suggests that UGT1A9 is likely the main isoform responsible for liver metabolism. In contrast, a combination of UGT1As with a major contribution from UGT1A10 contributed to their intestinal metabolism. Correlation studies clearly showed that UGT isoform-specific metabolism could describe their metabolism rates and profiles in human liver and intestinal microsomes. Conclusion GSMF and isoform-specific metabolism profiles can determine and describe glucuronidation rates and profiles in human tissue microsomes. PMID:20411407

  11. Random whole metagenomic sequencing for forensic discrimination of soils.

    PubMed

    Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian

    2014-01-01

    Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.

  12. Genetic diversity reflects geographical origin of Ralstonia solanacearum strains isolated from plant and water sources in Spain.

    PubMed

    Caruso, Paola; Biosca, Elena G; Bertolini, Edson; Marco-Noales, Ester; Gorris, María Teresa; Licciardello, Concetta; López, María M

    2017-12-01

    The characterization and intraspecific diversity of a collection of 45 Ralstonia solanacearum strains isolated in Spain from different sources and geographical origins is reported. To test the influence of the site and the host on strain diversity, phenotypic and genotypic analysis were performed by a polyphasic approach. Biochemical and metabolic profiles were compared. Serological relationship was evaluated by Indirect-ELISA using polyclonal and monoclonal antibodies. For genotypic analysis, hrpB and egl DNA sequence analysis, repetitive sequences (rep-PCR), amplified fragment length polymorphism (AFLP) profiles and macrorestriction with XbaI followed by pulsed field gel electrophoresis (PFGE) were performed. The biochemical and metabolic characterization, serological tests, rep-PCR typing and phylogenetic analysis showed that all analysed strains belonged to phylotype II sequevar 1 and shared homogeneous profiles. However, interesting differences among strains were found by AFLP and macrorestriction with XbaI followed by PFGE techniques, some profiles being related to the geographical origin of the strains. Diversity results obtained offer new insights into the biogeography of this quarantine organism and its possible sources and reservoirs in Spain and Mediterranean countries. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  13. Metabolomics of cereals under biotic stress: current knowledge and techniques

    PubMed Central

    Balmer, Dirk; Flors, Victor; Glauser, Gaetan; Mauch-Mani, Brigitte

    2013-01-01

    Prone to attacks by pathogens and pests, plants employ intricate chemical defense mechanisms consisting of metabolic adaptations. However, many plant attackers are manipulating the host metabolism to counteract defense responses and to induce favorable nutritional conditions. Advances in analytical chemistry have allowed the generation of extensive metabolic profiles during plant-pathogen and pest interactions. Thereby, metabolic processes were found to be highly specific for given tissues, species, and plant-pathogen/pest interactions. The clusters of identified compounds not only serve as base in the quest of novel defense compounds, but also as markers for the characterization of the plants' defensive state. The latter is especially useful in agronomic applications where meaningful markers are essential for crop protection. Cereals such as maize make use of their metabolic arsenal during both local and systemic defense responses, and the chemical response is highly adapted to specific attackers. Here, we summarize highlights and recent findings of metabolic patterns of cereals under pathogen and pest attack. PMID:23630531

  14. Form(ul)ation of adipocytes by lipids.

    PubMed

    Lapid, Kfir; Graff, Jonathan M

    2017-07-03

    Lipids have the potential to serve as bio-markers, which allow us to analyze and to identify cells under various experimental settings, and to serve as a clinical diagnostic tool. For example, diagnosis according to specific lipids that are associated with diabetes and obesity. The rapid development of mass-spectrometry techniques enables identification and profiling of multiple types of lipid species. Together, lipid profiling and data interpretation forge the new field of lipidomics. Lipidomics can be used to characterize physiologic and pathophysiological processes in adipocytes, since lipid metabolism is at the core of adipocyte physiology and energy homeostasis. A significant bulk of lipids are stored in adipocytes, which can be released and used to produce energy, used to build membranes, or used as signaling molecules that regulate metabolism. In this review, we discuss how exhaust of lipidomes can be used to study adipocyte differentiation, physiology and pathophysiology.

  15. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath

    Treesearch

    Alphus D. Wilson

    2015-01-01

    Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...

  16. Nuclear magnetic resonance spectroscopy reveals metabolic changes in living cardiomyocytes after low doses of ionizing radiation.

    PubMed

    Gramatyka, Michalina; Skorupa, Agnieszka; Sokół, Maria

    2018-01-01

    Several lines of evidence indicate that exposure of heart to ionizing radiation increases the risk of cardiotoxicity manifested by heart dysfunction and cardiovascular diseases. It was initially believed that the heart is an organ relatively resistant to radiation. Currently, however, it is suspected that even low doses of radiation (< 2 Gy) may have a negative impact on the cardiovascular system. Cardiotoxicity of ionizing radiation is associated with metabolic changes observed in cardiac cells injured by radiation. In this study, we used human cardiomyocytes as a model system, and studied their metabolic response to radiation using high-resolution magic angle spinning nuclear magnetic resonance techniques (HR-MAS NMR). Human cardiomyocytes cultured in vitro were exposed to ionizing radiation and their survival was assessed by clonogenic assay. Changes in apoptosis intensity and cell cycle distribution after the irradiation were measured as well. NMR spectra of cardiomyocytes were acquired using Bruker Avance 400 MHz spectrometer at a spinning rate of 3200 Hz. Survival of cardiomyocytes after NMR experiments was assessed by the Trypan blue exclusion assay. Exposure of cardiomyocytes to small doses of ionizing radiation had no effect on cell proliferation potential and intensity of cell death. However, analysis of metabolic profiles revealed changes in lipids, threonine, glycine, glycerophosphocholine, choline, valine, isoleucine, glutamate, reduced glutathione and taurine metabolism. The results of this study showed that ionizing radiation affects metabolic profiles of cardiomyocytes even at low doses, which potentially have no effect on cell viability.

  17. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    PubMed Central

    2012-01-01

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine. PMID:23194438

  18. Targeted High Performance Liquid Chromatography Tandem Mass Spectrometry-based Metabolomics differentiates metabolic syndrome from obesity.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Bruno, Richard S; Ballard, Kevin D; Zhu, Jiangjiang

    2017-04-01

    Both obesity and the metabolic syndrome are risk factors for type 2 diabetes and cardiovascular disease. Identification of novel biomarkers are needed to distinguish metabolic syndrome from equally obese individuals in order to direct them to early interventions that reduce their risk of developing further health problems. We utilized mass spectrometry-based targeted metabolic profiling of 221 metabolites to evaluate the associations between metabolite profiles and established metabolic syndrome criteria (i.e. elevated waist circumference, hypertension, elevated fasting glucose, elevated triglycerides, and low high-density lipoprotein cholesterol) in plasma samples from obese men ( n = 29; BMI = 35.5 ± 5.2 kg/m 2 ) and women ( n = 40; 34.9 ± 6.7 kg/m 2 ), of which 26 met the criteria for metabolic syndrome (17 men and 9 women). Compared to obese individuals without metabolic syndrome, univariate statistical analysis and partial least squares discriminant analysis showed that a specific group of metabolites from multiple metabolic pathways (i.e. purine metabolism, valine, leucine and isoleucine degradation, and tryptophan metabolism) were associated with the presence of metabolic syndrome. Receiver operating characteristic curves generated based on the PLS-DA models showed excellent areas under the curve (0.85 and 0.96, for metabolites only model and enhanced metabolites model, respectively), high specificities (0.86 and 0.93), and good sensitivities (0.71 and 0.91). Moreover, principal component analysis revealed that metabolic profiles can be used to further differentiate metabolic syndrome with 3 versus 4-5 metabolic syndrome criteria. Collectively, these findings support targeted metabolomics approaches to distinguish metabolic syndrome from obesity alone, and to stratify metabolic syndrome status based on the number of criteria met. Impact statement We utilized mass spectrometry-based targeted metabolic profiling of 221 metabolites to evaluate the associations between metabolite profiles and established MetS criteria. To our best knowledge, the findings of this study provide the first evidence that metabolic profiles can be used to differentiate participants with MetS from similarly obese individuals who do not meet established criteria of MetS. Furthermore, the study demonstrated that within MetS participants, their unique metabolic profiles correlated to the number of criteria used for MetS determination. Taken together, this metabolic profiling approach can potentially serve as a novel tool for MetS detection and monitoring, and provide useful metabolic information for future interventions targeting obesity and MetS.

  19. Differential toxicity of arsenic on renal oxidative damage and urinary metabolic profiles in normal and diabetic mice.

    PubMed

    Yin, Jinbao; Liu, Su; Yu, Jing; Wu, Bing

    2017-07-01

    Diabetes is a common metabolic disease, which might influence susceptibility of the kidney to arsenic toxicity. However, relative report is limited. In this study, we compared the influence of inorganic arsenic (iAs) on renal oxidative damage and urinary metabolic profiles of normal and diabetic mice. Results showed that iAs exposure increased renal lipid peroxidation in diabetic mice and oxidative DNA damage in normal mice, meaning different effects of iAs exposure on normal and diabetic individuals. Nuclear magnetic resonance (NMR)-based metabolome analyses found that diabetes significantly changed urinary metabolic profiles of mice. Oxidative stress-related metabolites, such as arginine, glutamine, methionine, and β-hydroxybutyrate, were found to be changed in diabetic mice. The iAs exposure altered amino acid metabolism, lipid metabolism, carbohydrate metabolism, and energy metabolism in normal and diabetic mice, but had higher influence on metabolic profiles of diabetic mice than normal mice, especially for oxidative stress-related metabolites and metabolisms. Above results indicate that diabetes increased susceptibility to iAs exposure. This study provides basic information on differential toxicity of iAs on renal toxicity and urinary metabolic profiles in normal and diabetic mice and suggests that diabetic individuals should be considered as susceptible population in toxicity assessment of arsenic.

  20. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  1. Gut microbiota functions: metabolism of nutrients and other food components.

    PubMed

    Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran

    2018-02-01

    The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.

  2. Solution state nuclear magnetic resonance spectroscopy for biological metabolism and pathway intermediate analysis.

    PubMed

    Nealon, Gareth L; Howard, Mark J

    2016-12-15

    Using nuclear magnetic resonance (NMR) spectroscopy in the study of metabolism has been immensely popular in medical- and health-related research but has yet to be widely applied to more fundamental biological problems. This review provides some NMR background relevant to metabolism, describes why 1 H NMR spectra are complex as well as introducing relevant terminology and definitions. The applications and practical considerations of NMR metabolic profiling and 13 C NMR-based flux analyses are discussed together with the elegant 'enzyme trap' approach for identifying novel metabolic pathway intermediates. The importance of sample preparation and data analysis are also described and explained with reference to data precision and multivariate analysis to introduce researchers unfamiliar with NMR and metabolism to consider this technique for their research interests. Finally, a brief glance into the future suggests NMR-based metabolism has room to expand in the 21st century through new isotope labels, and NMR technologies and methodologies. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  3. Novel biomarker identification using metabolomic profiling to differentiate radiation necrosis and recurrent tumor following Gamma Knife radiosurgery.

    PubMed

    Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L

    2017-08-01

    OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.

  4. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.

    PubMed

    Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M

    2017-11-01

    Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.

  5. Measuring Biological Age via Metabonomics: The Metabolic Age Score.

    PubMed

    Hertel, Johannes; Friedrich, Nele; Wittfeld, Katharina; Pietzner, Maik; Budde, Kathrin; Van der Auwera, Sandra; Lohmann, Tobias; Teumer, Alexander; Völzke, Henry; Nauck, Matthias; Grabe, Hans Jörgen

    2016-02-05

    Chronological age is one of the most important risk factors for adverse clinical outcome. Still, two individuals at the same chronological age could have different biological aging states, leading to different individual risk profiles. Capturing this individual variance could constitute an even more powerful predictor enhancing prediction in age-related morbidity. Applying a nonlinear regression technique, we constructed a metabonomic measurement for biological age, the metabolic age score, based on urine data measured via (1)H NMR spectroscopy. We validated the score in two large independent population-based samples by revealing its significant associations with chronological age and age-related clinical phenotypes as well as its independent predictive value for survival over approximately 13 years of follow-up. Furthermore, the metabolic age score was prognostic for weight loss in a sample of individuals who underwent bariatric surgery. We conclude that the metabolic age score is an informative measurement of biological age with possible applications in personalized medicine.

  6. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies

    PubMed Central

    Kangas, Antti J; Soininen, Pasi; Lawlor, Debbie A; Davey Smith, George; Ala-Korpela, Mika

    2017-01-01

    Abstract Detailed metabolic profiling in large-scale epidemiologic studies has uncovered novel biomarkers for cardiometabolic diseases and clarified the molecular associations of established risk factors. A quantitative metabolomics platform based on nuclear magnetic resonance spectroscopy has found widespread use, already profiling over 400,000 blood samples. Over 200 metabolic measures are quantified per sample; in addition to many biomarkers routinely used in epidemiology, the method simultaneously provides fine-grained lipoprotein subclass profiling and quantification of circulating fatty acids, amino acids, gluconeogenesis-related metabolites, and many other molecules from multiple metabolic pathways. Here we focus on applications of magnetic resonance metabolomics for quantifying circulating biomarkers in large-scale epidemiology. We highlight the molecular characterization of risk factors, use of Mendelian randomization, and the key issues of study design and analyses of metabolic profiling for epidemiology. We also detail how integration of metabolic profiling data with genetics can enhance drug development. We discuss why quantitative metabolic profiling is becoming widespread in epidemiology and biobanking. Although large-scale applications of metabolic profiling are still novel, it seems likely that comprehensive biomarker data will contribute to etiologic understanding of various diseases and abilities to predict disease risks, with the potential to translate into multiple clinical settings. PMID:29106475

  7. Effects of Histidine Supplementation on Global Serum and Urine 1H NMR-based Metabolomics and Serum Amino Acid Profiles in Obese Women from a Randomized Controlled Study.

    PubMed

    Du, Shanshan; Sun, Shuhong; Liu, Liyan; Zhang, Qiao; Guo, Fuchuan; Li, Chunlong; Feng, Rennan; Sun, Changhao

    2017-06-02

    The aim of current study was to investigate the metabolic changes associated with histidine supplementation in serum and urine metabolic signatures and serum amino acid (AA) profiles. Serum and urine 1 H NMR-based metabolomics and serum AA profiles were employed in 32 and 37 obese women with metabolic syndrome (MetS) intervened with placebo or histidine for 12 weeks. Multivariable statistical analysis were conducted to define characteristic metabolites. In serum 1 H NMR metabolic profiles, increases in histidine, glutamine, aspartate, glycine, choline, and trimethylamine-N-oxide (TMAO) were observed; meanwhile, decreases in cholesterol, triglycerides, fatty acids and unsaturated lipids, acetone, and α/β-glucose were exhibited after histidine supplement. In urine 1 H NMR metabolic profiles, citrate, creatinine/creatine, methylguanidine, and betaine + TMAO were higher, while hippurate was lower in histidine supplement group. In serum AA profiles, 10 AAs changed after histidine supplementation, including increased histidine, glycine, alanine, lysine, asparagine, and tyrosine and decreased leucine, isoleucine, ornithine, and citrulline. The study showed a systemic metabolic response in serum and urine metabolomics and AA profiles to histidine supplementation, showing significantly changed metabolism in AAs, lipid, and glucose in obese women with MetS.

  8. NMR- and GC/MS-based metabolomics of sulfur mustard exposed individuals: a pilot study.

    PubMed

    Nobakht, B Fatemeh; Aliannejad, Rasoul; Rezaei-Tavirani, Mostafa; Arefi Oskouie, Afsaneh; Naseri, Mohammad Taghi; Parastar, Hadi; Aliakbarzadeh, Ghazaleh; Fathi, Fariba; Taheri, Salman

    2016-09-01

    Sulfur mustard (SM) is a potent alkylating agent and its effects on cells and tissues are varied and complex. Due to limitations in the diagnostics of sulfur mustard exposed individuals (SMEIs) by noninvasive approaches, there is a great necessity to develop novel techniques and biomarkers for this condition. We present here the first nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC/MS) metabolic profiling of serum from and healthy controls to identify novel biomarkers in blood serum for better diagnostics. Of note, SMEIs were exposed to SM 30 years ago and that differences between two groups could still be found. Pathways in which differences between SMEIs and healthy controls are observed are related to lipid metabolism, ketogenesis, tricarboxylic acid (TCA) cycle and amino acid metabolism.

  9. [Clinical application of mass spectrometry in the pediatric field: current topics].

    PubMed

    Yamaguchi, Seiji

    2013-09-01

    Mass spectrometry, including tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS), is becoming prominent in the diagnosis of metabolic disorders in the pediatric field. It enables biochemical diagnosis of metabolic disorders from the metabolic profiles obtained by MS/MS and/or GC/MS. In neonatal mass screening for inherited metabolic disease (IMD) using MS/MS, amino acids and acylcarnitines on dried blood spots are analyzed. The target diseases include amino acidemia, urea cycle disorder, organic acidemia, and fatty acid oxidation disorder. In the MS/MS screening, organic acid analysis using GC/MS is required for differential and/or definite diagnosis of the IMDs. GC/MS data processing, however, is difficult, and metabolic diagnosis often requires the necessary skills and expertize. We developed an automated system of GC/MS data processing and autodiagnosis, and the biochemical diagnosis using GC/MS became markedly easier and user-friendly. Mass spectrometric techniques will expand from research laboratories to clinical laboratories in the near future.

  10. Metabolic Phenotyping of Diet and Dietary Intake.

    PubMed

    Brignardello, J; Holmes, E; Garcia-Perez, I

    Nutrition provides the building blocks for growth, repair, and maintenance of the body and is key to maintaining health. Exposure to fast foods, mass production of dietary components, and wider importation of goods have challenged the balance between diet and health in recent decades, and both scientists and clinicians struggle to characterize the relationship between this changing dietary landscape and human metabolism with its consequent impact on health. Metabolic phenotyping of foods, using high-density data-generating technologies to profile the biochemical composition of foods, meals, and human samples (pre- and postfood intake), can be used to map the complex interaction between the diet and human metabolism and also to assess food quality and safety. Here, we outline some of the techniques currently used for metabolic phenotyping and describe key applications in the food sciences, ending with a broad outlook at some of the newer technologies in the field with a view to exploring their potential to address some of the critical challenges in nutritional science. © 2017 Elsevier Inc. All rights reserved.

  11. Does Lifestyle Exercise After a Cardiac Event Improve Metabolic Syndrome Profile in Older Adults?

    PubMed

    Wright, Kathy D; Moore-Schiltz, Laura; Sattar, Abdus; Josephson, Richard; Moore, Shirley M

    Exercise is a common recommendation to reduce the risk factors of metabolic syndrome, yet there are limited data on the influence of lifestyle exercise after cardiac events on metabolic syndrome factors. The purpose of this study was to determine whether lifestyle exercise improves metabolic syndrome profile in older adults after a cardiac event. Participants were from a post-cardiac-event lifestyle exercise study. Five metabolic syndrome factors were assessed: waist circumference, triglycerides, high-density lipids, glucose, and systolic and diastolic blood pressure. Objective measures of exercise were obtained from heart rate monitors over a year. Logistic regression was used to determine whether participants who engaged in the minimum recommendation of 130 hours of exercise or greater during the 12-month period improved their metabolic syndrome profile by improving at least 1 metabolic syndrome factor. In the sample of 116 participants (74% men; average age, 67.5 years), 43% exercised at the recommended amount (≥130 h/y) and 28% (n = 33) improved their metabolic syndrome profile. After controlling for confounding factors of age, gender, race, diabetes, functional ability, and employment, subjects who exercised at least 130 hours a year were 3.6 times more likely to improve at least 1 metabolic syndrome factor (95% confidence interval, 1.24-10.49). Of the 28% who improved their metabolic syndrome profile, 72% increased their high-density lipoprotein and 60.6% reduced their waist circumference and glucose. After a cardiac event, older patients who engage in lifestyle exercise at the recommended amount have improvement in their metabolic syndrome profile.

  12. Noninvasive metabolic profiling for painless diagnosis of human diseases and disorders.

    PubMed

    Mal, Mainak

    2016-06-01

    Metabolic profiling provides a powerful diagnostic tool complementary to genomics and proteomics. The pain, discomfort and probable iatrogenic injury associated with invasive or minimally invasive diagnostic methods, render them unsuitable in terms of patient compliance and participation. Metabolic profiling of biomatrices like urine, breath, saliva, sweat and feces, which can be collected in a painless manner, could be used for noninvasive diagnosis. This review article covers the noninvasive metabolic profiling studies that have exhibited diagnostic potential for diseases and disorders. Their potential applications are evident in different forms of cancer, metabolic disorders, infectious diseases, neurodegenerative disorders, rheumatic diseases and pulmonary diseases. Large scale clinical validation of such diagnostic methods is necessary in future.

  13. Noninvasive metabolic profiling for painless diagnosis of human diseases and disorders

    PubMed Central

    Mal, Mainak

    2016-01-01

    Metabolic profiling provides a powerful diagnostic tool complementary to genomics and proteomics. The pain, discomfort and probable iatrogenic injury associated with invasive or minimally invasive diagnostic methods, render them unsuitable in terms of patient compliance and participation. Metabolic profiling of biomatrices like urine, breath, saliva, sweat and feces, which can be collected in a painless manner, could be used for noninvasive diagnosis. This review article covers the noninvasive metabolic profiling studies that have exhibited diagnostic potential for diseases and disorders. Their potential applications are evident in different forms of cancer, metabolic disorders, infectious diseases, neurodegenerative disorders, rheumatic diseases and pulmonary diseases. Large scale clinical validation of such diagnostic methods is necessary in future. PMID:28031956

  14. Nuclear magnetic resonance based metabolomics and liver diseases: Recent advances and future clinical applications.

    PubMed

    Amathieu, Roland; Triba, Mohamed Nawfal; Goossens, Corentine; Bouchemal, Nadia; Nahon, Pierre; Savarin, Philippe; Le Moyec, Laurence

    2016-01-07

    Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. It is an "omics" technique that is situated downstream of genomics, transcriptomics and proteomics. Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes. During the last decade, metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways. It is a powerful technique to improve our pathophysiological knowledge of various liver diseases. It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease. It can also assess therapeutic response or predict drug induced liver injury. Nevertheless, the usefulness of metabolomics is often not understood by clinicians, especially the concept of metabolomics profiling or fingerprinting. In the present work, after a concise description of the different techniques and processes used in metabolomics, we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies. We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical "routine".

  15. Key Issues Concerning Biolog Use for Aerobic and Anaerobic Freshwater Bacterial Community-Level Physiological Profiling

    NASA Astrophysics Data System (ADS)

    Christian, Bradley W.; Lind, Owen T.

    2006-06-01

    Bacterial heterotrophy in aquatic ecosystems is important in the overall carbon cycle. Biolog MicroPlates provide information into the metabolic potential of bacteria involved in carbon cycling. Specifically, Biolog EcoPlatesTM were developed with ecologically relevant carbon substrates to allow investigators to measure carbon substrate utilization patterns and develop community-level physiological profiles from natural bacterial assemblages. However, understanding of the functionality of these plates in freshwater research is limited. We explored several issues of EcoPlate use for freshwater bacterial assemblages including inoculum density, incubation temperature, non-bacterial color development, and substrate selectivity. Each of these has various effects on plate interpretation. We offer suggestions and techniques to resolve these interpretation issues. Lastly we propose a technique to allow EcoPlate use in anaerobic freshwater bacterial studies.

  16. Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism.

    PubMed

    Nemenman, Ilya; Escola, G Sean; Hlavacek, William S; Unkefer, Pat J; Unkefer, Clifford J; Wall, Michael E

    2007-12-01

    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We use ARACNE, a mainstream algorithm for reverse engineering of transcriptional regulatory networks from gene expression data, to predict metabolic interactions from these data sets. We find that the performance of ARACNE on metabolic data is comparable to that on gene expression data.

  17. Time-resolved metabolomics reveals metabolic modulation in rice foliage

    PubMed Central

    Sato, Shigeru; Arita, Masanori; Soga, Tomoyoshi; Nishioka, Takaaki; Tomita, Masaru

    2008-01-01

    Background To elucidate the interaction of dynamics among modules that constitute biological systems, comprehensive datasets obtained from "omics" technologies have been used. In recent plant metabolomics approaches, the reconstruction of metabolic correlation networks has been attempted using statistical techniques. However, the results were unsatisfactory and effective data-mining techniques that apply appropriate comprehensive datasets are needed. Results Using capillary electrophoresis mass spectrometry (CE-MS) and capillary electrophoresis diode-array detection (CE-DAD), we analyzed the dynamic changes in the level of 56 basic metabolites in plant foliage (Oryza sativa L. ssp. japonica) at hourly intervals over a 24-hr period. Unsupervised clustering of comprehensive metabolic profiles using Kohonen's self-organizing map (SOM) allowed classification of the biochemical pathways activated by the light and dark cycle. The carbon and nitrogen (C/N) metabolism in both periods was also visualized as a phenotypic linkage map that connects network modules on the basis of traditional metabolic pathways rather than pairwise correlations among metabolites. The regulatory networks of C/N assimilation/dissimilation at each time point were consistent with previous works on plant metabolism. In response to environmental stress, glutathione and spermidine fluctuated synchronously with their regulatory targets. Adenine nucleosides and nicotinamide coenzymes were regulated by phosphorylation and dephosphorylation. We also demonstrated that SOM analysis was applicable to the estimation of unidentifiable metabolites in metabolome analysis. Hierarchical clustering of a correlation coefficient matrix could help identify the bottleneck enzymes that regulate metabolic networks. Conclusion Our results showed that our SOM analysis with appropriate metabolic time-courses effectively revealed the synchronous dynamics among metabolic modules and elucidated the underlying biochemical functions. The application of discrimination of unidentified metabolites and the identification of bottleneck enzymatic steps even to non-targeted comprehensive analysis promise to facilitate an understanding of large-scale interactions among components in biological systems. PMID:18564421

  18. Applications of mass spectrometry in drug metabolism: 50 years of progress.

    PubMed

    Wen, Bo; Zhu, Mingshe

    2015-02-01

    Mass spectrometry plays a pivotal role in drug metabolism studies, which are an integral part of drug discovery and development nowadays. Metabolite identification has become critical to understanding the metabolic fate of drug candidates and to aid lead optimization with improved metabolic stability, toxicology and efficacy profiles. Ever since the introduction of atmospheric ionization techniques in the early 1990s, liquid chromatography coupled with mass spectrometry (LC/MS) has secured a central role as the predominant analytical platform for metabolite identification as LC and MS technologies continually advanced. In this review, we discuss the evolution of both MS technology and its applications over the past 50 years to meet the increasing demand of drug metabolism studies. These advances include ionization sources, mass analyzers, a wide range of MS acquisition strategies and data mining tools that have substantially accelerated the metabolite identification process and changed the overall drug metabolism landscape. Exemplary applications for characterization and identification of both small-molecule xenobiotics and biological macromolecules are described. In addition, this review discusses novel MS technologies and applications, including xenobiotic metabolomics that hold additional promise for advancing drug metabolism research, and offers thoughts on remaining challenges in studying the metabolism and disposition of drugs and other xenobiotics.

  19. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure.

    PubMed

    Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K

    2018-01-01

    With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified the suggested association. Increased homocysteine is thought to be associated with vitamin B12 deficiency - evaluation for potential clinical relevance is suggested. While considerations for clinical metabolic profiling are recommended, including adjustment approaches for clinical confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and advance translational research endeavors.

  20. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Hu, Fanghao; Lamprecht, Michael R.; Wei, Lu; Morrison, Barclay; Min, Wei

    2016-12-01

    Brain is an immensely complex system displaying dynamic and heterogeneous metabolic activities. Visualizing cellular metabolism of nucleic acids, proteins, and lipids in brain with chemical specificity has been a long-standing challenge. Recent development in metabolic labeling of small biomolecules allows the study of these metabolisms at the global level. However, these techniques generally require nonphysiological sample preparation for either destructive mass spectrometry imaging or secondary labeling with relatively bulky fluorescent labels. In this study, we have demonstrated bioorthogonal chemical imaging of DNA, RNA, protein and lipid metabolism in live rat brain hippocampal tissues by coupling stimulated Raman scattering microscopy with integrated deuterium and alkyne labeling. Heterogeneous metabolic incorporations for different molecular species and neurogenesis with newly-incorporated DNA were observed in the dentate gyrus of hippocampus at the single cell level. We further applied this platform to study metabolic responses to traumatic brain injury in hippocampal slice cultures, and observed marked upregulation of protein and lipid metabolism particularly in the hilus region of the hippocampus within days of mechanical injury. Thus, our method paves the way for the study of complex metabolic profiles in live brain tissue under both physiological and pathological conditions with single-cell resolution and minimal perturbation.

  1. Application of 1H NMR spectroscopy-based metabonomics to feces of cervical cancer patients with radiation-induced acute intestinal symptoms.

    PubMed

    Chai, Yanlan; Wang, Juan; Wang, Tao; Yang, Yunyi; Su, Jin; Shi, Fan; Wang, Jiquan; Zhou, Xi; He, Bin; Ma, Hailin; Liu, Zi

    2015-11-01

    Radiation-induced acute intestinal symptoms (RIAISs) are a common complication of radiotherapy for cervical cancer. The aim of this study was to use (1)H nuclear magnetic resonance ((1)H NMR) combined with chemometric analysis to develop a metabolic profile of patients with RIAISs. Fecal samples were collected from 66 patients with cervical cancer before and after pelvic radiotherapy. After radiotherapy, RIAISs occurred in eleven patients. We selected another 11 patients from participants without RIAISs whose age, stage, histological type and treatment methods are matched with RIAIS patients as the control group. (1)H NMR spectroscopy combined with multivariate pattern recognition analysis was used to generate metabolic profile data, as well as to establish a RIAIS-specific metabolic phenotype. Orthogonal partial least-squares discriminant analysis was used to distinguish samples between the pre- and post-radiotherapy RIAIS patients and between RIAIS patients and controls. Fecal samples from RIAIS patients after pelvic radiotherapy were characterized by increased concentrations of α-ketobutyrate, valine, uracil, tyrosine, trimethylamine N-oxide, phenylalanine, lysine, isoleucine, glutamine, creatinine, creatine, bile acids, aminohippurate, and alanine, accompanied by reduced concentrations of α-glucose, n-butyrate, methylamine, and ethanol relative to samples from RIAIS patients before pelvic radiotherapy, while in RIAIS patients relative to controls, trimethylamine, n-butyrate, fumarate and acetate were down-regulated and valine, TMAO, taurine, phenylalanine, lactate, isoleucine and creatinine were up-regulated. We obtained the metabolic profile of RIAIS patients from fecal samples using NMR-based metabonomics. This profile has the potential to be developed into a novel clinical tool for RIAIS diagnosis or therapeutic monitoring, and could contribute to an improved understanding of the disease mechanism. However, because of the limitations of methods, technique, bacterial contamination of feces and small sample size, further research and verification are needed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Supplementation of zilpaterol hydrochloride does not significantly alter the serum metabolic profile and metabolic enzyme profile of finishing heifers

    USDA-ARS?s Scientific Manuscript database

    Supplementation of zilpaterol hydrochloride (ZH; Zilmax®) to cattle has been implicated as having a negative impact on the well-being of cattle. However, there is no data to support or refute these claims. This study was designed to determine if differences exist in the serum metabolic profile and m...

  3. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    PubMed

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  4. Ameliorating effects of Mango (Mangifera indica L.) fruit on plasma ethanol level in a mouse model assessed with 1H-NMR based metabolic profiling

    PubMed Central

    Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641

  5. Phage phenomics: Physiological approaches to characterize novel viral proteins

    ScienceCinema

    Sanchez, Savannah E. [San Diego State Univ., San Diego, CA (United States); Cuevas, Daniel A. [San Diego State Univ., San Diego, CA (United States); Rostron, Jason E. [San Diego State Univ., San Diego, CA (United States); Liang, Tiffany Y. [San Diego State Univ., San Diego, CA (United States); Pivaroff, Cullen G. [San Diego State Univ., San Diego, CA (United States); Haynes, Matthew R. [San Diego State Univ., San Diego, CA (United States); Nulton, Jim [San Diego State Univ., San Diego, CA (United States); Felts, Ben [San Diego State Univ., San Diego, CA (United States); Bailey, Barbara A. [San Diego State Univ., San Diego, CA (United States); Salamon, Peter [San Diego State Univ., San Diego, CA (United States); Edwards, Robert A. [San Diego State Univ., San Diego, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Burgin, Alex B. [Broad Institute, Cambridge, MA (United States); Segall, Anca M. [San Diego State Univ., San Diego, CA (United States); Rohwer, Forest [San Diego State Univ., San Diego, CA (United States)

    2018-06-21

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less

  7. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-01-01

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight (“before”) in the indoor water pipes was 15–17 °C, and the water temperature decreased to 4–6 °C after flushing for 10 min (“flushed”). The highest bacterial cell number was observed in water stagnated overnight, and was 5–11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant “flushed” and “taps” values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p < 0.01). Heatmap fingerprints and principle component analyses (PCA) revealed a significant discrimination bacterial community functional metabolic profiles in the water stagnated overnight and flushed water. Serine, threonine, glucose-phosphate, ketobutyric acid, phenylethylamine, glycerol, putrescine were significantly used by “before” water samples. The results suggested that water stagnated at higher temperature should be treated before drinking because of bacterial regrowth. The data from this work provides useful information on reasonable utilization of drinking water after stagnation in indoor pipes during indoor heating periods. PMID:26516885

  8. Metabolically healthy and unhealthy weight statuses, health issues and related costs: Findings from the 2013-2015 European Health Examination Survey in Luxembourg.

    PubMed

    Samouda, H; Ruiz-Castell, M; Karimi, M; Bocquet, V; Kuemmerle, A; Chioti, A; Dadoun, F; Stranges, S

    2017-12-01

    To investigate the relationship between metabolically healthy and unhealthy weight statuses and a wide range of related health issues, and healthcare and loss-of-productivity costs. A total of 693 men and 729 women, aged 25-64 years, took part in the European Health Examination Survey conducted in Luxembourg between 2013 and 2015. Metabolically unhealthy normal-weight profiles were defined as having two or more cardiometabolic abnormalities (high blood pressure, high fasting glucose or triglycerides, low HDL cholesterol and/or previously diagnosed hypertension or diabetes) in people with normal weight. Metabolically healthy overweight/obesity was defined as having fewer than two of the above-mentioned abnormalities in people with overweight or obesity. For the present report, the participants' anthropometric, clinical, biological, sociodemographic, lifestyle and health-related data were analyzed. Of the participants with normal weight, 20% had a metabolically unhealthy profile, whereas 60% with overweight and 30% with obesity had a metabolically healthy profile. Comparisons between metabolically healthy and unhealthy normal weight, overweight and/or obesity status revealed that participants presented with a metabolically unhealthy profile independently of weight status (P<0.0001). People with a metabolically healthy profile were more likely to perceive their health as good (66%; P<0.0001), and to report no physical pain (64%; P=0.03), no limitations in daily activities (66%; P=0.0008), no difficulties getting in or out of a bed or chair (63%; P=0.02) or dressing and undressing (63%; P=0.003), going shopping (63%; P=0.053) or doing occasional heavy housework (64%; P=0.007); they also displayed fewer gastrointestinal (63%; P=0.02), arthrosis (64%; P=0.001) and sleep apnoea issues (63%; P=0.002) compared with those with a metabolically unhealthy profile. Healthcare- and loss-of-productivity-related costs were higher with a metabolically unhealthy profile, with differences of up to € 3000 (P=0.02). The present work has highlighted that, independently of weight status, people may develop a metabolically unhealthy profile associated with several health issues as well as higher healthcare and loss-of-productivity costs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. 3D hyperpolarized C-13 EPI with calibrationless parallel imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Jeremy W.; Hansen, Rie B.; Shin, Peter J.; Feng, Yesu; Vigneron, Daniel B.; Larson, Peder E. Z.

    2018-04-01

    With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and temporal resolution. Calibrationless parallel imaging approaches are well-suited for this application because they eliminate the need to acquire coil profile maps or auto-calibration data. In this work, we explored the utility of a calibrationless parallel imaging method (SAKE) and corresponding sampling strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism.

  10. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study

    PubMed Central

    Weißenborn, Sandra; Walther, Dirk

    2017-01-01

    Despite many developed experimental and computational approaches, functional gene annotation remains challenging. With the rapidly growing number of sequenced genomes, the concept of phylogenetic profiling, which predicts functional links between genes that share a common co-occurrence pattern across different genomes, has gained renewed attention as it promises to annotate gene functions based on presence/absence calls alone. We applied phylogenetic profiling to the problem of metabolic pathway assignments of plant genes with a particular focus on secondary metabolism pathways. We determined phylogenetic profiles for 40,960 metabolic pathway enzyme genes with assigned EC numbers from 24 plant species based on sequence and pathway annotation data from KEGG and Ensembl Plants. For gene sequence family assignments, needed to determine the presence or absence of particular gene functions in the given plant species, we included data of all 39 species available at the Ensembl Plants database and established gene families based on pairwise sequence identities and annotation information. Aside from performing profiling comparisons, we used machine learning approaches to predict pathway associations from phylogenetic profiles alone. Selected metabolic pathways were indeed found to be composed of gene families of greater than expected phylogenetic profile similarity. This was particularly evident for primary metabolism pathways, whereas for secondary pathways, both the available annotation in different species as well as the abstraction of functional association via distinct pathways proved limiting. While phylogenetic profile similarity was generally not found to correlate with gene co-expression, direct physical interactions of proteins were reflected by a significantly increased profile similarity suggesting an application of phylogenetic profiling methods as a filtering step in the identification of protein-protein interactions. This feasibility study highlights the potential and challenges associated with phylogenetic profiling methods for the detection of functional relationships between genes as well as the need to enlarge the set of plant genes with proven secondary metabolism involvement as well as the limitations of distinct pathways as abstractions of relationships between genes. PMID:29163570

  11. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening.

    PubMed

    Fortes, Ana M; Agudelo-Romero, Patricia; Silva, Marta S; Ali, Kashif; Sousa, Lisete; Maltese, Federica; Choi, Young H; Grimplet, Jerome; Martinez-Zapater, José M; Verpoorte, Robert; Pais, Maria S

    2011-11-02

    Grapes (Vitis vinifera L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses. Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through véraison and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen® genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening. Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.

  12. Metabolomics for biomarker discovery in the diagnosis, prognosis, survival and recurrence of colorectal cancer: a systematic review

    PubMed Central

    Zhang, Fan; Zhang, Yuanyuan; Zhao, Weiwei; Deng, Kui; Wang, Zhuozhong; Yang, Chunyan; Ma, Libing; Openkova, Margarita S.; Hou, Yan; Li, Kang

    2017-01-01

    Colorectal cancer (CRC) remains an incurable disease. There are no effective noninvasive techniques that have achieved colorectal cancer (CRC) diagnosis, prognosis, survival and recurrence in clinic. To investigate colorectal cancer metabolism, we perform an electronic literature search, from 1998 to January 2016, for studies evaluating the metabolomic profile of patients with CRC regarding the diagnosis, recurrence, prognosis/survival, and systematically review the twenty-three literatures included. QUADOMICS tool was used to assess the quality of them. We highlighted the metabolism perturbations based on metabolites and pathway. Metabolites related to cellular respiration, carbohydrate, lipid, protein and nucleotide metabolism were significantly altered in CRC. Altered metabolites were also related to prognosis, survival and recurrence of CRC. This review could represent the most comprehensive information and summary about CRC metabolism to date. It certificates that metabolomics had great potential on both discovering clinical biomarkers and elucidating previously unknown mechanisms of CRC pathogenesis. PMID:28389626

  13. Metabolic Effects of FecB Gene on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries)

    PubMed Central

    Guo, Xiaofei; Wang, Xiangyu; Di, Ran; Liu, Qiuyue; Hu, Wenping; He, Xiaoyun; Yu, Jiarui; Zhang, Xiaosheng; Zhang, Jinlong; Broniowska, Katarzyna; Chen, Wei; Wu, Changxin; Chu, Mingxing

    2018-01-01

    The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification. PMID:29439449

  14. Analytical aspects of plant metabolite profiling platforms: current standings and future aims.

    PubMed

    Seger, Christoph; Sturm, Sonja

    2007-02-01

    Over the past years, metabolic profiling has been established as a comprehensive systems biology tool. Mass spectrometry or NMR spectroscopy-based technology platforms combined with unsupervised or supervised multivariate statistical methodologies allow a deep insight into the complex metabolite patterns of plant-derived samples. Within this review, we provide a thorough introduction to the analytical hard- and software requirements of metabolic profiling platforms. Methodological limitations are addressed, and the metabolic profiling workflow is exemplified by summarizing recent applications ranging from model systems to more applied topics.

  15. Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos.

    PubMed

    Urbanski, John Paul; Johnson, Mark T; Craig, David D; Potter, David L; Gardner, David K; Thorsen, Todd

    2008-09-01

    Noninvasive analysis of metabolism at the single cell level will have many applications in evaluating cellular physiology. One clinically relevant application would be to determine the metabolic activities of embryos produced through assisted reproduction. There is increasing evidence that embryos with greater developmental capacity have distinct metabolic profiles. One of the standard techniques for evaluating embryonic metabolism has been to evaluate consumption and production of several key energetic substrates (glucose, pyruvate, and lactate) using microfluorometric enzymatic assays. These assays are performed manually using constriction pipets, which greatly limits the utility of this system. Through multilayer soft-lithography, we have designed a microfluidic device that can perform these assays in an automated fashion. Following manual loading of samples and enzyme cocktail reagents, this system performs sample and enzyme cocktail aliquotting, mixing of reagents, data acquisition, and data analysis without operator intervention. Optimization of design and operating regimens has resulted in the ability to perform serial measurements of glucose, pyruvate, and lactate in triplicate with submicroliter sample volumes within 5 min. The current architecture allows for automated analysis of 10 samples and intermittent calibration over a 3 h period. Standard curves generated for each metabolite have correlation coefficients that routinely exceed 0.99. With the use of a standard epifluorescent microscope and CCD camera, linearity is obtained with metabolite concentrations in the low micromolar range (low femtomoles of total analyte). This system is inherently flexible, being easily adapted for any NAD(P)H-based assay and scaled up in terms of sample ports. Open source JAVA-based software allows for simple alterations in routine algorithms. Furthermore, this device can be used as a standalone device in which media samples are loaded or be integrated into microfluidic culture systems for in line, real time metabolic evaluation. With the improved throughput and flexibility of this system, many barriers to evaluating metabolism of embryos and single cells are eliminated. As a proof of principle, metabolic activities of single murine embryos were evaluated using this device.

  16. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines.

    PubMed

    Al-Khelaifi, Fatima; Diboun, Ilhame; Donati, Francesco; Botrè, Francesco; Alsayrafi, Mohammed; Georgakopoulos, Costas; Suhre, Karsten; Yousri, Noha A; Elrayess, Mohamed A

    2018-01-05

    The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.

  17. 6C.04: INTEGRATED SNP ANALYSIS AND METABOLOMIC PROFILES OF METABOLIC SYNDROME.

    PubMed

    Marrachelli, V; Monleon, D; Morales, J M; Rentero, P; Martínez, F; Chaves, F J; Martin-Escudero, J C; Redon, J

    2015-06-01

    Metabolic syndrome (MS) has become a health and financial burden worldwide. Susceptibility of genetically determined metabotype of MS has not yet been investigated. We aimed to identify a distinctive metabolic profile of blood serum which might correlates to the early detection of the development of MS associated to genetic polymorphism. We applied high resolution NMR spectroscopy to profile blood serum from patients without MS (n = 945) or with (n = 291). Principal component analysis (PCA) and projection to latent structures for discriminant analysis (PLS-DA) were applied to NMR spectral datasets. Results were cross-validated using the Venetian Blinds approach. Additionally, five SNPs previously associated with MS were genotyped with SNPlex and tested for associations between the metabolic profiles and the genetic variants. Statistical analysis was performed using in-house MATLAB scripts and the PLS Toolbox statistical multivariate analysis library. Our analysis provided a PLS-DA Metabolic Syndrome discrimination model based on NMR metabolic profile (AUC = 0.86) with 84% of sensitivity and 72% specificity. The model identified 11 metabolites differentially regulated in patients with MS. Among others, fatty acids, glucose, alanine, hydroxyisovalerate, acetone, trimethylamine, 2-phenylpropionate, isobutyrate and valine, significantly contributed to the model. The combined analysis of metabolomics and SNP data revealed an association between the metabolic profile of MS and genes polymorphism involved in the adiposity regulation and fatty acids metabolism: rs2272903_TT (TFAP2B), rs3803_TT (GATA2), rs174589_CC (FADS2) and rs174577_AA (FADS2). In addition, individuals with the rs2272903-TT genotype seem to develop MS earlier than general population. Our study provides new insights on the metabolic alterations associated with a MS high-risk genotype. These results could help in future development of risk assessment and predictive models for subclinical cardiovascular disease.

  18. Metabolism and development – integration of micro computed tomography data and metabolite profiling reveals metabolic reprogramming from floral initiation to silique development

    PubMed Central

    Bellaire, Anke; Ischebeck, Till; Staedler, Yannick; Weinhaeuser, Isabell; Mair, Andrea; Parameswaran, Sriram; Ito, Toshiro; Schönenberger, Jürg; Weckwerth, Wolfram

    2014-01-01

    The interrelationship of morphogenesis and metabolism is a poorly studied phenomenon. The main paradigm is that development is controlled by gene expression. The aim of the present study was to correlate metabolism to early and late stages of flower and fruit development in order to provide the basis for the identification of metabolic adjustment and limitations. A highly detailed picture of morphogenesis is achieved using nondestructive micro computed tomography. This technique was used to quantify morphometric parameters of early and late flower development in an Arabidopsis thaliana mutant with synchronized flower initiation. The synchronized flower phenotype made it possible to sample enough early floral tissue otherwise not accessible for metabolomic analysis. The integration of metabolomic and morphometric data enabled the correlation of metabolic signatures with the process of flower morphogenesis. These signatures changed significantly during development, indicating a pronounced metabolic reprogramming in the tissue. Distinct sets of metabolites involved in these processes were identified and were linked to the findings of previous gene expression studies of flower development. High correlations with basic leucine zipper (bZIP) transcription factors and nitrogen metabolism genes involved in the control of metabolic carbon : nitrogen partitioning were revealed. Based on these observations a model for metabolic adjustment during flower development is proposed. PMID:24350948

  19. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    PubMed

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  20. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    PubMed

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  1. [Exercise in arterial hypertension].

    PubMed

    Predel, Hans-Georg; Schramm, Thomas

    2006-09-01

    Regular endurance training has established itself as a major therapeutic principle in the specter of nonpharmacological measures in arterial hypertension. An initial medical check as well as an adequate technique, dosage and intensity of the prescribed exercise training are mandatory. With respect to the concomitant pharmacological treatment, it should be considered that the beneficial effects of lifestyle modification will not be counteracted by the chosen antihypertensive drug but, ideally, synergistically supported. Based on the individual clinical situation, principally all antihypertensive drugs recommended by the current European guidelines, may be prescribed as mono- or combination therapy.beta-receptor blockers are especially capable of controlling excessive exercise-induced blood pressure increase; however, they have metabolic and exercise physiological limitations. The neutrality concerning metabolic and exercise physiological parameters as well as the positive profile of side effects favor ACE inhibitors, long-acting calcium channel blockers and especially AT(1) antagonists in physically active hypertensive patients with concomitant metabolic syndrome.

  2. Do E-cigarettes induce weight changes and increase cardiometabolic risk? A signal for the future.

    PubMed

    Verhaegen, A; Van Gaal, L

    2017-10-01

    The prevalence of non-cigarette tobacco use in electronic cigarettes, also called vaping, is rapidly increasing, especially in adolescents and young adults, due to attractive marketing techniques promoting them as healthier alternatives to conventional tobacco cigarettes. Although smoking is associated with weight loss, it increases insulin resistance and attributes to other features of the metabolic syndrome, increasing the cardiometabolic risk profile. Whether vaping has the same deleterious effects on metabolic parameters as regular cigarette smoke has not yet been studied thoroughly in humans. However, animal model experiments attribute comparable effects of e-cigarette smoking, even without nicotine exposure, on weight and metabolic parameters as compared to smoking cigarettes. In this review paper, we want to give an overview of published data on the effects on weight and cardiometabolic parameters of e-cigarette use and formulate some mechanistic hypotheses. © 2017 World Obesity Federation.

  3. Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset.

    PubMed

    Rogers, Angela J; Contrepois, Kévin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B; Matthay, Michael A

    2017-05-01

    There is considerable biological and physiological heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a subgroup of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Nontargeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were conducted to find discriminant metabolites. Seven-hundred and sixty unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared with edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This "high metabolite" endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biological heterogeneity among ARDS patients who meet standard clinical and physiological criteria for ARDS. Copyright © 2017 the American Physiological Society.

  4. Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset

    PubMed Central

    Contrepois, Kévin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B.; Matthay, Michael A.

    2017-01-01

    There is considerable biological and physiological heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a subgroup of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Nontargeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were conducted to find discriminant metabolites. Seven-hundred and sixty unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared with edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This “high metabolite” endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biological heterogeneity among ARDS patients who meet standard clinical and physiological criteria for ARDS. PMID:28258106

  5. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status.

    PubMed

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Garneau, Véronique; Cormier, Hubert; Barbier, Olivier; Pérusse, Louis; Vohl, Marie-Claude

    2016-05-27

    Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW) and overweight/obese (Ov/Ob) individuals, with or without metabolic syndrome (MetS). Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1's (long chain glycerophospholipids) metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C) and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C) among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine) was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3's (medium chain acylcarnitines) metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.

  6. The Basic Metabolic Profile in Heart Failure-Marker and Modifier.

    PubMed

    Elfar, Ahmed; Sambandam, Kamalanathan K

    2017-08-01

    The physiologic determinants of each of the components of the basic metabolic profile in patients with heart failure will be explored. Additionally, the review will discuss the prognostic value of alterations in the basic metabolic profile as well as their effects on management. Abnormalities in the basic metabolic profile have significant correlation with clinical outcomes and can modify treatment in heart failure. Hypochloremia has recently received increased attention for these reasons. Elevated creatinine, increased blood urea nitrogen, hyponatremia, and hypochloremia correlate with worse mortality and diuretic resistance in heart failure. Hypokalemia, even when mild, has proven to be a worse clinical indicator than modest elevations in serum potassium. Hypochloremia is mechanistically linked to hyponatremia and metabolic alkalosis, but recent compelling data suggests that it can provide more discriminating prognostic information. Knowledge of the physiologic basis for each of these alterations informs their management.

  7. Environmental metabolomics with data science for investigating ecosystem homeostasis.

    PubMed

    Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro

    2018-02-01

    A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.

  8. Metabolome analysis for discovering biomarkers of gastroenterological cancer.

    PubMed

    Suzuki, Makoto; Nishiumi, Shin; Matsubara, Atsuki; Azuma, Takeshi; Yoshida, Masaru

    2014-09-01

    Improvements in analytical technologies have made it possible to rapidly determine the concentrations of thousands of metabolites in any biological sample, which has resulted in metabolome analysis being applied to various types of research, such as clinical, cell biology, and plant/food science studies. The metabolome represents all of the end products and by-products of the numerous complex metabolic pathways operating in a biological system. Thus, metabolome analysis allows one to survey the global changes in an organism's metabolic profile and gain a holistic understanding of the changes that occur in organisms during various biological processes, e.g., during disease development. In clinical metabolomic studies, there is a strong possibility that differences in the metabolic profiles of human specimens reflect disease-specific states. Recently, metabolome analysis of biofluids, e.g., blood, urine, or saliva, has been increasingly used for biomarker discovery and disease diagnosis. Mass spectrometry-based techniques have been extensively used for metabolome analysis because they exhibit high selectivity and sensitivity during the identification and quantification of metabolites. Here, we describe metabolome analysis using liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and capillary electrophoresis-mass spectrometry. Furthermore, the findings of studies that attempted to discover biomarkers of gastroenterological cancer are also outlined. Finally, we discuss metabolome analysis-based disease diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Metabolic responses of Quercus ilex seedlings to wounding analysed with nuclear magnetic resonance profiling.

    PubMed

    Sardans, J; Gargallo-Garriga, A; Pérez-Trujillo, M; Parella, T J; Seco, R; Filella, I; Peñuelas, J

    2014-03-01

    Plants defend themselves against herbivory at several levels. One of these is the synthesis of inducible chemical defences. Using NMR metabolomic techniques, we studied the metabolic changes of plant leaves after a wounding treatment simulating herbivore attack in the Mediterranean sclerophyllous tree Quercus ilex. First, an increase in glucose content was observed in wounded plants. There was also an increase in the content of C-rich secondary metabolites such as quinic acid and quercitol, both related to the shikimic acid pathway and linked to defence against biotic stress. There was also a shift in N-storing amino acids, from leucine and isoleucine to asparagine and choline. The observed higher content of asparagine is related to the higher content of choline through serine that was proved to be the precursor of choline. Choline is a general anti-herbivore and pathogen deterrent. The study shows the rapid metabolic response of Q. ilex in defending its leaves, based on a rapid increase in the production of quinic acid, quercitol and choline. The results also confirm the suitability of (1)H NMR-based metabolomic profiling studies to detect global metabolome shifts after wounding stress in tree leaves, and therefore its suitability in ecometabolomic studies. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Nanomanipulation-coupled nanospray mass spectrometry as an approach for single cell analysis

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy; Hamilton, Jason; Verbeck, Guido F.

    2014-12-01

    Electrospray mass spectrometry is now a widely used technique for observing cell content of various biological tissues. However, electrospray techniques (liquid chromatography and direct infusion) often involve lysing a group of cells and extracting the biomolecules of interest, rather than a sensitive, individual cell method to observe local chemistry. Presented here is an approach of combining a nanomanipulator workstation with nanospray mass spectrometry, which allows for extraction of a single cell, followed by rapid mass analysis that can provide a detailed metabolic profile. Triacylglycerol content was profiled with this tool coupled to mass spectrometry to investigate heterogeneity between healthy and tumorous tissues as well as lipid droplet containing adipocytes in vitro as proof of concept. This selective approach provides cellular resolution and complements existing bioanalytical techniques with minimal invasion to samples. In addition, the coupling of nanomanipulation and mass spectrometry holds the potential to be used in a great number of applications for individual organelles, diseased tissues, and in vitro cell cultures for observing heterogeneity even amongst cells and organelles of the same tissue.

  11. Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2013-05-01

    Aerobic organisms have devised several enzymatic and non-enzymatic antioxidant defenses to deal with reactive oxygen species (ROS) produced by cellular metabolism. To combat such stress, cells induce ROS scavenging enzymes such as catalase, peroxidase, superoxide dismutase (SOD) and glutathione reductase. In the present research, we have used a double staining technique of SOD and catalase enzymes in the same polyacrylamide gel to analyze the different antioxidant enzymatic activities and protein isoforms present in Saccharomyces and non-Saccharomyces yeast species. Moreover, we used a technique to differentially detect Sod1p and Sod2p on gel by immersion in NaCN, which specifically inhibits the Sod1p isoform. We observed unique SOD and catalase zymogram profiles for all the analyzed yeasts and we propose this technique as a new approach for Saccharomyces and non-Saccharomyces yeast strains differentiation. In addition, we observed functional correlations between SOD and catalase enzyme activities, accumulation of essential metabolites, such as glutathione and trehalose, and the fermentative performance of different yeasts strains with industrial relevance.

  12. Establishing ¹H nuclear magnetic resonance based metabonomics fingerprinting profile for spinal cord injury: a pilot study.

    PubMed

    Jiang, Hua; Peng, Jin; Zhou, Zhi-yuan; Duan, Yu; Chen, Wei; Cai, Bin; Yang, Hao; Zhang, Wei

    2010-09-01

    Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using (1)H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques. Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for (1)H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software. Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine. The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.

  13. Metabolic signatures of birthweight in 18 288 adolescents and adults

    PubMed Central

    Würtz, Peter; Wang, Qin; Niironen, Marjo; Tynkkynen, Tuulia; Tiainen, Mika; Drenos, Fotios; Kangas, Antti J; Soininen, Pasi; Skilton, Michael R; Heikkilä, Kauko; Pouta, Anneli; Kähönen, Mika; Lehtimäki, Terho; Rose, Richard J; Kajantie, Eero; Perola, Markus; Kaprio, Jaakko; Eriksson, Johan G; Raitakari, Olli T; Lawlor, Debbie A; Davey Smith, George; Järvelin, Marjo-Riitta; Ala-Korpela, Mika; Auro, Kirsi

    2016-01-01

    Background: Lower birthweight is associated with increased susceptibility to cardiometabolic diseases in adulthood, but the underlying molecular pathways are incompletely understood. We examined associations of birthweight with a comprehensive metabolic profile measured in adolescents and adults. Methods: High-throughput nuclear magnetic resonance metabolomics and biochemical assays were used to quantify 87 circulating metabolic measures in seven cohorts from Finland and the UK, comprising altogether 18 288 individuals (mean age 26 years, range 15–75). Metabolic associations with birthweight were assessed by linear regression models adjusted for sex, gestational age and age at blood sampling. The metabolic associations with birthweight were compared with the corresponding associations with adult body mass index (BMI). Results: Lower birthweight adjusted for gestational age was adversely associated with cardiometabolic biomarkers, including lipoprotein subclasses, fatty acids, amino acids and markers of inflammation and impaired liver function (P < 0.0015 for 46 measures). Associations were consistent across cohorts with different ages at metabolic profiling, but the magnitudes were weak. The pattern of metabolic deviations associated with lower birthweight resembled the metabolic signature of higher adult BMI (R2 = 0.77) assessed at the same time as the metabolic profiling. The resemblance indicated that 1 kg lower birthweight is associated with similar metabolic aberrations as caused by 0.92 units higher BMI in adulthood. Conclusions: Lower birthweight adjusted for gestational age is associated with adverse biomarker aberrations across multiple metabolic pathways. Coherent metabolic signatures between lower birthweight and higher adult adiposity suggest that shared molecular pathways may potentially underpin the metabolic deviations. However, the magnitudes of metabolic associations with birthweight are modest in comparison to the effects of adiposity, implying that birthweight is only a weak indicator of the metabolic risk profile in adulthood. PMID:27892411

  14. Weight loss is associated with plasma free amino acid alterations in subjects with metabolic syndrome

    PubMed Central

    Tochikubo, O; Nakamura, H; Jinzu, H; Nagao, K; Yoshida, H; Kageyama, N; Miyano, H

    2016-01-01

    Objectives: The prevalence of metabolic syndrome is increasing worldwide, especially in Asian populations. Early detection and effective intervention are vital. Plasma free amino acid profile is a potential biomarker for the early detection for lifestyle-related diseases. However, little is known about whether the altered plasma free amino acid profiles in subjects with metabolic syndrome are related to the effectiveness of dietary and exercise interventions. Methods: Eighty-five Japanese subjects who fulfilled the Japanese diagnostic criteria for metabolic syndrome were enrolled in a 3-month diet and exercise intervention. The plasma free amino acid concentrations and metabolic variables were measured, and the relationships between plasma free amino acid profiles, metabolic variables and the extent of body weight reduction were investigated. Those who lost more than 3% of body weight were compared with those who lost less than 3%. Results: Baseline levels of most amino acids in the subset that went on to lose <3% body weight were markedly lower compared with the counterpart, although both groups showed similar proportional pattern of plasma amino acid profiles. The weight loss induced by the diet and exercise intervention normalized plasma free amino acid profiles. For those with a high degree of weight loss, those changes were also associated with improvement in blood pressure, triglyceride and hemoglobin A1c levels. Conclusions: These data suggest that among Japanese adults meeting the criteria for metabolic syndrome, baseline plasma free amino acid profiles may differ in ways that predict who will be more vs less beneficially responsive to a standard diet and exercise program. Plasma free amino acid profiles may also be useful as markers for monitoring the risks of developing lifestyle-related diseases and measuring improvement in physiological states. PMID:26926588

  15. Metabolic Cost of Experimental Exercises

    NASA Technical Reports Server (NTRS)

    Webb, James T.; Gernhardt, Michael L.

    2009-01-01

    Although the type and duration of activity during decompression was well documented, the metabolic cost of 1665 subject-exposures with 8 activity profiles from 17 altitude decompression sickness (DCS) protocols at Brooks City-Base, TX from 1983-2005 was not determined. Female and male human volunteers (30 planned, 4 completed) performed activity profiles matching those 8 activity profiles at ground level with continuous monitoring of metabolic cost. A Cosmed K4b2 Cardio Pulmonary Exercise Testing device was used to measure oxygen uptake (VO2) during the profiles. The results show levels of metabolic cost to the females for the profiles tested varied from 4.3 to 25.5 ml/kg/min and from 3.0 to 12.0 ml/kg/min to the males. The increase in VO2 from seated rest to the most strenuous of the 8 activity profiles was 3.6-fold for the females and 2.8-fold for the males. These preliminary data on 4 subjects indicate close agreement of oxygen uptake for activity performed during many subject-exposures as published earlier. The relatively low average oxygen uptake required to perform the most strenuous activity may imply the need for adjustment of modeling efforts using metabolic cost as a risk factor. Better definition of metabolic cost during exposure to altitude, a critical factor in DCS risk, may allow refinement of DCS prediction models.

  16. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    PubMed

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production. © 2015 Scandinavian Plant Physiology Society.

  17. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort12

    PubMed Central

    Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C

    2015-01-01

    Background: Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. Objective: We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Design: In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate–controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Results: Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Conclusions: Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans. PMID:26511225

  18. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort.

    PubMed

    Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C

    2015-12-01

    Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate-controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans.

  19. Subcellular Metabolite and Lipid Analysis of Xenopus laevis Eggs by LAESI Mass Spectrometry

    PubMed Central

    Reschke, Brent R.; Henderson, Holly D.; Powell, Matthew J.; Moody, Sally A.; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis. PMID:25506922

  20. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

    PubMed

    Shrestha, Bindesh; Sripadi, Prabhakar; Reschke, Brent R; Henderson, Holly D; Powell, Matthew J; Moody, Sally A; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.

  1. DNA Barcoding of the Mexican Sedative and Anxiolytic Plant Galphimia glauca

    PubMed Central

    Sharma, Ashutosh; Folch, Jorge Luis; Cardoso-Taketa, Alexandre; Lorence, Argelia; Villarreal, María Luisa

    2015-01-01

    Ethnopharmacology relevance Galphimiaglauca (Malpighiaceae) is a Mexican plant popularly used as a tranquilizer in the treatment of nervous system disorders, although it is also used to treat other common illnesses. Aim of the study The aim of this investigation is to find out if populations of Galphimiaglauca collected in different regions and ecosystems in Mexico actually belong to the same species by using the contemporary technique of DNA barcodes. Our previous metabolic profiling study demonstrates that different collections of this plant obtained from various geographical areas exhibited diverse chemical profiles in terms of the active compounds named Galphimines. We expected the DNA barcodes apart from indicating the different species of Galphimia would indicate the active populations. Materials and methods We employed matK, rpoC1 and rbcL DNA barcodes to indicate the different species. Furthermore to investigate the possible impact of the several different ecosystems where the seven populations were collected, thin layer chromatography was employed to create a partial chemical profile, which was then compared with the metabolic profiles obtained by 1H-NMR and multivariate data analysis. Results and conclusions This study showed that the seven populations here analyzed contain at least three different species of the genus Galphimia, although each individual population is homogeneous. Interestingly our TLC analysis clearly showed that the active populations displayed a distinctively unique chemical profile. This work also showed that the use of DNA barcodes combined with chemical profile analysis is an excellent approach to solve the problems of quality control in the development of Galphimia-based medicines, as well as for any breeding programs for this species. PMID:23010364

  2. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model

    PubMed Central

    Martin, François-Pierre J; Dumas, Marc-Emmanuel; Wang, Yulan; Legido-Quigley, Cristina; Yap, Ivan K S; Tang, Huiru; Zirah, Séverine; Murphy, Gerard M; Cloarec, Olivier; Lindon, John C; Sprenger, Norbert; Fay, Laurent B; Kochhar, Sunil; van Bladeren, Peter; Holmes, Elaine; Nicholson, Jeremy K

    2007-01-01

    Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level. PMID:17515922

  3. Urine metabolomics in neonates with late-onset sepsis in a case-control study

    NASA Astrophysics Data System (ADS)

    Sarafidis, Kosmas; Chatziioannou, Anastasia Chrysovalantou; Thomaidou, Agathi; Gika, Helen; Mikros, Emmanouel; Benaki, Dimitra; Diamanti, Elisavet; Agakidis, Charalampos; Raikos, Nikolaos; Drossou, Vasiliki; Theodoridis, Georgios

    2017-04-01

    Although late-onset sepsis (LOS) is a major cause of neonatal morbidity and mortality, biomarkers evaluated in LOS lack high diagnostic accuracy. In this prospective, case-control, pilot study, we aimed to determine the metabolic profile of neonates with LOS. Urine samples were collected at the day of initial LOS evaluation, the 3rd and 10th day, thereafter, from 16 septic neonates (9 confirmed and 7 possible LOS cases) and 16 non-septic ones (controls) at respective time points. Urine metabolic profiles were assessed using non-targeted nuclear magnetic resonance spectroscopy and targeted liquid chromatography-tandem mass spectrometry analysis. Multivariate statistical models with data from either analytical approach showed clear separation between the metabolic profiles of septic neonates (both possible and confirmed) and the controls. Metabolic changes appeared to be related to disease progression. Overall, neonates with confirmed or possible LOS exhibited comparable metabolic profiles indicating similar metabolic alternations upon the onset of clinical manifestations. This methodology therefore enabled the discrimination of neonates with LOS from non-septic individuals, providing potential for further research toward the discovery of LOS-related biomarkers.

  4. Interrelationships of Physical Activity and Sleep with Cardiovascular Risk Factors: a Person-Oriented Approach.

    PubMed

    Wennman, Heini; Kronholm, Erkki; Partonen, Timo; Tolvanen, Asko; Peltonen, Markku; Vasankari, Tommi; Borodulin, Katja

    2015-12-01

    Associations of behaviorally modifiable factors like physical activity (PA), sedentary behaviors, and sleep with cardiovascular diseases (CVDs) are complicated. We examined whether membership in latent classes (LCs) differentiated by PA and sleep profiles (real-life clustering of behaviors in population subgroups) associate with metabolic risk factors and CVD risk. The National FINRISK 2012 Study comprise a cross-sectional sample of 10,000 Finns aged 25 to 74 years. Analyses included participants with complete data on a health questionnaire, a health examination, who had no prevalent CVD (n = 4031). LCs with PA and sleep profiles were previously defined using latent class analysis. Ten metabolic risk factors and the Framingham 10-year CVD risk score were compared between the LCs. PA and sleep class profiles were substantially similar for genders. Compared to LC-1, with a profile including high PA and sufficient sleep, membership in LC-4, with a profile including sedentariness and insufficient sleep was associated with high metabolic risk factors in women but not in men. In women, also membership in LC-2, with a profile including light PA, sufficient sleep, and high sedentariness was associated with high metabolic risk factors. The Framingham 10-year CVD risk score was highest in LCs 2 and 4 in both genders. Membership in LCs differentiated by PA and sleep profiles was associated with metabolic risk factors merely in women, suggesting gender differences in the interrelationships of health behaviors and metabolic risk factors. Total CVD risk differed between the LCs despite of gender; however, the effect was small.

  5. Metabolic profiling of PPARalpha-/- mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation.

    PubMed

    Makowski, Liza; Noland, Robert C; Koves, Timothy R; Xing, Weibing; Ilkayeva, Olga R; Muehlbauer, Michael J; Stevens, Robert D; Muoio, Deborah M

    2009-02-01

    Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a master transcriptional regulator of beta-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARalpha(+/+) and PPARalpha(-/-) mice. Compared to PPARalpha(+/+) animals, acylcarnitine profiles of PPARalpha(-/-) mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in beta-oxidation. Organic and amino acid profiles of starved PPARalpha(-/-) mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARalpha(-/-) mice had 40-50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARalpha(-/-) mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.

  6. Urine metabonomic profiling of a female adolescent with PIT-1 mutation before and during growth hormone therapy: insights into the metabolic effects of growth hormone.

    PubMed

    Abd Rahman, Shaffinaz; Schirra, Horst Joachim; Lichanska, Agnieszka M; Huynh, Tony; Leong, Gary M

    2013-01-01

    Growth hormone (GH) is a protein hormone with important roles in growth and metabolism. The objective of this study was to investigate the metabolism of a human subject with severe GH deficiency (GHD) due to a PIT-1 gene mutation and the metabolic effects of GH therapy using Nuclear Magnetic Resonance (NMR)-based metabonomics. NMR-based metabonomics is a platform that allows the metabolic profile of biological fluids such as urine to be recorded, and any alterations in the profile modulated by GH can potentially be detected. Urine samples were collected from a female subject with severe GHD before, during and after GH therapy, and from healthy age- and sex-matched controls and analysed with NMR-based metabonomics. The samples were collected at a hospital and the study was performed at a research facility. We studied a 17 year old female adolescent with severe GHD secondary to PIT-1 gene mutation who had reached final adult height and who had ceased GH therapy for over 3 years. The subject was subsequently followed for 5 years with and without GH therapy. Twelve healthy age-matched female subjects acted as control subjects. The GH-deficient subject re-commenced GH therapy at a dose of 1 mg/day to normalise serum IGF-1 levels. Urine metabolic profiles were recorded using NMR spectroscopy and analysed with multivariate statistics to distinguish the profiles at different time points and identify significant metabolites affected by GH therapy. NMR-based metabonomics revealed that the metabolic profile of the GH-deficient subject altered with GH therapy and that her profile was different from healthy controls before, and during withdrawal of GH therapy. This study illustrates the potential use of NMR-based metabonomics for monitoring the effects of GH therapy on metabolism by profiling the urine of GH-deficient subjects. Further controlled studies in larger numbers of GH-deficient subjects are required to determine the clinical benefits of NMR-based metabonomics in subjects receiving GH therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Phage phenomics: Physiological approaches to characterize novel viral proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less

  8. Profiling and Distribution of Metabolites of Procyanidin B2 in Mice by UPLC-DAD-ESI-IT-TOF-MSn Technique

    PubMed Central

    Xiao, Ying; Hu, Zhongzhi; Yin, Zhiting; Zhou, Yiming; Liu, Taiyi; Zhou, Xiaoli; Chang, Dawei

    2017-01-01

    The metabolite profiles and distributions of procyanidin B2 were qualitatively described using UPLC-DAD-ESI-IT-TOF-MSn without help of reference standards, and a possible metabolic pathway was proposed in the present study. Summarily, 53 metabolites (24 new metabolites) were detected as metabolites of procyanidin B2, and 45 of them were tentatively identified. Twenty seven metabolites were assigned as similar metabolites of (−)-epicatechin by scission of the flavanol interflavanic bond C4–C8, including 16 aromatic metabolites, 5 conjugated metabolites, 3 ring-cleavage metabolites, and 2 phenylvalerolactone metabolites. Additionally, 14 metabolites were conjugates of free procyanidin B2, comprising 9 methylation metabolites, 8 sulfation metabolites, 5 hydration metabolites, 2 hydroxylation metabolites, 1 hydrogenation metabolites, and 1 glucuronidation metabolites. The results of metabolite distributions in organs indicated that the conjugated reaction of free procyanidin B2 mainly occurred in liver and diversified metabolites forms were observed in small intestine. The metabolic components of procyanidin B2 identified in mice provided useful information for further study of the bioactivity and mechanism of its action. PMID:28522973

  9. Phage phenomics: Physiological approaches to characterize novel viral proteins

    DOE PAGES

    Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.; ...

    2015-06-11

    Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less

  10. Biomarker identification and pathway analysis of preeclampsia based on serum metabolomics.

    PubMed

    Chen, Tingting; He, Ping; Tan, Yong; Xu, Dongying

    2017-03-25

    Preeclampsia presents serious risk of both maternal and fetal morbidity and mortality. Biomarkers for the detection of preeclampsia are critical for risk assessment and targeted intervention. The goal of this study is to screen potential biomarkers for the diagnosis of preeclampsia and to illuminate the pathogenesis of preeclampsia development based on the differential expression network. Two groups of subjects, including healthy pregnant women, subjects with preeclampsia, were recruited for this study. The metabolic profiles of all of the subjects' serum were obtained by liquid chromatography quadruple time-of-flight mass spectrometry. Correlation between metabolites was analyzed by bioinformatics technique. Results showed that the PC(14:0/00), proline betaine and proline were potential sensitive and specific biomarkers for preeclampsia diagnosis and prognosis. Perturbation of corresponding biological pathways, such as iNOS signaling, nitric oxide signaling in the cardiovascular system, mitochondrial dysfunction were responsible for the pathogenesis of preeclampsia. This study indicated that the metabolic profiling had a good clinical significance in the diagnosis of preeclampsia as well as in the study of its pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Metabolic and inflammatory profiles of biomarkers in obesity, metabolic syndrome, and diabetes in a Mediterranean population. DARIOS Inflammatory study.

    PubMed

    Fernández-Bergés, Daniel; Consuegra-Sánchez, Luciano; Peñafiel, Judith; Cabrera de León, Antonio; Vila, Joan; Félix-Redondo, Francisco Javier; Segura-Fragoso, Antonio; Lapetra, José; Guembe, María Jesús; Vega, Tomás; Fitó, Montse; Elosua, Roberto; Díaz, Oscar; Marrugat, Jaume

    2014-08-01

    There is a paucity of data regarding the differences in the biomarker profiles of patients with obesity, metabolic syndrome, and diabetes mellitus as compared to a healthy, normal weight population. We aimed to study the biomarker profile of the metabolic risk continuum defined by the transition from normal weight to obesity, metabolic syndrome, and diabetes mellitus. We performed a pooled analysis of data from 7 cross-sectional Spanish population-based surveys. An extensive panel comprising 20 biomarkers related to carbohydrate metabolism, lipids, inflammation, coagulation, oxidation, hemodynamics, and myocardial damage was analyzed. We employed age- and sex-adjusted multinomial logistic regression models for the identification of those biomarkers associated with the metabolic risk continuum phenotypes: obesity, metabolic syndrome, and diabetes mellitus. A total of 2851 subjects were included for analyses. The mean age was 57.4 (8.8) years, 1269 were men (44.5%), and 464 participants were obese, 443 had metabolic syndrome, 473 had diabetes mellitus, and 1471 had a normal weight (healthy individuals). High-sensitivity C-reactive protein, apolipoprotein B100, leptin, and insulin were positively associated with at least one of the phenotypes of interest. Apolipoprotein A1 and adiponectin were negatively associated. There are differences between the population with normal weight and that having metabolic syndrome or diabetes with respect to certain biomarkers related to the metabolic, inflammatory, and lipid profiles. The results of this study support the relevance of these mechanisms in the metabolic risk continuum. When metabolic syndrome and diabetes mellitus are compared, these differences are less marked. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  12. Global dynamic optimization approach to predict activation in metabolic pathways.

    PubMed

    de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R

    2014-01-06

    During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.

  13. In vitro phase I metabolism of gamabufotalin and arenobufagin: Reveal the effect of substituent group on metabolic stability.

    PubMed

    Feng, Yujie; Wang, Chao; Tian, Xiangge; Huo, Xiaokui; Feng, Lei; Sun, Chengpeng; Ge, Guangbo; Yang, Ling; Ning, Jing; Ma, Xiaochi

    2017-09-01

    Bufadienolides are a major class of bioactive compounds derived from amphibian skin secretion. Gamabufotalin (GB) and arenobufagin (AB) are among the top of the intensively investigated natural bufadienolides for their outstanding biological activities. This study aimed to characterize the phase I metabolism of GB and AB with respect to the metabolic profiles, enzymes involved, and catalytic efficacy, thereafter tried to reveal substituent effects on metabolism. Two mono-hydroxylated products of GB and AB were detected in the incubation mixtures, and they were accurately identified as 1- and 5-hydroxylated bufadienolides by NMR and HPLC-MS techniques. Reaction phenotyping studies demonstrated that CYP3A mediated the metabolism of the two bufadienolides with a high specific selectivity. Further kinetic evaluation demonstrated that the metabolism stability of GB and AB were better than other reported bufadienolides. Additionally, the CYP3A5 preference for hydroxylation of AB was observed, which was different to the selectivity of CYP3As for bufadienolides suggested by our previous report. This study can provide important data for elucidating the phase I metabolism of GB and AB and can lead to a better understanding of the bufadienolide-CYP3A interaction which is helpful for preclinical development and rational use of bufadienolides. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus.

    PubMed

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng; Li, Xue-Bao

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.

  15. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus

    PubMed Central

    Huang, Ke-Lin; Zhang, Mei-Li; Ma, Guang-Jing; Wu, Huan; Wu, Xiao-Ming; Ren, Feng

    2017-01-01

    Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus. PMID:28594951

  16. 'Systems toxicology' approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus.

    PubMed

    Bundy, Jacob G; Sidhu, Jasmin K; Rana, Faisal; Spurgeon, David J; Svendsen, Claus; Wren, Jodie F; Stürzenbaum, Stephen R; Morgan, A John; Kille, Peter

    2008-06-03

    New methods are needed for research into non-model organisms, to monitor the effects of toxic disruption at both the molecular and functional organism level. We exposed earthworms (Lumbricus rubellus Hoffmeister) to sub-lethal levels of copper (10-480 mg/kg soil) for 70 days as a real-world situation, and monitored both molecular (cDNA transcript microarrays and nuclear magnetic resonance-based metabolic profiling: metabolomics) and ecological/functional endpoints (reproduction rate and weight change, which have direct relevance to population-level impacts). Both of the molecular endpoints, metabolomics and transcriptomics, were highly sensitive, with clear copper-induced differences even at levels below those that caused a reduction in reproductive parameters. The microarray and metabolomic data provided evidence that the copper exposure led to a disruption of energy metabolism: transcripts of enzymes from oxidative phosphorylation were significantly over-represented, and increases in transcripts of carbohydrate metabolising enzymes (maltase-glucoamylase, mannosidase) had corresponding decreases in small-molecule metabolites (glucose, mannose). Treating both enzymes and metabolites as functional cohorts led to clear inferences about changes in energetic metabolism (carbohydrate use and oxidative phosphorylation), which would not have been possible by taking a 'biomarker' approach to data analysis. Multiple post-genomic techniques can be combined to provide mechanistic information about the toxic effects of chemical contaminants, even for non-model organisms with few additional mechanistic toxicological data. With 70-day no-observed-effect and lowest-observed-effect concentrations (NOEC and LOEC) of 10 and 40 mg kg-1 for metabolomic and microarray profiles, copper is shown to interfere with energy metabolism in an important soil organism at an ecologically and functionally relevant level.

  17. Therapeutic modulation of cannabinoid lipid signaling: metabolic profiling of a novel antinociceptive cannabinoid-2 receptor agonist

    PubMed Central

    Wood, JodiAnne T.; Smith, Dustin M.; Janero, David R.; Zvonok, Alexander M.; Makriyannis, Alexandros

    2012-01-01

    Aims AM-1241, a novel, racemic cannabinoid-2 receptor (CB2) ligand, is the primary experimental agonist used to characterize the role of CB2-mediated lipid signaling in health and disease, including substance abuse disorders. In vivo pharmacological effects have been used as indirect proxies for AM-1241 biotransformation processes that could modulate activity. We report the initial pre-clinical characterization of AM-1241 biotransformation and in vivo distribution. Main methods AM-1241 metabolism was characterized in a variety of predictive in vitro systems (Caco-2 cells, mouse, rat and human microsomes) and in the mouse in vivo. Liquid chromatography and mass spectrometry techniques were used to quantify AM-1241 tissue distribution and metabolic conversion. Key findings AM-1241 bound extensively to plasma protein/albumin. A pharmacological AM-1241 dose (25 mg/kg, i.v.) was administered to mice for direct determination of its plasma half-life (37 min), following which AM-1241 was quantified in brain, spleen, liver, and kidney. After p.o. administration, AM-1241 was detected in plasma, spleen, and kidney; its oral bioavailability was ~21%. From Caco-2 permeability studies and microsomal-based hepatic clearance estimates, in vivo AM-1241 absorption was moderate. Hepatic microsomal metabolism of AM-1241 in vitro generated hydroxylation and demethylation metabolites. Species-dependent differences were discovered in AM-1241’s predicted hepatic clearance. Our data demonstrate that AM-1241 has the following characteristics: a) short plasma half-life; b) limited oral bioavailability; c) extensive plasma/albumin binding; d) metabolic substrate for hepatic hydroxylation and demethylation; e) moderate hepatic clearance. Significance These results should help inform the design, optimization, and pre-clinical profiling of CB2 ligands as pharmacological tools and medicines. PMID:22749867

  18. Single cell-based analysis of torenia petal pigments by a combination of ArF excimer laser micro sampling and nano-high performance liquid chromatography (HPLC)-mass spectrometry.

    PubMed

    Kajiyama, Shin'ichiro; Harada, Kazuo; Fukusaki, Eiichiro; Kobayashi, Akio

    2006-12-01

    The molecular constituents of the petal pigments of the Torenia plant (Torenia hybrida) were analyzed on a single-cell basis by a combination of newly developed laser-microsampling and nano-flow liquid chromatography-electro spray ionization mass spectrometry (LC-ESIMS) techniques. Our method should provide a facile method for obtaining precise metabolic profiles of each cell in a single plant tissue.

  19. Profiling of Sugar Nucleotides.

    PubMed

    Rejzek, Martin; Hill, Lionel; Hems, Edward S; Kuhaudomlarp, Sakonwan; Wagstaff, Ben A; Field, Robert A

    2017-01-01

    Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed. © 2017 Elsevier Inc. All rights reserved.

  20. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening

    PubMed Central

    2011-01-01

    Background Grapes (Vitis vinifera L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses. Results Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through véraison and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen® genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening. Conclusions Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit. PMID:22047180

  1. Quantitative Imaging of D-2-Hydroxyglutarate in Selected Histological Tissue Areas by a Novel Bioluminescence Technique.

    PubMed

    Voelxen, Nadine F; Walenta, Stefan; Proescholdt, Martin; Dettmer, Katja; Pusch, Stefan; Mueller-Klieser, Wolfgang

    2016-01-01

    Patients with malignant gliomas have a poor prognosis with average survival of less than 1 year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG), a metabolite that was discovered first in this tumor entity. D2HG is generated in large amounts due to various "gain-of-function" mutations in the isocitrate dehydrogenases IDH1 and IDH2. Meanwhile, D2HG has been detected in several other tumor entities, including intrahepatic bile-duct cancer, chondrosarcoma, acute myeloid leukemia, and angioimmunoblastic T-cell lymphoma. D2HG is barely detectable in healthy tissue (<0.1 mM), but its concentration increases up to 35 mM in malignant tumor tissues. Consequently, the "oncometabolite" D2HG has gained increasing interest in the field of tumor metabolism. To facilitate its quantitative measurement without loss of spatial resolution at a microscopical level, we have developed a novel bioluminescence assay for determining D2HG in sections of snap-frozen tissue. The assay was verified independently by photometric tests and liquid chromatography/mass spectrometry. The novel technique allows the microscopically resolved determination of D2HG in a concentration range of 0-10 μmol/g tissue (wet weight). In combination with the already established bioluminescence imaging techniques for ATP, glucose, pyruvate, and lactate, the novel D2HG assay enables a comparative characterization of the metabolic profile of individual tumors in a further dimension.

  2. Effects of sea buckthorn and bilberry on serum metabolites differ according to baseline metabolic profiles in overweight women: a randomized crossover trial.

    PubMed

    Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P

    2013-10-01

    Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. We studied the effects of berries on serum metabolome. Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using (1)H nuclear magnetic resonance spectroscopy. All interventions induced a significant (P < 0.001-0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001-0.008) and in participants who had a lower-risk profile (group A: P < 0.001-0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547.

  3. Effects of sea buckthorn and bilberry on serum metabolites differ according to baseline metabolic profiles in overweight women: a randomized crossover trial1234

    PubMed Central

    Larmo, Petra S; Kangas, Antti J; Soininen, Pasi; Lehtonen, Henna-Maria; Suomela, Jukka-Pekka; Yang, Baoru; Viikari, Jorma; Ala-Korpela, Mika; Kallio, Heikki P

    2013-01-01

    Background: Berries are associated with health benefits. Little is known about the effect of baseline metabolome on the overall metabolic responses to berry intake. Objective: We studied the effects of berries on serum metabolome. Design: Eighty overweight women completed this randomized crossover study. During the interventions of 30 d, subjects consumed dried sea buckthorn berries (SBs), sea buckthorn oil (SBo), sea buckthorn phenolics ethanol extract mixed with maltodextrin (SBe+MD) (1:1), or frozen bilberries. Metabolic profiles were quantified from serum samples by using 1H nuclear magnetic resonance spectroscopy. Results: All interventions induced a significant (P < 0.001–0.003) effect on the overall metabolic profiles. The effect was observed both in participants who had a metabolic profile that reflected higher cardiometabolic risk at baseline (group B: P = 0.001–0.008) and in participants who had a lower-risk profile (group A: P < 0.001–0.009). Although most of the changes in individual metabolites were not statistically significant after correction for multiplicity, clear trends were observed. SB-induced effects were mainly on serum triglycerides and very-low-density lipoprotein (VLDL) and its subclasses, which decreased in metabolic group B. SBo induced a decreasing trend in serum total, intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL) cholesterol and subfractions of IDL and LDL in group B. During the SBe+MD treatment, VLDL fractions and serum triglycerides increased. Bilberries caused beneficial changes in serum lipids and lipoproteins in group B, whereas the opposite was true in group A. Conclusion: Berry intake has overall metabolic effects, which depend on the cardiometabolic risk profile at baseline. This trial was registered at clinicaltrials.gov as NCT01860547. PMID:23945716

  4. Magnetic resonance metabolic profiling of estrogen receptor-positive breast cancer: correlation with currently used molecular markers

    PubMed Central

    Koo, Ja Seung; Kim, Siwon; Park, Vivian Youngjean; Kim, Eun-Kyung; Kim, Suhkmann; Kim, Min Jung

    2017-01-01

    Estrogen receptor (ER)-positive breast cancers overall have a good prognosis, however, some patients suffer relapses and do not respond to endocrine therapy. The purpose of this study was to determine whether there are any correlations between high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) metabolic profiles of core needle biopsy (CNB) specimens and the molecular markers currently used in patients with ER-positive breast cancers. The metabolic profiling of CNB samples from 62 ER-positive cancers was performed by HR-MAS MRS. Metabolic profiles were compared according to human epidermal growth factor receptor 2 (HER2) and Ki-67 status, and luminal type, using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA). In univariate analysis, the HER2-positive group was shown to have higher levels of glycine and glutamate, compared to the HER2-negative group (P<0.01, and P <0.01, respectively). The high Ki-67 group showed higher levels of glutamate than the low Ki-67 group without statistical significance. Luminal B cancers showed higher levels of glycine (P=0.01) than luminal A cancers. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the subgroups according to HER2 and Ki-67 status, and luminal type. This study showed that the metabolic profiles of CNB samples assessed by HR-MAS MRS can be used to detect potential prognostic biomarkers as well as to understand the difference in metabolic mechanism among subtypes of ER-positive breast cancer. PMID:28969000

  5. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation

    PubMed Central

    Makowski, Liza; Noland, Robert C.; Koves, Timothy R.; Xing, Weibing; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Stevens, Robert D.; Muoio, Deborah M.

    2009-01-01

    Peroxisome proliferator-activated receptor-α (PPARα) is a master transcriptional regulator of β-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARα+/+ and PPARα−/− mice. Compared to PPARα+/+ animals, acylcarnitine profiles of PPARα−/− mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in β-oxidation. Organic and amino acid profiles of starved PPARα−/− mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARα−/− mice had 40–50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARα−/− mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.—Makowski, L., Noland, R. C., Koves, T. R., Xing, W., Ilkayeva, O. R., Muehlbauer, M. J., Stevens, R. D., Muoio, D. M. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation. PMID:18945875

  6. The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice

    PubMed Central

    Ji, Jian; Zhu, Pei; Cui, Fangchao; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan

    2017-01-01

    Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP) > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB)/globulin (GLO), reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice. PMID:28075412

  7. Feeding fat from distillers dried grains with solubles to dairy heifers: II. Effect on metabolic profile

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected metabolic profile, plasma fatty acid profile, and reproductive maturation. Thirty-three Holstein heifers (133 ± 18 d old) were used in a 24-wee...

  8. Effects of Caloric Restriction with or without Resistance Training in Dynapenic-Overweight and Obese Menopausal Women: A MONET Study.

    PubMed

    Normandin, E; Sénéchal, M; Prud'homme, D; Rabasa-Lhoret, R; Brochu, M

    2015-01-01

    The dynapenic (DYN)-obese phenotype is associated with an impaired metabolic profile. However, there is a lack of evidences regarding the effect of lifestyle interventions on the metabolic profile of individual with dynapenic phenotype. The objective was to investigate the impact of caloric restriction (CR) with or without resistance training (RT) on body composition, metabolic profile and muscle strength in DYN and non-dynapenic (NDYN) overweight and obese menopausal women. 109 obese menopausal women (age 57.9 ± 9.0 yrs; BMI 32.1 ± 4.6 kg/m2) were randomized to a 6-month CR intervention with or without a RT program. Participants were categorized as DYN or NDYN based on the lowest tertile of relative muscle strength in our cohort (< 4.86 kg/BMI). Body composition was measured by DXA, body fat distribution by CT scan, glucose homeostasis at fasting state and during an euglycemic-hyperinsulinemic clamp, fasting lipids, resting blood pressure, fasting inflammation markers and maximal muscle strength. No difference was observed between groups at baseline for body composition and the metabolic profile. Overall, a treatment effect was observed for all variables of body composition and some variables of the metabolic profile (fasting insulin, glucose disposal, triglyceride levels, triglycerides/HDL-Chol ratio and resting diastolic blood pressure) (P between 0.05 and 0.001). No Group X Treatment interaction was observed for variables of body composition and the metabolic profile. However, an interaction was observed for muscle strength; which significantly improved more in the CR+RT NDYN group (all P ≤ 0.05). In the present study, dynapenia was not associated with a worse metabolic profile at baseline in overweight and obese menopausal women. DYN and NDYN menopausal women showed similar cardiometabolic benefit from CR or CR+RT interventions. However, our results showed that the addition of RT to CR was more effective in improving maximal strength in DYN and NDYN obese menopausal women.

  9. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities.

    PubMed

    Lanning, Nathan J; Castle, Joshua P; Singh, Simar J; Leon, Andre N; Tovar, Elizabeth A; Sanghera, Amandeep; MacKeigan, Jeffrey P; Filipp, Fabian V; Graveel, Carrie R

    2017-01-01

    Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities. We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects. TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases. Similar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer promise for effective therapeutic targeting for TNBC patients.

  10. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    PubMed

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  11. Studies of (±)-3,4-Methylenedioxymethamphetamine (MDMA) Metabolism and Disposition in Rats and Mice: Relationship to Neuroprotection and Neurotoxicity Profile

    PubMed Central

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D.

    2013-01-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; “Ecstasy”) is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition. PMID:23209329

  12. Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

    PubMed

    Bae, Soo-Jung; Park, Young-Hwan; Bae, Hyeun-Jong; Jeon, Junhyun; Bae, Hanhong

    2017-06-28

    The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti- Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell walldegrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

  13. Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    B. S., Suresh Anand; N., Sujatha

    2011-08-01

    Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.

  14. Intermediate-type vancomycin resistance (VISA) in genetically-distinct Staphylococcus aureus isolates is linked to specific, reversible metabolic alterations.

    PubMed

    Alexander, Elizabeth L; Gardete, Susana; Bar, Haim Y; Wells, Martin T; Tomasz, Alexander; Rhee, Kyu Y

    2014-01-01

    Intermediate (VISA-type) vancomycin resistance in Staphylococcus aureus has been associated with a range of physiologic and genetic alterations. Previous work described the emergence of VISA-type resistance in two clonally-distinct series of isolates. In both series (the first belonging to MRSA clone ST8-USA300, and the second to ST5-USA100), resistance was conferred by a single mutation in yvqF (a negative regulator of the vraSR two-component system associated with vancomycin resistance). In the USA300 series, resistance was reversed by a secondary mutation in vraSR. In this study, we combined systems-level metabolomic profiling with statistical modeling techniques to discover specific, reversible metabolic alterations associated with the VISA phenotype.

  15. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  16. Iron metabolism and oxidative profile of dogs naturally infected by Ehrlichia canis: Acute and subclinical disease.

    PubMed

    Bottari, Nathieli B; Crivellenti, Leandro Z; Borin-Crivellenti, Sofia; Oliveira, Jéssica R; Coelho, Stefanie B; Contin, Catarina M; Tatsch, Etiane; Moresco, Rafael N; Santana, Aureo E; Tonin, Alexandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2016-03-01

    The aim of this study was to evaluate the oxidant profile and iron metabolism in serum of dogs infected by Ehrlichia canis. Banked sera samples of dogs were divided into two groups: negative control (n = 17) and infected by E. canis on acute (n = 24), and subclinical (n = 18) phases of the disease. The eritrogram, leucogram, and platelet counts were evaluate as well as iron, ferritin, and transferrin levels, latent iron binding capacity (LIBC), and transferrin saturation index (TSI) concentration. In addition, the advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) in sera were also analyzed. Blood samples were examined for the presence of E. canis by PCR techniques. History and clinical signals were recorded for each dog. During the acute phase of the disease, infected animals showed thrombocytopenia and anemia when compared to healthy animals (P < 0.05) as a consequence of lower iron levels. Ferritin and transferrin levels were higher in both phases (acute and subclinical) of the disease. The AOPP and FRAP levels increased in infected animals on the acute phase; however, the opposite occurred in the subclinical phase. We concluded that dogs naturally infected by E. canis showed changes in the iron metabolism and developed an oxidant status in consequence of disease pathophysiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals

    PubMed Central

    Wang, Xiaoxue; Wang, Jianping; Rao, Benqiang; Deng, Li

    2017-01-01

    Colorectal cancer is one of the most common types of cancer in the world and its morbidity and mortality rates are increasing due to alterations to human lifestyle and dietary habits. The relationship between human gut flora and colorectal cancer has attracted increasing attention. In the present study, a metabolic fingerprinting technique that combined pyrosequencing with gas chromatography-mass spectrometry was utilized to compare the differences in gut flora profiling and fecal metabolites between healthy individuals and patients with colorectal cancer. The results demonstrated that there were no significant differences in the abundance and diversity of gut flora between healthy individuals and patients with colorectal cancer (P>0.05) and the dominant bacterial phyla present in the gut of both groups included Firmicutes, Bacteroidetes and Verrucomicrobia. At the bacterial strain/genus level, significant differences were observed in the relative abundance of 18 species of bacteria (P<0.05). Analysis of fecal metabolites demonstrated that the metabolic profiles of healthy individuals and patients with colorectal cancer were distinct. The levels of short-chain fatty acid metabolites, including acetic acid, valeric acid, isobutyric acid and isovaleric acid, and of nine amino acids in patients with colorectal cancer were significantly higher than those in healthy individuals (P<0.05). However, the levels of butyrate, oleic acid, trans-oleic acid, linoleic acid, glycerol, monoacyl glycerol, myristic acid, ursodesoxycholic acid and pantothenic acid in patients with colorectal cancer were significantly lower than those in healthy individuals (P<0.05). Pearson rank correlation analysis demonstrated that there was a correlation between gut flora profiling and metabolite composition. These findings suggest that gut flora disorder results in the alteration of bacterial metabolism, which may be associated with the pathogenesis of colorectal cancer. The results of the present study are useful as a foundation for further studies to elucidate a potential colorectal cancer diagnostic index and therapeutic targets. PMID:28587349

  18. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals.

    PubMed

    Wang, Xiaoxue; Wang, Jianping; Rao, Benqiang; Deng, Li

    2017-06-01

    Colorectal cancer is one of the most common types of cancer in the world and its morbidity and mortality rates are increasing due to alterations to human lifestyle and dietary habits. The relationship between human gut flora and colorectal cancer has attracted increasing attention. In the present study, a metabolic fingerprinting technique that combined pyrosequencing with gas chromatography-mass spectrometry was utilized to compare the differences in gut flora profiling and fecal metabolites between healthy individuals and patients with colorectal cancer. The results demonstrated that there were no significant differences in the abundance and diversity of gut flora between healthy individuals and patients with colorectal cancer (P>0.05) and the dominant bacterial phyla present in the gut of both groups included Firmicutes , Bacteroidetes and Verrucomicrobia . At the bacterial strain/genus level, significant differences were observed in the relative abundance of 18 species of bacteria (P<0.05). Analysis of fecal metabolites demonstrated that the metabolic profiles of healthy individuals and patients with colorectal cancer were distinct. The levels of short-chain fatty acid metabolites, including acetic acid, valeric acid, isobutyric acid and isovaleric acid, and of nine amino acids in patients with colorectal cancer were significantly higher than those in healthy individuals (P<0.05). However, the levels of butyrate, oleic acid, trans-oleic acid, linoleic acid, glycerol, monoacyl glycerol, myristic acid, ursodesoxycholic acid and pantothenic acid in patients with colorectal cancer were significantly lower than those in healthy individuals (P<0.05). Pearson rank correlation analysis demonstrated that there was a correlation between gut flora profiling and metabolite composition. These findings suggest that gut flora disorder results in the alteration of bacterial metabolism, which may be associated with the pathogenesis of colorectal cancer. The results of the present study are useful as a foundation for further studies to elucidate a potential colorectal cancer diagnostic index and therapeutic targets.

  19. Microclimate influence on mineral and metabolic profiles of grape berries.

    PubMed

    Pereira, G E; Gaudillere, J-P; Pieri, P; Hilbert, G; Maucourt, M; Deborde, C; Moing, A; Rolin, D

    2006-09-06

    The grape berry microclimate is known to influence berry quality. The effects of the light exposure of grape berry clusters on the composition of berry tissues were studied on the "Merlot" variety grown in a vineyard in Bordeaux, France. The light exposure of the fruiting zone was modified using different intensities of leaf removal, cluster position relative to azimuth, and berry position in the cluster. Light exposures were identified and classified by in situ measurements of berry temperatures. Berries were sampled at maturity (>19 Brix) for determination of skin and/or pulp chemical and metabolic profiles based on (1) chemical and physicochemical measurement of minerals (N, P, K, Ca, Mg), (2) untargeted 1H NMR metabolic fingerprints, and HPLC targeted analyses of (3) amino acids and (4) phenolics. Each profile defined by partial least-square discriminant analysis allowed us to discriminate berries from different light exposure. Discriminant compounds between shaded and light-exposed berries were quercetin-3-glucoside, kaempferol-3-glucoside, myricetin-3-glucoside, and isorhamnetin-3-glucoside for the phenolics, histidine, valine, GABA, alanine, and arginine for the amino acids, and malate for the organic acids. Capacities of the different profiling techniques to discriminate berries were compared. Although the proportion of explained variance from the 1H NMR fingerprint was lower compared to that of chemical measurements, NMR spectroscopy allowed us to identify lit and shaded berries. Light exposure of berries increased the skin and pulp flavonols, histidine and valine contents, and reduced the organic acids, GABA, and alanine contents. All the targeted and nontargeted analytical data sets used made it possible to discriminate sun-exposed and shaded berries. The skin phenolics pattern was the most discriminating and allowed us to sort sun from shade berries. These metabolite classes can be used to qualify berries collected in an undetermined environment. The physiological significance of light and temperature effects on berry composition is discussed.

  20. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    PubMed Central

    Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    Background Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. Methodology/Principal Findings We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells (HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses, principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive extract. Conclusions/Significance Our findings suggest that metabolic profiling is a useful approach for nutraceutical evaluation of the health promotion effects of diverse tea cultivars. This may propose a novel strategy for functional food design. PMID:21853132

  1. Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development.

    PubMed

    Nakamura, Yuki; Teo, Norman Z W; Shui, Guanghou; Chua, Christine H L; Cheong, Wei-Fun; Parameswaran, Sriram; Koizumi, Ryota; Ohta, Hiroyuki; Wenk, Markus R; Ito, Toshiro

    2014-07-01

    Flower glycerolipids are the yet-to-be discovered frontier of the lipidome. Although ample evidence suggests important roles for glycerolipids in flower development, stage-specific lipid profiling in tiny Arabidopsis flowers is challenging. Here, we utilized a transgenic system to synchronize flower development in Arabidopsis. The transgenic plant PAP1::AP1-GR ap1-1 cal-5 showed synchronized flower development upon dexamethasone treatment, which enabled massive harvesting of floral samples of homogenous developmental stages for glycerolipid profiling. Glycerolipid profiling revealed a decrease in concentrations of phospholipids involved in signaling during the early development stages, such as phosphatidic acid and phosphatidylinositol, and a marked increase in concentrations of nonphosphorous galactolipids during the late stage. Moreover, in the midstage, phosphatidylinositol 4,5-bisphosphate concentration was increased transiently, which suggests the stimulation of the phosphoinositide metabolism. Accompanying transcriptomic profiling of relevant glycerolipid metabolic genes revealed simultaneous induction of multiple phosphoinositide biosynthetic genes associated with the increased phosphatidylinositol 4,5-bisphosphate concentration, with a high degree of differential expression patterns for genes encoding other glycerolipid-metabolic genes. The phosphatidic acid phosphatase mutant pah1 pah2 showed flower developmental defect, suggesting a role for phosphatidic acid in flower development. Our concurrent profiling of glycerolipids and relevant metabolic gene expression revealed distinct metabolic pathways stimulated at different stages of flower development in Arabidopsis. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. The Interplay of Proton, Electron, and Metabolite Supply for Photosynthetic H2 Production in Chlamydomonas reinhardtii*

    PubMed Central

    Doebbe, Anja; Keck, Matthias; La Russa, Marco; Mussgnug, Jan H.; Hankamer, Ben; Tekçe, Ercan; Niehaus, Karsten; Kruse, Olaf

    2010-01-01

    To obtain a detailed picture of sulfur deprivation-induced H2 production in microalgae, metabolome analyses were performed during key time points of the anaerobic H2 production process of Chlamydomonas reinhardtii. Analyses were performed using gas chromatography coupled to mass spectrometry (GC/MS), two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC-TOFMS), lipid and starch analysis, and enzymatic determination of fermentative products. The studies were designed to provide a detailed metabolite profile of the solar Bio-H2 production process. This work reports on the differential analysis of metabolic profiles of the high H2-producing strain Stm6Glc4 and the wild-type cc406 (WT) before and during the H2 production phase. Using GCxGC-TOFMS analysis the number of detected peaks increased from 128 peaks, previously detected by GC/MS techniques, to ∼1168. More detailed analysis of the anaerobic H2 production phase revealed remarkable differences between wild-type and mutant cells in a number of metabolic pathways. Under these physiological conditions the WT produced up to 2.6 times more fatty acids, 2.2 times more neutral lipids, and up to 4 times more fermentation products compared with Stm6Glc4. Based on these results, specific metabolic pathways involving the synthesis of fatty acids, neutral lipids, and fermentation products during anaerobiosis in C. reinhardtii have been identified as potential targets for metabolic engineering to further enhance substrate supply for the hydrogenase(s) in the chloroplast. PMID:20581114

  3. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone

    PubMed Central

    Hawley, Alyse K.; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P.; Kheirandish, Sam; Michiels, Céline C.; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A.; Hallam, Steven J.

    2016-01-01

    Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet—a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite “leakage” during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales. PMID:27655888

  4. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone.

    PubMed

    Louca, Stilianos; Hawley, Alyse K; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P; Kheirandish, Sam; Michiels, Céline C; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A; Hallam, Steven J

    2016-10-04

    Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet-a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite "leakage" during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.

  5. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    PubMed

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  6. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation.

    PubMed

    Quan-Jun, Yang; Jian-Ping, Zhang; Jian-Hua, Zhang; Yong-Long, Han; Bo, Xin; Jing-Xian, Zhang; Bona, Dai; Yuan, Zhang; Cheng, Guo

    2017-03-01

    Inhaled budesonide and salbutamol represent the most important and frequently used drugs in asthmatic children during acute exacerbation. However, there is still no consensus about their resulting metabolic derangements; thus, this study was conducted to determine the distinct metabolic profiles of these two drugs. A total of 69 children with asthma during acute exacerbation were included, and their serum and urine were investigated using high-resolution nuclear magnetic resonance (NMR). A metabolomics analysis was performed using a principal component analysis and orthogonal signal correction-partial least squares using SIMCA-P. The different metabolites were identified, and the distinct metabolic profiles were analysed using MetPA. A high-resolution NMR-based serum and urine metabolomics approach was established to study the overall metabolic changes after inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. The perturbed metabolites included 22 different metabolites in the serum and 21 metabolites in the urine. Based on an integrated analysis, the changed metabolites included the following: increased 4-hydroxybutyrate, lactate, cis-aconitate, 5-hydroxyindoleacetate, taurine, trans-4-hydroxy-l-proline, tiglylglycine, 3-hydroxybutyrate, 3-methylhistidine, glucose, cis-aconitate, 2-deoxyinosine and 2-aminoadipate; and decreased alanine, glycerol, arginine, glycylproline, 2-hydroxy-3-methylvalerate, creatine, citrulline, glutamate, asparagine, 2-hydroxyvalerate, citrate, homoserine, histamine, sn-glycero-3-phosphocholine, sarcosine, ornithine, creatinine, glycine, isoleucine and trimethylamine N-oxide. The MetPA analysis revealed seven involved metabolic pathways: arginine and proline metabolism; taurine and hypotaurine metabolism; glycine, serine and threonine metabolism; glyoxylate and dicarboxylate metabolism; methane metabolism; citrate cycle; and pyruvate metabolism. The perturbed metabolic profiles suggest potential metabolic reprogramming associated with a combination treatment of inhaled budesonide and salbutamol in asthmatic children. © 2016 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Metabolic Profile as a Potential Modifier of Long-Term Radiation Effects on Peripheral Lymphocyte Subsets in Atomic Bomb Survivors.

    PubMed

    Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro

    2016-09-01

    Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.

  8. Metabolic Risk Profile and Cancer in Korean Men and Women.

    PubMed

    Ko, Seulki; Yoon, Seok-Jun; Kim, Dongwoo; Kim, A-Rim; Kim, Eun-Jung; Seo, Hye-Young

    2016-05-01

    Metabolic syndrome is a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease. Associations between metabolic syndrome and several types of cancer have recently been documented. We analyzed the sample cohort data from the Korean National Health Insurance Service from 2002, with a follow-up period extending to 2013. The cohort data included 99 565 individuals who participated in the health examination program and whose data were therefore present in the cohort database. The metabolic risk profile of each participant was assessed based on obesity, high serum glucose and total cholesterol levels, and high blood pressure. The occurrence of cancer was identified using Korean National Health Insurance claims data. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusting for age group, smoking status, alcohol intake, and regular exercise. A total of 5937 cases of cancer occurred during a mean follow-up period of 10.4 years. In men with a high-risk metabolic profile, the risk of colon cancer was elevated (HR, 1.40; 95% CI, 1.14 to 1.71). In women, a high-risk metabolic profile was associated with a significantly increased risk of gallbladder and biliary tract cancer (HR, 2.05; 95% CI, 1.24 to 3.42). Non-significantly increased risks were observed in men for pharynx, larynx, rectum, and kidney cancer, and in women for colon, liver, breast, and ovarian cancer. The findings of this study support the previously suggested association between metabolic syndrome and the risk of several cancers. A high-risk metabolic profile may be an important risk factor for colon cancer in Korean men and gallbladder and biliary tract cancer in Korean women.

  9. Metabolic Risk Profile and Cancer in Korean Men and Women

    PubMed Central

    Kim, A-Rim; Kim, Eun-Jung; Seo, Hye-Young

    2016-01-01

    Objectives: Metabolic syndrome is a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease. Associations between metabolic syndrome and several types of cancer have recently been documented. Methods: We analyzed the sample cohort data from the Korean National Health Insurance Service from 2002, with a follow-up period extending to 2013. The cohort data included 99 565 individuals who participated in the health examination program and whose data were therefore present in the cohort database. The metabolic risk profile of each participant was assessed based on obesity, high serum glucose and total cholesterol levels, and high blood pressure. The occurrence of cancer was identified using Korean National Health Insurance claims data. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusting for age group, smoking status, alcohol intake, and regular exercise. Results: A total of 5937 cases of cancer occurred during a mean follow-up period of 10.4 years. In men with a high-risk metabolic profile, the risk of colon cancer was elevated (HR, 1.40; 95% CI, 1.14 to 1.71). In women, a high-risk metabolic profile was associated with a significantly increased risk of gallbladder and biliary tract cancer (HR, 2.05; 95% CI, 1.24 to 3.42). Non-significantly increased risks were observed in men for pharynx, larynx, rectum, and kidney cancer, and in women for colon, liver, breast, and ovarian cancer. Conclusions: The findings of this study support the previously suggested association between metabolic syndrome and the risk of several cancers. A high-risk metabolic profile may be an important risk factor for colon cancer in Korean men and gallbladder and biliary tract cancer in Korean women. PMID:27255073

  10. In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery.

    PubMed

    Prakash, Chandra; Sharma, Raman; Gleave, Michelle; Nedderman, Angus

    2008-11-01

    Drug induced toxicity remains one of the major reasons for failures of new pharmaceuticals, and for the withdrawal of approved drugs from the market. Efforts are being made to reduce attrition of drug candidates, and to minimize their bioactivation potential in the early stages of drug discovery in order to bring safer compounds to the market. Therefore, in addition to potency and selectivity; drug candidates are now selected on the basis of acceptable metabolism/toxicology profiles in preclinical species. To support this, new approaches have been developed, which include extensive in vitro methods using human and animal hepatic cellular and subcellular systems, recombinant human drug metabolizing enzymes, increased automation for higher-throughput screens, sensitive analytical technologies and in silico computational models to assess the metabolism aspects of the new chemical entities. By using these approaches many compounds that might have serious adverse reactions associated with them are effectively eliminated before reaching clinical trials, however some toxicities such as those caused by idiosyncratic responses, are not detected until a drug is in late stages of clinical trials or has become available to the market. One of the proposed mechanisms for the development of idiosyncratic drug toxicity is the bioactivation of drugs to form reactive metabolites by drug metabolizing enzymes. This review discusses the different approaches to, and benefits of using existing in vitro techniques, for the detection of reactive intermediates in order to minimize bioactivation potential in drug discovery.

  11. Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease.

    PubMed

    Mullish, Benjamin H; Pechlivanis, Alexandros; Barker, Grace F; Thursz, Mark R; Marchesi, Julian R; McDonald, Julie A K

    2018-04-26

    There is an ever-increasing recognition that bile acids are not purely simple surfactant molecules that aid in lipid digestion, but are a family of molecules contributing to a diverse range of key systemic functions in the host. It is now also understood that the specific composition of the bile acid milieu within the host is related to the expression and activity of bacterially-derived enzymes within the gastrointestinal tract, as such creating a direct link between the physiology of the host and the gut microbiota. Coupled to the knowledge that perturbation of the structure and/or function of the gut microbiota may contribute to the pathogenesis of a range of diseases, there is a high level of interest in the potential for manipulation of the gut microbiota-host bile acid axis as a novel approach to therapeutics. Much of the growing understanding of the biology of this area reflects the recent development and refinement of a range of novel techniques; this study applies a number of those techniques to the analysis of human samples, aiming to illustrate their strengths, drawbacks and biological significance at all stages. Specifically, we used microbial profiling (using 16S rRNA gene sequencing), bile acid profiling (using liquid chromatography-mass spectrometry), bsh and baiCD qPCR, and a BSH enzyme activity assay to demonstrate differences in the gut microbiota and bile metabolism in stool samples from healthy and antibiotic-exposed individuals. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Background correction in separation techniques hyphenated to high-resolution mass spectrometry - Thorough correction with mass spectrometry scans recorded as profile spectra.

    PubMed

    Erny, Guillaume L; Acunha, Tanize; Simó, Carolina; Cifuentes, Alejandro; Alves, Arminda

    2017-04-07

    Separation techniques hyphenated with high-resolution mass spectrometry have been a true revolution in analytical separation techniques. Such instruments not only provide unmatched resolution, but they also allow measuring the peaks accurate masses that permit identifying monoisotopic formulae. However, data files can be large, with a major contribution from background noise and background ions. Such unnecessary contribution to the overall signal can hide important features as well as decrease the accuracy of the centroid determination, especially with minor features. Thus, noise and baseline correction can be a valuable pre-processing step. The methodology that is described here, unlike any other approach, is used to correct the original dataset with the MS scans recorded as profiles spectrum. Using urine metabolic studies as examples, we demonstrate that this thorough correction reduces the data complexity by more than 90%. Such correction not only permits an improved visualisation of secondary peaks in the chromatographic domain, but it also facilitates the complete assignment of each MS scan which is invaluable to detect possible comigration/coeluting species. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  14. Differential prevalence and associations of overweight and obesity by gender and population group among school learners in South Africa: a cross-sectional study.

    PubMed

    Negash, Sarah; Agyemang, Charles; Matsha, Tandi E; Peer, Nasheeta; Erasmus, Rajiv T; Kengne, Andre P

    2017-01-01

    Factors influencing the increasing prevalence of overweight/obesity among children and adolescents in sub-Saharan Africa remain unclear. We assessed the prevalence and determinants of overweight and obesity and effects on cardio-metabolic profile in school learners in the Western Cape, South Africa. Cross-sectional data were collected from 7 to 18-year-old South African school learners attending 14 schools, randomly selected from 107 government schools in the areas. The learners were selected through stratified random sampling techniques. Logistic regressions were used to assess the determinants of overweight/obesity and its association with cardio-metabolic profile. Among the 1559 participants, the overall prevalence of overweight/obesity was 22.9%. Being a girl (Odds ratio 2.51, 95% CI: 1.92-3.29), or Black African (1.35, 1.04-.75) was associated with increased odds of being overweight/obese. The identified health consequences among the overweight/obese learners differed between the ethnic groups. Overweight/obese coloured (mixed ancestry) learners were more likely to have hypertension (3.27, 1.18-9.08), hypertriglyceridemia (1.94, 0.99-3.78) and low high-density lipoprotein cholesterol (HDL-C) (3.65, 2.33-5.72), overweight/obese Black African learners had higher odds for hypertension (3.62, 1.31-10.04) and low HDL-C (1.56, 1.01-2.40) and overweight/obese White learners were prone to low HDL-C (5.04, 1.35-18.80). Overweight/obesity is highly prevalent among school learners in Western Cape (South Africa), with being female or Black African increasing the odds. That overweight/obesity is also associated with adverse cardio-metabolic risk profile aggravates the problem and suggests worse cardiovascular outcomes in South African young adults in the future.

  15. Drug-drug interaction and doping: Effect of non-prohibited drugs on the urinary excretion profile of methandienone.

    PubMed

    Mazzarino, Monica; Khevenhüller-Metsch, Franziska L; Fiacco, Ilaria; Parr, Maria Kristina; de la Torre, Xavier; Botrè, Francesco

    2018-05-15

    The potential consequences of drug-drug interactions on the excretion profile of the anabolic androgenic steroid methandienone (17β-hydroxy-17α-methylandrosta-1,4-dien-3-one) are discussed here. More specifically, we have evaluated by in vitro and in vivo experiments the effects of seven non-prohibited drugs (fluconazole, ketoconazole, itraconazole, miconazole, fluoxetine, paroxetine and nefazodone) on the main metabolic pathways of methandienone. These are selected among those most commonly used by the athletes. The in vitro assays were based on the use of human liver microsomes, specific recombinant enzyme isoforms of cytochrome P450 and uridine 5'-diphospho-glucuronosyl-transferase. The in vivo study was performed by analyzing urines collected after the oral administration of methandienone with and without the co-administration of ketoconazole. Methandienone and its metabolites were determined by liquid chromatography-mass spectrometry-based techniques after sample pre-treatment including an enzymatic hydrolysis step (performed only for the investigation on phase II metabolism) and liquid/liquid extraction with t-butyl methyl-ether. The results from the in vitro experiments showed that the formation of the hydroxylated and dehydrogenated metabolites was significantly reduced in the presence of itraconazole, ketoconazole, miconazole and nefazodone, whereas the production of the 18-nor-hydroxylated metabolites and glucuronidation reactions was reduced significantly only in the presence of ketoconazole and miconazole. The analysis of the post-administration samples confirmed the in vitro observations, validating the hypothesis that drug-drug interaction may cause significant alterations in the metabolic profile of banned drugs, making their detection during doping control tests more challenging. This article is protected by copyright. All rights reserved.

  16. Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research.

    PubMed

    Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun

    2016-01-01

    Mass spectrometry-based metabolomics has become increasingly popular in molecular medicine. High-definition mass spectrometry (MS), coupled with pattern recognition methods, have been carried out to obtain comprehensive metabolite profiling and metabolic pathway of large biological datasets. This sets the scene for a new and powerful diagnostic approach. Analysis of the key metabolites in body fluids has become an important part of improving disease diagnosis. With technological advances in analytical techniques, the ability to measure low-molecular-weight metabolites in bio-samples provides a powerful platform for identifying metabolites that are uniquely correlated with a specific human disease. MS-based metabolomics can lead to enhanced understanding of disease mechanisms and to new diagnostic markers and has a strong potential to contribute to improving early diagnosis of diseases. This review will highlight the importance and benefit with certain characteristic examples of MS-metabolomics for identifying metabolic pathways and metabolites that accurately screen for potential diagnostic biomarkers of diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Fenetylline: new results on pharmacology, metabolism and kinetics.

    PubMed

    Nickel, B; Niebch, G; Peter, G; von Schlichtegroll, A; Tibes, U

    1986-06-01

    In the fenetylline molecule, theophylline is covalently linked with amphetamine via an alkyl chain. The inclusion of amphetamine and results from early metabolic studies have led to speculation that fenetylline may be merely a prodrug for amphetamine and/or theophylline. Although previous studies are not consistent with this hypothesis, additional studies were conducted to comparatively evaluate the profiles of activity exhibited by fenetylline and its two postulated primary metabolites, (+/-)-amphetamine and theophylline. Investigations were also initiated using newly developed high pressure liquid chromatography (HPLC) techniques to further characterize the metabolic pattern that fenetylline undergoes and to examine the relationship between plasma pharmacokinetics and the pharmacodynamic actions of the drug. Fenetylline inhibits activity associated with amphetamine in certain test systems, an effect similar to that previously observed with fenfluramine. Only small amounts of the amphetamine theoretically available in the fenetylline molecule are released. Pharmacodynamic activity associated with fenetylline administration is more closely tied to plasma levels of the parent compound than to any (+/-)-amphetamine produced.

  18. Gene expression profiling in liver and testis of rats to characterize the toxicity of triazole fungicides.

    PubMed

    Tully, Douglas B; Bao, Wenjun; Goetz, Amber K; Blystone, Chad R; Ren, Hongzu; Schmid, Judith E; Strader, Lillian F; Wood, Carmen R; Best, Deborah S; Narotsky, Michael G; Wolf, Douglas C; Rockett, John C; Dix, David J

    2006-09-15

    Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.

  19. Metabolic profiling reveals that time related physiological changes in mammalian cell perfusion cultures are bioreactor scale independent.

    PubMed

    Vernardis, Spyros I; Goudar, Chetan T; Klapa, Maria I

    2013-09-01

    Metabolic profiling was used to characterize the time course of cell physiology both in laboratory- and manufacturing-scale mammalian cell perfusion cultures. Two independent experiments were performed involving three vials from the same BHK cell bank, used to inoculate three laboratory-scale bioreactors, from which four manufacturing-scale cultures were initiated. It was shown that metabolomic analysis can indeed enhance the prime variable dataset for the monitoring of perfusion cultures by providing a higher resolution view of the metabolic state. Metabolic profiles could capture physiological state shifts over the course of the perfusion cultures and indicated a metabolic "signature" of the phase transitions, which was not observable from prime variable data. Specifically, the vast majority of metabolites had lower concentrations in the middle compared to the other two phases. Notably, metabolomics provided orthogonal (to prime variables) evidence that all cultures followed this same metabolic state shift with cell age, independently of bioreactor scale. © 2013 Elsevier Inc. All rights reserved.

  20. Metabolite identification of triptolide by data-dependent accurate mass spectrometric analysis in combination with online hydrogen/deuterium exchange and multiple data-mining techniques.

    PubMed

    Du, Fuying; Liu, Ting; Liu, Tian; Wang, Yongwei; Wan, Yakun; Xing, Jie

    2011-10-30

    Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Metabolism by grasshoppers of volatile chemical constituents from Mangifera indica and Solanum paniculatum leaves.

    PubMed

    Ramos, Clécio S; Ramos, Natália S M; Da Silva, Rodolfo R; Da Câmara, Cláudio A G; Almeida, Argus V

    2012-12-01

    The chemical volatiles from plant leaves and their biological activities have been extensively studied. However, no studies have addressed plant-chemical volatiles after undergoing the digestive process in host insects. Here we describe for the first time chemical profiles of volatile constituents from Solanum paniculatum and Mangifera indica leaves metabolized by grasshoppers. Both profiles were qualitatively and quantitatively different from the profiles of non-metabolized leaves. The amount of nerolidol, the major constituent of S. paniculatum leaves, decreased and other sesquiterpenes, such as spathulenol, were formed during the digestive process of the grasshopper Chromacris speciosa. In M. indica, the presence of phenylpropanoids was observed (dillapiole, Z-asarone, E-asarone and γ-asarone) in the leaves metabolized by the grasshopper Tropidacris collaris, but these compounds were not found in the non-metabolized leaves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Estrogen: A master regulator of bioenergetic systems in the brain and body

    PubMed Central

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer’s disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. PMID:23994581

  3. Somatotype characteristics of normal-weight and obese women among different metabolic subtypes.

    PubMed

    Galić, Biljana Srdić; Pavlica, Tatjana; Udicki, Mirjana; Stokić, Edita; Mikalački, Milena; Korovljev, Darinka; Čokorilo, Nebojša; Drvendžija, Zorka; Adamović, Dragan

    2016-02-01

    Obesity is a well known risk factor for the development of metabolic abnormalities. However, some obese people are healthy and on the other hand some people with normal weight have adverse metabolic profile, therefore it can be assumed that there is a difference in physical characteristics amongst these people. The aim of this study was to establish whether there are somatotype differences between metabolically healthy and metabolically obese women who are obese or of normal weight. Study included 230 women aged 44.76 ± 11.21y. Metabolic status was assessed according to IDF criteria, while somatotype was obtained using Heath & Carter method. Significant somatotype differences were observed in the group of women with normal-weight: metabolically healthy women had significantly lower endomorphy, mesomorphy and higher ectomorphy compared to metabolically obese normal-weight women (5.84-3.97-2.21 vs. 8.69-6.47-0.65). Metabolically healthy obese women had lower values of endomorphy and mesomorphy and higher values of ectomorphy compared to 'at risk' obese women but the differences were not statistically significant (7.59-5.76-0.63 vs. 8.51-6.58-0.5). Ectomorphy was shown as an important determinant of the favorable metabolic profile (cutoff point was 0.80). We concluded that, in addition to fat mass, metabolic profile could be predicted by the structure of lean body mass, and in particular by body linearity.

  4. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes.

    PubMed

    Grayson, B L; Wang, L; Aune, T M

    2011-07-01

    To determine if individuals with metabolic disorders possess unique gene expression profiles, we compared transcript levels in peripheral blood from patients with coronary artery disease (CAD), type 2 diabetes (T2D) and their precursor state, metabolic syndrome to those of control (CTRL) subjects and subjects with rheumatoid arthritis (RA). The gene expression profile of each metabolic state was distinguishable from CTRLs and correlated with other metabolic states more than with RA. Of note, subjects in the metabolic cohorts overexpressed gene sets that participate in the innate immune response. Genes involved in activation of the pro-inflammatory transcription factor, NF-κB, were overexpressed in CAD whereas genes differentially expressed in T2D have key roles in T-cell activation and signaling. Reverse transcriptase PCR validation confirmed microarray results. Furthermore, several genes differentially expressed in human metabolic disorders have been previously shown to participate in inflammatory responses in murine models of obesity and T2D. Taken together, these data demonstrate that peripheral blood from individuals with metabolic disorders display overlapping and non-overlapping patterns of gene expression indicative of unique, underlying immune processes.

  5. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review.

    PubMed

    Gouveia, Maria João; Brindley, Paul J; Santos, Lúcio Lara; Correia da Costa, José Manuel; Gomes, Paula; Vale, Nuno

    2013-09-01

    Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling.

    PubMed

    Schelli, Katie; Rutowski, Joshua; Roubidoux, Julia; Zhu, Jiangjiang

    2017-03-15

    Recently, novel bioanalytical methods, such as NMR and mass spectrometry based metabolomics approaches, have started to show promise in providing rapid, sensitive and reproducible detection of Staphylococcus aureus antibiotic resistance. Here we performed a proof-of-concept study focused on the application of HPLC-MS/MS based targeted metabolic profiling for detecting and monitoring the bacterial metabolic profile changes in response to sub-lethal levels of methicillin exposure. One hundred seventy-seven targeted metabolites from over 20 metabolic pathways were specifically screened and one hundred and thirty metabolites from in vitro bacterial tests were confidently detected from both methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA, respectively). The metabolic profiles can be used to distinguish the isogenic pairs of MSSA strains from MRSA strains, without or with sub-lethal levels of methicillin exposure. In addition, better separation between MSSA and MRSA strains can be achieved in the latter case using principal component analysis (PCA). Metabolite data from isogenic pairs of MSSA and MRSA strains were further compared without and with sub-lethal levels of methicillin exposure, with metabolic pathway analyses additionally performed. Both analyses suggested that the metabolic activities of MSSA strains were more susceptible to the perturbation of the sub-lethal levels of methicillin exposure compared to the MRSA strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of dopexamine in comparison with fenoterol on carbohydrate, fat and protein metabolism in healthy volunteers.

    PubMed

    Geisser, Wolfgang; Vogt, Josef; Wachter, Ulrich; Hofbauer, Hannes; Georgieff, Michael; Ensinger, Hermann

    2004-04-01

    In critically ill patients adrenergic agonists are used to treat haemodynamic disorders. Their metabolic actions should be considered in controlling metabolic homeostasis. Dopexamine has assumed effects on carbohydrate, fat and protein metabolism. The aim of this study was to define its metabolic actions and compare these with those of fenoterol by using a stable isotope dilution technique. Prospective, randomized experimental study. Experimental section of a university anaesthesiology department. Twenty-seven healthy male volunteers in three groups with nine participants each. Participants received a 4-h infusion of dopexamine (2.25 microg/kg per min), fenoterol (at least 0.025 microg/kg per min) or saline. Before and every 80 min during drug infusion, we measured endogenous glucose production and the plasma appearance rates for leucine and urea. In addition, we measured plasma concentrations of glucose, lactate, free fatty acids (FFAs), noradrenaline, adrenaline, insulin, glucagon and potassium. Endogenous glucose production did not differ among the groups. Glucose plasma concentration and glucose clearance remained constant during the dopexamine infusion. Fenoterol increased glucose plasma concentration and decreased glucose clearance. Lactate, FFAs, insulin and noradrenaline plasma concentrations were increased and the rate of leucine appearance was decreased by both drugs. The rate of urea appearance did not differ from the control group. Dopexamine has no or only weak effects on carbohydrate metabolism, its effects on fat and protein metabolism are comparable to those of fenoterol. This metabolic profile may be advantageous in increasing cardiac output in patients with impaired glucose tolerance.

  8. Whole Adult Organism Transcriptional Profiling of Acute Metal Exposures in Male Zebrafish

    DTIC Science & Technology

    2014-03-10

    metabolism arginine & proline metabolism tyrosine metabolism glycine, serine & threonine metabolism tryptophan metabolism histidine metabolism nicotinate...gene locus - Associations with obesity indices in middle-aged women. Diabetes 2002, 51(4):1281–1286. 85. Inoue I, Shinoda Y, Ikeda M, Hayashi K

  9. Association between urinary metabolic profile and the intestinal effects of cocoa in rats.

    PubMed

    Massot-Cladera, Malen; Mayneris-Perxachs, Jordi; Costabile, Adele; Swann, Jonathan R; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida

    2017-03-01

    The aim of this study was to elucidate the relationship between the urinary metabolic fingerprint and the effects of cocoa and cocoa fibre on body weight, hormone metabolism, intestinal immunity and microbiota composition. To this effect, Wistar rats were fed, for 3 weeks, a diet containing 10 % cocoa (C10) or two other diets with same the proportion of fibres: one based on cocoa fibre (CF) and another containing inulin as a reference (REF) diet. The rats' 24 h urine samples were analysed by an untargeted 1H NMR spectroscopy-based metabonomic approach. Concentrations of faecal IgA and plasma metabolic hormones were also quantified. The C10 diet decreased the intestinal IgA, plasma glucagon-like peptide-1 and glucagon concentrations and increased ghrelin levels compared with those in the REF group. Clear differences were observed between the metabolic profiles from the C10 group and those from the CF group. Urine metabolites derived from cocoa correlated with the cocoa effects on body weight, immunity and the gut microbiota. Overall, cocoa intake alters the host and bacterial metabolism concerning energy and amino acid pathways, leading to a metabolic signature that can be used as a marker for consumption. This metabolic profile correlates with body weight, metabolic hormones, intestinal immunity and microbiota composition.

  10. Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells.

    PubMed

    Fujimura, Yoshinori; Ikenaga, Naoki; Ohuchida, Kenoki; Setoyama, Daiki; Irie, Miho; Miura, Daisuke; Wariishi, Hiroyuki; Murata, Masaharu; Mizumoto, Kazuhiro; Hashizume, Makoto; Tanaka, Masao

    2014-03-01

    Gemcitabine resistance (GR) is one of the critical issues for therapy for pancreatic cancer, but the mechanism still remains unclear. Our aim was to increase the understanding of GR by metabolic profiling approach. To establish GR cells, 2 human pancreatic cancer cell lines, SUIT-2 and CAPAN-1, were exposed to increasing concentration of gemcitabine. Both parental and chemoresistant cells obtained by this treatment were subjected to metabolic profiling based on liquid chromatography-mass spectrometry. Multivariate statistical analyses, both principal component analysis and orthogonal partial least squares discriminant analysis, distinguished metabolic signature of responsiveness and resistance to gemcitabine in both SUIT-2 and CAPAN-1 cells. Among significantly different (P < 0.005) metabolite peaks between parental and GR cells, we identified metabolites related to several metabolic pathways such as amino acid, nucleotide, energy, cofactor, and vitamin pathways. Decreases in glutamine and proline levels as well as increases in aspartate, hydroxyproline, creatine, and creatinine levels were observed in chemoresistant cells from both cell lines. These results suggest that metabolic profiling can isolate distinct features of pancreatic cancer in the metabolome of gemcitabine-sensitive and GR cells. These findings may contribute to the biomarker discovery and an enhanced understanding of GR in pancreatic cancer.

  11. A metabolomics-based method for studying the effect of yfcC gene in Escherichia coli on metabolism.

    PubMed

    Wang, Xiyue; Xie, Yuping; Gao, Peng; Zhang, Sufang; Tan, Haidong; Yang, Fengxu; Lian, Rongwei; Tian, Jing; Xu, Guowang

    2014-04-15

    Metabolomics is a potent tool to assist in identifying the function of unknown genes through analysis of metabolite changes in the context of varied genetic backgrounds. However, the availability of a universal unbiased profiling analysis is still a big challenge. In this study, we report an optimized metabolic profiling method based on gas chromatography-mass spectrometry for Escherichia coli. It was found that physiological saline at -80°C could ensure satisfied metabolic quenching with less metabolite leakage. A solution of methanol/water (21:79, v/v) was proved to be efficient for intracellular metabolite extraction. This method was applied to investigate the metabolome difference among wild-type E. coli, its yfcC deletion, and overexpression mutants. Statistical and bioinformatic analysis of the metabolic profiling data indicated that the expression of yfcC potentially affected the metabolism of glyoxylate shunt. This finding was further validated by real-time quantitative polymerase chain reactions showing that expression of aceA and aceB, the key genes in glyoxylate shunt, was upregulated by yfcC. This study exemplifies the robustness of the proposed metabolic profiling analysis strategy and its potential roles in investigating unknown gene functions in view of metabolome difference. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The association of the metabolic profile in diabetes mellitus type 2 patients with obsessive-compulsive symptomatology and depressive symptomatology: new insights.

    PubMed

    Kontoangelos, Konstantinos; Raptis, Athanasios E; Papageorgiou, Charalabos C; Papadimitriou, George N; Rabavilas, Andreas D; Dimitriadis, George; Raptis, Sotirios A

    2013-02-01

    The aim of the present study was to explore the relationship between diabetes mellitus type 2, Obsessive- compulsive disorder (OCD) symptomatology and depressive symptomatology with the metabolic profile of diabetic patients. One hundred and thirty-one diabetic patients were randomly selected. In the first assessment all participants completed the Zung Self Rating Scale (ZUNG) and the Maudsley O-C Inventory Questionnaire (MOCI). After 1 year, diabetic patients that were initially uncontrolled (n = 31) (HbA1c > 7) were re-evaluated by the same psychometric tools. From those 31 patients, 10 had managed to control their metabolic profile. In the first evaluation MOCI and the sub-scale of slowness were statistically related with the diabetic profile (controlled, HbA1c ≤ 7; uncontrolled, HbA1c > 7), with uncontrolled patients scoring significantly higher on the overall MOCI score and the factor of slowness of MOCI scale (P = 0.028). The analysis revealed a positive association between depressive symptomatology (P = 0.004) and obsessive-compulsive disorder symptomatology (P < 0.001) and the metabolic profile of the patients. In the second evaluation the patients that managed to control their metabolic profile scored lower in both ZDRS and MOCI, although these differences in scores failed to reach significance levels were indicative of a tendency. The present results provide initial evidence that diabetes mellitus type 2 is associated with obsessive-compulsive disorder symptomatology and depressive symptomatology.

  13. Metabolite Profiling of Feces and Serum in Hemodialysis Patients and the Effect of Medicinal Charcoal Tablets.

    PubMed

    Liu, Sixiu; Liang, Shanshan; Liu, Hua; Chen, Lei; Sun, Lingshuang; Wei, Meng; Jiang, Hongli; Wang, Jing

    2018-05-22

    Recently, the colon has been recognized as an important source of various uremic toxins in patients with end stage renal disease. Medicinal charcoal tablets are an oral adsorbent that are widely used in patients with chronic kidney disease in China to remove creatinine and urea from the colon. A parallel fecal and serum metabolomics study was performed to determine comprehensive metabolic profiles of patients receiving hemodialysis (HD). The effects of medicinal charcoal tablets on the fecal and serum metabolomes of HD patients were also investigated. Ultra-performance liquid chromatography/mass spectrometry was used to investigate the fecal and serum metabolic profiles of 20 healthy controls and 31 HD patients before and after taking medicinal charcoal tablets for 3 months. There were distinct metabolic variations between the HD patients and healthy controls both in the feces and serum according to multivariate data analysis. Metabolic disturbances of alanine, aspartate and glutamate metabolism, arginine and proline metabolism figured prominently in the serum. However, in the feces, alterations of tryptophan metabolism, lysine degradation and beta-alanine metabolism were pronounced, and the levels of several amino acids (leucine, phenylalanine, lysine, histidine, methionine, tyrosine, and tryptophan) were increased dramatically. Nineteen fecal metabolites and 21 serum metabolites were also identified as biomarkers that contributed to the metabolic differences. Additionally, medicinal charcoal treatment generally enabled the serum and fecal metabolomes of the HD patients to draw close to those of the control subjects, especially the serum metabolic profile. Parallel fecal and serum metabolomics uncovered the systematic metabolic variations of HD patients, especially disturbances in amino acid metabolism in the colon. Medicinal charcoal tablets had an impact on the serum and fecal metabolomes of HD patients, but their exact effects still need to be studied further. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Comparing the impact of ultrafine particles from petrodiesel and biodiesel combustion to bacterial metabolism by targeted HPLC-MS/MS metabolic profiling.

    PubMed

    Zhong, Fanyi; Xu, Mengyang; Schelli, Katie; Rutowski, Joshua; Holmén, Britt A; Zhu, Jiangjiang

    2017-08-01

    Alterations of gut bacterial metabolism play an important role in their host metabolism, and can result in diseases such as obesity and diabetes. While many factors were discovered influencing the gut bacterial metabolism, exposure to ultrafine particles (UFPs) from engine combustions were recently proposed to be a potential risk factor for the perturbation of gut bacterial metabolism, and consequentially to obesity and diabetes development. This study focused on evaluation of how UFPs from diesel engine combustions impact gut bacterial metabolism. We hypothesize that UFPs from different type of diesel (petrodiesel vs. biodiesel) will both impact bacterial metabolism, and the degree of impact is also diesel type-dependent. Targeted metabolic profiling of 221 metabolites were applied to three model gut bacteria in vitro, Streptococcus salivarius, Lactobacillus acidophilus and Lactobacillus fermentum. UFPs from two types of fuels, petrodiesel (B0) and a biodiesel blend (B20: 20% soy biodiesel/80% B0 by volume), were exposed to the bacteria and their metabolic changes were compared. For each bacterial strain, metabolites with significantly changed abundance were observed in both perturbations, and all three strains have increased number of altered metabolites detected from B20 UFPs perturbation in comparison to B0 UFPs. Multivariate statistical analysis further confirmed that the metabolic profiles were clearly different between testing groups. Metabolic pathway analyses also demonstrated several important metabolic pathways, including pathways involves amino acids biosynthesis and sugar metabolism, were significantly impacted by UFPs exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs

    USDA-ARS?s Scientific Manuscript database

    New generation lipid emulsions comprised of fish oil or blends of soybean/fish/medium chain triglyceride/olive oil are emerging that result in favorable clinical metabolic outcomes in pediatric populations. Our aim was to characterize the lipidodomic, metabolomic, and transcriptomic profiles these ...

  16. Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watrous, Jeramie D.; Roach, Patrick J.; Heath, Brandi S.

    2013-11-05

    Understanding molecular interaction pathways in complex biological systems constitutes a treasure trove of knowledge that might facilitate the specific, chemical manipulation of the countless microbiological systems that occur throughout our world. However, there is a lack of methodologies that allow the direct investigation of chemical gradients and interactions in living biological systems, in real time. Here, we report the use of nanospray desorption electrospray ionization (nanoDESI) imaging mass spectrometry for in vivo metabolic profiling of living bacterial colonies directly from the Petri dish with absolutely no sample preparation needed. Using this technique, we investigated single colonies of Shewanella oneidensis MR-1,more » Bacillus subtilis 3610, and Streptomyces coelicolor A3(2) as well as a mixed biofilm of S. oneidensis MR-1 and B. subtilis 3610. Data from B. subtilis 3610 and S. coelicolor A3(2) provided a means of validation for the method while data from S. oneidensis MR-1 and the mixed biofilm showed a wide range of compounds that this bacterium uses for the dissimilatory reduction of extracellular metal oxides, including riboflavin, iron-bound heme and heme biosynthetic intermediates, and the siderophore putrebactin.« less

  17. NMR analysis of seven selections of vermentino grape berry: metabolites composition and development.

    PubMed

    Mulas, Gilberto; Galaffu, Maria Grazia; Pretti, Luca; Nieddu, Gianni; Mercenaro, Luca; Tonelli, Roberto; Anedda, Roberto

    2011-02-09

    The goal of this work was to study via NMR the unaltered metabolic profile of Sardinian Vermentino grape berry. Seven selections of Vermentino were harvested from the same vineyard. Berries were stored and extracted following an unbiased extraction protocol. Extracts were analyzed to investigate variability in metabolites concentration as a function of the clone, the position of berries in the bunch or growing area within the vineyard. Quantitative NMR and statistical analysis (PCA, correlation analysis, Anova) of the experimental data point out that, among the investigated sources of variation, the position of the berries within the bunch mainly influences the metabolic profile of berries, while the metabolic profile does not seem to be significantly influenced by growing area and clone. Significant variability of the amino acids such as arginine, proline, and organic acids (malic and citric) characterizes the rapid rearrangements of the metabolic profile in response to environmental stimuli. Finally, an application is described on the analysis of metabolite variation throughout the physiological development of berries.

  18. Dynamic changes in metabolic profiles of rats subchronically exposed to mequindox.

    PubMed

    Jiang, Limiao; Zhao, Xiuju; Huang, Chongyang; Lei, Hehua; Tang, Huiru; Wang, Yulan

    2014-11-01

    Mequindox is widely used as an antibacterial veterinary drug and a feeding additive for farm animals in China. Although its toxicity has been widely studied, little is known regarding the metabolic effects of subchronic exposure to mequindox, which is vital for the health of meat producing livestock. Here, we characterized the dose- and time-dependent metabolic alterations in female Wistar rats subchronically exposed to mequindox through dietary supplementation at the level of 40, 110 and 280 mg kg(-1) for 13 weeks, employing a NMR based metabonomics approach with supplementary information from serum clinical chemistry. We found that urinary metabolic profiles were significantly affected in all dosed groups during the supplementation period; plasma and hepatic metabolic profiles were significantly affected only in rats dosed with moderate and high levels of mequindox. We also observed a return to control levels, for the profiles of urine and liver, at all dose levels after a two weeks washout period. However, this was not the case for the metabolic profiles of plasma from rats dosed at high levels. At the molecular level, we showed that subchronic exposure to mequindox resulted in tricarboxylic acid cycle (TCA cycle) stimulation, suppression of glycolysis, and promotion of gluconeogenesis and lipid oxidation in rats. In addition, subchronic exposure to mequindox induced oxidative stress in rats. Furthermore, a disturbance of gut microbiota, manifested by alterations in the urinary excretion of hippurate, phenylacetylglycine, 3-(3-hydroxyphenyl)propionate, p-cresol glucuronide, methylamine, dimethylamine, and formate, was associated with mequindox exposure. The present study provided important holistic metabolic information on the effects of subchronic dosage of mequindox on rats, which is useful for evaluating the safety of mequindox usage in meat producing animals.

  19. Integrated lipidomics and transcriptomic analysis of peripheral blood reveals significantly enriched pathways in type 2 diabetes mellitus.

    PubMed

    Zhao, Chen; Mao, Jinghe; Ai, Junmei; Shenwu, Ming; Shi, Tieliu; Zhang, Daqing; Wang, Xiaonan; Wang, Yunliang; Deng, Youping

    2013-01-01

    Insulin resistance is a key element in the pathogenesis of type 2 diabetes mellitus. Plasma free fatty acids were assumed to mediate the insulin resistance, while the relationship between lipid and glucose disposal remains to be demonstrated across liver, skeletal muscle and blood. We profiled both lipidomics and gene expression of 144 total peripheral blood samples, 84 from patients with T2D and 60 from healthy controls. Then, factor and partial least squares models were used to perform a combined analysis of lipidomics and gene expression profiles to uncover the bioprocesses that are associated with lipidomic profiles in type 2 diabetes. According to factor analysis of the lipidomic profile, several species of lipids were found to be correlated with different phenotypes, including diabetes-related C23:2CE, C23:3CE, C23:4CE, ePE36:4, ePE36:5, ePE36:6; race-related (African-American) PI36:1; and sex-related PE34:1 and LPC18:2. The major variance of gene expression profile was not caused by known factors and no significant difference can be directly derived from differential gene expression profile. However, the combination of lipidomic and gene expression analyses allows us to reveal the correlation between the altered lipid profile with significantly enriched pathways, such as one carbon pool by folate, arachidonic acid metabolism, insulin signaling pathway, amino sugar and nucleotide sugar metabolism, propanoate metabolism, and starch and sucrose metabolism. The genes in these pathways showed a good capability to classify diabetes samples. Combined analysis of gene expression and lipidomic profiling reveals type 2 diabetes-associated lipid species and enriched biological pathways in peripheral blood, while gene expression profile does not show direct correlation. Our findings provide a new clue to better understand the mechanism of disordered lipid metabolism in association with type 2 diabetes.

  20. The bioenergetics of inflammation: insights into obesity and type 2 diabetes.

    PubMed

    Keane, K N; Calton, E K; Carlessi, R; Hart, P H; Newsholme, P

    2017-07-01

    Diabetes mellitus is one of the most common chronic metabolic disorders worldwide, and its incidence in Asian countries is alarmingly high. Type 2 diabetes (T2DM) is closely associated with obesity, and the staggering rise in obesity is one of the primary factors related to the increased frequency of T2DM. Low-grade chronic inflammation is also accepted as an integral metabolic adaption in obesity and T2DM, and is believed to be a major player in the onset of insulin resistance. However, the exact mechanism(s) that cause a persistent chronic low-grade infiltration of leukocytes into insulin-target tissues such as adipose, skeletal muscle and liver are not entirely known. Recent developments in the understanding of leukocyte metabolism have revealed that the inflammatory polarization of immune cells, and consequently their immunological function, are strongly connected to their metabolic profile. Therefore, it is hypothesized that dysfunctional immune cell metabolism is a central cellular mechanism that prevents the resolution of inflammation in chronic metabolic conditions such as that observed in obesity and T2DM. The purpose of this review is to explore the metabolic demands of different immune cell types, and identify the molecular switches that control immune cell metabolism and ultimately function. Understanding of these concepts may allow the development of interventions that can correct immune function and may possibly decrease chronic low-grade inflammation in humans suffering from obesity and T2DM. We also review the latest clinical techniques used to measure metabolic flux in primary leukocytes isolated from obese and T2DM patients.

  1. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    PubMed Central

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  2. Metabolite profiling with HPLC-ICP-MS as a tool for in vivo characterization of imaging probes.

    PubMed

    Boros, Eszter; Pinkhasov, Omar R; Caravan, Peter

    2018-01-01

    Current analytical methods for characterizing pharmacokinetic and metabolic properties of positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes are limited. Alternative methods to study tracer metabolism are needed. The study objective was to assess the potential of high performance liquid chromatography - inductively coupled plasma - mass spectrometry (HPLC-ICP-MS) for quantification of molecular probe metabolism and pharmacokinetics using stable isotopes. Two known peptide-DOTA conjugates were chelated with nat Ga and nat In. Limit of detection of HPLC-ICP-MS for 69 Ga and 115 In was determined. Rats were administered 50-150 nmol of Ga- and/or In-labeled probes, blood was serially sampled, and plasma analyzed by HPLC-ICP-MS using both reverse phase and size exclusion chromatography. The limits of detection were 0.16 pmol for 115 In and 0.53 pmol for 69 Ga. Metabolites as low as 0.001 %ID/g could be detected and transchelation products identified. Simultaneous administration of Ga- and In-labeled probes allowed the determination of pharmacokinetics and metabolism of both probes in a single animal. HPLC-ICP-MS is a robust, sensitive and radiation-free technique to characterize the pharmacokinetics and metabolism of imaging probes.

  3. Development of Untargeted Metabolomics Methods for the Rapid Detection of Pathogenic Naegleria fowleri.

    PubMed

    Yu, Zhihao; Miller, Haylea C; Puzon, Geoffrey J; Clowers, Brian H

    2017-04-18

    Despite comparatively low levels of infection, primary amoebic meningoencephalitis (PAM) induced by Naegleria fowleri is extremely lethal, with mortality rates above 95%. As a thermophile, this organism is often found in moderate-to-warm climates and has the potential to colonize drinking water distribution systems (DWDSs). Current detection approaches require days to obtain results, whereas swift corrective action can maximize the benefit of public health. Presently, there is little information regarding the underlying in situ metabolism for this amoeba but the potential exists to exploit differentially expressed metabolic signatures as a rapid detection technique. This research outlines the biochemical profiles of selected pathogenic and nonpathogenic Naegleria in vitro using an untargeted metabolomics approach to identify a panel of diagnostically meaningful compounds that may enable rapid detection of viable pathogenic N. fowleri and augment results from traditional monitoring approaches.

  4. Direct profiling of phytochemicals in tulip tissues and in vivo monitoring of the change of carbohydrate content in tulip bulbs by probe electrospray ionization mass spectrometry.

    PubMed

    Yu, Zhan; Chen, Lee Chuin; Suzuki, Hiroaki; Ariyada, Osamu; Erra-Balsells, Rosa; Nonami, Hiroshi; Hiraoka, Kenzo

    2009-12-01

    Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems.

  5. Renal metabolic profiling of early renal injury and renoprotective effects of Poria cocos epidermis using UPLC Q-TOF/HSMS/MSE.

    PubMed

    Zhao, Ying-Yong; Lei, Ping; Chen, Dan-Qian; Feng, Ya-Long; Bai, Xu

    2013-01-01

    Poria cocos epidermis is one of ancient traditional Chinese medicines (TCMs), which is usually used for the treatment of chronic kidney disease (CKD) for thousands of years in China. A metabonomic approach based on ultra performance liquid chromatography coupled with quadrupole time-of-flight high-sensitivity mass spectrometry (UPLC Q-TOF/HSMS) and a mass spectrometry(Elevated Energy) (MS(E)) data collection technique was developed to obtained a systematic view of the development and progression of CKD and biochemistry mechanism of therapeutic effects of P. cocos epidermis (Fu-Ling-Pi, FLP). By partial least squares-discriminate analysis, 19 metabolites were identified as potential biomarkers of CKD. Among the 19 biomarkers, 10 biomarkers including eicosapentaenoic acid, docosahexaenoic acid, lysoPC(20:4), lysoPC(18:2), lysoPC(15:0), lysoPE(20:0/0:0), indoxyl sulfate, hippuric acid, p-cresol sulfate and allantoin were reversed to the control level in FLP-treated groups. The study indicates that FLP treatment can ameliorate CKD by intervening in some dominating metabolic pathways, such as fatty acid metabolism, phospholipid metabolism, purine metabolism and tryptophan metabolism. This work was for the first time to investigate the FLP therapeutic effect based on metabonomics technology, which is a potentially powerful tool to study the TCMs. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Urine metabolic profile changes of CCl4-liver fibrosis in rats and intervention effects of Yi Guan Jian Decoction using metabonomic approach

    PubMed Central

    2013-01-01

    Background Yi Guan Jian Decoction (YGJD), a famous Chinese prescription, has long been employed clinically to treat liver fibrosis. However, as of date, there is no report on the effects of YGJD from a metabonomic approach. In this study, a urine metabonomic method based on gas chromatography coupled with mass spectrometry (GC/MS) was employed to study the protective efficacy and metabolic profile changes caused by YGJD in carbon tetrachloride (CCl4)-induced liver fibrosis. Methods Urine samples from Wistar rats of three randomly divided groups (control, model, and YGJD treated) were collected at various time-points, and the metabolic profile changes were analyzed by GC/MS with principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA). Furthermore, histopathology and biochemical examination were also carried out to ensure the success of CCl4-induced liver fibrosis model. Results Urine metabolic profile studies suggested distinct clustering of the three groups, and YGJD group was much closer to the control group by showing a tendency of recovering towards the control group. Fourteen significantly changed metabolites were found, and YGJD treatment could reverse the levels of these metabolites to normal levels or close to normal levels. Conclusions The current study indicates that the YGJD has significant anti-fibrotic effects on CCl4-induced liver fibrosis in rats, which might be by regulating the dysfunction of energy metabolism, amino acid metabolism, tryptophan metabolism, cytochrome P450 metabolism, and gut microflora metabolism. The metabonomic approach can be recommended to study the pharmacological effect and mechanism of complex Chinese medicines. PMID:23725349

  7. Metabonomics study of the effects of pretreatment with glycyrrhetinic acid on mesaconitine-induced toxicity in rats.

    PubMed

    Sun, Bo; Zhang, Ming; Zhang, Qi; Ma, Kunpeng; Li, Haijing; Li, Famei; Dong, Fangting; Yan, Xianzhong

    2014-07-03

    Aconitum carmichaelii Debx. (Fuzi), a commonly use traditional Chinese medicine (TCM), has often been used in combination with Rhizoma Glycyrrhizae (Gancao) to reduce its toxicity due to diester diterpenoid alkaloids aconitine, mesaconitine, and hypaconitine. However, the mechanism of detoxication is still unclear. Glycyrrhetinic acid (GA) is the metabolite of glycyrrhizinic acid (GL), the major component of Gancao. In present study, the effect of GA on the changes of metabolic profiles induced by mesaconitine was investigated using NMR-based metabolomic approaches. Fifteen male Wistar rats were divided into a control group, a group administered mesaconitine alone, and a group administered mesaconitine with one pretreatment with GA. Their urine samples were used for NMR spectroscopic metabolic profiling. Statistical analyses such as orthogonal projections to latent structures-discriminant analysis (OPLS-DA), t-test, hierarchical cluster, and pathway analysis were used to detect the effects of pretreatment with GA on mesaconitine-induced toxicity. The OPLS-DA score plots showed the metabolic profiles of GA-pretreated rats apparently approach to those of normal rats compared to mesaconitine-induced rats. From the t-test and boxplot results, the concentrations of leucine/isoleucine, lactate, acetate, succinate, trimethylamine (TMA), dimethylglycine (DMG), 2-oxo-glutarate, creatinine/creatine, glycine, hippurate, tyrosine and benzoate were significantly changed in metabolic profiles of mesaconitine-induced rats. The disturbed metabolic pathways include amino acid biosynthesis and metabolism. GA-pretreatment can mitigate the metabolic changes caused by mesaconitine-treatment on rats, indicating that prophylaxis with GA could reduce the toxicity of mesaconitine at the metabolic level. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors

    PubMed Central

    Daemen, Anneleen; Peterson, David; Sahu, Nisebita; McCord, Ron; Du, Xiangnan; Liu, Bonnie; Kowanetz, Katarzyna; Hong, Rebecca; Moffat, John; Gao, Min; Boudreau, Aaron; Mroue, Rana; Corson, Laura; O’Brien, Thomas; Qing, Jing; Sampath, Deepak; Merchant, Mark; Yauch, Robert; Manning, Gerard; Settleman, Jeffrey; Hatzivassiliou, Georgia; Evangelista, Marie

    2015-01-01

    Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors. PMID:26216984

  9. Applied metabolomics in drug discovery.

    PubMed

    Cuperlovic-Culf, M; Culf, A S

    2016-08-01

    The metabolic profile is a direct signature of phenotype and biochemical activity following any perturbation. Metabolites are small molecules present in a biological system including natural products as well as drugs and their metabolism by-products depending on the biological system studied. Metabolomics can provide activity information about possible novel drugs and drug scaffolds, indicate interesting targets for drug development and suggest binding partners of compounds. Furthermore, metabolomics can be used for the discovery of novel natural products and in drug development. Metabolomics can enhance the discovery and testing of new drugs and provide insight into the on- and off-target effects of drugs. This review focuses primarily on the application of metabolomics in the discovery of active drugs from natural products and the analysis of chemical libraries and the computational analysis of metabolic networks. Metabolomics methodology, both experimental and analytical is fast developing. At the same time, databases of compounds are ever growing with the inclusion of more molecular and spectral information. An increasing number of systems are being represented by very detailed metabolic network models. Combining these experimental and computational tools with high throughput drug testing and drug discovery techniques can provide new promising compounds and leads.

  10. Cell wall, cell membrane, and volatile metabolism are altered by antioxidant treatment, temperature shifts, and peel necrosis during apple fruit storage.

    PubMed

    Leisso, Rachel; Buchanan, David; Lee, Jinwook; Mattheis, James; Rudell, David

    2013-02-13

    The transition from cold storage to ambient temperature alters apple quality through accelerated softening, flavor and color changes, and development of physiological peel disorders, such as superficial scald, in susceptible cultivars. To reveal global metabolism associated with this transition, the 'Granny Smith' peel metabolome was evaluated during storage of 6 months and shelf life periods. Treatment with the antioxidant diphenylamine (DPA) reduced scald, creating a metabolic contrast with untreated fruit, which developed superficial scald. Superficial scald symptoms developed on control fruit after 120 days of storage, and symptoms progressed following transition to ambient-temperature shelf life. The metabolic profile of control and DPA-treated fruit was divergent after 30 days of cold storage due to differing levels of α-farnesene oxidation products, methyl esters, phytosterols, and other compounds potentially associated with chloroplast integrity and oxidative stress response. Hierarchical cluster analysis revealed coregulation within the volatile synthesis pathway including control of the availability of methyl, propyl, ethyl, acetyl, and butyl alcohol and/or acid moieties for ester biosynthesis. Overall, the application of metabolomics techniques lends new insight into physiological processes leading to cell death and ripening processes that affect fruit flavor, appearance, and overall quality.

  11. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    PubMed

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  12. Intestinal disposition of quercetin and its phase-II metabolites after oral administration in healthy volunteers.

    PubMed

    Chalet, Clément; Rubbens, Jari; Tack, Jan; Duchateau, Guus S; Augustijns, Patrick

    2018-05-15

    Quercetin is one of the main dietary flavonoids and undergoes a substantial intestinal phase-II metabolism. Quercetin conjugates have been detected in plasma and in urine, but their presence in the small intestine has not been assessed. This study aimed to investigate the intestinal metabolism and metabolite excretion of quercetin by the human small intestinal wall after oral dosing. Six healthy volunteers were given a capsule of 500 mg of quercetin with 240 ml of water. Duodenal fluids were collected using the intraluminal sampling technique for 4 h and analysed by LC-MS/MS. Phase-II metabolites of quercetin were detected and quantified in aspirated intestinal fluids. Metabolites appeared almost immediately after administration, indicating an intestinal metabolism and apical excretion into the lumen. Quercetin-3'-O-glucuronide was found to be the main intestinal metabolite. Our results could not conclude on the enterohepatic recycling of quercetin or its metabolites, although several individual profiles showed distinctive peaks. This study highlights the intestinal metabolism and excretion of quercetin and its conjugates in humans and gives insights into the relevant concentrations which should be used to investigate potential food-drug interactions in vitro. © 2018 Royal Pharmaceutical Society.

  13. Oxidative metabolism of limbic structures after acute administration of diazepam, alprazolam and zolpidem.

    PubMed

    González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L

    2006-08-30

    The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using cytochrome c oxidase (CO) histochemistry. Diazepam (5 mg/kg i.p.) and alprazolam (0.5 mg/kg i.p.) induced clear anxiolytic effects and a decrease in locomotion, whereas zolpidem (2 mg/kg i.p.) caused an intense hypnotic effect. The anxiolytic effects of alprazolam were distinguishable from diazepam due to the pharmacological and clinical profile of this triazolobenzodiazepine. CO activity decreased significantly in almost all the limbic regions evaluated after zolpidem administration. However, significant prominent decreases in CO activity were found after diazepam treatment in the medial mammillary nucleus, anteroventral thalamus, cingulate cortex, dentate gyrus and basolateral amygdala. Alprazolam caused similar decreases in CO activity, with the exception of the prelimbic and cingulate cortices, where significant increases were detected. In agreement with previous studies using other functional mapping techniques, our results indicate that particular benzodiazepines and non-benzodiazepine hypnotics induce selective changes in brain oxidative metabolism.

  14. Commentary on: "An integrated metabolic atlas of clear cell renal cell carcinoma." Hakimi AA, Reznik E, Lee CH, Creighton CJ, Brannon AR, Luna A, Aksoy BA, Liu EM, Shen R, Lee W, Chen Y, Stirdivant SM, Russo P, Chen YB, Tickoo SK, Reuter VE, Cheng EH, Sander C, Hsieh JJ.: Cancer Cell. 2016 Jan 11;29(1):104-16.

    PubMed

    Lee, Byron H

    2017-09-01

    Dysregulated metabolism is a hallmark of cancer, manifested through alterations in metabolites. We performed metabolomic profiling on 138 matched clear cell renal cell carcinoma (ccRCC)/normal tissue pairs and found that ccRCC is characterized by broad shifts in central carbon metabolism, one-carbon metabolism, and antioxidant response. Tumor progression and metastasis were associated with metabolite increases in glutathione and cysteine/methionine metabolism pathways. We develop an analytic pipeline and visualization tool (metabolograms) to bridge the gap between TCGA transcriptomic profiling and our metabolomic data, which enables us to assemble an integrated pathway-level metabolic atlas and to demonstrate discordance between transcriptome and metabolome. Lastly, expression profiling was performed on a high-glutathione cluster, which corresponds to a poor-survival subgroup in the ccRCC TCGA cohort. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  16. Biochemical Association of Metabolic Profile and Microbiome in Chronic Pressure Ulcer Wounds

    PubMed Central

    Ammons, Mary Cloud B.; Morrissey, Kathryn; Tripet, Brian P.; Van Leuven, James T.; Han, Anne; Lazarus, Gerald S.; Zenilman, Jonathan M.; Stewart, Philip S.; James, Garth A.; Copié, Valérie

    2015-01-01

    Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR) spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment. PMID:25978400

  17. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.

  18. Metabolic Profiling in Association with Vascular Endothelial Cell Dysfunction Following Non-Toxic Cadmium Exposure

    PubMed Central

    Li, Xiaofei; Nong, Qingjiao; Mao, Baoyu; Pan, Xue

    2017-01-01

    This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure. PMID:28872622

  19. Urinary metabolomic profiling in rats exposed to dietary di(2-ethylhexyl) phthalate (DEHP) using ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS).

    PubMed

    Dong, Xinwen; Zhang, Yunbo; Dong, Jin; Zhao, Yue; Guo, Jipeng; Wang, Zhanju; Liu, Mingqi; Na, Xiaolin; Wang, Cheng

    2017-07-01

    Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental chemical with widespread nonoccupational human exposure through multiple ways. Although considerable efforts have been invested to investigate mechanisms of DEHP toxicity, the key metabolic biomarkers of DEHP toxicity remain to be identified. The aim of this study was to assess the urinary metabonomics of dietary DEHP in rats using the technique of ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Fourteen female Wistar rats were divided into two groups and given increasing dietary doses of DEHP for 30 consecutive days. The urinary metabolite profile was studied using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) enabled clusters to be clearly separated. Eleven principal urinary metabolites were identified as contributing to the clusters. The clusters in the positive electrospray ionization (ESI) mode were xanthurenic acid, kynurenic acid, nonate, N6-methyladenosine, and L-isoleucyl-L-proline. The clusters in the negative ESI mode were hippuric acid, tetrahydrocortisol, citric acid, phenylpropionylglycine, cPA(18:2(9Z, 12Z)/0:0), and LysoPC(14:1(9Z)). The urinary metabonomic changes indicated that exposure to dietary DEHP can affect energy-related metabolism, liver and renal function, fatty acid metabolism, and cause DNA damage in rats. The findings of this study on the urinary metabolites and metabolic pathways of DEHP may form the basis for future studies on the mechanisms of toxicity of this commonly found environmental chemical.

  20. Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS

    PubMed Central

    Park, Hee-Won; In, Gyo; Kim, Jeong-Han; Cho, Byung-Goo; Han, Gyeong-Ho; Chang, Il-Moo

    2013-01-01

    Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field. PMID:24558312

  1. Cunninghamella Biotransformation--Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process.

    PubMed

    Piska, Kamil; Żelaszczyk, Dorota; Jamrozik, Marek; Kubowicz-Kwaśny, Paulina; Pękala, Elżbieta

    2016-01-01

    Studies of drug metabolism are one of the most significant issues in the process of drug development, its introduction to the market and also in treatment. Even the most promising molecule may show undesirable metabolic properties that would disqualify it as a potential drug. Therefore, such studies are conducted in the early phases of drug discovery and development process. Cunninghamella is a filamentous fungus known for its catalytic properties, which mimics mammalian drug metabolism. It has been proven that C. elegans carries at least one gene coding for a CYP enzyme closely related to the CYP51 family. The transformation profile of xenobiotics in Cunninghamella spp. spans a number of reactions catalyzed by different mammalian CYP isoforms. This paper presents detailed data on similar biotransformation drug products in humans and Cunninghamella spp. and covers the most important aspects of preparative biosynthesis of metabolites, since this model allows to obtain metabolites in sufficient quantities to conduct the further detailed investigations, as quantification, structure analysis and pharmacological activity and toxicity testing. The metabolic activity of three mostly used Cunninghamella species in obtaining hydroxylated, dealkylated and oxidated metabolites of different drugs confirmed its convergence with human biotransformation. Though it cannot replace the standard methods, it can provide support in the field of biotransformation and identifying metabolic soft spots of new chemicals and in predicting possible metabolic pathways. Another aspect is the biosynthesis of metabolites. In this respect, techniques using Cunninghamella spp. seem to be competitive to the chemical methods currently used.

  2. Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism.

    PubMed

    Blatherwick, Eleanor Q; Van Berkel, Gary J; Pickup, Kathryn; Johansson, Maria K; Beaudoin, Marie-Eve; Cole, Roderic O; Day, Jennifer M; Iverson, Suzanne; Wilson, Ian D; Scrivens, James H; Weston, Daniel J

    2011-08-01

    Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as "fit-for-purpose" for MSI in a drug metabolism and disposition arena. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)-based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.

  3. High-throughput metabolic profiling of diverse green Coffea arabica beans identified tryptophan as a universal discrimination factor for immature beans.

    PubMed

    Setoyama, Daiki; Iwasa, Keiko; Seta, Harumichi; Shimizu, Hiroaki; Fujimura, Yoshinori; Miura, Daisuke; Wariishi, Hiroyuki; Nagai, Chifumi; Nakahara, Koichi

    2013-01-01

    The maturity of green coffee beans is the most influential determinant of the quality and flavor of the resultant coffee beverage. However, the chemical compounds that can be used to discriminate the maturity of the beans remain uncharacterized. We herein analyzed four distinct stages of maturity (immature, semi-mature, mature and overripe) of nine different varieties of green Coffea arabica beans hand-harvested from a single experimental field in Hawaii. After developing a high-throughput experimental system for sample preparation and liquid chromatography-mass spectrometry (LC-MS) measurement, we applied metabolic profiling, integrated with chemometric techniques, to explore the relationship between the metabolome and maturity of the sample in a non-biased way. For the multivariate statistical analyses, a partial least square (PLS) regression model was successfully created, which allowed us to accurately predict the maturity of the beans based on the metabolomic information. As a result, tryptophan was identified to be the best contributor to the regression model; the relative MS intensity of tryptophan was higher in immature beans than in those after the semi-mature stages in all arabica varieties investigated, demonstrating a universal discrimination factor for diverse arabica beans. Therefore, typtophan, either alone or together with other metabolites, may be utilized for traders as an assessment standard when purchasing qualified trading green arabica bean products. Furthermore, our results suggest that the tryptophan metabolism may be tightly linked to the development of coffee cherries and/or beans.

  4. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize.

    PubMed

    Riedelsheimer, Christian; Lisec, Jan; Czedik-Eysenberg, Angelika; Sulpice, Ronan; Flis, Anna; Grieder, Christoph; Altmann, Thomas; Stitt, Mark; Willmitzer, Lothar; Melchinger, Albrecht E

    2012-06-05

    The diversity of metabolites found in plants is by far greater than in most other organisms. Metabolic profiling techniques, which measure many of these compounds simultaneously, enabled investigating the regulation of metabolic networks and proved to be useful for predicting important agronomic traits. However, little is known about the genetic basis of metabolites in crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110 SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for agronomic traits of mature plants in field trials. Metabolite concentrations had on average a repeatability of 0.73 and showed a correlation pattern that largely reflected their functional grouping. Genome-wide association mapping with correction for population structure and cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, explaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15 distinct SNP-metabolite associations, each of which explained more then 15% of the genetic variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong associations (P values to ) with a region on chromosome 9 harboring cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precursors correlated significantly with lignin content, plant height, and dry matter yield, suggesting that metabolites represent promising connecting links for narrowing the genotype-phenotype gap of complex agronomic traits.

  5. Biological and behavioral modifiers of urinary arsenic metabolic profiles in a U.S. population

    EPA Science Inventory

    Biological and behavioral modifiers of urinary arsenic metabolic profiles in a U.S. population David J. Thomas – ISTD, NHEERL Edward F. Hudgens – EHPD, NHEERL John Rogers - Westat Relations between intensity of arsenic exposure from home tap water and levels of inorganic As ...

  6. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling.

    PubMed

    Lee, AeJin; Jang, Han Byul; Ra, Moonjin; Choi, Youngshim; Lee, Hye-Ja; Park, Ju Yeon; Kang, Jae Heon; Park, Kyung-Hee; Park, Sang Ick; Song, Jihyun

    2015-01-01

    Childhood obesity is strongly related to future insulin resistance and metabolic syndrome. Thus, identifying early biomarkers of obesity-related diseases based on metabolic profiling is useful to control future metabolic disorders. We compared metabolic profiles between obese and normal-weight children and investigated specific biomarkers of future insulin resistance and metabolic syndrome. In all, 186 plasma metabolites were analysed at baseline and after 2 years in 109 Korean boys (age 10.5±0.4 years) from the Korean Child Obesity Cohort Study using the AbsoluteIDQ™ p180 Kit. We observed that levels of 41 metabolites at baseline and 40 metabolites at follow-up were significantly altered in obese children (p<0.05). Obese children showed significantly higher levels of branched-chain amino acids (BCAAs) and several acylcarnitines and lower levels of acyl-alkyl phosphatidylcholines. Also, baseline BCAAs were significantly positively correlated with both homeostasis model assessment for insulin resistance (HOMA-IR) and continuous metabolic risk score at the 2-year follow-up. In logistic regression analyses with adjustments for degree of obesity at baseline, baseline BCAA concentration, greater than the median value, was identified as a predictor of future risk of insulin resistance and metabolic syndrome. High BCAA concentration could be "early" biomarkers for predicting future metabolic diseases. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  7. LC–MS Proteomics Analysis of the Insulin/IGF-1-Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

    PubMed Central

    2015-01-01

    The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity. PMID:24555535

  8. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE PAGES

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.; ...

    2017-03-06

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  9. Estrogen: a master regulator of bioenergetic systems in the brain and body.

    PubMed

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  11. Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data.

    PubMed

    Goodwin, Cody R; Sherrod, Stacy D; Marasco, Christina C; Bachmann, Brian O; Schramm-Sapyta, Nicole; Wikswo, John P; McLean, John A

    2014-07-01

    A metabolic system is composed of inherently interconnected metabolic precursors, intermediates, and products. The analysis of untargeted metabolomics data has conventionally been performed through the use of comparative statistics or multivariate statistical analysis-based approaches; however, each falls short in representing the related nature of metabolic perturbations. Herein, we describe a complementary method for the analysis of large metabolite inventories using a data-driven approach based upon a self-organizing map algorithm. This workflow allows for the unsupervised clustering, and subsequent prioritization of, correlated features through Gestalt comparisons of metabolic heat maps. We describe this methodology in detail, including a comparison to conventional metabolomics approaches, and demonstrate the application of this method to the analysis of the metabolic repercussions of prolonged cocaine exposure in rat sera profiles.

  12. Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants1[w

    PubMed Central

    Nikiforova, Victoria J.; Kopka, Joachim; Tolstikov, Vladimir; Fiehn, Oliver; Hopkins, Laura; Hawkesford, Malcolm J.; Hesse, Holger; Hoefgen, Rainer

    2005-01-01

    Sulfur is an essential macroelement in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of adaptive responses, which must be coordinated. To reveal the coordinating network of adaptations to sulfur deficiency, metabolite profiling of Arabidopsis has been undertaken. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques revealed the response patterns of 6,023 peaks of nonredundant ion traces and relative concentration levels of 134 nonredundant compounds of known chemical structure. Here, we provide a catalogue of the detected metabolic changes and reconstruct the coordinating network of their mutual influences. The observed decrease in biomass, as well as in levels of proteins, chlorophylls, and total RNA, gives evidence for a general reduction of metabolic activity under conditions of depleted sulfur supply. This is achieved by a systemic adjustment of metabolism involving the major metabolic pathways. Sulfur/carbon/nitrogen are partitioned by accumulation of metabolites along the pathway O-acetylserine to serine to glycine, and are further channeled together with the nitrogen-rich compound glutamine into allantoin. Mutual influences between sulfur assimilation, nitrogen imbalance, lipid breakdown, purine metabolism, and enhanced photorespiration associated with sulfur-deficiency stress are revealed in this study. These responses may be assembled into a global scheme of metabolic regulation induced by sulfur nutritional stress, which optimizes resources for seed production. PMID:15834012

  13. Metabolic Profiling Reveals Differences in Plasma Concentrations of Arabinose and Xylose after Consumption of Fiber-Rich Pasta and Wheat Bread with Differential Rates of Systemic Appearance of Exogenous Glucose in Healthy Men.

    PubMed

    Pantophlet, Andre J; Wopereis, Suzan; Eelderink, Coby; Vonk, Roel J; Stroeve, Johanna H; Bijlsma, Sabina; van Stee, Leo; Bobeldijk, Ivana; Priebe, Marion G

    2017-02-01

    The consumption of products rich in cereal fiber and with a low glycemic index is implicated in a lower risk of metabolic diseases. Previously, we showed that the consumption of fiber-rich pasta compared with bread resulted in a lower rate of appearance of exogenous glucose and a lower glucose clearance rate quantified with a dual-isotope technique, which was in accordance with a lower insulin and glucose-dependent insulinotropic polypeptide response. To gain more insight into the acute metabolic consequences of the consumption of products resulting in differential glucose kinetics, postprandial metabolic profiles were determined. In a crossover study, 9 healthy men [mean ± SEM age: 21 ± 0.5 y; mean ± SEM body mass index (kg/m 2 ): 22 ± 0.5] consumed wheat bread (132 g) and fresh pasta (119 g uncooked) enriched with wheat bran (10%) meals. A total of 134 different metabolites in postprandial plasma samples (at -5, 30, 60, 90, 120, and 180 min) were quantified by using a gas chromatography-mass spectrometry-based metabolomics approach (secondary outcomes). Two-factor ANOVA and advanced multivariate statistical analysis (partial least squares) were applied to detect differences between both food products. Forty-two different postprandial metabolite profiles were identified, primarily representing pathways related to protein and energy metabolism, which were on average 8% and 7% lower after the men consumed pasta rather than bread, whereas concentrations of arabinose and xylose were 58% and 53% higher, respectively. Arabinose and xylose are derived from arabinoxylans, which are important components of wheat bran. The higher bioavailability of arabinose and xylose after pasta intake coincided with a lower rate of appearance of glucose and amino acids. We speculate that this higher bioavailability is due to higher degradation of arabinoxylans by small intestinal microbiota, facilitated by the higher viscosity of arabinoxylans after pasta intake than after bread intake. This study suggests that wheat bran, depending on the method of processing, can increase the viscosity of the meal bolus in the small intestine and interfere with macronutrient absorption in healthy men, thereby influencing postprandial glucose and insulin responses. This trial was registered at www.controlled-trials.com as ISRCTN42106325. © 2017 American Society for Nutrition.

  14. Metabolic profiling of plasma from sows before parturition and during lactation using a liquid chromatography-mass spectrometry-based approach.

    PubMed

    Hedemann, M S; Flummer, C; Kristensen, N B; Theil, P K

    2012-12-01

    During transition from late gestation to lactation, the sow undergoes large and sudden metabolic changes to adapt from anabolic to catabolic metabolism. Little is known about changes in nutrient uptake and intermediary metabolism of transition sows. This study was undertaken to screen the metabolic profile for qualitative changes in nutrient uptake and metabolism during transition. Four sows were fitted with permanent catheters in artery femoralis (AF), portal vein (PV), and hepatic vein (HV) (sampling sites). Sows were fed a standard lactation diet from 15 d prior to 28 d after parturition. Blood samples were taken 1.5 h after feeding on days -10, -3, 3, and 17 relative to parturition and plasma metabolites were analyzed by a liquid chromatography-mass spectrometry-based approach. Principal components analysis was performed to visualize the metabolic profiles and to screen for intermediary metabolites altered during the transition period. The metabolic profile of sows on day 3 after parturition was distinct from other days. Plasma betaine, Pro, and some unidentified lipid compounds contributed to the separation on day 3; betaine and Pro were lowered by 30% at day 3 compared to day -10 and day -3 (P < 0.001). Plasma choline, Pro, creatine, and unidentified lipid compounds contributed to the separation due to sampling sites. Plasma choline was lowest in HV, intermediate in AF, and highest in PV (P < 0.001) plasma, indicating net absorption from the gastrointestinal tract (PV vs. AF) and liver metabolism (HV vs. PV). The majority of unidentified metabolites found using the loadings plots that were affected by day or sampling site or both were revealed as lipid compounds, that is, bile acid, cholesterol, glycerol, phosphatidyl, sphingomyelin, or acylglycerol derivatives. In conclusion, the intermediary metabolism of sows, especially for fat, changed during transition, and a deeper understanding and detection of involved metabolites are needed to optimize sow feeding during transition.

  15. Metabolic profiles are principally different between cancers of the liver, pancreas and breast.

    PubMed

    Budhu, Anuradha; Terunuma, Atsushi; Zhang, Geng; Hussain, S Perwez; Ambs, Stefan; Wang, Xin Wei

    2014-01-01

    Molecular profiling of primary tumors may facilitate the classification of patients with cancer into more homogenous biological groups to aid clinical management. Metabolomic profiling has been shown to be a powerful tool in characterizing the biological mechanisms underlying a disease but has not been evaluated for its ability to classify cancers by their tissue of origin. Thus, we assessed metabolomic profiling as a novel tool for multiclass cancer characterization. Global metabolic profiling was employed to identify metabolites in paired tumor and non-tumor liver (n=60), breast (n=130) and pancreatic (n=76) tissue specimens. Unsupervised principal component analysis showed that metabolites are principally unique to each tissue and cancer type. Such a difference can also be observed even among early stage cancers, suggesting a significant and unique alteration of global metabolic pathways associated with each cancer type. Our global high-throughput metabolomic profiling study shows that specific biochemical alterations distinguish liver, pancreatic and breast cancer and could be applied as cancer classification tools to differentiate tumors based on tissue of origin.

  16. Metabolite profiling of sex developmental steroid conjugates reveals an association between decreased levels of steroid sulfates and adiposity in obese girls.

    PubMed

    Lee, Su Hyeon; Kim, Shin Hye; Lee, Won-Yong; Chung, Bong Chul; Park, Mi Jung; Choi, Man Ho

    2016-09-01

    Free and conjugated steroids coexist in a dynamic equilibrium due to complex biosynthetic and metabolic processes. This may have clinical significance related to various physiological conditions, including sex development involving the reproductive system. Therefore, we performed quantitative profiling of 16 serum steroids conjugated with glucuronic and sulfuric acids using liquid chromatography-mass spectrometry (LC-MS). All steroid conjugates were purified by solid-phase extraction and then separated through a 3-μm particle size C18 column (150mm×2.1mm) at a flow rate of 0.3 mL/min in the negative ionization mode. The LC-MS-based analysis was found to be linear (r(2)>0.99), and all steroid conjugates had a limit-of-quantification (LOQ) of 10ng/mL, except for cholesterol sulfate and 17β-estradiol-3,17-disulfate (20ng/mL). The extraction recoveries of all steroid conjugates ranged from 97.9% to 110.7%, while the overall precision (% CV) and accuracy (% bias) ranged from 4.8% to 10.9% and from 94.4% to 112.9% at four different concentrations, respectively. Profiling of steroid conjugates corrected by adiposity revealed decreased levels of steroid sulfates (P<0.01) in overweight and obese girls compared to normal girls. The suggested technique can be used for evaluating metabolic changes in steroid conjugates and for understanding the pathophysiology and relative contributions of adiposity in childhood obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women

    USDA-ARS?s Scientific Manuscript database

    Low-fat dairy products may be beneficial for health, but few studies have specifically focused on yogurt. We examined whether yogurt consumption was associated with better dietary patterns, diet quality, and metabolic profile. This cross-sectional study included the adults (n=6526) participating in ...

  18. Evaluation of Heterogeneous Metabolic Profile in an Orthotopic Human Glioblastoma Xenograft Model Using Compressed Sensing Hyperpolarized 3D 13C Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J.; James, C. David; Pieper, Russell O.; Ronen, Sabrina M.; Vigneron, Daniel B.; Nelson, Sarah J.

    2013-01-01

    High resolution compressed sensing hyperpolarized 13C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in 13C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D 13C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-13C]-pyruvate using a 3T scanner. The 13C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing 13C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct 13C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of 13C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. PMID:22851374

  19. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    PubMed

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  20. 3D gut-liver chip with a PK model for prediction of first-pass metabolism.

    PubMed

    Lee, Dong Wook; Ha, Sang Keun; Choi, Inwook; Sung, Jong Hwan

    2017-11-07

    Accurate prediction of first-pass metabolism is essential for improving the time and cost efficiency of drug development process. Here, we have developed a microfluidic gut-liver co-culture chip that aims to reproduce the first-pass metabolism of oral drugs. This chip consists of two separate layers for gut (Caco-2) and liver (HepG2) cell lines, where cells can be co-cultured in both 2D and 3D forms. Both cell lines were maintained well in the chip, verified by confocal microscopy and measurement of hepatic enzyme activity. We investigated the PK profile of paracetamol in the chip, and corresponding PK model was constructed, which was used to predict PK profiles for different chip design parameters. Simulation results implied that a larger absorption surface area and a higher metabolic capacity are required to reproduce the in vivo PK profile of paracetamol more accurately. Our study suggests the possibility of reproducing the human PK profile on a chip, contributing to accurate prediction of pharmacological effect of drugs.

  1. Strengthening insights into host responses to mastitis infection in ruminants by combining heterogeneous microarray data sources

    PubMed Central

    2011-01-01

    Background Gene expression profiling studies of mastitis in ruminants have provided key but fragmented knowledge for the understanding of the disease. A systematic combination of different expression profiling studies via meta-analysis techniques has the potential to test the extensibility of conclusions based on single studies. Using the program Pointillist, we performed meta-analysis of transcription-profiling data from six independent studies of infections with mammary gland pathogens, including samples from cattle challenged in vivo with S. aureus, E. coli, and S. uberis, samples from goats challenged in vivo with S. aureus, as well as cattle macrophages and ovine dendritic cells infected in vitro with S. aureus. We combined different time points from those studies, testing different responses to mastitis infection: overall (common signature), early stage, late stage, and cattle-specific. Results Ingenuity Pathway Analysis of affected genes showed that the four meta-analysis combinations share biological functions and pathways (e.g. protein ubiquitination and polyamine regulation) which are intrinsic to the general disease response. In the overall response, pathways related to immune response and inflammation, as well as biological functions related to lipid metabolism were altered. This latter observation is consistent with the milk fat content depression commonly observed during mastitis infection. Complementarities between early and late stage responses were found, with a prominence of metabolic and stress signals in the early stage and of the immune response related to the lipid metabolism in the late stage; both mechanisms apparently modulated by few genes, including XBP1 and SREBF1. The cattle-specific response was characterized by alteration of the immune response and by modification of lipid metabolism. Comparison of E. coli and S. aureus infections in cattle in vivo revealed that affected genes showing opposite regulation had the same altered biological functions and provided evidence that E. coli caused a stronger host response. Conclusions This meta-analysis approach reinforces previous findings but also reveals several novel themes, including the involvement of genes, biological functions, and pathways that were not identified in individual studies. As such, it provides an interesting proof of principle for future studies combining information from diverse heterogeneous sources. PMID:21569310

  2. Diet-gene interactions underlie metabolic individuality and influence brain development: Implications for clinical practice

    PubMed Central

    Zeisel, Steven H.

    2014-01-01

    One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to nutrients. These SNPS can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit “retuning” of metabolic pathways during early life. PMID:22614815

  3. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    PubMed

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  4. Urinary metabolic profiling of asymptomatic acute intermittent porphyria using a rule-mining-based algorithm.

    PubMed

    Luck, Margaux; Schmitt, Caroline; Talbi, Neila; Gouya, Laurent; Caradeuc, Cédric; Puy, Hervé; Bertho, Gildas; Pallet, Nicolas

    2018-01-01

    Metabolomic profiling combines Nuclear Magnetic Resonance spectroscopy with supervised statistical analysis that might allow to better understanding the mechanisms of a disease. In this study, the urinary metabolic profiling of individuals with porphyrias was performed to predict different types of disease, and to propose new pathophysiological hypotheses. Urine 1 H-NMR spectra of 73 patients with asymptomatic acute intermittent porphyria (aAIP) and familial or sporadic porphyria cutanea tarda (f/sPCT) were compared using a supervised rule-mining algorithm. NMR spectrum buckets bins, corresponding to rules, were extracted and a logistic regression was trained. Our rule-mining algorithm generated results were consistent with those obtained using partial least square discriminant analysis (PLS-DA) and the predictive performance of the model was significant. Buckets that were identified by the algorithm corresponded to metabolites involved in glycolysis and energy-conversion pathways, notably acetate, citrate, and pyruvate, which were found in higher concentrations in the urines of aAIP compared with PCT patients. Metabolic profiling did not discriminate sPCT from fPCT patients. These results suggest that metabolic reprogramming occurs in aAIP individuals, even in the absence of overt symptoms, and supports the relationship that occur between heme synthesis and mitochondrial energetic metabolism.

  5. Metabolic Profiling of Adiponectin Levels in Adults: Mendelian Randomization Analysis.

    PubMed

    Borges, Maria Carolina; Barros, Aluísio J D; Ferreira, Diana L Santos; Casas, Juan Pablo; Horta, Bernardo Lessa; Kivimaki, Mika; Kumari, Meena; Menon, Usha; Gaunt, Tom R; Ben-Shlomo, Yoav; Freitas, Deise F; Oliveira, Isabel O; Gentry-Maharaj, Aleksandra; Fourkala, Evangelia; Lawlor, Debbie A; Hingorani, Aroon D

    2017-12-01

    Adiponectin, a circulating adipocyte-derived protein, has insulin-sensitizing, anti-inflammatory, antiatherogenic, and cardiomyocyte-protective properties in animal models. However, the systemic effects of adiponectin in humans are unknown. Our aims were to define the metabolic profile associated with higher blood adiponectin concentration and investigate whether variation in adiponectin concentration affects the systemic metabolic profile. We applied multivariable regression in ≤5909 adults and Mendelian randomization (using cis -acting genetic variants in the vicinity of the adiponectin gene as instrumental variables) for analyzing the causal effect of adiponectin in the metabolic profile of ≤37 545 adults. Participants were largely European from 6 longitudinal studies and 1 genome-wide association consortium. In the multivariable regression analyses, higher circulating adiponectin was associated with higher high-density lipoprotein lipids and lower very-low-density lipoprotein lipids, glucose levels, branched-chain amino acids, and inflammatory markers. However, these findings were not supported by Mendelian randomization analyses for most metabolites. Findings were consistent between sexes and after excluding high-risk groups (defined by age and occurrence of previous cardiovascular event) and 1 study with admixed population. Our findings indicate that blood adiponectin concentration is more likely to be an epiphenomenon in the context of metabolic disease than a key determinant. © 2017 The Authors.

  6. Histological analysis and identification of spermatogenesis-related genes in 2-, 6-, and 12-month-old sheep testes

    NASA Astrophysics Data System (ADS)

    Bai, Man; Sun, Limin; Zhao, Jia; Xiang, Lujie; Cheng, Xiaoyin; Li, Jiarong; Jia, Chao; Jiang, Huaizhi

    2017-10-01

    Testis development and spermatogenesis are vital factors that influence male animal fertility. In order to identify spermatogenesis-related genes and further provide a theory basis for finding biomarkers related to male sheep fertility, 2-, 6-, and 12-month-old Small Tail Han Sheep testes were selected to investigate the dynamic changes of sheep testis development. Hematoxylin-eosin routine staining and RNA-Seq technique were used to perform histological and transcriptome analysis for these testes. The results showed that 630, 102, and 322 differentially expressed genes (DEGs) were identified in 2- vs 6-month-old, 6- vs 12-month-old, and 2- vs 12-month-old testes, respectively. GO and KEGG analysis showed the following: DEGs in 2- vs 6-month-old testes were mainly related to the GO terms of sexual maturation and the pathways of multiple metabolism and biosynthesis; in 6- vs 12-month-old testes, most of the GO terms that DEGs involved in were related to metabolism and translation processes; the most significantly enriched pathway is the ribosome pathway. The union of DEGs in 2- vs 6-month-old, 6- vs 12-month-old, and 2- vs 12-month-old testes was categorized into eight profiles by series cluster. Subsequently, the eight profiles were classified into four model profiles and four co-expression networks were constructed based on the DEGs in these model profiles. Finally, 29 key regulatory genes related to spermatogenesis were identified in the four co-expression networks. The expression of 13 DEGs (CA3, APOH, MYOC, CATSPER4, SYT6, SERPINA10, DAZL, ADIPOR2, RAB13, CEP41, SPAG4, ODF1, and FRG1) was validated by RT-PCR.

  7. High similarity of phylogenetic profiles of rate-limiting enzymes with inhibitory relation in Human, Mouse, Rat, budding Yeast and E. coli.

    PubMed

    Zhao, Min; Qu, Hong

    2011-11-30

    The phylogenetic profile is widely used to characterize functional linkage and conservation between proteins without amino acid sequence similarity. To survey the conservative regulatory properties of rate-limiting enzymes (RLEs) in metabolic inhibitory network across different species, we define the enzyme inhibiting pair as: where the first enzyme in a pair is the inhibitor provider and the second is the target of the inhibitor. Phylogenetic profiles of enzymes in the inhibiting pairs are further generated to measure the functional linkage of these enzymes during evolutionary history. We find that the RLEs generate, on average, over half of all in vivo inhibitors in each surveyed model organism. And these inhibitors inhibit on average over 85% targets in metabolic inhibitory network and cover the majority of targets of cross-pathway inhibiting relations. Furthermore, we demonstrate that the phylogenetic profiles of the enzymes in inhibiting pairs in which at least one enzyme is rate-limiting often show higher similarities than those in common inhibiting enzyme pairs. In addition, RLEs, compared to common metabolic enzymes, often tend to produce ADP instead of AMP in conservative inhibitory networks. Combined with the conservative roles of RLEs in their efficiency in sensing metabolic signals and transmitting regulatory signals to the rest of the metabolic system, the RLEs may be important molecules in balancing energy homeostasis via maintaining the ratio of ATP to ADP in living cells. Furthermore, our results indicate that similarities of phylogenetic profiles of enzymes in the inhibiting enzyme pairs are not only correlated with enzyme topological importance, but also related with roles of the enzymes in metabolic inhibitory network.

  8. High similarity of phylogenetic profiles of rate-limiting enzymes with inhibitory relation in Human, Mouse, Rat, budding Yeast and E. coli

    PubMed Central

    2011-01-01

    Background The phylogenetic profile is widely used to characterize functional linkage and conservation between proteins without amino acid sequence similarity. To survey the conservative regulatory properties of rate-limiting enzymes (RLEs) in metabolic inhibitory network across different species, we define the enzyme inhibiting pair as: where the first enzyme in a pair is the inhibitor provider and the second is the target of the inhibitor. Phylogenetic profiles of enzymes in the inhibiting pairs are further generated to measure the functional linkage of these enzymes during evolutionary history. Results We find that the RLEs generate, on average, over half of all in vivo inhibitors in each surveyed model organism. And these inhibitors inhibit on average over 85% targets in metabolic inhibitory network and cover the majority of targets of cross-pathway inhibiting relations. Furthermore, we demonstrate that the phylogenetic profiles of the enzymes in inhibiting pairs in which at least one enzyme is rate-limiting often show higher similarities than those in common inhibiting enzyme pairs. In addition, RLEs, compared to common metabolic enzymes, often tend to produce ADP instead of AMP in conservative inhibitory networks. Conclusions Combined with the conservative roles of RLEs in their efficiency in sensing metabolic signals and transmitting regulatory signals to the rest of the metabolic system, the RLEs may be important molecules in balancing energy homeostasis via maintaining the ratio of ATP to ADP in living cells. Furthermore, our results indicate that similarities of phylogenetic profiles of enzymes in the inhibiting enzyme pairs are not only correlated with enzyme topological importance, but also related with roles of the enzymes in metabolic inhibitory network. PMID:22369203

  9. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach.

    PubMed

    Kumar, Bhowmik Salil; Lee, Young-Joo; Yi, Hong Jae; Chung, Bong Chul; Jung, Byung Hwa

    2010-02-19

    In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg(-1) day(-1) or 250 mg kg(-1) day(-1) for a period of 7 days (n=4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Metabonomics uncovers a reversible proatherogenic lipid profile during infliximab therapy of inflammatory bowel disease.

    PubMed

    Bjerrum, Jacob Tveiten; Steenholdt, Casper; Ainsworth, Mark; Nielsen, Ole Haagen; Reed, Michelle Ac; Atkins, Karen; Günther, Ulrich Leonhard; Hao, Fuhua; Wang, Yulan

    2017-10-16

    One-third of inflammatory bowel disease (IBD) patients show no response to infliximab (IFX) induction therapy, and approximately half of patients responding become unresponsive over time. Thus, identification of potential treatment response biomarkers are of great clinical significance. This study employs spectroscopy-based metabolic profiling of serum from patients with IBD treated with IFX and healthy subjects (1) to substantiate the use of spectroscopy as a semi-invasive diagnostic tool, (2) to identify potential biomarkers of treatment response and (3) to characterise the metabolic changes during management of patients with tumour necrosis factor-α inhibitors. Successive serum samples collected during IFX induction treatment (weeks 0, 2, 6 and 14) from 87 IBD patients and 37 controls were analysed by 1 H nuclear magnetic resonance (NMR) spectroscopy. Data were analysed with principal components analysis and orthogonal projection to latent structures discriminant analysis using SIMCA-P+ v12 and MATLAB. Metabolic profiles were significantly different between active ulcerative colitis and controls, active Crohn's disease and controls, and quiescent Crohn's disease and controls. Metabolites holding differential power belonged primarily to lipids and phospholipids with proatherogenic characteristics and metabolites in the pyruvate metabolism, suggestive of an intense inflammation-driven energy demand. IBD patients not responding to IFX were identified as a potentially distinct group based on their metabolic profile, although no applicable response biomarkers could be singled out in the current setting. 1 H NMR spectroscopy of serum samples is a powerful semi-invasive diagnostic tool in flaring IBD. With its use, we provide unique insights into the metabolic changes taking place during induction treatment with IFX. Of distinct clinical relevance is the identification of a reversible proatherogenic lipid profile in IBD patients with active disease, which partially explains the increased risk of cardiovascular disease associated with IBD.

  11. Behavior of the Edible Seaweed Sargassum fusiforme to Copper Pollution: Short-Term Acclimation and Long-Term Adaptation

    PubMed Central

    Lin, Li-Dong; Zhang, Ai-Qin; Li, Nan; Lin, Yan-Qing; Li, Lu-Min; Wu, Qin-Qin; Yan, Xiu-Feng

    2014-01-01

    Aquatic agriculture in heavy-metal-polluted coastal areas faces major problems due to heavy metal transfer into aquatic organisms, leading to various unexpected changes in nutrition and primary and/or secondary metabolism. In the present study, the dual role of heavy metal copper (Cu) played in the metabolism of photosynthetic organism, the edible seaweed Sargassum fusiforme, was evaluated by characterization of biochemical and metabolic responses using both 1H NMR and GC-MS techniques under acute (47 µM, 1 day) and chronic stress (8 µM, 7 days). Consequently, photosynthesis may be seriously inhibited by acute Cu exposure, resulting in decreasing levels of carbohydrates, e.g., mannitol, the main products of photosynthesis. Ascorbate may play important roles in the antioxidant system, whose content was much more seriously decreased under acute than that under chronic Cu stress. Overall, these results showed differential toxicological responses on metabolite profiles of S. fusiforme subjected to acute and chronic Cu exposures that allowed assessment of impact of Cu on marine organisms. PMID:25025229

  12. Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile.

    PubMed

    Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco

    2015-12-01

    To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits.

  13. Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile

    PubMed Central

    Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco

    2015-01-01

    Abstract To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese. A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile. BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile. Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits. PMID:26717356

  14. Multi-Omics Profiling of Phytoplankton Community Metabolism: Linking Meta-Transcriptomics and Metabolomics to Elucidate Phytoplankton Physiology in a Model Coastal System

    NASA Astrophysics Data System (ADS)

    Kujawinski, E. B.; Longnecker, K.; Alexander, H.; Dyhrman, S.; Jenkins, B. D.; Rynearson, T. A.

    2016-02-01

    Phytoplankton blooms in coastal areas contribute a large fraction of primary production to the global oceans. Despite their central importance, there are fundamental unknowns in phytoplankton community metabolism, which limit the development of a more complete understanding of the carbon cycle. Within this complex setting, the tools of systems biology hold immense potential for profiling community metabolism and exploring links to the carbon cycle, but have rarely been applied together in this context. Here we focus on phytoplankton community samples collected from a model coastal system over a three-week period. At each sampling point, we combined two assessments of metabolic function: the meta-transcriptome, or the genes that are expressed by all organisms at each sampling point, and the metabolome, or the intracellular molecules produced during the community's metabolism. These datasets are inherently complementary, with gene expression likely to vary in concert with the concentrations of metabolic intermediates. Indeed, preliminary data show coherence in transcripts and metabolites associated with nutrient stress response and with fixed carbon oxidation. To date, these datasets are rarely integrated across their full complexity but together they provide unequivocal evidence of specific metabolic pathways by individual phytoplankton taxa, allowing a more comprehensive systems view of this dynamic environment. Future application of multi-omic profiling will facilitate a more complete understanding of metabolic reactions at the foundation of the carbon cycle.

  15. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the targetmore » tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.« less

  16. Measuring Mitochondrial Function in Permeabilized Cells Using the Seahorse XF Analyzer or a Clark-Type Oxygen Electrode.

    PubMed

    Divakaruni, Ajit S; Rogers, George W; Murphy, Anne N

    2014-05-27

    Measurements of mitochondrial respiration in intact cells can help define metabolism and its dysregulation in fields such as cancer, metabolic disease, immunology, and neurodegeneration. Although cells can be offered various substrates in the assay medium, many cell types can oxidize stored pools of energy substrates. A general bioenergetic profile can therefore be obtained using intact cells, but the inability to control substrate provision to the mitochondria can restrict an in-depth, mechanistic understanding. Mitochondria can be isolated from intact cells, but the yield and quality of the end product is often poor and prone to subselection during isolation. Plasma membrane permeabilization of cells provides a solution to this challenge, allowing experimental control of the medium surrounding the mitochondria. This unit describes techniques to measure respiration in permeabilized adherent cells using a Seahorse XF Analyzer or permeabilized suspended cells in a Hansatech Oxygraph. Copyright © 2014 John Wiley & Sons, Inc.

  17. Metabolic screening and metabolomics analysis in the Intellectual Developmental Disorders Mexico Study.

    PubMed

    Ibarra-González, Isabel; Rodríguez-Valentín, Rocío; Lazcano-Ponce, Eduardo; Vela-Amieva, Marcela

    2017-01-01

    Inborn errors of metabolism (IEM) are genetic conditions that are sometimes associated with intellectual developmental disorders (IDD). The aim of this study is to contribute to the metabolic characterization of IDD of unknown etiology in Mexico. Metabolic screening using tandem mass spectrometry and fluorometry will be performed to rule out IEM. In addition, target metabolomic analysis will be done to characterize the metabolomic profile of patients with IDD. Identification of new metabolomic profiles associated with IDD of unknown etiology and comorbidities will contribute to the development of novel diagnostic and therapeutic schemes for the prevention and treatment of IDD in Mexico.

  18. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats.

    PubMed

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-08-04

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution ¹H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats.

  19. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats

    PubMed Central

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-01-01

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats. PMID:27527211

  20. Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children

    PubMed Central

    Martin, Francois-Pierre; Su, Ming-Ming; Xie, Guo-Xiang; Guiraud, Seu Ping; Kussmann, Martin; Godin, Jean-Philippe; Jia, Wei; Nydegger, Andreas

    2017-01-01

    AIM To identify metabolic signatures in urine samples from healthy and inflammatory bowel disease (IBD) children. METHODS We applied liquid chromatography and gas chromatography coupled to targeted mass spectrometry (MS)-based metabolite profiling to identify and quantify bile acids and host-gut microbial metabolites in urine samples collected from 21 pediatric IBD patients monitored three times over one year (baseline, 6 and 12 mo), and 27 age- and gender-matched healthy children. RESULTS urinary metabolic profiles of IBD children differ significantly from healthy controls. Such metabolic differences encompass central energy metabolism, amino acids, bile acids and gut microbial metabolites. In particular, levels of pyroglutamic acid, glutamic acid, glycine and cysteine, were significantly higher in IBD children in the course of the study. This suggests that glutathione cannot be optimally synthesized and replenished. Whilst alterations of the enterohepatic circulation of bile acids in pediatric IBD patients is known, we show here that non-invasive urinary bile acid profiling can assess those altered hepatic and intestinal barrier dysfunctions. CONCLUSION The present study shows how non-invasive sampling of urine followed by targeted MS-based metabonomic analysis can elucidate and monitor the metabolic status of children with different GI health/disease status. PMID:28611517

  1. Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    PubMed

    Li, Yanjie; Song, Xue; Zhao, Xinjie; Zou, Lijuan; Xu, Guowang

    2014-09-01

    Lung cancer is currently the leading cause of cancer-related mortality worldwide. It is, therefore, important to enhance understanding and add a new auxiliary detection tool of lung cancer. In this work, serum metabolic characteristics of lung cancer were investigated with a non-targeted metabolomics method. The metabolic profiling of 23 patients with lung cancer and 23 healthy controls were analyzed using ultra high performance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC/Q-TOF MS). Partial least squares discriminant analysis (PLS-DA) model of the metabolic data allowed the clear separation of the lung cancer patients from the healthy controls. In total, 27 differential metabolites were identified, which were mostly related to the perturbation of lipid metabolism, including choline, free fatty acids, lysophosphatidylcholines, etc. Choline and linoleic acid were defined as one combinational biomarker using binary logistic regression, which was supported by the validation with a smaller sample-set (9 patients and 9 healthy controls). These findings show that LC/MS-based serum metabolic profiling has potential application in complementary identification of lung cancer patients, and could be a powerful tool for cancer research. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Metabolomics Analysis of Human Vitreous in Diabetic Retinopathy and Rhegmatogenous Retinal Detachment.

    PubMed

    Haines, Nathan R; Manoharan, Niranjan; Olson, Jeffrey L; D'Alessandro, Angelo; Reisz, Julie A

    2018-06-19

    The vitreous humor is a highly aqueous eye fluid interfacing with the retina and lens and providing shape. Its molecular composition provides a readout for the eye's physiological status. Changes in cellular metabolism underlie vitreoretinal pathologies, but despite routine surgical collection of vitreous, only limited reports of metabolism in the vitreous of human patients have been described. Vitreous samples from patients with rhegmatogenous retinal detachment ( n = 25) and proliferative diabetic retinopathy ( n = 9) were profiled along with control human vitreous samples ( n = 8) by untargeted mass-spectrometry-based metabolomics. Profound changes were observed in diabetic retinopathy vitreous, including altered glucose metabolism and activation of the pentose phosphate pathway, which provides reducing equivalents to counter oxidative stress. In addition, purine metabolism was altered in diabetic retinopathy, with decreased xanthine and elevated levels of related purines (inosine, hypoxanthine, urate, allantoate) generated in oxidant-producing reactions. In contrast, the vitreous metabolite profiles of retinal detachment patients were similar to controls. In total, our results suggest a rewiring of vitreous metabolism in diabetic retinopathy that underlies disease features such as oxidative stress and furthermore illustrates how the vitreous metabolic profile may be impacted by disease.

  3. Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women.

    PubMed

    Moazzami, Ali A; Shrestha, Aahana; Morrison, David A; Poutanen, Kaisa; Mykkänen, Hannu

    2014-06-01

    Changes in serum metabolic profile after the intake of different food products (e.g., bread) can provide insight into their interaction with human metabolism. Postprandial metabolic responses were compared after the intake of refined wheat (RWB), whole-meal rye (WRB), and refined rye (RRB) breads. In addition, associations between the metabolic profile in fasting serum and the postprandial concentration of insulin in response to different breads were investigated. Nineteen postmenopausal women with normal fasting glucose and normal glucose tolerance participated in a randomized, controlled, crossover meal study. The test breads, RWB (control), RRB, and WRB, providing 50 g of available carbohydrate, were each served as a single meal. The postprandial metabolic profile was measured using nuclear magnetic resonance and targeted LC-mass spectrometry and was compared between different breads using ANOVA and multivariate models. Eight amino acids had a significant treatment effect (P < 0.01) and a significant treatment × time effect (P < 0.05). RWB produced higher postprandial concentrations of leucine (geometric mean: 224; 95% CI: 196, 257) and isoleucine (mean ± SD: 111 ± 31.5) compared with RRB (geometric mean: 165; 95% CI: 147, 186; mean ± SD: 84.2 ± 22.9) and WRB (geometric mean: 190; 95% CI: 174, 207; mean ± SD: 95.8 ± 17.3) at 60 min respectively (P < 0.001). In addition, 2 metabolic subgroups were identified using multivariate models based on the association between fasting metabolic profile and the postprandial concentration of insulin. Women with higher fasting concentrations of leucine and isoleucine and lower fasting concentrations of sphingomyelins and phosphatidylcholines had higher insulin responses despite similar glucose concentration after all kinds of bread (cross-validated ANOVA, P = 0.048). High blood concentration of branched-chain amino acids, i.e., leucine and isoleucine, has been associated with the increased risk of diabetes, which suggests that additional consideration should be given to bread proteins in understanding the beneficial health effects of different kinds of breads. The present study suggests that the fasting metabolic profile can be used to characterize the postprandial insulin demand in individuals with normal glucose metabolism that can be used for establishing strategies for the stratification of individuals in personalized nutrition. © 2014 American Society for Nutrition.

  4. Gas chromatography-mass spectrometry-based metabolic profiling of cerebrospinal fluid from epileptic dogs.

    PubMed

    Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo

    2014-04-01

    Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.

  5. Effect of bariatric surgery on adiposity and metabolic profiles: A prospective cohort study in Middle-Eastern patients.

    PubMed

    Mazidi, Mohsen; Rezaie, Peyman; Jangjoo, Ali; Tavassoli, Alireza; Rajabi, Mohammad Taghi; Kengne, Andre Pascal; Nematy, Mohsen

    2017-07-15

    To investigate changes in adiposity and cardio-metabolic risk profile following Roux-en-Y gastric bypass in patients of Middle Eastern ethnicity with severe obesity. This prospective cohort study involved 92 patients who met the indications of bariatric surgery. Post-procedure markers of obesity and cardiometabolic profile were monitored regularly for a year. Mean body mass index decreased by 29.5% from 41.9 to 29.5 kg/m 2 between baseline and 12-mo follow-up, while mean fat mass decreased by 45.9% from 64.2 kg to 34.7 kg. An improvement was also observed in the gluco-metabolic profile with both fasting glucose and HbA1c substantially decreasing ( P < 0.001). The present study shows the short to medium term (1 year) health benefits of bariatric surgery for patients of Middle Eastern ethnicity.

  6. LC-MS Proteomics Analysis of the Insulin/IGF-1 Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depuydt, Geert G.; Xie, Fang; Petyuk, Vladislav A.

    2014-02-20

    The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity and metabolism in C. elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass-spectrometry (LC-MS) based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2); daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the up-regulation of many core intermediarymore » metabolic pathways. These include, glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complex I, II, III and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative for spatio-temporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves, possibly also shunting metabolites through alternative energy-generating pathways, in order to sustain longevity.« less

  7. LC–MS Proteomics Analysis of the Insulin/IGF-1-Deficient Caenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depuydt, Geert; Xie, Fang; Petyuk, Vladislav A.

    2014-04-04

    The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC–MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediarymore » metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. Finally, this restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.« less

  8. Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress

    PubMed Central

    Das, Aayudh; Rushton, Paul J.; Rohila, Jai S.

    2017-01-01

    Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions. PMID:28587097

  9. Metabolism estimates in small boreal lakes: the importance of accounting for vertical fluxes of oxygen

    NASA Astrophysics Data System (ADS)

    Klaus, M.; MacIntyre, S.; Hotchkiss, E. R.; Bergström, A. K.; Karlsson, J.

    2015-12-01

    Lake metabolism models based on the diel oxygen technique often assume that oxygen dynamics are mainly controlled by metabolic processes, only accounting for wind-driven atmospheric gas exchange. However, oxygen dynamics can also be affected by abiotic mass fluxes across oxygen gradients within lakes and atmospheric gas exchange driven by convection. Here, we quantify how much vertical fluxes of oxygen modify epilimnetic metabolism estimates for three pairs of small Swedish boreal lakes, one of each fertilized with nitrate, with dissolved organic carbon (DOC) concentrations of 7 to 22 mg l-1. Oxygen concentrations were measured every 10 min at 50 cm depth and biweekly across depths profiles during one full open water period. Based on additional two weeks of ten-minute oxygen profiling we calculated vertical fluxes of oxygen using equations for atmospheric gas exchange caused by wind shear (F1) and convection (F2), and lake-internal gas exchange caused by diffusion and mixed layer deepening (F3). We ran three inverse Bayesian models to estimate daily metabolism: (M1) accounting for F1, (M2) accounting for F1 and F2, and (M3) accounting for F1 and F3. Initial results suggest that gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) ranged from 0.1 to 0.2, -0.3 to -0.5 and -0.2 to -0.4 g C m-2 d-1, respectively. GPP and R were higher in fertilized lakes and at the lower end of previous worldwide estimates. Accounting for convection-driven gas exchange increased ER estimates by 10-40% (M2 vs. M1). This bias increased with DOC concentration but was not affected by fertilization. Including lake-internal vertical oxygen fluxes changed GPP and ER estimates by up to ±40% (M3 vs. M1), with inconsistent trends along the DOC-gradient. We conclude that vertical fluxes of oxygen can significantly affect diel oxygen dynamics in oligotrophic humic systems and should therefore be included in metabolism models applied to small boreal lakes.

  10. Plasma metabolic profiling on postoperative colorectal cancer patients with different traditional Chinese medicine syndromes.

    PubMed

    Hu, Xue-Qing; Wei, Bin; Song, Ya-Nan; Ji, Qing; Li, Qi; Luo, Yun-Quan; Wang, Wen-Hai; Su, Shi-Bing

    2018-02-01

    This study aims to investigate the metabolic profiles of postoperative colorectal cancer (PCRC) patients with different traditional Chinese medicine (TCM) syndromes and to discuss the metabolic mechanism under PCRC progression and TCM syndrome classification. Fifty healthy controls (HC) and 70 PCRC patients, including 10 Dampness and heat syndrome (DHS), 33 Spleen deficiency syndrome (SDS), 19 Liver and kidney Yin deficiency syndrome (LKYDS) and 8 with non-TCM syndrome (NS) were enrolled. Plasma metabolic profiles were detected by Gas chromatography-mass spectrometry (GC-MS) and analyzed by principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA). Furthermore, pathway enrichment was analyzed based on KEGG and DAVID databases and metabolic network was constructed via metaboanalyst and cytoscape. The top-3 metabolites with higher abundance in PCRC compared with HC were terephthalic acid (165.417-fold), ornithine (24.484-fold) and aminomalonic acid (21.346-fold). And the cholesterol (0.588-fold) level was decreased in PCRC. l-Alanine, 1, 2-ethanediamine, urea, glycerol, glycine, aminomalonic acid, creatinine and palmitic acid were specifically altered in the DHS, while d-tryptophan was exclusively changed in SDS, and l-proline, 1, 2, 3-propanetricarboxylic acid, d-galactose and 2-indolecarboxylic acids in LKYDS. The plasma metabolic profiles were perturbed in PCRC patients. Increased levels of terephthalic acid might indicate high risk of relapse and elevated ornithine may contribute to the post-operational recovery or may raise the susceptibility to PCRC recurrence. The metabolic profiles of DHS, SDS, LKYDS and NS were almost separately clustered, indicating the possibility of explaining TCM syndromes classification using metabolomics. Furthermore, creatinine and aminomalonic acid alternation might correlate with the formation of DHS, while d-tryptophan may associate with SDS and d-galactose and 1, 2, 3-propanetricarboxylic acid may relate to LKYDS. As numbers of patients in each TCM syndrome are small, further study is needed to verify those results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Intervention of pumpkin seed oil on metabolic disease revealed by metabonomics and transcript profile.

    PubMed

    Zhao, Xiu-Ju; Chen, Yu-Lian; Fu, Bing; Zhang, Wen; Liu, Zhiguo; Zhuo, Hexian

    2017-03-01

    Understanding the metabolic and transcription basis of pumpkin seed oil (PSO) intervention on metabolic disease (MD) is essential to daily nutrition and health. This study analyzed the liver metabolic variations of Wistar rats fed normal diet (CON), high-fat diet (HFD) and high-fat plus PSO diet (PSO) to establish the relationship between the liver metabolite composition/transcript profile and the effects of PSO on MD. By using proton nuclear magnetic resonance spectroscopy together with multivariate data analysis, it was found that, compared with CON rats, HFD rats showed clear dysfunctions of choline metabolism, glucose metabolism and nucleotide and amino acid metabolism. Using quantitative real-time polymerase chain reaction (qPCR), it was found that, compared with HFD rats, PSO rats showed alleviated endoplasmic reticulum stress accompanied by lowered unfolded protein response. These findings provide useful information to understand the metabolic alterations triggered by MD and to evaluate the effects of PSO intervention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Diet-gene interactions underlie metabolic individuality and influence brain development: implications for clinical practice derived from studies on choline metabolism.

    PubMed

    Zeisel, Steven H

    2012-01-01

    One of the underlying mechanisms for metabolic individuality is genetic variation. Single nucleotide polymorphisms (SNPs) in genes of metabolic pathways can create metabolic inefficiencies that alter the dietary requirement for, and responses to, nutrients. These SNPs can be detected using genetic profiling and the metabolic inefficiencies they cause can be detected using metabolomic profiling. Studies on the human dietary requirement for choline illustrate how useful these new approaches can be, as this requirement is influenced by SNPs in genes of choline and folate metabolism. In adults, these SNPs determine whether people develop fatty liver, liver damage and muscle damage when eating diets low in choline. Because choline is very important for fetal development, these SNPs may identify women who need to eat more choline during pregnancy. Some of the actions of choline are mediated by epigenetic mechanisms that permit 'retuning' of metabolic pathways during early life. Copyright © 2012 S. Karger AG, Basel.

  13. Metabolic risk in schoolchildren is associated with low levels of cardiorespiratory fitness, obesity, and parents' nutritional profile.

    PubMed

    Todendi, Pâmela Ferreira; Valim, Andréia Rosane de Moura; Reuter, Cézane Priscila; Mello, Elza Daniel de; Gaya, Anelise Reis; Burgos, Miria Suzana

    2016-01-01

    Verify the association between metabolic risk profile in students with different levels of cardiorespiratory fitness and body mass index, as well as the nutritional status of their parents. A cross-sectional study comprising 1.254 schoolchildren aged between seven and 17 years. The metabolic risk profile was calculated by summing the standardized values of high density lipoproteins and low density lipoproteins, triglycerides, glucose and systolic blood pressure. The parents' nutritional status was evaluated by self-reported weight and height data, for body mass index calculating. The body mass index of schoolchildren was classified as underweight/normal weight and overweight/obesity. The cardiorespiratory fitness was assessed by 9-minute running/walk test, being categorized as fit (good levels) and unfit (low levels). Data were analyzed using prevalence ratio values (PR). The data indicates a higher occurrence of developing metabolic risk in schoolchildren whose mother is obese (PR: 1.50; 95% CI: 1.01, 2.23), and even higher for those whose father and mother are obese (PR: 2, 79, 95% CI: 1.41; 5.51). Students who have low levels of cardiorespiratory fitness and overweight/obesity have higher occurrence of presenting metabolic risk profile (PR: 5.25; 95% CI: 3.31; 8.16). the occurrence of developing metabolic risk in schoolchildren increase when they have low levels of cardiorespiratory fitness and overweight/obesity, and the presence of parental obesity. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  14. Metabolic profiling of Hoodia, Chamomile, Terminalia Species and evaluation of commercial preparations using Ultra-High Performance Quadrupole Time of Flight-Mass Spectrometry

    USDA-ARS?s Scientific Manuscript database

    Ultra-High Performance-Quadrupole Time of Flight Mass Spectrometr(UHPLC-QToF-MS)profiling has become an impattant tool for identification of marker compounds and generation of metabolic patterns that could be interrogated using chemometric modeling software. Chemometric approaches can be used to ana...

  15. Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiamco, Mia M.; Mohamed, Abdelrhman; Reardon, Patrick N.

    Biofilms alter their metabolism in response to environmental stress. This study explores the effect of a hyperosmotic agent–antibiotic treatment on the metabolism of Staphylococcus aureus biofilms through the use of nuclear magnetic resonance (NMR) techniques. To determine the metabolic activity of S. aureus, we quantified the concentrations of metabolites in spent medium using high-resolution NMR spectroscopy. Biofilm porosity, thickness, biovolume, and relative diffusion coefficient depth profiles were obtained using NMR microimaging. Dissolved oxygen (DO) concentration was measured to determine the availability of oxygen within the biofilm. Under vancomycin-only treatment, the biofilm communities switched to anaerobic fermentation, as evidenced by highmore » concentrations of formate, acetate, and lactate, and there was no detectable dissolved oxygen in the biofilm. Anaerobic conditions such as fermentation can signify that biofilm is combating antibiotic stress by developing resistance. In addition, we observed the highest consumption of pyruvate, the sole carbon source, under the vancomycin-only treatment. On the other hand, relative effective diffusion coefficients increased under vancomycin-only treatment but decreased under maltodextrin-only and combined treatments. No change was observed in either biofilm thickness or biovolume for biofilms treated with maltodextrin-only or in combination with vancomycin. This indicates that biofilm growth was halted during maltodextrin-only and combined treatments. Overall, we demonstrated that the metabolic activity of S. aureus biofilm is affected by hyperosmotic and antibiotic stress.« less

  16. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    PubMed

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  17. Monitoring the ripening process of Cheddar cheese based on hydrophilic component profiling using gas chromatography-mass spectrometry.

    PubMed

    Ochi, H; Sakai, Y; Koishihara, H; Abe, F; Bamba, T; Fukusaki, E

    2013-01-01

    We proposed an application methodology that combines metabolic profiling with multiple appropriate multivariate analyses and verified it on the industrial scale of the ripening process of Cheddar cheese to make practical use of hydrophilic low-molecular-weight compound profiling using gas chromatography-mass spectrometry to design optimal conditions and quality monitoring of the cheese ripening process. Principal components analysis provided an overview of the effect of sodium chloride content and kind of lactic acid bacteria starter on the metabolic profile in the ripening process of Cheddar cheese and orthogonal partial least squares-discriminant analysis unveiled the difference in characteristic metabolites. When the sodium chloride contents were different (1.6 and 0.2%) but the same lactic acid bacteria starter was used, the 2 cheeses were classified by orthogonal partial least squares-discriminant analysis from their metabolic profiles, but were not given perfect discrimination. Not much difference existed in the metabolic profile between the 2 cheeses. Compounds including lactose, galactose, lactic acid, 4-aminobutyric acid, and phosphate were identified as contents that differed between the 2 cheeses. On the other hand, in the case of the same salt content of 1.6%, but different kinds of lactic acid bacteria starter, an excellent distinctive discrimination model was obtained, which showed that the difference of lactic acid bacteria starter caused an obvious difference in metabolic profiles. Compounds including lactic acid, lactose, urea, 4-aminobutyric acid, galactose, phosphate, proline, isoleucine, glycine, alanine, lysine, leucine, valine, and pyroglutamic acid were identified as contents that differed between the 2 cheeses. Then, a good sensory prediction model for "rich flavor," which was defined as "thick and rich, including umami taste and soy sauce-like flavor," was constructed based on the metabolic profile during ripening using partial least squares regression analysis. The amino acids proline, leucine, valine, isoleucine, pyroglutamic acid, alanine, glutamic acid, glycine, lysine, tyrosine, serine, phenylalanine, methionine, aspartic acid, and ornithine were extracted as ripening process markers. The present study is not limited to Cheddar cheese and can be applied to various maturation-type natural cheeses. This study provides the technical platform for designing optimal conditions and quality monitoring of the cheese ripening process. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. GENE EXPRESSION PROFILING IN AGING RATS AND MICE REVEALS CHANGES IN XENOBIOTIC METABOLISM GENES

    EPA Science Inventory

    Detoxification and elimination of xenobiotics are major functions of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of xenobiotic metabolizing enzymes (XMEs), i...

  19. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    PubMed Central

    Klevenhusen, Fenja; Humer, Elke; Metzler-Zebeli, Barbara; Podstatzky-Lichtenstein, Leopold; Wittek, Thomas; Zebeli, Qendrim

    2015-01-01

    Simple Summary This research established an association between lactation number and milk production and metabolic and inflammatory responses in high-producing dairy cows affected by left abomasal displacement in small-scaled dairy farms. The study showed metabolic alterations, liver damage, and inflammation in the sick cows, which were further exacerbated with increasing lactation number and milk yield of the cows. Abstract Left displaced abomasum (LDA) is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1) evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2) establish an association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca), but greater concentrations of non-esterified fatty acids (NEFA) and beta-hydroxy-butyrate (BHBA), in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA), regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA. PMID:26479481

  20. Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling

    PubMed Central

    Zamboni, Anita; Minoia, Leone; Ferrarini, Alberto; Tornielli, Giovanni Battista; Zago, Elisa; Delledonne, Massimo; Pezzotti, Mario

    2008-01-01

    Post-harvest withering of grape berries is used in the production of dessert and fortified wines to alter must quality characteristics and increase the concentration of simple sugars. The molecular processes that occur during withering are poorly understood, so a detailed transcriptomic analysis of post-harvest grape berries was carried out by AFLP-transcriptional profiling analysis. This will help to elucidate the molecular mechanisms of berry withering and will provide an opportunity to select markers that can be used to follow the drying process and evaluate different drying techniques. AFLP-TP identified 699 withering-specific genes, 167 and 86 of which were unique to off-plant and on-plant withering, respectively. Although similar molecular events were revealed in both withering processes, it was apparent that off-plant withering induced a stronger dehydration stress response resulting in the high level expression of genes involved in stress protection mechanisms, such as dehydrin and osmolite accumulation. Genes involved in hexose metabolism and transport, cell wall composition, and secondary metabolism (particularly the phenolic and terpene compound pathways) were similarly regulated in both processes. This work provides the first comprehensive analysis of the molecular events underpinning post-harvest withering and could help to define markers for different withering processes. PMID:19010774

  1. Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling.

    PubMed

    Zamboni, Anita; Minoia, Leone; Ferrarini, Alberto; Tornielli, Giovanni Battista; Zago, Elisa; Delledonne, Massimo; Pezzotti, Mario

    2008-01-01

    Post-harvest withering of grape berries is used in the production of dessert and fortified wines to alter must quality characteristics and increase the concentration of simple sugars. The molecular processes that occur during withering are poorly understood, so a detailed transcriptomic analysis of post-harvest grape berries was carried out by AFLP-transcriptional profiling analysis. This will help to elucidate the molecular mechanisms of berry withering and will provide an opportunity to select markers that can be used to follow the drying process and evaluate different drying techniques. AFLP-TP identified 699 withering-specific genes, 167 and 86 of which were unique to off-plant and on-plant withering, respectively. Although similar molecular events were revealed in both withering processes, it was apparent that off-plant withering induced a stronger dehydration stress response resulting in the high level expression of genes involved in stress protection mechanisms, such as dehydrin and osmolite accumulation. Genes involved in hexose metabolism and transport, cell wall composition, and secondary metabolism (particularly the phenolic and terpene compound pathways) were similarly regulated in both processes. This work provides the first comprehensive analysis of the molecular events underpinning post-harvest withering and could help to define markers for different withering processes.

  2. Metabolic profiling and predicting the free radical scavenging activity of guava (Psidium guajava L.) leaves according to harvest time by 1H-nuclear magnetic resonance spectroscopy.

    PubMed

    Kim, So-Hyun; Cho, Somi K; Hyun, Sun-Hee; Park, Hae-Eun; Kim, Young-Suk; Choi, Hyung-Kyoon

    2011-01-01

    Guava leaves were classified and the free radical scavenging activity (FRSA) evaluated according to different harvest times by using the (1)H-NMR-based metabolomic technique. A principal component analysis (PCA) of (1)H-NMR data from the guava leaves provided clear clusters according to the harvesting time. A partial least squares (PLS) analysis indicated a correlation between the metabolic profile and FRSA. FRSA levels of the guava leaves harvested during May and August were high, and those leaves contained higher amounts of 3-hydroxybutyric acid, acetic acid, glutamic acid, asparagine, citric acid, malonic acid, trans-aconitic acid, ascorbic acid, maleic acid, cis-aconitic acid, epicatechin, protocatechuic acid, and xanthine than the leaves harvested during October and December. Epicatechin and protocatechuic acid among those compounds seem to have enhanced FRSA of the guava leaf samples harvested in May and August. A PLS regression model was established to predict guava leaf FRSA at different harvesting times by using a (1)H-NMR data set. The predictability of the PLS model was then tested by internal and external validation. The results of this study indicate that (1)H-NMR-based metabolomic data could usefully characterize guava leaves according to their time of harvesting.

  3. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions

    PubMed Central

    Briand, Enora; Bormans, Myriam; Gugger, Muriel; Dorrestein, Pieter C.; Gerwick, William H.

    2016-01-01

    Summary The cyanobacteria Microcystis proliferate in freshwater ecosystems and produce bioactive compounds including the harmful toxins microcystins (MC). These secondary metabolites play an important role in shaping community composition through biotic interactions although their role and mode of regulation are poorly understood. As natural cyanobacterial populations include producing and non-producing strains, we tested if the production of a range of peptides by coexisting cells could be regulated through intraspecific interactions. With an innovative co-culturing chamber together with advanced mass spectrometry (MS) techniques, we monitored the growth and compared the metabolic profiles of a MC-producing as well as two non-MC-producing Microcystis strains under mono- and co-culture conditions. In monocultures, these strains grew comparably; however, the non-MC-producing mutant produced higher concentrations of cyanopeptolins, aerucyclamides and aeruginosins than the wild type. Physiological responses to co-culturing were reflected in a quantitative change in the production of the major peptides. Using a MS/MS-based molecular networking approach, we identified new analogues of known classes of peptides as well as new compounds. This work provides new insights into the factors that regulate the production of MC and other secondary metabolites in cyanobacteria, and suggests interchangeable or complementary functions allowing bloom-forming cyanobacteria to efficiently colonize and dominate in fluctuating aquatic environments. PMID:25980449

  4. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation.

    PubMed

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M; Young, Vincent B; Jansson, Janet K; Fredricks, David N; Borenstein, Elhanan

    2016-01-01

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites' abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism.

  5. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    PubMed Central

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.

    2016-01-01

    ABSTRACT Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. IMPORTANCE Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism. PMID:27239563

  6. Omics Approaches To Probe Microbiota and Drug Metabolism Interactions.

    PubMed

    Nichols, Robert G; Hume, Nicole E; Smith, Philip B; Peters, Jeffrey M; Patterson, Andrew D

    2016-12-19

    The drug metabolism field has long recognized the beneficial and sometimes deleterious influence of microbiota in the absorption, distribution, metabolism, and excretion of drugs. Early pioneering work with the sulfanilamide precursor prontosil pointed toward the necessity not only to better understand the metabolic capabilities of the microbiota but also, importantly, to identify the specific microbiota involved in the generation and metabolism of drugs. However, technological limitations important for cataloging the microbiota community as well as for understanding and/or predicting their metabolic capabilities hindered progress. Current advances including mass spectrometry-based metabolite profiling as well as culture-independent sequence-based identification and functional analysis of microbiota have begun to shed light on microbial metabolism. In this review, case studies will be presented to highlight key aspects (e.g., microbiota identification, metabolic function and prediction, metabolite identification, and profiling) that have helped to clarify how the microbiota might impact or be impacted by drug metabolism. Lastly, a perspective of the future of this field is presented that takes into account what important knowledge is lacking and how to tackle these problems.

  7. The Effect of Metabolic and Bariatric Surgery on DNA Methylation Patterns.

    PubMed

    Morcillo, Sonsoles; Macías-González, Manuel; Tinahones, Francisco J

    2017-08-30

    Metabolic and bariatric surgery (MBS) is considered to be the most effective treatment for obesity. Not only due to the significant weight reduction but also because of the many health benefits associated with it. In the last 5 years, several studies have suggested that epigenetic modifications could be involved in the mechanisms underlying the response to bariatric surgery. In this review, we will compile the different studies (2012-2017) concerning the effect of this surgical procedure on DNA methylation patterns (the most studied epigenetic marker) and its association with metabolic improvement. This is an emerging area, and currently, there are not many studies in the literature. The aim is to show what has been done so far and what the future direction in this emerging area might be. Recent findings have shown how metabolic and bariatric surgery modifies the DNA methylation profile of the specific genes associated with the pathophysiology of the disease. The studies were performed in morbidly obese subjects, mainly in women, with the aim of reducing weight and improving the obesity-associated comorbidities. DNA methylation has been measured both in specific tissue and in peripheral blood samples. In general, studies about site-specific DNA methylation have shown a change in the methylation profile after surgery, whereas the studies analyzing global DNA methylation are not so conclusive. Summing up, metabolic and bariatric surgery can modify the DNA methylation profile of different genes and contributes to the metabolic health benefits that are often seen after metabolic and bariatric surgery. Although there are still many issues to be resolved, the capacity to revert the DNA methylation profile of specific sites opens a window for searching for target markers to treat obesity-related comorbidities.

  8. Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.

    PubMed

    Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P

    Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  9. Sucralose.

    PubMed

    AlDeeb, Omar A A; Mahgoub, Hoda; Foda, Nagwa H

    2013-01-01

    Sucralose is a nonnutritive, zero-calorie artificial sweetener. It is a chlorinated sugar substitute that is about 600 times as sweet as sucrose. It is produced from sucrose when three chlorine atoms replace three hydroxyl groups. It is consumed as tablets (Blendy) by diabetic and obese patients. It is also used as an excipient in drug manufacturing. Unlike other artificial sweeteners, it is stable when heated and can, therefore, be used in baked and fried foods. The FDA approved sucralose in 1998. This review presents a comprehensive profile for sucralose including physical, analytical, and ADME profiles and methods of its synthesis. Spectral data for X-ray powder diffraction and DSC of sucralose are recorded and presented. The authors also recorded FT-IR, (1)H- and (13)C NMR, and ESI-MS spectra. Interpretation with detailed spectral assignments is provided. The analytical profile of sucralose covered the compendial methods, spectroscopic, and different chromatographic analytical techniques. The ADME profile covered all absorption, distribution, metabolism, and elimination data in addition to pharmacokinetics and pharmacological effects of sucralose. Some nutritional aspects for sucralose in obesity and diabetes are also presented. Both chemical and microbiological synthesis schemes for sucralose are reviewed and included. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles.

    PubMed

    Glaubitz, Ulrike; Li, Xia; Schaedel, Sandra; Erban, Alexander; Sulpice, Ronan; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2017-01-01

    Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars. © 2016 John Wiley & Sons Ltd.

  11. Gut Microbiota Markers in Obese Adolescent and Adult Patients: Age-Dependent Differential Patterns.

    PubMed

    Del Chierico, Federica; Abbatini, Francesca; Russo, Alessandra; Quagliariello, Andrea; Reddel, Sofia; Capoccia, Danila; Caccamo, Romina; Ginanni Corradini, Stefano; Nobili, Valerio; De Peppo, Francesco; Dallapiccola, Bruno; Leonetti, Frida; Silecchia, Gianfranco; Putignani, Lorenza

    2018-01-01

    Obesity levels, especially in children, have dramatically increased over the last few decades. Recently, several studies highlighted the involvement of gut microbiota in the pathophysiology of obesity. We investigated the composition of gut microbiota in obese adolescents and adults compared to age-matched normal weight (NW) volunteers in order to assemble age- and obesity-related microbiota profiles. The composition of gut microbiota was analyzed by 16S rRNA-based metagenomics. Ecological representations of microbial communities were computed, and univariate, multivariate, and correlation analyses performed on bacterial profiles. The prediction of metagenome functional content from 16S rRNA gene surveys was carried out. Ecological analyses revealed a dissimilarity among the subgroups, and resultant microbiota profiles differed between obese adolescents and adults. Using statistical analyses, we assigned, as microbial markers, Faecalibacterium prausnitzii and Actinomyces to the microbiota of obese adolescents, and Parabacteroides , Rikenellaceae, Bacteroides caccae , Barnesiellaceae, and Oscillospira to the microbiota of NW adolescents. The predicted metabolic profiles resulted different in adolescent groups. Particularly, biosynthesis of primary bile acid and steroid acids, metabolism of fructose, mannose, galactose, butanoate, and pentose phosphate and glycolysis/gluconeogenesis were for the majority associated to obese, while biosynthesis and metabolism of glycan, biosynthesis of secondary bile acid, metabolism of steroid hormone and lipoic acid were associated to NW adolescents. Our study revealed unique features of gut microbiota in terms of ecological patterns, microbial composition and metabolism in obese patients. The assignment of novel obesity bacterial markers may open avenues for the development of patient-tailored treatments dependent on age-related microbiota profiles.

  12. Intraspecific variability in allelopathy of Heracleum mantegazzianum is linked to the metabolic profile of root exudates

    PubMed Central

    Jandová, Kateřina; Dostál, Petr; Cajthaml, Tomáš; Kameník, Zdeněk

    2015-01-01

    Background and Aims Allelopathy may drive invasions of some exotic plants, although empirical evidence for this theory remains largely inconclusive. This could be related to the large intraspecific variability of chemically mediated plant–plant interactions, which is poorly studied. This study addressed intraspecific variability in allelopathy of Heracleum mantegazzianum (giant hogweed), an invasive species with a considerable negative impact on native communities and ecosystems. Methods Bioassays were carried out to test the alleopathic effects of H. mantegazzianum root exudates on germination of Arabidopsis thaliana and Plantago lanceolata. Populations of H. mantegazzianum from the Czech Republic were sampled and variation in the phytotoxic effects of the exudates was partitioned between areas, populations within areas, and maternal lines. The composition of the root exudates was determined by metabolic profiling using ultra-high-performance liquid chromatography with time-of-flight mass spectrometry, and the relationships between the metabolic profiles and the effects observed in the bioassays were tested using orthogonal partial least-squares analysis. Key Results Variance partitioning indicated that the highest variance in phytotoxic effects was within populations. The inhibition of germination observed in the bioassay for the co-occurring native species P. lanceolata could be predicted by the metabolic profiles of the root exudates of particular maternal lines. Fifteen compounds associated with this inhibition were tentatively identified. Conclusions The results present strong evidence that intraspecific variability needs to be considered in research on allelopathy, and suggest that metabolic profiling provides an efficient tool for studying chemically mediated plant–plant interactions whenever unknown metabolites are involved. PMID:25714817

  13. Concurrent and aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents.

    PubMed

    Monteiro, Paula Alves; Chen, Kong Y; Lira, Fabio Santos; Saraiva, Bruna Thamyres Cicotti; Antunes, Barbara Moura Mello; Campos, Eduardo Zapaterra; Freitas, Ismael Forte

    2015-11-26

    The prevalence of obesity in pediatric population is increasing at an accelerated rate in many countries, and has become a major public health concern. Physical activity, particularly exercise training, remains to be a cornerstone of pediatric obesity interventions. The purpose of our current randomized intervention trial was to compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. Thus the aim of the study was compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. 32 obese adolescents participated in two randomized training groups, concurrent or aerobic, for 20 weeks (50 mins x 3 per week, supervised), and were compared to a 16-subject control group. We measured the percentage body fat (%BF, primary outcome), fat-free mass, percentage of android fat by dual energy x-ray absorptiometry, and others metabolic profiles at baseline and after interventions, and compared them between groups using the Intent-to-treat design. In 20 weeks, both exercise training groups significantly reduced %BF by 2.9-3.6% as compare to no change in the control group (p = 0.042). There were also positive changes in lipid levels in exercise groups. No noticeable changes were found between aerobic and concurrent training groups. The benefits of exercise in reducing body fat and metabolic risk profiles can be achieved by performing either type of training in obese adolescents. RBR-4HN597.

  14. Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans

    PubMed Central

    MJ, Falk; Z, Zhang; Rosenjack; Nissim; E, Daikhin; Nissim; MM, Sedensky; M, Yudkoff; PG, Morgan

    2008-01-01

    C. elegans affords a model of primary mitochondrial dysfunction that provides insight into cellular adaptations which accompany mutations in nuclear gene that encode mitochondrial proteins. To this end, we characterized genome-wide expression profiles of C. elegans strains with mutations in nuclear-encoded subunits of respiratory chain complexes. Our goal was to detect concordant changes among clusters of genes that comprise defined metabolic pathways. Results indicate that respiratory chain mutants significantly upregulate a variety of basic cellular metabolic pathways involved in carbohydrate, amino acid, and fatty acid metabolism, as well as cellular defense pathways such as the metabolism of P450 and glutathione. To further confirm and extend expression analysis findings, quantitation of whole worm free amino acid levels was performed in C. elegans mitochondrial mutants for subunits of complexes I, II, and III. Significant differences were seen for 13 of 16 amino acid levels in complex I mutants compared with controls, as well as overarching similarities among profiles of complex I, II, and III mutants compared with controls. The specific pattern of amino acid alterations observed provides novel evidence to suggest that an increase in glutamate-linked transamination reactions caused by the failure of NAD+ dependent oxidation of ketoacids occurs in primary mitochondrial respiratory chain mutants. Recognition of consistent alterations among patterns of nuclear gene expression for multiple biochemical pathways and in quantitative amino acid profiles in a translational genetic model of mitochondrial dysfunction allows insight into the complex pathogenesis underlying primary mitochondrial disease. Such knowledge may enable the development of a metabolomic profiling diagnostic tool applicable to human mitochondrial disease. PMID:18178500

  15. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet.

    PubMed

    Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-01-01

    Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host.

  16. Microbiome-Metabolome Responses in the Cecum and Colon of Pig to a High Resistant Starch Diet

    PubMed Central

    Sun, Yue; Su, Yong; Zhu, Weiyun

    2016-01-01

    Currently, knowledge about the impact of long-term intake of high resistant starch diet on pig hindgut microbiota and metabolite profile is limited. In this study, a combination of the pyrosequencing and the mass spectrometry (MS)-based metabolomics techniques were used to investigate the effects of a raw potato starch (RPS, high in resistant starch) diet on microbial composition and microbial metabolites in the hindgut of pig. The results showed that Coprococcus, Ruminococcus, and Turicibacter increased significantly, while Sarcina and Clostridium decreased in relative abundances in the hindgut of pigs fed RPS. The metabolimic analysis revealed that RPS significantly affected starch and sucrose metabolites, amino acid turnover or protein biosynthesis, lipid metabolites, glycolysis, the pentose phosphate pathway, inositol phosphate metabolism, and nucleotide metabolism. Furthermore, a Pearson's correlation analysis showed that Ruminococcus and Coprococcus were positively correlated with glucose-6-phosphate, maltose, arachidonic acid, 9, 12-octadecadienoic acid, oleic acid, phosphate, but negatively correlated with α-aminobutyric acid. However, the correlation of Clostridium and Sarcina with these compounds was in the opposite direction. The results suggest that RPS not only alters the composition of the gut microbial community but also modulates the metabolic pathway of microbial metabolism, which may further affect the hindgut health of the host. PMID:27303373

  17. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China

    PubMed Central

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas. PMID:26690056

  18. Correlation-based network analysis of metabolite and enzyme profiles reveals a role of citrate biosynthesis in modulating N and C metabolism in zea mays

    USDA-ARS?s Scientific Manuscript database

    To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their ...

  19. Determination of Ancylostoma caninum ova viability using metabolic profiling.

    PubMed

    Gyawali, P; Beale, D J; Ahmed, W; Karpe, A V; Magalhaes, R J Soares; Morrison, P D; Palombo, E A

    2016-09-01

    Differentiation between viable and non-viable hookworm ova in environmental samples is necessary in order to implement strategies to mitigate re-infections in endemic regions. In this study, an untargeted metabolic profiling method was developed that utilised gas chromatography-mass spectrometry (GC-MS) in order to investigate hookworm ova viability. Ancylostoma caninum was used to investigate the metabolites within viable and non-viable ova. Univariate and multivariate statistical analyses of the data resulted in the identification of 53 significant metabolites across all hookworm ova samples. The major compounds observed in viable and non-viable hookworm ova were tetradecanoic acid, commonly known as myristic acid [fold change (FC) = 0.4], and dodecanoic acid, commonly known as lauric acid (FC = 0.388). Additionally, the viable ova had self-protecting metabolites such as prostaglandins, a typical feature absent in non-viable ova. The results of this study demonstrate that metabolic profiling using GC-MS methods can be used to determine the viability of canine hookworm ova. Further studies are needed to assess the applicability of metabolic profiling using GC-MS to detect viable hookworm ova in the mixed (viable and non-viable) populations from environmental samples and identify the metabolites specific to human hookworm species.

  20. Valine Supplementation in a Reduced Protein Diet Regulates Growth Performance Partially through Modulation of Plasma Amino Acids Profile, Metabolic Responses, Endocrine, and Neural Factors in Piglets.

    PubMed

    Zhang, Xiaoya; Liu, Xutong; Jia, Hongmin; He, Pingli; Mao, Xiangbing; Qiao, Shiyan; Zeng, Xiangfang

    2018-03-28

    The objective of this study was to investigate whether valine (Val) supplementation in a reduced protein (RP) diet regulates growth performance associated with the changes in plasma amino acids (AAs) profile, metabolism, endocrine, and neural system in piglets. Piglets or piglets with a catheter in the precaval vein were randomly assigned to two treatments, including two RP diets with standardized ileal digestible (SID) Val:Lysine (Lys) ratio of 0.45 and 0.65, respectively. The results indicated that piglets in the higher Val:Lys ratio treatment had higher average daily feed intake (ADFI) ( P < 0.001), average daily gain (ADG) ( P = 0.001), feed conversion ratio (FCR) ( P = 0.004), lower plasma urea nitrogen ( P = 0.032), expression of gastric cholecystokinin (CCK), and hypothalamic pro-opiomelanocortin (POMC). Plasma AAs profiles including postprandial plasma essential AAs (EAAs) profile and in serum, muscle, and liver involved in metabolism of AAs and fatty acids were significantly different between two treatments. In conclusion, Val influenced growth performance associated with metabolism of AAs and fatty acids and both endocrine and neural system in piglets.

  1. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice.

    PubMed

    Lam, Yan Y; Ha, Connie W Y; Hoffmann, Jenny M A; Oscarsson, Jan; Dinudom, Anuwat; Mather, Thomas J; Cook, David I; Hunt, Nicholas H; Caterson, Ian D; Holmes, Andrew J; Storlien, Len H

    2015-07-01

    To distinguish the effects of dietary fat profile on gut parameters and their relationships with metabolic changes and to determine the capacity of n-3 fatty acids to modify gut variables in the context of diet-induced metabolic dysfunctions. Mice received control or high-fat diets emphasizing saturated (HFD-sat), n-6 (HFD-n6), or n-3 (HFD-n3) fatty acids for 8 weeks. In another cohort, mice that were maintained on HFD-sat received n-3-rich fish oil or resolvin D1 supplementation. HFD-sat and HFD-n6 induced similar weight gain, but only HFD-sat increased index of insulin resistance (HOMA-IR), colonic permeability, and mesenteric fat inflammation. Hydrogen sulfide-producing bacteria were one of the major groups driving the diet-specific changes in gut microbiome, with the overall microbial profile being associated with changes in body weight, HOMA-IR, and gut permeability. In mice maintained on HFD-sat, fish oil and resolvin D1 restored barrier function and reduced inflammation in the colon but were unable to normalize HOMA-IR. Different dietary fat profiles led to distinct intestinal and metabolic outcomes that are independent of obesity. Interventions targeting inflammation successfully restored gut health but did not reverse systemic aspects of diet-induced metabolic dysfunction, implicating separation between gut dysfunctions and disease-initiating and/or -maintaining processes. © 2015 The Obesity Society.

  2. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria

    PubMed Central

    Lastovetsky, Olga A.; Gaspar, Maria L.; Mondo, Stephen J.; LaButti, Kurt M.; Sandor, Laura; Grigoriev, Igor V.; Pawlowska, Teresa E.

    2016-01-01

    The recent accumulation of newly discovered fungal–bacterial mutualisms challenges the paradigm that fungi and bacteria are natural antagonists. To understand the mechanisms that govern the establishment and maintenance over evolutionary time of mutualisms between fungi and bacteria, we studied a symbiosis of the fungus Rhizopus microsporus (Mucoromycotina) and its Burkholderia endobacteria. We found that nonhost R. microsporus, as well as other mucoralean fungi, interact antagonistically with endobacteria derived from the host and are not invaded by them. Comparison of gene expression profiles of host and nonhost fungi during interaction with endobacteria revealed dramatic changes in expression of lipid metabolic genes in the host. Analysis of the host lipidome confirmed that symbiosis establishment was accompanied by specific changes in the fungal lipid profile. Diacylglycerol kinase (DGK) activity was important for these lipid metabolic changes, as its inhibition altered the fungal lipid profile and caused a shift in the host–bacterial interaction into an antagonism. We conclude that adjustments in host lipid metabolism during symbiosis establishment, mediated by DGKs, are required for the mutualistic outcome of the Rhizopus–Burkholderia symbiosis. In addition, the neutral and phospholipid profiles of R. microsporus provide important insights into lipid metabolism in an understudied group of oleaginous Mucoromycotina. Lastly, our study revealed that the DGKs involved in the symbiosis form a previously uncharacterized clade of DGK domain proteins. PMID:27956601

  3. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria.

    PubMed

    Lastovetsky, Olga A; Gaspar, Maria L; Mondo, Stephen J; LaButti, Kurt M; Sandor, Laura; Grigoriev, Igor V; Henry, Susan A; Pawlowska, Teresa E

    2016-12-27

    The recent accumulation of newly discovered fungal-bacterial mutualisms challenges the paradigm that fungi and bacteria are natural antagonists. To understand the mechanisms that govern the establishment and maintenance over evolutionary time of mutualisms between fungi and bacteria, we studied a symbiosis of the fungus Rhizopus microsporus (Mucoromycotina) and its Burkholderia endobacteria. We found that nonhost R. microsporus, as well as other mucoralean fungi, interact antagonistically with endobacteria derived from the host and are not invaded by them. Comparison of gene expression profiles of host and nonhost fungi during interaction with endobacteria revealed dramatic changes in expression of lipid metabolic genes in the host. Analysis of the host lipidome confirmed that symbiosis establishment was accompanied by specific changes in the fungal lipid profile. Diacylglycerol kinase (DGK) activity was important for these lipid metabolic changes, as its inhibition altered the fungal lipid profile and caused a shift in the host-bacterial interaction into an antagonism. We conclude that adjustments in host lipid metabolism during symbiosis establishment, mediated by DGKs, are required for the mutualistic outcome of the Rhizopus-Burkholderia symbiosis. In addition, the neutral and phospholipid profiles of R. microsporus provide important insights into lipid metabolism in an understudied group of oleaginous Mucoromycotina. Lastly, our study revealed that the DGKs involved in the symbiosis form a previously uncharacterized clade of DGK domain proteins.

  4. Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.

    PubMed

    Xu, Dehui; Xu, Yujing; Ning, Ning; Cui, Qingjie; Liu, Zhijie; Wang, Xiaohua; Liu, Dingxin; Chen, Hailan; Kong, Michael G

    2018-01-01

    Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.

  5. Metabolic profiles of placenta in preeclampsia using HR-MAS MRS metabolomics.

    PubMed

    Austdal, Marie; Thomsen, Liv Cecilie Vestrheim; Tangerås, Line Haugstad; Skei, Bente; Mathew, Seema; Bjørge, Line; Austgulen, Rigmor; Bathen, Tone Frost; Iversen, Ann-Charlotte

    2015-12-01

    Preeclampsia is a heterogeneous gestational disease characterized by maternal hypertension and proteinuria, affecting 2-7% of pregnancies. The disorder is initiated by insufficient placental development, but studies characterizing the placental disease components are lacking. Our aim was to phenotype the preeclamptic placenta using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS MRS). Placental samples collected after delivery from women with preeclampsia (n = 19) and normotensive pregnancies (n = 15) were analyzed for metabolic biomarkers including amino acids, osmolytes, and components of the energy and phospholipid metabolism. The metabolic biomarkers were correlated to clinical characteristics and inflammatory biomarkers in the maternal sera. Principal component analysis showed inherent differences in placental metabolic profiles between preeclamptic and normotensive pregnancies. Significant differences in metabolic profiles were found between placentas from severe and non-severe preeclampsia, but not between preeclamptic pregnancies with fetal growth restricted versus normal weight neonates. The placental metabolites correlated with the placental stress marker sFlt-1 and triglycerides in maternal serum, suggesting variation in placental stress signaling between different placental phenotypes. HR-MAS MRS is a sensitive method for defining the placental disease component of preeclampsia, identifying several altered metabolic pathways. Placental HR-MAS MRS analysis may improve insight into processes affected in the preeclamptic placenta, and represents a novel long-required tool for a sensitive placental phenotyping of this heterogeneous disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice.

    PubMed

    Jackson, Kathryn C; Wohlers, Lindsay M; Lovering, Richard M; Schuh, Rosemary A; Maher, Amy C; Bonen, Arend; Koves, Timothy R; Ilkayeva, Olga; Thomson, David M; Muoio, Deborah M; Spangenburg, Espen E

    2013-02-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.

  7. Ectopic lipid deposition and the metabolic profile of skeletal muscle in ovariectomized mice

    PubMed Central

    Jackson, Kathryn C.; Wohlers, Lindsay M.; Lovering, Richard M.; Schuh, Rosemary A.; Maher, Amy C.; Bonen, Arend; Koves, Timothy R.; Ilkayeva, Olga; Thomson, David M.; Muoio, Deborah M.

    2013-01-01

    Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile. PMID:23193112

  8. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE PAGES

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; ...

    2017-05-24

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.« less

  9. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.« less

  10. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    PubMed Central

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; Gin, Jennifer; Apel, Amanda Reider; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium. PMID:28596955

  11. Long-term metabolic effects of aripiprazole, ziprasidone and quetiapine: a pragmatic clinical trial in drug-naïve patients with a first-episode of non-affective psychosis.

    PubMed

    Vázquez-Bourgon, Javier; Pérez-Iglesias, Rocío; Ortiz-García de la Foz, Víctor; Suárez Pinilla, Paula; Díaz Martínez, Álvaro; Crespo-Facorro, Benedicto

    2018-01-01

    The use of second-generation antipsychotics (SGA) has been associated with metabolic changes. However, there are differences in the metabolic profile between SGAs. We have previously observed that ziprasidone had a more benign early metabolic profile compared to aripiprazole and quetiapine. However, a long-term follow-up is preferred to detect clinically relevant impairment in metabolic parameters. We aimed to compare the effect of aripiprazole, ziprasidone, and quetiapine on metabolic measures in first-episode non-affective psychosis patients after 1 year of treatment. One hundred and sixty-five drug-naïve patients, suffering from a first episode of non-affective psychosis, were randomly assigned to receive quetiapine, ziprasidone, or aripiprazole. Weight and glycemic/lipid parameters were recorded at baseline and after 1 year of treatment. After 1 year of antipsychotic treatment, we found significant increments in weight, BMI, total cholesterol, LDL-cholesterol, triglycerides, and the triglyceride/HDL index in the sample as a whole. These changes produced a significant rise in the percentage of patients with obesity, hypercholesterolemia, and hypertriglyceridemia. However, when comparing the differential effect of each antipsychotic medication, we found no significant differences in any of the metabolic parameters between antipsychotics groups after 1 year of treatment. We concluded that the antipsychotics studied present similar metabolic profiles. However, the primary exposure to SGAs during the first year of psychosis was associated with significant increases in weight and metabolic parameters, leading to increments in obesity, hypertriglyceridemia, and hypercholesterolemia.

  12. [Lipid and glucose profile in patients with ischemic cerebrovascular accidents in Dakar].

    PubMed

    Ousmane, Cisse; Lemine, Dadah Samy Mohamed; Fatoumata, Ba; Makhtar, Ba El Hadji; Soda, Diop Marieme; Side, Diagne Ngor; Dieynaba, Sow Adjaratou; Modji, Basse Anna; Kamadore, Touré; Moustapha, Ndiaye; Gallo, Diop Amadou; Mansour, Ndiaye Mouhamadou

    2016-01-01

    Cerebrovascular accident (CVA) is defined as the rapid development of localized or global clinical signs of neurological dysfunction with no apparent cause other than that of vascular origin. A variety of risk factors have been identified and associated with the occurrence of Ischemic CVA, including glucose and lipid metabolism disturbances. We conducted a retrospective study at the Clinic of Neurology, Fann. Our study focused on medical records of patients with ICVA confirmed by imaging, hospitalized from January 1 to December 31 2010. All patients underwent complete lipid profile (total cholesterol, triglycerides, HDL; LDL level was calculated using Friedwald formula), kidney function tests and fasting blood sugar test were performed within 48 hours of admission. Data were analysed using univariate technique and then using bivariate technique tanks to SPSS 16.0 software. We collected 235 files. We here report a case series of patients between ages 10-99 years, with an average age of 67,06 years. Males were 42,55%, sex-ratio was 0,74 in favour of women. 26% of cases had impaired fasting glucose levels during the acute phase of ICVA. The lipid profile showed an increase in total cholesterol level in 52.34% of patients. Low levels of HDL cholesterol were found in 34.47% of patients. Hypertriglyceridemia was only observed in 3% of patients. LDL levels were high in 12,76% of patients. Atherogenicity index was high in 25,53% of patients. Disturbances of blood glucose and lipid profile are often associated with ICVA and should be taken into account to ensure better secondary prevention.

  13. Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats.

    PubMed

    Mobberley, Jennifer M; Khodadad, Christina L M; Foster, Jamie S

    2013-11-01

    Thrombolites are unlaminated carbonate deposits formed by the metabolic activities of microbial mats and can serve as potential models for understanding the molecular mechanisms underlying the formation of lithifying communities. To assess the metabolic complexity of these ecosystems, high throughput DNA sequencing of a thrombolitic mat metagenome was coupled with phenotypic microarray analysis. Functional protein analysis of the thrombolite community metagenome delineated several of the major metabolic pathways that influence carbonate mineralization including cyanobacterial photosynthesis, sulfate reduction, sulfide oxidation, and aerobic heterotrophy. Spatial profiling of metabolite utilization within the thrombolite-forming microbial mats suggested that the top 5 mm contained a more metabolically diverse and active community than the deeper within the mat. This study provides evidence that despite the lack of mineral layering within the clotted thrombolite structure there is a vertical gradient of metabolic activity within the thrombolitic mat community. This metagenomic profiling also serves as a foundation for examining the active role individual functional groups of microbes play in coordinating metabolisms that lead to mineralization.

  14. Metabolic syndrome does not detect metabolic risk in African men living in the U.S.

    PubMed

    Ukegbu, Ugochi J; Castillo, Darleen C; Knight, Michael G; Ricks, Madia; Miller, Bernard V; Onumah, Barbara M; Sumner, Anne E

    2011-10-01

    Metabolic risk and metabolic syndrome (MetSyn) prevalence were compared in Africans who immigrated to the U.S. and African Americans. If MetSyn were an effective predictor of cardiometabolic risk, then the group with a worse metabolic risk profile would have a higher rate of MetSyn. Cross-sectional analyses were performed on 95 men (39 Africans, 56 African Americans, age 38 ± 6 years [mean ± SD]). Glucose tolerance was determined by oral glucose tolerance test, visceral adipose tissue (VAT) was determined by computerized tomography, and MetSyn was determined by the presence of three of five factors: central obesity, hypertriglyceridemia, low levels of HDL cholesterol, hypertension, and fasting hyperglycemia. MetSyn prevalence was similar in Africans and African Americans (10 vs. 13%, P = 0.74), but hypertension, glycemia (fasting and 2-h glucose), and VAT were higher in Africans. African immigrants have a worse metabolic profile than African Americans but a similar prevalence of MetSyn. Therefore, MetSyn may underpredict metabolic risk in Africans.

  15. UHPLC/Q-TOF MS-based plasma metabolic profiling analysis of the bleeding mechanism in a rat model of yeast and ethanol-induced blood heat and hemorrhage syndrome.

    PubMed

    Shang, Jing; Liu, Jia; He, Mu; Shang, Erxin; Zhang, Li; Shan, Mingqiu; Yao, Weifeng; Yu, Bing; Yao, Yingzhi; Ding, Anwei

    2014-04-01

    Blood heat and hemorrhage (BHH) syndrome is the most common bleeding disease in clinic. In this study, a rat model with BHH syndrome was built for the first time. Biochemical study showed the intrinsic coagulation pathways and the platelet aggregation rate in the rat model were inhibited, while extrinsic pathway of coagulation cascade was activated. An UHPLC/Q-TOF MS combined with orthogonal partial least squares-discriminant analysis (OPLS-DA) was employed to construct plasma metabolic profiling of the rat model with BHH syndrome. Twenty-four unique metabolites were identified, which were involved in glycerophospholipid metabolism, arachidonic acid metabolism, fatty acid metabolism, amino acid metabolism and cholic acid metabolism. In the end, we concluded that bleeding mechanism of the rat with BHH syndrome may be associated with augmenting blood viscosity, inhibiting platelet aggregation and intrinsic coagulation pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.

    PubMed

    García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín

    2016-02-01

    MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.

  17. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.

    PubMed

    Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P

    2015-12-02

    Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    PubMed Central

    Toubiana, David; Semel, Yaniv; Tohge, Takayuki; Beleggia, Romina; Cattivelli, Luigi; Rosental, Leah; Nikoloski, Zoran; Zamir, Dani; Fernie, Alisdair R.; Fait, Aaron

    2012-01-01

    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping. PMID:22479206

  19. Genes associated with metabolic syndrome predict disease-free survival in stage II colorectal cancer patients. A novel link between metabolic dysregulation and colorectal cancer.

    PubMed

    Vargas, Teodoro; Moreno-Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas, Margarita; Ramos, Ricardo; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B; Reglero, Guillermo; Feliu, Jaime; Ramírez de Molina, Ana

    2014-12-01

    Studies have recently suggested that metabolic syndrome and its components increase the risk of colorectal cancer. Both diseases are increasing in most countries, and the genetic association between them has not been fully elucidated. The objective of this study was to assess the association between genetic risk factors of metabolic syndrome or related conditions (obesity, hyperlipidaemia, diabetes mellitus type 2) and clinical outcome in stage II colorectal cancer patients. Expression levels of several genes related to metabolic syndrome and associated alterations were analysed by real-time qPCR in two equivalent but independent sets of stage II colorectal cancer patients. Using logistic regression models and cross-validation analysis with all tumour samples, we developed a metabolic syndrome-related gene expression profile to predict clinical outcome in stage II colorectal cancer patients. The results showed that a gene expression profile constituted by genes previously related to metabolic syndrome was significantly associated with clinical outcome of stage II colorectal cancer patients. This metabolic profile was able to identify patients with a low risk and high risk of relapse. Its predictive value was validated using an independent set of stage II colorectal cancer patients. The identification of a set of genes related to metabolic syndrome that predict survival in intermediate-stage colorectal cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy and avoid the toxic and unnecessary chemotherapy in patients classified as low risk. Our results also confirm the linkage between metabolic disorder and colorectal cancer and suggest the potential for cancer prevention and/or treatment by targeting these genes. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry

    PubMed Central

    Zhou, Chun-Xue; Cong, Wei; Chen, Xiao-Qing; He, Shen-Yi; Elsheikha, Hany M.; Zhu, Xing-Quan

    2018-01-01

    Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI− mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection. PMID:29354104

  1. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    PubMed

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Freeze-dried strawberry powder improves lipid profile and lipid peroxidation in women with metabolic syndrome: baseline and post intervention effects

    PubMed Central

    Basu, Arpita; Wilkinson, Marci; Penugonda, Kavitha; Simmons, Brandi; Betts, Nancy M; Lyons, Timothy J

    2009-01-01

    Background Strawberry flavonoids are potent antioxidants and anti-inflammatory agents that have been shown to reduce cardiovascular disease risk factors in prospective cohort studies. Effects of strawberry supplementation on metabolic risk factors have not been studied in obese populations. We tested the hypothesis that freeze-dried strawberry powder (FSP) will lower fasting lipids and biomarkers of oxidative stress and inflammation at four weeks compared to baseline. We also tested the tolerability and safety of FSP in subjects with metabolic syndrome. FSP is a concentrated source of polyphenolic flavonoids, fiber and phytosterols. Methods Females (n = 16) with 3 features of metabolic syndrome (waist circumference >35 inches, triglycerides > 150 mg/dL, fasting glucose > 100 mg/dL and < 126 mg/dL, HDL <50 mg/dL, or blood pressure >130/85 mm Hg) were enrolled in the study. Subjects consumed two cups of the strawberry drink daily for four weeks. Each cup had 25 g FSP blended in water. Fasting blood draws, anthropometrics, dietary analyses, and blood pressure measurements were done at baseline and 4 weeks. Biomarkers of oxidative stress and inflammation were measured using ELISA techniques. Plasma ellagic acid was measured using HPLC-UV techniques. Results Total cholesterol and LDL-cholesterol levels were significantly lower at 4 weeks versus baseline (-5% and -6%, respectively, p < 0.05), as was lipid peroxidation in the form of malondialdehyde and hydroxynonenal (-14%, p < 0.01). Oxidized-LDL showed a decreasing trend at 4 weeks (p = 0.123). No effects were noted on markers of inflammation including C-reactive protein and adiponectin. A significant number of subjects (13/16) showed an increase in plasma ellagic acid at four weeks versus baseline, while no significant differences were noted in dietary intakes at four weeks versus baseline. Thus, short-term supplementation of freeze-dried strawberries appeared to exert hypocholesterolemic effects and decrease lipid peroxidation in women with metabolic syndrome. PMID:19785767

  3. Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity.

    PubMed

    Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma

    2018-06-01

    The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma.

    PubMed

    Serna, Eva; Morales, José Manuel; Mata, Manuel; Gonzalez-Darder, José; San Miguel, Teresa; Gil-Benso, Rosario; Lopez-Gines, Concha; Cerda-Nicolas, Miguel; Monleon, Daniel

    2013-01-01

    Around 20% of meningiomas histologically benign may be clinically aggressive and recur. This strongly affects management of meningioma patients. There is a need to evaluate the potential aggressiveness of an individual meningioma. Additional criteria for better classification of meningiomas will improve clinical decisions as well as patient follow up strategy after surgery. The aim of this study was to determine the relationship between gene expression profiles and new metabolic subgroups of benign meningioma with potential clinical relevance. Forty benign and fourteen atypical meningioma tissue samples were included in the study. We obtained metabolic profiles by NMR and recurrence after surgery information for all of them. We measured gene expression by oligonucleotide microarray measurements on 19 of them. To our knowledge, this is the first time that distinct gene expression profiles are reported for benign meningioma molecular subgroups with clinical correlation. Our results show that metabolic aggressiveness in otherwise histological benign meningioma proceeds mostly through alterations in the expression of genes involved in the regulation of transcription, mainly the LMO3 gene. Genes involved in tumor metabolism, like IGF1R, are also differentially expressed in those meningioma subgroups with higher rates of membrane turnover, higher energy demand and increased resistance to apoptosis. These new subgroups of benign meningiomas exhibit different rates of recurrence. This work shows that benign meningioma with metabolic aggressiveness constitute a subgroup of potentially recurrent tumors in which alterations in genes regulating critical features of aggressiveness, like increased angiogenesis or cell invasion, are still no predominant. The determination of these gene expression biosignatures may allow the early detection of clinically aggressive tumors.

  5. Metabolic profiling of five flavonoids from Dragon's Blood in human liver microsomes using high-performance liquid chromatography coupled with high resolution mass spectrometry.

    PubMed

    Li, Yujuan; Zhang, Yushi; Wang, Rui; Wei, Lizhong; Deng, Yulin; Ren, Wei

    2017-05-01

    Although much is known about the pharmacological activities of Dragon's Blood (DB, a traditional Chinese herb), its metabolism in human liver microsomes (HLMs) and the cytochrome P450 (CYP) enzymes has not been studied. This study aims to identify the metabolic profile of five flavonoids (loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone) from DB in HLMs as well as the CYP enzymes that are involved in the metabolism of them. High-resolution mass spectrometry was used to characterize the structures of their metabolites and 10 cDNA-expressed CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) were used to verify which isozymes mediate in the metabolism of the metabolites. Totally, 29 metabolites including 10 metabolites of loureirin A, 10 metabolites of loureirin B, 4 metabolites of loureirin C, 2 metabolites of 7,4'-dihydroxyflavone and 3 metabolites of 5,7,4'-trihydroxyflavanone were elucidated and identified on the basis of the high-resolution MS n data. The metabolic profile of the five flavonoids in HLMs involved hydroxylation, oxidation and demethylation. Among them, hydroxylation was the predominant biotransformation of the five flavonoids in HLMs, occurring in combination with other metabolic reactions. Assay with recombinant P450s revealed that CYP2C9 and CYP2C19 played an important role in the hydroxylation of flavonoids in HLMs. To the best of our knowledge, this is the first in vitro evaluation of the metabolic profile of loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone in HLMs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Levels of adipocytokines and vitamin D in a biracial sample of young metabolically healthy obese and metabolically abnormal obese women

    USDA-ARS?s Scientific Manuscript database

    Purpose: Adipocytokines and vitamin D (vitD) concentrations may contribute to cardiometabolic risk profiles in obese populations. The purpose was to determine if levels of adipocytokines and vitD differ between young metabolically healthy obese (MHO) and metabolically abnormal obese (MAO) black and ...

  7. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    PubMed

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Genetic and Metabolic Intraspecific Biodiversity of Ganoderma lucidum

    PubMed Central

    Pawlik, Anna; Janusz, Grzegorz; Dębska, Iwona; Siwulski, Marek; Frąc, Magdalena; Rogalski, Jerzy

    2015-01-01

    Fourteen Ganoderma lucidum strains from different geographic regions were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship between the analyzed strains was determined. All G. lucidum strains were also genetically characterized using the AFLP technique. G. lucidum strains included in the analysis displayed an AFLP profile similarity level in the range from 9.6 to 33.9%. Biolog FF MicroPlates were applied to obtain data on utilization of 95 carbon sources and mitochondrial activity. The analysis allowed comparison of functional diversity of the fungal strains. The substrate utilization profiles for the isolates tested revealed a broad variability within the analyzed G. lucidum species and proved to be a good profiling technology for studying the diversity in fungi. Significant differences have been demonstrated in substrate richness values. Interestingly, the analysis of growth and biomass production also differentiated the strains based on the growth rate on the agar and sawdust substrate. In general, the mycelial growth on the sawdust substrate was more balanced and the fastest fungal growth was observed for GRE3 and FCL192. PMID:25815332

  9. Magnesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: a randomized, double-blind, controlled, crossover trial in overweight individuals.

    PubMed

    Chacko, Sara A; Sul, James; Song, Yiqing; Li, Xinmin; LeBlanc, James; You, Yuko; Butch, Anthony; Liu, Simin

    2011-02-01

    Dietary magnesium intake has been favorably associated with reduced risk of metabolic outcomes in observational studies; however, few randomized trials have introduced a systems-biology approach to explore molecular mechanisms of pleiotropic metabolic actions of magnesium supplementation. We examined the effects of oral magnesium supplementation on metabolic biomarkers and global genomic and proteomic profiling in overweight individuals. We undertook this randomized, crossover, pilot trial in 14 healthy, overweight volunteers [body mass index (in kg/m(2)) ≥25] who were randomly assigned to receive magnesium citrate (500 mg elemental Mg/d) or a placebo for 4 wk with a 1-mo washout period. Fasting blood and urine specimens were collected according to standardized protocols. Biochemical assays were conducted on blood specimens. RNA was extracted and subsequently hybridized with the Human Gene ST 1.0 array (Affymetrix, Santa Clara, CA). Urine proteomic profiling was analyzed with the CM10 ProteinChip array (Bio-Rad Laboratories, Hercules, CA). We observed that magnesium treatment significantly decreased fasting C-peptide concentrations (change: -0.4 ng/mL after magnesium treatment compared with +0.05 ng/mL after placebo treatment; P = 0.004) and appeared to decrease fasting insulin concentrations (change: -2.2 μU/mL after magnesium treatment compared with 0.0 μU/mL after placebo treatment; P = 0.25). No consistent patterns were observed across inflammatory biomarkers. Gene expression profiling revealed up-regulation of 24 genes and down-regulation of 36 genes including genes related to metabolic and inflammatory pathways such as C1q and tumor necrosis factor-related protein 9 (C1QTNF9) and pro-platelet basic protein (PPBP). Urine proteomic profiling showed significant differences in the expression amounts of several peptides and proteins after treatment. Magnesium supplementation for 4 wk in overweight individuals led to distinct changes in gene expression and proteomic profiling consistent with favorable effects on several metabolic pathways. This trial was registered at clinicaltrials.gov as NCT00737815.

  10. Metabolic profiling in Maturity-onset diabetes of the young (MODY) and young onset type 2 diabetes fails to detect robust urinary biomarkers.

    PubMed

    Gloyn, Anna L; Faber, Johan H; Malmodin, Daniel; Thanabalasingham, Gaya; Lam, Francis; Ueland, Per Magne; McCarthy, Mark I; Owen, Katharine R; Baunsgaard, Dorrit

    2012-01-01

    It is important to identify patients with Maturity-onset diabetes of the young (MODY) as a molecular diagnosis determines both treatment and prognosis. Genetic testing is currently expensive and many patients are therefore not assessed and are misclassified as having either type 1 or type 2 diabetes. Biomarkers could facilitate the prioritisation of patients for genetic testing. We hypothesised that patients with different underlying genetic aetiologies for their diabetes could have distinct metabolic profiles which may uncover novel biomarkers. The aim of this study was to perform metabolic profiling in urine from patients with MODY due to mutations in the genes encoding glucokinase (GCK) or hepatocyte nuclear factor 1 alpha (HNF1A), type 2 diabetes (T2D) and normoglycaemic control subjects. Urinary metabolic profiling by Nuclear Magnetic Resonance (NMR) and ultra performance liquid chromatography hyphenated to Q-TOF mass spectrometry (UPLC-MS) was performed in a Discovery set of subjects with HNF1A-MODY (n = 14), GCK-MODY (n = 17), T2D (n = 14) and normoglycaemic controls (n = 34). Data were used to build a valid partial least squares discriminate analysis (PLS-DA) model where HNF1A-MODY subjects could be separated from the other diabetes subtypes. No single metabolite contributed significantly to the separation of the patient groups. However, betaine, valine, glycine and glucose were elevated in the urine of HNF1A-MODY subjects compared to the other subgroups. Direct measurements of urinary amino acids and betaine in an extended dataset did not support differences between patients groups. Elevated urinary glucose in HNF1A-MODY is consistent with the previously reported low renal threshold for glucose in this genetic subtype. In conclusion, we report the first metabolic profiling study in monogenic diabetes and show that, despite the distinct biochemical pathways affected, there are unlikely to be robust urinary biomarkers which distinguish monogenic subtypes from T2D. Our results have implications for studies investigating metabolic profiles in complex traits including T2D.

  11. Advances in the in-field detection of microorganisms in ice.

    PubMed

    Barnett, Megan J; Pearce, David A; Cullen, David C

    2012-01-01

    The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    PubMed

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has been conditioned to smaller changes in its metabolic activity with respect to the pathways involving these metabolites compared to the male animals. In conclusion, our study indicated a much subtler AOH effect on the cerebellum metabolic activity of the female compared to the male mice. The leaner metabolic profile of the female mouse cerebellum was suggested as a potential factor contributing to this phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Adverse metabolic risk profiles in Greenlandic Inuit children compared to Danish children.

    PubMed

    Munch-Andersen, T; Sorensen, K; Andersen, L B; Aachmann-Andersen, N J; Aksglaede, L; Juul, A; Helge, J W

    2013-06-01

    During recent decades, the prevalence of metabolic morbidity has increased rapidly in adult Greenlandic Inuit. To what extent this is also reflected in the juvenile Inuit population is unknown. The objective was, therefore, in the comparison with Danish children, to evaluate metabolic profiles in Greenlandic Inuit children from the capital in the southern and from the northern most villages 187 Inuit and 132 Danish children were examined with anthropometrics, pubertal staging, fasting blood samples, and a maximal aerobic test. Both Inuit children living in Nuuk and the northern villages had significantly higher glucose, total cholesterol, apolipoprotein A1 levels, and diastolic blood pressure compared with Danish children after adjustment for differences in adiposity and aerobic fitness levels. The Inuit children living in Nuuk had significantly higher BMI, body fat %, HbA1 c, and significantly lower aerobic fitness and ApoA1 levels than northern living Inuit children. Greenlandic Inuit children had adverse metabolic health profile compared to the Danish children, the differences where more pronounced in Inuit children living in Nuuk. The tendencies toward higher prevalence of diabetes and metabolic morbidity in the adult Greenlandic Inuit population may also be present in the Inuit children population. Copyright © 2013 The Obesity Society.

  14. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.

    PubMed

    Kitayama, Tomoya; Kinoshita, Ayako; Sugimoto, Masahiro; Nakayama, Yoichi; Tomita, Masaru

    2006-07-17

    In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law modelling of metabolic pathways from the Jacobian of the targeted system and the steady-state flux profiles by linearization of S-systems. The results of two case studies modelling a straight and a branched pathway, respectively, showed that our method reduced the number of unknown parameters needing to be estimated. The time-courses simulated by conventional kinetic models and those described by our method behaved similarly under a wide range of perturbations of metabolite concentrations. The proposed method reduces calculation complexity and facilitates the construction of large-scale S-system models of metabolic pathways, realizing a practical application of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and steady-state flux profiles.

  15. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.

    PubMed

    Ost, Mario; Keipert, Susanne; van Schothorst, Evert M; Donner, Verena; van der Stelt, Inge; Kipp, Anna P; Petzke, Klaus-Jürgen; Jove, Mariona; Pamplona, Reinald; Portero-Otin, Manuel; Keijer, Jaap; Klaus, Susanne

    2015-04-01

    Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle. © FASEB.

  16. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  17. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action.

    PubMed

    Xuan, Jiekun; Pan, Guihua; Qiu, Yunping; Yang, Lun; Su, Mingming; Liu, Yumin; Chen, Jian; Feng, Guoyin; Fang, Yiru; Jia, Wei; Xing, Qinghe; He, Lin

    2011-12-02

    Despite recent advances in understanding the pathophysiology of schizophrenia and the mechanisms of antipsychotic drug action, the development of biomarkers for diagnosis and therapeutic monitoring in schizophrenia remains challenging. Metabolomics provides a powerful approach to discover diagnostic and therapeutic biomarkers by analyzing global changes in an individual's metabolic profile in response to pathophysiological stimuli or drug intervention. In this study, we performed gas chromatography-mass spectrometry based metabolomic profiling in serum of unmedicated schizophrenic patients before and after an 8-week risperidone monotherapy, to detect potential biomarkers associated with schizophrenia and risperidone treatment. Twenty-two marker metabolites contributing to the complete separation of schizophrenic patients from matched healthy controls were identified, with citrate, palmitic acid, myo-inositol, and allantoin exhibiting the best combined classification performance. Twenty marker metabolites contributing to the complete separation between posttreatment and pretreatment patients were identified, with myo-inositol, uric acid, and tryptophan showing the maximum combined classification performance. Metabolic pathways including energy metabolism, antioxidant defense systems, neurotransmitter metabolism, fatty acid biosynthesis, and phospholipid metabolism were found to be disturbed in schizophrenic patients and partially normalized following risperidone therapy. Further study of these metabolites may facilitate the development of noninvasive biomarkers and more efficient therapeutic strategies for schizophrenia.

  18. Metabolic profiling of Arabidopsis thaliana epidermal cells

    PubMed Central

    Ebert, Berit; Zöller, Daniela; Erban, Alexander; Fehrle, Ines; Hartmann, Jürgen; Niehl, Annette; Kopka, Joachim; Fisahn, Joachim

    2010-01-01

    Metabolic phenotyping at cellular resolution may be considered one of the challenges in current plant physiology. A method is described which enables the cell type-specific metabolic analysis of epidermal cell types in Arabidopsis thaliana pavement, basal, and trichome cells. To achieve the required high spatial resolution, single cell sampling using microcapillaries was combined with routine gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) based metabolite profiling. The identification and relative quantification of 117 mostly primary metabolites has been demonstrated. The majority, namely 90 compounds, were accessible without analytical background correction. Analyses were performed using cell type-specific pools of 200 microsampled individual cells. Moreover, among these identified metabolites, 38 exhibited differential pool sizes in trichomes, basal or pavement cells. The application of an independent component analysis confirmed the cell type-specific metabolic phenotypes. Significant pool size changes between individual cells were detectable within several classes of metabolites, namely amino acids, fatty acids and alcohols, alkanes, lipids, N-compounds, organic acids and polyhydroxy acids, polyols, sugars, sugar conjugates and phenylpropanoids. It is demonstrated here that the combination of microsampling and GC-MS based metabolite profiling provides a method to investigate the cellular metabolism of fully differentiated plant cell types in vivo. PMID:20150518

  19. Effects of a Physical Exercise Program (PEP-Aut) on Autistic Children's Stereotyped Behavior, Metabolic and Physical Activity Profiles, Physical Fitness, and Health-Related Quality of Life: A Study Protocol.

    PubMed

    Ferreira, José Pedro; Andrade Toscano, Chrystiane Vasconcelos; Rodrigues, Aristides Machado; Furtado, Guilherme Eustaquio; Barros, Mauro Gomes; Wanderley, Rildo Souza; Carvalho, Humberto Moreira

    2018-01-01

    Physical exercise has shown positive effects on symptomatology and on the reduction of comorbidities in population with autism spectrum disorder (ASD). However, there is still no consensus about the most appropriate exercise intervention model for children with ASD. The physical exercise program for children with autism (PEP-Aut) protocol designed allow us to (i) examine the multivariate associations between ASD symptoms, metabolic profile, physical activity level, physical fitness, and health-related quality of life of children with ASD; (ii) assess the effects of a 40-week exercise program on all these aspects of children with ASD. The impact of the exercise program will be assessed based on the sequence of the two phases. Phase 1 is a 12-week cross-sectional study assessing the symptomatology, metabolic profile, physical fitness and physical activity levels, socioeconomic status profile, and health-related quality of life of participants. This phase is the baseline of the following phase. Phase 2 is a 48-week intervention study with a 40-week intervention with exercise that will take place in a specialized center for children with ASD in the city of Maceió-Alagoas, Brazil. The primary outcomes will be change in the symptomatic profile and the level of physical activity of children. Secondary outcomes will be anthropometric and metabolic profiles, aerobic function, grip strength, socioeconomic status, and health-related quality of life. The study will provide critical information on the efficacy of exercise for children with ASD and help guide design and delivery of future programs.

  20. Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    PubMed Central

    Stengärde, Lena; Tråvén, Madeleine; Emanuelson, Ulf; Holtenius, Kjell; Hultgren, Jan; Niskanen, Rauni

    2008-01-01

    Background Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems. Methods Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations). Cows were examined and blood sampled every three weeks from four weeks ante partum (ap) to nine weeks postpartum (pp). Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA), insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol. Results All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed. Conclusion NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds. PMID:18687108

  1. Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae

    PubMed Central

    Veyel, Daniel; Erban, Alexander; Fehrle, Ines; Kopka, Joachim; Schroda, Michael

    2014-01-01

    The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn. PMID:24957022

  2. Nuclear magnetic resonance (NMR) study of the effect of cisplatin on the metabolic profile of MG-63 osteosarcoma cells.

    PubMed

    Duarte, Iola F; Lamego, Ines; Marques, Joana; Marques, M Paula M; Blaise, Benjamin J; Gil, Ana M

    2010-11-05

    In the present study, (1)H HRMAS NMR spectroscopy was used to assess the changes in the intracellular metabolic profile of MG-63 human osteosarcoma (OS) cells induced by the chemotherapy agent cisplatin (CDDP) at different times of exposure. Multivariate analysis was applied to the cells spectra, enabling consistent variation patterns to be detected and drug-specific metabolic effects to be identified. Statistical recoupling of variables (SRV) analysis and spectral integration enabled the most relevant spectral changes to be evaluated, revealing significant time-dependent alterations in lipids, choline-containing compounds, some amino acids, polyalcohols, and nitrogenated bases. The metabolic relevance of these compounds in the response of MG-63 cells to CDDP treatment is discussed.

  3. Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation

    PubMed Central

    Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan

    2016-01-01

    Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747

  4. Influence of a walking program on the metabolic risk profile of obese postmenopausal women.

    PubMed

    Roussel, Michel; Garnier, Sophie; Lemoine, Sophie; Gaubert, Isabelle; Charbonnier, Laurie; Auneau, Gérard; Mauriège, Pascale

    2009-01-01

    Menopause transition is associated with an increased prevalence of metabolic syndrome (MS), which may partly explain the higher coronary heart disease risk. The aim of this study was to examine the impact of a 16-week walking program on the metabolic risk profile of women 50 to 65 years old whose body mass index ranged from 29 to 35 kg/m. A total of 153 postmenopausal women were subjected to three sessions per week of 45-minutes of walking at 60% of their heart rate reserve. At baseline, 46 and 84 women were characterized by one and two or more determinants of MS, respectively, whereas 23 women did not show this condition. Body composition, resting blood pressure, fasting lipid-lipoprotein profile, and cardiorespiratory fitness (CRF) were measured before and after exercise. In the whole sample of 153 women, CRF estimated by V(O2max) increased in response to walking (P < 0.0001). Endurance training promoted body weight and fat mass losses and reduced waist girth and blood pressure, whereas it decreased plasma triglyceride, cholesterol, and low-density lipoprotein cholesterol levels and increased high-density lipoprotein cholesterol concentrations (P < 0.0001). Improvements in lipid-lipoprotein levels were not associated with increases in CRF but seemed to be dependent on reduced body fatness. However, the greatest ameliorations in metabolic risk profile were found in women characterized by two or more determinants of MS at baseline than in the two other groups (0.05 < P < 0.0001). A moderate-intensity physical activity is thus sufficient to reduce the metabolic risk profile of postmenopausal women characterized by the presence of one or several clinical features of MS but without overt coronary heart disease.

  5. The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery

    PubMed Central

    Metz, Thomas O.; Zhang, Qibin; Page, Jason S.; Shen, Yufeng; Callister, Stephen J.; Jacobs, Jon M.; Smith, Richard D.

    2008-01-01

    SUMMARY The future utility of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discover will be discussed, beginning with a brief description of the evolution of metabolomics and the utilization of the three most popular analytical platforms in such studies: NMR, GC-MS, and LC-MS. Emphasis is placed on recent developments in high-efficiency LC separations, sensitive electrospray ionization approaches, and the benefits to incorporating both in LC-MS-based approaches. The advantages and disadvantages of various quantitative approaches are reviewed, followed by the current LC-MS-based tools available for candidate biomarker characterization and identification. Finally, a brief prediction on the future path of LC-MS-based methods in metabolic profiling and metabolomic studies is given. PMID:19177179

  6. 3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs.

    PubMed

    Singh, Manjot; Tong, Yuxin; Webster, Kelly; Cesewski, Ellen; Haring, Alexander P; Laheri, Sahil; Carswell, Bill; O'Brien, Timothy J; Aardema, Charles H; Senger, Ryan S; Robertson, John L; Johnson, Blake N

    2017-07-25

    The ability to interface microfluidic devices with native complex biological architectures, such as whole organs, has the potential to shift the paradigm for the study and analysis of biological tissue. Here, we show 3D printing can be used to fabricate bio-inspired conformal microfluidic devices that directly interface with the surface of whole organs. Structured-light scanning techniques enabled the 3D topographical matching of microfluidic device geometry to porcine kidney anatomy. Our studies show molecular species are spontaneously transferred from the organ cortex to the conformal microfluidic device in the presence of fluid flow through the organ-conforming microchannel. Large animal studies using porcine kidneys (n = 32 organs) revealed the profile of molecular species in the organ-conforming microfluidic stream was dependent on the organ preservation conditions. Enzyme-linked immunosorbent assay (ELISA) studies revealed conformal microfluidic devices isolate clinically relevant metabolic and pathophysiological biomarkers from whole organs, including heat shock protein 70 (HSP-70) and kidney injury molecule-1 (KIM-1), which were detected in the microfluidic device as high as 409 and 12 pg mL -1 , respectively. Overall, these results show conformal microfluidic devices enable a novel minimally invasive 'microfluidic biopsy' technique for isolation and profiling of biomarkers from whole organs within a clinically relevant interval. This achievement could shift the paradigm for whole organ preservation and assessment, thereby helping to relieve the organ shortage crisis through increased availability and quality of donor organs. Ultimately, this work provides a major advance in microfluidics through the design and manufacturing of organ-conforming microfluidic devices and a novel technique for microfluidic-based analysis of whole organs.

  7. A comparative mass spectrometric study of fatty acids and metals in some seed extracts.

    PubMed

    Suvar, Sonia Niculina; Bleiziffer, R; Podea, P; Iordache, A; Voica, C; Zgavarogea, R; Culea, M

    A major cause of cardiovascular diseases and cancer is diet content, so the optimization of micronutrients in food is very important. Omega-3 fatty acids supplementation for patients had beneficial effects on subjective global assessment score and metabolic profiles. Fatty acids content and the metal ions in different seeds (e.g. linseed, poppy, grape, hemp, nuts, pumpkin, sesame, watermelon, chia) recommended as food supplements, purchased on the Romanian market, were compared. Gas chromatography coupled to mass spectrometry (GC-MS) was used as an excellent technique for fatty acids identification and quantitation, and inductively coupled plasma mass spectrometer (ICP-MS) for analytical measurements of metals.

  8. 1H NMR study of fermented cocoa (Theobroma cacao L.) beans.

    PubMed

    Caligiani, Augusta; Acquotti, Domenico; Cirlini, Martina; Palla, Gerardo

    2010-12-08

    This study reports for the first time the metabolic profile of cocoa (Theobroma cacao L.) beans using the (1)H NMR technique applied to polar extracts of fermented cocoa beans. The simultaneous detection and quantification of amino acids, polyalcohols, organic acids, sugars, methylxanthines, catechins, and phenols were obtained by assigning the major signals of the spectra for different varieties of cocoa beans (Forastero, Criollo, and Trinitario) from different countries (Ecuador, Ghana, Grenada, and Trinidad). The data set obtained, representative of all classes of soluble compounds of cocoa, was useful to characterize the fermented cocoa beans as a function of the variety and geographic origin.

  9. Urine metabolomics.

    PubMed

    Zhang, Aihua; Sun, Hui; Wu, Xiuhong; Wang, Xijun

    2012-12-24

    Metabolomics is a powerful technique for the discovery of novel biomarkers and elucidation of biochemical pathways to improve diagnosis, prognosis and therapy. An advantage of this approach is its ability to assess global metabolic profiles to enhance pathologic characterization. Urine is an ideal bio-medium for disease study because it is readily available, easily obtained and less complex than other body fluids. Ease of collection allows for serial sampling to monitor disease and therapeutic response. Because of this potential, this paper will review urine metabolomic analysis, discuss its significance in the post-genomic era and highlight the specific roles of endogenous small molecule metabolites in this emerging field. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    PubMed

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-06-01

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U- 13 C]glucose, [U- 13 C]glutamate or [U- 13 C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF e 96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U- 13 C]Glutamate and [U- 13 C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U- 13 C]glutamate was higher than that from [U- 13 C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was particularly similar to the profile of mouse cortical neurons, important differences between the metabolic profile of human and mouse neurons were observed. The results of the present investigation establish hallmarks of cellular metabolism in human neurons derived from iPSC. Copyright © 2017. Published by Elsevier Ltd.

  11. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms.

    PubMed

    McLean, Jeffrey S; Majors, Paul D; Reardon, Catherine L; Bilskis, Christina L; Reed, Samantha B; Romine, Margaret F; Fredrickson, James K

    2008-07-01

    Biofilms possess spatially and temporally varying metabolite concentration profiles at the macroscopic and microscopic scales. This results in varying growth environments that may ultimately drive species diversity, determine biofilm structure and the spatial distribution of the community members. Using non-invasive nuclear magnetic resonance (NMR) microscopic imaging/spectroscopy and confocal imaging, we investigated the kinetics and stratification of anaerobic metabolism within live biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1. Biofilms were pre-grown using a defined minimal medium in a constant-depth film bioreactor and subsequently transferred to an in-magnet sample chamber under laminar flow for NMR measurements. Biofilms generated in this manner were subjected to changing substrate/electron acceptor combinations (fumarate, dimethyl sulfoxide, and nitrate) and the metabolic responses measured. Localized NMR spectroscopy was used to non-invasively measure hydrogen-containing metabolites at high temporal resolution (4.5 min) under O(2)-limited conditions. Reduction of electron acceptor under anaerobic conditions was immediately observed upon switching feed solutions indicating that no gene induction (transcriptional response) was needed for MR-1 to switch metabolism from O(2) to fumarate, dimethyl sulfoxide or nitrate. In parallel experiments, confocal microscopy was used with constitutively expressed fluorescent reporters to independently investigate changes in population response to the availability of electron acceptor and to probe metabolic competition under O(2)-limited conditions. A clearer understanding of the metabolic diversity and plasticity of the biofilm mode of growth as well as how these factors relate to environmental fitness is made possible through the use of non-invasive and non-destructive techniques such as described herein.

  12. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata.

    PubMed

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata , identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata , with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata , as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

  13. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata

    PubMed Central

    Escandón, Mónica; Meijón, Mónica; Valledor, Luis; Pascual, Jesús; Pinto, Gloria; Cañal, María Jesús

    2018-01-01

    The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C) in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3) at which P. radiata plants changed from an initial stress response program (shorter-term response) to an acclimation one (longer-term response). Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs), fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature. PMID:29719546

  14. Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies.

    PubMed

    Maher, Anthony D; Zirah, Séverine F M; Holmes, Elaine; Nicholson, Jeremy K

    2007-07-15

    1H NMR spectroscopy potentially provides a robust approach for high-throughput metabolic screening of biofluids such as urine and plasma, but sample handling and preparation need careful optimization to ensure that spectra accurately report biological status or disease state. We have investigated the effects of storage temperature and time on the 1H NMR spectral profiles of human urine from two participants, collected three times a day on four different days. These were analyzed using modern chemometric methods. Analytical and preparation variation (tested between -40 degrees C and room temperature) and time of storage (to 24 h) were found to be much less influential than biological variation in sample classification. Statistical total correlation spectroscopy and discriminant function methods were used to identify the specific metabolites that were hypervariable due to preparation and biology. Significant intraindividual variation in metabolite profiles were observed even for urine collected on the same day and after at least 6 h fasting. The effect of long-term storage at different temperatures was also investigated, showing urine is stable if frozen for at least 3 months and that storage at room temperature for long periods (1-3 months) results in a metabolic profile explained by bacterial activity. Presampling (e.g., previous day) intake of food and medicine can also strongly influence the urinary metabolic profiles indicating that collective detailed participant historical meta data are important for interpretation of metabolic phenotypes and for avoiding false biomarker discovery.

  15. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota.

    PubMed

    Serino, Matteo; Luche, Elodie; Gres, Sandra; Baylac, Audrey; Bergé, Mathieu; Cenac, Claire; Waget, Aurelie; Klopp, Pascale; Iacovoni, Jason; Klopp, Christophe; Mariette, Jerome; Bouchez, Olivier; Lluch, Jerome; Ouarné, Francoise; Monsan, Pierre; Valet, Philippe; Roques, Christine; Amar, Jacques; Bouloumié, Anne; Théodorou, Vassilia; Burcelin, Remy

    2012-04-01

    The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a gluco-oligosaccharide (GOS)-supplemented HFD (HFD+GOS). Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet.

  16. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences.

    PubMed

    Tayyari, Fariba; Gowda, G A Nagana; Olopade, Olufunmilayo F; Berg, Richard; Yang, Howard H; Lee, Maxwell P; Ngwa, Wilfred F; Mittal, Suresh K; Raftery, Daniel; Mohammed, Sulma I

    2018-02-20

    Breast cancer, a heterogeneous disease with variable pathophysiology and biology, is classified into four major subtypes. While hormonal- and antibody-targeted therapies are effective in the patients with luminal and HER-2 subtypes, the patients with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. The incidence rates of TNBC subtype are higher in African-American women, and the evidence indicates that these women have worse prognosis compared to women of European descent. The reasons for this disparity remain unclear but are often attributed to TNBC biology. In this study, we performed metabolic analysis of breast tissues to identify how TNBC differs from luminal A breast cancer (LABC) subtypes within the African-American and Caucasian breast cancer patients, respectively. We used High-Resolution Magic Angle Spinning (HR-MAS) 1H Nuclear magnetic resonance (NMR) to perform the metabolomic analysis of breast cancer and adjacent normal tissues (total n=82 samples). TNBC and LABC subtypes in African American women exhibited different metabolic profiles. Metabolic profiles of these subtypes were also distinct from those revealed in Caucasian women. TNBC in African-American women expressed higher levels of glutathione, choline, and glutamine as well as profound metabolic alterations characterized by decreased mitochondrial respiration and increased glycolysis concomitant with decreased levels of ATP. TNBC in Caucasian women was associated with increased pyrimidine synthesis. These metabolic alterations could potentially be exploited as novel treatment targets for TNBC.

  17. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences

    PubMed Central

    Tayyari, Fariba; Gowda, G.A. Nagana; Olopade, Olufunmilayo F.; Berg, Richard; Yang, Howard H.; Lee, Maxwell P.; Ngwa, Wilfred F.; Mittal, Suresh K.; Raftery, Daniel; Mohammed, Sulma I.

    2018-01-01

    Breast cancer, a heterogeneous disease with variable pathophysiology and biology, is classified into four major subtypes. While hormonal- and antibody-targeted therapies are effective in the patients with luminal and HER-2 subtypes, the patients with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. The incidence rates of TNBC subtype are higher in African-American women, and the evidence indicates that these women have worse prognosis compared to women of European descent. The reasons for this disparity remain unclear but are often attributed to TNBC biology. In this study, we performed metabolic analysis of breast tissues to identify how TNBC differs from luminal A breast cancer (LABC) subtypes within the African-American and Caucasian breast cancer patients, respectively. We used High-Resolution Magic Angle Spinning (HR-MAS) 1H Nuclear magnetic resonance (NMR) to perform the metabolomic analysis of breast cancer and adjacent normal tissues (total n=82 samples). TNBC and LABC subtypes in African American women exhibited different metabolic profiles. Metabolic profiles of these subtypes were also distinct from those revealed in Caucasian women. TNBC in African-American women expressed higher levels of glutathione, choline, and glutamine as well as profound metabolic alterations characterized by decreased mitochondrial respiration and increased glycolysis concomitant with decreased levels of ATP. TNBC in Caucasian women was associated with increased pyrimidine synthesis. These metabolic alterations could potentially be exploited as novel treatment targets for TNBC. PMID:29545929

  18. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota.

    PubMed

    Robertson, Ruairi C; Kaliannan, Kanakaraju; Strain, Conall R; Ross, R Paul; Stanton, Catherine; Kang, Jing X

    2018-05-24

    The early-life gut microbiota plays a critical role in host metabolism in later life. However, little is known about how the fatty acid profile of the maternal diet during gestation and lactation influences the development of the offspring gut microbiota and subsequent metabolic health outcomes. Here, using a unique transgenic model, we report that maternal endogenous n-3 polyunsaturated fatty acid (PUFA) production during gestation or lactation significantly reduces weight gain and markers of metabolic disruption in male murine offspring fed a high-fat diet. However, maternal fatty acid status appeared to have no significant effect on weight gain in female offspring. The metabolic phenotypes in male offspring appeared to be mediated by comprehensive restructuring of gut microbiota composition. Reduced maternal n-3 PUFA exposure led to significantly depleted Epsilonproteobacteria, Bacteroides, and Akkermansia and higher relative abundance of Clostridia. Interestingly, offspring metabolism and microbiota composition were more profoundly influenced by the maternal fatty acid profile during lactation than in utero. Furthermore, the maternal fatty acid profile appeared to have a long-lasting effect on offspring microbiota composition and function that persisted into adulthood after life-long high-fat diet feeding. Our data provide novel evidence that weight gain and metabolic dysfunction in adulthood is mediated by maternal fatty acid status through long-lasting restructuring of the gut microbiota. These results have important implications for understanding the interaction between modern Western diets, metabolic health, and the intestinal microbiome.

  19. Stable Isotope-Assisted Metabolic Profiling Reveals Growth Mode Dependent Differential Metabolism and Multiple Catabolic Pathways of l-Phenylalanine in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mekala, Lakshmi Prasuna; Mohammed, Mujahid; Chintalapati, Sasikala; Chintalapati, Venkata Ramana

    2018-01-05

    Anoxygenic phototrophic bacteria are metabolically versatile and survive under different growth modes using diverse organic compounds, yet their metabolic diversity is largely unexplored. In the present study, we employed stable-isotope-assisted metabolic profiling to unravel the l-phenylalanine catabolism in Rubrivivax benzoatilyticus JA2 under varying growth modes. Strain JA2 grows under anaerobic and aerobic conditions by utilizing l-phenylalanine as a nitrogen source. Furthermore, ring-labeled 13 C 6 -phenylalanine feeding followed by liquid chromatography-mass spectrometry exometabolite profiling revealed 60 labeled metabolic features (M + 6, M + 12, and M + 18) derived solely from l-phenylalanine, of which 11 were identified, 7 putatively identified, and 42 unidentified under anaerobic and aerobic conditions. However, labeled metabolites were significantly higher in aerobic compared to anaerobic conditions. Furthermore, detected metabolites and enzyme activities indicated multiple l-phenylalanine catabolic routes mainly Ehrlich, homogentisate-dependent melanin, benzenoid, and unidentified pathways operating under anaerobic and aerobic conditions in strain JA2. Interestingly, the study indicated l-phenylalanine-dependent and independent benzenoid biosynthesis in strain JA2 and a differential flux of l-phenylalanine to Ehrlich and benzenoid pathways under anaerobic and aerobic conditions. Additionally, unidentified labeled metabolites strongly suggest the presence of unknown phenylalanine catabolic routes in strain JA2. Overall, the study uncovered the l-phenylalanine catabolic diversity in strain JA2 and demonstrated the potential of stable isotope-assisted metabolomics in unraveling the hidden metabolic repertoire.

  20. The Impact of Inflammation on Metabolomic Profiles in Patients With Arthritis

    PubMed Central

    Young, Stephen P; Kapoor, Sabrina R; Viant, Mark R; Byrne, Jonathan J; Filer, Andrew; Buckley, Christopher D; Kitas, George D; Raza, Karim

    2013-01-01

    Objective. Inflammatory arthritis is associated with systemic manifestations including alterations in metabolism. We used nuclear magnetic resonance (NMR) spectroscopy–based metabolomics to assess metabolic fingerprints in serum from patients with established rheumatoid arthritis (RA) and those with early arthritis. Methods. Serum samples were collected from newly presenting patients with established RA who were naive for disease-modifying antirheumatic drugs, matched healthy controls, and 2 groups of patients with synovitis of ≤3 months' duration whose outcomes were determined at clinical followup. Serum metabolomic profiles were assessed using 1-dimensional 1H-NMR spectroscopy. Discriminating metabolites were identified, and the relationships between metabolomic profiles and clinical variables including outcomes were examined. Results. The serum metabolic fingerprint in established RA was clearly distinct from that of healthy controls. In early arthritis, we were able to stratify the patients according to the level of current inflammation, with C-reactive protein correlating with metabolic differences in 2 separate groups (P < 0.001). Lactate and lipids were important discriminators of inflammatory burden in both early arthritis patient groups. The sensitivities and specificities of models to predict the development of either RA or persistent arthritis in patients with early arthritis were low. Conclusion. The metabolic fingerprint reflects inflammatory disease activity in patients with synovitis, demonstrating that underlying inflammatory processes drive significant changes in metabolism that can be measured in the peripheral blood. The identification of metabolic alterations may provide insights into disease mechanisms operating in patients with inflammatory arthritis. PMID:23740368

  1. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia

    PubMed Central

    Goyal, Ravi; Longo, Lawrence D.

    2015-01-01

    Background Long-term hypoxia (LTH) is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death. Aim LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups. Results Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation. PMID:26110419

  2. Perfluorocarbon Enhanced Glasgow Oxygen Level Dependent (GOLD) Magnetic Resonance Metabolic Imaging Identifies the Penumbra Following Acute Ischemic Stroke

    PubMed Central

    Deuchar, Graeme A; Brennan, David; Holmes, William M; Shaw, Martin; Macrae, I Mhairi; Santosh, Celestine

    2018-01-01

    The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options. PMID:29556351

  3. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables

    PubMed Central

    Ayoub, Hala M; McDonald, Mary Ruth; Sullivan, James Alan; Tsao, Rong; Meckling, Kelly A

    2018-01-01

    Metabolic Syndrome (MetS) is a complex disorder that predisposes an individual to Cardiovascular Diseases and type 2 Diabetes Mellitus. Proteomics and bioinformatics have proven to be an effective tool to study complex diseases and mechanisms of action of nutrients. We previously showed that substitution of the majority of carbohydrate in a high fat diet by purple potatoes (PP) or purple carrots (PC) improved insulin sensitivity and hypertension in an animal model of MetS (obese Zucker rats) compared to a control sucrose-rich diet. In the current study, we used TMT 10plex mass tag combined with LC-MS/MS technique to study proteomic modulation in the liver (n = 3 samples/diet) and adipose tissue (n = 3 samples/diet) of high fat diet-fed rats with or without substituting sucrose for purple vegetables, followed by functional enrichment analysis, in an attempt to elucidate potential molecular mechanisms responsible for the phenotypic changes seen with purple vegetable feeding. Protein folding, lipid metabolism and cholesterol efflux were identified as the main modulated biological themes in adipose tissue, whereas lipid metabolism, carbohydrate metabolism and oxidative stress were the main modulated themes in liver. We propose that enhanced protein folding, increased cholesterol efflux and higher free fatty acid (FFA) re-esterification are mechanisms by which PP and PC positively modulate MetS pathologies in adipose tissue, whereas, decreased de novo lipogenesis, oxidative stress and FFA uptake, are responsible for the beneficial effects in liver. In conclusion, we provide molecular evidence for the reported metabolic health benefits of purple carrots and potatoes and validate that these vegetables are good choices to replace other simple carbohydrate sources for better metabolic health. PMID:29642414

  4. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    PubMed

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  5. In vivo multiphoton and fluorescence lifetime imaging microscopy of the healthy and cholestatic liver

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Daria S.; Dudenkova, Varvara V.; Rodimova, Svetlana A.; Bobrov, Nikolai V.; Zagainov, Vladimir E.; Zagaynova, Elena V.

    2018-02-01

    A cholestatic liver disease presents one of the most common liver diseases and can potentially progress to cirrhosis or even cholangiocarcinoma. Conventional techniques are insufficient to precisely describe the complex internal structure, heterogeneous cell populations and the dynamics of biological processes of the liver. Currently, the methods of multiphoton and fluorescence lifetime imaging microscopy are actively introducing to biomedical research. Those methods are extremely informative and non-destructive that allows studying of a large number of processes occurring inside cells and tissues, analyzing molecular cellular composition, as well as evaluating the state of connective tissue fibers due to their ability to generate a second optical harmonic. Multiphoton and FLIM microscopy do not need additional staining of samples or the incorporation of any markers to study metabolism, lipid composition, microstructure analysis, evaluation of fibrous structures. These parameters have pronounced changes in hepatocytes of liver with common pathological diseases. Thereby in this study we investigated metabolic changes in the healthy and cholestatic liver based on the fluorescence of the metabolic co-factors NAD(P)H and FAD by multiphoton microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH was presented. The data can be used to develop new criteria for the identification of hepatic pathology at the level of hepatocyte changes directed to personalized medicine in the future.

  6. Metabolite fingerprinting of urine suggests breed-specific dietary metabolism differences in domestic dogs.

    PubMed

    Beckmann, Manfred; Enot, David P; Overy, David P; Scott, Ian M; Jones, Paul G; Allaway, David; Draper, John

    2010-04-01

    Selective breeding of dogs has culminated in a large number of modern breeds distinctive in terms of size, shape and behaviour. Inadvertently, a range of breed-specific genetic disorders have become fixed in some pure-bred populations. Several inherited conditions confer chronic metabolic defects that are influenced strongly by diet, but it is likely that many less obvious breed-specific differences in physiology exist. Using Labrador retrievers and miniature Schnauzers maintained in a simulated domestic setting on a controlled diet, an experimental design was validated in relation to husbandry, sampling and sample processing for metabolomics. Metabolite fingerprints were generated from 'spot' urine samples using flow injection electrospray MS (FIE-MS). With class based on breed, urine chemical fingerprints were modelled using Random Forest (a supervised data classification technique), and metabolite features (m/z) explanatory of breed-specific differences were putatively annotated using the ARMeC database (http://www.armec.org). GC-MS profiling to confirm FIE-MS predictions indicated major breed-specific differences centred on the metabolism of diet-related polyphenols. Metabolism of further diet components, including potentially prebiotic oligosaccharides, animal-derived fats and glycerol, appeared significantly different between the two breeds. Analysis of the urinary metabolome of young male dogs representative of a wider range of breeds from animals maintained under domestic conditions on unknown diets provided preliminary evidence that many breeds may indeed have distinctive metabolic differences, with significant differences particularly apparent in comparisons between large and smaller breeds.

  7. Effects of oral contraceptives on metabolic profile in women with polycystic ovary syndrome: A meta-analysis comparing products containing cyproterone acetate with third generation progestins.

    PubMed

    Amiri, Mina; Ramezani Tehrani, Fahimeh; Nahidi, Fatemeh; Kabir, Ali; Azizi, Fereidoun; Carmina, Enrico

    2017-08-01

    Although oral contraceptives (OCs) are the most common treatment in women with polycystic ovary syndrome (PCOS), their effects and safety on the metabolic profiles of these patients are relatively unknown. In this meta-analysis the effects of the different durations (from 3months to 1year) of OC treatment using cyproterone acetate (CA) or third generation progestins on metabolic profile of patients with PCOS were assessed. PubMed, Scopus, Google Scholar and ScienceDirect databases (2001-2015) were searched to identify clinical trials investigating the effects of OC containing CA or third generation progestins on metabolic profiles of women with PCOS. Both fixed and random effect models were used. Subgroup analyses were performed based on the progestin compounds used and on duration of treatment. Oral contraceptive (OC) use was found to be associated with a worsening in lipid profiles but no changes were observed in other metabolic outcomes, including body mass index (BMI), fasting blood glucose (FBG), fasting insulin, homeostatic model for measuring insulin resistance (HOMA-IR) and in blood pressure (BP) values. All studied OCs showed similar effects on lipid profiles but with different timings, with products containing CA, requiring 6months to raise high density lipoprotein-cholesterol (HDL-C) levels and 12months to increase triglycerides (TG). On the contrary, products containing drospirenone (DRSP) or desogestrel (DSG) increased HDL-C after only 3months but determined elevations of TG after 6months. All OCs induced an increase in low density lipoprotein-cholesterol (LDL-C) after 12months of use. The study shows that, in women with PCOS, OC use is associated with significant changes in lipid profiles, including elevation not only in HDL-C but also in TG and LDL-C. All OCs studied showed similar effects but with different timings, with products containing CA generally requiring more prolonged use to increase serum lipids. Instead, OC use does not affect body weight, BP or glucose levels, with only some minor increase of fasting insulin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Apolipoprotein C3 polymorphism is associated with cognitive function in Caribbean Hispanics

    USDA-ARS?s Scientific Manuscript database

    Background: Apolipoprotein C3(APOC3) modulates triglyceride metabolism through inhibition of lipoprotein lipase, but is itself regulated by insulin, so that APOC3 represents a potential mechanism by which glucose metabolism may affect lipid metabolism. Unfavorable lipoprotein profiles and impaired ...

  9. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage.

    PubMed

    Belenky, Peter; Ye, Jonathan D; Porter, Caroline B M; Cohen, Nadia R; Lobritz, Michael A; Ferrante, Thomas; Jain, Saloni; Korry, Benjamin J; Schwarz, Eric G; Walker, Graham C; Collins, James J

    2015-11-03

    Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (?-lactams, aminoglycosides, quinolones). These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Plasma metabolic profiling analysis of nephrotoxicity induced by acyclovir using metabonomics coupled with multivariate data analysis.

    PubMed

    Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun

    2014-08-01

    Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    PubMed

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  12. Metabolomics Coupled with Multivariate Data and Pathway Analysis on Potential Biomarkers in Gastric Ulcer and Intervention Effects of Corydalis yanhusuo Alkaloid

    PubMed Central

    Shuai, Wang; Yongrui, Bao; Shanshan, Guan; Bo, Liu; Lu, Chen; Lei, Wang; Xiaorong, Ran

    2014-01-01

    Metabolomics, the systematic analysis of potential metabolites in a biological specimen, has been increasingly applied to discovering biomarkers, identifying perturbed pathways, measuring therapeutic targets, and discovering new drugs. By analyzing and verifying the significant difference in metabolic profiles and changes of metabolite biomarkers, metabolomics enables us to better understand substance metabolic pathways which can clarify the mechanism of Traditional Chinese Medicines (TCM). Corydalis yanhusuo alkaloid (CA) is a major component of Qizhiweitong (QZWT) prescription which has been used for treating gastric ulcer for centuries and its mechanism remains unclear completely. Metabolite profiling was performed by high-performance liquid chromatography combined with time-of-flight mass spectrometry (HPLC/ESI-TOF-MS) and in conjunction with multivariate data analysis and pathway analysis. The statistic software Mass Profiller Prossional (MPP) and statistic method including ANOVA and principal component analysis (PCA) were used for discovering novel potential biomarkers to clarify mechanism of CA in treating acid injected rats with gastric ulcer. The changes in metabolic profiling were restored to their base-line values after CA treatment according to the PCA score plots. Ten different potential biomarkers and seven key metabolic pathways contributing to the treatment of gastric ulcer were discovered and identified. Among the pathways, sphingophospholipid metabolism and fatty acid metabolism related network were acutely perturbed. Quantitative real time polymerase chain reaction (RT-PCR) analysis were performed to evaluate the expression of genes related to the two pathways for verifying the above results. The results show that changed biomarkers and pathways may provide evidence to insight into drug action mechanisms and enable us to increase research productivity toward metabolomics drug discovery. PMID:24454691

  13. Alcohol, metabolic risk and elevated serum gamma-glutamyl transferase (GGT) in Indigenous Australians.

    PubMed

    Haren, Matthew T; Li, Ming; Petkov, John; McDermott, Robyn A

    2010-08-03

    The interaction between overweight/obesity and alcohol intake on liver enzyme concentrations have been demonstrated. No studies have yet examined the interaction between metabolic syndrome or multiple metabolic risk factors and alcohol intake on liver enzymes. The aim of this study was to examine if alcohol consumption modifies the effect of metabolic risk on elevated serum GGT in Indigenous Australians. Data were from N = 2609 Indigenous Australians who participated in a health screening program in rural far north Queensland in 1999-2000 (44.5% response rate). The individual and interactive effects of metabolic risk and alcohol drinking on elevated serum GGT concentrations (>or=50 U/L) were analyzed using logistic regression. Overall, 26% of the population had GGT>or=50 U/L. Elevated GGT was associated with alcohol drinking (moderate drinking: OR 2.3 [95%CI 1.6 - 3.2]; risky drinking: OR 6.0 [4.4 - 8.2]), and with abdominal obesity (OR 3.7 [2.5 - 5.6]), adverse metabolic risk cluster profile (OR 3.4 [2.6 - 4.3]) and metabolic syndrome (OR 2.7 [2.1 - 3.5]) after adjustment for age, sex, ethnicity, smoking, physical activity and BMI. The associations of obesity and metabolic syndrome with elevated GGT were similar across alcohol drinking strata, but the association of an adverse metabolic risk cluster profile with elevated GGT was larger in risky drinkers (OR 4.9 [3.7 - 6.7]) than in moderate drinkers (OR 2.8 [1.6 - 4.9]) and abstainers (OR 1.6 [0.9 - 2.8]). In this Indigenous population, an adverse metabolic profile conferred three times the risk of elevated GGT in risky drinkers compared with abstainers, independent of sex and ethnicity. Community interventions need to target both determinants of the population's metabolic status and alcohol consumption to reduce the risk of elevated GGT.

  14. Alcohol, metabolic risk and elevated serum gamma-glutamyl transferase (GGT) in Indigenous Australians

    PubMed Central

    2010-01-01

    Background The interaction between overweight/obesity and alcohol intake on liver enzyme concentrations have been demonstrated. No studies have yet examined the interaction between metabolic syndrome or multiple metabolic risk factors and alcohol intake on liver enzymes. The aim of this study was to examine if alcohol consumption modifies the effect of metabolic risk on elevated serum GGT in Indigenous Australians. Methods Data were from N = 2609 Indigenous Australians who participated in a health screening program in rural far north Queensland in 1999-2000 (44.5% response rate). The individual and interactive effects of metabolic risk and alcohol drinking on elevated serum GGT concentrations (≥50 U/L) were analyzed using logistic regression. Results Overall, 26% of the population had GGT≥50 U/L. Elevated GGT was associated with alcohol drinking (moderate drinking: OR 2.3 [95%CI 1.6 - 3.2]; risky drinking: OR 6.0 [4.4 - 8.2]), and with abdominal obesity (OR 3.7 [2.5 - 5.6]), adverse metabolic risk cluster profile (OR 3.4 [2.6 - 4.3]) and metabolic syndrome (OR 2.7 [2.1 - 3.5]) after adjustment for age, sex, ethnicity, smoking, physical activity and BMI. The associations of obesity and metabolic syndrome with elevated GGT were similar across alcohol drinking strata, but the association of an adverse metabolic risk cluster profile with elevated GGT was larger in risky drinkers (OR 4.9 [3.7 - 6.7]) than in moderate drinkers (OR 2.8 [1.6 - 4.9]) and abstainers (OR 1.6 [0.9 - 2.8]). Conclusions In this Indigenous population, an adverse metabolic profile conferred three times the risk of elevated GGT in risky drinkers compared with abstainers, independent of sex and ethnicity. Community interventions need to target both determinants of the population's metabolic status and alcohol consumption to reduce the risk of elevated GGT. PMID:20682033

  15. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk?

    PubMed

    Daan, Nadine M P; Louwers, Yvonne V; Koster, Maria P H; Eijkemans, Marinus J C; de Rijke, Yolanda B; Lentjes, Eef W G; Fauser, Bart C J M; Laven, Joop S E

    2014-11-01

    To study the cardiometabolic profile characteristics and compare the prevalence of cardiovascular (CV) risk factors between women with different polycystic ovary syndrome (PCOS) phenotypes. A cross-sectional multicenter study analyzing 2,288 well phenotyped women with PCOS. Specialized reproductive outpatient clinic. Women of reproductive age (18-45 years) diagnosed with PCOS. Women suspected of oligo- or anovulation underwent a standardized screening consisting of a systematic medical and reproductive history taking, anthropometric measurements, and transvaginal ultrasonography followed by an extensive endocrinologic/metabolic evaluation. Differences in cardiometabolic profile characteristics and CV risk factor prevalence between women with different PCOS phenotypes, i.e., obesity/overweight, hypertension, insulin resistance, dyslipidemia, and metabolic syndrome. Women with hyperandrogenic PCOS (n=1,219; 53.3% of total) presented with a worse cardiometabolic profile and a higher prevalence of CV risk factors, such as obesity and overweight, insulin resistance, and metabolic syndrome, compared with women with nonhyperandrogenic PCOS. In women with nonhyperandrogenic PCOS overweight/obesity (28.5%) and dyslipidemia (low-density lipoprotein cholesterol≥3.0 mmol/L; 52.2%) were highly prevalent. Women with hyperandrogenic PCOS have a worse cardiometabolic profile and higher prevalence of CV risk factors compared with women with nonhyperandrogenic PCOS. However, all women with PCOS should be screened for the presence of CV risk factors, since the frequently found derangements at a young age imply an elevated risk for the development of CV disease later in life. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans.

    PubMed

    Wan, Qin-Li; Shi, Xiaohuo; Liu, Jiangxin; Ding, Ai-Jun; Pu, Yuan-Zhu; Li, Zhigang; Wu, Gui-Sheng; Luo, Huai-Rong

    2017-02-06

    In Caenorhabditis elegans (C. elegans) , ablation of germline stem cells (GSCs) leads to infertility, which extends lifespan. It has been reported that aging and reproduction are both inextricably associated with metabolism. However, few studies have investigated the roles of polar small molecules metabolism in regulating longevity by reproduction. In this work, we combined the nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to profile the water-soluble metabolome in C. elegans . Comparing the metabolic fingerprint between two physiological ages among different mutants, our results demonstrate that aging is characterized by metabolome remodeling and metabolic decline. In addition, by analyzing the metabolic profiles of long-lived germline-less glp-1 mutants, we discovered that glp-1 mutants regulate the levels of many age-variant metabolites to attenuate aging, including elevated concentrations of the pyrimidine and purine metabolism intermediates and decreased concentrations of the citric acid cycle intermediates. Interestingly, by analyzing the metabolome of daf-16;glp-1 double mutants, our results revealed that some metabolic exchange contributing to germline-mediated longevity was mediated by transcription factor FOXO/DAF-16, including pyrimidine metabolism and the TCA cycle. Based on a comprehensive metabolic analysis, we provide novel insight into the relationship between longevity and metabolism regulated by germline signals in C. elegans .

  17. Metabolomic signature associated with reproduction-regulated aging in Caenorhabditis elegans

    PubMed Central

    Wan, Qin-Li; Shi, Xiaohuo; Liu, Jiangxin; Ding, Ai-Jun; Pu, Yuan-Zhu; Li, Zhigang; Wu, Gui-Sheng; Luo, Huai-Rong

    2017-01-01

    In Caenorhabditis elegans (C. elegans), ablation of germline stem cells (GSCs) leads to infertility, which extends lifespan. It has been reported that aging and reproduction are both inextricably associated with metabolism. However, few studies have investigated the roles of polar small molecules metabolism in regulating longevity by reproduction. In this work, we combined the nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) to profile the water-soluble metabolome in C. elegans. Comparing the metabolic fingerprint between two physiological ages among different mutants, our results demonstrate that aging is characterized by metabolome remodeling and metabolic decline. In addition, by analyzing the metabolic profiles of long-lived germline-less glp-1 mutants, we discovered that glp-1 mutants regulate the levels of many age-variant metabolites to attenuate aging, including elevated concentrations of the pyrimidine and purine metabolism intermediates and decreased concentrations of the citric acid cycle intermediates. Interestingly, by analyzing the metabolome of daf-16;glp-1 double mutants, our results revealed that some metabolic exchange contributing to germline-mediated longevity was mediated by transcription factor FOXO/DAF-16, including pyrimidine metabolism and the TCA cycle. Based on a comprehensive metabolic analysis, we provide novel insight into the relationship between longevity and metabolism regulated by germline signals in C. elegans PMID:28177875

  18. Comparison of Metabolic and Hormonal Profiles of Women With and Without Premenstrual Syndrome: A Community Based Cross-Sectional Study.

    PubMed

    Hashemi, Somayeh; Ramezani Tehrani, Fahimeh; Mohammadi, Nader; Rostami Dovom, Marzieh; Torkestani, Farahnaz; Simbar, Masumeh; Azizi, Fereidoun

    2016-04-01

    Premenstrual syndrome (PMS) is reported by up to 85% of women of reproductive age. Although several studies have focused on the hormone and lipid profiles of females with PMS, the results are controversial. This study was designed to investigate the association of hormonal and metabolic factors with PMS among Iranian women of reproductive age. This study was a community based cross-sectional study. Anthropometric measurements, biochemical parameters, and metabolic disorders were compared between 354 women with PMS and 302 healthy controls selected from among 1126 women of reproductive age who participated in the Iranian PCOS prevalence study. P values < 0.05 were considered significant. Prolactin (PRL) and triglycerides (TG) were significantly elevated in women with PMS, whereas their testosterone (TES), high density lipoprotein (HDL) and 17-hydroxyprogesterone (17-OHP) levels were significantly less than they were in women without the syndrome (P < 0.05). After adjusting for age and body mass index (BMI), linear regression analysis demonstrated that for every one unit increase in PMS score there was 12% rise in the probability of having metabolic syndrome (P = 0.033). There was a significant association between PMS scores and the prevalence of metabolic syndrome. Further studies are needed to confirm and validate the relationships between lipid profile abnormalities and metabolic disorders with PMS.

  19. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii

    PubMed Central

    Mahamad Maifiah, Mohd Hafidz; Cheah, Soon-Ee; Johnson, Matthew D.; Han, Mei-Ling; Boyce, John D.; Thamlikitkul, Visanu; Forrest, Alan; Kaye, Keith S.; Hertzog, Paul; Purcell, Anthony W.; Song, Jiangning; Velkov, Tony; Creek, Darren J.; Li, Jian

    2016-01-01

    Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03–149.1 (polymyxin-susceptible) and 03–149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii. PMID:26924392

  20. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii.

    PubMed

    Maifiah, Mohd Hafidz Mahamad; Cheah, Soon-Ee; Johnson, Matthew D; Han, Mei-Ling; Boyce, John D; Thamlikitkul, Visanu; Forrest, Alan; Kaye, Keith S; Hertzog, Paul; Purcell, Anthony W; Song, Jiangning; Velkov, Tony; Creek, Darren J; Li, Jian

    2016-02-29

    Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03-149.1 (polymyxin-susceptible) and 03-149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii.

  1. Metabolic Syndrome Does Not Detect Metabolic Risk in African Men Living in the U.S.

    PubMed Central

    Ukegbu, Ugochi J.; Castillo, Darleen C.; Knight, Michael G.; Ricks, Madia; Miller, Bernard V.; Onumah, Barbara M.; Sumner, Anne E.

    2011-01-01

    OBJECTIVE Metabolic risk and metabolic syndrome (MetSyn) prevalence were compared in Africans who immigrated to the U.S. and African Americans. If MetSyn were an effective predictor of cardiometabolic risk, then the group with a worse metabolic risk profile would have a higher rate of MetSyn. RESEARCH DESIGN AND METHODS Cross-sectional analyses were performed on 95 men (39 Africans, 56 African Americans, age 38 ± 6 years [mean ± SD]). Glucose tolerance was determined by oral glucose tolerance test, visceral adipose tissue (VAT) was determined by computerized tomography, and MetSyn was determined by the presence of three of five factors: central obesity, hypertriglyceridemia, low levels of HDL cholesterol, hypertension, and fasting hyperglycemia. RESULTS MetSyn prevalence was similar in Africans and African Americans (10 vs. 13%, P = 0.74), but hypertension, glycemia (fasting and 2-h glucose), and VAT were higher in Africans. CONCLUSIONS African immigrants have a worse metabolic profile than African Americans but a similar prevalence of MetSyn. Therefore, MetSyn may underpredict metabolic risk in Africans. PMID:21873563

  2. Serum Metabolomic Profiling of Piglets Infected with Virulent Classical Swine Fever Virus

    PubMed Central

    Gong, Wenjie; Jia, Junjie; Zhang, Bikai; Mi, Shijiang; Zhang, Li; Xie, Xiaoming; Guo, Huancheng; Shi, Jishu; Tu, Changchun

    2017-01-01

    Classical swine fever (CSF) is a highly contagious swine infectious disease and causes significant economic losses for the pig industry worldwide. The objective of this study was to determine whether small molecule metabolites contribute to the pathogenesis of CSF. Birefly, serum metabolomics of CSFV Shimen strain-infected piglets were analyzed by ultraperformance liquid chromatography/electrospray ionization time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) in combination with multivariate statistical analysis. In CSFV-infected piglets at days 3 and 7 post-infection changes were found in metabolites associated with several key metabolic pathways, including tryptophan catabolism and the kynurenine pathway, phenylalanine metabolism, fatty acid and lipid metabolism, the tricarboxylic acid and urea cycles, branched-chain amino acid metabolism, and nucleotide metabolism. Several pathways involved in energy metabolism including fatty acid biosynthesis and β-oxidation, branched-chain amino acid metabolism, and the tricarboxylic acid cycle were significantly inhibited. Changes were also observed in several metabolites exclusively associated with gut microbiota. The metabolomic profiles indicate that CSFV-host gut microbiome interactions play a role in the development of CSF. PMID:28496435

  3. Metabolic Profile of Zearalenone in Liver Microsomes from Different Species and Its in Vivo Metabolism in Rats and Chickens Using Ultra High-Pressure Liquid Chromatography-Quadrupole/Time-of-Flight Mass Spectrometry.

    PubMed

    Yang, Shupeng; Zhang, Huiyan; Sun, Feifei; De Ruyck, Karl; Zhang, Jinzhen; Jin, Yue; Li, Yanshen; Wang, Zhanhui; Zhang, Suxia; De Saeger, Sarah; Zhou, Jinhui; Li, Yi; De Boevre, Marthe

    2017-12-27

    To explore differences of zearalenone (ZEN) metabolism between various species, phase I and II metabolism by liver microsomes of animals and human were investigated using ultra high-pressure liquid chromatography-quadrupole/time-of-flight mass spectrometry (UHPLC-Q/TOF MS). A total of 24 metabolites were identified, among which 12 were reported for the first time. Reduction, hydroxylation, and glucuronidation were the major metabolic pathways of ZEN, and significant differences in various species were also observed. Reduction was the main reaction in swine and human, whereas hydroxylation was predominant in rats, chickens, goats, and cows in in vitro systems. Furthemore, in vivo metabolism of ZEN in rats and chickens was investigated, and 23 and 6 metabolites were identified in each species, respectively. Reduction, hydroxylation, and glucuronidation were the major metabolic pathways in rats, while reduction and sulfation predominated in chickens. These results further enrich the biotransformation profile of ZEN, providing a helpful reference for assessing the risks to animals and humans.

  4. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry.

    PubMed

    Zhu, Hongying; Zou, Guichang; Wang, Ning; Zhuang, Meihui; Xiong, Wei; Huang, Guangming

    2017-03-07

    The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.

  5. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry

    PubMed Central

    Zhu, Hongying; Zou, Guichang; Wang, Ning; Zhuang, Meihui; Xiong, Wei; Huang, Guangming

    2017-01-01

    The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules. PMID:28223513

  6. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    PubMed

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  7. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    PubMed Central

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  8. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: a matched cohort study.

    PubMed

    Chiu, Yen-Feng; Hsu, Chih-Cheng; Chiu, Tina H T; Lee, Chun-Yi; Liu, Ting-Ting; Tsao, Chwen Keng; Chuang, Su-Chun; Hsiung, Chao A

    2015-10-28

    Several previous cross-sectional studies have shown that vegetarians have a better metabolic profile than non-vegetarians, suggesting that a vegetarian dietary pattern may help prevent chronic degenerative diseases. However, longitudinal studies on the impact of vegetarian diets on metabolic traits are scarce. We studied how several sub-types of vegetarian diets affect metabolic traits, including waist circumference, BMI, systolic blood pressure (SBP), diastolic blood pressure, fasting blood glucose, total cholesterol (TC), HDL, LDL, TAG and TC:HDL ratio, through both cross-sectional and longitudinal study designs. The study used the MJ Health Screening database, with data collected from 1994 to 2008 in Taiwan, which included 4415 lacto-ovo-vegetarians, 1855 lacto-vegetarians and 1913 vegans; each vegetarian was matched with five non-vegetarians based on age, sex and study site. In the longitudinal follow-up, each additional year of vegan diet lowered the risk of obesity by 7 % (95 % CI 0·88, 0·99), whereas each additional year of lacto-vegetarian diet lowered the risk of elevated SBP by 8 % (95 % CI 0·85, 0·99) and elevated glucose by 7 % (95 % CI 0·87, 0·99), and each additional year of ovo-lacto-vegetarian diet increased abnormal HDL by 7 % (95 % CI 1·03, 1·12), compared with non-vegetarians. In the cross-sectional comparisons, all sub-types of vegetarians had lower likelihoods of abnormalities compared with non-vegetarians on all metabolic traits (P<0·001 for all comparisons), except for HDL and TAG. The better metabolic profile in vegetarians is partially attributable to lower BMI. With proper management of TAG and HDL, along with caution about the intake of refined carbohydrates and fructose, a plant-based diet may benefit all aspects of the metabolic profile.

  9. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses

    PubMed Central

    Ayenew, Biruk; Degu, Asfaw; Manela, Neta; Perl, Avichai; Shamir, Michal O.; Fait, Aaron

    2015-01-01

    As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m-2s-1), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m-2s-1 under controlled condition. When LC–MS and GC–MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3′,5′ hydroxylase and flavonoid 3′ hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses. PMID:26442042

  10. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study.

    PubMed

    Zhao, Qi; Zhu, Yun; Best, Lyle G; Umans, Jason G; Uppal, Karan; Tran, ViLinh T; Jones, Dean P; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying

    2016-01-01

    Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.

  11. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study

    PubMed Central

    Best, Lyle G.; Umans, Jason G.; Uppal, Karan; Tran, ViLinh T.; Jones, Dean P.; Lee, Elisa T.; Howard, Barbara V.; Zhao, Jinying

    2016-01-01

    Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography–mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups. PMID:27434237

  12. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease.

    PubMed

    Singh, Brajesh; Jana, Saikat K; Ghosh, Nilanjana; Das, Soumen K; Joshi, Mamata; Bhattacharyya, Parthasarathi; Chaudhury, Koel

    2017-01-05

    Serum metabolic profiling can identify the metabolites responsible for discrimination between doxycycline treated and untreated chronic obstructive pulmonary disease (COPD) and explain the possible effect of doxycycline in improving the disease conditions. 1 H nuclear magnetic resonance (NMR)-based metabolomics was used to obtain serum metabolic profiles of 60 add-on doxycycline treated COPD patients and 40 patients receiving standard therapy. The acquired data were analyzed using multivariate principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and orthogonal projection to latent structure with discriminant analysis (OPLS-DA). A clear metabolic differentiation was apparent between the pre and post doxycycline treated group. The distinguishing metabolites lactate and fatty acids were significantly down-regulated and formate, citrate, imidazole and l-arginine upregulated. Lactate and folate are further validated biochemically. Metabolic changes, such as decreased lactate level, inhibited arginase activity and lowered fatty acid level observed in COPD patients in response to add-on doxycycline treatment, reflect the anti-inflammatory action of the drug. Doxycycline as a possible therapeutic option for COPD seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling.

    PubMed

    Veite-Schmahl, Michelle J; Regan, Daniel P; Rivers, Adam C; Nowatzke, Joseph F; Kennedy, Michael A

    2017-08-19

    We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1a cre/+ ;LSL-Kras G12D/+ ) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.

  14. Chemical fingerprint and metabolic profile analysis of Citrus reticulate 'Chachi' decoction by HPLC-PDA-IT-MS(n) and HPLC-Quadrupole-Orbitrap-MS method.

    PubMed

    Ye, Xiaolan; Cao, Di; Zhao, Xin; Song, Fenyun; Huang, Qinghua; Fan, Guorong; Wu, Fuhai

    2014-11-01

    A method incorporating HPLC-PDA-IT-MS(n) with HPLC-Quadrupole-Orbitrap-MS was developed for the investigation of chemical fingerprint of Citrus reticulate 'Chachi' decoction (CRCD) and metabolic profile of SD rat plasma sample after oral administration of CRCD (1.5 g herb/kg). A total of 27 chemical constituents of CRCD were identified from their MW, UV spectra, MS(n) data and retention behavior by comparing the results with those of the reference standards or literature. And 43 compounds were detected in dosed SD rat plasma samples, including 9 prototypes which were identified as hesperetin, isosinensetin, sinensetin, tetramethyl-O-isoscutellarein, nobiletin, tetramethyl-O-scutellarein, HMF (3,5,6,7,8,3',4'-heptamethoxyflavone), tangeretin and 5-demethylnobiletin and 34 metabolites underwent metabolic process of demethylation, glucuronide conjugation, sulfate conjugation or mixed modes. This is the first research for the metabolic profile of CRCD in SD rats, which could lay a foundation for the further studies of CRC or its formulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. An introduction to hybrid ion trap/time-of-flight mass spectrometry coupled with liquid chromatography applied to drug metabolism studies.

    PubMed

    Liu, Zhao-Ying

    2012-12-01

    Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time-of-flight MS coupled with LC (LC-IT-TOF-MS) has successfully integrated ease of operation, compatibility with LC flow rates and data-dependent MS(n) with high mass accuracy and mass resolving power. The MS(n) and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC-IT-TOF-MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT-TOF instrument. Then, a general workflow for metabolite profiling using LC-IT-TOF-MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC-IT-TOF-MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chi-Jung; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Huang, Chao-Yuan

    Inter-individual variation in the metabolism of xenobiotics, caused by factors such as cigarette smoking or inorganic arsenic exposure, is hypothesized to be a susceptibility factor for urothelial carcinoma (UC). Therefore, our study aimed to evaluate the role of gene–environment interaction in the carcinogenesis of UC. A hospital-based case–control study was conducted. Urinary arsenic profiles were measured using high-performance liquid chromatography–hydride generator-atomic absorption spectrometry. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism technique. Information about cigarette smoking exposure was acquired from a lifestyle questionnaire. Multivariate logistic regression was applied to estimate the UC risk associated with certain riskmore » factors. We found that UC patients had higher urinary levels of total arsenic, higher percentages of inorganic arsenic (InAs%) and monomethylarsonic acid (MMA%) and lower percentages of dimethylarsinic acid (DMA%) compared to controls. Subjects carrying the GSTM1 null genotype had significantly increased UC risk. However, no association was observed between gene polymorphisms of CYP1A1, EPHX1, SULT1A1 and GSTT1 and UC risk after adjustment for age and sex. Significant gene–environment interactions among urinary arsenic profile, cigarette smoking, and GSTM1 wild/null polymorphism and UC risk were observed after adjustment for potential risk factors. Overall, gene–environment interactions simultaneously played an important role in UC carcinogenesis. In the future, large-scale studies should be conducted using tag-SNPs of xenobiotic-metabolism-related enzymes for gene determination. -- Highlights: ► Subjects with GSTM1 null genotype had significantly increased UC risk. ► UC patients had poor arsenic metabolic ability compared to controls. ► GSTM1 null genotype may modify arsenic related UC risk.« less

  17. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance.

    PubMed

    Schmidt, Michael A; Goodwin, Thomas J

    2013-01-01

    Space flight is one of the most extreme conditions encountered by humans. Advances in Omics methodologies (genomics, transcriptomics, proteomics, and metabolomics) have revealed that unique differences exist between individuals. These differences can be amplified in extreme conditions, such as space flight. A better understanding of individual differences may allow us to develop personalized countermeasure packages that optimize the safety and performance of each astronaut. In this review, we explore the role of "Omics" in advancing our ability to: (1) more thoroughly describe the biological response of humans in space; (2) describe molecular attributes of individual astronauts that alter the risk profile prior to entering the space environment; (3) deploy Omics techniques in the development of personalized countermeasures; and (4) develop a comprehensive Omics-based assessment and countermeasure platform that will guide human space flight in the future. In this review, we advance the concept of personalized medicine in human space flight, with the goal of enhancing astronaut safety and performance. Because the field is vast, we explore selected examples where biochemical individuality might significantly impact countermeasure development. These include gene and small molecule variants associated with: (1) metabolism of therapeutic drugs used in space; (2) one carbon metabolism and DNA stability; (3) iron metabolism, oxidative stress and damage, and DNA stability; and (4) essential input (Mg and Zn) effects on DNA repair. From these examples, we advance the case that widespread Omics profiling should serve as the foundation for aerospace medicine and research, explore methodological considerations to advance the field, and suggest why personalized medicine may become the standard of care for humans in space.

  18. Gold nanostructure materials in diabetes management

    NASA Astrophysics Data System (ADS)

    Si, Satyabrata; Pal, Arttatrana; Mohanta, Jagdeep; Sagar Satapathy, Smith

    2017-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences.

  19. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Hauschka, Edward O.; Roy, Roland R.; Edgerton, V. Reggie

    1987-01-01

    The effect of 28-day-long hind-limb suspension (HS) combined with 10 daily forceful lengthening contractions of the limb on the morphological and metabolic properties of individual fibers of the soleus was studied in rats, using quantitative histochemical techniques. Compared with nonsuspended controls (CON), soleus wet weights of HS rats were decreased by 49 percent; the fibers staining lightly for myosin ATPase ('light-ATPase' fibers) atrophied more than the 'dark-ATPase' fibers. Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities were higher in HS than in CON rats. Daily forceful lengthening contractions did not prevent the HS-induced changes. The results support the view that the soleus fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that the SDH and GPD activities per volume of tissue can be increased even when there are severe losses of contractile proteins.

  20. Metabolic routes along digestive system of licorice: multicomponent sequential metabolism method in rat.

    PubMed

    Zhang, Lei; Zhao, Haiyu; Liu, Yang; Dong, Honghuan; Lv, Beiran; Fang, Min; Zhao, Huihui

    2016-06-01

    This study was conducted to establish the multicomponent sequential metabolism (MSM) method based on comparative analysis along the digestive system following oral administration of licorice (Glycyrrhiza uralensis Fisch., leguminosae), a traditional Chinese medicine widely used for harmonizing other ingredients in a formulae. The licorice water extract (LWE) dissolved in Krebs-Ringer buffer solution (1 g/mL) was used to carry out the experiments and the comparative analysis was performed using HPLC and LC-MS/MS methods. In vitro incubation, in situ closed-loop and in vivo blood sampling were used to measure the LWE metabolic profile along the digestive system. The incubation experiment showed that the LWE was basically stable in digestive juice. A comparative analysis presented the metabolic profile of each prototype and its corresponding metabolites then. Liver was the major metabolic organ for LWE, and the metabolism by the intestinal flora and gut wall was also an important part of the process. The MSM method was practical and could be a potential method to describe the metabolic routes of multiple components before absorption into the systemic blood stream. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    PubMed

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Effects of a Physical Exercise Program (PEP-Aut) on Autistic Children’s Stereotyped Behavior, Metabolic and Physical Activity Profiles, Physical Fitness, and Health-Related Quality of Life: A Study Protocol

    PubMed Central

    Ferreira, José Pedro; Andrade Toscano, Chrystiane Vasconcelos; Rodrigues, Aristides Machado; Furtado, Guilherme Eustaquio; Barros, Mauro Gomes; Wanderley, Rildo Souza; Carvalho, Humberto Moreira

    2018-01-01

    Physical exercise has shown positive effects on symptomatology and on the reduction of comorbidities in population with autism spectrum disorder (ASD). However, there is still no consensus about the most appropriate exercise intervention model for children with ASD. The physical exercise program for children with autism (PEP-Aut) protocol designed allow us to (i) examine the multivariate associations between ASD symptoms, metabolic profile, physical activity level, physical fitness, and health-related quality of life of children with ASD; (ii) assess the effects of a 40-week exercise program on all these aspects of children with ASD. The impact of the exercise program will be assessed based on the sequence of the two phases. Phase 1 is a 12-week cross-sectional study assessing the symptomatology, metabolic profile, physical fitness and physical activity levels, socioeconomic status profile, and health-related quality of life of participants. This phase is the baseline of the following phase. Phase 2 is a 48-week intervention study with a 40-week intervention with exercise that will take place in a specialized center for children with ASD in the city of Maceió-Alagoas, Brazil. The primary outcomes will be change in the symptomatic profile and the level of physical activity of children. Secondary outcomes will be anthropometric and metabolic profiles, aerobic function, grip strength, socioeconomic status, and health-related quality of life. The study will provide critical information on the efficacy of exercise for children with ASD and help guide design and delivery of future programs. PMID:29552551

  3. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  4. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  5. 1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

    PubMed Central

    Xu, Chuang; Sun, Ling-wei; Xia, Cheng; Zhang, Hong-you; Zheng, Jia-san; Wang, Jun-song

    2016-01-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows. PMID:26732447

  6. Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures.

    PubMed

    Oertel, Peter; Bergmann, Andreas; Fischer, Sina; Trefz, Phillip; Küntzel, Anne; Reinhold, Petra; Köhler, Heike; Schubert, Jochen K; Miekisch, Wolfram

    2018-05-14

    Volatile organic compounds (VOCs) emitted from in vitro cultures may reveal information on species and metabolism. Owing to low nmol L -1 concentration ranges, pre-concentration techniques are required for gas chromatography-mass spectrometry (GC-MS) based analyses. This study was intended to compare the efficiency of established micro-extraction techniques - solid-phase micro-extraction (SPME) and needle-trap micro-extraction (NTME) - for the analysis of complex VOC patterns. For SPME, a 75 μm Carboxen®/polydimethylsiloxane fiber was used. The NTME needle was packed with divinylbenzene, Carbopack X and Carboxen 1000. The headspace was sampled bi-directionally. Seventy-two VOCs were calibrated by reference standard mixtures in the range of 0.041-62.24 nmol L -1 by means of GC-MS. Both pre-concentration methods were applied to profile VOCs from cultures of Mycobacterium avium ssp. paratuberculosis. Limits of detection ranged from 0.004 to 3.93 nmol L -1 (median = 0.030 nmol L -1 ) for NTME and from 0.001 to 5.684 nmol L -1 (median = 0.043 nmol L -1 ) for SPME. NTME showed advantages in assessing polar compounds such as alcohols. SPME showed advantages in reproducibility but disadvantages in sensitivity for N-containing compounds. Micro-extraction techniques such as SPME and NTME are well suited for trace VOC profiling over cultures if the limitations of each technique is taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity.

    PubMed

    Chen, Guan-yuan; Chiu, Huai-hsuan; Lin, Shu-wen; Tseng, Yufeng Jane; Tsai, Sung-jeng; Kuo, Ching-hua

    2015-01-01

    As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Ripening-dependent metabolic changes in the volatiles of pineapple (Ananas comosus (L.) Merr.) fruit: II. Multivariate statistical profiling of pineapple aroma compounds based on comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg

    2015-03-01

    Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.

  9. [Is bone biopsy necessary for the diagnosis of metabolic bone diseases? Non- invasive assessment of bone turn over markers could define the cause of metabolic bone diseases].

    PubMed

    Suzuki, Atsushi

    2011-09-01

    Recent advances of the measurement of bone turn over markers contribute to non-invasive assessment of bone-metabolic disorders. We can detect the cause of the metabolic disorders with bone turn over markers and hormonal profiles more easily than before. Today, we can diagnose and treat metabolic bone diseases without invasive procedure such as bone biopsy.

  10. Metabolic Profile of Wound-Induced Changes in Primary Carbon Metabolism in Sugarbeet Root

    USDA-ARS?s Scientific Manuscript database

    Injury to plant products induces respiration rate and increases the demand for respiratory substrates. Alterations in primary carbon metabolism are likely to support the elevated demand for respiratory substrates, although the nature of these alterations is unknown. To gain insight into the metabo...

  11. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) IN THE AGING MALE FISHER RAT

    EPA Science Inventory

    Detoxification and elimination of xenobiotics is a major function of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of XMEs, in part, determines the fate of the...

  12. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    NASA Astrophysics Data System (ADS)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  13. Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity.

    PubMed

    Nisani, Zia; Boskovic, Danilo S; Dunbar, Stephen G; Kelln, Wayne; Hayes, William K

    2012-09-01

    We investigated the biochemical profile of regenerated venom of the scorpion Parabuthus transvaalicus in relation to its metabolic cost and toxicity. Using a closed-system respirometer, we compared oxygen consumption between milked and unmilked scorpions to determine the metabolic costs associated with the first 192 h of subsequent venom synthesis. Milked scorpions had a substantially (21%) higher mean metabolic rate than unmilked scorpions, with the largest increases in oxygen consumption occurring at approximately 120 h, 162 h, and 186 h post-milking. Lethality tests in crickets indicated that toxicity of the regenerated venom returned to normal levels within 4 d after milking. However, the chemical profile of the regenerated venom, as evaluated by FPLC and MALDI-TOF mass spectrometry, suggested that regeneration of different venom components was asynchronous. Some peptides regenerated quickly, particularly those associated with the scorpion's "prevenom," whereas others required much or all of this time period for regeneration. This asynchrony could explain the different spikes detected in oxygen consumption of milked scorpions as various peptides and other venom components were resynthesized. These observations confirm the relatively high metabolic cost of venom regeneration and suggest that greater venom complexity can be associated with higher costs of venom production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Impact of self-reported fasting duration on lipid profile variability, cardiovascular risk stratification and metabolic syndrome diagnosis.

    PubMed

    Janovsky, Carolina Castro Porto Silva; Laurinavicius, Antonio; Cesena, Fernando; Valente, Viviane; Ferreira, Carlos Eduardo; Mangueira, Cristovão; Conceição, Raquel; Santos, Raul D; Bittencourt, Marcio Sommer

    2018-01-01

    We sought to investigate the impact of self-reported fasting duration times on the lipid profile results and its impact on the cardiovascular risk stratification and metabolic syndrome diagnosis. We analyzed data from all consecutive individuals evaluated in a comprehensive health examination at the Hospital Israelita Albert Einstein from January to December 2015. We divided these patients in three groups, according to the fasting duration recalled (< 8h, 8-12h and > 12h). We calculated the global cardiovascular risk and diagnosed metabolic syndrome according to the current criteria and estimated their change according to fasting duration. A total of 12,196 (42.3 ± 9.2 years-old, 30.2% females) patients were evaluated. The distribution of cardiovascular risk was not different among groups defined by fasting duration in both men and women (p = 0.547 for women and p = 0.329 for men). Similarly, the prevalence of metabolic syndrome was not influenced by the fasting duration (p = 0.431 for women and p = 0.166 for men). Self-reported fasting duration had no significant impact on the lipid profile results, including triglyceride levels. Consequently, no changes on the cardiovascular risk stratification using the Framingham risk score nor changes on the prevalence of metabolic syndrome were noted.

  15. ¹H NMR-based metabolic profiling of naproxen-induced toxicity in rats.

    PubMed

    Jung, Jeeyoun; Park, Minhwa; Park, Hye Jin; Shim, Sun Bo; Cho, Yang Ha; Kim, Jinho; Lee, Ho-Sub; Ryu, Do Hyun; Choi, Donwoong; Hwang, Geum-Sook

    2011-01-15

    The dose-dependent perturbations in urinary metabolite concentrations caused by naproxen toxicity were investigated using ¹H NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic evaluation of naproxen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) of ¹H NMR from rat urine revealed a dose-dependent metabolic shift between the vehicle-treated control rats and rats treated with low-dose (10 mg/kg body weight), moderate-dose (50 mg/kg), and high-dose (100 mg/kg) naproxen, coinciding with their gastric damage scores after naproxen administration. The resultant metabolic profiles demonstrate that the naproxen-induced gastric damage exhibited energy metabolism perturbations that elevated their urinary levels of citrate, cis-aconitate, creatine, and creatine phosphate. In addition, naproxen administration decreased choline level and increased betaine level, indicating that it depleted the main protective constituent of the gastric mucosa. Moreover, naproxen stimulated the decomposition of tryptophan into kynurenate, which inhibits fibroblast growth factor-1 and delays ulcer healing. These findings demonstrate that ¹H NMR-based urinary metabolic profiling can facilitate noninvasive and rapid diagnosis of drug side effects and is suitable for elucidating possible biological pathways perturbed by drug toxicity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Integrated analysis of long noncoding RNA and mRNA expression profile in children with obesity by microarray analysis.

    PubMed

    Liu, Yuesheng; Ji, Yuqiang; Li, Min; Wang, Min; Yi, Xiaoqing; Yin, Chunyan; Wang, Sisi; Zhang, Meizhen; Zhao, Zhao; Xiao, Yanfeng

    2018-06-08

    Long noncoding RNAs (lncRNAs) have an important role in adipose tissue function and energy metabolism homeostasis, and abnormalities may lead to obesity. To investigate whether lncRNAs are involved in childhood obesity, we investigated the differential expression profile of lncRNAs in obese children compared with non-obese children. A total number of 1268 differentially expressed lncRNAs and 1085 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis revealed that these lncRNAs were involved in varied biological processes, including the inflammatory response, lipid metabolic process, osteoclast differentiation and fatty acid metabolism. In addition, the lncRNA-mRNA co-expression network and the protein-protein interaction (PPI) network were constructed to identify hub regulatory lncRNAs and genes based on the microarray expression profiles. This study for the first time identifies an expression profile of differentially expressed lncRNAs in obese children and indicated hub lncRNA RP11-20G13.3 attenuated adipogenesis of preadipocytes, which is conducive to the search for new diagnostic and therapeutic strategies of childhood obesity.

  17. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae

    PubMed Central

    Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko

    2016-01-01

    Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease. PMID:27479467

  18. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae.

    PubMed

    Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko

    2016-08-01

    Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease.

  19. Multi-Omics Analysis Reveals a Correlation between the Host Phylogeny, Gut Microbiota and Metabolite Profiles in Cyprinid Fishes

    PubMed Central

    Li, Tongtong; Long, Meng; Li, Huan; Gatesoupe, François-Joël; Zhang, Xujie; Zhang, Qianqian; Feng, Dongyue; Li, Aihua

    2017-01-01

    Gut microbiota play key roles in host nutrition and metabolism. However, little is known about the relationship between host genetics, gut microbiota and metabolic profiles. Here, we used high-throughput sequencing and gas chromatography/mass spectrometry approaches to characterize the microbiota composition and the metabolite profiles in the gut of five cyprinid fish species with three different feeding habits raised under identical husbandry conditions. Our results showed that host species and feeding habits significantly affect not only gut microbiota composition but also metabolite profiles (ANOSIM, p ≤ 0.05). Mantel test demonstrated that host phylogeny, gut microbiota, and metabolite profiles were significantly related to each other (p ≤ 0.05). Additionally, the carps with the same feeding habits had more similarity in gut microbiota composition and metabolite profiles. Various metabolites were correlated positively with bacterial taxa involved in food degradation. Our results shed new light on the microbiome and metabolite profiles in the gut content of cyprinid fishes, and highlighted the correlations between host genotype, fish gut microbiome and putative functions, and gut metabolite profiles. PMID:28367147

  20. Urinary metabonomics elucidate the therapeutic mechanism of Orthosiphon stamineus in mouse crystal-induced kidney injury.

    PubMed

    Gao, Songyan; Chen, Wei; Peng, Zhongjiang; Li, Na; Su, Li; Lv, Diya; Li, Ling; Lin, Qishan; Dong, Xin; Guo, Zhiyong; Lou, Ziyang

    2015-05-26

    Orthosiphon stamineus (OS), a traditional Chinese herb, is often used for promoting urination and treating nephrolithiasis. Urolithiasis is a major worldwide public health burden due to its high incidence of recurrence and damage to renal function. However, the etiology for urolithiasis is not well understood. Metabonomics, the systematic study of small molecule metabolites present in biological samples, has become a valid and powerful tool for understanding disease phenotypes. In this study, a urinary metabolic profiling analysis was performed in a mouse model of renal calcium oxalate crystal deposition to identify potential biomarkers for crystal-induced renal damage and the anti-crystal mechanism of OS. Thirty six mice were randomly divided into six groups including Saline, Crystal, Cystone and OS at dosages of 0.5g/kg, 1g/kg, and 2g/kg. A metabonomics approach using ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was developed to perform the urinary metabolic profiling analysis. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were utilized to identify differences between the metabolic profiles of mice in the saline control group and crystal group. Using partial least squares-discriminant analysis, 30 metabolites were identified as potential biomarkers of crystal-induced renal damage. Most of them were primarily involved in amino acid metabolism, taurine and hypotaurine metabolism, purine metabolism, and the citrate cycle (TCA). After the treatment with OS, the levels of 20 biomarkers had returned to the levels of the control samples. Our results suggest that OS has a protective effect for mice with crystal-induced kidney injury via the regulation of multiple metabolic pathways primarily involving amino acid, energy and choline metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Lu, Yi-Bin; Guo, Peng; Sang, Wen; Feng, Hui; Zhang, Hong-Xing; Chen, Li-Song

    2013-11-20

    Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Taking the bitter with the sweet: relationship of supertasting and sweet preference with metabolic syndrome and dietary intake.

    PubMed

    Turner-McGrievy, Gabrielle; Tate, Deborah F; Moore, Dominic; Popkin, Barry

    2013-02-01

    Results examining the effects of tasting profile on dietary intake and health outcomes have varied. This study examined the interaction of sweet liker (SL) and supertaster (ST) (bitter taste test through phenylthiocarbamide [PTC]) status with incidence of metabolic syndrome. Participants (n = 196) as part of baseline testing in a behavioral weight loss study completed measures assessing SL and ST status, metabolic syndrome, and dietary intake. SLs were more likely to be African American. More women than men were STs. There was a significant interaction between ST and SL status as associated with metabolic syndrome, after adjustment for demographic characteristics. This interaction was also significantly associated with fiber and caloric beverage intake. Post hoc analyses showed that participants who were only an ST or SL appeared to have a decreased risk of having metabolic syndrome compared with those who have a combination or are neither taster groups (P = 0.047) and that SL + ST consumed less fiber than SL + non-ST (P = 0.04). Assessing genetic differences in taster preferences may be a useful strategy in the development of more tailored approaches to dietary interventions to prevent and treat metabolic syndrome. Tasting profile, such as sweet liking (SL) or supertaster (ST), may be influenced by genetics, and therefore in turn, may influence dietary intake. The present study found an interaction between ST and SL status with incidence of metabolic syndrome and fiber and caloric beverage intake. Testing people for these tasting profiles may assist with tailoring dietary recommendations, particularly around fiber and caloric beverage intake, and provide a way to modify metabolic syndrome risk. © 2013 Institute of Food Technologists®

  3. Biomarkers of Coordinate Metabolic Reprogramming in Colorectal Tumors in Mice and Humans

    PubMed Central

    Manna, Soumen K.; Tanaka, Naoki; Krausz, Kristopher W.; Haznadar, Majda; Xue, Xiang; Matsubara, Tsutomu; Bowman, Elise D.; Fearon, Eric R.; Harris, Curtis C.; Shah, Yatrik M.; Gonzalez, Frank J.

    2014-01-01

    BACKGROUND & AIMS There are no robust noninvasive methods for colorectal cancer screening and diagnosis. Metabolomic and gene expression analyses of urine and tissue samples from mice and humans were used to identify markers of colorectal carcinogenesis. METHODS Mass spectrometry-based metabolomic analyses of urine and tissues from wild-type C57BL/6J and ApcMin/+ mice, as well as from mice with azoxymethane-induced tumors, was employed in tandem with gene expression analysis. Metabolomics profiles were also determined on colon tumor and adjacent non-tumor tissues from 39 patients. The effects of β-catenin activity on metabolic profiles were assessed in mice with colon-specific disruption of Apc. RESULTS Thirteen markers were found in urine associated with development of colorectal tumors in ApcMin/+ mice. Metabolites related to polyamine metabolism, nucleic acid metabolism, and methylation, identified tumor-bearing mice with 100% accuracy, and also accurately identified mice with polyps. Changes in gene expression in tumor samples from mice reflected the observed changes in metabolic products detected in urine; similar changes were observed in mice with azoxymethane-induced tumors and mice with colon-specific activation of β-catenin. The metabolic alterations indicated by markers in urine therefore appear to occur during early stages of tumorigenesis, when cancer cells are proliferating. In tissues from patients, tumors had stage-dependent increases in 12 metabolites associated with the same metabolic pathways identified in mice (including amino acid metabolism and polyamine metabolism). Ten metabolites that were increased in tumor tissues, compared with non-tumor tissues (proline, threonine, glutamic acid, arginine, N1-acetylspermidine, xanthine, uracil, betaine, symmetric dimethylarginine, and asymmetric-dimethylarginine), were also increased in urine from tumor-bearing mice. CONCLUSIONS Gene expression and metabolomic profiles of urine and tissue samples from mice with colorectal tumors and of colorectal tumor samples from patients revealed metabolites associated with specific metabolic changes that are indicative of early-stage tumor development. These urine and tissue markers might be used in early detection of colorectal cancer. PMID:24440673

  4. Profile of Circulatory Metabolites in a Relapsing-remitting Animal Model of Multiple Sclerosis using Global Metabolomics

    PubMed Central

    Mangalam, AK; Poisson, LM; Nemutlu, E; Datta, I; Denic, A; Dzeja, P; Rodriguez, M; Rattan, R; Giri, S

    2013-01-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2) to design new treatment paradigms where metabolic interventions could be combined with present and experimental therapeutics to achieve better treatment of MS. PMID:24273690

  5. Explaining combinatorial effects of mycotoxins Deoxynivalenol and Zearalenone in mice with urinary metabolomic profiling.

    PubMed

    Ji, Jian; Zhu, Pei; Blaženović, Ivana; Cui, Fangchao; Gholami, Morteza; Sun, Jiadi; Habimana, Jean; Zhang, Yinzhi; Sun, Xiulan

    2018-02-28

    Urine metabolic profiling of mice was conducted utilizing gas chromatography-mass spectrometry (GC-MS) to investigate the combinatory effect of mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the metabolism of the mice. Experiments were conducted by means of five-week-old mice which were individually exposed to 2 mg/kg DON, 20 mg/kg ZEN and the mixture of DON and ZEN (2 mg/kg and 20 mg/kg, respectively). The intragastric administration was applied for three weeks and urine samples were collected for metabolic analysis. Univariate and multivariate analysis were applied to data matrix processing along with respective pathway analysis by MetaMapp and CytoScape. The results showed that the combined DON and ZEN administration resulted in lower significant changes, compared to the individual mycotoxin treated groups verified by heatmap. Metabolic pathways network mapping indicated that the combined mycotoxins treated groups showed a little effect on the metabolites in most pathways, especially in glucose metabolism and its downstream amino acid metabolism. In glucose metabolism, the content of galactose, mannitol, galactonic acid, myo-inositol, tagatose was drastically down-regulated. Furthermore, the organic acids, pyruvate, and amino acids metabolism displayed the same phenomenon. In conclusion, the combined DON/ZEN administration might lead to an "antagonistic effect" in mice metabolism.

  6. Arachidonic and oleic acid exert distinct effects on the DNA methylome

    PubMed Central

    Silva-Martínez, Guillermo A.; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda; Vaquero, Alejandro; Esteller, Manel; Carmona, F. Javier; Moran, Sebastian; Nielsen, Finn C.; Wickström-Lindholm, Marie; Wrobel, Katarzyna; Wrobel, Kazimierz; Barbosa-Sabanero, Gloria; Zaina, Silvio; Lund, Gertrud

    2016-01-01

    ABSTRACT Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1–200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts. PMID:27088456

  7. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  8. Assessing the metabolic effects of calcineurin inhibitors in renal transplant recipients by urine metabolic profiling.

    PubMed

    Diémé, Binta; Halimi, Jean Michel; Emond, Patrick; Büchler, Matthias; Nadal-Desbarat, Lydie; Blasco, Hélène; Le Guellec, Chantal

    2014-07-27

    Biomarkers that can predict graft function and/or renal side effects of calcineurin inhibitors (CNI) at each stage of treatment in kidney transplantation are still lacking. We report the first untargeted GC-MS-based metabolomic study on urines of renal transplant patients. This approach would bring insight in biomarkers useable for graft function monitoring. All consecutive patients receiving a kidney allograft in our transplantation department over a 6-month period were prospectively included and followed up for 12 months. We collected urine samples on the seventh day (D7) after transplantation, then at month 3 (M3) and month 12 (M12), and obtained mass-spectrometry-based urinary metabolic profiles. Multivariate analyses were conducted to compare metabolic profiles at the 3 different periods and to assess potential differences between cyclosporine and tacrolimus. Differences in metabolic signatures were also assessed according to graft function at D7 and renal function at M3 and M12. The urinary metabolic patterns varied over time in cyclosporine- and tacrolimus-treated patients and were somewhat different at D7, M3, and M12 between the 2 treatment groups. Principal metabolites that differed, regardless of the treatment used, were mainly sugars, inositol, and hippuric acid. Interestingly, among tacrolimus-treated patients, different metabolic signatures were found between patients with immediate or delayed graft function at D7. Urinary metabolomics represents a noninvasive way of monitoring immunosuppressive therapy in renal transplant patients. Although it is too early to consider it as a biomarker of CNI-induced injury or graft function, metabolomics appears a promising evaluation tool in this area.

  9. Effects of a cocaine hydrolase engineered from human butyrylcholinesterase on metabolic profile of cocaine in rats.

    PubMed

    Chen, Xiabin; Zheng, Xirong; Zhou, Ziyuan; Zhan, Chang-Guo; Zheng, Fang

    2016-11-25

    Accelerating cocaine metabolism through enzymatic hydrolysis at cocaine benzoyl ester is recognized as a promising therapeutic approach for cocaine abuse treatment. Our more recently designed A199S/F227A/S287G/A328W/Y332G mutant of human BChE, denoted as cocaine hydrolase-3 (CocH3), has a considerably improved catalytic efficiency against cocaine and has been proven active in blocking cocaine-induced toxicity and physiological effects. In the present study, we have further characterized the effects of CocH3 on the detailed metabolic profile of cocaine in rats administrated intravenously (IV) with 5 mg/kg cocaine, demonstrating that IV administration of 0.15 mg/kg CocH3 dramatically changed the metabolic profile of cocaine. Without CocH3 administration, the dominant cocaine-metabolizing pathway in rats was cocaine methyl ester hydrolysis to benzoylecgonine (BZE). With the CocH3 administration, the dominant cocaine-metabolizing pathway in rats became cocaine benzoyl ester hydrolysis to ecgonine methyl ester (EME), and the other two metabolic pathways (i.e. cocaine methyl ester hydrolysis to BZE and cocaine oxidation to norcocaine) became insignificant. The CocH3-catalyzed cocaine benzoyl ester hydrolysis to EME was so efficient such that the measured maximum blood cocaine concentration (∼38 ng/ml) was significantly lower than the threshold blood cocaine concentration (∼72 ng/ml) required to produce any measurable physiological effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  11. Ovarian Lipid Metabolism Modulates Circulating Lipids in Premenopausal Women.

    PubMed

    Jensen, Jeffrey T; Addis, Ilana B; Hennebold, Jon D; Bogan, Randy L

    2017-09-01

    The premenopausal circulating lipid profile may be linked to the hormonal profile and ovarian lipid metabolism. Assess how estradiol, progesterone, and ovarian lipid metabolism contributes to the premenopausal lipid profile; and evaluate the acute effects of a common hormonal oral contraceptive (OC) on circulating lipids. Experimental crossover with repeated measures. Academic hospitals. Eight healthy, regularly menstruating women. Participants underwent periodic serum sampling during a normal menstrual cycle; a standard 21-day, monophasic combined hormonal OC cycle (30 µg of ethinyl estradiol and 150 µg of levonorgestrel per day); menopause simulated by leuprolide acetate (22.5-mg depot); and an artificial menstrual cycle achieved via transdermal estradiol (50 to 300 µg/d) and vaginal micronized progesterone (100 to 300 mg/d). Primary outcomes included evaluation of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, triglycerides, and the total cholesterol to HDL cholesterol ratio. To estimate the effect of estradiol, progesterone, and ovarian lipid metabolism, all specimens except those from the OC cycle were analyzed. Subgroup analysis was conducted on the follicular and luteal phases. In a separate analysis, the effect of the OC was evaluated relative to the normal menstrual cycle. Estradiol was significantly associated with increased levels of HDL cholesterol throughout the menstrual cycle and in the follicular phase. Ovarian effects were associated with reduced lipid levels, especially during the luteal phase. The OC was associated with an increased total cholesterol to HDL cholesterol ratio and triglycerides. Previously unappreciated factors including ovarian lipid metabolism may contribute to the premenopausal lipid profile. Copyright © 2017 by the Endocrine Society

  12. Metabolic changes in droplet vitrified semen of wild endangered Persian sturgeon Acipenser persicus (Borodin, 1997).

    PubMed

    Abed-Elmdoust, Amirreza; Farahmand, Hamid; Mojazi-Amiri, Bagher; Rafiee, Gholamreza; Rahimi, Ruhollah

    2017-06-01

    Comparative quantitative metabolite profiling can be used for better understanding of cell functions and dysfunctions in particular circumstances such as sperm banking which is an important approach for cryopreservation of endangered species. Cryopreservation techniques have some deleterious effects on spermatozoa which put the obtained results in controversy. Therefore, in the present study, quantitative 1 H NMR (Nuclear Magnetic Resonance) based metabolite profiling was conducted to evaluate metabolite changes related to energetics and some other detected metabolites in vitrified semen of critically endangered wild Acipenser persicus. The semen was diluted with extenders containing 0, 5, 10, and 15 μM of fish antifreeze protein (AFP) type III as a cryoprotectant. Semen-extenders were vitrified and stored for two days. Based on post-thaw motility duration and motility percentage assessments, two treatments with 10 μM and 0 μM of AFP had the highest and the lowest motility percentages respectively and they were objected to 1 H NMR spectroscopy investigations in order to reveal the extremes of the metabolites dynamic range. Univariate (ANOVA) and multivariate (PCA) analysis of the resulting metabolic profiles indicated significant changes (P > 0.05) in metabolites. The level of some metabolites including acetate, adenine, creatine, creatine phosphate, lactate, betaine, sarcosine, β-alanine and trimethylamine N-oxide significantly decreased in vitrified semen while some others such as creatinine, guanidinoacetate, N, N-dimethylglycine, and glycine significantly increased. There were also significant differences between vitrified treatments in levels of creatine, creatine phosphate, creatinine, glucose, guanidinoacetate, lactate, N, N-dimethylglycine, and glycine, suggesting how fish AFP type III can be effective as a cryoprotectant. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

    PubMed

    Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara

    2016-06-01

    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human.

    PubMed

    Tremblay-Franco, Marie; Zerbinati, Chiara; Pacelli, Antonio; Palmaccio, Giuseppina; Lubrano, Carla; Ducheix, Simon; Guillou, Hervé; Iuliano, Luigi

    2015-07-01

    Obesity and the related entity metabolic syndrome are characterized by altered lipid metabolism and associated with increased morbidity risk for cardiovascular disease and cancer. Oxysterols belong to a large family of cholesterol-derived molecules known to play crucial role in many signaling pathways underlying several diseases. Little is known on the potential effect of obesity and metabolic syndrome on oxysterols in human. In this work, we questioned whether circulating oxysterols might be significantly altered in obese patients and in patients with metabolic syndrome. We also tested the potential correlation between circulating oxysterols and fatty acids. 60 obese patients and 75 patients with metabolic syndrome were enrolled in the study along with 210 age- and sex-matched healthy subjects, used as control group. Plasma oxysterols were analyzed by isotope dilution GC/MS, and plasma fatty acids profiling was assessed by gas chromatography coupled with flame ionization detection. We found considerable differences in oxysterols profiling in the two disease groups that were gender-related. Compared to controls, males showed significant differences only in 4α- and 4β-hydroxycholesterol levels in obese and metabolic syndrome patients. In contrast, females showed consistent differences in 7-oxocholesterol, 4α-hydroxycholesterol, 25-hydroxycholesterol and triol. Concerning fatty acids, we found minor differences in the levels of these variables in males of the three groups. Significant changes were observed in plasma fatty acid profile of female patients with obesity or metabolic syndrome. We found significant correlations between various oxysterols and fatty acids. In particular, 4β-hydroxycholesterol, which is reduced in obesity and metabolic syndrome, correlated with a number of saturated and mono-unsaturated fatty acids that are end-products of de novo lipogenesis. Our data provide the first evidence that obesity and metabolic syndrome are associated with major, gender-specific, changes in circulating oxysterols and fatty acids. These findings suggest a metabolic link between oxysterols and fatty acids, and that oxysterols may contribute to the epidemic diseases associated with obesity and metabolic syndrome in female. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Metabolite Profiles and the Risk of Developing Diabetes

    PubMed Central

    Wang, Thomas J.; Larson, Martin G.; Vasan, Ramachandran S.; Cheng, Susan; Rhee, Eugene P.; McCabe, Elizabeth; Lewis, Gregory D.; Fox, Caroline S.; Jacques, Paul F.; Fernandez, Céline; O’Donnell, Christopher J.; Carr, Stephen A.; Mootha, Vamsi K.; Florez, Jose C.; Souza, Amanda; Melander, Olle; Clish, Clary B.; Gerszten, Robert E.

    2011-01-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines, and other polar metabolites were profiled in baseline specimens using liquid chromatography-tandem mass spectrometry. Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly-significant associations with future diabetes: isoleucine, leucine, valine, tyrosine, and phenylalanine. A combination of three amino acids predicted future diabetes (>5-fold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential importance of amino acid metabolism early in the pathogenesis of diabetes, and suggest that amino acid profiles could aid in diabetes risk assessment. PMID:21423183

  16. Metabolite profiles and the risk of developing diabetes.

    PubMed

    Wang, Thomas J; Larson, Martin G; Vasan, Ramachandran S; Cheng, Susan; Rhee, Eugene P; McCabe, Elizabeth; Lewis, Gregory D; Fox, Caroline S; Jacques, Paul F; Fernandez, Céline; O'Donnell, Christopher J; Carr, Stephen A; Mootha, Vamsi K; Florez, Jose C; Souza, Amanda; Melander, Olle; Clish, Clary B; Gerszten, Robert E

    2011-04-01

    Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography-tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.

  17. Metabolic profiling of human lung cancer blood plasma using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kokova, Daria; Dementeva, Natalia; Kotelnikov, Oleg; Ponomaryova, Anastasia; Cherdyntseva, Nadezhda; Kzhyshkowska, Juliya

    2017-11-01

    Lung cancer (both small cell and non-small cell) is the second most common cancer in both men and women. The article represents results of evaluating of the plasma metabolic profiles of 100 lung cancer patients and 100 controls to investigate significant metabolites using 400 MHz 1H NMR spectrometer. The results of multivariate statistical analysis show that a medium-field NMR spectrometer can obtain the data which are already sufficient for clinical metabolomics.

  18. Metabolites Associated With Malnutrition in the Intensive Care Unit Are Also Associated With 28-Day Mortality.

    PubMed

    Mogensen, Kris M; Lasky-Su, Jessica; Rogers, Angela J; Baron, Rebecca M; Fredenburgh, Laura E; Rawn, James; Robinson, Malcolm K; Massarro, Anthony; Choi, Augustine M K; Christopher, Kenneth B

    2017-02-01

    We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.

  19. PLASMA LIPIDOMIC PROFILE SIGNATURE OF HYPERTENSION IN MEXICAN AMERICAN FAMILIES: SPECIFIC ROLE OF DIACYLGLYCEROLS

    PubMed Central

    Kulkarni, Hemant; Meikle, Peter J.; Mamtani, Manju; Weir, Jacquelyn M.; Barlow, Christopher K.; Jowett, Jeremy B.; Bellis, Claire; Dyer, Thomas D.; Johnson, Matthew P.; Rainwater, David L.; Almasy, Laura; Mahaney, Michael C.; Commuzzie, Anthony G.; Blangero, John; Curran, Joanne E.

    2013-01-01

    Both as a component of metabolic syndrome and as an independent entity, hypertension poses a continued challenge with regard to its diagnosis, pathogenesis and treatment. Previous studies have documented connections between hypertension and indicators of lipid metabolism. Novel technologies like plasma lipidomic profiling promise a better understanding of disorders in which there is a derangement of the lipid metabolism. However, association of plasma lipidomic profiles with hypertension in a high-risk population, like Mexican Americans, has not been evaluated before. Using the rich data and sample resource from the ongoing San Antonio Family Heart Study, we conducted plasma lipidomic profiling by combining high performance liquid chromatography with tandem mass spectroscopy to characterize 319 lipid species in 1192 individuals from 42 large and extended Mexican American families. Robust statistical analyses employing polygenic regression models, liability threshold models and bivariate trait analyses implemented in the SOLAR software were conducted after accounting for obesity, insulin resistance and relative abundance of various lipoprotein fractions. Diacylglycerols in general and the DG 16:0/22:5 and DG 16:0/22:6 lipid species in particular were significantly associated with systolic, diastolic and mean arterial pressures as well as liability of incident hypertension measured during 7767.42 person-years of follow-up. Four lipid species, including the DG 16:0/22:5 and DG 16:0/22:6 species, showed significant genetic correlations with the liability of hypertension in bivariate trait analyses. Our results demonstrate the value of plasma lipidomic profiling in the context of hypertension and identify disturbance of diacyglycerol metabolism as an independent biomarker of hypertension. PMID:23798346

  20. Effect of continuous positive airway pressure on blood pressure and metabolic profile in women with sleep apnoea

    PubMed Central

    Gonzalez-Martinez, Monica; Sanchez-Armengol, Angeles; Jurado-Gamez, Bernabe; Cordero-Guevara, Jose; Reyes-Nuñez, Nuria; Troncoso, Maria F.; Abad-Fernandez, Araceli; Teran-Santos, Joaquin; Caballero-Rodriguez, Julian; Martin-Romero, Mercedes; Encabo-Motiño, Ana; Sacristan-Bou, Lirios; Navarro-Esteva, Javier; Somoza-Gonzalez, Maria; Masa, Juan F.; Sanchez-Quiroga, Maria A.; Jara-Chinarro, Beatriz; Orosa-Bertol, Belen; Martinez-Garcia, Miguel A.

    2017-01-01

    Continuous positive airway pressure (CPAP) reduces blood pressure levels in hypertensive patients with obstructive sleep apnoea (OSA). However, the role of CPAP in blood pressure and the metabolic profile in women has not yet been assessed. In this study we investigated the effect of CPAP on blood pressure levels and the glucose and lipid profile in women with moderate-to-severe OSA. A multicentre, open-label, randomised controlled trial was conducted in 307 women diagnosed with moderate-to-severe OSA (apnoea–hypopnoea index ≥15 events·h–1) in 19 Spanish Sleep Units. Women were randomised to CPAP (n=151) or conservative treatment (n=156) for 12 weeks. Changes in office blood pressure measures as well as in the glucose and lipid profile were assessed in both groups. Compared with the control group, the CPAP group achieved a significantly greater decrease in diastolic blood pressure (−2.04 mmHg, 95% CI −4.02– −0.05; p=0.045), and a nonsignificantly greater decrease in systolic blood pressure (−1.54 mmHg, 95% CI −4.58–1.51; p=0.32) and mean blood pressure (−1.90 mmHg, 95% CI −4.0–0.31; p=0.084). CPAP therapy did not change any of the metabolic variables assessed. In women with moderate-to-severe OSA, 12 weeks of CPAP therapy improved blood pressure, especially diastolic blood pressure, but did not change the metabolic profile, compared with conservative treatment. PMID:28798089

  1. Effect of continuous positive airway pressure on blood pressure and metabolic profile in women with sleep apnoea.

    PubMed

    Campos-Rodriguez, Francisco; Gonzalez-Martinez, Monica; Sanchez-Armengol, Angeles; Jurado-Gamez, Bernabe; Cordero-Guevara, Jose; Reyes-Nuñez, Nuria; Troncoso, Maria F; Abad-Fernandez, Araceli; Teran-Santos, Joaquin; Caballero-Rodriguez, Julian; Martin-Romero, Mercedes; Encabo-Motiño, Ana; Sacristan-Bou, Lirios; Navarro-Esteva, Javier; Somoza-Gonzalez, Maria; Masa, Juan F; Sanchez-Quiroga, Maria A; Jara-Chinarro, Beatriz; Orosa-Bertol, Belen; Martinez-Garcia, Miguel A

    2017-08-01

    Continuous positive airway pressure (CPAP) reduces blood pressure levels in hypertensive patients with obstructive sleep apnoea (OSA). However, the role of CPAP in blood pressure and the metabolic profile in women has not yet been assessed. In this study we investigated the effect of CPAP on blood pressure levels and the glucose and lipid profile in women with moderate-to-severe OSA.A multicentre, open-label, randomised controlled trial was conducted in 307 women diagnosed with moderate-to-severe OSA (apnoea-hypopnoea index ≥15 events·h -1 ) in 19 Spanish Sleep Units. Women were randomised to CPAP (n=151) or conservative treatment (n=156) for 12 weeks. Changes in office blood pressure measures as well as in the glucose and lipid profile were assessed in both groups.Compared with the control group, the CPAP group achieved a significantly greater decrease in diastolic blood pressure (-2.04 mmHg, 95% CI -4.02- -0.05; p=0.045), and a nonsignificantly greater decrease in systolic blood pressure (-1.54 mmHg, 95% CI -4.58-1.51; p=0.32) and mean blood pressure (-1.90 mmHg, 95% CI -4.0-0.31; p=0.084). CPAP therapy did not change any of the metabolic variables assessed.In women with moderate-to-severe OSA, 12 weeks of CPAP therapy improved blood pressure, especially diastolic blood pressure, but did not change the metabolic profile, compared with conservative treatment. Copyright ©ERS 2017.

  2. Modulation of Starch Digestibility in Breakfast Cereals Consumed by Subjects with Metabolic Risk: Impact on Markers of Oxidative Stress and Inflammation during Fasting and the Postprandial Period.

    PubMed

    Lambert-Porcheron, Stéphanie; Normand, Sylvie; Blond, Emilie; Sothier, Monique; Roth, Hubert; Meynier, Alexandra; Vinoy, Sophie; Laville, Martine; Nazare, Julie-Anne

    2017-12-01

    Decreasing postprandial glycaemic excursions may have a beneficial effect on inflammatory and oxidative stress profiles. In this study, we investigated the impact of carbohydrate digestibility modulation per se, as a means of reducing the glycaemic response, on metabolic and inflammatory responses in subjects with metabolic risk factors. Twenty healthy subjects with metabolic risk consumed a cereal product either high in Slowly Digestible Starch (HSDS) or low in SDS (LSDS) at breakfast daily for 3 weeks, in a cross-over design. Following each 3-week session, postprandial glycaemia, insulinaemia, the lipid profile, inflammation and oxidative stress markers were assessed and compared to those induced by ingestion of a glucose solution (as a reference). The 2-h glycaemic and insulinaemic responses were significantly lower following the HSDS breakfast compared with the LSDS breakfast or glucose. No significant differences between the products were observed in terms of the lipid profile, C-reactive protein, IL-6 and tumour necrosis factor alpha. We observed a slight increase in fasting lipid peroxidation markers, including an increase in plasma malondialdehyde (MDA) and a decrease in whole blood glutathione (GSH), without significant alteration of urinary F2-isoprostanes or plasma glutathione peroxidase (GPx) activity. Consumption of HSDS products for 3 weeks significantly altered both postprandial glycaemia and insulinaemia, but was not sufficient to modify the inflammatory profile. Consumption of both cereal products was associated with a slightly higher fasting oxidative stress profile. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Kidney tissue targeted metabolic profiling of glucocorticoid-induced osteoporosis and the proposed therapeutic effects of Rhizoma Drynariae studied using UHPLC/MS/MS.

    PubMed

    Huang, Yue; Liu, Xinyu; Zhao, Longshan; Li, Famei; Xiong, Zhili

    2014-06-01

    Traditional Chinese medicine and modern science have indicated that there is a close relationship between bone and kidney. In light of this, this project was designed to study the metabolic profiling by UHPLC/MS/MS of glucocorticoid-induced osteoporosis in kidney tissue and the possible therapeutic effects of Rhizoma Drynariae (RD), a classic traditional Chinese medicine, in improving the kidney function and strengthening bone. Twenty-one Wistar rats were divided into three groups: control group (rats before prednisolone inducing), a model group (prednisolone-induced group) and a treatment group (prednisolone-induced rats that were then administered RD ethanol extracts). By using pattern recognition analysis, a significant change in the metabolic profile of kidney tissue samples was observed in the model group and restoration of the profile was observed after the administration of RD ethanol extracts. Some significantly changed biomarkers related to osteoporosis such as sphingolipids (C16 dihydrosphingosine, C18 dihydrosphingosine, C18 phytosphingosine, C20 phytosphingosine), lysophosphatidycholines (C16:0 LPC, C18:0 LPC) and phenylalanine were identified. As a complement to the metabolic profiling of RD in plasma, these biomarkers suggest that kidney damage, cell cytotoxicity and apoptosis exist in osteoporosis rats, which is helpful in further understanding the underlying process of glucocorticoid-induced osetoporosis and the suggested therapeutic effects of RD. The method shows that tissue target metabonomics might provide a powerful tool to further understand the process of disease and the mechanism of therapeutic effect of Chinese medicines. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Hypogonadism and metabolic syndrome: implications for testosterone therapy.

    PubMed

    Makhsida, Nawras; Shah, Jay; Yan, Grace; Fisch, Harry; Shabsigh, Ridwan

    2005-09-01

    Metabolic syndrome, characterized by central obesity, insulin resistance, dyslipidemia and hypertension, is highly prevalent in the United States. When left untreated, it significantly increases the risk of diabetes mellitus and cardiovascular disease. It has been suggested that hypogonadism may be an additional component of metabolic syndrome. This has potential implications for the treatment of metabolic syndrome with testosterone. We reviewed the available literature on metabolic syndrome and hypogonadism with a particular focus on testosterone therapy. A comprehensive MEDLINE review of the world literature from 1988 to 2004 on hypogonadism, testosterone and metabolic syndrome was performed. Observational data suggest that metabolic syndrome is strongly associated with hypogonadism in men. Multiple interventional studies have shown that exogenous testosterone has a favorable impact on body mass, insulin secretion and sensitivity, lipid profile and blood pressure, which are the parameters most often disturbed in metabolic syndrome. Hypogonadism is likely a fundamental component of metabolic syndrome. Testosterone therapy may not only treat hypogonadism, but may also have tremendous potential to slow or halt the progression from metabolic syndrome to overt diabetes or cardiovascular disease via beneficial effects on insulin regulation, lipid profile and blood pressure. Furthermore, the use of testosterone to treat metabolic syndrome may also lead to the prevention of urological complications commonly associated with these chronic disease states, such as neurogenic bladder and erectile dysfunction. Physicians must be mindful to evaluate hypogonadism in all men diagnosed with metabolic syndrome as well as metabolic syndrome in all men diagnosed with hypogonadism. Future research in the form of randomized clinical trials should focus on further defining the role of testosterone for metabolic syndrome.

  5. Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage.

    PubMed

    Skates, Emily; Overall, John; DeZego, Katelyn; Wilson, Mickey; Esposito, Debora; Lila, Mary Ann; Komarnytsky, Slavko

    2018-01-01

    Driven by the need for alternative whole food options to manage metabolic syndrome, multiple dietary interventions are suggested to achieve a better control of metabolic risk factors and molecular networks that regulate cellular energy metabolism. It is generally accepted that anthocyanin-rich diets are beneficial for maintaining healthy body weight, improving glucose and lipid metabolism, and determining inflammatory status of key metabolic tissues. However, anthocyanins are a structurally diverse group of phenolic compounds and their individual contributions to improving metabolic health are not clear. In this study, we show that consumption of berries containing anthocyanins with enhanced methylation profiles (malvidin and petunidin) is more effective at reducing high fat diet-induced metabolic damage in the C57BL/6 mouse model of polygenic obesity. Blueberries and Concord grapes (57% and 33% anthocyanins as malvidin, petunidin, or peonidin, respectively) improved body composition through individual significant effects on energy expenditure and increased activity. Methylated anthocyanins are also more effective at enhancing mitochondrial respiration and dissipation of the mitochondrial proton gradient (proton leak) in adipose tissue, thus counteracting mitochondrial dysfunction associated with metabolic stress. Together, these results provide direct proof of the higher protective potential of methylated anthocyanins against the metabolic consequences of chronic exposure to calorie-dense foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Development of Metabolomic Sampling Procedures for Pichia pastoris, and Baseline Metabolome Data

    PubMed Central

    Tredwell, Gregory D.; Edwards-Jones, Bryn; Leak, David J.; Bundy, Jacob G.

    2011-01-01

    Metabolic profiling is increasingly being used to investigate a diverse range of biological questions. Due to the rapid turnover of intracellular metabolites it is important to have reliable, reproducible techniques for sampling and sample treatment. Through the use of non-targeted analytical techniques such as NMR and GC-MS we have performed a comprehensive quantitative investigation of sampling techniques for Pichia pastoris. It was clear that quenching metabolism using solutions based on the standard cold methanol protocol caused some metabolite losses from P. pastoris cells. However, these were at a low level, with the NMR results indicating metabolite increases in the quenching solution below 5% of their intracellular level for 75% of metabolites identified; while the GC-MS results suggest a slightly higher level with increases below 15% of their intracellular values. There were subtle differences between the four quenching solutions investigated but broadly, they all gave similar results. Total culture extraction of cells + broth using high cell density cultures typical of P. pastoris fermentations, was an efficient sampling technique for NMR analysis and provided a gold standard of intracellular metabolite levels; however, salts in the media affected the GC-MS analysis. Furthermore, there was no benefit in including an additional washing step in the quenching process, as the results were essentially identical to those obtained just by a single centrifugation step. We have identified the major high-concentration metabolites found in both the extra- and intracellular locations of P. pastoris cultures by NMR spectroscopy and GC-MS. This has provided us with a baseline metabolome for P. pastoris for future studies. The P. pastoris metabolome is significantly different from that of Saccharomyces cerevisiae, with the most notable difference being the production of high concentrations of arabitol by P. pastoris. PMID:21283710

  7. Dietary glycemic index is associated with less favorable anthropometric and metabolic profiles in polycystic ovary syndrome women with different phenotypes.

    PubMed

    Graff, Scheila Karen; Mário, Fernanda Missio; Alves, Bruna Cherubini; Spritzer, Poli Mara

    2013-10-01

    To compare glycemic index (GI) in the usual diet of polycystic ovary syndrome (PCOS) and control women and to investigate whether dietary GI is associated with body composition and anthropometric and metabolic variables across PCOS phenotypes. Cross-sectional study. University hospital outpatient clinic. Sixty-one women with PCOS and 44 nonhirsute women with ovulatory cycles. Metabolic work-up, biochemical and hormonal assays, assessment of body composition and rest metabolic rate, physical activity (pedometer), and food consumption (food frequency questionnaire). GI, glycemic load, dietary intake, and hormone and metabolic profile in PCOS versus control and in PCOS women stratified by tertiles of GI and PCOS phenotype. Mean age was 23.7 ± 6.3 years. Participants with PCOS had higher body fat percentage, fasting insulin, insulin resistance, lipid accumulation product, and androgen levels compared with control women. PCOS and control women in the highest tertile of GI had higher body mass index and waist circumference than those in the lowest tertile. Dietary GI was higher in the classic PCOS group. Obesity and this more severe PCOS phenotype explained 28.3% of variance in dietary GI. Dietary GI is increased in the classic PCOS phenotype and associated with a less favorable anthropometric and metabolic profile. Obesity and classic PCOS phenotype are age-independent predictors of higher dietary GI. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Alteration of metabolomic markers of amino-acid metabolism in piglets with in-feed antibiotics.

    PubMed

    Mu, Chunlong; Yang, Yuxiang; Yu, Kaifan; Yu, Miao; Zhang, Chuanjian; Su, Yong; Zhu, Weiyun

    2017-04-01

    In-feed antibiotics have been used to promote growth in piglets, but its impact on metabolomics profiles associated with host metabolism is largely unknown. In this study, to test the hypothesis that antibiotic treatment may affect metabolite composition both in the gut and host biofluids, metabolomics profiles were analyzed in antibiotic-treated piglets. Piglets were fed a corn-soy basal diet with or without in-feed antibiotics from postnatal day 7 to day 42. The serum biochemical parameters, metabolomics profiles of the serum, urine, and jejunal digesta, and indicators of microbial metabolism (short-chain fatty acids and biogenic amines) were analyzed. Compared to the control group, antibiotics treatment did not have significant effects on serum biochemical parameters except that it increased (P < 0.05) the concentration of urea. Antibiotics treatment increased the relative concentrations of metabolites involved in amino-acid metabolism in the serum, while decreased the relative concentrations of most amino acids in the jejunal content. Antibiotics reduced urinary 2-ketoisocaproate and hippurate. Furthermore, antibiotics decreased (P < 0.05) the concentrations of propionate and butyrate in the feces. Antibiotics significantly affected the concentrations of biogenic amines, which are derived from microbial amino-acid metabolism. The three major amines, putrescine, cadaverine, and spermidine, were all increased (P < 0.05) in the large intestine of antibiotics-treated piglets. These results identified the phenomena that in-feed antibiotics may have significant impact on the metabolomic markers of amino-acid metabolism in piglets.

  9. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.

    PubMed

    Yun, Eun Ju; Yu, Sora; Kim, Sooah; Kim, Kyoung Heon

    2018-03-20

    Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. First Trimester Urine and Serum Metabolomics for Prediction of Preeclampsia and Gestational Hypertension: A Prospective Screening Study.

    PubMed

    Austdal, Marie; Tangerås, Line H; Skråstad, Ragnhild B; Salvesen, Kjell; Austgulen, Rigmor; Iversen, Ann-Charlotte; Bathen, Tone F

    2015-09-08

    Hypertensive disorders of pregnancy, including preeclampsia, are major contributors to maternal morbidity. The goal of this study was to evaluate the potential of metabolomics to predict preeclampsia and gestational hypertension from urine and serum samples in early pregnancy, and elucidate the metabolic changes related to the diseases. Metabolic profiles were obtained by nuclear magnetic resonance spectroscopy of serum and urine samples from 599 women at medium to high risk of preeclampsia (nulliparous or previous preeclampsia/gestational hypertension). Preeclampsia developed in 26 (4.3%) and gestational hypertension in 21 (3.5%) women. Multivariate analyses of the metabolic profiles were performed to establish prediction models for the hypertensive disorders individually and combined. Urinary metabolomic profiles predicted preeclampsia and gestational hypertension at 51.3% and 40% sensitivity, respectively, at 10% false positive rate, with hippurate as the most important metabolite for the prediction. Serum metabolomic profiles predicted preeclampsia and gestational hypertension at 15% and 33% sensitivity, respectively, with increased lipid levels and an atherogenic lipid profile as most important for the prediction. Combining maternal characteristics with the urinary hippurate/creatinine level improved the prediction rates of preeclampsia in a logistic regression model. The study indicates a potential future role of clinical importance for metabolomic analysis of urine in prediction of preeclampsia.

  11. Ensemble transcript interaction networks: a case study on Alzheimer's disease.

    PubMed

    Armañanzas, Rubén; Larrañaga, Pedro; Bielza, Concha

    2012-10-01

    Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling.

    PubMed

    Bullinger, Dino; Neubauer, Hans; Fehm, Tanja; Laufer, Stefan; Gleiter, Christoph H; Kammerer, Bernd

    2007-11-29

    Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer. Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines.13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, N2,N2,7-trimethylguanosine, N6-methyl-N6-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl)-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells. The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible biomedical markers for breast carcinoma in vivo.

  13. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) THROUGH THE LIFE STAGES OF THE MALE C57BL/6 MOUSE

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  14. Metabolic Imbalance Associated with Methylation Dysregulation and Oxidative Damage in Children with Autism

    ERIC Educational Resources Information Center

    Melnyk, Stepan; Fuchs, George J.; Schulz, Eldon; Lopez, Maya; Kahler, Stephen G.; Fussell, Jill J.; Bellando, Jayne; Pavliv, Oleksandra; Rose, Shannon; Seidel, Lisa; Gaylor, David W.; James, S. Jill

    2012-01-01

    Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected…

  15. Metabolic changes in 1-methylcyclopropene (1-MCP)-treated ‘Empire’ apple fruit during storage

    USDA-ARS?s Scientific Manuscript database

    ‘Empire’ apple fruit are more susceptible to flesh browning at 3.3 oC if first treated with 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. To better understand the metabolic changes associated with this browning, untargeted metabolic profiling with partial least squares analysis...

  16. Detecting and classifying method based on similarity matching of Android malware behavior with profile.

    PubMed

    Jang, Jae-Wook; Yun, Jaesung; Mohaisen, Aziz; Woo, Jiyoung; Kim, Huy Kang

    2016-01-01

    Mass-market mobile security threats have increased recently due to the growth of mobile technologies and the popularity of mobile devices. Accordingly, techniques have been introduced for identifying, classifying, and defending against mobile threats utilizing static, dynamic, on-device, and off-device techniques. Static techniques are easy to evade, while dynamic techniques are expensive. On-device techniques are evasion, while off-device techniques need being always online. To address some of those shortcomings, we introduce Andro-profiler, a hybrid behavior based analysis and classification system for mobile malware. Andro-profiler main goals are efficiency, scalability, and accuracy. For that, Andro-profiler classifies malware by exploiting the behavior profiling extracted from the integrated system logs including system calls. Andro-profiler executes a malicious application on an emulator in order to generate the integrated system logs, and creates human-readable behavior profiles by analyzing the integrated system logs. By comparing the behavior profile of malicious application with representative behavior profile for each malware family using a weighted similarity matching technique, Andro-profiler detects and classifies it into malware families. The experiment results demonstrate that Andro-profiler is scalable, performs well in detecting and classifying malware with accuracy greater than 98 %, outperforms the existing state-of-the-art work, and is capable of identifying 0-day mobile malware samples.

  17. [Metabolic Characteristics of Lethal Bradycardia Induced by Myocardial Ischemia].

    PubMed

    Wu, J Y; Wang, D; Kong, J; Wang, X X; Yu, X J

    2017-02-01

    To explore the metabolic characteristics of lethal bradycardia induced by myocardial ischemia in rat's serum. A rat myocardial ischemia-bradycardia-sudden cardiac death (MI-B-SCD) model was established, which was compared with the sham-operation group. The metabolic profile of postmortem serum was analyzed by gas chromatography-mass spectrometry (GC-MS), coupled with the analysis of serum metabolic characteristics using metabolomics strategies. The serum metabolic profiles were significantly different between the MI-B-SCD rats and the control rats. Compared to the control rats, the MI-B-SCD rats had significantly higher levels of lysine, ornithine, purine, serine, alanine, urea and lactic acid; and significantly lower levels of succinate, hexadecanoic acid, 2-ketoadipic acid, glyceraldehyde, hexendioic acid and octanedioic acid in the serum. There were some correlations among different metabolites. There is obvious metabolic alterations in the serum of MI-B-SCD rat. Both lysine and purine have a high value in diagnosing MI-B-SCD. The results are expected to provide references for forensic and clinical applications of prevention and control of sudden cardiac death. Copyright© by the Editorial Department of Journal of Forensic Medicine

  18. Transcriptional Profiling Reveals a Common Metabolic Program for Tumorigenicity in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells

    PubMed Central

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2017-01-01

    Summary High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of TH-MYCN mice, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element-binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. PMID:27705805

  19. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells.

    PubMed

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2016-10-04

    High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Age-Related Alterations in the Metabolic Profile in the Hippocampus of the Senescence-Accelerated Mouse Prone 8: A Spontaneous Alzheimer's Disease Mouse Model

    PubMed Central

    Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei

    2015-01-01

    Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365

  1. Drug metabolism and hypersensitivity reactions to drugs.

    PubMed

    Agúndez, José A G; Mayorga, Cristobalina; García-Martin, Elena

    2015-08-01

    The aim of the present review was to discuss recent advances supporting a role of drug metabolism, and particularly of the generation of reactive metabolites, in hypersensitivity reactions to drugs. The development of novel mass-spectrometry procedures has allowed the identification of reactive metabolites from drugs known to be involved in hypersensitivity reactions, including amoxicillin and nonsteroidal antiinflammatory drugs such as aspirin, diclofenac or metamizole. Recent studies demonstrated that reactive metabolites may efficiently bind plasma proteins, thus suggesting that drug metabolites, rather than - or in addition to - parent drugs, may elicit an immune response. As drug metabolic profiles are often determined by variability in the genes coding for drug-metabolizing enzymes, it is conceivable that an altered drug metabolism may predispose to the generation of reactive drug metabolites and hence to hypersensitivity reactions. These findings support the potential for the use of pharmacogenomics tests in hypersensitivity (type B) adverse reactions, in addition to the well known utility of these tests in type A adverse reactions. Growing evidence supports a link between genetically determined drug metabolism, altered metabolic profiles, generation of highly reactive metabolites and haptenization. Additional research is required to developing robust biomarkers for drug-induced hypersensitivity reactions.

  2. Proteomic profiling of mitochondria: what does it tell us about the ageing brain?

    PubMed

    Ingram, Thomas; Chakrabarti, Lisa

    2016-12-13

    Mitochondrial dysfunction is evident in numerous neurodegenerative and age-related disorders. It has also been linked to cellular ageing, however our current understanding of the mitochondrial changes that occur are unclear. Functional studies have made some progress reporting reduced respiration, dynamic structural modifications and loss of membrane potential, though there are conflicts within these findings. Proteomic analyses, together with functional studies, are required in order to profile the mitochondrial changes that occur with age and can contribute to unravelling the complexity of the ageing phenotype. The emergence of improved protein separation techniques, combined with mass spectrometry analyses has allowed the identification of age and cell-type specific mitochondrial changes in energy metabolism, antioxidants, fusion and fission machinery, chaperones, membrane proteins and biosynthesis pathways. Here, we identify and review recent data from the analyses of mitochondria from rodent brains. It is expected that knowledge gained from understanding age-related mitochondrial changes of the brain should lead to improved biomarkers of normal ageing and also age-related disease progression.

  3. Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis

    DOE PAGES

    Pomraning, Kyle R.; Wei, Siwei; Karagiosis, Sue A.; ...

    2015-04-23

    Yarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved. We applied a combination of metabolomic and lipidomic profiling approaches as well as microscopic techniques to identify and characterize the key pathways involved in de novo lipid accumulation from glucose in batch cultured, wild-type Y. lipolytica. We found that lipids accumulated rapidly and peaked at 48 hours during the five day experiment, concurrent with a shiftmore » in amino acid metabolism. We also report that Y. lipolytica secretes disaccharides early in batch culture and reabsorbs them when extracellular glucose is depleted. Exhaustion of extracellular sugars coincided with thickening of the cell wall, suggesting that genes involved in cell wall biogenesis may be a useful target for improving the efficiency of lipid producing yeast strains.« less

  4. Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils.

    PubMed

    Goodacre, Royston; Vaidyanathan, Seetharaman; Bianchi, Giorgio; Kell, Douglas B

    2002-11-01

    There is a continuing need for improved methods for assessing the adulteration of foodstuffs. We report some highly encouraging data, where we have developed direct infusion electrospray ionisation mass spectrometry (ESI-MS) together with chemometrics as a novel, rapid (1 min per sample) and powerful technique to elucidate key metabolite differences in vegetable and nut oils. Principal components analysis of these ESI-MS spectra show that the reproducibility of this approach is high and that olive oil can be discriminated from oils which are commonly used as adulterants. These adulterants include refined hazelnut oil, which is particularly challenging given its chemical similarity to olive oils.

  5. Monitoring microbial metabolites using an inductively coupled resonance circuit

    NASA Astrophysics Data System (ADS)

    Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys

    2015-08-01

    We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.

  6. Earwax metabolomics: An innovative pilot metabolic profiling study for assessing metabolic changes in ewes during periparturition period

    PubMed Central

    Pereira, Julião; Marques Júnior, Jair Gonzalez; da Cunha, Paulo Henrique Jorge; Noronha Filho, Antônio Dionísio Feitosa; da Silva, Jessica Alves; Fioravanti, Maria Clorinda Soares; de Oliveira, Anselmo Elcana

    2017-01-01

    Important metabolic changes occur during transition period of late pregnancy and early lactation to meet increasing energy demands of the growing fetus and for milk production. The aim of this investigation is to present an innovative and non-invasive tool using ewe earwax sample analysis to assess the metabolic profile in ewes during late pregnancy and early lactation. In this work, earwax samples were collected from 28 healthy Brazilian Santa Inês ewes divided into 3 sub-groups: 9 non-pregnant ewes, 6 pregnant ewes in the last 30 days of gestation, and 13 lactating ewes ≤ 30 days postpartum. Then, a range of metabolites including volatile organic compounds (VOC), amino acids (AA), and minerals were profiled and quantified in the samples by applying headspace gas chromatography/mass spectrometry, high performance liquid chromatography/tandem mass spectrometry, and inductively coupled plasma-optical emission spectrometry, respectively. As evident in our results, significant changes were observed in the metabolite profile of earwax between the studied groups where a remarkable elevation was detected in the levels of non-esterified fatty acids, alcohols, ketones, and hydroxy urea in the VOC profile of samples obtained from pregnant and lactating ewes. Meanwhile, a significant decrease was detected in the levels of 9 minerals and 14 AA including essential AA (leucine, phenyl alanine, lysine, isoleucine, threonine, valine), conditionally essential AA (arginine, glycine, tyrosine, proline, serine), and a non-essential AA (alanine). Multivariate analysis using robust principal component analysis and hierarchical cluster analysis was successfully applied to discriminate the three study groups using the variations of metabolites in the two stress states (pregnancy and lactation) from the healthy non-stress condition. The innovative developed method was successful in evaluating pre- and post-parturient metabolic changes using earwax and can in the future be applied to recognize markers for diagnosis, prevention, and intervention of pregnancy complications in ewes. PMID:28841695

  7. Earwax metabolomics: An innovative pilot metabolic profiling study for assessing metabolic changes in ewes during periparturition period.

    PubMed

    Shokry, Engy; Pereira, Julião; Marques Júnior, Jair Gonzalez; da Cunha, Paulo Henrique Jorge; Noronha Filho, Antônio Dionísio Feitosa; da Silva, Jessica Alves; Fioravanti, Maria Clorinda Soares; de Oliveira, Anselmo Elcana; Antoniosi Filho, Nelson Roberto

    2017-01-01

    Important metabolic changes occur during transition period of late pregnancy and early lactation to meet increasing energy demands of the growing fetus and for milk production. The aim of this investigation is to present an innovative and non-invasive tool using ewe earwax sample analysis to assess the metabolic profile in ewes during late pregnancy and early lactation. In this work, earwax samples were collected from 28 healthy Brazilian Santa Inês ewes divided into 3 sub-groups: 9 non-pregnant ewes, 6 pregnant ewes in the last 30 days of gestation, and 13 lactating ewes ≤ 30 days postpartum. Then, a range of metabolites including volatile organic compounds (VOC), amino acids (AA), and minerals were profiled and quantified in the samples by applying headspace gas chromatography/mass spectrometry, high performance liquid chromatography/tandem mass spectrometry, and inductively coupled plasma-optical emission spectrometry, respectively. As evident in our results, significant changes were observed in the metabolite profile of earwax between the studied groups where a remarkable elevation was detected in the levels of non-esterified fatty acids, alcohols, ketones, and hydroxy urea in the VOC profile of samples obtained from pregnant and lactating ewes. Meanwhile, a significant decrease was detected in the levels of 9 minerals and 14 AA including essential AA (leucine, phenyl alanine, lysine, isoleucine, threonine, valine), conditionally essential AA (arginine, glycine, tyrosine, proline, serine), and a non-essential AA (alanine). Multivariate analysis using robust principal component analysis and hierarchical cluster analysis was successfully applied to discriminate the three study groups using the variations of metabolites in the two stress states (pregnancy and lactation) from the healthy non-stress condition. The innovative developed method was successful in evaluating pre- and post-parturient metabolic changes using earwax and can in the future be applied to recognize markers for diagnosis, prevention, and intervention of pregnancy complications in ewes.

  8. Transcriptome Profiling of Bovine Milk Oligosaccharide Metabolism Genes Using RNA-Sequencing

    PubMed Central

    Wickramasinghe, Saumya; Hua, Serenus; Rincon, Gonzalo; Islas-Trejo, Alma; German, J. Bruce; Lebrilla, Carlito B.; Medrano, Juan F.

    2011-01-01

    This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk. PMID:21541029

  9. The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing

    PubMed Central

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.

    2014-01-01

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection. PMID:25338024

  10. Metabolic Profile of the Cellulolytic Industrial Actinomycete Thermobifida fusca

    PubMed Central

    Vanee, Niti

    2017-01-01

    Actinomycetes have a long history of being the source of numerous valuable natural products and medicinals. To expedite product discovery and optimization of biochemical production, high-throughput technologies can now be used to screen the library of compounds present (or produced) at a given time in an organism. This not only facilitates chemical product screening, but also provides a comprehensive methodology to the study cellular metabolic networks to inform cellular engineering. Here, we present some of the first metabolomic data of the industrial cellulolytic actinomycete Thermobifida fusca generated using LC-MS/MS. The underlying objective of conducting global metabolite profiling was to gain better insight on the innate capabilities of T. fusca, with a long-term goal of facilitating T. fusca-based bioprocesses. The T. fusca metabolome was characterized for growth on two cellulose-relevant carbon sources, cellobiose and Avicel. Furthermore, the comprehensive list of measured metabolites was computationally integrated into a metabolic model of T. fusca, to study metabolic shifts in the network flux associated with carbohydrate and amino acid metabolism. PMID:29137138

  11. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing

    DOE PAGES

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; ...

    2014-10-22

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. Thus, the metabolic profile revealed a relative increase in genes responsiblemore » for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.« less

  12. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    PubMed

    Mohan, Arvind Murali; Bibby, Kyle J; Lipus, Daniel; Hammack, Richard W; Gregory, Kelvin B

    2014-01-01

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  13. Untargeted Metabolic Quantitative Trait Loci Analyses Reveal a Relationship between Primary Metabolism and Potato Tuber Quality1[W][OA

    PubMed Central

    Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.

    2012-01-01

    Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596

  14. Similar post-stress metabolic trajectories in young and old flies.

    PubMed

    Colinet, Hervé; Renault, David

    2018-02-01

    Homeostenosis (i.e. decline in stress resistance and resilience with age) is a fundamental notion of the biogerontology and physiology of aging. Stressful situations typically challenge metabolic homeostasis and the capacity to recover from a stress-induced metabolic disorder might be particularly compromised in senescent individuals. In the present work, we report the effects of aging on low temperature stress tolerance and metabolic profiles in Drosophila melanogaster females of different ages. Adult flies aged 4, 16, 30 and 44days were subjected to acute and chronic cold stress, and data confirmed a strong decline in cold tolerance and resilience of old flies compared to young counterparts. Using quantitative target GC-MS analysis, we found distinct metabolic phenotypes between young (4day-old) and old (44day-old) flies, with glycolytic pathways being differentially affected between the two age groups. We also compared the robustness of metabolic homeostasis in young vs. old flies when exposed to cold stress using time-series metabolic analysis. In both age groups, we found evidence of strong alteration of metabolic profiles when flies were exposed to low temperature stress. Interestingly, the temporal metabolic trajectories during the recovery period were similar in young and old flies, despite strong differences in thermotolerance. In conclusion, metabolic signatures markedly changed with age and homeostenosis was observed in the phenotypic response to cold stress. However, these changes did not reflect in different temporal homeostatic response at metabolic level. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Exploiting the Genetic Diversity of Maize Using a Combined Metabolomic, Enzyme Activity Profiling, and Metabolic Modeling Approach to Link Leaf Physiology to Kernel Yield

    PubMed Central

    Yesbergenova-Cuny, Zhazira; Simons, Margaret; Chardon, Fabien; Armengaud, Patrick; Quilleré, Isabelle; Cukier, Caroline; Gibon, Yves; Limami, Anis M.; Nicolas, Stéphane; Brulé, Lenaïg; Lea, Peter J.; Maranas, Costas D.; Hirel, Bertrand

    2017-01-01

    A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels. PMID:28396554

  16. Biotransformation and metabolic profile of caudatin-2,6-dideoxy-3-O-methy-β-d-cymaropyranoside with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhang, Wei; Peng, Yun-ru; Ding, Yong-fang

    2015-11-01

    In our previous studies, caudatin-2,6-dideoxy-3-O-methy-β-d- cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technique combined with Metabolynx(TM) software was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC-Q-TOF-MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Metabonomics: its potential as a tool in toxicology for safety assessment and data integration.

    PubMed

    Griffin, J L; Bollard, M E

    2004-10-01

    The functional genomic techniques of transcriptomics and proteomics promise unparalleled global information during the drug development process. However, if these technologies are used in isolation the large multivariate data sets produced are often difficult to interpret, and have the potential of missing key metabolic events (e.g. as a result of experimental noise in the system). To better understand the significance of these megavariate data the temporal changes in phenotype must be described. High resolution 1H NMR spectroscopy used in conjunction with pattern recognition provides one such tool for defining the dynamic phenotype of a cell, organ or organism in terms of a metabolic phenotype. In this review the benefits of this metabonomics/metabolomics approach to problems in toxicology will be discussed. One of the major benefits of this approach is its high throughput nature and cost effectiveness on a per sample basis. Using such a method the consortium for metabonomic toxicology (COMET) are currently investigating approximately 150 model liver and kidney toxins. This investigation will allow the generation of expert systems where liver and kidney toxicity can be predicted for model drug compounds, providing a new research tool in the field of drug metabolism. The review will also include how metabonomics may be used to investigate co-responses with transcripts and proteins involved in metabolism and stress responses, such as during drug induced fatty liver disease. By using data integration to combine metabolite analysis and gene expression profiling key perturbed metabolic pathways can be identified and used as a tool to investigate drug function.

  18. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis

    PubMed Central

    Méndez-Lucas, Andrés; Duarte, João; Sunny, Nishanth E.; Satapati, Santhosh; He, TianTeng; Fu, Xiaorong; Bermúdez, Jordi; Burgess, Shawn C.; Perales, Jose C.

    2013-01-01

    Background & Aims Hepatic gluconeogenesis helps maintain systemic energy homeostasis by compensating for discontinuities in nutrient supply. Liver specific deletion of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) abolishes gluconeogenesis from mitochondrial substrates, deregulates lipid metabolism and affects TCA cycle. While, mouse liver almost exclusively expresses PEPCK-C, humans equally present a mitochondrial isozyme (PEPCK-M). Despite clear relevance to human physiology, the role of PEPCK-M and its gluconeogenic potential remain unknown. Here, we test the significance of PEPCK-M in gluconeogenesis and TCA cycle function in liver-specific PEPCK-C knockout and WT mice. Methods The effects of the overexpression of PEPCK-M were examined by a combination of tracer studies and molecular biology techniques. Partial PEPCK-C re-expression was used as a positive control. Metabolic fluxes were evaluated in isolated livers by NMR using 2H and 13C tracers. Gluconeogenic potential, together with metabolic profiling, were investigated in vivo and in primary hepatocytes. Results PEPCK-M expression partially rescued defects in lipid metabolism, gluconeogenesis and TCA cycle function impaired by PEPCK-C deletion, while ~10% re-expression of PEPCK-C normalized most parameters. When PEPCK-M was expressed in the presence of PEPCK-C, the mitochondrial isozyme amplified total gluconeogenic capacity, suggesting autonomous regulation of oxaloacetate to phosphoenolpyruvate fluxes by the individual isoforms. Conclusions We conclude that PEPCK-M has gluconeogenic potential per se, and cooperates with PEPCK-C to adjust gluconeogenic/TCA flux to changes in substrate or energy availability, hinting at a role in the regulation of glucose and lipid metabolism in human liver. PMID:23466304

  19. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    PubMed Central

    2010-01-01

    Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products. PMID:20735852

  20. 2D-Visualization of metabolic activity with planar optical chemical sensors (optodes)

    NASA Astrophysics Data System (ADS)

    Meier, R. J.; Liebsch, G.

    2015-12-01

    Microbia plays an outstandingly important role in many hydrologic compartments, such as e.g. the benthic community in sediments, or biologically active microorganisms in the capillary fringe, in ground water, or soil. Oxygen, pH, and CO2 are key factors and indicators for microbial activity. They can be measured using optical chemical sensors. These sensors record changing fluorescence properties of specific indicator dyes. The signals can be measured in a non-contact mode, even through transparent walls, which is important for many lab-experiments. They can measure in closed (transparent) systems, without sampling or intruding into the sample. They do not consume the analytes while measuring, are fully reversible and able to measure in non-stirred solutions. These sensors can be applied as high precision fiberoptic sensors (for profiling), robust sensor spots, or as planar sensors for 2D visualization (imaging). Imaging enables to detect thousands of measurement spots at the same time and generate 2D analyte maps over a region of interest. It allows for comparing different regions within one recorded image, visualizing spatial analyte gradients, or more important to identify hot spots of metabolic activity. We present ready-to-use portable imaging systems for the analytes oxygen, pH, and CO2. They consist of a detector unit, planar sensor foils and a software for easy data recording and evaluation. Sensors foils for various analytes and measurement ranges enable visualizing metabolic activity or analyte changes in the desired range. Dynamics of metabolic activity can be detected in one shot or over long time periods. We demonstrate the potential of this analytical technique by presenting experiments on benthic disturbance-recovery dynamics in sediments and microbial degradation of organic material in the capillary fringe. We think this technique is a new tool to further understand how microbial and geochemical processes are linked in (not solely) hydrologic systems.

  1. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis.

    PubMed

    Pencík, Aleš; Casanova-Sáez, Rubén; Pilarová, Veronika; Žukauskaite, Asta; Pinto, Rui; Micol, José Luis; Ljung, Karin; Novák, Ondrej

    2018-04-27

    Auxin (indole-3-acetic acid, IAA) plays fundamental roles as a signalling molecule during numerous plant growth and development processes. The formation of local auxin gradients and auxin maxima/minima, which is very important for these processes, is regulated by auxin metabolism (biosynthesis, degradation, and conjugation) as well as transport. When studying auxin metabolism pathways it is crucial to combine data obtained from genetic investigations with the identification and quantification of individual metabolites. Thus, to facilitate efforts to elucidate auxin metabolism and its roles in plants, we have developed a high-throughput method for simultaneously quantifying IAA and its key metabolites in minute samples (<10 mg FW) of Arabidopsis thaliana tissues by in-tip micro solid-phase extraction and fast LC-tandem MS. As a proof of concept, we applied the method to a collection of Arabidopsis mutant lines and identified lines with altered IAA metabolite profiles using multivariate data analysis. Finally, we explored the correlation between IAA metabolite profiles and IAA-related phenotypes. The developed rapid analysis of large numbers of samples (>100 samples d-1) is a valuable tool to screen for novel regulators of auxin metabolism and homeostasis among large collections of genotypes.

  2. Fermentation products in the cystic fibrosis airways induce aggregation and dormancy-associated expression profiles in a CF clinical isolate of Pseudomonas aeruginosa.

    PubMed

    Phan, Joann; Gallagher, Tara; Oliver, Andrew; England, Whitney E; Whiteson, Katrine

    2018-05-01

    Pseudomonas aeruginosa is a well-known dominant opportunistic pathogen in cystic fibrosis (CF) with a wide range of metabolic capacities. However, P. aeruginosa does not colonize the airways alone, and benefits from the metabolic products of neighboring cells-especially volatile molecules that can travel between different parts of the airways easily. Here, we present a study that investigates the metabolic, gene expression profiles and phenotypic responses of a P. aeruginosa clinical isolate to fermentation products lactic acid and 2,3-butanediol, metabolites that are produced by facultative anaerobic members of the CF polymicrobial community and potential biomarkers of disease progression. Although previous studies have successfully investigated the metabolic and transcriptional profiles of P. aeruginosa, most have used common lab reference strains that may differ in important ways from clinical isolates. Using transcriptomics and metabolomics with gas chromatography time of flight mass spectrometry, we observe that fermentation products induce pyocyanin production along with the expression of genes involved in P. aeruginosa amino acid utilization, dormancy and aggregative or biofilm modes of growth. These findings have important implications for how interactions within the diverse CF microbial community influence microbial physiology, with potential clinical consequences.

  3. Structure-Based Optimization of Arylamides as Inhibitors of Soluble Epoxide Hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldrup, Anne B.; Soleymanzadeh, Fariba; Taylor, Steven J.

    2009-11-04

    Inhibition of soluble epoxide hydrolase (sEH) is hypothesized to lead to an increase in circulating levels of epoxyeicosatrienoic acids, resulting in the potentiation of their in vivo pharmacological properties. As part of an effort to identify inhibitors of sEH with high and sustained plasma exposure, we recently performed a high throughput screen of our compound collection. The screen identified N-(3,3-diphenyl-propyl)-nicotinamide as a potent inhibitor of sEH. Further profiling of this lead revealed short metabolic half-lives in microsomes and rapid clearance in the rat. Consistent with these observations, the determination of the in vitro metabolic profile of N-(3,3-diphenyl-propyl)-nicotinamide in rat livermore » microsomes revealed extensive oxidative metabolism and a propensity for metabolite switching. Lead optimization, guided by the analysis of the solid-state costructure of N-(3,3-diphenyl-propyl)-nicotinamide bound to human sEH, led to the identification of a class of potent and selective inhibitors. An inhibitor from this class displayed an attractive in vitro metabolic profile and high and sustained plasma exposure in the rat after oral administration.« less

  4. Metabolic Profiles and Free Radical Scavenging Activity of Cordyceps bassiana Fruiting Bodies According to Developmental Stage

    PubMed Central

    Hyun, Sun-Hee; Lee, Seok-Young; Sung, Gi-Ho; Kim, Seong Hwan; Choi, Hyung-Kyoon

    2013-01-01

    The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana. PMID:24058459

  5. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique.

    PubMed

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer.

  6. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique

    PubMed Central

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer. PMID:28002477

  7. A High Protein Diet during Pregnancy Affects Hepatic Gene Expression of Energy Sensing Pathways along Ontogenesis in a Porcine Model

    PubMed Central

    Oster, Michael; Murani, Eduard; Metges, Cornelia C.; Ponsuksili, Siriluck; Wimmers, Klaus

    2011-01-01

    In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages. PMID:21789176

  8. High fat and/or high salt intake during pregnancy alters maternal meta‐inflammation and offspring growth and metabolic profiles

    PubMed Central

    Reynolds, Clare M.; Vickers, Mark H.; Harrison, Claudia J.; Segovia, Stephanie A.; Gray, Clint

    2014-01-01

    Abstract A high intake of fat or salt during pregnancy perturbs placental function, alters fetal development, and predisposes offspring to metabolic disease in adult life. Despite its relevance to modern dietary habits, the developmental programming effects of excessive maternal fat and salt, fed in combination, have not been examined. We investigated the effects of moderately high maternal fat and/or salt intake on maternal metainflammation and its consequences on fetal and weanling growth and metabolic profile. Female Sprague–Dawley rats were fed a standard control diet (CD), 4% salt diet (SD), 45% fat diet (HF) or 4% salt/45% fat combined diet (HFSD) 3 weeks prior to and throughout pregnancy and lactation. Plasma and tissue samples were collected at day 18 of pregnancy from mother and fetus, and at postnatal day 24 in weanlings. Markers of adipose tissue inflammation, macrophage infiltration, lipogenesis, nutrient transport, and storage were altered in pregnant dams receiving high‐fat and/or ‐salt diets. This was accompanied by increased fat mass in high‐fat groups and differential hepatic lipid and glucose homeostasis. Offspring of high fat‐fed mothers had reduced fetal weight, displayed catch‐up growth, increased fat mass, and altered metabolic profiles at weaning. Maternal diets high in fat and/or salt affect maternal metabolic parameters, fetal growth and development, metabolic status, and adipoinsular axis in the weanling. Results presented here highlight the importance of diet in expectant mothers or women considering pregnancy. Furthermore, the potential for maternal nutritional intervention strategies may be employed to modify the metabolic disease risk in adult offspring during later life. PMID:25096554

  9. The effect of red light and far-red light conditions on secondary metabolism in agarwood.

    PubMed

    Kuo, Tony Chien-Yen; Chen, Chuan-Hung; Chen, Shu-Hwa; Lu, I-Hsuan; Chu, Mei-Ju; Huang, Li-Chun; Lin, Chung-Yen; Chen, Chien-Yu; Lo, Hsiao-Feng; Jeng, Shih-Tong; Chen, Long-Fang O

    2015-06-12

    Agarwood, a heartwood derived from Aquilaria trees, is a valuable commodity that has seen prevalent use among many cultures. In particular, it is widely used in herbal medicine and many compounds in agarwood are known to exhibit medicinal properties. Although there exists much research into medicinal herbs and extraction of high value compounds, few have focused on increasing the quantity of target compounds through stimulation of its related pathways in this species. In this study, we observed that cucurbitacin yield can be increased through the use of different light conditions to stimulate related pathways and conducted three types of high-throughput sequencing experiments in order to study the effect of light conditions on secondary metabolism in agarwood. We constructed genome-wide profiles of RNA expression, small RNA, and DNA methylation under red light and far-red light conditions. With these profiles, we identified a set of small RNA which potentially regulates gene expression via the RNA-directed DNA methylation pathway. We demonstrate that light conditions can be used to stimulate pathways related to secondary metabolism, increasing the yield of cucurbitacins. The genome-wide expression and methylation profiles from our study provide insight into the effect of light on gene expression for secondary metabolism in agarwood and provide compelling new candidates towards the study of functional secondary metabolic components.

  10. Using Metabolomic Profiles as Biomarkers for Insulin Resistance in Childhood Obesity: A Systematic Review.

    PubMed

    Zhao, Xue; Gang, Xiaokun; Liu, Yujia; Sun, Chenglin; Han, Qing; Wang, Guixia

    2016-01-01

    A growing body of evidence has shown the intimate relationship between metabolomic profiles and insulin resistance (IR) in obese adults, while little is known about childhood obesity. In this review, we searched available papers addressing metabolomic profiles and IR in obese children from inception to February 2016 on MEDLINE, Web of Science, the Cochrane Library, ClinicalTrials.gov, and EMASE. HOMA-IR was applied as surrogate markers of IR and related metabolic disorders at both baseline and follow-up. To minimize selection bias, two investigators independently completed this work. After critical selection, 10 studies (including 2,673 participants) were eligible and evaluated by using QUADOMICS for quality assessment. Six of the 10 studies were classified as "high quality." Then we generated all the metabolites identified in each study and found amino acid metabolism and lipid metabolism were the main affected metabolic pathways in obese children. Among identified metabolites, branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), and acylcarnitines were reported to be associated with IR as biomarkers most frequently. Additionally, BCAAs and tyrosine seemed to be relevant to future metabolic risk in the long-term follow-up cohorts, emphasizing the importance of early diagnosis and prevention strategy. Because of limited scale and design heterogeneity of existing studies, future studies might focus on validating above findings in more large-scale and longitudinal studies with elaborate design.

  11. Metabolic remodeling triggered by salivation and diabetes in major salivary glands.

    PubMed

    Nogueira, Fernando N; Carvalho, Rui A

    2017-02-01

    The metabolic profile of major salivary glands was evaluated by 13 C nuclear magnetic resonance isotopomer analysis ( 13 C NMR-IA) following the infusion of [U- 13 C]glucose in order to define the true metabolic character of submandibular (SM) and parotid (PA) glands at rest and during salivary stimulation, and to determine the metabolic remodeling driven by diabetes. In healthy conditions, the SM gland is characterized at rest by a glycolytic metabolic profile and extensive pyruvate cycling. On the contrary, the PA gland, although also dominated by glycolysis, also possesses significant Krebs' cycle activity and does not sustain extensive pyruvate cycling. Under stimulation, both glands increase their glycolytic and Krebs' cycle fluxes, but the metabolic coupling between the two pathways is further compromised to account for the much increased biosynthetic anaplerotic fluxes. In diabetes, the responsiveness of the PA gland to a salivary stimulus is seriously hindered, mostly as a result of the incapacity to burst glycolytic activity and also an inability to improve the Krebs' cycle flux to compensate. The Krebs' cycle activity in the SM gland is also consistently compromised, but the glycolytic flux in this gland is more resilient. This diabetes-induced metabolic remodeling in SM and PA salivary glands illustrates the metabolic need to sustain adequate saliva production, and identifies glycolytic and oxidative pathways as key players in the metabolic dynamism of salivary glands. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Effect of Aripiprazole Lauroxil on Metabolic and Endocrine Profiles and Related Safety Considerations Among Patients With Acute Schizophrenia.

    PubMed

    Nasrallah, Henry A; Newcomer, John W; Risinger, Robert; Du, Yangchun; Zummo, Jacqueline; Bose, Anjana; Stankovic, Srdjan; Silverman, Bernard L; Ehrich, Elliot W

    2016-11-01

    Aripiprazole lauroxil, a long-acting injectable antipsychotic, demonstrated safety and efficacy in treating symptoms of schizophrenia in a double-blind, placebo-controlled trial. Because the metabolic profile of antipsychotics is an important safety feature, the effects of aripiprazole lauroxil on body weight, endocrine and metabolic profiles, and safety were examined in a secondary analysis. Patients with schizophrenia (DSM-IV-TR criteria) were randomly assigned to aripiprazole lauroxil 441 mg, aripiprazole lauroxil 882 mg, or placebo intramuscularly once monthly between December 2011 and March 2014. Changes in body weight, body mass index, fasting blood glucose and serum lipids, glycosylated hemoglobin (HbA1c), and prolactin over 12 weeks were assessed. The incidence of treatment-emergent adverse events (AEs) was evaluated. Among 622 randomized patients, no clinically relevant changes from baseline to week 12 were observed for any serum lipid, lipoprotein, plasma glucose, or HbA1c value with placebo or either dose of aripiprazole lauroxil. Both doses of aripiprazole lauroxil were associated with reductions in mean prolactin levels, whereas placebo treatment was not. The mean (standard deviation) change from baseline for body weight was 0.74 (3.9) kg, 0.86 (3.7) kg, and 0.01 (3.6) kg for aripiprazole lauroxil 441 mg, aripiprazole lauroxil 882 mg, and placebo groups, respectively. AEs related to metabolic parameters were reported in 2.4%, 1.4%, and 2.4% of patients in the aripiprazole lauroxil 441 mg, aripiprazole lauroxil 882 mg, and placebo groups, respectively. Aripiprazole lauroxil was well tolerated, with a low-risk metabolic profile relative to published data for other antipsychotics. Changes similar to those observed with placebo were observed in the aripiprazole lauroxil groups for metabolic parameters, with modest weight gain in the active treatment groups over the 12-week course. ClinicalTrials.gov identifier: NCT01469039. © Copyright 2016 Physicians Postgraduate Press, Inc.

  13. A novel HPLC-MRM strategy to discover unknown and long-term metabolites of stanozolol for expanding analytical possibilities in doping-control.

    PubMed

    Wang, Zhe; Zhou, Xinmiao; Liu, Xin; Dong, Ying; Zhang, Jinlan

    2017-01-01

    Stanozolol is one of the most commonly abused anabolic androgenic steroids (AAS) by athletes and usually detected by its parent drug and major metabolites. However, its metabolic pathway is complex, varied and individually different, it is important to characterize its overall metabolic profiles and discover new and long-term metabolites for the aims of expanding detection windows. High performance liquid chromatography coupled with triple quadrupole mass spectrometer (HPLC-MS/MS) was used to analyze the human urine after oral administration of stanozolol. Multiple reaction monitoring (MRM), one of the scan modes of triple quadrupole mass spectrometer showing extremely high sensitivity was well used to develop a strategy for metabolic profiles characterization and long-term metabolites detection based on typical precursor to product ion transitions of parent drug and its major metabolites. Utilizing the characteristic fragment ions of stanozolol and its major metabolites as the product ions, and speculating unknown precursor ions based on the possible phase I and phase II metabolic reactions in human body, the metabolite profiles of stanozolol could be comprehensively discovered, especially for those unknown and low concentration metabolites in human urine. Then these metabolites were further well structure identified by targeted high resolution MS/MS scan of quadrupole-time of flight mass spectrometry (Q-TOF). Applying this strategy, 27 phase I and 21 phase II metabolites of stanozolol were identified, in which 13 phase I and 14 phase II metabolites have not been reported previously. The 9 out of 48 metabolites could be detected over 15days post drug administration. This strategy could be employed effectively to characterize AAS metabolic profiles and discover unknown and long-term metabolites in sports drug testing. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cortisol-related metabolic alterations assessed by mass spectrometry assay in patients with Cushing's syndrome.

    PubMed

    Di Dalmazi, Guido; Quinkler, Marcus; Deutschbein, Timo; Prehn, Cornelia; Rayes, Nada; Kroiss, Matthias; Berr, Christina M; Stalla, Günter; Fassnacht, Martin; Adamski, Jerzy; Reincke, Martin; Beuschlein, Felix

    2017-08-01

    Endogenous hypercortisolism is a chronic condition associated with severe metabolic disturbances and cardiovascular sequela. The aim of this study was to characterize metabolic alterations in patients with different degrees of hypercortisolism by mass-spectrometry-based targeted plasma metabolomic profiling and correlate the metabolomic profile with clinical and hormonal data. Cross-sectional study. Subjects ( n  = 149) were classified according to clinical and hormonal characteristics: Cushing's syndrome ( n  = 46), adrenocortical adenomas with autonomous cortisol secretion ( n  = 31) or without hypercortisolism ( n  = 27). Subjects with suspicion of hypercortisolism, but normal hormonal/imaging testing, served as controls ( n  = 42). Clinical and hormonal data were retrieved for all patients and targeted metabolomic profiling was performed. Patients with hypercortisolism showed lower levels of short-/medium-chain acylcarnitines and branched-chain and aromatic amino acids, but higher polyamines levels, in comparison to controls. These alterations were confirmed after excluding diabetic patients. Regression models showed significant correlation between cortisol after dexamethasone suppression test (DST) and 31 metabolites, independently of confounding/contributing factors. Among those, histidine and spermidine were also significantly associated with catabolic signs and symptoms of hypercortisolism. According to an discriminant analysis, the panel of metabolites was able to correctly classify subjects into the main diagnostic categories and to distinguish between subjects with/without altered post-DST cortisol and with/without diabetes in >80% of the cases. Metabolomic profiling revealed alterations of intermediate metabolism independently associated with the severity of hypercortisolism, consistent with disturbed protein synthesis/catabolism and incomplete β-oxidation, providing evidence for the occurrence of metabolic inflexibility in hypercortisolism. © 2017 European Society of Endocrinology.

  15. The profiling of the metabolites of hirsutine in rat by ultra-high performance liquid chromatography coupled with linear ion trap Orbitrap mass spectrometry: An improved strategy for the systematic screening and identification of metabolites in multi-samples in vivo.

    PubMed

    Wang, Jianwei; Qi, Peng; Hou, Jinjun; Shen, Yao; Yang, Min; Bi, Qirui; Deng, Yanping; Shi, Xiaojian; Feng, Ruihong; Feng, Zijin; Wu, Wanying; Guo, Dean

    2017-02-05

    Drug metabolites identification and construction of metabolic profile are meaningful work for the drug discovery and development. The great challenge during this process is the work of the structural clarification of possible metabolites in the complicated biological matrix, which often resulting in a huge amount data sets, especially in multi-samples in vivo. Analyzing these complex data manually is time-consuming and laborious. The object of this study was to develop a practical strategy for screening and identifying of metabolites from multiple biological samples efficiently. Using hirsutine (HTI), an active components of Uncaria rhynchophylla (Gouteng in Chinese) as a model and its plasma, urine, bile, feces and various tissues were analyzed with data processing software (Metwork), data mining tool (Progenesis QI), and HR-MS n data by ultra-high performance liquid chromatography/linear ion trap-Orbitrap mass spectrometry (U-HPLC/LTQ-Orbitrap-MS). A total of 67 metabolites of HTI in rat biological samples were tentatively identified with established library, and to our knowledge most of which were reported for the first time. The possible metabolic pathways were subsequently proposed, hydroxylation, dehydrogenation, oxidation, N-oxidation, hydrolysis, reduction and glucuronide conjugation were mainly involved according to metabolic profile. The result proved application of this improved strategy was efficient, rapid, and reliable for metabolic profiling of components in multiple biological samples and could significantly expand our understanding of metabolic situation of TCM in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Transcriptional profiling of mouse and human livers at different life stages

    EPA Science Inventory

    In the presence offoreign compounds,metabolichomeostasis oftheorganismismaintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression ofxenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and det...

  17. 1H NMR Metabolic Profiling of Earthworm (Eisenia fetida) Coelomic Fluid, Coelomocytes, and Tissue: Identification of a New Metabolite—Malylglutamate

    PubMed Central

    2017-01-01

    Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance. PMID:28753027

  18. 1H NMR Metabolic Profiling of Earthworm (Eisenia fetida) Coelomic Fluid, Coelomocytes, and Tissue: Identification of a New Metabolite-Malylglutamate.

    PubMed

    Griffith, Corey M; Williams, Preston B; Tinoco, Luzineide W; Dinges, Meredith M; Wang, Yinsheng; Larive, Cynthia K

    2017-09-01

    Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1 H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance.

  19. Discovery of novel S1P2 antagonists. Part 2: Improving the profile of a series of 1,3-bis(aryloxy)benzene derivatives.

    PubMed

    Kusumi, Kensuke; Shinozaki, Koji; Yamaura, Yoshiyuki; Hashimoto, Ai; Kurata, Haruto; Naganawa, Atsushi; Ueda, Hideyuki; Otsuki, Kazuhiro; Matsushita, Takeshi; Sekiguchi, Tetsuya; Kakuuchi, Akito; Seko, Takuya

    2015-10-15

    Our initial lead compound 2 was modified to improve its metabolic stability. The resulting compound 5 showed excellent metabolic stability in rat and human liver microsomes. We subsequently designed and synthesized a hybrid compound of 5 and the 1,3-bis(aryloxy) benzene derivative 1, which was previously reported by our group to be an S1P2 antagonist. This hybridization reaction gave compound 9, which showed improved S1P2 antagonist activity and good metabolic stability. The subsequent introduction of a carboxylic acid moiety into 9 resulted in 14, which showed potent antagonist activity towards S1P2 with a much smaller species difference between human S1P2 and rat S1P2. Compound 14 also showed good metabolic stability and an improved safety profile compared with compound 9. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Gene expression in the deep biosphere.

    PubMed

    Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F

    2013-07-11

    Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.

Top