Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can
2011-04-01
In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p < 0.01). The analysis results of PCR-SSCP indicate that microbial communities in each biofilter are variety, but the structure of dominant microorganisms is similar among different biofilters. The results also show that the packing materials had little effect on the structure and metabolic function of microbial community in biologically-enhanced active filters, and the difference between two biofilters for the water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.
Assessing Coral Reefs on a Pacific-Wide Scale Using the Microbialization Score
McDole, Tracey; Nulton, James; Barott, Katie L.; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O.; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A.; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J.; Brainard, Russell E.; Rohwer, Forest
2012-01-01
The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing. PMID:22970122
Assessing coral reefs on a Pacific-wide scale using the microbialization score.
McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest
2012-01-01
The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.
NASA Astrophysics Data System (ADS)
Adhikari, R.; Nickel, J.; Kallmeyer, J.
2012-12-01
Microbial life is widespread in Earth's subsurface and estimated to represent a significant fraction of Earth's total living biomass. However, very little is known about subsurface microbial activity and its fundamental role in biogeochemical cycles of carbon and other biologically important elements. Hydrogen is one of the most important elements in subsurface anaerobic microbial metabolism. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways. They either consume or produce protons for ATP synthesis. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy generating metabolic processes to electron acceptors such as CO2 or sulfate. H2ase enzyme targets a key metabolic compound in cellular metabolism therefore the assay can be used as a measure for total microbial activity without the need to identify any specific metabolic process. Using the highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey, in marine sediments of the Barents Sea and in deep subseafloor sediments from the Nankai Trough. H2ase activity could be quantified at all depths of all sites but the activity distribution varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3d-1 down to a depth of 1.60 m. At all sites the sulfate reduction rate profile followed the upper part of the H2ase activity profile until sulfate reduction reached the minimum detection limit (ca. 10 pmol cm-3d-1). H2ase activity could still be quantified after the decline of sulfate reduction, indicating that other microbial processes are becoming quantitatively more important. Similarly, H2ase activity could be quantified at greater depths (ca. 400 mbsf) in Nankai Trough sediments. Nankai Trough is one of the world's most geologically active accretionary wedges, where the Philippine Plate is subducting under the southwest of Japan. Due to the transient faulting, huge amounts of energy are liberated that enhance chemical transformations of organic and inorganic matter. An increase in H2ase activity could be observed at greater depth, which suggests that microbial activity is stimulated by the fault activity. Current techniques for the quantification of microbial activity in deep sediments have already reached their physical and technical limits and-in many cases- are still not sensitive enough to quantify extremely low rates of microbial activity. Additional to the quantification of specific processes, estimates of total microbial activity will provide valuable information on energy flux and microbial metabolism in the subsurface biosphere and other low-energy environments as well as help identifying hotspots of microbial activity. The tritium H2ase assay has a potential to become a valuable tool to measure total subsurface microbial activity.
NASA Astrophysics Data System (ADS)
Kim, M.; Gyeong, H. R.; Lee, Y. K.
2017-12-01
Soil microorganisms play pivotal roles in ecosystem development and carbon cycling in newly exposed glacier forelands. However, little is known about carbon utilization pattern by metabolically active microbes over the course of ecosystem succession in these nutrient-poor environments. We investigated RNA-based microbial community dynamics and its relation to microbial carbon usage along the chronosequence of a High Arctic glacier foreland. Among microbial taxa surveyed (bacteria, archaea and fungi), bacteria are among the most metabolically active taxa with a dominance of Cyanobacteria and Actinobacteria. There was a strong association between microbial carbon usage and active Actinobacterial communities, suggesting that member of Actinobacteria are actively involved in organic carbon degradation in glacier forelands. Both bacterial community and microbial carbon usage are converged towards later stage of succession, indicating that the composition of soil organic carbon plays important roles in structuring bacterial decomposer communities during ecosystem development.
Gene expression in the deep biosphere.
Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F
2013-07-11
Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.
Ishii, Shun’ichi; Suzuki, Shino; Tenney, Aaron; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Bretschger, Orianna
2015-01-01
Microorganisms almost always exist as mixed communities in nature. While the significance of microbial community activities is well appreciated, a thorough understanding about how microbial communities respond to environmental perturbations has not yet been achieved. Here we have used a combination of metagenomic, genome binning, and stimulus-induced metatranscriptomic approaches to estimate the metabolic network and stimuli-induced metabolic switches existing in a complex microbial biofilm that was producing electrical current via extracellular electron transfer (EET) to a solid electrode surface. Two stimuli were employed: to increase EET and to stop EET. An analysis of cell activity marker genes after stimuli exposure revealed that only two strains within eleven binned genomes had strong transcriptional responses to increased EET rates, with one responding positively and the other responding negatively. Potential metabolic switches between eleven dominant members were mainly observed for acetate, hydrogen, and ethanol metabolisms. These results have enabled the estimation of a multi-species metabolic network and the associated short-term responses to EET stimuli that induce changes to metabolic flow and cooperative or competitive microbial interactions. This systematic meta-omics approach represents a next step towards understanding complex microbial roles within a community and how community members respond to specific environmental stimuli. PMID:26443302
Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T.; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun
2017-01-01
A system-level framework of complex microbe–microbe and host–microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut. PMID:28585563
Sung, Jaeyun; Kim, Seunghyeon; Cabatbat, Josephine Jill T; Jang, Sungho; Jin, Yong-Su; Jung, Gyoo Yeol; Chia, Nicholas; Kim, Pan-Jun
2017-06-06
A system-level framework of complex microbe-microbe and host-microbe chemical cross-talk would help elucidate the role of our gut microbiota in health and disease. Here we report a literature-curated interspecies network of the human gut microbiota, called NJS16. This is an extensive data resource composed of ∼570 microbial species and 3 human cell types metabolically interacting through >4,400 small-molecule transport and macromolecule degradation events. Based on the contents of our network, we develop a mathematical approach to elucidate representative microbial and metabolic features of the gut microbial community in a given population, such as a disease cohort. Applying this strategy to microbiome data from type 2 diabetes patients reveals a context-specific infrastructure of the gut microbial ecosystem, core microbial entities with large metabolic influence, and frequently produced metabolic compounds that might indicate relevant community metabolic processes. Our network presents a foundation towards integrative investigations of community-scale microbial activities within the human gut.
Microbial degradation of chloroethenes: a review.
Dolinová, Iva; Štrojsová, Martina; Černík, Miroslav; Němeček, Jan; Macháčková, Jiřina; Ševců, Alena
2017-05-01
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Microbial models of mammalian metabolism: microbial transformation of naproxen.
el Sayed, K A
2000-12-01
Preparative-scale fermentation of S-naproxen, the known antiinflammatory, analgesic and antipyretic drug, with Cunninghamella elegans ATCC 9245 afforded S-demethylnaproxen, the known human active metabolite of naproxen, in a 90% yield. Demethylnaproxen was also detected as the major metabolite of naproxen using Cunninghamella blakesleeana ATCC 8688a. A review of the previous microbial metabolism studies using the fungi Cunninghamella species suggested that it could be a plausible in vitro predictor for mammalian metabolism.
NASA Astrophysics Data System (ADS)
Bore, Ezekiel
2016-04-01
Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient temperatures. These metabolic pathways, can be unraveled based on position-specific labeling.
Huang, Yolanda Y; Martínez-Del Campo, Ana; Balskus, Emily P
2018-02-06
The discovery of enzymes responsible for previously unappreciated microbial metabolic pathways furthers our understanding of host-microbe and microbe-microbe interactions. We recently identified and characterized a new gut microbial glycyl radical enzyme (GRE) responsible for anaerobic metabolism of trans-4-hydroxy-l-proline (Hyp). Hyp dehydratase (HypD) catalyzes the removal of water from Hyp to generate Δ 1 -pyrroline-5-carboxylate (P5C). This enzyme is encoded in the genomes of a diverse set of gut anaerobes and is prevalent and abundant in healthy human stool metagenomes. Here, we discuss the roles HypD may play in different microbial metabolic pathways as well as the potential implications of this activity for colonization resistance and pathogenesis within the human gut. Finally, we present evidence of anaerobic Hyp metabolism in sediments through enrichment culturing of Hyp-degrading bacteria, highlighting the wide distribution of this pathway in anoxic environments beyond the human gut.
Zhou, Cheng-Bei; Fang, Jing-Yuan
2018-01-23
Metabolism regulation is crucial in colorectal cancer (CRC) and has emerged as a remarkable field currently. The cellular metabolism of glucose, amino acids and lipids in CRC are all reprogrammed. Each of them changes tumour microenvironment, modulates bacterial composition and activity, and eventually promotes CRC development. Metabolites such as short chain fatty acids, secondary bile acids, N-nitroso compounds, hydrogen sulphide, polyphenols and toxins like fragilysin, FadA, cytolethal distending toxin and colibactin play a dual role in CRC. The relationship of gut microbe-metabolite is essential in remodelling intestinal microbial ecology composition and metabolic activity. It regulates the metabolism of colonic epithelial cells and changes the tumour microenvironment in CRC. Microbial metabolism manipulation has been considered to be potentially preventive in CRC, but more large-scale clinical trials are required before their application in clinical practice in the near future.
Microbial physiology-based model of ethanol metabolism in subsurface sediments
NASA Astrophysics Data System (ADS)
Jin, Qusheng; Roden, Eric E.
2011-07-01
A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.
Thureborn, Petter; Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara
2016-01-01
Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning.
Franzetti, Andrea; Lundin, Daniel; Sjöling, Sara
2016-01-01
Baltic Sea deep water and sediments hold one of the largest anthropogenically induced hypoxic areas in the world. High nutrient input and low water exchange result in eutrophication and oxygen depletion below the halocline. As a consequence at Landsort Deep, the deepest point of the Baltic Sea, anoxia in the sediments has been a persistent condition over the past decades. Given that microbial communities are drivers of essential ecosystem functions we investigated the microbial community metabolisms and functions of oxygen depleted Landsort Deep sediments by metatranscriptomics. Results show substantial expression of genes involved in protein metabolism demonstrating that the Landsort Deep sediment microbial community is active. Identified expressed gene suites of metabolic pathways with importance for carbon transformation including fermentation, dissimilatory sulphate reduction and methanogenesis were identified. The presence of transcripts for these metabolic processes suggests a potential for heterotrophic-autotrophic community synergism and indicates active mineralisation of the organic matter deposited at the sediment as a consequence of the eutrophication process. Furthermore, cyanobacteria, probably deposited from the water column, are transcriptionally active in the anoxic sediment at this depth. Results also reveal high abundance of transcripts encoding integron integrases. These results provide insight into the activity of the microbial community of the anoxic sediment at the deepest point of the Baltic Sea and its possible role in ecosystem functioning. PMID:26823996
Colonization-Induced Host-Gut Microbial Metabolic Interaction
Claus, Sandrine P.; Ellero, Sandrine L.; Berger, Bernard; Krause, Lutz; Bruttin, Anne; Molina, Jérôme; Paris, Alain; Want, Elizabeth J.; de Waziers, Isabelle; Cloarec, Olivier; Richards, Selena E.; Wang, Yulan; Dumas, Marc-Emmanuel; Ross, Alastair; Rezzi, Serge; Kochhar, Sunil; Van Bladeren, Peter; Lindon, John C.; Holmes, Elaine; Nicholson, Jeremy K.
2011-01-01
The gut microbiota enhances the host’s metabolic capacity for processing nutrients and drugs and modulate the activities of multiple pathways in a variety of organ systems. We have probed the systemic metabolic adaptation to gut colonization for 20 days following exposure of axenic mice (n = 35) to a typical environmental microbial background using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy to analyze urine, plasma, liver, kidney, and colon (5 time points) metabolic profiles. Acquisition of the gut microbiota was associated with rapid increase in body weight (4%) over the first 5 days of colonization with parallel changes in multiple pathways in all compartments analyzed. The colonization process stimulated glycogenesis in the liver prior to triggering increases in hepatic triglyceride synthesis. These changes were associated with modifications of hepatic Cyp8b1 expression and the subsequent alteration of bile acid metabolites, including taurocholate and tauromuricholate, which are essential regulators of lipid absorption. Expression and activity of major drug-metabolizing enzymes (Cyp3a11 and Cyp2c29) were also significantly stimulated. Remarkably, statistical modeling of the interactions between hepatic metabolic profiles and microbial composition analyzed by 16S rRNA gene pyrosequencing revealed strong associations of the Coriobacteriaceae family with both the hepatic triglyceride, glucose, and glycogen levels and the metabolism of xenobiotics. These data demonstrate the importance of microbial activity in metabolic phenotype development, indicating that microbiota manipulation is a useful tool for beneficially modulating xenobiotic metabolism and pharmacokinetics in personalized health care. PMID:21363910
NASA Astrophysics Data System (ADS)
Caruso, Alice; Boano, Fulvio; Ridolfi, Luca; Chopp, David L.; Packman, Aaron
2017-05-01
Riverbed sediments host important biogeochemical processes that play a key role in nutrient dynamics. Sedimentary nutrient transformations are mediated by bacteria in the form of attached biofilms. The influence of microbial metabolic activity on the hydrochemical conditions within the hyporheic zone is poorly understood. We present a hydrobiogeochemical model to assess how the growth of heterotrophic and autotrophic biomass affects the transport and transformation of dissolved nitrogen compounds in bed form-induced hyporheic zones. Coupling between hyporheic exchange, nitrogen metabolism, and biomass growth leads to an equilibrium between permeability reduction and microbial metabolism that yields shallow hyporheic flows in a region with low permeability and high rates of microbial metabolism near the stream-sediment interface. The results show that the bioclogging caused by microbial growth can constrain rates and patterns of hyporheic fluxes and microbial transformation rate in many streams.
Pjevac, Petra; Meier, Dimitri V.; Markert, Stephanie; Hentschker, Christian; Schweder, Thomas; Becher, Dörte; Gruber-Vodicka, Harald R.; Richter, Michael; Bach, Wolfgang; Amann, Rudolf; Meyerdierks, Anke
2018-01-01
At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys. PMID:29696004
Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade
Hodgson, Douglas M.; Smith, Ann; Dahale, Sonal; Stratford, James P.; Li, Jia V.; Grüning, André; Bushell, Michael E.; Marchesi, Julian R.; Avignone Rossa, C.
2016-01-01
Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities. PMID:27242723
Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran
2013-04-19
Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.
Metabolic capability and in situ activity of microorganisms in an oil reservoir.
Liu, Yi-Fan; Galzerani, Daniela Domingos; Mbadinga, Serge Maurice; Zaramela, Livia S; Gu, Ji-Dong; Mu, Bo-Zhong; Zengler, Karsten
2018-01-05
Microorganisms have long been associated with oxic and anoxic degradation of hydrocarbons in oil reservoirs and oil production facilities. While we can readily determine the abundance of microorganisms in the reservoir and study their activity in the laboratory, it has been challenging to resolve what microbes are actively participating in crude oil degradation in situ and to gain insight into what metabolic pathways they deploy. Here, we describe the metabolic potential and in situ activity of microbial communities obtained from the Jiangsu Oil Reservoir (China) by an integrated metagenomics and metatranscriptomics approach. Almost complete genome sequences obtained by differential binning highlight the distinct capability of different community members to degrade hydrocarbons under oxic or anoxic condition. Transcriptomic data delineate active members of the community and give insights that Acinetobacter species completely oxidize alkanes into carbon dioxide with the involvement of oxygen, and Archaeoglobus species mainly ferment alkanes to generate acetate which could be consumed by Methanosaeta species. Furthermore, nutritional requirements based on amino acid and vitamin auxotrophies suggest a complex network of interactions and dependencies among active community members that go beyond classical syntrophic exchanges; this network defines community composition and microbial ecology in oil reservoirs undergoing secondary recovery. Our data expand current knowledge of the metabolic potential and role in hydrocarbon metabolism of individual members of thermophilic microbial communities from an oil reservoir. The study also reveals potential metabolic exchanges based on vitamin and amino acid auxotrophies indicating the presence of complex network of interactions between microbial taxa within the community.
Dynamics of Marine Microbial Metabolism and Physiology at Station ALOHA
NASA Astrophysics Data System (ADS)
Casey, John R.
Marine microbial communities influence global biogeochemical cycles by coupling the transduction of free energy to the transformation of Earth's essential bio-elements: H, C, N, O, P, and S. The web of interactions between these processes is extraordinarily complex, though fundamental physical and thermodynamic principles should describe its dynamics. In this collection of 5 studies, aspects of the complexity of marine microbial metabolism and physiology were investigated as they interact with biogeochemical cycles and direct the flow of energy within the Station ALOHA surface layer microbial community. In Chapter 1, and at the broadest level of complexity discussed, a method to relate cell size to metabolic activity was developed to evaluate allometric power laws at fine scales within picoplankton populations. Although size was predictive of metabolic rates, within-population power laws deviated from the broader size spectrum, suggesting metabolic diversity as a key determinant of microbial activity. In Chapter 2, a set of guidelines was proposed by which organic substrates are selected and utilized by the heterotrophic community based on their nitrogen content, carbon content, and energy content. A hierarchical experimental design suggested that the heterotrophic microbial community prefers high nitrogen content but low energy density substrates, while carbon content was not important. In Chapter 3, a closer look at the light-dependent dynamics of growth on a single organic substrate, glycolate, suggested that growth yields were improved by photoheterotrophy. The remaining chapters were based on the development of a genome-scale metabolic network reconstruction of the cyanobacterium Prochlorococcus to probe its metabolic capabilities and quantify metabolic fluxes. Findings described in Chapter 4 pointed to evolution of the Prochlorococcus metabolic network to optimize growth at low phosphate concentrations. Finally, in Chapter 5 and at the finest scale of complexity, a method was developed to predict hourly changes in both physiology and metabolic fluxes in Prochlorococcus by incorporating gene expression time-series data within the metabolic network model. Growth rates predicted by this method more closely matched experimental data, and diel changes in elemental composition and the energy content of biomass were predicted. Collectively, these studies identify and quantify the potential impact of variations in metabolic and physiological traits on the melee of microbial community interactions.
NASA Astrophysics Data System (ADS)
Canovas, Peter A.; Hoehler, Tori; Shock, Everett L.
2017-07-01
Various classes of microbial and biomolecular evidence from global studies in marine and continental settings are used to identify a set of reactions that appear to support microbial metabolism during serpentinization of ultramafic rocks. Geochemical data from serpentinizing ecosystems in the Samail ophiolite of Oman are used to evaluate the extent of disequilibria that can support this set of microbial metabolisms and to provide a ranking of potential metabolic energy sources in hyperalkaline fluids that are direct products of serpentinization. Results are used to construct hypotheses for how microbial metabolism may be supported in the subsurface for two cases: ecosystems hosted in rocks that have already undergone significant serpentinization and those hosted by deeper, active serpentinization processes.
Addition of Rubber to soil damages the functional diversity of soil.
Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun
2017-07-01
Rubber is a polymer of isoprene, consisting mainly of cis-1,4-polyisoprene units. The unmanageable production and its irresponsible disposal pose severe threats to environmental ecology. Therefore, the current study focuses extensively on the ill-effects of Rubber disposal on soil microbial functional diversity as it reflects the health of ecosystem by acting as a key component in ecosystem productivity. To investigate the effect of Rubber on soil microbial functional diversity, soil samples were collected from landfill sites and three different soil microcosms (Rubber treated, untreated, and sterile soil) were prepared. The soil enzymatic activity was determined by fluorescein diacetate hydrolysis followed by the determination of the microbial metabolic potential and functional diversity by average well color development and Shannon-Weaver index (H), respectively. BiOLOG ECO plates were used for determining the microbial functional diversity of the soil microcosms. Higher heterotrophic microbial count as well as higher soil microbial activity was observed in Rubber untreated soil than Rubber treated soil microcosm. The result indicated that the addition of Rubber to soil reduced soil heterotrophic microbial count and soil microbial activity considerably. Similarly, soil microbial metabolic potential as well as microbial functional diversity of soil had been decreased by the addition of Rubber gloves in it. Variation in soil microbial metabolic spectrum between Rubber treated and untreated microcosm was confirmed by multivariate analysis. Collectively, all the results demonstrated that the addition of Rubber to soil reduced the soil microbial functional diversity considerably. Therefore, it is necessary for the commission of serious steps regarding Rubber disposal and protection of the environment from serious environmental issues.
Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS
NASA Astrophysics Data System (ADS)
Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.
2014-12-01
There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.
NASA Astrophysics Data System (ADS)
Marlow, J.; Hatzenpichler, R.; Girguis, P.
2018-05-01
With an innovative combination of metabolic tracers, fluorescent probes, and microscopy, we present a novel way to pinpoint the geobiological drivers of metabolic activity at silicate and carbonate-based chemosynthetic seafloor habitats.
Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.
2014-01-01
Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection. PMID:25338024
Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; ...
2014-10-22
Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. Thus, the metabolic profile revealed a relative increase in genes responsiblemore » for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.« less
Mohan, Arvind Murali; Bibby, Kyle J; Lipus, Daniel; Hammack, Richard W; Gregory, Kelvin B
2014-01-01
Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.
NASA Astrophysics Data System (ADS)
Ziervogel, Kai; Joye, Samantha B.; Arnosti, Carol
2016-07-01
A large fraction of the spilled oil from the Deepwater Horizon (DwH) blowout in April 2010 reached the seafloor via sinking oil aggregates (oil snow) in a massive sedimentation that continued until late summer 2010 (;Dirty blizzard;). We measured heterotrophic microbial metabolic rates as well as porewater and sedimentary geochemical parameters at sites proximate to and distant from the wellhead to investigate microbial responses to the "Dirty Blizzard". Lipase activity and rates of bacterial protein production were highest and leucine-aminopeptidase activity was lowest in 0-2 cm sediment layers at the sites proximate to the wellhead. These results suggest that the presence of the oil snow stimulated benthic microbial enzymatic hydrolysis of oil-derived organic matter that was depleted in peptide substrates at the time of our sampling. The strong gradients in porewater DOC, NH4+, and HPO43- concentrations in the upper 6 cm of the sediments near the wellhead likewise indicate elevated heterotrophic responses to recently-sedimented organic matter. In addition to enhanced microbial activities in the 0-2 cm sediment layers, we found peaks of total organic carbon and elevated microbial metabolic rates down to 10 cm at the sites closest to the wellhead. Our results indicate distinct benthic metabolic responses of heterotrophic microbial communities, even three months after the ending of the "Dirty Blizzard". Compared to other deep-sea environments, however, metabolic rates associated with the recently deposited particulate matter around the wellhead were only moderately enhanced. Oil contaminants at the seafloor may therefore have prolonged residence times, enhancing the potential for longer-term ecological consequences in deep-sea environments.
Margesin, Rosa; Siles, José A; Cajthaml, Tomas; Öhlinger, Birgit; Kistler, Erich
2017-05-01
Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.
Metabolic potential of lithifying cyanobacteria-dominated thrombolitic mats.
Mobberley, Jennifer M; Khodadad, Christina L M; Foster, Jamie S
2013-11-01
Thrombolites are unlaminated carbonate deposits formed by the metabolic activities of microbial mats and can serve as potential models for understanding the molecular mechanisms underlying the formation of lithifying communities. To assess the metabolic complexity of these ecosystems, high throughput DNA sequencing of a thrombolitic mat metagenome was coupled with phenotypic microarray analysis. Functional protein analysis of the thrombolite community metagenome delineated several of the major metabolic pathways that influence carbonate mineralization including cyanobacterial photosynthesis, sulfate reduction, sulfide oxidation, and aerobic heterotrophy. Spatial profiling of metabolite utilization within the thrombolite-forming microbial mats suggested that the top 5 mm contained a more metabolically diverse and active community than the deeper within the mat. This study provides evidence that despite the lack of mineral layering within the clotted thrombolite structure there is a vertical gradient of metabolic activity within the thrombolitic mat community. This metagenomic profiling also serves as a foundation for examining the active role individual functional groups of microbes play in coordinating metabolisms that lead to mineralization.
Blombach, Bastian; Takors, Ralf
2015-01-01
Carbon dioxide formation mirrors the final carbon oxidation steps of aerobic metabolism in microbial and mammalian cells. As a consequence, CO2/HCO3− dissociation equilibria arise in fermenters by the growing culture. Anaplerotic reactions make use of the abundant CO2/HCO3− levels for refueling citric acid cycle demands and for enabling oxaloacetate-derived products. At the same time, CO2 is released manifold in metabolic reactions via decarboxylation activity. The levels of extracellular CO2/HCO3− depend on cellular activities and physical constraints such as hydrostatic pressures, aeration, and the efficiency of mixing in large-scale bioreactors. Besides, local CO2/HCO3− levels might also act as metabolic inhibitors or transcriptional effectors triggering regulatory events inside the cells. This review gives an overview about fundamental physicochemical properties of CO2/HCO3− in microbial and mammalian cultures effecting cellular physiology, production processes, metabolic activity, and transcriptional regulation. PMID:26284242
1995-12-01
Technology, 26:1404-1410 (July 1992). 4. Atlas , Ronald M. and Richard Bartha . Microbial Ecology , Fundamentals and Applica- tions (3rd Edition). Redwood... microbial metabolic activity. Leahy and Colwell (35:307) note the impact of physical factors on microbial activity. They cite research by Atlas and... Bartha observing that low temperatures inhibit microbial activity and research by Bossert and Bartha observing that higher temperatures increase activity
Li, Huan; Qu, Jiapeng; Li, Tongtong; Wirth, Stephan; Zhang, Yanming; Zhao, Xinquan; Li, Xiangzhen
2018-06-03
The gut microbiota in mammals plays a key role in host metabolism and adaptation. However, relatively little is known regarding to how the animals adapts to extreme environments through regulating gut microbial diversity and function. Here, we investigated the diet, gut microbiota, short-chain fatty acid (SCFA) profiles, and cellulolytic activity from two common pika (Ochotona spp.) species in China, including Plateau pika (Ochotona curzoniae) from the Qinghai-Tibet Plateau and Daurian pika (Ochotona daurica) from the Inner Mongolia Grassland. Despite a partial diet overlap, Plateau pikas harbored lower diet diversity than Daurian pikas. Some bacteria (e.g., Prevotella and Ruminococcus) associated with fiber degradation were enriched in Plateau pikas. They harbored higher gut microbial diversity, total SCFA concentration, and cellulolytic activity than Daurian pikas. Interestingly, cellulolytic activity was positively correlated with the gut microbial diversity and SCFAs. Gut microbial communities and SCFA profiles were segregated structurally between host species. PICRUSt metagenome predictions demonstrated that microbial genes involved in carbohydrate metabolism and energy metabolism were overrepresented in the gut microbiota of Plateau pikas. Our results demonstrate that Plateau pikas harbor a stronger fermenting ability for the plant-based diet than Daurian pikas via gut microbial fermentation. The enhanced ability for utilization of plant-based diets in Plateau pikas may be partly a kind of microbiota adaptation for more energy requirements in cold and hypoxic high-altitude environments.
Real-time monitoring of subsurface microbial metabolism with graphite electrodes
Wardman, Colin; Nevin, Kelly P.; Lovley, Derek R.
2014-11-21
Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in waste water but, in most soils and sediments, rates of microbial activity are not linked to the concentrations of labile substrates, but rather to the turnover rates of the substrate pools with steady state concentrations in the nM-μ M range. In ordermore » to determine whether levels of current produced at a graphite anode would correspond to the rates of microbial metabolism in anoxic sediments, small graphite anodes were inserted in sediment cores and connected to graphite brush cathodes in the overlying water. Currents produced were compared with the rates of [2- 14C]-acetate metabolism. There was a direct correlation between current production and the rate that [2- 14C]-acetate was metabolized to 14CO 2 and 14CH 4 in sediments in which Fe(III) reduction, sulfate reduction, or methane production was the predominant terminal electron-accepting process. At comparable acetate turnover rates, currents were higher in the sediments in which sulfate-reduction or Fe(III) reduction predominated than in methanogenic sediments. This was attributed to reduced products (Fe(II), sulfide) produced at distance from the anode contributing to current production in addition to the current that was produced from microbial oxidation of organic substrates with electron transfer to the anode surface in all three sediment types. In conclusion, the results demonstrate that inexpensive graphite electrodes may provide a simple strategy for real-time monitoring of microbial activity in a diversity of anoxic soils and sediments.« less
Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing
2015-01-01
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations.
Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing
2015-01-01
Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P. elliottii plantations. PMID:26267338
Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion.
Lin, Qiang; He, Guihua; Rui, Junpeng; Fang, Xiaoyu; Tao, Yong; Li, Jiabao; Li, Xiangzhen
2016-06-03
Temperature is an important factor determining the performance and stability of the anaerobic digestion process. However, the microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion systems remain further elusive. To address this issue, we investigated the changes in composition, diversity and activities of microbial communities under temperature gradient from 25 to 55 °C using 16S rRNA gene amplicon sequencing approach based on genomic DNA (refer to as "16S rDNA") and total RNA (refer to as "16S rRNA"). Microbial community structure and activities changed dramatically along the temperature gradient, which corresponded to the variations in digestion performance (e.g., daily CH4 production, total biogas production and volatile fatty acids concentration). The ratios of 16S rRNA to 16S rDNA of microbial taxa, as an indicator of the potentially relative activities in situ, and whole activities of microbial community assessed by the similarity between microbial community based on 16S rDNA and rRNA, varied strongly along the temperature gradient, reflecting different metabolic activities. The daily CH4 production increased with temperature from 25 to 50 °C and declined at 55 °C. Among all the examined microbial properties, the whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities showed highest correlations to the performance. The whole activities of microbial community and alpha-diversity indices of both microbial communities and potentially relative activities were sensitive indicators for the performance of anaerobic digestion systems under temperature gradient, while beta-diversity could predict functional differences. Microorganism-regulated mechanisms of temperature effects on anaerobic digestion performance were likely realized through increasing alpha-diversity of both microbial communities and potentially relative activities to supply more functional pathways and activities for metabolic network, and increasing the whole activities of microbial community, especially methanogenesis, to improve the strength and efficiency in anaerobic digestion process.
Ruiz, Alicia; Cerdó, Tomás; Jáuregui, Ruy; Pieper, Dietmar H; Marcos, Ascensión; Clemente, Alfonso; García, Federico; Margolles, Abelardo; Ferrer, Manuel; Campoy, Cristina; Suárez, Antonio
2017-04-01
Recent evidence has disclosed a connection between gut microbial glycosidase activity and adiposity in obese. Here, we measured microbial α-glucosidase and β-galactosidase activities and sorted fluorescently labeled β-galactosidase containing (βGAL) microorganisms in faecal samples of eight lean and thirteen obese adolescents that followed a controlled calorie restriction program during one year. β-galactosidase is a highly distributed functional trait, mainly expressed by members of Blautia, Bacteroides, Alcaligenes, Acinetobacter and Propionibacterium. Only long-term calorie restriction induced clear changes in the microbiota of obese adolescents. Long-term calorie restriction induced significant shifts in total and βGAL gut microbiota, reducing the Firmicutes:Bacteroidetes ratio and enhancing the growth of beneficial microorganisms such as Bacteroides, Roseburia, Faecalibacterium and Clostridium XIVa. Moreover, the structure and composition of βGAL community in obese after long-term calorie restriction was highly similar to that of lean adolescents. However, despite this high compositional similarity, microbial metabolic performance was different, split in two metabolic states at a body mass index value of 25. Our study shows that calorie restriction is a strong environmental force reshaping gut microbiota though its metabolic performance is linked to host's adiposity, suggesting that functional redundancy and metabolic plasticity are fundamental properties of gut microbial ecosystem. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil
2009-12-01
Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.
NASA Astrophysics Data System (ADS)
Kopf, S.; McGlynn, S.; Cowley, E.; Green, A.; Newman, D. K.; Orphan, V. J.
2014-12-01
Metabolic rates of microbial communities constitute a key physiological parameter for understanding the in situ growth constraints for life in any environment. Isotope labeling techniques provide a powerful approach for measuring such biological activity, due to the use of isotopically enriched substrate tracers whose incorporation into biological materials can be detected with high sensitivity by isotope-ratio mass spectrometry. Nano-meter scale secondary ion mass spectrometry (NanoSIMS) combined with stable isotope labeling provides a unique tool for studying the spatiometabolic activity of microbial populations at the single cell level in order to assess both community structure and population diversity. However, assessing the distribution and range of microbial activity in complex environmental systems with slow-growing organisms, diverse carbon and nitrogen sources, or heterotrophic subpopulations poses a tremendous technical challenge because the introduction of isotopically labeled substrates frequently changes the nutrient availability and can inflate or bias measures of activity. Here, we present the use of hydrogen isotope labeling with deuterated water as an important new addition to the isotopic toolkit and apply it for the determination of single cell microbial activities by NanoSIMS imaging. This tool provides a labeling technique that minimally alters any aquatic chemical environment, can be administered with strong labels even in minimal addition (natural background is very low), is an equally universal substrate for all forms of life even in complex, carbon and nitrogen saturated systems, and can be combined with other isotopic tracers. The combination of heavy water labeling with the most commonly used NanoSIMS tracer, 15N, is technically challenging but opens up a powerful new set of multi-tracer experiments for the study of microbial activity in complex communities. We present the first truly simultaneous single cell triple isotope system measurements of 2H/1H, 13C/12C and 15N/14N and apply it to study of microbial metabolic heterogeneity and nitrogen metabolism in a continuous culture case study. Our data provide insight into both the diversity of microbial activity rates, as well as patterns of ammonium utilization at the single cell level.
Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping
2016-04-01
Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.
Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage.
Stone, Wendy; Kroukamp, Otini; Moes, Ana; McKelvie, Jennifer; Korber, Darren R; Wolfaardt, Gideon M
2016-01-01
Genomics enjoys overwhelming popularity in the study of microbial ecology. However, extreme or atypical environments often limit the use of such well-established tools and consequently demand a novel approach. The bentonite clay matrix proposed for use in Deep Geological Repositories for the long-term storage of used nuclear fuel is one such challenging microbial habitat. Simple, accessible tools were developed for the study of microbial ecology and metabolic processes that occur within this habitat, since the understanding of the microbiota-niche interaction is fundamental to describing microbial impacts on engineered systems such as compacted bentonite barriers. Even when genomic tools are useful for the study of community composition, techniques to describe such microbial impacts and niche interactions should complement these. Tools optimised for assessing localised microbial activity within bentonite included: (a) the qualitative use of the resazurin-resorufin indicator system for redox localisation, (b) the use of a CaCl2 buffer for the localisation of pH, and (c) fluorometry for the localisation of precipitated sulphide. The use of the Carbon Dioxide Evolution Monitoring System was also validated for measuring microbial activity in desiccated and saturated bentonite. Finally, the buffering of highly-basic bentonite at neutral pH improved the success of isolation of microbial populations, but not DNA, from the bentonite matrix. Thus, accessible techniques were optimised for exploring microbial metabolism in the atypical environments of clay matrices and desiccated conditions. These tools have application to the applied field of used nuclear fuel management, as well as for examining the fundamental biogeochemical cycles active in sedimentary and deep geological environments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schroth, M. H.; Kleikemper, J.; Pombo, S. A.; Zeyer, J.
2002-12-01
In the past, studies on microbial communities in natural environments have typically focused on either their structure or on their metabolic function. However, linking structure and function is important for understanding microbial community dynamics, in particular in contaminated environments. We will present results of a novel combination of a hydrogeological field method (push-pull tests) with molecular tools and stable isotope analysis, which was employed to quantify anaerobic activities and associated microbial diversity in a petroleum-contaminated aquifer in Studen, Switzerland. Push-pull tests consisted of the injection of test solution containing a conservative tracer and reactants (electron acceptors, 13C-labeled carbon sources) into the aquifer anoxic zone. Following an incubation period, the test solution/groundwater mixture was extracted from the same location. Metabolic activities were computed from solute concentrations measured during extraction. Simultaneously, microbial diversity in sediment and groundwater was characterized by using fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), as well as phospholipids fatty acid (PLFA) analysis in combination with 13C isotopic measurements. Results from DGGE analyses provided information on the general community structure before, during and after the tests, while FISH yielded information on active populations. Moreover, using 13C-labeling of microbial PLFA we were able to directly link carbon source assimilation in an aquifer to indigenous microorganisms while providing quantitative information on respective carbon source consumption.
Manucharova, N A; Trosheva, E V; Kol'tsova, E M; Demkina, E V; Karaevskaya, E V; Rivkina, E M; Mardanov, A V; El'-Registan, G I
2016-01-01
A prokaryotic mesophilic organotrophic community responsible for 10% of the total microbial number determined by epifluorescence microscopy was reactivated in the samples ofAntarctic permafrost retrieved from the environment favoring long-term preservation of microbial communities (7500 years). No culturable forms were obtained without resuscitation procedures (CFU = 0). Proteobacteria, Actinobacteria, and Firmicutes were the dominant microbial groups in the complex. Initiation of the reactivated microbial complex by addition of chitin (0.1% wt/vol) resulted in an increased share of metabolically active biomass (up to 50%) due to the functional domination of chitinolytics caused by the target resource. Thus, sequential application of resuscitation procedures and initiation of a specific physiological group (in this case, chitinolytics) to a permafrost-preserved microbial community made it possible to reveal a prokaryotic complex capable of reversion of metabolic activity (FISH data), to determine its phylogenetic structure by metagenomic anal-ysis, and to isolate a pure culture of the dominant microorganism with high chitinolytic activity.
Strategies for microbial synthesis of high-value phytochemicals
NASA Astrophysics Data System (ADS)
Li, Sijin; Li, Yanran; Smolke, Christina D.
2018-03-01
Phytochemicals are of great pharmaceutical and agricultural importance, but often exhibit low abundance in nature. Recent demonstrations of industrial-scale production of phytochemicals in yeast have shown that microbial production of these high-value chemicals is a promising alternative to sourcing these molecules from native plant hosts. However, a number of challenges remain in the broader application of this approach, including the limited knowledge of plant secondary metabolism and the inefficient reconstitution of plant metabolic pathways in microbial hosts. In this Review, we discuss recent strategies to achieve microbial biosynthesis of complex phytochemicals, including strategies to: (1) reconstruct plant biosynthetic pathways that have not been fully elucidated by mining enzymes from native and non-native hosts or by enzyme engineering; (2) enhance plant enzyme activity, specifically cytochrome P450 activity, by improving efficiency, selectivity, expression or electron transfer; and (3) enhance overall reaction efficiency of multi-enzyme pathways by dynamic control, compartmentalization or optimization with the host's metabolism. We also highlight remaining challenges to — and future opportunities of — this approach.
Bacterial genome replication at subzero temperatures in permafrost
Tuorto, Steven J; Darias, Phillip; McGuinness, Lora R; Panikov, Nicolai; Zhang, Tingjun; Häggblom, Max M; Kerkhof, Lee J
2014-01-01
Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with 13C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to −20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize 13C-labeled DNA when supplemented with 13C-acetate at temperatures of 0 to −20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of 13C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems. PMID:23985750
Microbial syntrophy: interaction for the common good.
Morris, Brandon E L; Henneberger, Ruth; Huber, Harald; Moissl-Eichinger, Christine
2013-05-01
Classical definitions of syntrophy focus on a process, performed through metabolic interaction between dependent microbial partners, such as the degradation of complex organic compounds under anoxic conditions. However, examples from past and current scientific discoveries suggest that a new, simple but wider definition is necessary to cover all aspects of microbial syntrophy. We suggest the term 'obligately mutualistic metabolism', which still focuses on microbial metabolic cooperation but also includes an ecological aspect: the benefit for both partners. By the combined metabolic activity of microorganisms, endergonic reactions can become exergonic through the efficient removal of products and therefore enable a microbial community to survive with minimal energy resources. Here, we explain the principles of classical and non-classical syntrophy and illustrate the concepts with various examples. We present biochemical fundamentals that allow microorganism to survive under a range of environmental conditions and to drive important biogeochemical processes. Novel technologies have contributed to the understanding of syntrophic relationships in cultured and uncultured systems. Recent research highlights that obligately mutualistic metabolism is not limited to certain metabolic pathways nor to certain environments or microorganisms. This beneficial microbial interaction is not restricted to the transfer of reducing agents such as hydrogen or formate, but can also involve the exchange of organic, sulfurous- and nitrogenous compounds or the removal of toxic compounds. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions
Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.
2018-01-01
Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-08-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H 2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H 2 , often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H 2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H 2 consumption and retardation of radionuclide migration.
Arnosti, Carol; Steen, Andrew D.
2013-01-01
The microbial community composition of polar and temperate ocean waters differs substantially, but the potential functional consequences of these differences are largely unexplored. We measured bacterial production, glucose metabolism, and the abilities of microbial communities to hydrolyze a range of polysaccharides in an Arctic fjord of Svalbard (Smeerenburg Fjord), and thus to initiate remineralization of high-molecular weight organic matter. We compared these data with similar measurements previously carried out in the northern Gulf of Mexico in order to investigate whether differences in the spectrum of enzyme activities measurable in Arctic and temperate environments are reflected in “downstream” aspects of microbial metabolism (metabolism of monomers and biomass production). Only four of six polysaccharide substrates were hydrolyzed in Smeerenburg Fjord; all were hydrolyzed in the upper water column of the Gulf. These patterns are consistent on an interannual basis. Bacterial protein production was comparable at both locations, but the pathways of glucose utilization differed. Glucose incorporation rate constants were comparatively higher in Svalbard, but glucose respiration rate constants were higher in surface waters of the Gulf. As a result, at the time of sampling ca. 75% of the glucose was incorporated into biomass in Svalbard, but in the northern Gulf of Mexico most of the glucose was respired to CO2. A limited range of enzyme activities is therefore not a sign of a dormant community or one unable to further process substrates resulting from extracellular enzymatic hydrolysis. The ultimate fate of carbohydrates in marine waters, however, is strongly dependent upon the specific capabilities of heterotrophic microbial communities in these disparate environments. PMID:24198812
Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M
2015-01-01
The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.
Metabolic Reconstruction and Modeling Microbial Electrosynthesis.
Marshall, Christopher W; Ross, Daniel E; Handley, Kim M; Weisenhorn, Pamela B; Edirisinghe, Janaka N; Henry, Christopher S; Gilbert, Jack A; May, Harold D; Norman, R Sean
2017-08-21
Microbial electrosynthesis is a renewable energy and chemical production platform that relies on microbial cells to capture electrons from a cathode and fix carbon. Yet despite the promise of this technology, the metabolic capacity of the microbes that inhabit the electrode surface and catalyze electron transfer in these systems remains largely unknown. We assembled thirteen draft genomes from a microbial electrosynthesis system producing primarily acetate from carbon dioxide, and their transcriptional activity was mapped to genomes from cells on the electrode surface and in the supernatant. This allowed us to create a metabolic model of the predominant community members belonging to Acetobacterium, Sulfurospirillum, and Desulfovibrio. According to the model, the Acetobacterium was the primary carbon fixer, and a keystone member of the community. Transcripts of soluble hydrogenases and ferredoxins from Acetobacterium and hydrogenases, formate dehydrogenase, and cytochromes of Desulfovibrio were found in high abundance near the electrode surface. Cytochrome c oxidases of facultative members of the community were highly expressed in the supernatant despite completely sealed reactors and constant flushing with anaerobic gases. These molecular discoveries and metabolic modeling now serve as a foundation for future examination and development of electrosynthetic microbial communities.
Dey, Samrat; Tribedi, Prosun
2018-03-01
Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both microbial functional diversity and PHB degradation suggesting a strong positive correlation ( r = 0.95) between microbial functional diversity and PHB degradation. Thus, the results demonstrate that microbial functional diversity plays an important role in PHB degradation in soil by exhibiting versatile microbial metabolic potentials that lead to the enhanced degradation of PHB.
Wallace, Robert J; Snelling, Timothy J; McCartney, Christine A; Tapio, Ilma; Strozzi, Francesco
2017-01-16
Methane emissions from ruminal fermentation contribute significantly to total anthropological greenhouse gas (GHG) emissions. New meta-omics technologies are beginning to revolutionise our understanding of the rumen microbial community structure, metabolic potential and metabolic activity. Here we explore these developments in relation to GHG emissions. Microbial rumen community analyses based on small subunit ribosomal RNA sequence analysis are not yet predictive of methane emissions from individual animals or treatments. Few metagenomics studies have been directly related to GHG emissions. In these studies, the main genes that differed in abundance between high and low methane emitters included archaeal genes involved in methanogenesis, with others that were not apparently related to methane metabolism. Unlike the taxonomic analysis up to now, the gene sets from metagenomes may have predictive value. Furthermore, metagenomic analysis predicts metabolic function better than only a taxonomic description, because different taxa share genes with the same function. Metatranscriptomics, the study of mRNA transcript abundance, should help to understand the dynamic of microbial activity rather than the gene abundance; to date, only one study has related the expression levels of methanogenic genes to methane emissions, where gene abundance failed to do so. Metaproteomics describes the proteins present in the ecosystem, and is therefore arguably a better indication of microbial metabolism. Both two-dimensional polyacrylamide gel electrophoresis and shotgun peptide sequencing methods have been used for ruminal analysis. In our unpublished studies, both methods showed an abundance of archaeal methanogenic enzymes, but neither was able to discriminate high and low emitters. Metabolomics can take several forms that appear to have predictive value for methane emissions; ruminal metabolites, milk fatty acid profiles, faecal long-chain alcohols and urinary metabolites have all shown promising results. Rumen microbial amino acid metabolism lies at the root of excessive nitrogen emissions from ruminants, yet only indirect inferences for nitrogen emissions can be drawn from meta-omics studies published so far. Annotation of meta-omics data depends on databases that are generally weak in rumen microbial entries. The Hungate 1000 project and Global Rumen Census initiatives are therefore essential to improve the interpretation of sequence/metabolic information.
Eiler, Alexander; Zaremba-Niedzwiedzka, Katarzyna; Martínez-García, Manuel; McMahon, Katherine D; Stepanauskas, Ramunas; Andersson, Siv G E; Bertilsson, Stefan
2014-01-01
Little is known about the diversity and structuring of freshwater microbial communities beyond the patterns revealed by tracing their distribution in the landscape with common taxonomic markers such as the ribosomal RNA. To address this gap in knowledge, metagenomes from temperate lakes were compared to selected marine metagenomes. Taxonomic analyses of rRNA genes in these freshwater metagenomes confirm the previously reported dominance of a limited subset of uncultured lineages of freshwater bacteria, whereas Archaea were rare. Diversification into marine and freshwater microbial lineages was also reflected in phylogenies of functional genes, and there were also significant differences in functional beta-diversity. The pathways and functions that accounted for these differences are involved in osmoregulation, active transport, carbohydrate and amino acid metabolism. Moreover, predicted genes orthologous to active transporters and recalcitrant organic matter degradation were more common in microbial genomes from oligotrophic versus eutrophic lakes. This comparative metagenomic analysis allowed us to formulate a general hypothesis that oceanic- compared with freshwater-dwelling microorganisms, invest more in metabolism of amino acids and that strategies of carbohydrate metabolism differ significantly between marine and freshwater microbial communities. PMID:24118837
Impact of antiretroviral drugs on the microbiome: unknown answers to important questions
Pinto-Cardoso, Sandra; Klatt, Nichole R.; Reyes-Terán, Gustavo
2018-01-01
Purpose of review Little is known on how different antiretroviral (ARV) drugs affect the gut microbiome in HIV infection; and conflicting data exists on the effect of ARV drugs on residual inflammation/immune activation and microbial translocation. Recent findings Gut microbiome involvement in the transmission and pathogenesis of HIV infection is increasingly being recognized. Various studies have shown that antiretroviral therapy (ART) is unable to restore gut health despite effective suppression of plasma HIV viremia. Indeed, the resolution of residual inflammation and gut microbial translocation is partial under ART. Very recent studies have provided new evidence that ARV combinations can differentially affect the gut microbiome, immune activation and microbial translocation. Furthermore, a recent article uncovered a link between drug metabolism and specific microbial species indicating that microbes can directly metabolically degrade ARV drugs when administered topically. Summary There are still many unanswered questions regarding ARVs and the gut microbiome. It is, therefore, critical for researchers to address the effect of distinct ARV drugs on the microbiome and vice versa: the effects of the microbiome on ARV drug metabolism, and speculate about possible therapeutic avenues. PMID:29028667
[Effect of long-term fertilization on microbial community functional diversity in black soil].
Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku
2015-10-01
In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P < 0.05) , while the variations among treatments were different in the two soil layers. Canonical correspondence analysis (CCA) showed that soil microbial community metabolic function of all the treatments was different between the two soil layers, and there was difference among all treatments in each soil layer, while the influences of soil nutrients on soil microbial community metabolic function of all treatments were similar in each soil layer. It was concluded that long-term different fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer.
Akyon, Benay; Stachler, Elyse; Wei, Na; Bibby, Kyle
2015-05-19
Treatment of produced water, i.e. wastewater from hydraulic fracturing, for reuse or final disposal is challenged by both high salinity and the presence of organic compounds. Organic compounds in produced water may foul physical-chemical treatment processes or support microbial corrosion, fouling, and sulfide release. Biological approaches have potential applications in produced water treatment, including reducing fouling of physical-chemical treatment processes and decreasing biological activity during produced water holding; however, conventional activated sludge treatments are intolerant of high salinity. In this study, a biofilm treatment approach using constructed microbial mats was evaluated for biodegradation performance, microbial community structure, and metabolic potential in both simulated and real produced water. Results demonstrated that engineered microbial mats are active at total dissolved solids (TDS) concentrations up to at least 100,000 mg/L, and experiments in real produced water showed a biodegradation capacity of 1.45 mg COD/gramwet-day at a TDS concentration of 91,351 mg/L. Additionally, microbial community and metagenomic analyses revealed an adaptive microbial community that shifted based upon the sample being treated and has the metabolic potential to degrade a wide array of contaminants, suggesting the potential of this approach to treat produced waters with varying composition.
Hagen, Live H.; Frank, Jeremy A.; Zamanzadeh, Mirzaman; Eijsink, Vincent G. H.; Pope, Phillip B.; Arntzen, Magnus Ø.
2016-01-01
ABSTRACT In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum “Atribacteria.” These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. PMID:27815274
Peces, M; Astals, S; Jensen, P D; Clarke, W P
2018-05-17
The impact of the starting inoculum on long-term anaerobic digestion performance, process functionality and microbial community composition remains unclear. To understand the impact of starting inoculum, active microbial communities from four different full-scale anaerobic digesters were each used to inoculate four continuous lab-scale anaerobic digesters, which were operated identically for 295 days. Digesters were operated at 15 days solid retention time, an organic loading rate of 1 g COD L r -1 d -1 (75:25 - cellulose:casein) and 37 °C. Results showed that long-term process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and microbial community are independent of the inoculum source. Digesters process performance converged after 80 days, while metabolic rates and microbial communities converged after 120-145 days. The convergence of the different microbial communities towards a core-community proves that the deterministic factors (process operational conditions) were a stronger driver than the initial microbial community composition. Indeed, the core-community represented 72% of the relative abundance among the four digesters. Moreover, a number of positive correlations were observed between higher metabolic rates and the relative abundance of specific microbial groups. These correlations showed that both substrate consumers and suppliers trigger higher metabolic rates, expanding the knowledge of the nexus between microorganisms and functionality. Overall, these results support that deterministic factors control microbial communities in bioreactors independently of the inoculum source. Hence, it seems plausible that a desired microbial composition and functionality can be achieved by tuning process operational conditions. Copyright © 2018. Published by Elsevier Ltd.
Division of Energy Biosciences annual report and summaries of FY 1996 activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The mission of the Division of Energy Biosciences is to support research that advances the fundamental knowledge necessary for the future development of biotechnologies related to the Department of Energy`s mission. The departmental civilian objectives include effective and efficient energy production, energy conservation, environmental restoration, and waste management. The Energy Biosciences program emphasizes research in the microbiological and plant sciences, as these understudied areas offer numerous scientific opportunities to dramatically influence environmentally sensible energy production and conservation. The research supported is focused on the basic mechanism affecting plant productivity, conversion of biomass and other organic materials into fuels and chemicalsmore » by microbial systems, and the ability of biological systems to replace energy-intensive or pollutant-producing processes. The Division also addresses the increasing number of new opportunities arising at the interface of biology with other basic energy-related sciences such as biosynthesis of novel materials and the influence of soil organisms on geological processes. This report gives summaries on 225 projects on photosynthesis, membrane or ion transport, plant metabolism and biosynthesis, carbohydrate metabolism lipid metabolism, plant growth and development, plant genetic regulation and genetic mechanisms, plant cell wall development, lignin-polysaccharide breakdown, nitrogen fixation and plant-microbial symbiosis, mechanism for plant adaptation, fermentative microbial metabolism, one and two carbon microbial metabolism, extremophilic microbes, microbial respiration, nutrition and metal metabolism, and materials biosynthesis.« less
Marinari, S; Masciandaro, G; Ceccanti, B; Grego, S
2007-09-01
The aim of this study was to evaluate chemical and biochemical changes of organic matter in fertilized (ammonium nitrate) and amended (vermicompost and manure) soils using pyrolysis and metabolic indices. The metabolic potential [dehydrogenase (DH-ase)/water soluble organic carbon (WSOC)], the metabolic quotient (qCO2) and the microbial quotient (Cmic:Corg) were calculated as indices of soil organic matter evolution. Pyrolysis-gas chromatography (Py-GC) was used to study structural changes in the organic matter. Carbon forms and microbial biomass have been measured by dichromate oxidation and fumigation-extraction methods, respectively. Dehydrogenase activity has been tested using INT (p-Iodonitrotetrazolium violet) as substrate. The results showed that organic amendment increased soil microbial biomass and its activity which were strictly related to pyrolytic mineralization and humification indices (N/O, B/E3). Mineral fertilization caused a greater alteration of native soil organic matter than the organic amendments, in that a high release of WSOC and relatively large amounts of aliphatic pyrolytic products, were observed. Therefore, the pyrolysis and metabolic indices provided similar and complementary information on soil organic matter changes after mineral and organic fertilization.
Wen, Dong Xin; Yang, Ning; Yang, Man Yuan
2016-08-01
The aim of the study was to explore the effects of re-vegetation on soil microbial functio-nal diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province, China. By using the spatial series to replace time series, four typical sampling plots, grass (Setaria viridi, GS), frutex and grass (Lagerstroemia indica-Setaria viridi, FG), frutex (Vitex negundo var. cannabifolia+Robinia pseudoacacia, FX), as well as arbor and frutex (Liquidamdar formosana+Melia azedarach-Vitex negundo var. cannabifolia, AF) community were selected to study the soil microbial functional diversity by using the Biolog-ECO micro-plate technique. The four communities in purple soils on sloping-land were similar and denoted four different re-vegetation stages. The results showed that the soil microbial metabolic activity increased after re-vegetation significantly, and the average well color development (AWCD) which represented soil microbial activity and functional diversity followed the order of AF community>FX community>FG community>GS community at different re-vegetation stages, and followed the order of 0-10 cm >10-20 cm in different soil layers. Principal component analysis (PCA) identified that FG and FX community had similar C sources utilization mode and metabolic function, and GS and AF community were diffe-rent. The carbohydrates, amino acids, intermediate metabolites, and secondary metabolites were the main carbon sources separating the two principal component factors. The Shannon species richness index (H), Shannon evenness index (E), Simpson dominance index (D), McIntosh index (U) at four re-vegetation stages were the highest in AF community, the second in FG and FX community, and the lowest in GS community. The results of correlation analysis indicated that the content of soil water content (SWC), soil total organic carbon (STOC), total nitrogen (TN), total phospho-rus (TP) and available phosphorus (AP) had important influence on the soil microbial metabolic function and functional diversity indices. There existed significant correlation between the activities of urease (URE), alk-phosphatase (APE), invertase (INV), catalase (CAT) and the soil microbial metabolic function and functional diversity indices. All the results indicated that re-vegetation could enhance the soil microbial metabolic function, which was beneficial to the reproduction of soil micro-organisms, thereby promoting an increase of soil carbon source utilization intensity.
Hernsdorf, Alex W; Amano, Yuki; Miyakawa, Kazuya; Ise, Kotaro; Suzuki, Yohey; Anantharaman, Karthik; Probst, Alexander; Burstein, David; Thomas, Brian C; Banfield, Jillian F
2017-01-01
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration. PMID:28350393
NASA Astrophysics Data System (ADS)
Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.
2015-12-01
Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity at low temperatures which differs significantly from our observations at ambient temperature, which could be unraveled based on position-specific labeling.
[Characteristics of soil microbes and enzyme activities in different degraded alpine meadows].
Yin, Ya Li; Wang, Yu Qin; Bao, Gen Sheng; Wang, Hong Sheng; Li, Shi Xiong; Song, Mei Ling; Shao, Bao Lian; Wen, Yu Cun
2017-12-01
Soil microbial biomass C and N, microbial diversities and enzyme activity in 0-10 cm and 10-20 cm soil layers of different degraded grasslands (non-degradation, ND; light degradation, LD; moderate degradation, MD; sever degradation, SD; and black soil beach, ED) were measured by Biolog and other methods. The results showed that: 1) There were significant diffe-rences between 0-10 cm and 10-20 cm soil layers in soil microbial biomass, diversities and inver-tase activities in all grasslands. 2) The ratio of soil microbial biomass C to N decreased significantly with the grassland degradation. In the 0-10 cm soil layer, microbial biomass C and N in ND and LD were significantly higher than that in MD, SD and ED. Among the latter three kinds of grasslands, there was no difference for microbial biomass C, but microbial biomass N was lower in MD than in the other grasslands. The average color change rate (AWCD) and McIntosh Index (U) also decreased with grassland degradation, but only the reduction from ND to MD was significant. There were no differences among all grasslands for Shannon index (H) and Simpson Index (D). The urease activity was highest in MD and SD, and the activity of phosphatase and invertase was lowest in ED. In the 10-20 cm soil layer, microbial biomass C in ND and LD were significantly higher than that in the other grasslands. Microbial biomass N in LD and ED were significantly higher than that in the other grasslands. Carbon metabolism index in MD was significantly lower than that in LD and SD. AWCD and U index in ND and LD were significantly higher than that in ED. H index and D index showed no difference among different grasslands. The urease activity in ND and MD was significantly higher than that in the other grasslands. The phosphatase activity was highest in MD, and the invertase activity was lowest in MD. 3) The belowground biomass was significantly positively correlated with microbial biomass, carbon metabolic index and phosphatase activity, and the urease activity was negatively correlated with microbial biomass N, H index and D index.
Ha, Connie W Y; Lam, Yan Y; Holmes, Andrew J
2014-11-28
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging.
Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health
Ha, Connie WY; Lam, Yan Y; Holmes, Andrew J
2014-01-01
Gut microbes comprise a high density, biologically active community that lies at the interface of an animal with its nutritional environment. Consequently their activity profoundly influences many aspects of the physiology and metabolism of the host animal. A range of microbial structural components and metabolites directly interact with host intestinal cells and tissues to influence nutrient uptake and epithelial health. Endocrine, neuronal and lymphoid cells in the gut also integrate signals from these microbial factors to influence systemic responses. Dysregulation of these host-microbe interactions is now recognised as a major risk factor in the development of metabolic dysfunction. This is a two-way process and understanding the factors that tip host-microbiome homeostasis over to dysbiosis requires greater appreciation of the host feedbacks that contribute to regulation of microbial community composition. To date, numerous studies have employed taxonomic profiling approaches to explore the links between microbial composition and host outcomes (especially obesity and its comorbidities), but inconsistent host-microbe associations have been reported. Available data indicates multiple factors have contributed to discrepancies between studies. These include the high level of functional redundancy in host-microbiome interactions combined with individual variation in microbiome composition; differences in study design, diet composition and host system between studies; and inherent limitations to the resolution of rRNA-based community profiling. Accounting for these factors allows for recognition of the common microbial and host factors driving community composition and development of dysbiosis on high fat diets. New therapeutic intervention options are now emerging. PMID:25469018
Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.
von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana
2013-10-01
The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.
La Cono, Violetta; Smedile, Francesco; La Spada, Gina; Arcadi, Erika; Genovese, Maria; Ruggeri, Gioacchino; Genovese, Lucrezia; Giuliano, Laura; Yakimov, Michail M
2015-06-01
Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan
2017-06-05
Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile Daqu. Copyright © 2017 Elsevier B.V. All rights reserved.
Gut microbiota functions: metabolism of nutrients and other food components.
Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran
2018-02-01
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.
Metabolic Reconstruction and Modeling Microbial Electrosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Christopher W.; Ross, Daniel E.; Handley, Kim M.
Microbial electrosynthesis is a renewable energy and chemical production platform that relies on microbial cells to capture electrons from a cathode and fix carbon. Yet despite the promise of this technology, the metabolic capacity of the microbes that inhabit the electrode surface and catalyze electron transfer in these systems remains largely unknown. Here, we assembled thirteen draft genomes from a microbial electrosynthesis system producing primarily acetate from carbon dioxide, and their transcriptional activity was mapped to genomes from cells on the electrode surface and in the supernatant. This allowed us to create a metabolic model of the predominant community membersmore » belonging to Acetobacterium, Sulfurospirillum, and Desulfovibrio. According to the model, the Acetobacterium was the primary carbon fixer, and a keystone member of the community. Transcripts of soluble hydrogenases and ferredoxins from Acetobacterium and hydrogenases, formate dehydrogenase, and cytochromes of Desulfovibrio were found in high abundance near the electrode surface. Cytochrome c oxidases of facultative members of the community were highly expressed in the supernatant despite completely sealed reactors and constant flushing with anaerobic gases. The resulting molecular discoveries and metabolic modeling now serve as a foundation for future examination and development of electrosynthetic microbial communities.« less
Metabolic Reconstruction and Modeling Microbial Electrosynthesis
Marshall, Christopher W.; Ross, Daniel E.; Handley, Kim M.; ...
2017-08-21
Microbial electrosynthesis is a renewable energy and chemical production platform that relies on microbial cells to capture electrons from a cathode and fix carbon. Yet despite the promise of this technology, the metabolic capacity of the microbes that inhabit the electrode surface and catalyze electron transfer in these systems remains largely unknown. Here, we assembled thirteen draft genomes from a microbial electrosynthesis system producing primarily acetate from carbon dioxide, and their transcriptional activity was mapped to genomes from cells on the electrode surface and in the supernatant. This allowed us to create a metabolic model of the predominant community membersmore » belonging to Acetobacterium, Sulfurospirillum, and Desulfovibrio. According to the model, the Acetobacterium was the primary carbon fixer, and a keystone member of the community. Transcripts of soluble hydrogenases and ferredoxins from Acetobacterium and hydrogenases, formate dehydrogenase, and cytochromes of Desulfovibrio were found in high abundance near the electrode surface. Cytochrome c oxidases of facultative members of the community were highly expressed in the supernatant despite completely sealed reactors and constant flushing with anaerobic gases. The resulting molecular discoveries and metabolic modeling now serve as a foundation for future examination and development of electrosynthetic microbial communities.« less
Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent
2014-01-01
Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369
NASA Astrophysics Data System (ADS)
Louyakis, Artemis S.; Mobberley, Jennifer M.; Vitek, Brooke E.; Visscher, Pieter T.; Hagan, Paul D.; Reid, R. Pamela; Kozdon, Reinhard; Orland, Ian J.; Valley, John W.; Planavsky, Noah J.; Casaburi, Giorgio; Foster, Jamie S.
2017-05-01
Thrombolites are buildups of carbonate that exhibit a clotted internal structure formed through the interactions of microbial mats and their environment. Despite recent advances, we are only beginning to understand the microbial and molecular processes associated with their formation. In this study, a spatial profile of the microbial and metabolic diversity of thrombolite-forming mats of Highborne Cay, The Bahamas, was generated by using 16S rRNA gene sequencing and predictive metagenomic analyses. These molecular-based approaches were complemented with microelectrode profiling and in situ stable isotope analysis to examine the dominant taxa and metabolic activities within the thrombolite-forming communities. Analyses revealed three distinctive zones within the thrombolite-forming mats that exhibited stratified populations of bacteria and archaea. Predictive metagenomics also revealed vertical profiles of metabolic capabilities, such as photosynthesis and carboxylic and fatty acid synthesis within the mats that had not been previously observed. The carbonate precipitates within the thrombolite-forming mats exhibited isotopic geochemical signatures suggesting that the precipitation within the Bahamian thrombolites is photosynthetically induced. Together, this study provides the first look at the spatial organization of the microbial populations within Bahamian thrombolites and enables the distribution of microbes to be correlated with their activities within modern thrombolite systems.
Microbial diversity in restored wetlands of San Francisco Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theroux, Susanna; Hartman, Wyatt; He, Shaomei
Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils,more » we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.« less
Amino acids as a source of organic nitrogen in Antarctic endolithic microbial communities
NASA Technical Reports Server (NTRS)
McDonald, G.; Sun, H.
2002-01-01
In the Antarctic Dry Valleys, cryptoendolithic microbial communities occur within porous sandstone rocks. Current understanding of the mechanisms of physiological adaptation of these communities to the harsh Antarctic environment is limited, because traditional methods of studying microbial physiology are very difficult to apply to organisms with extremely low levels of metabolic activity. In order to fully understand carbon and nitrogen cycling and nutrient uptake in cryptoendolithic communities, and the metabolic costs that the organisms incur in order to survive, it is necessary to employ molecular geochemical techniques such as amino acid analysis in addition to physiological methods.
Transitory microbial habitat in the hyperarid Atacama Desert
Schulze-Makuch, Dirk; Wagner, Dirk; Mangelsdorf, Kai; Devine, Kevin G.; de Vera, Jean-Pierre; Parro, Victor; Kaupenjohann, Martin; Galy, Albert; Schneider, Beate; Airo, Alessandro; Frösler, Jan; Davila, Alfonso F.; Arens, Felix L.; Cáceres, Luis; Cornejo, Francisco Solís; Carrizo, Daniel; Dartnell, Lewis; DiRuggiero, Jocelyne; Ganzert, Lars; Gessner, Mark O.; Grathwohl, Peter; Guan, Lisa; Heinz, Jacob; Hess, Matthias; Keppler, Frank; Maus, Deborah; McKay, Christopher P.; Meckenstock, Rainer U.; Montgomery, Wren; Oberlin, Elizabeth A.; Probst, Alexander J.; Sáenz, Johan S.; Sattler, Tobias; Schirmack, Janosch; Sephton, Mark A.; Schloter, Michael; Uhl, Jenny; Valenzuela, Bernardita; Vestergaard, Gisle; Wörmer, Lars; Zamorano, Pedro
2018-01-01
Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today’s extreme hyperaridity. PMID:29483268
Transitory microbial habitat in the hyperarid Atacama Desert.
Schulze-Makuch, Dirk; Wagner, Dirk; Kounaves, Samuel P; Mangelsdorf, Kai; Devine, Kevin G; de Vera, Jean-Pierre; Schmitt-Kopplin, Philippe; Grossart, Hans-Peter; Parro, Victor; Kaupenjohann, Martin; Galy, Albert; Schneider, Beate; Airo, Alessandro; Frösler, Jan; Davila, Alfonso F; Arens, Felix L; Cáceres, Luis; Cornejo, Francisco Solís; Carrizo, Daniel; Dartnell, Lewis; DiRuggiero, Jocelyne; Flury, Markus; Ganzert, Lars; Gessner, Mark O; Grathwohl, Peter; Guan, Lisa; Heinz, Jacob; Hess, Matthias; Keppler, Frank; Maus, Deborah; McKay, Christopher P; Meckenstock, Rainer U; Montgomery, Wren; Oberlin, Elizabeth A; Probst, Alexander J; Sáenz, Johan S; Sattler, Tobias; Schirmack, Janosch; Sephton, Mark A; Schloter, Michael; Uhl, Jenny; Valenzuela, Bernardita; Vestergaard, Gisle; Wörmer, Lars; Zamorano, Pedro
2018-03-13
Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: ( i ) a physico-chemical characterization of the soil habitability after an exceptional rain event, ( ii ) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], ( iii ) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and ( iv ) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today's extreme hyperaridity. Copyright © 2018 the Author(s). Published by PNAS.
Transitory microbial habitat in the hyperarid Atacama Desert
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk; Wagner, Dirk; Kounaves, Samuel P.; Mangelsdorf, Kai; Devine, Kevin G.; de Vera, Jean-Pierre; Schmitt-Kopplin, Philippe; Grossart, Hans-Peter; Parro, Victor; Kaupenjohann, Martin; Galy, Albert; Schneider, Beate; Airo, Alessandro; Frösler, Jan; Davila, Alfonso F.; Arens, Felix L.; Cáceres, Luis; Solís Cornejo, Francisco; Carrizo, Daniel; Dartnell, Lewis; DiRuggiero, Jocelyne; Flury, Markus; Ganzert, Lars; Gessner, Mark O.; Grathwohl, Peter; Guan, Lisa; Heinz, Jacob; Hess, Matthias; Keppler, Frank; Maus, Deborah; McKay, Christopher P.; Meckenstock, Rainer U.; Montgomery, Wren; Oberlin, Elizabeth A.; Probst, Alexander J.; Sáenz, Johan S.; Sattler, Tobias; Schirmack, Janosch; Sephton, Mark A.; Schloter, Michael; Uhl, Jenny; Valenzuela, Bernardita; Vestergaard, Gisle; Wörmer, Lars; Zamorano, Pedro
2018-03-01
Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today’s extreme hyperaridity.
Mills, Heath J.; Reese, Brandi Kiel; Shepard, Alicia K.; Riedinger, Natascha; Dowd, Scot E.; Morono, Yuki; Inagaki, Fumio
2012-01-01
A remarkable number of microbial cells have been enumerated within subseafloor sediments, suggesting a biological impact on geochemical processes in the subseafloor habitat. However, the metabolically active fraction of these populations is largely uncharacterized. In this study, an RNA-based molecular approach was used to determine the diversity and community structure of metabolically active bacterial populations in the upper sedimentary formation of the Nankai Trough seismogenic zone. Samples used in this study were collected from the slope apron sediment overlying the accretionary prism at Site C0004 during the Integrated Ocean Drilling Program Expedition 316. The sediments represented microbial habitats above, within, and below the sulfate–methane transition zone (SMTZ), which was observed approximately 20 m below the seafloor (mbsf). Small subunit ribosomal RNA were extracted, quantified, amplified, and sequenced using high-throughput 454 pyrosequencing, indicating the occurrence of metabolically active bacterial populations to a depth of 57 mbsf. Transcript abundance and bacterial diversity decreased with increasing depth. The two communities below the SMTZ were similar at the phylum level, however only a 24% overlap was observed at the genus level. Active bacterial community composition was not confined to geochemically predicted redox stratification despite the deepest sample being more than 50 m below the oxic/anoxic interface. Genus-level classification suggested that the metabolically active subseafloor bacterial populations had similarities to previously cultured organisms. This allowed predictions of physiological potential, expanding understanding of the subseafloor microbial ecosystem. Unique community structures suggest very diverse active populations compared to previous DNA-based diversity estimates, providing more support for enhancing community characterizations using more advanced sequencing techniques. PMID:22485111
A review of limits on microbial activity in the cryosphere: temperature and water availability
NASA Astrophysics Data System (ADS)
Bakermans, C.
2017-12-01
The extent of microbial activity in the cryosphere likely depends on many things: the presence of liquid water, an adequate energy and nutrient supply (amount and flux), the absence of damaging conditions, exposure to low temperatures, and the time to evolve adaptations to low temperature conditions. Determining the extent of microbial activity in the cryosphere is a challenge complicated by the reduced availability of liquid water as water freezes and the low rates of diffusion and reaction brought on by low temperatures. Despite these limitations, many studies have demonstrated that reproduction by microorganisms is possible at temperatures of -10 to -20°C and that metabolism continues to even lower temperatures of about -30°C. In addition, microcosm studies in frozen soils and permafrost have demonstrated respiration down to temperatures of -18°C and DNA synthesis at temperatures from 0 to -20°C. In the environment, low temperature conditions (and lack of liquid water) appear to limit microbial activity in a few places like Don Juan Pond and University Valley in Antarctica. Microorganisms may be metabolically active in Arctic permafrost, but metabolism may be so exceptionally slow as to escape detection. Given the slow metabolism expected and the short geological age of permafrost (3 million years at the longest), there is probably insufficient time for microorganisms to evolve to become better adapted to live at subfreezing temperatures. Indeed, terrestrial life may never have the chance to evolve to exploit the low temperature capabilities of its biomolecules in view of the limited times at which cold environments persist on Earth. These observational studies of microorganisms in low temperature environments of the Polar regions expose how the extent of microbial activity at low temperature is entangled with other factors (perhaps inextricably); how the lack of liquid water at low temperatures appears to be the true limit on activity at low temperatures, and not low temperature per se; and that time at low temperatures may limit cold adaptation of microorganisms.
Microbial contributions to chronic inflammation and metabolic disease.
Shanahan, Fergus; Sheehan, Donal
2016-07-01
It is long known that immune and metabolic cascades intersect at various cross-points. More recently, the regulatory influence of the microbiota on both of these cascades has emerged. Advances with therapeutic implications for chronic immunologic and metabolic disorders are examined. Disturbances of the microbiota, particularly in early life, may be the proximate environmental risk factor in socioeconomically developed societies for development of chronic immune-allergic and metabolic disorders, including obesity. Antibiotics and dietary factors contribute to this risk. Multiple microbial signalling molecules mediate host-microbe interactions including bacterial metabolites such as short-chain fatty acids, bile salts and others. New strategies for manipulating the composition and metabolic activity of the gut microbiota have emerged and offer a realistic prospect of personalized therapeutic options in immune and metabolic diseases.
NASA Astrophysics Data System (ADS)
Van Groenigen, K.; Forristal, D.; Jones, M. B.; Schwartz, E.; Hungate, B. A.; Dijkstra, P.
2013-12-01
By decomposing soil organic matter, microbes gain energy and building blocks for biosynthesis and release CO2 to the atmosphere. Therefore, insight into the effect of management practices on microbial metabolic pathways and C use efficiency (CUE; microbial C produced per substrate C utilized) may help to predict long term changes in soil C stocks. We studied the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Each year after harvest, straw was removed from half of the RT and CT plots or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each treatment and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. We found that the composite samples differed in CUE, but the changes were small, with values ranging between 0.757-0.783 across treatments and soil depth. Increases in CUE were associated with a decrease in tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results indicate that RT and straw incorporation promote soil C storage without substantially changing CUE or any of the microbial metabolic pathways. This suggests that at our site, RT and straw incorporation promote soil C storage mostly through direct effects such as increased soil C input and physical protection from decomposition, rather than by feedback responses of the microbial community.
Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee
2015-08-28
This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure. Copyright © 2015 Elsevier B.V. All rights reserved.
Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.
2005-01-01
The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate. PMID:15933026
NASA Astrophysics Data System (ADS)
Ziebis, W.; Patel, A.; Krupke, A.; Ferdelman, T. G.
2012-12-01
The vast majority of scientific drilling expeditions have focused on continental margins where oxygen is depleted within the surface (1 m) layer of the sediment and buried organic carbon sustains anaerobic microbial communities. IODP expeditions 329 (South Pacific Gyre) and 336 (Mid-Atlantic Ridge - North Pond) took place in oligotrophic open ocean regions, which constitute 48% of the world ocean. These expeditions have revealed that unlike continental margins the seafloor underneath oligotrophic ocean gyres is oxic. Within the South Pacific Gyre (SPG) dissolved oxygen persists throughout the sediment cover and reaches the basement even at the sites with thickest sediment cover (62 and 75 mbsf). North Pond is a sedimented pond (< 300 m sediment cover) located on the flank of the Mid-Atlantic Ridge underlying the oligotrophic central Atlantic. Here, oxygen diffuses upward from the basaltic aquifer underlying the sediment package in addition to deep oxygen penetration from the overlying water. Oxygen is the main electron acceptor available for sub-seafloor microbial activity in these vast oligotrophic open ocean regions. Microbial cells are present and active in the organic poor sediments, albeit numbers are near or below the detection limit (<103 cm-3 sediment) in the extremely organic-poor sediment of the SPG (below 2 -15 m sediment depth, depending on the location). However, we have very limited knowledge on the microbial community compositions and metabolic activities. Even the dominance of bacteria or archaea remains largely elusive. It has been suggested that while archaea dominate in the anoxic sediments of continental margins bacteria might be more abundant in the oxic seafloor underlying oligotrophic ocean gyres where aerobic respiration prevails. Experiments were conducted with sediment samples from the SPG and North Pond to explore the pattern of microbial diversity and metabolic activity using a suite of radio and stable isotopes in combination with single cell analyses. Our goal was to track the uptake and turnover of metabolically important elements (C, N, P) and to compare metabolic activities (heterotrophy / autotrophy) between sites and with depth. Labeling of cells using fluorescent oligonucleotide probes (HISH and CARD-FISH) in combination with nanoSIMS has thus far revealed a clear dominance of bacteria in SPG sub-seafloor sediments, which showed a high uptake of nitrogen (ammonium). Current experiments using cell extractions and cell encapsulations followed by incubations with radiotracers will further reveal carbon turnover pathways of specific microorganisms.
Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites
NASA Astrophysics Data System (ADS)
Pace, Aurélie; Bourillot, Raphaël; Bouton, Anthony; Vennin, Emmanuelle; Galaup, Serge; Bundeleva, Irina; Patrier, Patricia; Dupraz, Christophe; Thomazo, Christophe; Sansjofre, Pierre; Yokoyama, Yusuke; Franceschi, Michel; Anguy, Yannick; Pigot, Léa; Virgone, Aurélien; Visscher, Pieter T.
2016-08-01
Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments.
Maurice, Corinne Ferrier; Turnbaugh, Peter James
2013-01-01
Humans are home to complex microbial communities, whose aggregate genomes and their encoded metabolic activities are referred to as the human microbiome. Recently, researchers have begun to appreciate that different human body habitats and the activities of their resident microorganisms can be better understood in ecological terms, as a range of spatial scales encompassing single cells, guilds of microorganisms responsive to a similar substrate, microbial communities, body habitats, and host populations. However, the bulk of the work to date has focused on studies of culturable microorganisms in isolation or on DNA sequencing-based surveys of microbial diversity in small to moderately sized cohorts of individuals. Here, we discuss recent work that highlights the potential for assessing the human microbiome at a range of spatial scales, and for developing novel techniques that bridge multiple levels: for example, through the combination of single cell methods and metagenomic sequencing. These studies promise to not only provide a much-needed epidemiological and ecological context for mechanistic studies of culturable and genetically tractable microorganisms, but may also lead to the discovery of fundamental rules that govern the assembly and function of host-associated microbial communities. PMID:23550823
Energetic differences between bacterioplankton trophic groups and coral reef resistance
McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J.; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B.; Sullivan, Chris; Brainard, Russell E.; Rohwer, Forest
2016-01-01
Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. PMID:27097927
Energetic differences between bacterioplankton trophic groups and coral reef resistance.
McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest
2016-04-27
Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).
Ren, Ze; Wang, Fang; Qu, Xiaodong; Elser, James J.; Liu, Yang; Chu, Limin
2017-01-01
Understanding microbial communities in terms of taxon and function is essential to decipher the biogeochemical cycling in aquatic ecosystems. Lakes and their input streams are highly linked. However, the differences between microbial assemblages in streams and lakes are still unclear. In this study, we conducted an intensive field sampling of microbial communities from lake water and stream biofilms in the Qinghai Lake watershed, the largest lake in China. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and predicted functional profiles using PICRUSt to determine the taxonomic and functional differences between microbial communities in stream biofilms and lake water. The results showed that stream biofilms and lake water harbored distinct microbial communities. The microbial communities were different taxonomically and functionally between stream and lake. Moreover, streams biofilms had a microbial network with higher connectivity and modularity than lake water. Functional beta diversity was strongly correlated with taxonomic beta diversity in both the stream and lake microbial communities. Lake microbial assemblages displayed greater predicted metabolic potentials of many metabolism pathways while the microbial assemblages in stream biofilms were more abundant in xenobiotic biodegradation and metabolism and lipid metabolism. Furthermore, lake microbial assemblages had stronger predicted metabolic potentials in amino acid metabolism, carbon fixation, and photosynthesis while stream microbial assemblages were higher in carbohydrate metabolism, oxidative phosphorylation, and nitrogen metabolism. This study adds to our knowledge of stream-lake linkages from the functional and taxonomic composition of microbial assemblages. PMID:29213266
Microbial Indicators of Soil Quality under Different Land Use Systems in Subtropical Soils
NASA Astrophysics Data System (ADS)
Maharjan, M.
2016-12-01
Land-use change from native forest to intensive agricultural systems can negatively impact numerous soil parameters. Understanding the effects of forest ecosystem transformations on markers of long-term soil health is particularly important in rapidly developing regions such as Nepal, where unprecedented levels of agriculturally-driven deforestation have occurred in recent decades. However, the effects of widespread land use changes on soil quality in this region have yet to be properly characterized. Microbial indicators (soil microbial biomass, metabolic quotient and enzymes activities) are particularly suited to assessing the consequences of such ecosystem disturbances, as microbial communities are especially sensitive to environmental change. Thus, the aim of this study was to assess the effect of land use system; i.e. forest, organic and conventional farming, on soil quality in Chitwan, Nepal using markers of microbial community size and activity. Total organic C and N contents were higher in organic farming compared with conventional farming and forest, suggesting higher nutrient retention and soil preservation with organic farming practices compared to conventional. These differences in soil composition were reflected in the health of the soil microbial communities: Organic farm soil exhibited higher microbial biomass C, elevated β-glucosidase and chitinase activities, and a lower metabolic quotient relative to other soils, indicating a larger, more active, and less stressed microbial community, respectively. These results collectively demonstrate that application of organic fertilizers and organic residues positively influence nutrient availability, with subsequent improvements in soil quality and productivity. Furthermore, the sensitivity of microbial indicators to different management practices demonstrated in this study supports their use as effective markers of ecosystem disturbance in subtropical soils.
NASA Astrophysics Data System (ADS)
Wee, S. Y.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Yvon-Lewis, S. A.; Sylvan, J. B.
2017-12-01
International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. Recovered cores were primarily gabbro and olivine gabbro, which may potentially host serpentinization reactions and associated microbial life. Our goal was to sample this subseafloor environment and determine quantity, diversity and metabolic capabilities of any resident microbial life. Hole U1473A was drilled during Expedition 360 down to 790 m below seafloor and samples for detection of microbial communities and microbial biosignatures were collected throughout. We present here quantification of microbial biomass via fluorescence microscopy, preliminary analysis of nutrient addition experiments, data from sequencing of microbial 16S rRNA genes, analysis of microbial lipids, and data from Raman spectra of subsurface isolates. We initiated and sampled 12 nutrient addition experiments from 71-745 mbsf by adding sampled rocks to artificial seawater with no additions, added ammonium, added ammonium plus phosphate, and added organic acids. In nearly all of the experiment bottles, methane was detected when samples were collected at six months and again after one year of incubation. Phosphate in the incubations was drawn down, indicating active microbial metabolism, and archaeal lipids from in situ samples indicate the presence of methanogens, corroborating the likelihood of methanogens as the source of detected methane in the nutrient addition incubations. Altogether, the interdisciplinary approach used here provides a peek into life in the subseafloor upper ocean crust.
Liu, Yong-jie; Liu, Wen-yao; Chen, Lin; Zhang, Han-bo; Wang, Gao-sheng
2010-09-01
Mid-montane moist evergreen broadleaved forest (MMF) and top-montane dwarf mossy forest (DMF) are the two major natural forest types in subtropical mountainous area of Ailao Mountains, Northwest China. In this paper, a comparative study was made on the microbial composition, quantity, biochemical activity, metabolic activity, and their seasonal dynamics in the canopy- and understory humus of the two forest types. The composition, quantity, and metabolic activity of the microbes in the canopy humus of dominant tree species in MMF and DMF were also analyzed. In the canopy humus of the two forest types, the amounts of fungi and actinomycetes, microbial biomass C and N, and intensities of nitrogen fixation and cellulose decomposition were significantly higher than those in understory humus. Meanwhile, the amount of cellulose-decomposing microbes (ACDM), cellulose decomposition intensity, microbial biomass C and N, and metabolic activity in the canopy humus of MMF were significantly higher than those of DMF. The amounts of bacteria, fungi, and aerobic nitrogen-fixing bacteria (ANFB) and the metabolic activity in the canopy humus of MMF and DMF were significantly higher in wet season than in dry season, while a contradictory trend was observed on the amount of actinomycetes. No significant difference was observed on the amount of ACDM between wet season and dry season. For the two forest types, the amounts of microbes and their biochemical activities in canopy humus had a larger seasonal variation range than those in understory humus. There was a significant difference in the amounts of the microbes in canopy humus among the dominant tree species in MMF and DMF, especially in wet season. The microbes in canopy humus played important roles in maintaining the biodiversity of epiphytes in the canopy, and in supplying the needed nutrients for the vigorous growth of the epiphytes.
NASA Astrophysics Data System (ADS)
Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.
2017-12-01
Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.
Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes.
Coolen, Marco J L; Cypionka, Heribert; Sass, Andrea M; Sass, Henrik; Overmann, Jörg
2002-06-28
Late Pleistocene organic-rich sediments (sapropels) from the eastern Mediterranean Sea harbor unknown, metabolically active chemoorganotrophic prokaryotes. As compared to the carbon-lean intermediate layers, sapropels exhibit elevated cell numbers, increased activities of hydrolytic exoenzymes, and increased anaerobic glucose degradation rates, suggesting that microbial carbon substrates originate from sapropel layers up to 217,000 years old. 16S ribosomal RNA gene analyses revealed that as-yet-uncultured green nonsulfur bacteria constitute up to 70% of the total microbial biomass. Crenarchaeota constitute a smaller fraction (on average, 16%). A slow but significant turnover of glucose could be detected. Apparently, sapropels are still altered by the metabolic activity of green nonsulfur bacteria and crenarchaeota.
Physiological Ecology of Microorganisms in Subglacial Lake Whillans
Vick-Majors, Trista J.; Mitchell, Andrew C.; Achberger, Amanda M.; Christner, Brent C.; Dore, John E.; Michaud, Alexander B.; Mikucki, Jill A.; Purcell, Alicia M.; Skidmore, Mark L.; Priscu, John C.
2016-01-01
Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW) is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep), oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days) while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d−1) obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8%) indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms in the SLW water column. Heterotrophic metabolisms utilizing acetate and formate as electron donors yielded less energy than chemolithotrophic metabolisms when calculated in terms of energy density, which supports experimental results that showed chemoautotrophic activity in excess of heterotrophic activity. The microbial communities of subglacial lake ecosystems provide important natural laboratories to study the physiological and biogeochemical behavior of microorganisms inhabiting cold, dark environments. PMID:27833599
NASA Astrophysics Data System (ADS)
Dijkstra, P.; Fairbanks, D.; Miller, E.; Salpas, E.; Hagerty, S.
2013-12-01
Understanding the mechanisms regulating C cycling is hindered by our inability to directly observe and measure the biochemical processes of glycolysis, pentose phosphate pathway, and TCA cycle in intact and complex microbial communities. Position-specific 13C labeled metabolic tracer probing is proposed as a new way to study microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the quantification of C fluxes through the central C metabolic network processes (Dijkstra et al 2011a,b). We determined the 13CO2 production from U-13C, 1-13C, 2-13C, 3-13C, 4-13C, 5-13C, and 6-13C labeled glucose and 1-13C and 2,3-13C pyruvate in parallel incubations in three soils along an elevation gradient. Qualitative and quantitative interpretation of the results indicate a high pentose phosphate pathway activity in soils. Agreement between modeled and measured CO2 production rates for the six C-atoms of 13C-labeled glucose indicate that the metabolic model used is appropriate for soil community processes, but that improvements can be made. These labeling and modeling techniques may improve our ability to analyze the biochemistry and (eco)physiology of intact microbial communities. Dijkstra, P., Blankinship, J.C., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011a. Probing C flux patterns of soil microbial metabolic networks using parallel position-specific tracer labeling. Soil Biology & Biochemistry 43, 126-132. Dijkstra, P., Dalder, J.J., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011b. Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled glucose and pyruvate. Soil Biology & Biochemistry 43, 1848-1857.
Poretsky, Rachel S; Hewson, Ian; Sun, Shulei; Allen, Andrew E; Zehr, Jonathan P; Moran, Mary Ann
2009-06-01
Metatranscriptomic analyses of microbial assemblages (< 5 microm) from surface water at the Hawaiian Ocean Time-Series (HOT) revealed community-wide metabolic activities and day/night patterns of differential gene expression. Pyrosequencing produced 75 558 putative mRNA reads from a day transcriptome and 75 946 from a night transcriptome. Taxonomic binning of annotated mRNAs indicated that Cyanobacteria contributed a greater percentage of the transcripts (54% of annotated sequences) than expected based on abundance (35% of cell counts and 21% 16S rRNA of libraries), and may represent the most actively transcribing cells in this surface ocean community in both the day and night. Major heterotrophic taxa contributing to the community transcriptome included alpha-Proteobacteria (19% of annotated sequences, most of which were SAR11-related) and gamma-Proteobacteria (4%). The composition of transcript pools was consistent with models of prokaryotic gene expression, including operon-based transcription patterns and an abundance of genes predicted to be highly expressed. Metabolic activities that are shared by many microbial taxa (e.g. glycolysis, citric acid cycle, amino acid biosynthesis and transcription and translation machinery) were well represented among the community transcripts. There was an overabundance of transcripts for photosynthesis, C1 metabolism and oxidative phosphorylation in the day compared with night, and evidence that energy acquisition is coordinated with solar radiation levels for both autotrophic and heterotrophic microbes. In contrast, housekeeping activities such as amino acid biosynthesis, membrane synthesis and repair, and vitamin biosynthesis were overrepresented in the night transcriptome. Direct sequencing of these environmental transcripts has provided detailed information on metabolic and biogeochemical responses of a microbial community to solar forcing.
Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H
2018-01-01
Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.
Hagen, Live H; Frank, Jeremy A; Zamanzadeh, Mirzaman; Eijsink, Vincent G H; Pope, Phillip B; Horn, Svein J; Arntzen, Magnus Ø
2017-01-15
In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH 3 -N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. Copyright © 2016 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.
2016-12-01
Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions. Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions.
Soil Microbial Community Contribution to Small Headwater Stream Metabolism.
NASA Astrophysics Data System (ADS)
Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.
2005-05-01
The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.
Thrash, J Cameron; Seitz, Kiley W; Baker, Brett J; Temperton, Ben; Gillies, Lauren E; Rabalais, Nancy N; Henrissat, Bernard; Mason, Olivia U
2017-09-12
Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called "dead zones," are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota , SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments- Parcubacteria (OD1) and Peregrinibacteria Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter. IMPORTANCE Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity such as fertilizer runoff result in algal blooms and therefore ample new carbon for aerobic microbial metabolism. Combined with strong stratification, microbial respiration reduces oxygen in shelf bottom waters to levels unfit for many animals (termed hypoxia). The nGOM shelf remains one of the largest eutrophication-driven hypoxic zones in the world, yet despite its potential as a model study system, the microbial metabolisms underlying and resulting from this phenomenon-many of which occur in bacterioplankton from poorly understood lineages-have received only preliminary study. Our work details the metabolic potential and gene expression activity for uncultivated lineages across several low DO sites in the nGOM, improving our understanding of the active biogeochemical cycling mediated by these "microbial dark matter" taxa during hypoxia. Copyright © 2017 Thrash et al.
Quantitative analysis of microbial biomass yield in aerobic bioreactor.
Watanabe, Osamu; Isoda, Satoru
2013-12-01
We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Deep sea microbial fuel cell output as a proxy for microbial activity
NASA Astrophysics Data System (ADS)
Richter, K.; George, R.; Hardy, K. R.
2016-02-01
Abstract: Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The current is chiefly limited by the rate of microbial metabolism at the anode and serves as a proxy for microbial activity. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions and studies of important environmental parameters that affect fuel cell performance. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>4000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. We are pursuing a field efforts to deploy a microbial fuel cell in progressively deeper water, record in situ power and temperature over several weeks, and retrieve the fuel cell along with sediment samples for analysis. We are also pursuing a laboratory effort to build a matching microbial fuel cell in a pressure vessel capable of matching the pressure and temperature of deep water, and stocking the pressure vessel with deep water sediment in order to take measurements analogous to those in the field. We also hope to determine whether bacteria growing on the anode are different from bacteria growing in the bulk sediment via DNA analysis. The current progress and results from this work at SPAWAR will be presented.
Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng
2017-07-19
Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.
Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes
Yanagawa, Katsunori; Morono, Yuki; de Beer, Dirk; Haeckel, Matthias; Sunamura, Michinari; Futagami, Taiki; Hoshino, Tatsuhiko; Terada, Takeshi; Nakamura, Ko-ichi; Urabe, Tetsuro; Rehder, Gregor; Boetius, Antje; Inagaki, Fumio
2013-01-01
Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community. PMID:23096400
Hakkaart, Xavier D V; Pronk, Jack T; van Maris, Antonius J A
2017-01-01
Understanding microbial growth and metabolism is a key learning objective of microbiology and biotechnology courses, essential for understanding microbial ecology, microbial biotechnology and medical microbiology. Chemostat cultivation, a key research tool in microbial physiology that enables quantitative analysis of growth and metabolism under tightly defined conditions, provides a powerful platform to teach key features of microbial growth and metabolism. Substrate-limited chemostat cultivation can be mathematically described by four equations. These encompass mass balances for biomass and substrate, an empirical relation that describes distribution of consumed substrate over growth and maintenance energy requirements (Pirt equation), and a Monod-type equation that describes the relation between substrate concentration and substrate-consumption rate. The authors felt that the abstract nature of these mathematical equations and a lack of visualization contributed to a suboptimal operative understanding of quantitative microbial physiology among students who followed their Microbial Physiology B.Sc. courses. The studio-classroom workshop presented here was developed to improve student understanding of quantitative physiology by a set of question-guided simulations. Simulations are run on Chemostatus, a specially developed MATLAB-based program, which visualizes key parameters of simulated chemostat cultures as they proceed from dynamic growth conditions to steady state. In practice, the workshop stimulated active discussion between students and with their teachers. Moreover, its introduction coincided with increased average exam scores for questions on quantitative microbial physiology. The workshop can be easily implemented in formal microbial physiology courses or used by individuals seeking to test and improve their understanding of quantitative microbial physiology and/or chemostat cultivation.
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo
2016-01-01
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915
Quantification of microbial activity in subsurface environments using a hydrogenase enzyme assay
NASA Astrophysics Data System (ADS)
Adhikari, R. R.; Nickel, J.; Kallmeyer, J.
2012-04-01
The subsurface biosphere is the largest microbial ecosystem on Earth. Despite its large size and extensive industrial exploitation, very little is known about the role of microbial activity in the subsurface. Subsurface microbial activity plays a fundamental role in geochemical cycles of carbon and other biologically important elements. How the indigenous microbial communities are supplied with energy is one of the most fundamental questions in subsurface research. It is still an enigma how these communities can survive with such recalcitrant carbon over geological time scales. Despite its usually very low concentration, hydrogen is an important element in subsurface environments. Heterotrophic and chemoautotrophic microorganisms use hydrogen in their metabolic pathways; they either obtain protons from the radiolysis of water and/or cleavage of hydrogen generated by the alteration of basaltic crust, or they dispose of protons by formation of water. Hydrogenase (H2ase) is a ubiquitous intracellular enzyme that catalyzes the interconversion of molecular hydrogen and/or water into protons and electrons. The protons are used for the synthesis of ATP, thereby coupling energy-generating metabolic processes to electron acceptors such as carbon dioxide or sulfate. H2ase activity can therefore be used as a measure for total microbial activity as it targets a key metabolic compound rather than a specific turnover process. Using a highly sensitive tritium assay we measured H2ase enzyme activity in the organic-rich sediments of Lake Van, a saline, alkaline lake in eastern Turkey and in marine subsurface sediments of the Barents Sea. Additionally, sulfate reduction rates (SRRs) were measured to compare the results of the H2ase enzyme assay with the quantitatively most important electron acceptor process. H2ase activity was found at all sites, measured values and distribution of activity varied widely with depth and between sites. At the Lake Van sites H2ase activity ranged from ca. 20 mmol H2 cm-3 d-1 close to the sediment-water interface to 0.5 mmol H2 cm-3 d-1 at a depth of 0.8 m. In samples from the Barents Sea H2ase activity ranged between 0.1 to 2.5 mmol H2 cm-3 d-1 down to a depth of 1.60 m. At all sites the SRR profile followed the H2ase activity profile until SRR declined to values close to the minimum detection limit (~10 pmol cm-3 d-1). H2ase activity increased again after SRR declined, indicating that other microbial processes are becoming quantitatively more important. The H2ase and SRR data show that our assay has a potential to become a valuable tool to measure total subsurface microbial activity.
Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2017-01-01
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106–198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field. PMID:27754478
Yanagawa, Katsunori; Ijiri, Akira; Breuker, Anja; Sakai, Sanae; Miyoshi, Youko; Kawagucci, Shinsuke; Noguchi, Takuroh; Hirai, Miho; Schippers, Axel; Ishibashi, Jun-Ichiro; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2017-02-01
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ 13 C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.
Zhu, Tingting; Dittrich, Maria
2016-01-01
Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed. PMID:26835451
Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis
Paolicelli, Giuseppe; De Luca, Antonella; Renga, Giorgia; Borghi, Monica; Pariano, Marilena; Stincardini, Claudia; Scaringi, Lucia; Ricci, Maurizio; Romani, Luigina
2018-01-01
Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis. PMID:29670460
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R.
2012-11-28
The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities inmore » a diversity of soils and sediments.« less
Microbial catabolic activities are naturally selected by metabolic energy harvest rate.
González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge
2015-12-01
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.
Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano.
Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung
2012-12-01
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.
Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano
Cheng, Ting-Wen; Chang, Yung-Hsin; Tang, Sen-Lin; Tseng, Ching-Hung; Chiang, Pei-Wen; Chang, Kai-Ti; Sun, Chih-Hsien; Chen, Yue-Gau; Kuo, Hung-Chi; Wang, Chun-Ho; Chu, Pao-Hsuan; Song, Sheng-Rong; Wang, Pei-Ling; Lin, Li-Hung
2012-01-01
Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids. PMID:22739492
NASA Astrophysics Data System (ADS)
Hunter, K. S.; Van Cappellen, P.
2000-01-01
Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.
Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L
2015-10-01
The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W
2007-05-01
Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.
NASA Astrophysics Data System (ADS)
Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying
2016-08-01
Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.
NASA Astrophysics Data System (ADS)
Galambos, D.; Reveillaud, J. C.; Anderson, R.; Huber, J. A.
2017-12-01
Deep-sea hydrothermal vent systems host a wide diversity of bacteria, archaea and viruses. Although the geochemical conditions at these vents are well-documented, the relative metabolic activity of microbial lineages, especially among archaea, remains poorly characterized. The deep, slow-spreading Mid-Cayman Rise, which hosts the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields, allows for the comparison of vent sites with different geochemical characteristics. Previous metagenomic work indicated that despite the distinct geochemistry at Von Damm and Piccard, the functional profile of microbial communities between the two sites was similar. We examined relative metabolic gene activity using a metatranscriptomic analysis and observed functional similarity between Von Damm and Piccard, which is consistent with previous results. Notably, the relative expression of the methyl-coenzyme M reductase (mcr) gene was elevated in both vent fields. Additionally, we analyzed the ratio of RNA expression to DNA abundance of fifteen archaeal metagenome-assembled genomes (MAGs) across the two fields. Previous work showed higher archaeal diversity at Von Damm; our results indicate relatively even expression among archaeal lineages at Von Damm. In contrast, we observed lower archaeal diversity at Piccard, but individual archaeal lineages were very highly expressed; Thermoprotei showed elevated transcriptional activity, which is consistent with higher temperatures and sulfur levels at Piccard. At both Von Damm and Piccard, specific Methanococcus lineages were more highly expressed than others. Future analyses will more closely examine metabolic genes in these Methanococcus MAGs to determine why some lineages are more active at a vent field than others. We will conduct further statistical analyses to determine whether significant differences exist between Von Damm and Piccard and whether there are correlations between geochemical metadata and metabolic gene or archaeal MAG transcription. These efforts will lead to a better understanding of the metabolic characteristics of ancient archaea and the extent to which vent geochemistry influences local microbial metabolic profiles.
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Apostel, Carolin; Dijkstra, Paul; Kuzyakov, Yakov
2017-04-01
Understanding soil and sedimentary organic matter (SOM) dynamics is one of the most important challenges in biogeoscience. To disentangle the fluxes and transformations of C in soils a detailed knowledge on the biochemical pathways and its controlling factors is required. Biogeochemists' view on the C transformation of microorganisms in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the microbial anabolism. Biochemists, however, thoroughly identified in the past decades the individual reactions of glycolysis, pentose-phosphate pathway and citric acid cycle underlying the microbial catabolism. At various points within that metabolic network the anabolic fluxes feeding biomass formation branch off. Recent studies on metabolic flux tracing by position-specific isotope labeling allowed tracing these C transformations in soils in situ, an approach which is qunatitatively complemented by metabolic flux modeling. This approach has reached new impact by the cutting-edge combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites which allows 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. Thus, the combination of position-specific labeling, compound-specific isotope incorporation in biomarkers and quantitative metabolic flux modelling provide the toolbox for quantitative soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in citric acid cycle. Thus, oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously, a combination unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. Coupling these results with the position-specific fingerprint of microbial biomarkers revealed that microbial groups show deviating adaptation strategies and that they react on environmental changes by activation or deactivation of specific metabolic pathways such as anaplerotic fluxes. To understand how microorganisms catalyze the biogeochemical fluxes in soil a profound understanding of their metabolic adaptation strategies such as recycling or switching between pathways is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.
Feasible metabolisms in high pH springs of the Philippines
Cardace, Dawn; Meyer-Dombard, D'Arcy R.; Woycheese, Kristin M.; Arcilla, Carlo A.
2015-01-01
A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization. PMID:25713561
Feasible metabolisms in high pH springs of the Philippines.
Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A
2015-01-01
A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.
Zhao, Zhao; Shi, Huijuan; Liu, Cunqi; Kang, Xianjiang; Chen, Lingci; Liang, Xiaofei; Jin, Lei
2018-07-01
Mono-cultured and mix-cultured duckweed species were investigated with respect to the function of their associated microbial communities in heavy metal contaminated wastewater. Results show that the carbon source utilization patterns of the L. aequinoctialis- and S. polyrhiza-associated microbial communities were different. The relationships between microbial activity, antioxidant enzyme activity (CAT, GSH, and SOD) and growth was positive and significant. The microbial activity of L. aequinoctialis and S. polyrhiza in mixture was higher than in monoculture in low and high heavy metal, respectively, thereby altering the utilization of specific carbon source types and increasing duckweed growth and antioxidant enzyme activity, when compared to the monocultured duckweed. Furthermore, results indicate that duckweed species in mixture are protected from damage through regulation of the associated bacterial communities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang
2015-08-20
Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P < 0.05) different among three sampling sites. The relative abundance of genes related to N cycling detected was significantly (P < 0.05) different, mostly derived from the uncultured bacteria. The gene categories related to ammonification had a high relative abundance. Both canonical correspondence analysis and multivariate regression tree analysis showed that soil available N was the most correlated with soil microbial functional gene structure. Overall high microbial functional gene diversity and different soil microbial metabolic potential for different biogeochemical processes were considered to exist in tropical rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.
Khodadad, Christina L M; Foster, Jamie S
2012-01-01
Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the physiology of the mats, as well as new insights into the biological processes associated with carbonate precipitation in modern marine stromatolites.
Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses
Teissandier, Aurélie; Onésime, Djamila; Loux, Valentin; Monnet, Christophe; Irlinger, Françoise; Landaud, Sophie; Leclercq-Perlat, Marie-Noëlle; Bento, Pascal; Fraud, Sébastien; Gibrat, Jean-François; Aubert, Julie; Fer, Frédéric; Guédon, Eric; Pons, Nicolas; Kennedy, Sean; Beckerich, Jean-Marie; Swennen, Dominique; Bonnarme, Pascal
2015-01-01
Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process. PMID:25867897
Zhao, Yan; Zhong, Wen-Jie; Xun, Zhe; Zhang, Qian; Song, Ye-Qing; Liu, Yun-Song; Chen, Feng
2017-01-01
Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provided significant information regarding the connection between dental caries and oral microbiomes, further comprehension of this microbial community’s ecological relevance is limited. This study identified the carbon source metabolic differences in dental plaque between children with and without ECC. We compared the microbial community functional diversity in 18 caries-free subjects with 18 severe ECC patients based on sole carbon source usage using a Biolog assay. The anaerobic microbial community in the ECC patients displayed greater metabolic activity than that of the control group. Specific carbon source metabolism differed significantly between the two groups. Subjects from the two groups were well distinguished by cluster and principal component analyses based on discriminative carbon sources. Our results implied that the microbial functional diversity between the ECC patients and healthy subjects differed significantly. In addition, the Biolog assay furthered our understanding of oral microbiomes as a composite of functional abilities, thus enabling us to identify the ecologically relevant functional differences among oral microbial communities.
Hu, Sarah K; Campbell, Victoria; Connell, Paige; Gellene, Alyssa G; Liu, Zhenfeng; Terrado, Ramon; Caron, David A
2016-04-01
Microbial eukaryotes fulfill key ecological positions in marine food webs. Molecular approaches that connect protistan diversity and biogeography to their diverse metabolisms will greatly improve our understanding of marine ecosystem function. The majority of molecular-based studies to date use 18S rRNA gene sequencing to characterize natural microbial assemblages, but this approach does not necessarily discriminate between active and non-active cells. We incorporated RNA sequencing into standard 18S rRNA gene sequence surveys with the purpose of assessing those members of the protistan community contributing to biogeochemical cycling (active organisms), using the ratio of cDNA (reverse transcribed from total RNA) to 18S rRNA gene sequences within major protistan taxonomic groups. Trophically important phytoplankton, such as diatoms and chlorophytes exhibited seasonal trends in relative activity. Additionally, both radiolaria and ciliates displayed previously unreported high relative activities below the euphotic zone. This study sheds new light on the relative metabolic activity of specific protistan groups and how microbial communities respond to changing environmental conditions. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Thaler, Caroline; Millo, Christian; Ader, Magali; Chaduteau, Carine; Guyot, François; Ménez, Bénédicte
2017-02-01
Carbon and oxygen stable isotope compositions of carbonates are widely used to retrieve paleoenvironmental information. However, bias may exist in such reconstructions as carbonate precipitation is often associated with biological activity. Several skeleton-forming eukaryotes have been shown to precipitate carbonates with significant offsets from isotopic equilibrium with water. Although poorly understood, the origin of these biologically-induced isotopic shifts in biogenic carbonates, commonly referred to as "vital effects", could be related to metabolic effects that may not be restricted to mineralizing eukaryotes. The aim of our study was to determine whether microbially-mediated carbonate precipitation can also produce offsets from equilibrium for oxygen isotopes. We present here δ18O values of calcium carbonates formed by the activity of Sporosarcina pasteurii, a carbonatogenic bacterium whose ureolytic activity produces ammonia (thus increasing pH) and dissolved inorganic carbon (DIC) that precipitates as solid carbonates in the presence of Ca2+. We show that the 1000 lnαCaCO3-H2O values for these bacterially-precipitated carbonates are up to 24.7‰ smaller than those expected for precipitation at isotopic equilibrium. A similar experiment run in the presence of carbonic anhydrase (an enzyme able to accelerate oxygen isotope equilibration between DIC and water) resulted in δ18O values of microbial carbonates in line with values expected at isotopic equilibrium with water. These results demonstrate for the first time that bacteria can induce calcium carbonate precipitation in strong oxygen isotope disequilibrium with water, similarly to what is observed for eukaryotes. This disequilibrium effect can be unambiguously ascribed to oxygen isotope disequilibrium between DIC and water inherited from the oxygen isotope composition of the ureolytically produced CO2, probably combined with a kinetic isotope effect during CO2 hydration/hydroxylation. The fact that both disequilibrium effects are triggered by the metabolic production of CO2, which is common in many microbially-mediated carbonation processes, leads us to propose that metabolically-induced offsets from isotopic equilibrium in microbial carbonates may be more common than previously considered. Therefore, precaution should be taken when using the oxygen isotope signature of microbial carbonates for diagenetic and paleoenvironmental reconstructions.
Shentu, Jia-li; He, Zhen-li; Yang, Xiao-e; Li, Ting-qiang
2008-01-01
Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. PMID:18357628
Wang, Xueliang; Wang, Xin; Jiang, Hao; Cai, Chao; Li, Guoyun; Hao, Jiejie; Yu, Guangli
2018-09-01
Marine polysaccharides (MPs), including plant, animal, and microbial-derived polysaccharides, can alleviate metabolic syndrome (MetS) by different regulation mechanisms. MPs and their derivatives can attenuate MetS by vary cellular signal pathways, such as peroxisome proliferator-activated receptor, 5' adenosine monophosphate-activated protein kinase, and CCAAT/enhancer binding protein-α. Also, most of MPs cannot be degraded by human innate enzymes, but they can be degraded and fermented by human gut microbiota. The final metabolic products of these polysaccharides are usually short-chain fatty acids (SCFAs), which can change the gut microbiota ecology by altering the existing percentage of special microorganisms. In addition, the SCFAs and changed gut microbiota can regulate enteroendocrine hormone secretion, blood glucose, lipid metabolism levels, and other MetS symptoms. Here, we summarize the up-to-date findings on the effects of MPs, particularly marine microbial-derived polysaccharides, and their metabolites on attenuating MetS. Copyright © 2018 Elsevier Ltd. All rights reserved.
Environmental Microbial Community Proteomics: Status, Challenges and Perspectives.
Wang, Da-Zhi; Kong, Ling-Fen; Li, Yuan-Yuan; Xie, Zhang-Xian
2016-08-05
Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment.
NASA Astrophysics Data System (ADS)
Dijkstra, P.; van Groenigen, K.; Hagerty, S.; Salpas, E.; Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.
2012-12-01
The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We use position-specific 13C-labeled metabolic tracers, combined with models of microbial metabolic organization, to analyze the response of microbial community energy production, biosynthesis, and C use efficiency (CUE) in soils, decomposing litter, and aquatic communities. The method consists of adding position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through the various metabolic pathways. A simplified metabolic model consisting of 23 reactions is solved using results of the metabolic tracer experiments and assumptions of microbial precursor demand. This new method enables direct estimation of fundamental aspects of microbial energy production, CUE, and soil organic matter formation in relatively undisturbed microbial communities. We will present results showing the range of metabolic patterns observed in these communities and discuss results from testing metabolic models.
Advances in engineered microorganisms for improving metabolic conversion via microgravity effects.
Huangfu, Jie; Zhang, Genlin; Li, Jun; Li, Chun
2015-01-01
As an extreme and unique environment, microgravity has significant effects on microbial cellular processes, such as cell growth, gene expression, natural pathways and biotechnological products. Application of microgravity effects to identify the regulatory elements in reengineering microbial hosts will draw much more attention in further research. In this commentary, we discuss the microgravity effects in engineered microorganisms for improving metabolic conversion, including cell growth kinetics, antimicrobial susceptibility, resistance to stresses, secondary metabolites production, recombinant protein production and enzyme activity, as well as gene expression changes. Application of microgravity effects in engineered microorganisms could provide valuable platform for innovative approaches in bioprocessing technology to largely improve the metabolic conversion efficacy of biopharmaceutical products.
Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan
2015-02-01
Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.
Linking genes to ecosystem trace gas fluxes in a large-scale model system
NASA Astrophysics Data System (ADS)
Meredith, L. K.; Cueva, A.; Volkmann, T. H. M.; Sengupta, A.; Troch, P. A.
2017-12-01
Soil microorganisms mediate biogeochemical cycles through biosphere-atmosphere gas exchange with significant impact on atmospheric trace gas composition. Improving process-based understanding of these microbial populations and linking their genomic potential to the ecosystem-scale is a challenge, particularly in soil systems, which are heterogeneous in biodiversity, chemistry, and structure. In oligotrophic systems, such as the Landscape Evolution Observatory (LEO) at Biosphere 2, atmospheric trace gas scavenging may supply critical metabolic needs to microbial communities, thereby promoting tight linkages between microbial genomics and trace gas utilization. This large-scale model system of three initially homogenous and highly instrumented hillslopes facilitates high temporal resolution characterization of subsurface trace gas fluxes at hundreds of sampling points, making LEO an ideal location to study microbe-mediated trace gas fluxes from the gene to ecosystem scales. Specifically, we focus on the metabolism of ubiquitous atmospheric reduced trace gases hydrogen (H2), carbon monoxide (CO), and methane (CH4), which may have wide-reaching impacts on microbial community establishment, survival, and function. Additionally, microbial activity on LEO may facilitate weathering of the basalt matrix, which can be studied with trace gas measurements of carbonyl sulfide (COS/OCS) and carbon dioxide (O-isotopes in CO2), and presents an additional opportunity for gene to ecosystem study. This work will present initial measurements of this suite of trace gases to characterize soil microbial metabolic activity, as well as links between spatial and temporal variability of microbe-mediated trace gas fluxes in LEO and their relation to genomic-based characterization of microbial community structure (phylogenetic amplicons) and genetic potential (metagenomics). Results from the LEO model system will help build understanding of the importance of atmospheric inputs to microorganisms pioneering fresh mineral matrix. Additionally, the measurement and modeling techniques that will be developed at LEO will be relevant for other investigators linking microbial genomics to ecosystem function in more well-developed soils with greater complexity.
Fernandez, Ana B; Rasuk, Maria C; Visscher, Pieter T; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G; Patterson, Molly M; Ventosa, Antonio; Farias, Maria E
2016-01-01
We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.
Fernandez, Ana B.; Rasuk, Maria C.; Visscher, Pieter T.; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G.; Patterson, Molly M.; Ventosa, Antonio; Farias, Maria E.
2016-01-01
We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity. PMID:27597845
Li, Tian-yu; Kang, Feng-feng; Han, Hai-rong; Gao, Jing; Song, Xiao-shuai; Yu, Shu; Zhao, Jin-long; Yu, Xiao-wen
2015-03-01
Using litter bag method, we studied the effects of single and mixed litters from Betula platyphlla, Populus davidiana and Quercus mongolica on soil microbial biomass carbon (MBC), microbial respiration (MR) and microbial metabolic quotient (qCO2) in 0-5, 5-10 and 10-20 cm soil layers. The results showed that the average contents of MBC in 0-20 cm soil layer were 124.84, 325.29, 349.79 and 319.02 mg . kg-1 in the leaf litter removal treatment, Betula platyphlla treatment, Populus davidiana treatment and Quercus mongolica treatment, and the corresponding average rates of MR were 0.66, 1.12, 1.16 and 1.10 µg . g-1 . h-1, respectively. Meanwhile, in 0-20 cm soil layer, the average contents of MBC in the treatments with single leaf litter, mixed litter of two plant species and mixed litter of three plant species were 331. 37, 418. 52 and 529. 34 mg . kg-1, and the corresponding average rates of MR were 1.13, 1.30 and 1.46 µg . g-1 . h-1, respectively. In contrast to the MBC and MR, qCO2 in soil showed a reverse pattern. Our study suggested that characteristics of microbial carbolic metabolism were influenced by litter quality. Namely, the treatment with high litter quality had higher MBC, MR and utilization efficiency of soil carbon, compared with the treatment with low litter quality. Moreover, mixture of different species of leaf litter improved soil microbial activities, increased utilization efficiency on soil carbon and promoted diversity of microbial metabolic pathways, which could then contribute to maintaining and enhancing soil quality of forestland.
[Synthetic biology toward microbial secondary metabolites and pharmaceuticals].
Wu, Lin-Zhuan; Hong, Bin
2013-02-01
Microbial secondary metabolites are one of the major sources of anti-bacterial, anti-fungal, antitumor, anti-virus and immunosuppressive agents for clinical use. Present challenges in microbial pharmaceutical development are the discovery of novel secondary metabolites with significant biological activities, improving the fermentation titers of industrial microbial strains, and production of natural product drugs by re-establishing their biosynthetic pathways in suitable microbial hosts. Synthetic biology, which is developed from systematic biology and metabolic engineering, provides a significant driving force for microbial pharmaceutical development. The review describes the major applications of synthetic biology in novel microbial secondary metabolite discovery, improved production of known secondary metabolites and the production of some natural drugs in genetically modified or reconstructed model microorganisms.
A TCE-contaminated competent bedrock site in Portsmouth, NH was used to determine if a relation existed between microfracture (MF) surface geochemistry and the ecology and metabolic activity of attached microbes relative to terminal electron accepting processes (TEAPs) and TCE bi...
Sato, Fumihiko; Kumagai, Hidehiko
2013-01-01
Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.
SATO, Fumihiko; KUMAGAI, Hidehiko
2013-01-01
Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088
Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.
2004-01-01
In this study, the composition of the metabolically active fraction of the microbial community occurring in Gulf of Mexico marine sediments (water depth, 550 to 575 m) with overlying filamentous bacterial mats was determined. The mats were mainly composed of either orange- or white-pigmented Beggiatoa spp. Complementary 16S ribosomal DNA (crDNA) was obtained from rRNA extracted from three different sediment depths (0 to 2, 6 to 8, and 10 to 12 cm) that had been subjected to reverse transcription-PCR amplification. Domain-specific 16S PCR primers were used to construct 12 different 16S crDNA libraries containing 333 Archaea and 329 Bacteria clones. Analysis of the Archaea clones indicated that all sediment depths associated with overlying orange- and white-pigmented microbial mats were almost exclusively dominated by ANME-2 (95% of total Archaea clones), a lineage related to the methanogenic order Methanosarcinales. In contrast, bacterial diversity was considerably higher, with the dominant phylotype varying by sediment depth. An equivalent number of clones detected at 0 to 2 cm, representing a total of 93%, were related to the γ and δ classes of Proteobacteria, whereas clones related to δ-Proteobacteria dominated the metabolically active fraction of the bacterial community occurring at 6 to 8 cm (79%) and 10 to 12 cm (85%). This is the first phylogenetics-based evaluation of the presumptive metabolically active fraction of the Bacteria and Archaea community structure investigated along a sediment depth profile in the northern Gulf of Mexico, a hydrocarbon-rich cold-seep region. PMID:15345432
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; ...
2016-02-25
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipidmore » catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. Finally, the results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.« less
Companion animals symposium: role of microbes in canine and feline health.
Kil, D Y; Swanson, K S
2011-05-01
Whether in an ocean reef, a landfill, or a gastrointestinal tract (GIT), invisible communities of highly active and adaptable microbes prosper. Over time, mammals have developed a symbiosis with microbes that are important inhabitants not only in the GIT, but also in the mouth, skin, and urogenital tract. In the GIT, the number of commensal microbes exceeds the total number of host cells by at least 10 times. The GIT microbes play a critical role in nutritional, developmental, defensive, and physiologic processes in the host. Recent evidence also suggests a role of GIT microbes in metabolic phenotype and disease risk (e.g., obesity, metabolic syndrome) of the host. Proper balance is a key to maintaining GIT health. Balanced microbial colonization is also important for other body regions such as the oral cavity, the region with the greatest prevalence of disease in dogs and cats. A significant obstruction to studying microbial populations has been the lack of tools to identify and quantify microbial communities accurately and efficiently. Most of the current knowledge of microbial populations has been established by traditional cultivation methods that are not only laborious, time-consuming, and often inaccurate, but also greatly limited in scope. However, recent advances in molecular-based techniques have resulted in a dramatic improvement in studying microbial communities. These DNA-based high-throughput technologies have enabled us to more clearly characterize the identity and metabolic activity of microbes living in the host and their association with health and diseases. Despite this recent progress, however, published data pertaining to microbial communities of dogs and cats are still lacking in comparison with data in humans and other animals. More research is required to provide a more detailed description of the canine and feline microbiome and its role in health and disease.
Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He
2014-01-01
Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357
NASA Astrophysics Data System (ADS)
Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He
2014-11-01
Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.
Luo, Shuai; Guo, Weihua; Nealson, Kenneth H; Feng, Xueyang; He, Zhen
2016-02-12
Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and (13)C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the (13)C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that (13)C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms.
Metaproteomics of aquatic microbial communities in a deep and stratified estuary.
Colatriano, David; Ramachandran, Arthi; Yergeau, Etienne; Maranger, Roxane; Gélinas, Yves; Walsh, David A
2015-10-01
Here we harnessed the power of metaproteomics to assess the metabolic diversity and function of stratified aquatic microbial communities in the deep and expansive Lower St. Lawrence Estuary, located in eastern Canada. Vertical profiling of the microbial communities through the stratified water column revealed differences in metabolic lifestyles and in carbon and nitrogen processing pathways. In productive surface waters, we identified heterotrophic populations involved in the processing of high and low molecular weight organic matter from both terrestrial (e.g. cellulose and xylose) and marine (e.g. organic compatible osmolytes) sources. In the less productive deep waters, chemosynthetic production coupled to nitrification by MG-I Thaumarchaeota and Nitrospina appeared to be a dominant metabolic strategy. Similar to other studies of the coastal ocean, we identified methanol oxidation proteins originating from the common OM43 marine clade. However, we also identified a novel lineage of methanol-oxidizers specifically in the particle-rich bottom (i.e. nepheloid) layer. Membrane transport proteins assigned to the uncultivated MG-II Euryarchaeota were also specifically detected in the nepheloid layer. In total, these results revealed strong vertical structure of microbial taxa and metabolic activities, as well as the presence of specific "nepheloid" taxa that may contribute significantly to coastal ocean nutrient cycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zou, Xiang Hui; Chen, Guo-Qiang
2007-02-12
Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.
Defois, Clémence; Ratel, Jérémy; Denis, Sylvain; Batut, Bérénice; Beugnot, Réjane; Peyretaillade, Eric; Engel, Erwan; Peyret, Pierre
2017-01-01
Benzo[ a ]pyrene (B[ a ]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[ a ]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[ a ]P on two distinct human fecal microbiota. B[ a ]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[ a ]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[ a ]P induces a specific deviation in the microbial metabolism.
Defois, Clémence; Ratel, Jérémy; Denis, Sylvain; Batut, Bérénice; Beugnot, Réjane; Peyretaillade, Eric; Engel, Erwan; Peyret, Pierre
2017-01-01
Benzo[a]pyrene (B[a]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[a]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[a]P on two distinct human fecal microbiota. B[a]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[a]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[a]P induces a specific deviation in the microbial metabolism. PMID:28861070
Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm
2013-11-13
Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others. Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, (13)C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.
Human and Environmental Impacts on River Sediment Microbial Communities
Gibbons, Sean M.; Jones, Edwin; Bearquiver, Angelita; ...
2014-05-19
Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA), comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (~65,000 microbial ‘species’ identified) and most novel (93% of OTUsmore » do not match known microbial diversity) ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples) and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices.« less
Zhang, Haihan; Huang, Tinglin; Liu, Tingting
2013-01-01
Drinking water reservoir plays a vital role in the security of urban water supply, yet little is known about microbial community diversity harbored in the sediment of this oligotrophic freshwater environmental ecosystem. In the present study, integrating community level physiological profiles (CLPPs), nested polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and clone sequence technologies, we examined the sediment urease and protease activities, bacterial community functional diversity, genetic diversity of bacterial and fungal communities in sediments from six sampling sites of Zhou cun drinking water reservoir, eastern China. The results showed that sediment urease activity was markedly distinct along the sites, ranged from 2.48 to 11.81 mg NH3-N/(g·24h). The highest average well color development (AWCD) was found in site C, indicating the highest metabolic activity of heterotrophic bacterial community. Principal component analysis (PCA) revealed tremendous differences in the functional (metabolic) diversity patterns of the sediment bacterial communities from different sites. Meanwhile, DGGE fingerprints also indicated spatial changes of genetic diversity of sediment bacterial and fungal communities. The sequence BLAST analysis of all the sediment samples found that Comamonas sp. was the dominant bacterial species harbored in site A. Alternaria alternate, Allomyces macrogynus and Rhizophydium sp. were most commonly detected fungal species in sediments of the Zhou cun drinking water reservoir. The results from this work provide new insights about the heterogeneity of sediment microbial community metabolic activity and genetic diversity in the oligotrophic drinking water reservoir. PMID:24205265
Twing, Katrina I.; Brazelton, William J.; Kubo, Michael D. Y.; Hyer, Alex J.; Cardace, Dawn; Hoehler, Tori M.; McCollom, Tom M.; Schrenk, Matthew O.
2017-01-01
Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H2 and CH4) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments. PMID:28298908
Twing, Katrina I; Brazelton, William J; Kubo, Michael D Y; Hyer, Alex J; Cardace, Dawn; Hoehler, Tori M; McCollom, Tom M; Schrenk, Matthew O
2017-01-01
Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H 2 and CH 4 ) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.
Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A
2010-06-01
The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers. (c) 2010 Elsevier Ltd. All rights reserved.
Jia, Yangyang; Ng, Siu-Kin; Lu, Hongyuan; Cai, Mingwei; Lee, Patrick K H
2018-01-01
Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum -related and Ruminococcus -related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum -related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the microbial conversion of lignocellulosic biomass to methane. The knowledge of this study can facilitate development of potential biomarkers and rational design of the microbiome in anaerobic digesters.
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou; ...
2016-04-29
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou
Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteinsmore » were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin to assess the degree to which diagnostic meatbolic proteins are long-lived or acively synthesized in complex, slow-growing microbial communities. Our work here demonstrates that sediment-hosted microbial assemblages in marine methane seeps are dynamic, heterogeneous systems with broad functional diversity.« less
Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K
2014-09-01
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.
Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K
2014-01-01
Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629
Evidence for metabolic activity of airborne bacteria
NASA Technical Reports Server (NTRS)
Chatigny, M. A.; Wolochow, H.
1974-01-01
Aerosols of the bacterium Serratia marcescens, and of uniformly labeled C-14 glucose were produced simultaneously and mixed in tubing leading to an aerosol chamber. During a subsequent period of about 5 hrs, carbon dioxide was produced metabolically within the chamber, and labeled material incorporated within the suspended particles first increased then decreased. This constitutes the first direct evidence of microbial metabolism of bacteria suspended in the air.
Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems
Perez-Garcia, Octavio; Lear, Gavin; Singhal, Naresh
2016-01-01
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations. PMID:27242701
[Microbiota and metabolic syndrome].
Altuntaş, Yüksel; Batman, Adnan
2017-04-01
The role of gut bacteria in the pathogenesis and treatment of various diseases has been a focus of attention in the last 10 years. Prevalence of diabetes, obesity, and cardiovascular diseases continues to increase, in spite of technological developments and treatment alternatives. Microbial dysbiosis, described as the decrease of useful bacteria and the increase of harmful bacteria, has been associated with diabetes, obesity, atherosclerosis, and metabolic syndrome. In microbial dysbiosis, increase of harmful metabolites and changes to composition of bile acids occur via carbohydrate and protein fermentation. As a result, insulin resistance pathways are activated, which initiate the processes of obesity, diabetes, and atherosclerosis. Healthy diet recommendations, including prebiotic and probiotic foods and the use of probiotic agents, look promising for future treatment of metabolic syndrome and cardiovascular diseases.
Liang, Renxing; Davidova, Irene A.; Marks, Christopher R.; Stamps, Blake W.; Harriman, Brian H.; Stevenson, Bradley S.; Duncan, Kathleen E.; Suflita, Joseph M.
2016-01-01
Microbial activity associated with produced water from hydraulic fracturing operations can lead to gas souring and corrosion of carbon-steel equipment. We examined the microbial ecology of produced water and the prospective role of the prevalent microorganisms in corrosion in a gas production field in the Barnett Shale. The microbial community was mainly composed of halophilic, sulfidogenic bacteria within the order Halanaerobiales, which reflected the geochemical conditions of highly saline water containing sulfur species (S2O32-, SO42-, and HS-). A predominant, halophilic bacterium (strain DL-01) was subsequently isolated and identified as belonging to the genus Halanaerobium. The isolate could degrade guar gum, a polysaccharide polymer used in fracture fluids, to produce acetate and sulfide in a 10% NaCl medium at 37°C when thiosulfate was available. To mitigate potential deleterious effects of sulfide and acetate, a quaternary ammonium compound was found to be an efficient biocide in inhibiting the growth and metabolic activity of strain DL-01 relative to glutaraldehyde and tetrakis (hydroxymethyl) phosphonium sulfate. Collectively, our findings suggest that predominant halophiles associated with unconventional shale gas extraction could proliferate and produce sulfide and acetate from the metabolism of polysaccharides used in hydraulic fracturing fluids. These metabolic products might be returned to the surface and transported in pipelines to cause pitting corrosion in downstream infrastructure. PMID:27446028
Consumption of freons CFC-11 and CFC-12 by anaerobic sediments and soils
Lovley, D.R.; Woodward, J.C.
1992-01-01
A variety of anaerobic sediments and soils consumed CFC-11 (CFCl3) and CFC-12 (CF2Cl2). An aerobic soil did not. Active microbial metabolism was required for CFC-12 uptake in all of the sediments examined. CFC-11 uptake was faster in the presence of microbial activity, but reduced components in the sediments also resulted in nonenzymatic CFC-11 consumption in most instances. CFC-12 uptake in a culture of Clostridium pasteurianum provided a model for the sediment uptake of CFC-11 and CFC-12 that required active microbial metabolism. Consumption of CFC-11 in the presence of reduced hematin demonstrated a potential mechanism for nonenzymatic CFC-11 consumption. These findings demonstrate that CFC-11 and CFC-12 are not biochemically inert under anaerobic conditions. This suggests that anaerobic degradation of CFC-11 and CFC-12 in anaerobic landfills might prevent some disposed CFC-11 and CFC-12 from entering the atmosphere. The results also suggest that CFC-11 and CFC-12 cannot be used as stable tracers in anaerobic environments. Furthermore, although the microbial sink for atmospheric CFC-11 and CFC-12 is much less than current anthropogenic release, this sink could have a significant long-term effect on the amount of CFC-11 and CFC-12 reaching the stratosphere.
Distributions of microbial activities in deep subseafloor sediments
NASA Technical Reports Server (NTRS)
D'Hondt, Steven; Jorgensen, Bo Barker; Miller, D. Jay; Batzke, Anja; Blake, Ruth; Cragg, Barry A.; Cypionka, Heribert; Dickens, Gerald R.; Ferdelman, Timothy; Hinrichs, Kai-Uwe;
2004-01-01
Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary consistently from one subseafloor environment to another. Net rates of major activities principally rely on electron acceptors and electron donors from the photosynthetic surface world. At open-ocean sites, nitrate and oxygen are supplied to the deepest sedimentary communities through the underlying basaltic aquifer. In turn, these sedimentary communities may supply dissolved electron donors and nutrients to the underlying crustal biosphere.
NASA Astrophysics Data System (ADS)
King, E.; Brodie, E.; Anantharaman, K.; Karaoz, U.; Bouskill, N.; Banfield, J. F.; Steefel, C. I.; Molins, S.
2016-12-01
Characterizing and predicting the microbial and chemical compositions of subsurface aquatic systems necessitates an understanding of the metabolism and physiology of organisms that are often uncultured or studied under conditions not relevant for one's environment of interest. Cultivation-independent approaches are therefore important and have greatly enhanced our ability to characterize functional microbial diversity. The capability to reconstruct genomes representing thousands of populations from microbial communities using metagenomic techniques provides a foundation for development of predictive models for community structure and function. Here, we discuss a genome-informed stochastic trait-based model incorporated into a reactive transport framework to represent the activities of coupled guilds of hypothetical microorganisms. Metabolic pathways for each microbe within a functional guild are parameterized from metagenomic data with a unique combination of traits governing organism fitness under dynamic environmental conditions. We simulate the thermodynamics of coupled electron donor and acceptor reactions to predict the energy available for cellular maintenance, respiration, biomass development, and enzyme production. While `omics analyses can now characterize the metabolic potential of microbial communities, it is functionally redundant as well as computationally prohibitive to explicitly include the thousands of recovered organisms into biogeochemical models. However, one can derive potential metabolic pathways from genomes along with trait-linkages to build probability distributions of traits. These distributions are used to assemble groups of microbes that couple one or more of these pathways. From the initial ensemble of microbes, only a subset will persist based on the interaction of their physiological and metabolic traits with environmental conditions, competing organisms, etc. Here, we analyze the predicted niches of these hypothetical microbes and assess the ability of a stochastically assembled community of organisms to predict subsurface biogeochemical dynamics.
Evidence for microbial carbon and sulfur cycling in deeply buried ridge flank basalt
Lever, Mark A.; Rouxel, Olivier; Alt, Jeffrey C.; Shimizu, Nobumichi; Ono, Shuhei; Coggon, Rosalind M.; Shanks, Wayne C.; Lapham, Laura; Elvert, Marcus; Prieto-Mollar, Xavier; Hinrichs, Kai-Uwe; Inagaki, Fumio; Teske, Andreas
2013-01-01
Sediment-covered basalt on the flanks of mid-ocean ridges constitutes most of Earth's oceanic crust, but the composition and metabolic function of its microbial ecosystem are largely unknown. By drilling into 3.5-million-year-old subseafloor basalt, we demonstrated the presence of methane- and sulfur-cycling microbes on the eastern flank of the Juan de Fuca Ridge. Depth horizons with functional genes indicative of methane-cycling and sulfate-reducing microorganisms are enriched in solid-phase sulfur and total organic carbon, host δ13C- and δ34S-isotopic values with a biological imprint, and show clear signs of microbial activity when incubated in the laboratory. Downcore changes in carbon and sulfur cycling show discrete geochemical intervals with chemoautotrophic δ13C signatures locally attenuated by heterotrophic metabolism.
NASA Astrophysics Data System (ADS)
Kéraval, Benoit; Alvarez, Gaël; Lehours, Anne Catherine; Amblard, Christian; Fontaine, Sebastien
2015-04-01
The mineralization of organic C requires two main steps. First, microorganisms secrete exoenzymes in soil in order to depolymerize plant and microbial cell walls and release soluble substrates for microbial assimilation. The second step of mineralization, during which C is released as CO2, implies the absorption and utilization of solubilized substrates by microbial cells with the aim to produce energy (ATP). In cells, soluble substrates are carried out by a cascade of respiratory enzymes, along which protons and electrons are transferred from a substrate to oxygen. Given the complexity of this oxidative metabolism and the typical fragility of respiratory enzymes, it is traditionally considered that respiration (second step of C mineralization process) is strictly an intracellular metabolism process. The recurrent observations of substantial CO2 emissions in soil microcosms where microbial cells have been reduced to extremely low levels challenges this paradigm. In a recent study where some respiratory enzymes have shown to function in an extracellular context in soils, Maire et al. (2013) suggested that an extracellular oxidative metabolism (EXOMET) substantially contributes to CO2 emission from soils. This idea is supported by the recent publication of Blankinship et al., 2014 who showed the presence of active enzymes involved in the Krebs cycle on soil particles. Many controversies subsist in the scientific community due to the presence of non-proliferating but morphologically intact cells after irradiation that could substantially contribute to those soil CO2 emissions. To test whether a purely extracellular oxidative metabolism contribute to soil CO2 emissions, we combined high doses of gamma irradiations to different time of soil autoclaving. The presence of active and non-active cells in soil was checked by DNA and RNA extraction and by electronic microscopy. None active cells (RNA-containing cells) were detectable after irradiation, but some morphological intact cells were observed by microscopy. These "ghost" cells were completely destroyed by the irradiation-autoclaving combination releasing large amount of soluble C. The soil respiration (O2 consumption and CO2 production) was reduced by irradiation and autoclaving but not stopped, suggesting the presence of an EXOMET. The delta 13C of CO2 released in the irradiated-autoclaved soil was strongly depleted (-70‰) indicating that this extracellular metabolism induced a substantial isotopic fractionation. Our findings suggest that two main oxidative metabolisms co-occur in soils: cell respiration and EXOMET. The isotopic fractionation induced by the EXOMET open perspectives for its quantification in non-sterilized living soils.
Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando
2017-01-01
Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community. PMID:28767679
Muñiz, Selene; Gonzalvo, Pilar; Valdehita, Ana; Molina-Molina, José Manuel; Navas, José María; Olea, Nicolás; Fernández-Cascán, Jesús; Navarro, Enrique
2017-11-01
An ecotoxicological survey of soils that were polluted with wastes from lindane (γ-HCH) production assessed the effects of organochlorine compounds on the metabolism of microbial communities and the toxicity of these compounds to a native earthworm (Allolobophora chlorotica). Furthermore, the bioremediation role of earthworms as facilitators of soil washing and the microbial degradation of these organic pollutants were also studied. Soil samples that presented the highest concentrations of ε-HCH, 2,4,6-trichlorophenol, pentachlorobenzene and γ-HCH were extremely toxic to earthworms in the short term, causing the death of almost half of the population. In addition, these soils inhibited the heterotrophic metabolic activity of the microbial community. These highly polluted samples also presented substances that were able to activate cellular detoxification mechanisms (measured as EROD and BFCOD activities), as well as compounds that were able to cause endocrine disruption. A few days of earthworm activity increased the extractability of HCH isomers (e.g., γ-HCH), facilitating the biodegradation of organochlorine compounds and reducing the intensity of endocrine disruption in soils that had low or medium contamination levels. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism.
Huang, Bing; Li, Dian-Geng; Huang, Ying; Liu, Chang-Ting
2018-05-14
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments
NASA Astrophysics Data System (ADS)
Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.
2017-12-01
Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species. Moreover, molecular analysis of subsamples collected from each incubation will link carbon utilization with the underlying gene expression. Our study sheds light on the degree to which the metabolic capacities of microorganisms affect carbon transformation in sedimentary environments.
NASA Astrophysics Data System (ADS)
Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan
2018-02-01
The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.
Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov
2014-01-01
Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409
Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Huang, Mengjun; He, Kaize; Liu, Dayu; Luo, Huibo; Zhao, Dong; He, Hui; Fang, Yang; Zhao, Hai
2017-01-01
Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage). Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products. PMID:28955318
Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang
2017-12-01
A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.; ...
2015-10-20
Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Jessica A. M.; Jiang, Jiang; Patterson, Courtney M.
Plant roots, their associated microbial community and free-living soil microbes interact to regulate the movement of carbon from the soil to the atmosphere, one of the most important and least understood fluxes of terrestrial carbon. Our inadequate understanding of how plant-microbial interactions alter soil carbon decomposition may lead to poor model predictions of terrestrial carbon feedbacks to the atmosphere. Roots, mycorrhizal fungi and free-living soil microbes can alter soil carbon decomposition through exudation of carbon into soil. Exudates of simple carbon compounds can increase microbial activity because microbes are typically carbon limited. When both roots and mycorrhizal fungi are presentmore » in the soil, they may additively increase carbon decomposition. However, when mycorrhizas are isolated from roots, they may limit soil carbon decomposition by competing with free-living decomposers for resources. We manipulated the access of roots and mycorrhizal fungi to soil insitu in a temperate mixed deciduous forest. We added 13C-labelled substrate to trace metabolized carbon in respiration and measured carbon-degrading microbial extracellular enzyme activity and soil carbon pools. We used our data in a mechanistic soil carbon decomposition model to simulate and compare the effects of root and mycorrhizal fungal presence on soil carbon dynamics over longer time periods. Contrary to what we predicted, root and mycorrhizal biomass did not interact to additively increase microbial activity and soil carbon degradation. The metabolism of 13C-labelled starch was highest when root biomass was high and mycorrhizal biomass was low. These results suggest that mycorrhizas may negatively interact with the free-living microbial community to influence soil carbon dynamics, a hypothesis supported by our enzyme results. Our steady-state model simulations suggested that root presence increased mineral-associated and particulate organic carbon pools, while mycorrhizal fungal presence had a greater influence on particulate than mineral-associated organic carbon pools.Synthesis. Our results suggest that the activity of enzymes involved in organic matter decomposition was contingent upon root-mycorrhizal-microbial interactions. Using our experimental data in a decomposition simulation model, we show that root-mycorrhizal-microbial interactions may have longer-term legacy effects on soil carbon sequestration. Lastly, our study suggests that roots stimulate microbial activity in the short term, but contribute to soil carbon storage over longer periods of time.« less
Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions.
Guo, Peng; Zhang, Chunfang; Wang, Yi; Yu, Xinwei; Zhang, Zhichao; Zhang, Dongdong
2018-03-01
This study investigated the effects of different long-term fertilizations on humic substances (HSs), humic acids (HAs) and humins, functioning as redox mediators for various microbial redox biotransformations, including 2,2',4,4',5,5'- hexachlorobiphenyl (PCB 153 ) dechlorination, dissimilatory iron reduction, and nitrate reduction, and their electron-mediating natures. The redox activity of HSs for various microbial redox metabolisms was substantially enhanced by long-term application of organic fertilizer (pig manure). As a redox mediator, only humin extracted from soils with organic fertilizer amendment (OF-HM) maintained microbial PCB 153 dechlorination activity (1.03 μM PCB 153 removal), and corresponding HA (OF-HA) most effectively enhanced iron reduction and nitrate reduction by Shewanella putrefaciens. Electrochemical analysis confirmed the enhancement of their electron transfer capacity and redox properties. Fourier transform infrared analysis showed that C=C and C=O bonds, and carboxylic or phenolic groups in HSs might be the redox functional groups affected by fertilization. This research enhances our understanding of the influence of anthropogenic fertility on the biogeochemical cycling of elements and in situ remediation ability in agroecosystems through microorganisms' metabolisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo
2015-11-01
One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability.
Microbial population and functional dynamics associated with surface potential and carbon metabolism
Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna
2014-01-01
Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938
Luo, Shuai; Guo, Weihua; H. Nealson, Kenneth; Feng, Xueyang; He, Zhen
2016-01-01
Microbial fuel cell (MFC) is a promising technology for direct electricity generation from organics by microorganisms. The type of electron donors fed into MFCs affects the electrical performance, and mechanistic understanding of such effects is important to optimize the MFC performance. In this study, we used a model organism in MFCs, Shewanella oneidensis MR-1, and 13C pathway analysis to investigate the role of formate in electricity generation and the related microbial metabolism. Our results indicated a synergistic effect of formate and lactate on electricity generation, and extra formate addition on the original lactate resulted in more electrical output than using formate or lactate as a sole electron donor. Based on the 13C tracer analysis, we discovered decoupled cell growth and electricity generation in S. oneidensis MR-1 during co-utilization of lactate and formate (i.e., while the lactate was mainly metabolized to support the cell growth, the formate was oxidized to release electrons for higher electricity generation). To our best knowledge, this is the first time that 13C tracer analysis was applied to study microbial metabolism in MFCs and it was demonstrated to be a valuable tool to understand the metabolic pathways affected by electron donors in the selected electrochemically-active microorganisms. PMID:26868848
Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall
NASA Astrophysics Data System (ADS)
LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre
2014-01-01
The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the role of microbial activity in the deep subsurface.
Metabolic Surgery Profoundly Influences Gut Microbial-Host Metabolic Crosstalk
Li, Jia V.; Ashrafian, Hutan; Bueter, Marco; Kinross, James; Sands, Caroline; le Roux, Carel W; Bloom, Stephen R.; Darzi, Ara; Athanasiou, Thanos; Marchesi, Julian R.; Nicholson, Jeremy K.; Holmes, Elaine
2013-01-01
Background and Aims Bariatric surgery is increasingly performed worldwide to treat morbid obesity and is also known as metabolic surgery to reflect its beneficial metabolic effects especially with respect to improvement in type 2 diabetes. Understanding surgical weight loss mechanisms and metabolic modulation is required to enhance patient benefits and operative outcomes. Methods We apply a parallel and statistically integrated metagenomic and metabonomic approach to characterize Roux-en-Y gastric bypass (RYGB) effects in a rat model. Results We show substantial shifts of the main gut phyla towards higher levels of Proteobacteria (52-fold) specifically Enterobacter hormaechei. We also find low levels of Firmicutes (4.5-fold) and Bacteroidetes (2-fold) in comparison to sham-operated rats. Faecal extraction studies reveal a decrease in faecal bile acids and a shift from protein degradation to putrefaction through decreased faecal tyrosine with concomitant increases in faecal putrescine and diamnoethane. We find decreased urinary amines and cresols and demonstrate indices of modulated energy metabolism post-RYGB including decreased urinary succinate, 2-oxoglutarate, citrate and fumarate. These changes could also indicate renal tubular acidosis, which associates with increased flux of mitochondrial tricarboxylic acid cycle intermediates. A surgically-induced effect on the gut-brain-liver metabolic axis is inferred by increased neurotropic compounds; faecal γ-aminobutyric acid (GABA) and glutamate. Conclusion This profound co-dependence of mammalian and microbial metabolism, which is systematically altered following RYGB surgery, suggests that RYGB exerts local and global metabolic activities. The effect of RYGB surgery on the host metabolic-microbial crosstalk augments our understanding of the metabolic phenotype of bariatric procedures and can facilitate enhanced treatments for obesity-related diseases. PMID:21572120
NASA Astrophysics Data System (ADS)
Morrill, P. L.; Rietze, A.; Kohl, L.; Miles, S.; Kavanagh, H.; Cox, A.; Brazelton, W. J.; Ishii, S.; Sherwood Lollar, B.; Schrenk, M. O.; Nealson, K. H.; Ziegler, S. E.; Ono, S.; Wang, D. T.; Lang, S. Q.; Cumming, E.
2014-12-01
Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface ultramafic environment rich in hydrogen and methane gases. Field data and results from substrate addition microcosm experiments will be presented from two contrasting continental sites of serpentinization: the Tablelands, NL, CAN and The Cedars, CA, USA both Phanerozoic in age. These continental sites share geochemical characteristics that make these environments challenging for life, such as high pH, low Eh, scarce electron acceptors, and limited dissolved inorganic carbon for autotrophic growth. However, microbiological analyses have demonstrated that life does indeed exist in these environments. While environmental genomic studies indicated the potential metabolic capabilities of microorganisms in the sites, actual microbial metabolic activities in these environments remain unknown. To expand the understanding of biogeochemistry of the sites, we are conducting studies focusing on chemical and isotopic measurements, carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms. Thus far, in situ geochemical data suggests that the methane from the Tablelands is primarily non-microbial, while the methane from The Cedars likely has some microbial contributions. To date, substrate addition microcosm experiments show no microbial production of methane from Tablelands' water and sediments. However, microbial carbon monoxide utilization has been observed in Tableland microcosms, but not in The Cedars microcosms. These results demonstrate how geochemistry and substrate addition experiments can be complementary for the determination of the processes favored at these continental sites of serpentinization.
NASA Astrophysics Data System (ADS)
Bristow, Laura A.
2018-04-01
Substantial amounts of denitrification and other anaerobic metabolisms can occur in anoxic microenvironments within marine snow particles, according to model simulations. This microbial activity may have a global impact on nitrogen cycling.
Hartman, Wyatt H.; Richardson, Curtis J.
2013-01-01
Background Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils. Methodology/Principal Findings To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability. Conclusions/Significance Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats. PMID:23526933
Microbial biofilm formation and its consequences for the CELSS program
NASA Technical Reports Server (NTRS)
Mitchell, R.
1994-01-01
A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.
Rodrigo Quejigo, Jose; Dörfler, Ulrike; Schroll, Reiner; Esteve-Núñez, Abraham
2016-05-01
The absence of suitable terminal electron acceptors (TEA) in soil might limit the oxidative metabolism of environmental microbial populations. Microbial electroremediating cells (MERCs) consist in a variety of bioelectrochemical devices that aim to overcome electron acceptor limitation and maximize metabolic oxidation with the purpose of enhancing the biodegradation of a pollutant in the environment. The objective of this work was to use MERCs principles for stimulating soil bacteria to achieve the complete biodegradation of the herbicide (14) C-isoproturon (IPU) to (14) CO(2) in soils. Our study concludes that using electrodes at a positive potential [+600 mV (versus Ag/AgCl)] enhanced the mineralization by 20-fold respect the electrode-free control. We also report an overall profile of the (14) C-IPU metabolites and a (14) C mass balance in response to the different treatments. The remarkable impact of electrodes on the microbial activity of natural communities suggests a promising future for this emerging environmental technology that we propose to name bioelectroventing. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
2D-Visualization of metabolic activity with planar optical chemical sensors (optodes)
NASA Astrophysics Data System (ADS)
Meier, R. J.; Liebsch, G.
2015-12-01
Microbia plays an outstandingly important role in many hydrologic compartments, such as e.g. the benthic community in sediments, or biologically active microorganisms in the capillary fringe, in ground water, or soil. Oxygen, pH, and CO2 are key factors and indicators for microbial activity. They can be measured using optical chemical sensors. These sensors record changing fluorescence properties of specific indicator dyes. The signals can be measured in a non-contact mode, even through transparent walls, which is important for many lab-experiments. They can measure in closed (transparent) systems, without sampling or intruding into the sample. They do not consume the analytes while measuring, are fully reversible and able to measure in non-stirred solutions. These sensors can be applied as high precision fiberoptic sensors (for profiling), robust sensor spots, or as planar sensors for 2D visualization (imaging). Imaging enables to detect thousands of measurement spots at the same time and generate 2D analyte maps over a region of interest. It allows for comparing different regions within one recorded image, visualizing spatial analyte gradients, or more important to identify hot spots of metabolic activity. We present ready-to-use portable imaging systems for the analytes oxygen, pH, and CO2. They consist of a detector unit, planar sensor foils and a software for easy data recording and evaluation. Sensors foils for various analytes and measurement ranges enable visualizing metabolic activity or analyte changes in the desired range. Dynamics of metabolic activity can be detected in one shot or over long time periods. We demonstrate the potential of this analytical technique by presenting experiments on benthic disturbance-recovery dynamics in sediments and microbial degradation of organic material in the capillary fringe. We think this technique is a new tool to further understand how microbial and geochemical processes are linked in (not solely) hydrologic systems.
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L; Brauer, Jonathan I; Duncan, Kathleen E; Adamiak, Justyna; Sunner, Jan A; Beech, Iwona B
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II-Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes.
Gutarowska, Beata; Celikkol-Aydin, Sukriye; Bonifay, Vincent; Otlewska, Anna; Aydin, Egemen; Oldham, Athenia L.; Brauer, Jonathan I.; Duncan, Kathleen E.; Adamiak, Justyna; Sunner, Jan A.; Beech, Iwona B.
2015-01-01
Preservation of cultural heritage is of paramount importance worldwide. Microbial colonization of construction materials, such as wood, brick, mortar, and stone in historic buildings can lead to severe deterioration. The aim of the present study was to give modern insight into the phylogenetic diversity and activated metabolic pathways of microbial communities colonized historic objects located in the former Auschwitz II–Birkenau concentration and extermination camp in Oświecim, Poland. For this purpose we combined molecular, microscopic and chemical methods. Selected specimens were examined using Field Emission Scanning Electron Microscopy (FESEM), metabolomic analysis and high-throughput Illumina sequencing. FESEM imaging revealed the presence of complex microbial communities comprising diatoms, fungi and bacteria, mainly cyanobacteria and actinobacteria, on sample surfaces. Microbial diversity of brick specimens appeared higher than that of the wood and was dominated by algae and cyanobacteria, while wood was mainly colonized by fungi. DNA sequences documented the presence of 15 bacterial phyla representing 99 genera including Halomonas, Halorhodospira, Salinisphaera, Salinibacterium, Rubrobacter, Streptomyces, Arthrobacter and nine fungal classes represented by 113 genera including Cladosporium, Acremonium, Alternaria, Engyodontium, Penicillium, Rhizopus, and Aureobasidium. Most of the identified sequences were characteristic of organisms implicated in deterioration of wood and brick. Metabolomic data indicated the activation of numerous metabolic pathways, including those regulating the production of primary and secondary metabolites, for example, metabolites associated with the production of antibiotics, organic acids and deterioration of organic compounds. The study demonstrated that a combination of electron microscopy imaging with metabolomic and genomic techniques allows to link the phylogenetic information and metabolic profiles of microbial communities and to shed new light on biodeterioration processes. PMID:26483760
Brazelton, William J; Thornton, Christopher N; Hyer, Alex; Twing, Katrina I; Longino, August A; Lang, Susan Q; Lilley, Marvin D; Früh-Green, Gretchen L; Schrenk, Matthew O
2017-01-01
The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12). Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif.
NASA Astrophysics Data System (ADS)
Avancha, S.; Boye, K.
2014-12-01
In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.
Marlow, Jeffrey J.; Skennerton, Connor T.; Li, Zhou; Chourey, Karuna; Hettich, Robert L.; Pan, Chongle; Orphan, Victoria J.
2016-01-01
Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities, offering enhanced detection through system-wide product integration. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 unique proteins were identified, 11% of which were 15N-labeled. Consistent with the dominant anaerobic oxidation of methane (AOM) activity commonly observed in anoxic seep sediments, proteins associated with sulfate reduction and reverse methanogenesis—including the ANME-2 associated methylenetetrahydromethanopterin reductase (Mer)—were all observed to be actively synthesized (15N-enriched). Conversely, proteins affiliated with putative aerobic sulfur-oxidizing epsilon- and gammaproteobacteria showed a marked decrease over time in our anoxic sediment incubations. The abundance and phylogenetic range of 15N-enriched methyl-coenzyme M reductase (Mcr) orthologs, many of which exhibited novel post-translational modifications, suggests that seep sediments provide niches for multiple organisms performing analogous metabolisms. In addition, 26 proteins of unknown function were consistently detected and actively expressed under conditions supporting AOM, suggesting that they play important roles in methane seep ecosystems. Stable isotope probing in environmental proteomics experiments provides a mechanism to determine protein durability and evaluate lineage-specific responses in complex microbial communities placed under environmentally relevant conditions. Our work here demonstrates the active synthesis of a metabolically specific minority of enzymes, revealing the surprising longevity of most proteins over the course of an extended incubation experiment in an established, slow-growing, methane-impacted environmental system. PMID:27199908
Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong
2015-03-20
Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0-5 cm and 5-15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems.
Li, Fuyong
2017-01-01
ABSTRACT Exploring compositional and functional characteristics of the rumen microbiome can improve the understanding of its role in rumen function and cattle feed efficiency. In this study, we applied metatranscriptomics to characterize the active rumen microbiomes of beef cattle with different feed efficiencies (efficient, n = 10; inefficient, n = 10) using total RNA sequencing. Active bacterial and archaeal compositions were estimated based on 16S rRNAs, and active microbial metabolic functions including carbohydrate-active enzymes (CAZymes) were assessed based on mRNAs from the same metatranscriptomic data sets. In total, six bacterial phyla (Proteobacteria, Firmicutes, Bacteroidetes, Spirochaetes, Cyanobacteria, and Synergistetes), eight bacterial families (Succinivibrionaceae, Prevotellaceae, Ruminococcaceae, Lachnospiraceae, Veillonellaceae, Spirochaetaceae, Dethiosulfovibrionaceae, and Mogibacteriaceae), four archaeal clades (Methanomassiliicoccales, Methanobrevibacter ruminantium, Methanobrevibacter gottschalkii, and Methanosphaera), 112 metabolic pathways, and 126 CAZymes were identified as core components of the active rumen microbiome. As determined by comparative analysis, three bacterial families (Lachnospiraceae, Lactobacillaceae, and Veillonellaceae) tended to be more abundant in low-feed-efficiency (inefficient) animals (P < 0.10), and one archaeal taxon (Methanomassiliicoccales) tended to be more abundant in high-feed-efficiency (efficient) cattle (P < 0.10). Meanwhile, 32 microbial metabolic pathways and 12 CAZymes were differentially abundant (linear discriminant analysis score of >2 with a P value of <0.05) between two groups. Among them, 30 metabolic pathways and 11 CAZymes were more abundant in the rumen of inefficient cattle, while 2 metabolic pathways and 1 CAZyme were more abundant in efficient animals. These findings suggest that the rumen microbiomes of inefficient cattle have more diverse activities than those of efficient cattle, which may be related to the host feed efficiency variation. IMPORTANCE This study applied total RNA-based metatranscriptomics and showed the linkage between the active rumen microbiome and feed efficiency (residual feed intake) in beef cattle. The data generated from the current study provide fundamental information on active rumen microbiome at both compositional and functional levels, which serve as a foundation to study rumen function and its role in cattle feed efficiency. The findings that the active rumen microbiome may contribute to variations in feed efficiency of beef cattle highlight the possibility of enhancing nutrient utilization and improve cattle feed efficiency through modification of rumen microbial functions. PMID:28235871
Rehman, Habib Ur; Vahjen, Wilfried; Awad, Wageha A; Zentek, Jürgen
2007-10-01
The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.
Zhu, Xiaomin; Chen, Baoliang; Zhu, Lizhong; Xing, Baoshan
2017-08-01
Biochars have attracted tremendous attention due to their effects on soil improvement; they enhance carbon storage, soil fertility and quality, and contaminant (organic and heavy metal) immobilization and transformation. These effects could be achieved by modifying soil microbial habitats and (or) directly influencing microbial metabolisms, which together induce changes in microbial activity and microbial community structures. This review links microbial responses, including microbial activity, community structures and soil enzyme activities, with changes in soil properties caused by biochars. In particular, we summarized possible mechanisms that are involved in the effects that biochar-microbe interactions have on soil carbon sequestration and pollution remediation. Special attention has been paid to biochar effects on the formation and protection of soil aggregates, biochar adsorption of contaminants, biochar-mediated transformation of soil contaminants by microorganisms, and biochar-facilitated electron transfer between microbial cells and contaminants and soil organic matter. Certain reactive organic compounds and heavy metals in biochar may induce toxicity to soil microorganisms. Adsorption and hydrolysis of signaling molecules by biochar interrupts microbial interspecific communications, potentially altering soil microbial community structures. Further research is urged to verify the proposed mechanisms involved in biochar-microbiota interactions for soil remediation and improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Targeting the gut microbiota by dietary nutrients: A new avenue for human health.
Li, Daotong; Wang, Pan; Wang, Pengpu; Hu, Xiaosong; Chen, Fang
2017-08-28
The gut microbiota is a complex ecosystem consisted of trillions of microbes that have co-evolved with their host for hundreds of millions of years. During the last decade, a growing body of knowledge has suggested that there is a compelling set of connections among diet, gut microbiota and human health. Various physiological functions of the host, ranging from metabolic and immune regulation to nerve and endocrine development, are possibly mediated by the structural components of microbial cell or the products of microbial metabolism, which are greatly influenced by dietary macronutrients and micronutrients. Thus, governing the production and activity of these microbial-associated small molecules and metabolites through dietary intervention may provide promising strategies for the improvement of human health and disease. In this review article, we first provide an overview of current findings about the intimate interrelationships between diet and gut microbiota. We also introduce the physiological effects of some microbial-associated small molecules and metabolites on the host as well as the detailed signaling mechanisms.
Szakmár, Katalin; Reichart, Olivér; Szatmári, István; Erdősi, Orsolya; Szili, Zsuzsanna; László, Noémi; Székely Körmöczy, Péter; Laczay, Péter
2014-09-01
The potential effect of doxycycline on the microbial activity was investigated in three types of soil. Soil samples were spiked with doxycycline, incubated at 25°C and tested at 0, 2, 4 and 6 days after treatment. The microbiological activity of the soil was characterized by the viable count determined by plate pouring and by the time necessary to reach a defined rate of the redox-potential decrease termed as time to detection (TTD).The viable count of the samples was not changed during the storage. The TTD values, however exhibited a significant increase in the 0.2-1.6 mg/kg doxycycline concentration range compared to the untreated samples indicating concentration-dependent inhibitory effect on microbial activity. The potency of the effect was different in the 3 soil types. To describe the combined effect of the doxycycline concentration and time on the biological activity of one type of soil a mathematical model was constructed and applied.The change of microbial metabolic rate could be measured also without (detectable) change of microbial count when the traditional microbiological methods are not applicable. The applied new redox potential measurement-based method is a simple and useful procedure for the examination of microbial activity of soil and its potential inhibition by antibiotics.
Landscape topography structures the soil microbiome in arctic polygonal tundra.
Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; Wu, Yuxin; Ulrich, Craig; Kneafsey, Timothy; Tringe, Susannah G; Torn, Margaret S; Hubbard, Susan S; Jansson, Janet K
2018-02-22
In the Arctic, environmental factors governing microbial degradation of soil carbon (C) in active layer and permafrost are poorly understood. Here we determined the functional potential of soil microbiomes horizontally and vertically across a cryoperturbed polygonal landscape in Alaska. With comparative metagenomics, genome binning of novel microbes, and gas flux measurements we show that microbial greenhouse gas (GHG) production is strongly correlated to landscape topography. Active layer and permafrost harbor contrasting microbiomes, with increasing amounts of Actinobacteria correlating with decreasing soil C in permafrost. While microbial functions such as fermentation and methanogenesis were dominant in wetter polygons, in drier polygons genes for C mineralization and CH 4 oxidation were abundant. The active layer microbiome was poised to assimilate N and not to release N 2 O, reflecting low N 2 O flux measurements. These results provide mechanistic links of microbial metabolism to GHG fluxes that are needed for the refinement of model predictions.
NASA Astrophysics Data System (ADS)
Wilton, E.; Flanagan, L. B.
2014-12-01
Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex interaction between temporal changes in soil environmental factors and biological changes in the plant and microbial community that affect soil respiratory metabolism.
Taxis, Tasia M.; Wolff, Sara; Gregg, Sarah J.; Minton, Nicholas O.; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D.; Taylor, Jeremy F.; Kerley, Monty S.; Pires, J. Chris; Lamberson, William R.; Conant, Gavin C.
2015-01-01
By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. PMID:26420832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C.
Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities (in situcolonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to “cross-feeding” with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection duringin situcolonization would dictate the responsemore » to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCEThe influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were “cross-fed” with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors.« less
Pedersen, Karsten
2013-01-01
It was previously concluded that opposing gradients of sulphate and methane, observations of 16S ribosomal DNA sequences displaying great similarity to those of anaerobic methane-oxidizing Archaea and a peak in sulphide concentration in groundwater from a depth of 250–350 m in Olkiluoto, Finland, indicated proper conditions for methane oxidation with sulphate. In the present research, pressure-resistant, gas-tight circulating systems were constructed to enable the investigation of attached and unattached anaerobic microbial populations from a depth of 327 m in Olkiluoto under in situ pressure (2.4 MPa), diversity, dissolved gas and chemistry conditions. Three parallel flow cell cabinets were configured to allow observation of the influence on microbial metabolic activity of 11 mℳ methane, 11 mℳ methane plus 10 mℳ H2 or 2.1 mℳ O2 plus 7.9 mℳ N2 (that is, air). The concentrations of these gases and of organic acids and carbon, sulphur chemistry, pH and Eh, ATP, numbers of cultivable micro-organisms, and total numbers of cells and bacteriophages were subsequently recorded under batch conditions for 105 days. The system containing H2 and methane displayed microbial reduction of 0.7 mℳ sulphate to sulphide, whereas the system containing only methane resulted in 0.2 mℳ reduced sulphate. The system containing added air became inhibited and displayed no signs of microbial activity. Added H2 and methane induced increasing numbers of lysogenic bacteriophages per cell. It appears likely that a microbial anaerobic methane-oxidizing process coupled to acetate formation and sulphate reduction may be ongoing in aquifers at a depth of 250–350 m in Olkiluoto. PMID:23235288
[Improving industrial microbial stress resistance by metabolic engineering: a review].
Fu, Ruiyan; Li, Yin
2010-09-01
Metabolic engineering is a technologic platform for industrial strain improvement and aims not only at modifying microbial metabolic fluxes, but also improving the physiological performance of industrial microbes. Microbes will meet multiple stresses in industrial processes. Consequently, elicited gene responses might result in a decrease in overall cell fitness and the efficiency of biotransformation. Thus, it is crucial to develop robust and productive microbial strains that can be integrated into industrial-scale bioprocesses. In this review, we focus on the progress of these novel methods and strategies for engineering stress-tolerance phenotypes referring to rational metabolic engineering and inverse metabolic engineering in recent years. In addition, we also address problems existing in this area and future research needs of microbial physiological functionality engineering.
Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments
NASA Astrophysics Data System (ADS)
Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare
2017-12-01
Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.
Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.
2014-01-01
While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936
Xu, Ran; Obbard, Jeffrey P
2003-01-01
Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.
Parro, Víctor; Blanco, Yolanda; Puente-Sánchez, Fernando; Rivas, Luis A; Moreno-Paz, Mercedes; Echeverría, Alex; Chong-Díaz, Guillermo; Demergasso, Cecilia; Cabrol, Nathalie A
2018-05-01
Oligotrophic glacial lakes in the Andes Mountains serve as models to study the effects of climate change on natural biological systems. The persistent high UV regime and evolution of the lake biota due to deglaciation make Andean lake ecosystems potential analogues in the search for life on other planetary bodies. Our objective was to identify microbial biomarkers and metabolic patterns that represent time points in the evolutionary history of Andean glacial lakes, as these may be used in long-term studies as microscale indicators of climate change processes. We investigated a variety of microbial markers in shallow sediments from Laguna Negra and Lo Encañado lakes (Región Metropolitana, Chile). An on-site immunoassay-based Life Detector Chip (LDChip) revealed the presence of sulfate-reducing bacteria, methanogenic archaea, and exopolymeric substances from Gammaproteobacteria. Bacterial and archaeal 16S rRNA gene sequences obtained from field samples confirmed the results from the immunoassays and also revealed the presence of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, as well as cyanobacteria and methanogenic archaea. The complementary immunoassay and phylogenetic results indicate a rich microbial diversity with active sulfate reduction and methanogenic activities along the shoreline and in shallow sediments. Sulfate inputs from the surrounding volcanic terrains during deglaciation may explain the observed microbial biomarker and metabolic patterns, which differ with depth and between the two lakes. A switch from aerobic and heterotrophic metabolisms to anaerobic ones such as sulfate reduction and methanogenesis in the shallow shores likely reflects the natural evolution of the lake sediments due to deglaciation. Hydrodynamic deposition of sediments creates compartmentalization (e.g., sediments with different structure and composition surrounded by oligotrophic water) that favors metabolic transitions. Similar phenomena would be expected to occur on other planetary lakes, such as those of Titan, where watery niches fed by depositional events would be surrounded by a "sea" of hydrocarbons. Key Words: Glacier lakes-Sedimentation-Prokaryotic metabolisms and biomarkers-Deglaciation-Life detection-Planetary exploration. Astrobiology 18, 586-606.
Uranium isotopes fingerprint biotic reduction.
Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan
2015-05-05
Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.
NASA Astrophysics Data System (ADS)
Delort, A.
2013-12-01
Within cloud water, microorganisms are metabolically active; so they are suspected to contribute to atmospheric chemistry. This paper is focused on the interactions between microorganisms and Reactive Oxygenated Species present in cloud water since these chemical compounds are driving the oxidant capacity of the cloud system. For this, real cloud waters with contrasting features (marine, continental, urban) were sampled at the puy de Dôme mountain (France). They exhibit high microbial biodiversity and complex chemical composition. These media were incubated in the dark and subjected to UV-light radiation in specifically designed photo-bio-reactors. The concentrations of hydrogen peroxide (H2O2), organic compounds and the ATP/ADP ratio were monitored during the incubation period. Microorganisms remained metabolically active in the presence of hydroxyl radicals photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry: first, they could directly metabolize organic carbon species; second they could reduce the available source of radicals due to their oxidative metabolism. Consequently, molecules such as H2O2 would be no longer available for photochemical or other chemical reactions, decreasing the cloud oxidant capacity.
Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds
NASA Astrophysics Data System (ADS)
Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie
2013-01-01
Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.
NASA Astrophysics Data System (ADS)
Fortunato, C. S.; Butterfield, D. A.; Larson, B.; Algar, C. K.; Huber, J. A.
2016-12-01
Microbial communities living both near and within the subseafloor are important players in the biogeochemical cycling of the deep ocean. To better understand the metabolic and gene expression patterns of these understudied communities, we collected low-temperature diffuse fluids for metagenomic, metatranscriptomic, and geochemical analyses from Axial Seamount, an active submarine volcano off the coast of Oregon, USA in 2013-2015. In April of 2015 Axial Seamount erupted along its north rift, five months before the 2015 samples were collected. This study thus provides both spatial and temporal analysis of subseafloor microbial communities pre and post eruption. The time series for this study focused on three vents at the south end of the caldera: Anemone, Marker 33, and Marker 113. Chemistry data shows that at each vent there are different geochemical conditions and thus a potentially different microbial metabolic profile. Anemone has the most oxidizing conditions and the highest abundance and expression of sulfur oxidation genes, attributed to both SUP05 and Epsilonproteobacteria. The most reducing conditions were observed at Marker 113, the site with the lowest oxygen concentration and where methanogenesis was the dominant metabolism, with 18.5% of all annotated transcripts attributed to methanogenesis. Although individual vents were metabolically distinct, there was very little variation in the overall taxonomic and metabolic profiles of each vent across years, even after the 2015 eruption. A diffuse fluid sample taken from the North Rift Zone post eruption showed similar community taxonomy to both Anemone and Marker 33; analyses of the metabolic potential and gene expression at this site is ongoing and will act as a comparison between the communities of the time series vents and those that were closer to the eruption site. Together, these chemical and `omic datasets reveal a dynamic microbial community at each vent, taxonomically diverse and involved in a wide array of biogeochemical transformations. Results are being used to model the functional dynamics and fluxes of vent communities to more closely link microbiological productivity at hydrothermal systems to deep-sea biogeochemical processes and will be also used to inform future projects using instrumentation on the cabled array at Axial Seamount.
Engineering microbial fatty acid metabolism for biofuels and biochemicals.
Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena; Borodina, Irina
2018-04-01
Traditional oleochemical industry chemically processes animal fats and plant oils to produce detergents, lubricants, biodiesel, plastics, coatings, and other products. Biotechnology offers an alternative process, where the same oleochemicals can be produced from abundant biomass feedstocks using microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining metabolites with different functionalities. The prospects of commercializing microbial oleochemicals are also discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effects of Jet Fuel Spills on the Microbial Community of Soil †
Song, Hong-Gyu; Bartha, Richard
1990-01-01
Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138
Tran, Patricia; Ramachandran, Arthi; Khawasek, Ola; Beisner, Beatrix E; Rautio, Milla; Huot, Yannick; Walsh, David A
2018-06-19
Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.
He, Tianliang; Li, Hongyun; Zhang, Xiaobo
2017-07-11
Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found that viral genes not only participated in most microbial metabolic pathways but also formed branched pathways in microbial metabolisms. The metabolic compensation of hosts mediated by viruses may help hosts to adapt to extreme environments and may be essential for host survival. Copyright © 2017 He et al.
NASA Astrophysics Data System (ADS)
Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.
2014-12-01
More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for the role of anaerobic microbial metabolisms in the subsurface terrestrial carbon cycle. Kerogens are chemically similar to organic material in carbonaceous chondrites. As such, further study may provide insight into the potential availability of organic compounds for microbial metabolisms operating in the subsurface of Mars.
NASA Astrophysics Data System (ADS)
Apostel, C.; Kuzyakov, Y.; Dippold, M. A.
2016-12-01
Soils are the largest terrestrial C sinks and microorganisms are the most important drivers of organic matter (OM) dynamics in soils: C allocation to ana- or catabolism in microbial cells is the decisive step, whether C gets oxidized to CO2 or whether it is allocated to microbial biomass, which, after cell death can be stabilized in soils. The metabolic parameter describing the ratio between the two fluxes is the carbon use efficiency (CUE), which can be assessed by position-specific labeling followed by metabolic flux modelling. However, to disentangle the single microbial groups' contribution to the bulk soil CUE, a tracing of individual groups metabolism is necessary. We assessed short-term (3 and 10 days) transformations of monosaccharides by adding position-specifically 13C labeled glucose to soil in a field experiment. Incorporation of 13C in the microbial PLFAs enabled us to distinguish individual microbial groups metabolic fluxes and compare their C-utilization efficiency using a quantitative C-flux model. The position-specific pattern in PLFAs revealed two sets of microorganisms: one metabolized glucose mainly by glycolysis and the other mainly by the pentose-phosphate pathway, which results in a higher CUE. Both of those sets included prokaryotic as well as eukaryotic microorganisms. This demonstrates that phylogenetic grouping is not decisive for the metabolic behavior of a microbial group and that the contribution of individual group members to the soil C fluxes cannot be concluded from their phylogeny.
Microbial activity at gigapascal pressures.
Sharma, Anurag; Scott, James H; Cody, George D; Fogel, Marilyn L; Hazen, Robert M; Hemley, Russell J; Huntress, Wesley T
2002-02-22
We observed physiological and metabolic activity of Shewanella oneidensis strain MR1 and Escherichia coli strain MG1655 at pressures of 68 to 1680 megapascals (MPa) in diamond anvil cells. We measured biological formate oxidation at high pressures (68 to 1060 MPa). At pressures of 1200 to 1600 MPa, living bacteria resided in fluid inclusions in ice-VI crystals and continued to be viable upon subsequent release to ambient pressures (0.1 MPa). Evidence of microbial viability and activity at these extreme pressures expands by an order of magnitude the range of conditions representing the habitable zone in the solar system.
NASA Astrophysics Data System (ADS)
Fairbanks, D.; Green, K.; Murphy, M. A.; Shepard, C.; Chorover, J.; Rich, V. I.; Gallery, R. E.
2015-12-01
Wildfires are increasing in size and severity across the western United States with impacts on regional biogeochemical cycling. The resiliency of resident soil microbial communities determines rates of nutrient transformations as well as forest structure and recovery. Redox conditions in soil determine metabolic activities of microorganisms, which first consume oxygen and a succession of alternative terminal electron acceptors to support growth and metabolism using a variety of carbon sources. Controls on redox zonation are largely unknown in dominantly oxic soils, and microbial community adaptation and response to fluctuations in redox potential in a sub-alpine forested post-disturbance catchment has not been studied. Previous work has shown that fluctuating or rising water tables result in redox-dynamic sites, which can be 'hot spots' of biogeochemical activity depending on landscape position. Fire-induced tree mortality results in altered hydrologic flow paths and decreased evapotranspiration, leading to potential for intensified hot spot activity. We are testing such coupling of microbial activity with fluctuations in redox status using field measurements and laboratory incubation experiments. The 2013 Thompson Ridge Fire in the Jemez River Basin (NM) Critical Zone Observatory provides a highly-contextualized opportunity to examine how disturbance regime affects changes in soil microbial community dynamics and fluctuations in reduction-oxidation potential (as quantified by continuous CZO measurements of O2, CO2 and Eh as a function of soil depth and landscape location). We hypothesize that areas of depositional convergence in the catchment, which have been shown to exhibit more reducing conditions, will host microbial communities that are better adapted to fluctuating redox conditions and exhibit a greater diversity in functional capabilities. In these mixed conifer forests we find shifts in redox potential status in relation to depth and topography where more reducing conditions typically occur in convergent zones and at depth. These results highlight the significance of fluctuating oxygen-depleted zones in aerobic soils on microbial community activity and structure, linking community response to larger scale ecosystem processes.
Zang, Xiangyun; Liu, Meiting; Fan, Yihong; Xu, Jie; Xu, Xiuhong; Li, Hongtao
2018-01-01
Compost habitats sustain a vast ensemble of microbes that engender the degradation of cellulose, which is an important part of global carbon cycle. β-Glucosidase is the rate-limiting enzyme of degradation of cellulose. Thus, analysis of regulation of β-glucosidase gene expression in composting is beneficial to a better understanding of cellulose degradation mechanism. Genetic diversity and expression of β-glucosidase-producing microbial communities, and relationships of cellulose degradation, metabolic products and the relative enzyme activity during natural composting and inoculated composting were evaluated. Compared with natural composting, adding inoculation agent effectively improved the degradation of cellulose, and maintained high level of the carboxymethyl cellulose (CMCase) and β-glucosidase activities in thermophilic phase. Gene expression analysis showed that glycoside hydrolase family 1 (GH1) family of β-glucosidase genes contributed more to β-glucosidase activity in the later thermophilic phase in inoculated compost. In the cooling phase of natural compost, glycoside hydrolase family 3 (GH3) family of β-glucosidase genes contributed more to β-glucosidase activity. Intracellular β-glucosidase activity played a crucial role in the regulation of β-glucosidase gene expression, and upregulation or downregulation was also determined by extracellular concentration of glucose. At sufficiently high glucose concentrations, the functional microbial community in compost was altered, which may contribute to maintaining β-glucosidase activity despite the high glucose content. This research provides an ecological functional map of microorganisms involved in carbon metabolism in cattle manure-rice straw composting. The performance of the functional microbial groups in the two composting treatments is different, which is related to the cellulase activity and cellulose degradation, respectively.
Marlow, Jeffrey J; Kumar, Amit; Enalls, Brandon C; Reynard, Linda M; Tuross, Noreen; Stephanopoulos, Gregory; Girguis, Peter
2018-06-01
Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy-rich, yet the most efficient methane-activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by-products at a comparable rate and in near-stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost-effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep-sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep-sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full-scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane-oxidizing, sulfide-generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane-dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth-based communities were substantially streamlined and were dominated by Desulfotomaculum geothermicum. Fluorescence in situ hybridization microscopy with carbon cloth fibers revealed a novel spatial arrangement of anaerobic methanotrophs and sulfate reducing bacteria suggestive of an electronic coupling enabled by the artificial substrate. This system: 1) enables a more targeted manipulation of methane-activating microbial communities using a low-mass and sediment-free substrate; 2) holds promise for the simultaneous consumption of a strong greenhouse gas and the generation of usable downstream products; and 3) furthers the broader adoption of uncultured, mixed microbial communities for biotechnological use. © 2018 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.
Marlow, Jeffrey J.; Kumar, Amit; Enalls, Brandon C.; Reynard, Linda M.; Tuross, Noreen
2018-01-01
Abstract Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy‐rich, yet the most efficient methane‐activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by‐products at a comparable rate and in near‐stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost‐effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep‐sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep‐sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full‐scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane‐oxidizing, sulfide‐generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane‐dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth‐based communities were substantially streamlined and were dominated by Desulfotomaculum geothermicum. Fluorescence in situ hybridization microscopy with carbon cloth fibers revealed a novel spatial arrangement of anaerobic methanotrophs and sulfate reducing bacteria suggestive of an electronic coupling enabled by the artificial substrate. This system: 1) enables a more targeted manipulation of methane‐activating microbial communities using a low‐mass and sediment‐free substrate; 2) holds promise for the simultaneous consumption of a strong greenhouse gas and the generation of usable downstream products; and 3) furthers the broader adoption of uncultured, mixed microbial communities for biotechnological use. PMID:29460958
NASA Astrophysics Data System (ADS)
Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken
2013-07-01
We report here the concurrence and interaction among forms of nitrogen metabolism in thermophilic microbial mat communities that developed in an ammonium-abundant subsurface geothermal stream. First, the physical and chemical conditions of the stream water at several representative microbial mat habitats (including upper, middle and downstream sites) were characterized. A thermodynamic calculation using these physical and chemical conditions predicted that nitrification consisting of ammonia and nitrite oxidations would provide one of the largest energy yields of chemolithotrophic metabolisms. Second, near-complete prokaryotic 16S rRNA gene clone analysis was conducted for representative microbial mat communities at the upper, middle and downstream sites. The results indicated a dynamic shift in the 16S rRNA gene phylotype composition through physical and chemical variations of the stream water. The predominant prokaryotic components varied from phylotypes related to hydrogeno (H2)- and thio (S)-trophic Aquificales, thermophilic methanotrophs and putative ammonia-oxidizing Archaea (AOA) located upstream (72 °C) to the phylotypes affiliated with putative AOA and nitrite-oxidizing bacteria (NOB) located at the middle and downstream sites (65 and 57 °C, respectively). In addition, the potential in situ metabolic activities of different forms of nitrogen metabolism were estimated through laboratory experiments using bulk microbial mat communities. Finally, the compositional and isotopic variation in nitrogen compounds was investigated in the stream water flowing over the microbial mats and in the interstitial water inside the mats. Although the stream water was characterized by a gradual decrease in the total ammonia concentration (ΣNH3: the sum of ammonia and ammonium concentrations) and a gradual increase in the total concentration of nitrite and nitrate (NO2- + NO3-), the total inorganic nitrogen concentration (TIN: the sum of ΣNH3, NO2- and NO3- concentrations) was nearly constant (250 μM) throughout the stream. Based on the level of detectable dissolved molecular oxygen (O2) of the stream water (⩾38 μM) along with metabolic measurements, it was predicted that nitrification by thermophilic AOA and NOB components in the microbial mats that were exposed to the stream water would constrain the concentrations and isotopic ratios of ΣNH3, NO2- and NO3- of the stream water. The δ15N value of ΣNH3 increased from 0‰ to 7‰ with decreasing concentration, which was consistent with the previously reported isotopic fractionation for microbial ΣNH3 oxidation. In contrast, the δ15N value of NO2- was 22‰ lighter than that of NO3- in the steam water at the same site, indicating an inverse isotopic fractionation for microbial NO2- oxidation. The variation in concentrations and δ15N values of ΣNH3, NO2- and NO3- was largely explained using a two-step nitrification model, and the apparent nitrogen isotopic fractionations of ΣNH3 oxidation and NO2- oxidation were estimated to be 0.986 and 1.020, respectively. In the interstitial water within the microbial mats, the compositional and isotopic properties of TIN at the downstream site indicated potential denitrification by the anaerobic microbial components. The geochemically deduced transition of microbial nitrogen metabolism was substantiated through cultivation-independent microbiological analyses.
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine L. Lowe; Bill W. Bogan; Wendy R. Sullivan
2004-07-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed with mixed bacterialmore » cultures obtained from natural gas pipelines. Treatment with the pepper extracts affected the growth and metabolic activity of the microbial consortia. Specifically, the growth and metabolism of sulfate reducing bacteria was inhibited. The demonstration that pepper extracts can inhibit the growth and metabolism of sulfate reducing bacteria in mixed cultures is a significant observation validating a key hypothesis of the project. Future tests to determine the effects of pepper extracts on mature/established biofilms will be performed next.« less
Metabolic interactions and dynamics in microbial communities
NASA Astrophysics Data System (ADS)
Segre', Daniel
Metabolism, in addition to being the engine of every living cell, plays a major role in the cell-cell and cell-environment relations that shape the dynamics and evolution of microbial communities, e.g. by mediating competition and cross-feeding interactions between different species. Despite the increasing availability of metagenomic sequencing data for numerous microbial ecosystems, fundamental aspects of these communities, such as the unculturability of many isolates, and the conditions necessary for taxonomic or functional stability, are still poorly understood. We are developing mechanistic computational approaches for studying the interactions between different organisms based on the knowledge of their entire metabolic networks. In particular, we have recently built an open source platform for the Computation of Microbial Ecosystems in Time and Space (COMETS), which combines metabolic models with convection-diffusion equations to simulate the spatio-temporal dynamics of metabolism in microbial communities. COMETS has been experimentally tested on small artificial communities, and is scalable to hundreds of species in complex environments. I will discuss recent developments and challenges towards the implementation of models for microbiomes and synthetic microbial communities.
NASA Astrophysics Data System (ADS)
Joniec, Jolanta; Frąc, Magdalena
2017-10-01
The aim of the study was to evaluate microbial functional diversity based on community level physiological profiling and β-glucosidase activity changes in soil degraded by sulphur mining and subjected to reclamation with various waste. The experiment was set up in the area of the former `Jeziórko' Sulphur Mine (Poland), on a soilless substrate with a particle size distribution of slightly loamy sand. The experimental variants included the application of post-flotation lime, sewage sludge and mineral wool. The analyses of soil samples included the assessment of the following microbiological indices: β-glucosidase activity and functional diversity average well color development and richness). The results indicate that sewage sludge did not exert a significant impact on the functional diversity of microorganisms present in the reclaimed soil. In turn, the application of other types of waste contributed to a significant increase in the parameters of total metabolic activity and functional diversity of the reclaimed soil. However, the temporal analysis of the metabolic profile of soil microorganisms demonstrated that a single application of waste did not yield a durable, stable metabolic profile in the reclaimed soil. Still, there was an increase in β-glucosidase activity, especially in objects treated with sewage sludge.
Schütz, Kirsten; Kandeler, Ellen; Nagel, Peter; Scheu, Stefan; Ruess, Liliane
2010-06-01
Subsurface microorganisms are essential constituents of the soil purification processes associated with groundwater quality. In particular, soil enzyme activity determines the biodegradation of organic compounds passing through the soil profile. Transects from surface soil to a depth of 3.5 m were investigated for microbial and chemical soil characteristics at two groundwater recharge sites and one control site. The functional diversity of the microbial community was analyzed via the activity of eight enzymes. Acid phosphomonoesterase was dominant across sites and depths, followed by L-leucine aminopeptidase and beta-glucosidase. Structural [e.g. phospholipid fatty acid (PLFA) pattern] and functional microbial diversities were linked to each other at the nonwatered site, whereas amendment with nutrients (DOC, NO(3)(-)) by flooding uncoupled this relationship. Microbial biomass did not differ between sites, whereas microbial respiration was the highest at the watered sites. Hence, excess nutrients available due to artificial groundwater recharge could not compensate for the limitation by others (e.g. phosphorus as assigned by acid phosphomonoesterase activity). Instead, at a similar microbial biomass, waste respiration via overflow metabolism occurred. In summary, ample supply of carbon by flooding led to a separation of decomposition and microbial growth, which may play an important role in regulating purification processes during groundwater recharge.
A constant flux of diverse thermophilic bacteria into the cold Arctic seabed.
Hubert, Casey; Loy, Alexander; Nickel, Maren; Arnosti, Carol; Baranyi, Christian; Brüchert, Volker; Ferdelman, Timothy; Finster, Kai; Christensen, Flemming Mønsted; Rosa de Rezende, Júlia; Vandieken, Verona; Jørgensen, Bo Barker
2009-09-18
Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis, fermentation, and sulfate reduction upon induction at 50 degrees C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may broadly influence microbial community composition in the marine environment.
Wu, Qun; Ling, Jie
2014-01-01
Selection of a starter culture with excellent viability and metabolic activity is important for inoculated fermentation of traditional food. To obtain a suitable starter culture for making Chinese sesame-flavored liquor, the yeast and bacterium community structures were investigated during spontaneous and solid-state fermentations of this type of liquor. Five dominant species in spontaneous fermentation were identified: Saccharomyces cerevisiae, Pichia membranaefaciens, Issatchenkia orientalis, Bacillus licheniformis, and Bacillus amyloliquefaciens. The metabolic activity of each species in mixed and inoculated fermentations of liquor was investigated in 14 different cocultures that used different combinations of these species. The relationships between the microbial species and volatile metabolites were analyzed by partial least-squares (PLS) regression analysis. We found that S. cerevisiae was positively correlated to nonanal, and B. licheniformis was positively associated with 2,3-butanediol, isobutyric acid, guaiacol, and 4-vinyl guaiacol, while I. orientalis was positively correlated to butyric acid, isovaleric acid, hexanoic acid, and 2,3-butanediol. These three species are excellent flavor producers for Chinese liquor. Although P. membranaefaciens and B. amyloliquefaciens were not efficient flavor producers, the addition of them alleviated competition among the other three species and altered their growth rates and flavor production. As a result, the coculture of all five dominant species produced the largest amount of flavor compounds. The result indicates that flavor producers and microbial interaction regulators are important for inoculated fermentation of Chinese sesame-flavored liquor. PMID:24814798
Ma, Jinxing; Wang, Zhiwei; Li, Huan; Park, Hee-Deung; Wu, Zhichao
2016-06-01
Metagenomic sequencing was used to investigate the microbial structures, functional potentials, and biofouling-related genes in a membrane bioreactor (MBR). The results showed that the microbial community in the MBR was highly diverse. Notably, function analysis of the dominant genera indicated that common genes from different phylotypes were identified for important functional potentials with the observation of variation of abundances of genes in a certain taxon (e.g., Dechloromonas). Despite maintaining similar metabolic functional potentials with a parallel full-scale conventional activated sludge (CAS) system due to treating the identical wastewater, the MBR had more abundant nitrification-related bacteria and coding genes of ammonia monooxygenase, which could well explain its excellent ammonia removal in the low-temperature period. Furthermore, according to quantification of the genes involved in exopolysaccharide and extracellular polymeric substance (EPS) protein metabolism, the MBR did not show a much different potential in producing EPS compared to the CAS system, and bacteria from the membrane biofilm had lower abundances of genes associated with EPS biosynthesis and transport compared to the activated sludge in the MBR.
Wu, Meng; Liu, Jia; Li, Weitao; Liu, Ming; Jiang, Chunyu; Li, Zhongpei
2017-10-01
Chlorantraniliprole (CAP) is a newly developed insecticide widely used in rice fields in China. There has been few studies evaluating the toxicological effects of CAP on soil-associated microbes. An 85-day microcosm experiment was performed to reveal the dissipation dynamics of CAP in three types of paddy soils in subtropical China. The effects of CAP on microbial activities (microbial biomass carbon-MBC, basal soil respiration-BSR, microbial metabolic quotient-qCO 2 , acid phosphatase and sucrose invertase activities) in the soils were periodically evaluated. Microbial phospholipid fatty acid (PLFA) analysis was used to evaluate the change of soil microbial community composition on day 14 and 50 of the experiment. CAP residues were extracted using the quick, easy, cheap, effective, rugged, and safe (QuChERS) method and quantification was measured by high performance liquid chromatography (HPLC). The half-lives (DT 50 ) of CAP were in the range of 41.0-53.0 days in the three soils. The results showed that CAP did not impart negative effects on MBC during the incubation. CAP inhibited BSR, qCO 2 , acid phosphatase and sucrose invertase activities in the first 14 days of incubation in all the soils. After day 14, the soil microbial parameters of CAP-treated soils became statistically at par with their controls. Principal component analysis (PCA) determining abundance of biomarker PLFAs indicated that the application of CAP significantly changed the compositions of microbial communities in all three paddy soils on day 14 but the compositions of soil microbial communities recovered by day 50. This study indicates that CAP does not ultimately impair microbial activities and microbial compositions of these three paddy soil types. Copyright © 2017 Elsevier Inc. All rights reserved.
Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik
2015-02-01
A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. © 2014 Wiley Periodicals, Inc.
Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.
Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J
2013-02-01
Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.
Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota.
Wang, Pei; Wang, Ronghui; Zhu, Yingdong; Sang, Shengmin
2017-11-08
[6]-Shogaol (6S), one of the major bioactive components in dry ginger, is attracting considerable attention because of its wide spectrum of biological activities, but its metabolic fate is still not fully understood. In the present study, the microbial metabolism of 6S was examined for the first time in in vitro batch fecal fermentation system and in mice. Two major microbial metabolites were detected and identified as 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9) and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11). Our results indicated that reductions of the double bond and the ketone group are the major metabolic pathways of 6S by the human gut microbiota. We also observed the interindividual variability in the metabolism of M11 to M9 by human gut microbiota. In addition, we demonstrated that the glucuronidated form of 6S and its metabolites could be rapidly deconjugated by human gut microbiota and in mice, which can be regarded as a reactive process taking place in the intestinal tract. To our knowledge, this is the first report involving the identification of the microbial metabolites of 6S in an in vitro fermentation system, and the first demonstration of the critical role of gut microbiota in producing the bioactive free form of 6S and its metabolites in the intestinal tract in mice.
Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography
NASA Astrophysics Data System (ADS)
O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.
2015-12-01
The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.
Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir
Nazina, Tamara N.; Shestakova, Natalya M.; Semenova, Ekaterina M.; Korshunova, Alena V.; Kostrukova, Nadezda K.; Tourova, Tatiana P.; Min, Liu; Feng, Qingxian; Poltaraus, Andrey B.
2017-01-01
The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles. PMID:28487680
Unique Microbial Diversity and Metabolic Pathway Features of Fermented Vegetables From Hainan, China
Peng, Qiannan; Jiang, Shuaiming; Chen, Jieling; Ma, Chenchen; Huo, Dongxue; Shao, Yuyu; Zhang, Jiachao
2018-01-01
Fermented vegetables are typically traditional foods made of fresh vegetables and their juices, which are fermented by beneficial microorganisms. Herein, we applied high-throughput sequencing and culture-dependent technology to describe the diversities of microbiota and identify core microbiota in fermented vegetables from different areas of Hainan Province, and abundant metabolic pathways in the fermented vegetables were simultaneously predicted. At the genus level, Lactobacillus bacteria were the most abundant. Lactobacillus plantarum was the most abundant species, followed by Lactobacillus fermentum, Lactobacillus pentosaceus, and Weissella cibaria. These species were present in each sample with average absolute content values greater than 1% and were thus defined as core microbiota. Analysis results based on the alpha and beta diversities of the microbial communities showed that the microbial profiles of the fermented vegetables differed significantly based on the regions and raw materials used, and the species of the vegetables had a greater effect on the microbial community structure than the region from where they were harvested. Regarding microbial functional metabolism, we observed an enrichment of metabolic pathways, including membrane transport, replication and repair and translation, which implied that the microbial metabolism in the fermented vegetables tended to be vigorous. In addition, Lactobacillus plantarum and Lactobacillus fermentum were calculated to be major metabolic pathway contributors. Finally, we constructed a network to better explain correlations among the core microbiota and metabolic pathways. This study facilitates an understanding of the differences in microbial profiles and fermentation pathways involved in the production of fermented vegetables, establishes a basis for optimally selecting microorganisms to manufacture high-quality fermented vegetable products, and lays the foundation for better utilizing tropical microbial resources. PMID:29559966
Taxis, Tasia M; Wolff, Sara; Gregg, Sarah J; Minton, Nicholas O; Zhang, Chiqian; Dai, Jingjing; Schnabel, Robert D; Taylor, Jeremy F; Kerley, Monty S; Pires, J Chris; Lamberson, William R; Conant, Gavin C
2015-11-16
By mapping translated metagenomic reads to a microbial metabolic network, we show that ruminal ecosystems that are rather dissimilar in their taxonomy can be considerably more similar at the metabolic network level. Using a new network bi-partition approach for linking the microbial network to a bovine metabolic network, we observe that these ruminal metabolic networks exhibit properties consistent with distinct metabolic communities producing similar outputs from common inputs. For instance, the closer in network space that a microbial reaction is to a reaction found in the host, the lower will be the variability of its enzyme copy number across hosts. Similarly, these microbial enzymes that are nearby to host nodes are also higher in copy number than are more distant enzymes. Collectively, these results demonstrate a widely expected pattern that, to our knowledge, has not been explicitly demonstrated in microbial communities: namely that there can exist different community metabolic networks that have the same metabolic inputs and outputs but differ in their internal structure. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Climate shapes the protein abundance of dominant soil bacteria.
Bastida, Felipe; Crowther, Tom W; Prieto, Iván; Routh, Devin; García, Carlos; Jehmlich, Nico
2018-05-28
Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of Actinobacteria, Planctomycetes and Proteobacteria, supporting the hypothesis that metabolic activity of some dominant phyla may be closely linked to climate. These results may improve our capacity to construct microbial models that better predict the impact of climate change in ecosystem processes. Copyright © 2018 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Agricultural drainage ditches are conduits between production acreage and receiving aquatic systems. Often overlooked for their mitigation capabilities, agricultural drainage ditches provide an important role for nutrient transformation via microbial metabolism. Variations in ecoenzyme activities ...
Ofaim, Shany; Ofek-Lalzar, Maya; Sela, Noa; Jinag, Jiandong; Kashi, Yechezkel; Minz, Dror; Freilich, Shiri
2017-01-01
Advances in metagenomics enable high resolution description of complex bacterial communities in their natural environments. Consequently, conceptual approaches for community level functional analysis are in high need. Here, we introduce a framework for a metagenomics-based analysis of community functions. Environment-specific gene catalogs, derived from metagenomes, are processed into metabolic-network representation. By applying established ecological conventions, network-edges (metabolic functions) are assigned with taxonomic annotations according to the dominance level of specific groups. Once a function-taxonomy link is established, prediction of the impact of dominant taxa on the overall community performances is assessed by simulating removal or addition of edges (taxa associated functions). This approach is demonstrated on metagenomic data describing the microbial communities from the root environment of two crop plants – wheat and cucumber. Predictions for environment-dependent effects revealed differences between treatments (root vs. soil), corresponding to documented observations. Metabolism of specific plant exudates (e.g., organic acids, flavonoids) was linked with distinct taxonomic groups in simulated root, but not soil, environments. These dependencies point to the impact of these metabolite families as determinants of community structure. Simulations of the activity of pairwise combinations of taxonomic groups (order level) predicted the possible production of complementary metabolites. Complementation profiles allow formulating a possible metabolic role for observed co-occurrence patterns. For example, production of tryptophan-associated metabolites through complementary interactions is unique to the tryptophan-deficient cucumber root environment. Our approach enables formulation of testable predictions for species contribution to community activity and exploration of the functional outcome of structural shifts in complex bacterial communities. Understanding community-level metabolism is an essential step toward the manipulation and optimization of microbial function. Here, we introduce an analysis framework addressing three key challenges of such data: producing quantified links between taxonomy and function; contextualizing discrete functions into communal networks; and simulating environmental impact on community performances. New technologies will soon provide a high-coverage description of biotic and a-biotic aspects of complex microbial communities such as these found in gut and soil. This framework was designed to allow the integration of high-throughput metabolomic and metagenomic data toward tackling the intricate associations between community structure, community function, and metabolic inputs. PMID:28878756
NASA Astrophysics Data System (ADS)
Miller, H.; Lopez, T. M.; Fischer, T. P.; Schrenk, M. O.
2016-12-01
Subduction-related processes, including the movement and alteration of carbon compounds, are an important component of global geochemical cycles. Actively degassing volcanoes of the Aleutian Island arc offer interesting opportunities to not only characterize the composition and abundance of volatiles, but also to identify the origin of the discharging gases (e.g. mantle, organic matter, or carbonates). Taking this approach a step further, microbial activities in and around volcanic fumarole areas may impact the composition and flux of reduced volcanic gases, either through their modification or their assimilation into fixed biomass. Microbiological studies of these systems can be used to develop predictive models to complement those based upon geochemical data while providing greater understanding of the causal relationships between microbial populations and their environment, and ultimately refine estimates of volcanic outgassing. Coupled fumarole soil and gas samples were collected from several Aleutian Island volcanoes in 2015 (Gareloi, Kanaga, Kiska, Little Sitkin) and 2016 (Okmok, Resheschnoi). DNA was extracted from the soil and used to describe microbial community composition, while gas samples were analyzed through chromatography and mass spectrometry. Preliminary data suggests a relationship between the abundance of specific groups of prokaryotes known to metabolize reduced gases, such as sulfur-oxidizers and methanotrophs, and the abundances of the degassing volatiles, including sulfur dioxide and methane. Ongoing studies aimed at investigating the relationship between the genomic composition of the fumarolic microbial community and the physical and chemical properties of the soil (i.e. mineralogy, bulk geochemistry, nutrient concentration, gas flux, and environmental measurements) are underway. These data will be used to evaluate the potential for microbial communities to remove volcanic carbon and store it as biomass, or to modify the volatile carbon flux through metabolic activities. When holistically considered, these data will help to refine estimates of volatile flux and outgassing from the Aleutian Arc, particularly those involving carbon compounds, and potentially provide a novel predictive tool that can be applied in high throughput to volcanoes worldwide.
An ancient Chinese wisdom for metabolic engineering: Yin-Yang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen G.; He, Lian; Wang, Qingzhao
In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less
An ancient Chinese wisdom for metabolic engineering: Yin-Yang
Wu, Stephen G.; He, Lian; Wang, Qingzhao; ...
2015-03-20
In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less
Microbial metabolic activity in soil as measured by dehydrogenase determinations
NASA Technical Reports Server (NTRS)
Casida, L. E., Jr.
1977-01-01
The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.
Processes of carbonate precipitation in modern microbial mats
NASA Astrophysics Data System (ADS)
Dupraz, Christophe; Reid, R. Pamela; Braissant, Olivier; Decho, Alan W.; Norman, R. Sean; Visscher, Pieter T.
2009-10-01
Microbial mats are ecosystems that arguably greatly affected the conditions of the biosphere on Earth through geological time. These laminated organosedimentary systems, which date back to > 3.4 Ga bp, are characterized by high metabolic rates, and coupled to this, rapid cycling of major elements on very small (mm-µm) scales. The activity of the mat communities has changed Earth's redox conditions (i.e. oxidation state) through oxygen and hydrogen production. Interpretation of fossil microbial mats and their potential role in alteration of the Earth's geochemical environment is challenging because these mats are generally not well preserved. Preservation of microbial mats in the fossil record can be enhanced through carbonate precipitation, resulting in the formation of lithified mats, or microbialites. Several types of microbially-mediated mineralization can be distinguished, including biologically-induced and biologically influenced mineralization. Biologically-induced mineralization results from the interaction between biological activity and the environment. Biologically-influenced mineralization is defined as passive mineralization of organic matter (biogenic or abiogenic in origin), whose properties influence crystal morphology and composition. We propose to use the term organomineralization sensu lato as an umbrella term encompassing biologically influenced and biologically induced mineralization. Key components of organomineralization sensu lato are the "alkalinity" engine (microbial metabolism and environmental conditions impacting the calcium carbonate saturation index) and an organic matrix comprised of extracellular polymeric substances (EPS), which may provide a template for carbonate nucleation. Here we review the specific role of microbes and the EPS matrix in various mineralization processes and discuss examples of modern aquatic (freshwater, marine and hypersaline) and terrestrial microbialites.
Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia.
Shen, Tiantian; Pi, Yongrui; Bao, Mutai; Xu, Nana; Li, Yiming; Lu, Jinren
2015-12-01
The efficiencies of free and immobilized microbial consortia in the degradation of different types of petroleum hydrocarbons were investigated. In this study, the biodegradation rates of naphthalene, phenanthrene, pyrene and crude oil reached about 80%, 30%, 56% and 48% under the optimum environmental conditions of free microbial consortia after 7 d. We evaluated five unique co-metabolic substances with petroleum hydrocarbons, α-lactose was the best co-metabolic substance among glucose, α-lactose, soluble starch, yeast powder and urea. The orthogonal biodegradation analysis results showed that semi-coke was the best immobilized carrier followed by walnut shell and activated carbon. Meanwhile, the significance of various factors that contribute to the biodegradation of semi-coke immobilized microbial consortia followed the order of: α-lactose > semi-coke > sodium alginate > CaCl2. Moreover, the degradation rate of the immobilized microbial consortium (47%) was higher than that of a free microbial consortium (26%) under environmental conditions such as the crude oil concentration of 3 g L(-1), NaCl concentration of 20 g L(-1), pH at 7.2-7.4 and temperature of 25 °C after 5 d. SEM and FTIR analyses revealed that the structure of semi-coke became more porous and easily adhered to the microbial consortium; the functional groups (e.g., hydroxy and phosphate) were identified in the microbial consortium and were changed by immobilization. This study demonstrated that the ability of microbial adaptation to the environment can be improved by immobilization which expands the application fields of microbial remediation.
Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Melissa J.; Lin, Xueju; Gaby, John C.
We present that Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2, CO 2, and CH 4) on potential rates of diazotrophy measured by acetylene (C 2H 2) reduction and 15N 2incorporation. A molecularmore » analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (15N 2 was suppressed 90% by O 2 and 55% by C 2H 2 and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2H 2-sensitive and C 2H 2-insensitive microbes that are more active at low concentrations of O 2 and show similar activity at high and low concentrations of CH 4. Importance: Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. In conclusion, our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.« less
Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota
Warren, Melissa J.; Lin, Xueju; Gaby, John C.; ...
2017-06-30
We present that Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2, CO 2, and CH 4) on potential rates of diazotrophy measured by acetylene (C 2H 2) reduction and 15N 2incorporation. A molecularmore » analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (15N 2 was suppressed 90% by O 2 and 55% by C 2H 2 and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2H 2-sensitive and C 2H 2-insensitive microbes that are more active at low concentrations of O 2 and show similar activity at high and low concentrations of CH 4. Importance: Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. In conclusion, our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.« less
Diversity and physiology of polyhydroxyalkanoate-producing and -degrading strains in microbial mats.
Villanueva, Laura; Del Campo, Javier; Guerrero, Ricardo
2010-10-01
Photosynthetic microbial mats are sources of microbial diversity and physiological strategies that reflect the physical and metabolic interactions between their resident species. This study focused on the diversity and activity of polyhydroxyalkanoate-producing and -degrading bacteria and their close partnership with cyanobacteria in an estuarine and a hypersaline microbial mat. The aerobic heterotrophic population was characterized on the basis of lipid biomarkers (respiratory quinones, sphingoid bases), polyhydroxyalkanoate determination, biochemical analysis of the isolates, and interaction assays. Most of the polyhydroxyalkanoate-producing isolates obtained from an estuarine mat belonged to the Halomonas and Labrenzia genera, while species of Sphingomonas and Bacillus were more prevalent in the hypersaline mat. Besides, the characterization of heterotrophic bacteria coisolated with filamentous cyanobacteria after selection suggested a specific association between them and diversification of the heterotrophic partner belonging to the Halomonas genus. Preliminary experiments suggested that syntrophic associations between strains of the Pseudoalteromonas and Halomonas genera explain the dynamics of polyhydroxyalkanoate accumulation in some microbial mats. These metabolic interactions and the diversity of the bacteria that participate in them are most likely supported by the strong mutual dependence of the partners. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Barroso, Elvira; Sánchez-Patán, Fernando; Martín-Alvarez, Pedro J; Bartolomé, Begoña; Moreno-Arribas, María Victoria; Peláez, Carmen; Requena, Teresa; van de Wiele, Tom; Martínez-Cuesta, M Carmen
2013-10-23
This work aimed to unravel the role of Lactobacillus plantarum IFPL935 strain in the colonic metabolism of a polyphenolic red wine extract, when added to a complex human colonic microbiota from the dynamic simulator of the human intestinal microbial ecosystem (SHIME). The concentration of microbial-derived phenolic metabolites and microbial community changes along with fermentative and proteolytic activities were monitored. The results showed that L. plantarum IFPL935 significantly increased the concentration of the initial microbial ring-fission catabolite of catechins and procyanidins, diphenylpropanol, and, similarly, 4-hydroxy-5-(3'-hydroxyphenyl)valeric acid production. Overall, the addition of L. plantarum IFPL935 did not have an impact on the total concentration of phenolic metabolites, except for batches inoculated with colonic microbiota from the effluent compartment (EC), where the figures were significantly higher when L. plantarum IFPL935 was added (24 h). In summary, the data highlighted that L. plantarum IFPL935 may have an impact on the bioavailability of these dietary polyphenols. Some of the microbial-derived metabolites may play a key role in the protective effects that have been linked to a polyphenol-rich diet.
Xiong, Jinbo; He, Zhili; Shi, Shengjing; Kent, Angela; Deng, Ye; Wu, Liyou; Van Nostrand, Joy D.; Zhou, Jizhong
2015-01-01
Atmospheric CO2 concentration is continuously increasing, and previous studies have shown that elevated CO2 (eCO2) significantly impacts C3 plants and their soil microbial communities. However, little is known about effects of eCO2 on the compositional and functional structure, and metabolic potential of soil microbial communities under C4 plants. Here we showed that a C4 maize agroecosystem exposed to eCO2 for eight years shifted the functional and phylogenetic structure of soil microbial communities at both soil depths (0–5 cm and 5–15 cm) using EcoPlate and functional gene array (GeoChip 3.0) analyses. The abundances of key genes involved in carbon (C), nitrogen (N) and phosphorus (P) cycling were significantly stimulated under eCO2 at both soil depths, although some differences in carbon utilization patterns were observed between the two soil depths. Consistently, CO2 was found to be the dominant factor explaining 11.9% of the structural variation of functional genes, while depth and the interaction of depth and CO2 explained 5.2% and 3.8%, respectively. This study implies that eCO2 has profound effects on the functional structure and metabolic potential/activity of soil microbial communities associated with C4 plants, possibly leading to changes in ecosystem functioning and feedbacks to global change in C4 agroecosystems. PMID:25791904
The microbial-mammalian metabolic axis: a critical symbiotic relationship.
Chilloux, Julien; Neves, Ana Luisa; Boulangé, Claire L; Dumas, Marc-Emmanuel
2016-07-01
The microbial-mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites emerge as key messengers in the complex communication between the gut microbiota and their host. These chemical signals are mainly derived from nutritional precursors, which in turn are also able to modify gut microbiota population. Recent advances in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow the development of nutritional interventions. This review covers the latest findings on the microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to clinical nutrition. The modulation of host metabolism by metabolites derived from the gut microbiota highlights the importance of gut microbiota in disease prevention and causation. The composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, mainly regulated by diet, but also by the host's characteristics (e.g. genetics, circadian clock, immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, prebiotic and probiotic supplementation and faecal transplantation are promising strategies to manipulate microbial ecology. The microbiome is now considered as an easily reachable target to prevent and treat related diseases. Recent findings in both mechanisms of its interactions with host metabolism and in strategies to modify gut microbiota will allow us to develop more effective treatments especially in metabolic diseases.
Assessing Microbial Activity in Marcellus Shale Hydraulic Fracturing Fluids
NASA Astrophysics Data System (ADS)
Wishart, J. R.; Morono, Y.; Itoh, M.; Ijiri, A.; Hoshino, T.; Inagaki, F.; Verba, C.; Torres, M. E.; Colwell, F. S.
2014-12-01
Hydraulic fracturing (HF) produces millions of gallons of waste fluid which contains a microbial community adapted to harsh conditions such as high temperatures, high salinities and the presence of heavy metals and radionuclides. Here we present evidence for microbial activity in HF production fluids. Fluids collected from a Marcellus shale HF well were supplemented with 13C-labeled carbon sources and 15N-labeled ammonium at 25°C under aerobic or anaerobic conditions. Samples were analyzed for 13C and 15N incorporation at sub-micrometer scale by ion imaging with the JAMSTEC NanoSIMS to determine percent carbon and nitrogen assimilation in individual cells. Headspace CO2 and CH4 were analyzed for 13C enrichment using irm-GC/MS. At 32 days incubation carbon assimilation was observed in samples containing 1 mM 13C-labeled glucose under aerobic and anaerobic conditions with a maximum of 10.4 and 6.5% total carbon, respectively. Nitrogen assimilation of 15N ammonium observed in these samples were 0.3 and 0.8% of total nitrogen, respectively. Head space gas analysis showed 13C enrichment in CH4 in anaerobic samples incubated with 1mM 13C-labeled bicarbonate (2227 ‰) or methanol (98943 ‰). Lesser 13C enrichment of CO2 was observed in anaerobic samples containing 1 mM 13C-labeled acetate (13.7 ‰), methanol (29.9 ‰) or glucose (85.4 ‰). These results indicate metabolic activity and diversity in microbial communities present in HF flowback fluids. The assimilation of 13C-labeled glucose demonstrates the production of biomass, a critical part of cell replication. The production of 13CO2 and 13CH4 demonstrate microbial metabolism in the forms of respiration and methanogenesis, respectively. Methanogenesis additionally indicates the presence of an active archaeal community. This research shows that HF production fluid chemistry does not entirely inhibit microbial activity or growth and encourages further research regarding biogeochemical processes occurring in Marcellus shale HF wells. Biogeochemical activity may impact the efficacy of HF and natural gas production as well as the chemistry of produced fluids which have become an environmental and public health concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodionova, Irina A.; Li, Xiaoqing; Plymale, Andrew E.
Bacteria from the Chloroflexi phylum are dominant members of phototrophic microbial mat communities in terrestrial thermal environments. Vitamins of B-group are key intermediates (precursors) in the biosynthesis of indispensable enzyme cofactors driving numerous metabolic processes in all forms of life. A genomics-based reconstruction and comparative analysis of respective biosynthetic and salvage pathways and riboswitch regulons in over 20 representative Chloroflexi genomes revealed a widespread auxotrophy for some of the vitamins. The most prominent predicted phenotypic signature, auxotrophy for vitamins B1 and B7 was experimentally confirmed for the best studied model organism Chloroflexus aurantiacus. These observations along with identified candidate genesmore » for the respective uptake transporters pointed to B vitamin exchange as an important aspect of syntrophic metabolism in microbial communities. Inferred specificities of homologous substrate-binding components of ABC transporters for vitamins B1 (ThiY) and B2 (RibY) were verified by thermofluorescent shift approach. A functional activity of the thiamine-specific transporter ThiXYZ from C. aurantiacus was experimentally verified by genetic complementation in E. coli. Expanding the integrative approach, which was applied here for a comprehensive analysis of B-vitamin metabolism in Chloroflexi would allow reconstruction of metabolic interdependencies in microbial communities.« less
Reprint of Design of synthetic microbial communities for biotechnological production processes.
Jagmann, Nina; Philipp, Bodo
2014-12-20
In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities
Mahadevan, Radhakrishnan; Henson, Michael A.
2012-01-01
Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research. PMID:24688668
Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.
Mahadevan, Radhakrishnan; Henson, Michael A
2012-01-01
Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.
Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.
Kruger, Martin C; Bertin, Philippe N; Heipieper, Hermann J; Arsène-Ploetze, Florence
2013-05-01
Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.
In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert.
Davila, Alfonso F; Hawes, Ian; Araya, Jonathan G; Gelsinger, Diego R; DiRuggiero, Jocelyne; Ascaso, Carmen; Osano, Anne; Wierzchos, Jacek
2015-01-01
The Atacama Desert of northern Chile is one of the driest regions on Earth, with areas that exclude plants and where soils have extremely low microbial biomass. However, in the driest parts of the desert there are microorganisms that colonize the interior of halite nodules in fossil continental evaporites, where they are sustained by condensation of atmospheric water triggered by the salt substrate. Using a combination of in situ observations of variable chlorophyll fluorescence and controlled laboratory experiments, we show that this endolithic community is capable of carbon fixation both through oxygenic photosynthesis and potentially ammonia oxidation. We also present evidence that photosynthetic activity is finely tuned to moisture availability and solar insolation and can be sustained for days, and perhaps longer, after a wetting event. This is the first demonstration of in situ active metabolism in the hyperarid core of the Atacama Desert, and it provides the basis for proposing a self-contained, endolithic community that relies exclusively on non-rainfall sources of water. Our results contribute to an increasing body of evidence that even in hyperarid environments active metabolism, adaptation, and growth can occur in highly specialized microhabitats.
In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert
Davila, Alfonso F.; Hawes, Ian; Araya, Jonathan G.; Gelsinger, Diego R.; DiRuggiero, Jocelyne; Ascaso, Carmen; Osano, Anne; Wierzchos, Jacek
2015-01-01
The Atacama Desert of northern Chile is one of the driest regions on Earth, with areas that exclude plants and where soils have extremely low microbial biomass. However, in the driest parts of the desert there are microorganisms that colonize the interior of halite nodules in fossil continental evaporites, where they are sustained by condensation of atmospheric water triggered by the salt substrate. Using a combination of in situ observations of variable chlorophyll fluorescence and controlled laboratory experiments, we show that this endolithic community is capable of carbon fixation both through oxygenic photosynthesis and potentially ammonia oxidation. We also present evidence that photosynthetic activity is finely tuned to moisture availability and solar insolation and can be sustained for days, and perhaps longer, after a wetting event. This is the first demonstration of in situ active metabolism in the hyperarid core of the Atacama Desert, and it provides the basis for proposing a self-contained, endolithic community that relies exclusively on non-rainfall sources of water. Our results contribute to an increasing body of evidence that even in hyperarid environments active metabolism, adaptation, and growth can occur in highly specialized microhabitats. PMID:26500612
Exploring a microbial ecosystem approach to modeling deep ocean biogeochemical cycles
NASA Astrophysics Data System (ADS)
Zakem, E.; Follows, M. J.
2014-12-01
Though microbial respiration of organic matter in the deep ocean governs ocean and atmosphere biogeochemistry, it is not represented mechanistically in current global biogeochemical models. We seek approaches that are feasible for a global resolution, yet still reflect the enormous biodiversity of the deep microbial community and its associated metabolic pathways. We present a modeling framework grounded in thermodynamics and redox reaction stoichiometry that represents diverse microbial metabolisms explicitly. We describe a bacterial/archaeal functional type with two parameters: a growth efficiency representing the chemistry underlying a bacterial metabolism, and a rate limitation given by the rate of uptake of each of the necessary substrates for that metabolism. We then apply this approach to answer questions about microbial ecology. As a start, we resolve two dominant heterotrophic respiratory pathways- reduction of oxygen and nitrate- and associated microbial functional types. We combine these into an ecological model and a two-dimensional ocean circulation model to explore the organization, biogeochemistry, and ecology of oxygen minimum zones. Intensified upwelling and lateral transport conspire to produce an oxygen minimum at mid-depth, populated by anaerobic denitrifiers. This modeling approach should ultimately allow for the emergence of bacterial biogeography from competition of metabolisms and for the incorporation of microbial feedbacks to the climate system.
Crognale, Simona; Zecchin, Sarah; Amalfitano, Stefano; Fazi, Stefano; Casentini, Barbara; Corsini, Anna; Cavalca, Lucia; Rossetti, Simona
2017-01-01
Arsenic (As) is a toxic element released in aquatic environments by geogenic processes or anthropic activities. To counteract its toxicity, several microorganisms have developed mechanisms to tolerate and utilize it for respiratory metabolism. However, still little is known about identity and physiological properties of microorganisms exposed to natural high levels of As and the role they play in As transformation and mobilization processes. This work aims to explore the phylogenetic composition and functional properties of aquatic microbial communities in As-rich freshwater environments of geothermal origin and to elucidate the key microbial functional groups that directly or indirectly may influence As-transformations across a natural range of geogenic arsenic contamination. Distinct bacterial communities in terms of composition and metabolisms were found. Members of Proteobacteria, affiliated to Alpha- and Betaproteobacteria were mainly retrieved in groundwaters and surface waters, whereas Gammaproteobacteria were the main component in thermal waters. Most of the OTUs from thermal waters were only distantly related to 16S rRNA gene sequences of known taxa, indicating the occurrence of bacterial biodiversity so far unexplored. Nitrate and sulfate reduction and heterotrophic As(III)-oxidization were found as main metabolic traits of the microbial cultivable fraction in such environments. No growth of autotrophic As(III)-oxidizers, autotrophic and heterotrophic As(V)-reducers, Fe-reducers and oxidizers, Mn-reducers and sulfide oxidizers was observed. The ars genes, involved in As(V) detoxifying reduction, were found in all samples whereas aioA [As(III) oxidase] and arrA genes [As(V) respiratory reductase] were not found. Overall, we found that As detoxification processes prevailed over As metabolic processes, concomitantly with the intriguing occurrence of novel thermophiles able to tolerate high levels of As. PMID:29312179
NASA Astrophysics Data System (ADS)
Ballantyne, F.; Medeiros, P. M.; Moran, M. A.; Song, C.; Whitman, W. B.; Washington, B.; Yu, M.; Lee, J.
2017-12-01
Despite the advent of methods enabling high resolution characterization of metabolic activity and of organic matter, linking microbial metabolism to organic matter transformations remains a challenge. By sequencing metatranscriptomes and using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) to characterize organic matter (OM) at the beginning and at the end of incubations of estuarine water across tide and season, we sought to link observed a changes in OM composition to microbial metabolism. We used linear models and K means clustering to identify clusters of genes that responded coherently across season, which accounted for most of the variability in gene expression, over tidal regime, which explained the majority of the remaining variation, and over time during the 24 hour incubations. We used an approach from the field of signal processing, that to our knowledge has not been used to analyze FTICR-MS data, to identify formulae of compounds that changed in concentration during the incubations. This approach, based on the discrete wavelet transform (DWT), allowed us to overcome some of the challenges associated with analyzing FTICR-MS data: variable ionization of organic compounds, signal suppression by high concentration compounds, and uncertainty about how to normalize changes across spectra. We were able to link clusters of metabolic and transporter genes to changes in OM composition, and uniquely identify genes based on their cross correlation with changes in FTICR mass spectra. Our approach for analyzing FTICR- MS data enables more robust inference about OM transformations, and linking high resolution changes in gene expression and in OM data during incubations represents an important step toward formulating models of microbial metabolism relevant for predicting biogeochemically relevant C fluxes.
Crognale, Simona; Zecchin, Sarah; Amalfitano, Stefano; Fazi, Stefano; Casentini, Barbara; Corsini, Anna; Cavalca, Lucia; Rossetti, Simona
2017-01-01
Arsenic (As) is a toxic element released in aquatic environments by geogenic processes or anthropic activities. To counteract its toxicity, several microorganisms have developed mechanisms to tolerate and utilize it for respiratory metabolism. However, still little is known about identity and physiological properties of microorganisms exposed to natural high levels of As and the role they play in As transformation and mobilization processes. This work aims to explore the phylogenetic composition and functional properties of aquatic microbial communities in As-rich freshwater environments of geothermal origin and to elucidate the key microbial functional groups that directly or indirectly may influence As-transformations across a natural range of geogenic arsenic contamination. Distinct bacterial communities in terms of composition and metabolisms were found. Members of Proteobacteria , affiliated to Alpha - and Betaproteobacteria were mainly retrieved in groundwaters and surface waters, whereas Gammaproteobacteria were the main component in thermal waters. Most of the OTUs from thermal waters were only distantly related to 16S rRNA gene sequences of known taxa, indicating the occurrence of bacterial biodiversity so far unexplored. Nitrate and sulfate reduction and heterotrophic As(III)-oxidization were found as main metabolic traits of the microbial cultivable fraction in such environments. No growth of autotrophic As(III)-oxidizers, autotrophic and heterotrophic As(V)-reducers, Fe-reducers and oxidizers, Mn-reducers and sulfide oxidizers was observed. The ars genes, involved in As(V) detoxifying reduction, were found in all samples whereas aioA [As(III) oxidase] and arrA genes [As(V) respiratory reductase] were not found. Overall, we found that As detoxification processes prevailed over As metabolic processes, concomitantly with the intriguing occurrence of novel thermophiles able to tolerate high levels of As.
Mutagenicity of benzotrichloride and related compounds.
Yasuo, K; Fujimoto, S; Katoh, M; Kikuchi, Y; Kada, T
1978-11-01
Benzotrichloride (BTC), benzal chloride (BDC), benzyl chloride (BC) and benzoyl chloride (BOC) were surveyed for their mutagenicity in microbial systems such as rec-assay using Bacillus subtilis and reversion assays using E. coli WP2 and Ames Salmonella TA strains with or without metabolic activation in vitro. BTC and BDC required metabolic activation for their mutagenic activities in several strains of E. coli and Salmonella. The mutagenic metabolites of these compounds may not have been produced by hydrolysis. BC was weakly mutagenic without metabolic activation. Only BOC exhibited no mutagenic activity in the detection procedures used. The mutagenic metabolite of BTC might be very unstable under our experimental conditions. The strain E. coli WP2 try hcr was more sensitive than E. coli B/r WP2 try (hcr+) with regard to the mutagenicity of BTC.
Dormancy contributes to the maintenance of microbial diversity.
Jones, Stuart E; Lennon, Jay T
2010-03-30
Dormancy is a bet-hedging strategy used by a variety of organisms to overcome unfavorable environmental conditions. By entering a reversible state of low metabolic activity, dormant individuals become members of a seed bank, which can determine community dynamics in future generations. Although microbiologists have documented dormancy in both clinical and natural settings, the importance of seed banks for the diversity and functioning of microbial communities remains untested. Here, we develop a theoretical model demonstrating that microbial communities are structured by environmental cues that trigger dormancy. A molecular survey of lake ecosystems revealed that dormancy plays a more important role in shaping bacterial communities than eukaryotic microbial communities. The proportion of dormant bacteria was relatively low in productive ecosystems but accounted for up to 40% of taxon richness in nutrient-poor systems. Our simulations and empirical data suggest that regional environmental cues and dormancy synchronize the composition of active communities across the landscape while decoupling active microbes from the total community at local scales. Furthermore, we observed that rare bacterial taxa were disproportionately active relative to common bacterial taxa, suggesting that microbial rank-abundance curves are more dynamic than previously considered. We propose that repeated transitions to and from the seed bank may help maintain the high levels of microbial biodiversity that are observed in nearly all ecosystems.
Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina
2014-01-01
The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025
Falcioni, Francesco; Blank, Lars M.; Frick, Oliver; Karau, Andreas; Schmid, Andreas
2013-01-01
Microbial physiology plays a crucial role in whole-cell biotransformation, especially for redox reactions that depend on carbon and energy metabolism. In this study, regio- and enantio-selective proline hydroxylation with recombinant Escherichia coli expressing proline-4-hydroxylase (P4H) was investigated with respect to its interconnectivity to microbial physiology and metabolism. P4H production was found to depend on extracellular proline availability and on codon usage. Medium supplementation with proline did not alter p4h mRNA levels, indicating that P4H production depends on the availability of charged prolyl-tRNAs. Increasing the intracellular levels of soluble P4H did not result in an increase in resting cell activities above a certain threshold (depending on growth and assay temperature). Activities up to 5-fold higher were reached with permeabilized cells, confirming that host physiology and not the intracellular level of active P4H determines the achievable whole-cell proline hydroxylation activity. Metabolic flux analysis revealed that tricarboxylic acid cycle fluxes in growing biocatalytically active cells were significantly higher than proline hydroxylation rates. Remarkably, a catalysis-induced reduction of substrate uptake was observed, which correlated with reduced transcription of putA and putP, encoding proline dehydrogenase and the major proline transporter, respectively. These results provide evidence for a strong interference of catalytic activity with the regulation of proline uptake and metabolism. In terms of whole-cell biocatalyst efficiency, proline uptake and competition of P4H with proline catabolism are considered the most critical factors. PMID:23455348
Yu, Ran; Smets, Barth F; Gan, Ping; MacKay, Allison A; Graf, Joerg
2014-05-01
We investigated the seasonal and spatial variation in activity and density of the metabolically active in situ microbial community (AIMC) at a landfill leachate-impacted groundwater - surface water interface (GSI). A series of AIMC traps were designed and implemented for AIMC sampling and microbial activity and density examinations. Measurements were made not only at the level of bacterial domain but also at the levels of alphaproteobacterial Rhizobiales order and gammaproteobacterial Pseudomonas genus, both of which included a large number of iron-oxidizing bacteria as revealed from previous analysis. Consistently higher microbial activities with less variation in depth were measured in the AIMC traps than in the ambient sediments. Flood disturbance appeared to control AIMC activity distributions at the gradually elevated GSI. The highest AIMC activities were generally obtained from locations closest to the free surface water boundary except during the dry season when microbial activities were similar across the entire GSI. A clone library of AIMC 16S rRNA genes was constructed, and it confirmed the predominant role of the targeted alphaproteobacterial group in AIMC activity and composition. This taxon constituted 2%-14% of all bacteria with similar activity distribution profiles. The Pseudomonas group occupied only 0.1‰-0.5‰ of the total bacterial density, but its activity was 27 times higher than the bacterial average. Of the 16S rRNA sequences in the AIMC clone library, 7.5% were phylogenetically related to putative IOB, supporting the occurrence and persistence of active microbial iron oxidation across the studied iron-rich GSI ecosystem.
Xia, Yu; Wang, Yubo; Fang, Herbert H. P.; Jin, Tao; Zhong, Huanzi; Zhang, Tong
2014-01-01
The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies. PMID:25330991
Hydrogen isotopic messages in sulfate reducer lipids: a recorder of metabolic state?
NASA Astrophysics Data System (ADS)
Bradley, A. S.; Leavitt, W.; Zhou, A.; Cobban, A.; Suess, M.
2017-12-01
A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism. These observations raise the possibility for culture independent identification of the dominant metabolic pathways operating in a given environment [Zhang et al. 2009]. One such metabolism we aim to track is microbial sulfate reduction. To-date, sulfate reducing bacteria have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O -50 to -175 ‰) [Campbell et al. 2009; Dawson et al. 2015; Osburn et al.], with recent work demonstrating a systematic relationship between lipid/water fractionation and growth rate when the electron-bifurcating NAD(P)(H) transhydrogenase (ebTH) activity was disrupted and the available electron requires the ebTH [Leavitt et al. 2016. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates non-bifurcating NAD(P)(H) transhydrogenase activity is a critical control on 2ɛlipid-H2O. This suggests a specific mechanism to control the range in fractionation is the ratio of intracellular NADPH/NADH/NADP/NAD in aerobes and perhaps the same in anaerobes with some consideration for FADH/FAD. Fundamentally this implies 2ɛlipid-H2O records intracellular redox state. In our sulfate reducer model system Desulfovibrio alaskensis strain G20 a key component of energy metabolism is the activity of ebTH. Nonetheless, this strain contains two independent copies of the genes, only one of which generates a distinctive isotopic phenotype [Leavitt et al. 2016. Front Microbio]. In this study we extend the recent work in G20 to continuous culture experiments comparing WT to nfnAB-2 transposon interruptions, where both organisms are cultivated continuously, at the rate of the slower growing mutant. We compare fatty acid concentrations and 2ɛlipid-H2O from wild type and TH mutants in strain G20. We discuss implications for understanding H-isotope fractionation during microbial fatty acid biosynthesis in sulfate reducers and anaerobes in general in anoxic environments.
Uranium isotopes fingerprint biotic reduction
Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; ...
2015-04-20
Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less
Community dynamics of anaerobic bacteria in deep petroleum reservoirs
NASA Astrophysics Data System (ADS)
Hallmann, Christian; Schwark, Lorenz; Grice, Kliti
2008-09-01
The nature, activity and metabolism of microbes that inhabit the deep subsurface environment are a matter of ongoing debate. Primarily limited by temperature, little is known about secondary factors that restrict or enhance microbial activity or about the extent of a habitable environment deep below the surface. In particular, the degraders of chemically inert organic substrates remain elusive. Petroleum reservoirs can be regarded as natural bioreactors and are ideally suited for the study of microbial metabolism in the deep subsurface. Here we analyse series of oil samples that were biodegraded to different degrees. We find fatty acids after hydrolysis of purified crude oil fractions, indicating the presence of intact phospholipids and suggesting that indigenous bacteria inhabit petroleum reservoirs in sediment depths of up to 2,000m. A major change in bacterial community structure occurs after the removal of n-alkanes, indicating that more than one consortium is responsible for petroleum degradation. Our results suggest that further study of petroleum fluids will help understand bacterial metabolism and diversity in this habitat of the deep subsurface.
Metabolic Network Modeling of Microbial Communities
Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.
2015-01-01
Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480
Cai, Lu; Zheng, Sheng-Wei; Shen, Yu-Jun; Zheng, Guo-Di; Liu, Hong-Tao; Wu, Zhi-Ying
2018-07-01
To enable the development of microbial agents and identify suitable candidate used for biodrying, the existence and function of Bacillus thermoamylovorans during sewage sludge biodrying merits investigation. This study isolated a strain of B. thermoamylovorans during sludge biodrying, submitted it for complete genome sequencing and analyzed its potential microbial functions. After biodrying, the moisture content of the biodrying material decreased from 66.33% to 50.18%, and B. thermoamylovorans was the ecologically dominant Bacillus, with the primary annotations associated with amino acid transport and metabolism (9.53%) and carbohydrate transport and metabolism (8.14%). It contains 96 carbohydrate-active- enzyme-encoding gene counts, mainly distributed in glycoside hydrolases (33.3%) and glycosyl transferases (27.1%). The virulence factors are mainly associated with biosynthesis of capsule and polysaccharide capsule. This work indicates that among the biodrying microorganisms, B. thermoamylovorans has good potential for degrading recalcitrant and readily degradable components, thus being a potential microbial agent used to improve biodrying. Copyright © 2018 Elsevier Ltd. All rights reserved.
Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.
2010-02-15
Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant inmore » key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.« less
Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemme, C.L.; Deng, Y.; Gentry, T.J.
2010-07-01
Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant inmore » key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.« less
Portable Immune-Assessment System
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.
1995-01-01
Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.
Undecompressed microbial populations from the deep sea.
Jannasch, H J; Wirsen, C O; Taylor, C D
1976-01-01
Metabolic transformations of glutamate and Casamino Acids by natural microbial populations collected from deep waters (1,600 to 3,100 m) were studied in decompressed and undecompressed samples. Pressure-retaining sampling/incubation vessels and appropriate subsampling/incubation vessels and appropriate subsampling techniques permitted time course experiments. In all cases the metabolic activity in undecompressed samples was lower than it was when incubated at 1 atm. Surface water controls showed a reduced activity upon compression. The processes involving substrate incorporation into cell material were more pressure sensitive than was respiration. The low utilization of substrates, previously found by in situ incubations for up to 12 months, was confirmed and demonstrated to consist of an initial phase of activity, in the range of 5 to 60 times lower than the controls, followed by a stationary phase of virtually no substrate utilization. No barophilic growth response (higher rates at elevated pressure than at 1 atm) was recorded; all populations observed exhibition various degrees of barotolerance. Images PMID:791117
Thornton, Christopher N.; Hyer, Alex; Twing, Katrina I.; Longino, August A.; Lang, Susan Q.; Lilley, Marvin D.; Früh-Green, Gretchen L.; Schrenk, Matthew O.
2017-01-01
The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12). Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif. PMID:28149702
NASA Astrophysics Data System (ADS)
Baumgartner, Laura K.; Dupraz, Christophe; Buckley, Daniel H.; Spear, John R.; Pace, Norman R.; Visscher, Pieter T.
2009-11-01
Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithification and, by extension, mineral biosignature formation. The lithifying and non-lithifying mat communities were compared (via 16S rRNA gene sequencing, 485 and 464 sequences, respectively) over both temporal and spatial scales. Seven bacterial groups dominated in all the microbial mat libraries: bacteriodetes, alphaproteobacteria, deltaproetobacteria, chloroflexi, spirochaetes, cyanobacteria, and planctomycetes. The mat communities were all significantly different over space, time, and lithification state. Species richness is significantly higher in the non-lithifying mats, potentially due to differences in mat structure and activity. This increased richness may impact lithification and, hence, biosignature production.
Stern, Noah; Ginder-Vogel, Matthew; Stegen, James C; Arntzen, Evan; Kennedy, David W; Larget, Bret R; Roden, Eric E
2017-08-15
Hydrologic exchange plays a critical role in biogeochemical cycling within the hyporheic zone (the interface between river water and groundwater) of riverine ecosystems. Such exchange may set limits on the rates of microbial metabolism and impose deterministic selection on microbial communities that adapt to dynamically changing dissolved organic carbon (DOC) sources. This study examined the response of attached microbial communities ( in situ colonized sand packs) from groundwater, hyporheic, and riverbed habitats within the Columbia River hyporheic corridor to "cross-feeding" with either groundwater, river water, or DOC-free artificial fluids. Our working hypothesis was that deterministic selection during in situ colonization would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. In contrast to expectations, the major observation was that the riverbed colonized sand had much higher biomass and respiratory activity, as well as a distinct community structure, compared with those of the hyporheic and groundwater colonized sands. 16S rRNA gene amplicon sequencing revealed a much higher proportion of certain heterotrophic taxa as well as significant numbers of eukaryotic algal chloroplasts in the riverbed colonized sand. Significant quantities of DOC were released from riverbed sediment and colonized sand, and separate experiments showed that the released DOC stimulated respiration in the groundwater and piezometer colonized sand. These results suggest that the accumulation and degradation of labile particulate organic carbon (POC) within the riverbed are likely to release DOC, which may enter the hyporheic corridor during hydrologic exchange, thereby stimulating microbial activity and imposing deterministic selective pressure on the microbial community composition. IMPORTANCE The influence of river water-groundwater mixing on hyporheic zone microbial community structure and function is an important but poorly understood component of riverine biogeochemistry. This study employed an experimental approach to gain insight into how such mixing might be expected to influence the biomass, respiration, and composition of hyporheic zone microbial communities. Colonized sands from three different habitats (groundwater, river water, and hyporheic) were "cross-fed" with either groundwater, river water, or DOC-free artificial fluids. We expected that the colonization history would dictate the response to cross-feeding, with communities displaying maximal biomass and respiration when supplied with their native fluid source. By contrast, the major observation was that the riverbed communities had much higher biomass and respiration, as well as a distinct community structure compared with those of the hyporheic and groundwater colonized sands. These results highlight the importance of riverbed microbial metabolism in organic carbon processing in hyporheic corridors. Copyright © 2017 American Society for Microbiology.
Microbial Metabolism in Serpentinite Fluids
NASA Astrophysics Data System (ADS)
Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.
2013-12-01
Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid chemistry and microbial community composition. These experiments are expected to provide insight into the biogeochemical dynamics of the serpentinite subsurface at CROMO and represent a first step for developing metatranscriptomic and RNA-based Stable Isotope Probing (RNA-SIP) experiments to trace microbial activity at this site. [1] Brazelton et al. (2012) Frontiers in Microbiology 2:268
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan DW
2008-01-01
Metagenomic based strategies have previously been successfully employed as powerful tools to isolate and identify enzymes with novel biocatalytic activities from the unculturable component of microbial communities from various terrestrial environmental niches. Both sequence based and function based screening approaches have been employed to identify genes encoding novel biocatalytic activities and metabolic pathways from metagenomic libraries. While much of the focus to date has centred on terrestrial based microbial ecosystems, it is clear that the marine environment has enormous microbial biodiversity that remains largely unstudied. Marine microbes are both extremely abundant and diverse; the environments they occupy likewise consist of very diverse niches. As culture-dependent methods have thus far resulted in the isolation of only a tiny percentage of the marine microbiota the application of metagenomic strategies holds great potential to study and exploit the enormous microbial biodiversity which is present within these marine environments. PMID:18717988
Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony; Burns, Brendan Paul
2016-01-01
Modern microbial mats are potential analogues of some of Earth's earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats. PMID:26023869
Modular co-culture engineering, a new approach for metabolic engineering.
Zhang, Haoran; Wang, Xiaonan
2016-09-01
With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Potential Research and Development Synergies between Life support and Planetary protection
NASA Astrophysics Data System (ADS)
Lasseur, Ch.; Kminek, G.; Mergeay, M.
Long term manned missions of our Russian colleagues have demonstrated the risks associated with microbial contamination These risks concern both crew health via the metabolic consumables contamination water air but and also the hardware degradation Over the last six years ESA and IBMP have developed a collaboration to elaborate and document these microbial contamination issues The collaboration involved the mutual exchanges of knowledge as well as microbial samples and leads up to the microbial survey of the Russian module of the ISS Based on these results and in addition to an external expert report commissioned by ESA the agency initiated the development of a rapid and automated microbial detection and identification tool for use in future space missions In parallel to these developments and via several international meetings planetary protection experts have agreed to place clear specification of the microbial quality of future hardware landing on virgin planets as well as elaborate the preliminary requirements of contamination for manned missions on surface For these activities its is necessary to have a better understanding of microbial activity to create culture collection and to develop on-line detection tools Within this paper we present more deeply the life support activities related to microbial issues we identify some potential synergies with Planetary protection developments and we propose some pathway for collaboration between these two communities
He, Baokun; Nohara, Kazunari; Ajami, Nadim J.; Michalek, Ryan D.; Tian, Xiangjun; Wong, Matthew; Losee-Olson, Susan H.; Petrosino, Joseph F.; Yoo, Seung-Hee; Shimomura, Kazuhiro; Chen, Zheng
2015-01-01
Dietary fibers are increasingly appreciated as beneficial nutritional components. However, a requisite role of gut microbiota in fiber function and the overall impact of fibers on metabolomic flux remain unclear. We herein showed enhancing effects of a soluble resistant maltodextrin (RM) on glucose homeostasis in mouse metabolic disease models. Remarkably, fecal microbiota transplantation (FMT) caused pronounced and time-dependent improvement in glucose tolerance in RM recipient mice, indicating a causal relationship between microbial remodeling and metabolic efficacy. Microbial 16S sequencing revealed transmissible taxonomic changes correlated with improved metabolism, notably enrichment of probiotics and reduction of Alistipes and Bacteroides known to associate with high fat/protein diets. Metabolomic profiling further illustrated broad changes, including enrichment of phenylpropionates and decreases in key intermediates of glucose utilization, cholesterol biosynthesis and amino acid fermentation. These studies elucidate beneficial roles of RM-dependent microbial remodeling in metabolic homeostasis, and showcase prevalent health-promoting potentials of dietary fibers. PMID:26040234
Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression
Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas
2017-01-01
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale. PMID:28700609
The microbial-mammalian metabolic axis, a critical symbiotic relationship
Boulangé, Claire L.
2016-01-01
Purpose of review The microbial-mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites emerge as key messengers in the complex communication between the gut microbiota and their host. These chemical signals are mainly derived from nutritional precursors, which also are in turn also able to modify gut microbiota population. Recent advances in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow the development of nutritional interventions. This review covers the latest findings on the microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to clinical nutrition. Recent findings The modulation of host metabolism by metabolites derived from the gut microbiota highlights the importance of gut microbiota in disease prevention and causation. The composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, mainly regulated by diet, but also by the host’s characteristics (e.g. genetics, circadian clock, immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, prebiotic and probiotic supplementation and faecal transplantation are promising strategies to manipulate microbial ecology. Summary The microbiota is now considered as an easily reachable target to prevent and treat related diseases. Recent findings in both mechanisms of its interactions with host metabolism and in strategies to modify gut microbiota will allow us to develop more effective treatments especially in metabolic diseases. PMID:27137897
Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages
Pasulka, Alexis L.; Marlow, Jeffrey J.; Grupe, Benjamin M.; Levin, Lisa A.
2015-01-01
ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. PMID:26695630
Razmilic, Valeria; Castro, Jean Franco; Marchant, Francisca; Asenjo, Juan A; Andrews, Barbara
2018-02-02
Metabolic modelling is a useful tool that enables the rational design of metabolic engineering experiments and the study of the unique capabilities of biotechnologically important microorganisms. The extreme abiotic conditions of the Atacama Desert have selected microbial diversity with exceptional characteristics that can be applied in the mining industry for bioleaching processes and for production of specialised metabolites with antimicrobial, antifungal, antiviral, antitumoral, among other activities. In this review we summarise the scientific data available of the use of metabolic modelling and flux analysis to improve the performance of Atacama Desert microorganisms in biotechnological applications.
NASA Astrophysics Data System (ADS)
Abakumov, E.; Mukhametova, N.
2014-03-01
Antarctica is the unique place for pedological investigations. Soils of Antarctica have been studied intensively during the last century. Antarctic logistic provides the possibility to scientists access the terrestrial landscapes mainly in the places of polar stations. That is why the main and most detailed pedological investigations were conducted in Mc Murdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann hills and Schirmacher Oasis. Investigations were conducted during the 53rd and 55th Russian Antarctic expeditions on the base of soil pits and samples collected in Sub-Antarctic and Antarctic regions. Soils of diverse Antarctic landscapes were studied with aim to assess the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. The investigation conducted shows that soils of Antarctic are quite different in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod) organo-mineral horizons as well as the upper organic layer. The most developed organic layers were revealed in peat soils of King-George Island, where its thickness reach even 80 cm. These soils as well as soils under guano are characterized by the highest amount of total organic carbon (TOC) 7.22-33.70%. Coastal and continental soils of Antarctic are presented by less developed Leptosols, Gleysols, Regolith and rare Ornhitosol with TOC levels about 0.37-4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones which can be interpreted as result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. Also the soils of King-George island have higher portion of microbial biomass (max 1.54 mg g-1) than coastal (max 0.26 mg g-1) and continental (max 0.22 mg g-1) Antarctic soils. Sub-Antarctic soils mainly differ from Antarctic ones in increased organic layers thickness and total organic carbon content, higher microbial biomass carbon content, basal respiration and metabolic activity levels.
Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobecky, Patricia A.
2015-04-06
In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Areamore » 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.« less
An astrophysical view of Earth-based metabolic biosignature gases.
Seager, Sara; Schrenk, Matthew; Bains, William
2012-01-01
Microbial life on Earth uses a wide range of chemical and energetic resources from diverse habitats. An outcome of this microbial diversity is an extensive and varied list of metabolic byproducts. We review key points of Earth-based microbial metabolism that are useful to the astrophysical search for biosignature gases on exoplanets, including a list of primary and secondary metabolism gas byproducts. Beyond the canonical, unique-to-life biosignature gases on Earth (O(2), O(3), and N(2)O), the list of metabolic byproducts includes gases that might be associated with biosignature gases in appropriate exoplanetary environments. This review aims to serve as a starting point for future astrophysical biosignature gas research.
NASA Astrophysics Data System (ADS)
Chen, L.; Liu, L.; Zhang, Q.; Mao, C.; Liu, F.; Yang, Y.
2017-12-01
Enhanced vegetation growth can potentially aggravate soil C loss by accelerating the decomposition of soil organic matter (SOM) ("priming effect"), thereby reinforcing the positive C-climate feedback in permafrost ecosystems. However, the degree to which priming effect alters permafrost C dynamics is expected to be modified by nitrogen (N) availability after permafrost thaw. Despite this recognition, experimental evidence for the linkage between priming effect and post-thaw N availability is still lacking. Particularly, the microbial mechanisms involved remain unknown. Here, using a thermokarst-induced natural N gradient combined with an isotope-labeled glucose and N addition experiment, we presented a strong linkage between soil N availability and priming effect in Tibetan permafrost. We observed that the magnitude of priming effect along the thaw gradient was negatively associated with soil total dissolved nitrogen (TDN) concentration. This negative effect of post-thaw N availability was further proved by a sharply reduced priming effect following mineral N supply. These two lines of evidence jointly illustrated that the priming effect along the thaw chronosequence was controlled by N availability, supporting the `N mining theory'. In contrast to the prevailing assumption, this N-regulated priming effect was independent from changes in C- or N-acquiring enzyme activities, but positively associated with the change in metabolic quotients (△SOM-qCO2), highlighting that decreased microbial metabolism efficiency rather than increased enzyme activities account for greater priming effect under reduced N availability. Taken together, these findings demonstrate that C dynamics in melting permafrost largely depends on post-thaw N availability due to its effect of retarding SOM mineralization. This C-N interaction and the relevant microbial metabolic efficiency should be considered in Earth System Models for a better understanding of soil C dynamics after permafrost thaw.
Dynamics of microbial growth and metabolic activity and their control by aeration.
Kalina, V
1993-01-01
The optimization of fermentation processes depends to a large extent on the modelling of microbial activity under complex environmental conditions where aeration is an important limiting and control factor. Simple relationships are used to establish the sensitivity of cultures to oxygen stress. Specific limitation coefficients which can be determined in laboratory reactors allow a projection to industrial operation and the definition of appropriate aeration and agitation profiles. Optimum control can be assured on the basis of directly measurable process parameters. This is shown for the case of ethanol production using S. cerevisiae at high cell dry weight concentrations.
Payne, A N; Chassard, C; Lacroix, C
2012-09-01
The Western diet, comprised of highly refined carbohydrates and fat but reduced complex plant polysaccharides, has been attributed to the prevalence of obesity. A concomitant rise in the consumption of fructose and sugar substitutes such as sugar alcohols, artificial sweeteners, even rare sugars, has mirrored this trend, as both probable contributor and solution to the epidemic. Acknowledgement of the gut microbiota as a factor involved in obesity has sparked much controversy as to the cause and consequence of this relationship. Dietary intakes are a known modulator of gut microbial phylogeny and metabolic activity, frequently exploited to stimulate beneficial bacteria, promoting health benefits. Comparably little research exists on the impact of 'unconscious' dietary modulation on the resident commensal community mediated by increased fructose and sugar substitute consumption. This review highlights mechanisms of potential host and gut microbial fructose and sugar substitute metabolism. Evidence is presented suggesting these sugar compounds, particularly fructose, condition the microbiota, resulting in acquisition of a westernized microbiome with altered metabolic capacity. Disturbances in host-microbe interactions resulting from fructose consumption are also explored. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.
Wu, Junjun; Du, Guocheng; Zhou, Jingwen; Chen, Jian
2014-10-20
Flavonoids possess pharmaceutical potential due to their health-promoting activities. The complex structures of these products make extraction from plants difficult, and chemical synthesis is limited because of the use of many toxic solvents. Microbial production offers an alternate way to produce these compounds on an industrial scale in a more economical and environment-friendly manner. However, at present microbial production has been achieved only on a laboratory scale and improvements and scale-up of these processes remain challenging. Naringenin and pinocembrin, which are flavonoid scaffolds and precursors for most of the flavonoids, are the model molecules that are key to solving the current issues restricting industrial production of these chemicals. The emergence of systems metabolic engineering, which combines systems biology with synthetic biology and evolutionary engineering at the systems level, offers new perspectives on strain and process optimization. In this review, current challenges in large-scale fermentation processes involving flavonoid scaffolds and the strategies and tools of systems metabolic engineering used to overcome these challenges are summarized. This will offer insights into overcoming the limitations and challenges of large-scale microbial production of these important pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
The influence of gut microbiota on drug metabolism and toxicity
Li, Houkai; He, Jiaojiao; Jia, Wei
2017-01-01
Introduction Gut microbiota plays critical roles in drug metabolism. The individual variation of gut microbiota contributes to the interindividual differences towards drug therapy including drug-induced toxicity and efficacy. Accordingly, the investigation and elucidation of gut microbial impacts on drug metabolism and toxicity will not only facilitate the way of personalized medicine, but also improve the rational drug design. Areas covered This review provide an overview on the microbiota-host cometabolism on drug metabolism and summarize 30 clinical drugs which are co-metabolized by host and gut microbiota. Moreover, this review is specifically focused on elucidating the gut microbial modulation on some clinical drugs, in which the gut microbial influences on drug metabolism, drug-induced toxicity and efficacy are intensively discussed. Expert opinion The gut microbial contribution to drug metabolism and toxicity is increasingly recognized, but remains largely unexplored due to the extremely complex relationship between gut microbiota and host. The mechanistic elucidation of gut microbiota in drug metabolism is critical before any practical progress in drug design or personalized medicine could be made by modulating human gut microbiota, which is predominantly relied on the technical innovations such as metagenomics and metabolomics, as well as the integration of multi-disciplinary knowledge. PMID:26569070
NASA Technical Reports Server (NTRS)
Sagan, D. (Editor)
1985-01-01
The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.
Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong
2017-01-01
Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372
Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.
Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C
2016-01-01
Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.
Lipus, Daniel; Vikram, Amit; Ross, Daniel; ...
2017-02-03
Here, microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across allmore » 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales. We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipus, Daniel; Vikram, Amit; Ross, Daniel
Here, microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across allmore » 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales. We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure.« less
Crespo-Medina, Melitza; Twing, Katrina I.; Kubo, Michael D. Y.; Hoehler, Tori M.; Cardace, Dawn; McCollom, Tom; Schrenk, Matthew O.
2014-01-01
Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite–hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems. PMID:25452748
Crespo-Medina, Melitza; Twing, Katrina I; Kubo, Michael D Y; Hoehler, Tori M; Cardace, Dawn; McCollom, Tom; Schrenk, Matthew O
2014-01-01
Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite-hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems.
Microbial diversity in European alpine permafrost and active layers.
Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin
2016-03-01
Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2012-01-01
Microorganisms are ubiquitous on earth and have diverse metabolic transformative capabilities important for environmental biodegradation of chemicals that helps maintain ecosystem and human health. Microbial biodegradative metabolism is the main focus of the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD). UM-BBD data has also been used to develop a computational metabolic pathway prediction system that can be applied to chemicals for which biodegradation data is currently lacking. The UM-Pathway Prediction System (UM-PPS) relies on metabolic rules that are based on organic functional groups and predicts plausible biodegradative metabolism. The predictions are useful to environmental chemists that look for metabolic intermediates, for regulators looking for potential toxic products, for microbiologists seeking to understand microbial biodegradation, and others with a wide-range of interests. PMID:22587916
Lamichhane, Santosh; Sen, Partho; Dickens, Alex M; Orešič, Matej; Bertram, Hanne Christine
2018-04-30
It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding of the microbial functions. Finally, the emerging approaches of genome-scale metabolic modelling to study microbial co-metabolism and host-microbe interactions are highlighted. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Yongzhuo; Zhou, Tong; Crowley, David; Li, Lianqing; Liu, Dawen; Zheng, Jinwei; Yu, Xinyan; Pan, Genxing; Hussain, Qaiser; Zhang, Xuhui; Zheng, Jufeng
2012-01-01
Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO2 are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO2 production in the polluted rice paddies deserve further field studies. PMID:22701725
Koo, Hyunmin; Mojib, Nazia; Hakim, Joseph A.; Hawes, Ian; Tanabe, Yukiko; Andersen, Dale T.; Bej, Asim K.
2017-01-01
In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1), middle (U2), and inner (U3) decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI) values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance. PMID:28824553
Koo, Hyunmin; Mojib, Nazia; Hakim, Joseph A; Hawes, Ian; Tanabe, Yukiko; Andersen, Dale T; Bej, Asim K
2017-01-01
In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1), middle (U2), and inner (U3) decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI) values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance.
Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG; ...
2012-11-29
Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burow, Luke C.; Woebken, Dagmar; Marshall, Ian PG
Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here in this paper, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO 2 and Hmore » 2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS.« less
Cycoń, Mariusz; Orlewska, Kamila; Markowicz, Anna; Żmijowska, Agnieszka; Smoleń-Dzirba, Joanna; Bratosiewicz-Wąsik, Jolanta; Wąsik, Tomasz J.; Piotrowska-Seget, Zofia
2018-01-01
Despite many studies, our knowledge on the impact of antibiotics and antibiotic-resistant bacteria on the metabolic activity of soil microbial communities is still limited. To ascertain this impact, the community level physiological profiles (CLPPs) and the activity of selected enzymes (dehydrogenase, urease, and phosphatases) in soils treated with vancomycin (VA) and/or multidrug resistant Citrobacter freundii were determined during a 90-day experiment. A multivariate analysis and the resistance (RS)/resilience (RL) concept were used to assess the potential of native microorganisms to maintain their catabolic activity under exposure of VA and/or a high level of C. freundii. In addition, the dissipation rate of VA was evaluated in non-sterile (nsS) and sterile (sS) soils. The results revealed a negative impact of VA on the metabolic activity of soil microorganisms on days 1, 15, and 30 as was showed by a decrease in the values of the CLPP indices (10–69%) and the enzyme activities (6–32%) for treated soils as compared to the control. These observations suggested a low initial resistance of soil microorganisms to VA and/or C. freundii but they were resilient in the long term. Considering the mean values of the RS index, the resistance of measured parameters was categorized in the following order: alkaline phosphatase (0.919) > acid phosphatase (0.899) > dehydrogenase (0.853) > the evenness index (0.840) > urease (0.833) > the Shannon-Wiener index (0.735) > substrate richness (0.485) > the AWCD (0.301). The dissipation process of VA was relatively fast and independent of the concentration used. The DT50 values for VA applied at both concentrations were about 16 days. In addition, the dissipation of VA in nsS was three times faster compared to the dissipation of antibiotic in sS. In conclusion, both CLPP and enzyme activities assays appeared to be useful tool for the determination of disturbances within soil microbial communities and used together may be helpful to understand the changes in their catabolic features. The entry of large quantities of VA and/or C. freundii into soil may temporarily change microbial activity thus pose a potential risk for soil functioning. PMID:29875753
Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V
2014-01-01
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. PMID:24621520
Godwin, Scott; Kang, Alicia; Gulino, Lisa-Maree; Manefield, Mike; Gutierrez-Zamora, Maria-Luisa; Kienzle, Marco; Ouwerkerk, Diane; Dawson, Kerri; Klieve, Athol V
2014-09-01
Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.
Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut.
Roager, Henrik M; Hansen, Lea B S; Bahl, Martin I; Frandsen, Henrik L; Carvalho, Vera; Gøbel, Rikke J; Dalgaard, Marlene D; Plichta, Damian R; Sparholt, Morten H; Vestergaard, Henrik; Hansen, Torben; Sicheritz-Pontén, Thomas; Nielsen, H Bjørn; Pedersen, Oluf; Lauritzen, Lotte; Kristensen, Mette; Gupta, Ramneek; Licht, Tine R
2016-06-27
Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.
Does iron inhibit cryptoendolithic microbial communities?
NASA Technical Reports Server (NTRS)
Johnston, C. G.; Vestal, J. R.; Friedmann, E. I. (Principal Investigator)
1988-01-01
Photosynthetic activity of three cryptoendolithic microbial communities was studied under controlled conditions in the laboratory. In two of these communities, the dominant organisms were lichens, collected from Linnaeus Terrace and from Battleship Promontory. The third community, dominated by cyanobacteria, was collected from Battleship Promontory. Both sites are in the ice-free valleys of southern Victoria Land. Previous efforts have shown how physical conditions can influence metabolic activity in endolithic communities (Kappen and Friedmann 1983; Kappen, Friedmann, and Garty 1981; Vestal, Federle, and Friedmann 1984). Biological activity can also be strongly influenced by the chemical environment. Inorganic nutrients such as nitrate, ammonia, and phosphate are often limiting factors, so their effects on photosynthetic carbon-14 bicarbonate incorporation were investigated. Iron and manganese are two metals present in Linnaeus Terrace and Battleship Promontory sandstones, and their effects on photosynthesis were also studied. The results may add to our understanding of biogeochemical interactions within this unique microbial community.
NASA Astrophysics Data System (ADS)
Boston, P. J.
2016-12-01
In subsurface environments like natural or anthropogenic caves (aka mines), microorganisms facilitate considerable bedrock degradation under a variety of circumstances. Mobilization of materials from these processes frequently produces distinctive biominerals, identifiable biotextures, and unique biopatterns. Microbial activities can even determine the form of speleothems (secondary mineral cave decorations), thus providing highly conspicuous macroscopic biosignatures. It is critical to understand microbial-mineral interactions, recognizing that while the lithology controls important aspects of the environment, in turn, the geochemistry is greatly affected by the biology. Microbial communities can contribute to the actual formation of cavities (speleogenesis), and subsequent enlargement of caves and vugs and the mineral deposits that enrich many subterranean spaces. A major challenge is to quantify such influences. Genetic analysis is revealing a vast but highly partitioned biodiversity in the overall rock fracture habitat of Earth's crust especially in caves and mines where the three phases of matter (solid rock, fluids, and gases) typically interact producing high niche richness. Lessons learned from the microbial/geochemical systems that we have studied include: 1) significant similarities in metabolic functions between different geochemical systems, 2) ubiquity of metal oxidation for energy, 3) ubiquity of biofilms, some highly mineralized, 4) highly interdependent, multi-species communities that can only transform materials in consortia, 5) complex ecological succession including characteristic pioneer species, 6) often very slow growth rates in culture, 7) prevalence of very small cell sizes, ( 100 - 500 nm diam.), 8) mineral reprecipitation of mobilized materials, often dependent on the presence of live microbial communities to produce initial amorphous compounds followed by gradual crystallization, and 9) resultant in situ self-fossilization. Microbial metabolism occurs against a complex backdrop of hydrology, geochemistry, and geological structures of subsurface environments. These are not static but change in response to both short term and much longer geological time scales thus presenting significant challenges in interpretation.
Effect of several environmental parameters on carbon metabolism in histosols.
Tate, R L
1980-12-01
High specific activity(14)C-labeled glucose, succinate, acetate, salicylate, and amino acids were used to examine carbon metabolism by the microbial community of Pahokee muck (aLithic medisaprist), a drained, cultivated soil of the Florida Everglades. Variations in carbon oxidation were observed from the end of the wet season through the dry season in a fallow (bare) field. Evolution of(14)CO2 varied with the substrate added and time. Calculation of(14)CO2 evolution for each substrate as a proportion of total respiration of the microbial community which was measured by succinate oxidation (relative oxidation) allowed for determination of the proportion of metabolic activity contributed by the oxidation of each carbon source. Except for the May sample when an approximate 30% decline in relative salicylate oxidation activity was observed, the proportion of total catabolic activity contributed by salicylate oxidation and acetate degradation was constant with time. Relative oxidation of glucose and amino acids ranged from 0.12 to 0.52 and 0.10 to 0.23, respectively. At two times during the dry season, the effect of depth of soil and crop on the carbon oxidation was examined. Relative acetate and amino acid oxidation were constant with depth whereas statistically significant variation was observed in glucose and salicylate oxidation. Generally, with the latter substrates, the activity declined with increased soil depth. Greatest effect of crop on these metabolic activities was noted with oxidation of salicylate in soils from a St. Augustinegrass [Stenatophrum secundatum (Walt.) Kuntz] pasture. In these soils, oxidation of salicylate was nearly double that of the fallow field or of soil planted with sugarcane (Saccharum sp.).
Recent advances in systems metabolic engineering tools and strategies.
Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup
2017-10-01
Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Van den Abbeele, Pieter; Taminiau, Bernard; Pinheiro, Iris; Duysburgh, Cindy; Jacobs, Heidi; Pijls, Loek; Marzorati, Massimo
2018-02-07
Fecal batch fermentations coupled to cocultures of epithelial cells and macrophages were used to compare how arabinoxylo-oligosaccharides (AXOS) and inulin modulate gut microbial activity and composition of three different human donors and subsequently the epithelial permeability and immune response. Both inulin and AXOS decreased the pH during incubation (-1.5 pH units), leading to increased productions of acetate, propionate, and butyrate. Differences in terms of metabolites production could be linked to specific microbial alterations at genus level upon inulin/AXOS supplementation (i.e., Bifidobacterium, Bacteroides, Prevotella and unclassified Erysipelotrichaceae), as shown by 16S-targeted Illumina sequencing. Both products stimulated gut barrier and immune function with increases in TEER, NF-KB, IL-10, and IL-6. Ingredients with different structures selectively modulate the microbiota of a specific donor leading to differential changes at metabolic level. The extent of this effect is donor specific and is linked to a final specific modulation of the host's immune system.
Olins, Heather C.; Rogers, Daniel R.; Preston, Christina; Ussler, William; Pargett, Douglas; Jensen, Scott; Roman, Brent; Birch, James M.; Scholin, Christopher A.; Haroon, M. Fauzi; Girguis, Peter R.
2017-01-01
Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria. These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria. Notably, the apparent metabolic activity of the Gammaproteobacteria—particularly carbon fixation—in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale. PMID:28659879
NASA Astrophysics Data System (ADS)
Huber, J. A.; Fortunato, C. S.
2014-12-01
The global ocean comprises the Earth's largest biome, with microorganisms playing a dominant biogeochemical role. However, the potential for production of new microbial biomass within the subseafloor is rarely considered in traditional oceanographic paradigms of carbon cycling or microbial food webs. In this study, we used RNA Stable Isotope Probing (RNA SIP) to determine the microbial community composition and genetic repertoire of active subseafloor autotrophs in warm venting fluids from Axial Seamount. RNA is a responsive biomarker because it is a reflection of cellular activity independent of replication, and RNA SIP thus provides access to both the function of a microbial community and the phylogeny of the organisms accountable for key functions. Diffuse fluids were incubated shipboard at 30°C, 55°C, and 80°C with 13DIC and H2. Metatranscriptomic sequencing of both the enriched and non-enriched RNA was carried out from 13C and 12C controls. In addition, filtered fluid samples were preserved in situ for comparative meta -transcriptomic and -genomic analyses. Diverse lineages of bacteria and archaea and accompanying metabolisms were detected in situ, but RNA SIP results show dominance of three different groups of autotrophs active under each experimental condition. At 30°C, members of the Sulfurimonas genus dominated, with genes for hydrogen oxidation, nitrate reduction, and carbon fixation via the rTCA cycle highly expressed. At 55°C, both Caminibacter and Nautilia transcripts were detected for rTCA cycle, hydrogen oxidation, and nitrate reduction. At 80°C, transcripts for hydrogenotrophic methanogenesis mediated by members of Methanocaldococcus were detected. These results suggest the subseafloor hosts various anaerobic chemolithoautotrophs that span a wide temperature range, with hydrogen playing a key role in microbial metabolism. Complementary experiments are currently being carried out on the seafloor with a novel in situ incubator unit to provide further insights to primary productivity in the subseafloor.
Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota.
De Vuyst, L; Vrancken, G; Ravyts, F; Rimaux, T; Weckx, S
2009-10-01
Sourdough is a microbial ecosystem of lactic acid bacteria (LAB) and yeasts in a matrix of mainly cereal flour and water. Culture-dependent and culture-independent microbiological analysis together with metabolite target analyses of different sourdoughs enabled to understand this complex fermentation process. It is difficult to link the species diversity of the sourdough microbiota with the (geographical) type of sourdough and the flour used, although the type and quality of the latter is the main source of autochthonous LAB in spontaneous sourdough fermentations and plays a key role in establishing stable microbial consortia within a short time. Carbohydrate fermentation targeted towards maltose catabolism, the use of external alternative electron acceptors, amino acid transamination reactions, and/or the arginine deiminase pathway are metabolic activities that favour energy production, cofactor (re)cycling, and/or tolerance towards acid stress, and hence contribute to the competitiveness and dominance of certain species of LAB found in sourdoughs. Also, microbial interactions play an important role. The availability of genome sequences for several LAB species that are of importance in sourdough as well as technological advances in the fields of functional genomics, transcriptomics, and proteomics enable new approaches to study sourdough fermentations beyond the single species level and will allow an integral analysis of the metabolic activities and interactions taking place in sourdough. Finally, the implementation of selected starter cultures in sourdough technology is of pivotal importance for the industrial production of sourdoughs to be used as flavour carrier, texture-improving, or health-promoting dough ingredient.
Lipus, Daniel; Vikram, Amit; Ross, Daniel; Bain, Daniel; Gulliver, Djuna; Hammack, Richard; Bibby, Kyle
2017-04-15
Microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across all 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense , an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure. IMPORTANCE There are an estimated 15,000 unconventional gas wells in the Marcellus Shale region, each generating up to 8,000 liters of hypersaline produced water per day throughout its lifetime (K. Gregory, R. Vidic, and D. Dzombak, Elements 7:181-186, 2011, https://doi.org/10.2113/gselements.7.3.181; J. Arthur, B. Bohm, and M. Layne, Gulf Coast Assoc Geol Soc Trans 59:49-59, 2009; https://www.marcellusgas.org/index.php). Microbial activity in produced waters could lead to issues with corrosion, fouling, and souring, potentially interfering with hydraulic fracturing operations. Previous studies have found microorganisms contributing to corrosion, fouling, and souring to be abundant across produced water samples from hydraulically fractured wells; however, these findings were based on a limited number of samples and well sites. In this study, we investigated the microbial community structure in produced water samples from 42 unconventional Marcellus Shale wells, confirming the dominance of the genus Halanaerobium in produced water and its metabolic potential for acid and sulfide production and biofilm formation. Copyright © 2017 American Society for Microbiology.
Lipus, Daniel; Vikram, Amit; Ross, Daniel; Bain, Daniel; Gulliver, Djuna; Hammack, Richard
2017-01-01
ABSTRACT Microbial activity in the produced water from hydraulically fractured oil and gas wells may potentially interfere with hydrocarbon production and cause damage to the well and surface infrastructure via corrosion, sulfide release, and fouling. In this study, we surveyed the microbial abundance and community structure of produced water sampled from 42 Marcellus Shale wells in southwestern Pennsylvania (well age ranged from 150 to 1,846 days) to better understand the microbial diversity of produced water. We sequenced the V4 region of the 16S rRNA gene to assess taxonomy and utilized quantitative PCR (qPCR) to evaluate the microbial abundance across all 42 produced water samples. Bacteria of the order Halanaerobiales were found to be the most abundant organisms in the majority of the produced water samples, emphasizing their previously suggested role in hydraulic fracturing-related microbial activity. Statistical analyses identified correlations between well age and biocide formulation and the microbial community, in particular, the relative abundance of Halanaerobiales. We further investigated the role of members of the order Halanaerobiales in produced water by reconstructing and annotating a Halanaerobium draft genome (named MDAL1), using shotgun metagenomic sequencing and metagenomic binning. The recovered draft genome was found to be closely related to the species H. congolense, an oil field isolate, and Halanaerobium sp. strain T82-1, also recovered from hydraulic fracturing produced water. Reconstruction of metabolic pathways revealed Halanaerobium sp. strain MDAL1 to have the potential for acid production, thiosulfate reduction, and biofilm formation, suggesting it to have the ability to contribute to corrosion, souring, and biofouling events in the hydraulic fracturing infrastructure. IMPORTANCE There are an estimated 15,000 unconventional gas wells in the Marcellus Shale region, each generating up to 8,000 liters of hypersaline produced water per day throughout its lifetime (K. Gregory, R. Vidic, and D. Dzombak, Elements 7:181–186, 2011, https://doi.org/10.2113/gselements.7.3.181; J. Arthur, B. Bohm, and M. Layne, Gulf Coast Assoc Geol Soc Trans 59:49–59, 2009; https://www.marcellusgas.org/index.php). Microbial activity in produced waters could lead to issues with corrosion, fouling, and souring, potentially interfering with hydraulic fracturing operations. Previous studies have found microorganisms contributing to corrosion, fouling, and souring to be abundant across produced water samples from hydraulically fractured wells; however, these findings were based on a limited number of samples and well sites. In this study, we investigated the microbial community structure in produced water samples from 42 unconventional Marcellus Shale wells, confirming the dominance of the genus Halanaerobium in produced water and its metabolic potential for acid and sulfide production and biofilm formation. PMID:28159795
Bassin, J. P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; van Loosdrecht, M. C. M.
2011-01-01
The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtained from genomic DNA and from rRNA after reverse transcription were compared to determine the presence of bacteria as well as the metabolically active fraction of bacteria. Fluorescence in situ hybridization (FISH) was used to validate the PCR-based results and to quantify the dominant bacterial populations. The results demonstrated that ammonium removal efficiency was not affected by salt concentrations up to 33 g/liter NaCl. Conversely, a high accumulation of nitrite was observed above 22 g/liter NaCl, which coincided with the disappearance of Nitrospira sp. Phosphorus removal was severely affected by gradual salt increase. No P release or uptake was observed at steady-state operation at 33 g/liter NaCl, exactly when the polyphosphate-accumulating organisms (PAOs), “Candidatus Accumulibacter phosphatis” bacteria, were no longer detected by PCR-DGGE or FISH. Batch experiments confirmed that P removal still could occur at 30 g/liter NaCl, but the long exposure of the biomass to this salinity level was detrimental for PAOs, which were outcompeted by glycogen-accumulating organisms (GAOs) in the bioreactor. GAOs became the dominant microorganisms at increasing salt concentrations, especially at 33 g/liter NaCl. In the comparative analysis of the diversity (DNA-derived pattern) and the activity (cDNA-derived pattern) of the microbial population, the highly metabolically active microorganisms were observed to be those related to ammonia (Nitrosomonas sp.) and phosphate removal (“Candidatus Accumulibacter”). PMID:21926194
Aiello, I.W.; Bekins, B.A.
2010-01-01
The recent discoveries of large, active populations of microbes in the subseafloor of the world's oceans supports the impact of the deep biosphere biota on global biogeochemical cycles and raises important questions concerning the functioning of these extreme environments for life. These investigations demonstrated that subseafloor microbes are unevenly distributed and that cell abundances and metabolic activities are often independent from sediment depths, with increased prokaryotic activity at geochemical and/or sedimentary interfaces. In this study we demonstrate that microbial populations vary at the scale of individual beds in the biogenic oozes of a drill site in the eastern equatorial Pacific (Ocean Drilling Program Leg 201, Site 1226). We relate bedding-scale changes in biogenic ooze sediment composition to organic carbon (OC) and microbial cell concentrations using high-resolution color reflectance data as proxy for lithology. Our analyses demonstrate that microbial concentrations are an order of magnitude higher in the more organic-rich diatom oozes than in the nannofossil oozes. The variations mimic small-scale variations in diatom abundance and OC, indicating that the modern distribution of microbial biomass is ultimately controlled by Milankovitch-frequency variations in past oceanographic conditions. ?? 2010 Geological Society of America.
NASA Astrophysics Data System (ADS)
Virdis, Bernardino; Dennis, Paul G.
2017-07-01
Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.
Visualization of metabolic interaction networks in microbial communities using VisANT 5.0
Granger, Brian R.; Chang, Yi -Chien; Wang, Yan; ...
2016-04-15
Here, the complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique meta-graph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction networkmore » between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues.« less
Xie, Jianping; He, Zhili; Liu, Xinxing; Liu, Xueduan; Van Nostrand, Joy D.; Deng, Ye; Wu, Liyou; Zhou, Jizhong; Qiu, Guanzhou
2011-01-01
Acid mine drainage (AMD) is an extreme environment, usually with low pH and high concentrations of metals. Although the phylogenetic diversity of AMD microbial communities has been examined extensively, little is known about their functional gene diversity and metabolic potential. In this study, a comprehensive functional gene array (GeoChip 2.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of AMD microbial communities from three copper mines in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, gene overlapping, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 2.0 were detected in the AMD microbial communities, including carbon fixation, carbon degradation, methane generation, nitrogen fixation, nitrification, denitrification, ammonification, nitrogen reduction, sulfur metabolism, metal resistance, and organic contaminant degradation, which suggested that the functional gene diversity was higher than was previously thought. Mantel test results indicated that AMD microbial communities are shaped largely by surrounding environmental factors (e.g., S, Mg, and Cu). Functional genes (e.g., narG and norB) and several key functional processes (e.g., methane generation, ammonification, denitrification, sulfite reduction, and organic contaminant degradation) were significantly (P < 0.10) correlated with environmental variables. This study presents an overview of functional gene diversity and the structure of AMD microbial communities and also provides insights into our understanding of metabolic potential in AMD ecosystems. PMID:21097602
Deep subsurface microbial processes
Lovley, D.R.; Chapelle, F.H.
1995-01-01
Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.
Praveen, Paurush; Jordan, Ferenc; Priami, Corrado; Morine, Melissa J
2015-09-24
The human intestinal microbiota changes from being sparsely populated and variable to possessing a mature, adult-like stable microbiome during the first 2 years of life. This assembly process of the microbiota can lead to either negative or positive effects on health, depending on the colonization sequence and diet. An integrative study on the diet, the microbiota, and genomic activity at the transcriptomic level may give an insight into the role of diet in shaping the human/microbiome relationship. This study aims at better understanding the effects of microbial community and feeding mode (breast-fed and formula-fed) on the immune system, by comparing intestinal metagenomic and transcriptomic data from breast-fed and formula-fed babies. We re-analyzed a published metagenomics and host gene expression dataset from a systems biology perspective. Our results show that breast-fed samples co-express genes associated with immunological, metabolic, and biosynthetic activities. The diversity of the microbiota is higher in formula-fed than breast-fed infants, potentially reflecting the weaker dependence of infants on maternal microbiome. We mapped the microbial composition and the expression patterns for host systems and studied their relationship from a systems biology perspective, focusing on the differences. Our findings revealed that there is co-expression of more genes in breast-fed samples but lower microbial diversity compared to formula-fed. Applying network-based systems biology approach via enrichment of microbial species with host genes revealed the novel key relationships of the microbiota with immune and metabolic activity. This was supported statistically by data and literature.
Zomorrodi, Ali R; Segrè, Daniel
2017-11-16
Metabolite exchanges in microbial communities give rise to ecological interactions that govern ecosystem diversity and stability. It is unclear, however, how the rise of these interactions varies across metabolites and organisms. Here we address this question by integrating genome-scale models of metabolism with evolutionary game theory. Specifically, we use microbial fitness values estimated by metabolic models to infer evolutionarily stable interactions in multi-species microbial "games". We first validate our approach using a well-characterized yeast cheater-cooperator system. We next perform over 80,000 in silico experiments to infer how metabolic interdependencies mediated by amino acid leakage in Escherichia coli vary across 189 amino acid pairs. While most pairs display shared patterns of inter-species interactions, multiple deviations are caused by pleiotropy and epistasis in metabolism. Furthermore, simulated invasion experiments reveal possible paths to obligate cross-feeding. Our study provides genomically driven insight into the rise of ecological interactions, with implications for microbiome research and synthetic ecology.
How biochemical constraints of cellular growth shape evolutionary adaptations in metabolism.
Berkhout, Jan; Bosdriesz, Evert; Nikerel, Emrah; Molenaar, Douwe; de Ridder, Dick; Teusink, Bas; Bruggeman, Frank J
2013-06-01
Evolutionary adaptations in metabolic networks are fundamental to evolution of microbial growth. Studies on unneeded-protein synthesis indicate reductions in fitness upon nonfunctional protein synthesis, showing that cell growth is limited by constraints acting on cellular protein content. Here, we present a theory for optimal metabolic enzyme activity when cells are selected for maximal growth rate given such growth-limiting biochemical constraints. We show how optimal enzyme levels can be understood to result from an enzyme benefit minus cost optimization. The constraints we consider originate from different biochemical aspects of microbial growth, such as competition for limiting amounts of ribosomes or RNA polymerases, or limitations in available energy. Enzyme benefit is related to its kinetics and its importance for fitness, while enzyme cost expresses to what extent resource consumption reduces fitness through constraint-induced reductions of other enzyme levels. A metabolic fitness landscape is introduced to define the fitness potential of an enzyme. This concept is related to the selection coefficient of the enzyme and can be expressed in terms of its fitness benefit and cost.
NASA Astrophysics Data System (ADS)
Orphan, V. J.; Skennerton, C.; Chadwick, G.; Haroon, F.; Tyson, G. W.; Leu, A.; Hatzenpichler, R.; Woyke, T.; Malmstrom, R.; Yu, H.; Scheller, S.
2015-12-01
Cooperative metabolic interactions between multiple groups of methanotrophic 'ANME' archaea and sulfate-reducing bacteria represent the primary sink for methane within continental margin sediments. These syntrophic associations are frequently observed as structured multi-celled consortia in methane seeps, often comprising a substantial proportion of the microbial biomass within near seafloor seep sediments. Since their discovery nearly 15 years ago, a number of distinct ANME groups and multiple sulfate-reducing bacterial partners have been described from seep environments worldwide. Attempts to reconstruct the genomes of some ANME organisms have been reported, however the ecological physiology and metabolic interactions of distinct ANME lineages and their bacterial partners remains poorly understood. Here, we used a fluorescence azide-alkyne click chemistry technique known as BONCAT combined with FAC sorting to examine patterns in microbial membership and the genomes of single, metabolically active ANME-bacterial consortia recovered from methane seep sediments. This targeted consortia-level sequencing approach revealed significant diversity in the ANME-bacterial associations in situ as well as insights into the potential syntrophic mechanisms underpinning these enigmatic methane-fueled partnerships.
Crovadore, Julien; Soljan, Vice; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Lefort, François
2017-10-01
Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX) improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS). For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb) and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrogen fixation processes in AS.
NASA Astrophysics Data System (ADS)
King, E.; Karaoz, U.; Molins, S.; Bouskill, N.; Anantharaman, K.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.
2015-12-01
The biogeochemical functioning of ecosystems is shaped in part by genomic information stored in the subsurface microbiome. Cultivation-independent approaches allow us to extract this information through reconstruction of thousands of genomes from a microbial community. Analysis of these genomes, in turn, gives an indication of the organisms present and their functional roles. However, metagenomic analyses can currently deliver thousands of different genomes that range in abundance/importance, requiring the identification and assimilation of key physiologies and metabolisms to be represented as traits for successful simulation of subsurface processes. Here we focus on incorporating -omics information into BioCrunch, a genome-informed trait-based model that represents the diversity of microbial functional processes within a reactive transport framework. This approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolithotrophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for cellular maintenance, respiration, biomass development, and enzyme production based upon dynamic intracellular and environmental conditions. This internal resource partitioning represents a trade-off against biomass formation and results in microbial community emergence across a fitness landscape. Biocrunch was used here in simulations that included organisms and metabolic pathways derived from a dataset of ~1200 non-redundant genomes reflecting a microbial community in a floodplain aquifer. Metagenomic data was directly used to parameterize trait values related to growth and to identify trait linkages associated with respiration, fermentation, and key enzymatic functions such as plant polymer degradation. Simulations spanned a range of metabolic complexities and highlight benefits originating from simulations including a larger number of organisms that more appropriately reflect the in situ microbial community.
Hettich, Robert L.; Pan, Chongle; Chourey, Karuna; Giannone, Richard J.
2013-01-01
Summary The availability of extensive genome information for many different microbes, including unculturable species in mixed communities from environmental samples, has enabled systems-biology interrogation by providing a means to access genomic, transcriptomic, and proteomic information. To this end, metaproteomics exploits the power of high performance mass spectrometry for extensive characterization of the complete suite of proteins expressed by a microbial community in an environmental sample. PMID:23469896
NASA Astrophysics Data System (ADS)
Zeglin, L. H.; David, M.; Bottomley, P.; Hettich, R. L.; Jansson, J.; Jumpponen, A.; Rice, C. W.; Tringe, S.; VerBerkmoes, N. C.; Myrold, D.
2011-12-01
A significant amount of carbon (C) is processed and stored in prairie soils: grasslands cover 6.1-7.4% of the earth's land surface and hold 7.3-11.4% of global soil C. Global change models predict that the future precipitation regime across the North American Great Plains will entail less frequent but larger rainfall events. The response of prairie soil microbial C processing and allocation to this scenario of higher hydrologic variability is not known, but will be a key determiner of the future capacity for prairie soil C sequestration. We are approaching this problem by assessing soil microbial function (respiration, C utilization efficiency, extracellular enzyme activity) and molecular indicators of dominant C allocation pathways (soil transcriptome, proteome and metabolome) under ambient and experimentally modified precipitation regimes. The rainfall manipulation plots (RaMPs) at the Konza Prairie Long-Term Ecological Research (LTER) site in eastern Kansas, USA is a replicated field manipulation of the magnitude and frequency of natural precipitation that was established in 1998. We collected soil before, during and after a rainfall event in both ambient and modified precipitation treatments and measured the microbial response. Microbial respiration doubled in both treatments during the water addition, and cellobiohydrolase enzyme potential activity (a catalyst of cellulose hydrolysis) increased slightly, but no significant effect of altered precipitation treatment has emerged. The fungal and bacterial ribosomal gene composition was also similar between precipitation treatments. Although pools of genes and extracellular enzymes may be relatively static during short-term dynamic conditions, transcript and intracellular protein abundances may be more indicative of the active microbial metabolic response to rapid shifts in soil moisture. Thus, analysis of transcript and protein composition is underway. In addition, we have implemented a series of lab experiments to optimize and link transcript and protein recovery and analysis procedures using the model soil bacterium Arthrobacter chlorophenicolus strain A6 (ArtchA6). Konza prairie soil was inoculated with ArchA6 and incubated for 72 h with no supplemental C, with acetate or with 4-chlorophenol (a xenobiotic compound that ArtchA6 can utilize as its sole C source), then RNA and protein were extracted from the soil. Quantitatively representative recovery of ArtchA6 genes, rRNA, mRNA and protein was successful. The ratio of ArtchA6 isocitrate lyase (icl, indicative of 2-C metabolism) to succinyl CoA synthetase (suCAB, indicative of total respiratory activity) transcript was highest in soils amended with acetate. Proteomic signatures were distinct in soils with different supplemental C sources. This experiment confirms our capability of recovering transcript and protein from the study soil and of identifying the functional molecules representative of distinct C metabolism pathways.
Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson
2015-06-01
Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs.
Dhami, Navdeep K.; Mukherjee, Abhijit; Watkin, Elizabeth L. J.
2018-01-01
Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD) and Tescan Integrated Mineral Analyzer (TIMA) demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS) indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Scanning Electron Microscopy (SEM) analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content. The in vitro metabolic activity of the microbial communities associated with the surfaces of the speleothems resulted in calcium carbonate crystal precipitation. Firmicutes and Proteobacteria dominated these populations, in contrast to the populations seen in natural systems. The precipitation of calcium carbonate crystals in vitro indicated that microbial metabolic activity may also play an important role in the synthesis and dissociation of biominerals in the natural environment. Our study provides novel evidence of the close relationship between mineralogy, microbial ecology, geochemistry, and nanomechanical properties of natural formations. PMID:29472898
Ghonimy, Abdallah; Zhang, Dong Ming; Farouk, Mohammed Hamdy; Wang, Qiuju
2018-01-01
Carnitine has vital roles in the endogenous metabolism of short chain fatty acids. It can protect and support gut microbial species, and some dietary fibers can reduce the available iron involved in the bioactivity of carnitine. There is also an antagonistic relationship between high microbial populations and carnitine bioavailability. This review shows the interactions between carnitine and gut microbial composition. It also elucidates the role of carnitine bacterial metabolism, mitochondrial function, fiber fermentability, and short chain fatty acids (SCFAs). PMID:29597260
Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; Nelson, William C.; Lee, Joon-Yong
Interest in applying microbial communities to biotechnology continues to increase. Successful engineering of microbial communities requires a fundamental shift in focus from enhancing metabolic capabilities in individual organisms to promoting synergistic interspecies interactions. This goal necessitates in silico tools that provide a predictive understanding of how microorganisms interact with each other and their environments. In this regard, we highlight a need for a new concept that we have termed biological computer-aided design of interactions (BioCADi). We ground this discussion within the context of metabolic network modeling.
Analysis of Particulate and Dissolved Metabolite Pools at Station ALOHA
NASA Astrophysics Data System (ADS)
Boysen, A.; Carlson, L.; Hmelo, L.; Ingalls, A. E.
2016-02-01
Metabolomic studies focus on identifying and quantifying the small organic molecules that are the currency by which an organism lives and dies. Metabolite profiles of microorganisms have the potential to elucidate mechanisms of chemically mediated interactions that influence the success of microbial groups living in a complex environment. However, the chemical diversity of metabolites makes resolving a wide range of compounds analytically challenging. As such, metabolomics has lagged behind other genomic analyses. Here we conduct targeted analysis of over 200 primary and secondary metabolites present in the intracellular and extracellular metabolite pools at Station ALOHA using both reverse phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. We selected the metabolites in our method due to their known importance in primary metabolism, secondary metabolism, and interactions between marine microorganisms such as nutrient exchange, growth promotion, and cell signaling. Through these analyses we obtain a snapshot of microbial community status that, blended with other forms of genomic data, can further our understanding of microbial dynamics. We hypothesize that monitoring a large suite of important metabolites across environmental gradients and diurnal cycles can elucidate factors controlling the distribution and activity of important microbial groups.
Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken; ...
2016-11-29
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjithomas, Michalis; Chen, I-Min A.; Chu, Ken
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic genemore » clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery.« less
Toneatti, Diego M.; Albarracín, Virginia H.; Flores, Maria R.; Polerecky, Lubos; Farías, María E.
2017-01-01
At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H2S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5–7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth. PMID:28446906
Toneatti, Diego M; Albarracín, Virginia H; Flores, Maria R; Polerecky, Lubos; Farías, María E
2017-01-01
At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H 2 S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5-7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth.
Miller, Daniel N; Berry, Elaine D
2005-01-01
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.
Carlson, Ross P; Beck, Ashley E; Phalak, Poonam; Fields, Matthew W; Gedeon, Tomas; Hanley, Luke; Harcombe, William R; Henson, Michael A; Heys, Jeffrey J
2018-04-17
Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Impact of the gut microbiota on inflammation, obesity, and metabolic disease.
Boulangé, Claire L; Neves, Ana Luisa; Chilloux, Julien; Nicholson, Jeremy K; Dumas, Marc-Emmanuel
2016-04-20
The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.
Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.; ...
2017-10-30
Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabugao, Kristine Grace M.; Timm, Collin M.; Carrell, Alyssa A.
Climatic conditions in tropical forests combined with the immobility of phosphorus due to sorption on mineral surfaces or result in soils typically lacking in the form of phosphorus (orthophosphate) most easily metabolized by plants and microbes. In these soils, mineralization of organic phosphorus can be the major source for labile inorganic P available for uptake. Both plants and microbes encode for phosphatase enzymes capable of mineralizing a range of organic phosphorus compounds. However, the activity of these enzymes depends on several edaphic factors including P availability and tree or microbial species. Thus, phosphatase activity in both roots and the rootmore » microbial community constitute an important role in P mineralization and P nutrient dynamics that are not well studied in tropical forests. We measured phosphatase activity in roots and bacterial isolates from the microbial community of six tree species from three forest sites differing in phosphorus availability in the Luquillo Mountains of Puerto Rico. Root and microbial phosphatase activity were both influenced by tree identity and soil phosphorus availability. However, tree identity had a larger effect on phosphatase activity (effect size = 0.12) than soil phosphorus availability (effect size = 0.07). In addition, lower amounts of P availability corresponded with higher levels of enzyme activity. In contrast, ANOSIM analysis of the weighted UniFrac distance matrix indicates that microbial community composition was more strongly controlled by soil P availability (P value < 0.05). These results indicate that root and rhizosphere microbial phosphatase activity are similarly expressed despite the slightly stronger influence of tree identity on root function and the stronger influence of P availability on microbial community composition. The low levels of orthophosphate in tropical forests, rather than prohibiting growth, have encouraged a variety of functions to adapt to minimal levels of an essential nutrient. Phosphatase activity is one such mechanism that varies in both roots and microbial community members. A thorough understanding of phosphatase activity provides insight into P mineralization in tropical forests, providing not only perspective on ecosystem function of tropical trees and microbial communities, but also in advancing efforts to improve representations of tropical forests in future climates.« less
NASA Astrophysics Data System (ADS)
Ramírez Rojas, Irene; Perez Fernandez, María; Moreno Gallardo, Laura; Lechuga Ordoñez, Victor; Linares, Juan Carlos
2016-04-01
Several environmental traits might change the abundance and the function of soil microorganisms in forest soils by plant-mediated reactions. Few studies have related the landscape-scale forest structural diversity with the micro-scale distribution of microorganism and their activities. High mountain environments harbor ecosystems that are very sensitive to global change and hence highly vulnerable, as those of Atlantic cedar. Altitudinal gradients in mountains are orrelated with changes in vegetation. We propose that altitudinal gradients drive shifts in microbial communities and are correlated with land uses. Thus, the latitudinal and longitudinal pattern of abundance and activity of soil micro-organisms was studied in an intercontinental comparison. We investigate soil extractable organic carbon (EOC) and nitrogen and carbon, microbial biomass and microbial metabolic activities at eight different sites along the latitudinal range of Cedrus atlantica, covering different altitudes and soils characteristics both in Southern Spain and Northern Morocco. Analyses of the abundances of total bacteria, (16S rRNA gene), was conducted using the Ilumina metagenomics technique. Results show that the stands at the highest altitudes had distinct microbial and biochemical characteristics compared with other areas. Overall, microbial activity, as measured by soil respiration, is higher in forests subjected to lower human pressure than in stands highly degraded, probably reflecting the quality of litter input that results of the influence of local assemblage of different tree, shrub and annual species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Our results suggest that in contrast to the observed pronounced altitudinal changes, the kind of human-mediate land management has a stronger role in defining changes in microbial composition and activities in the investigated forest systems.
Metabolic activity of microorganisms in evaporites
NASA Technical Reports Server (NTRS)
Rothschild, L. J.; Giver, L. J.; White, M. R.; Mancinelli, R. L.
1994-01-01
Crystalline salt is generally considered so hostile to most forms of life that it has been used for centuries as a preservative. Here, we present evidence that prokaryotes inhabiting a natural evaporite crust of halite and gypsum are metabolically active while inside the evaporite for at least 10 months. In situ measurements demonstrated that some of these "endoevaporitic" microorganisms (probably the cyanobacterium Synechococcus Nageli) fixed carbon and nitrogen. Denitrification was not observed. Our results quantified the slow microbial activity that can occur in salt crystals. Implications of this study include the possibility that microorganisms found in ancient evaporite deposits may have been part of an evaporite community.
Toulza, Eve; Tagliabue, Alessandro; Blain, Stéphane; Piganeau, Gwenael
2012-01-01
Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.
Wilén, Britt-Marie; Liébana, Raquel; Persson, Frank; Modin, Oskar; Hermansson, Malte
2018-06-01
Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.
Bacterial diversity in goat milk from the Guanzhong area of China.
Zhang, Fuxin; Wang, Zhaoxia; Lei, Feiyan; Wang, Bini; Jiang, Shuaiming; Peng, Qiannan; Zhang, Jiachao; Shao, Yuyu
2017-10-01
In this study, the V3 and V4 regions of the 16S rRNA gene from metagenomic DNA were sequenced to identify differences in microbial diversity in raw milk of Saanen and Guanzhong goats from the Guanzhong area of China. The results showed that Proteobacteria was the predominant phylum, accounting for 71.31% of all phyla identified in milk from the 2 breeds, and Enterobacter was the predominant genus (24.69%) within the microbial community. Microbial alpha diversity from Saanen goat milk was significantly higher than that of Guanzhong goat milk based on bioinformatic analysis of indices of Chao1, Shannon, Simpson, observed species, and the abundance-based coverage estimator. Functional genes and their likely metabolic pathways were predicted, which demonstrated that the functional genes present in the bacteria in goat milk were enriched in pathways for amino acid metabolism and carbohydrate metabolism, which represented 11.93 and 11.23% of functional genes, respectively. Physicochemical properties such as pH, protein, fat, and AA levels were also determined and correlations made with microbial diversity. We detected a significant difference in the content of lactose and 6 AA, which were higher in Saanen milk than in Guanzhong milk, and positively correlated with microbial carbohydrate metabolism and AA metabolism. Lactococcus, Lactobacillus, Bifidobacterium, Enterococcus, and Streptococcus, which are lactose-utilizing genera, were more abundant in Saanen milk than in Guanzhong milk. Higher levels of lactose in Saanen goat milk may explain its greater microbial diversity. We also demonstrated that most of the AA metabolism-related bacterial genera (e.g., Massilia, Bacteroides, Lysobacter) were enriched in Saanen goat milk. In this research, both probiotic and pathogenic bacteria were identified in goat milk, which provided the microbial information necessary to direct the utilization of beneficial microbial resources and prevent the development of harmful organisms in goat milk. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dippold, Michaela; Kuzyakov, Yakov
2015-04-01
Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino sugar 13C analysis showed that oxidizing catabolic pathways and anabolic pathways, i.e. building-up new cellular compounds, occurred in soils simultaneously. This involved an intensive C recycling within the microorganisms that was observed not only for cytosolic compounds but also for cell wall polymers. Fungal metabolism and fluxes were slower than bacterial intracellular C recycling and turnover. Furthermore, position-specific labeling of glutamate and subsequent 13C analysis of microbial phospholipid fatty acids (PLFA) revealed starvation pathways, which were only active in specific microbial groups in soils. These studies revealed that position-specific labeling enables the reconstruction of metabolic pathways of LMWOS within diverse microbial communities in complex media such as soil. Processes occurring simultaneously in soil i.e. 1) within individual, reversible metabolic pathways and 2) in various microbial groups could be traced by position-specific labeling in soils in situ. Tracing these pathways and understanding their regulating factors are crucial for soil C fluxomics, the extremely complex network of transformations towards mineralization versus the formation of microbial biomass compounds. Quantitative models to assess microbial group specific metabolic networks can be generated and parameterized by this approach. The submolecular knowledge of transformation steps and biochemical pathways in soils and their regulating factors is essential for understanding C cycling and long-term C storage in soils.
Interactions in the Geo-Biosphere: Processes of Carbonate Precipitation in Microbial Mats
NASA Astrophysics Data System (ADS)
Dupraz, C.; Visscher, P. T.
2009-12-01
Microbial communities are situated at the interface between the biosphere, the lithosphere and the hydrosphere. These microbes are key players in the global carbon cycle, where they influence the balance between the organic and inorganic carbon reservoirs. Microbial populations can be organized in microbial mats, which can be defined as organosedimentary biofilms that are dominated by cyanobacteria, and exhibit tight coupling of element cycles. Complex interactions between mat microbes and their surrounding environment can result in the precipitation of carbonate minerals. This process refers as ‘organomineralization sensu lato' (Dupraz et al. in press), which differs from ‘biomineralization’ (e.g., in shells and bones) by lacking genetic control on the mineral product. Organomineralization can be: (1) active, when microbial metabolic reactions are responsible for the precipitation (“biologically-induced” mineralization) or (2) passive, when mineralization within a microbial organic matrix is environmentally driven (e.g., through degassing or desiccation) (“biologically-influenced” mineralization). Studying microbe-mineral interactions is essential to many emerging fields of the biogeoscience, such as the study of life in extreme environments (e.g, deep biosphere), the origin of life, the search for traces of extraterrestrial life or the seek of new carbon sink. This research approach combines sedimentology, biogeochemistry and microbiology. Two tightly coupled components that control carbonate organomineralization s.l.: (1) the alkalinity engine and (2) the extracellular organic matter (EOM), which is ultimately the location of mineral nucleation. Carbonate alkalinity can be altered both by microbial metabolism and environmental factors. In microbial mats, the net accumulation of carbonate minerals often reflect the balance between metabolic activities that consume/produce CO2 and/or organic acids. For example, photosynthesis and sulfate reduction will increase carbonate alkalinity and the potential of precipitation, whereas aerobic respiration and sulfide oxidation will promote carbonate dissolution. The EOM is composed of two main carbon pools: the high molecular weight extracellular polymeric substances (EPS) and the low molecular weight organic carbon compounds (LMW-OC). Both pools play a critical role in carbonate precipitation by providing Ca2+ and CO32- as well as a nucleation template for mineral growth. EOM contains several negatively charged functional groups, which, depending on the pH, can be deprotonated (each group has unique pK value(s)) and, thus, bind cations. This binding capacity can deplete the surrounding environment of cations (e.g., Ca2+, Mg2+) and, thus, inhibits carbonate precipitation. Therefore, organomineralization is only possible if the inhibition potential is reduced through (1) oversaturation of the EOM binding capacity or (2) EOM degradation.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
Metabolic heterogeneity in clonal microbial populations.
Takhaveev, Vakil; Heinemann, Matthias
2018-02-21
In the past decades, numerous instances of phenotypic diversity were observed in clonal microbial populations, particularly, on the gene expression level. Much less is, however, known about phenotypic differences that occur on the level of metabolism. This is likely explained by the fact that experimental tools probing metabolism of single cells are still at an early stage of development. Here, we review recent exciting discoveries that point out different causes for metabolic heterogeneity within clonal microbial populations. These causes range from ecological factors and cell-inherent dynamics in constant environments to molecular noise in gene expression that propagates into metabolism. Furthermore, we provide an overview of current methods to quantify the levels of metabolites and biomass components in single cells. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Recent Advances in the Recombinant Biosynthesis of Polyphenols
Chouhan, Sonam; Sharma, Kanika; Zha, Jian; Guleria, Sanjay; Koffas, Mattheos A. G.
2017-01-01
Plants are the source of various natural compounds with pharmaceutical and nutraceutical importance which have shown numerous health benefits with relatively fewer side effects. However, extraction of these compounds from native producers cannot meet the ever-increasing demands of the growing population due to, among other things, the limited production of the active compound(s). Their production depends upon the metabolic demands of the plant and is also subjected to environmental conditions, abundance of crop species and seasonal variations. Moreover, their extraction from plants requires complex downstream processing and can also lead to the extinction of many useful plant varieties. Microbial engineering is one of the alternative approaches which can meet the global demand for natural products in an eco-friendly manner. Metabolic engineering of microbes or pathway reconstruction using synthetic biology tools and novel enzymes lead to the generation of a diversity of compounds (like flavonoids, stilbenes, anthocyanins etc.) and their natural and non-natural derivatives. Strain and pathway optimization, pathway regulation and tolerance engineering have produced microbial cell factories into which the metabolic pathway of plants can be introduced for the production of compounds of interest on an industrial scale in an economical and eco-friendly way. While microbial production of phytochemicals needs to further increase product titer if it is ever to become a commercial success. The present review covers the advancements made for the improvement of microbial cell factories in order to increase the product titer of recombinant polyphenolic compounds. PMID:29201020
Włodarczyk, Agnieszka; Lirski, Maciej; Fogtman, Anna; Koblowska, Marta; Bidziński, Grzegorz; Matlakowska, Renata
2018-01-01
Black shales are one of the largest reservoirs of fossil organic carbon and inorganic reduced sulfur on Earth. It is assumed that microorganisms play an important role in the transformations of these sedimentary rocks and contribute to the return of organic carbon and inorganic sulfur to the global geochemical cycles. An outcrop of deep subterrestrial ~256-million-year-old Kupferschiefer black shale was studied to define the metabolic processes of the deep biosphere important in transformations of organic carbon and inorganic reduced sulfur compounds. This outcrop was created during mining activity 12 years ago and since then it has been exposed to the activity of oxygen and microorganisms. The microbial processes were described based on metagenome and metaproteome studies as well as on the geochemistry of the rock. The microorganisms inhabiting the subterrestrial black shale were dominated by bacterial genera such as Pseudomonas, Limnobacter, Yonghaparkia, Thiobacillus, Bradyrhizobium , and Sulfuricaulis . This study on black shale was the first to detect archaea and fungi, represented by Nitrososphaera and Aspergillus genera, respectively. The enzymatic oxidation of fossil aliphatic and aromatic hydrocarbons was mediated mostly by chemoorganotrophic bacteria, but also by archaea and fungi. The dissimilative enzymatic oxidation of primary reduced sulfur compounds was performed by chemolithotrophic bacteria. The geochemical consequences of microbial activity were the oxidation and dehydrogenation of kerogen, as well as oxidation of sulfide minerals.
Welles, Laurens; Abbas, Ben; Sorokin, Dimitry Y.; Lopez-Vazquez, Carlos M.; Hooijmans, Christine M.; van Loosdrecht, Mark C. M.; Brdjanovic, Damir
2017-01-01
The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, “Candidatus Accumulibacter phosphatis” clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels. PMID:28111570
Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.
Manna, Suman; Singh, Neera; Singh, V P
2013-04-01
An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.
Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?
Xu, Jia; Verbrugghe, Adronie; Lourenço, Marta; Janssens, Geert P J; Liu, Daisy J X; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam
2016-06-16
Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host metabolic changes in IBD dogs. Twenty-three dogs diagnosed with IBD and ten healthy control dogs were included. Dogs with IBD were given a clinical score using the canine chronic enteropathy clinical activity index (CCECAI). Faecal short-chain fatty acids (SCFA) and ammonia concentrations were measured and quantitative PCR was performed. The concentration of plasma amino acids, acylcarnitines, serum folate, cobalamin, and indoxyl sulfate was determined. No significant differences in the abundance of a selection of bacterial groups and fermentation metabolites were observed between the IBD and control groups. However, significant negative correlations were found between CCECAI and the faecal proportion of Lactobacillus as well as between CCECAI and total SCFA concentration. Serum folate and plasma citrulline were decreased and plasma valine was increased in IBD compared to control dogs. Increased plasma free carnitine and total acylcarnitines were observed in IBD compared with control dogs, whereas short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and, methylmalonylcarnitine) to free carnitine ratios decreased. Dogs with IBD had a higher 3-hydroxyisovalerylcarnitine + isovalerylcarnitine to leucine ratio compared to control dogs. Canine IBD induced a wide range of changes in metabolic profile, especially for the plasma concentrations of short-chain acylcarnitines and amino acids, which could have evolved from tissue damage and alteration in host metabolism. In addition, dogs with more severe IBD were characterised by a decrease in faecal proportion of Lactobacillus.
Li, Wei; Podar, Mircea
2016-01-01
ABSTRACT The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. IMPORTANCE Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment. PMID:27084010
Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John
2016-01-12
Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of reference genomes can impact comprehensive annotation of metatranscriptomes. Consequently, beyond the application of standardized pipelines, additional caution must be taken when interpreting their output and performing downstream, microbiome-specific, analyses. The pipeline used in these analyses along with a tutorial has been made freely available for download from our project website: http://www.compsysbio.org/microbiome .
Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M
2016-06-15
The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activated cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (Flavobacteria and Methylobacteriaceae) were independently associated with two key MCM lake microalgae (Isochrysis and Chlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite of Chlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential interactions with other microbes. Our work reveals that Antarctic lake protists rely on metabolic versatility for their energy and nutrient requirements in this unique and isolated environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome
Abubucker, Sahar; Segata, Nicola; Goll, Johannes; Schubert, Alyxandria M.; Izard, Jacques; Cantarel, Brandi L.; Rodriguez-Mueller, Beltran; Zucker, Jeremy; Thiagarajan, Mathangi; Henrissat, Bernard; White, Owen; Kelley, Scott T.; Methé, Barbara; Schloss, Patrick D.; Gevers, Dirk; Mitreva, Makedonka; Huttenhower, Curtis
2012-01-01
Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies. PMID:22719234
Microbial activity in debris-rich basal ice; adaption to sub-zero, saline conditions
NASA Astrophysics Data System (ADS)
Montross, S. N.; Skidmore, M. L.; Christner, B. C.; Griggs, R.; Tison, J.; Sowers, T. A.
2011-12-01
Polycrystalline ice in glaciers and ice sheets has a high preservation potential for biological material and chemical compounds that can be used to document the presence of active microbial metabolism at sub-zero temperatures. The concentration and isotopic composition of gases, in conjunction with other aqueous chemical species in debris-rich basal glacier ice from Taylor Glacier, Antarctica were used as direct evidence that cells entrained in the ice remain metabolically active at temperatures as low as -17°C, likely in thin films of liquid water along ice crystal and mineral grain boundaries. δ18O2 and δ13CO2 values measured in the ice are consistent with the hypothesis that abrupt changes measured in O2 and CO2 concentrations between debris-rich and debris-poor ice are due to in situ microbial mineralization of organic carbon. Low temperature culture-based experiments conducted using organisms isolated from the ice indicate the ability to respire organic carbon to CO2 under oxic conditions and under anoxic conditions couple carbon mineralization to dissimilatory iron reduction using Fe3+ as an electron acceptor. Microorganisms that are active in the debris-rich basal ice layers in terrestrial polar ice masses need to be adapted to surviving subzero temperatures and saline conditions on extended timescales. Thus these terrestrial glacial systems and the isotopic and geochemical biomarkers therein provide good analogues for guiding exploration and analysis of debris-rich ices in extraterrestrial settings, for example, on Mars.
Oil biodegradation. Water droplets in oil are microhabitats for microbial life.
Meckenstock, Rainer U; von Netzer, Frederick; Stumpp, Christine; Lueders, Tillmann; Himmelberg, Anne M; Hertkorn, Norbert; Schmitt-Kopplin, Philipp; Harir, Mourad; Hosein, Riad; Haque, Shirin; Schulze-Makuch, Dirk
2014-08-08
Anaerobic microbial degradation of hydrocarbons, typically occurring at the oil-water transition zone, influences the quality of oil reservoirs. In Pitch Lake, Trinidad and Tobago--the world's largest asphalt lake--we found that microorganisms are metabolically active in minuscule water droplets (1 to 3 microliters) entrapped in oil. Pyrotag sequencing of individual droplet microbiomes revealed complex methanogenic microbial communities actively degrading the oil into a diverse range of metabolites, as shown by nuclear magnetic resonance and Fourier transform ion cyclotron resonance mass spectrometry. High salinity and water-stable isotopes of the droplets indicate a deep subsurface origin. The 13.5% water content and the large surface area of the droplets represent an underestimated potential for biodegradation of oil away from the oil-water transition zone. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Roy Chowdhury, T.; Bramer, L.; Hoyt, D. W.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.; Bailey, V. L.
2017-12-01
Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands will experience the immediate consequence of climate change as shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the structure and function of the soil microbial populations that in turn will alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of shifting hydrology on the soil microbiome and the role of antecedent moisture condition on redox active microbial processes in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. Our objectives were to characterize changes in the soil microbial community composition in response to soil moisture legacy effects, and to elucidate relationships between community response, geochemical signatures and metabolite profiles in this soil. The 16S rRNA gene sequencing showed significant decreases in bacterial abundance capable of anaerobic metabolism in response to drying, but quickly recovered to the antecedent moisture condition, as observed by redox processes. Metabolomics and biogeochemical process rates generated evidence for moisture-driven redox conditions as principal controls on the community and metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of these pools in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction in compared to methanogenesis. Our results show that anoxic conditions impact microbial communities in both permanently and temporarily saturated conditions and that rapid change in hydrology can increase substrate availability for both aerobic and anaerobic decomposition processes, including methanogenesis.
Ahn-Jarvis, Jennifer; Clinton, Steven K.; Riedl, Kenneth M.; Vodovotz, Yael; Schwartz, Steven J.
2012-01-01
The role of food matrix and gender on soy isoflavone metabolism and biomarkers of activity were examined in twenty free-living adults (34.7±11.5 yrs old) with hypercholesterolemia (221.9 ±18.7mg/dL). In a randomized crossover design study, participants consumed soy-bread (3 wk) or soy-beverage (3 wk) containing 20 g soy protein with 99 and 93 mg isoflavones aglycone equivalents per day, respectively. During soy bread intervention, women had significantly greater microbial metabolite excretion (P=0.05) of isoflavonoids than men. In men, isoflavone metabolite excretion was not discernibly different between the two matrices. Significant reductions (P ≤ 0.05) in triglycerides (24.8%), LDL cholesterol (6.0%), apolipoprotein A-I (12.3%), and lipid oxidative stress capacity (25.5%), were observed after soy food intervention. Our findings suggest that the food matrix significantly impacts soy isoflavone metabolism, particularly microbial metabolites in women. PMID:22739802
MICROBIAL METABOLISM OF AROMATIC COMPOUNDS I.
Tabak, Henry H.; Chambers, Cecil W.; Kabler, Paul W.
1964-01-01
Tabak, Henry H. (Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), Cecil W. Chambers, and Paul W. Kabler. Microbial metabolism of aromatic carbon compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 87:910–919. 1964.—Bacteria from soil and related environments were selected or adapted to metabolize phenol, hydroxy phenols, nitrophenols, chlorophenols, methylphenols, alkylphenols, and arylphenols when cultured in mineral salts media with the specific substrate as the sole source of carbon. A phenol-adapted culture (substrate-induced enzyme synthesis proven) was challenged in respirometric tests with 104 related compounds; probable significant oxidative activity occurred with 65. Dihydric phenols were generally oxidized; trihydric phenols were not. Cresols and dimethylphenols were oxidized; adding a chloro group increased resistance. Benzoic and hydroxybenzoic acids were oxidized; sulfonated, methoxylated, nitro, and chlorobenzoic acids were not; m-toluic acid was utilized but not the o- and p-isomers. Benzaldehyde and p-hydroxybenzaldehyde were oxidized. In general, nitro- and chloro-substituted compounds and the benzenes were difficult to oxidize. PMID:14137630
Aubé, Johanne; Senin, Pavel; Pringault, Olivier; Bonin, Patricia; Deflandre, Bruno; Bouchez, Olivier; Bru, Noëlle; Biritxinaga-Etchart, Edurne; Klopp, Christophe; Guyoneaud, Rémy; Goñi-Urriza, Marisol
2016-10-15
Photosynthetic microbial mats are metabolically structured systems driven by solar light. They are ubiquitous and can grow in hydrocarbon-polluted sites. Our aim is to determine the impact of chronic hydrocarbon contamination on the structure, activity, and functioning of a microbial mat. We compared it to an uncontaminated mat harboring similar geochemical characteristics. The mats were sampled in spring and fall for 2years. Seasonal variations were observed for the reference mat: sulfur cycle-related bacteria dominated spring samples, while Cyanobacteria dominated in autumn. The contaminated mat showed minor seasonal variation; a progressive increase of Cyanobacteria was noticed, indicating a perturbation of the classical seasonal behavior. Hydrocarbon content was the main factor explaining the differences in the microbial community structure; however, hydrocarbonoclastic bacteria were among rare or transient Operational Taxonomic Units (OTUs) in the contaminated mat. We suggest that in long-term contaminated systems, hydrocarbonoclastic bacteria cannot be considered a sentinel of contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
Figueredo, Federico; Cortón, Eduardo; Abrevaya, Ximena C
2015-09-01
Microbial fuel cells (MFCs) are bioelectrochemical systems (BES) capable of harvesting electrons from redox reactions involved in metabolism. In a previous work, we used chemoorganoheterotrophic microorganisms from the three domains of life-Bacteria, Archaea, and Eukarya-to demonstrate that these BES could be applied to the in situ detection of extraterrestrial life. Since metabolism can be considered a common signature of life "as we know it," we extended in this study the ability to use MFCs as sensors for photolithoautotrophic metabolisms. To achieve this goal, two different photosynthetic microorganisms were used: the microalgae Parachlorella kessleri and the cyanobacterium Nostoc sp. MFCs were loaded with nonsterilized samples, sterilized samples, or sterilized culture medium of both microorganisms. Electric potential measurements were recorded for each group in single experiments or in continuum during light-dark cycles, and power and current densities were calculated. Our results indicate that the highest power and current density values were achieved when metabolically active microorganisms were present in the anode of the MFC. Moreover, when continuous measurements were performed during light-dark cycles, it was possible to see a positive response to light. Therefore, these BES could be used not only to detect chemoorganoheterotrophic metabolisms but also photolithoautotrophic metabolisms, in particular those involving oxygenic photosynthesis. Additionally, the positive response to light when using these BES could be employed to distinguish photosynthetic from nonphotosynthetic microorganisms in a sample.
Chen, Huilun; Zhuang, Rensheng; Yao, Jun; Wang, Fei; Qian, Yiguang; Masakorala, Kanaji; Cai, Minmin; Liu, Haijun
2014-01-01
The accidents of aniline spill and explosion happened almost every year in China, whereas the toxic effect of aniline on soil microbial activity remained largely unexplored. In this study, isothermal microcalorimetric technique, glucose analysis, and soil enzyme assay techniques were employed to investigate the toxic effect of aniline on microbial activity in Chinese soil for the first time. Soil samples were treated with aniline from 0 to 2.5 mg/g soil to tie in with the fact of aniline spill. Results from microcalorimetric analysis showed that the introduction of aniline had a significant adverse effect on soil microbial activity at the exposure concentrations ≥0.4 mg/g soil (p < 0.05) and ≥0.8 mg/g soil (p < 0.01), and the activity was totally inhibited when the concentration increased to 2.5 mg/g soil. The glucose analysis indicated that aniline significantly decreased the soil microbial respiratory activity at the concentrations ≥0.8 mg/g soil (p < 0.05) and ≥1.5 mg/g soil (p < 0.01). Soil enzyme activities for β-glucosidase, urease, acid-phosphatase, and dehydrogenase revealed that aniline had a significant effect (p < 0.05) on the nutrient cycling of C, N, and P as well as the oxidative capacity of soil microorganisms, respectively. All of these results showed an intensively toxic effect of aniline on soil microbial activity. The proposed methods can provide toxicological information of aniline to soil microbes from the metabolic and biochemical point of views which are consistent with and correlated to each other.
Analysis of Low-Biomass Microbial Communities in the Deep Biosphere.
Morono, Y; Inagaki, F
2016-01-01
Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Leng, Ling; Yang, Peixian; Singh, Shubham; Zhuang, Huichuan; Xu, Linji; Chen, Wen-Hsing; Dolfing, Jan; Li, Dong; Zhang, Yan; Zeng, Huiping; Chu, Wei; Lee, Po-Heng
2018-01-01
The exploration of the energetics of anaerobic digestion systems can reveal how microorganisms cooperate efficiently for cell growth and methane production, especially under low-substrate conditions. The establishment of a thermodynamically interdependent partnership, called anaerobic syntrophy, allows unfavorable reactions to proceed. Interspecies electron transfer and the concentrations of electron carriers are crucial for maintaining this mutualistic activity. This critical review summarizes the functional microorganisms and syntroph partners, particularly in the metabolic pathways and energy conservation of syntrophs. The kinetics and thermodynamics of propionate degradation to methane, reversibility of the acetate oxidation process, and estimation of microbial growth are summarized. The various routes of interspecies electron transfer, reverse electron transfer, and Poly-β-hydroxyalkanoate formation in the syntrophic community are also reviewed. Finally, promising and critical directions of future research are proposed. Fundamental insight in the activities and interactions involved in AD systems could serve as a guidance for engineered systems optimization and upgrade. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of Metabolism Function of Microbial Community of Corpses by Biolog-Eco Method.
Jiang, X Y; Wang, J F; Zhu, G H; Ma, M Y; Lai, Y; Zhou, H
2016-06-01
To detect the changes of microbial community functional diversity of corpses with different postmortem interval (PMI) and to evaluate forensic application value for estimating PMI. The cultivation of microbial community from the anal swabs of a Sus scrofa and a human corpse placed in field environment from 0 to 240 h after death was performed using the Biolog-Eco Microplate and the variations of the absorbance values were also monitored. Combined with the technology of forensic pathology and flies succession, the metabolic characteristics and changes of microbial community on the decomposed corpse under natural environment were also observed. The diversity of microbial metabolism function was found to be negatively correlated with the number of maggots in the corpses. The freezing processing had the greatest impact on average well color development value at 0 h and the impact almost disappeared after 48 h. The diversity of microbial metabolism of the samples became relatively unstable after 192 h. The principal component analysis showed that 31 carbon sources could be consolidated for 5 principal components (accumulative contribution ratio >90%).The carbon source tsquare-analysis showed that N -acetyl- D -glucosamine and L -serine were the dominant carbon sources for estimating the PMI (0=240 h) of the Sus scrofa and human corpse. The Biolog-Eco method can be used to reveal the metabolic differences of the carbon resources utilization of the microbial community on the corpses during 0-240 h after death, which could provide a new basis for estimating the PMI. Copyright© by the Editorial Department of Journal of Forensic Medicine
Aerobic microbial mineralization of dichloroethene as sole carbon substrate
Bradley, P.M.; Chapelle, F.H.
2000-01-01
Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.
Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D.; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi
2017-01-01
Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS. PMID:28680420
NASA Astrophysics Data System (ADS)
Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia
2015-04-01
Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same soil sample and quantified spectrophotometrically using a Nanodrop ND-1000. Analysis of variance (ANOVA) was carried out in order to evaluate the significant differences in SMCs activity between all soil matrices. To associate the SMCs responses to the tracers of distinct agricultural farming systems, data were further explored under Principal Component Analysis (PCA). Biomarkers responses were combined into a stress index (IBR), described by Beliaeff & Burgeot (2002). Results/Discussion: All SMCs parameters displayed significant differences between agricultural soils and reference soils, except for metabolic quotient and RNA to DNA ratio (p<0.05), revealing that SMCs are suitable bioindicators of agricultural soil quality in volcanic soils. No significant differences were found for the soil basal respiration and acid phosphatase among the farming systems, suggesting that soils amendments (a cross farming practice) are a stressing factor disrupting local SMCs activities. The PCA analysis revealed that lithium is the priority metal affecting the SMCs responses in conventional farming systems. The IBR values indicated that soils ecosystem health between farming systems are ranked as: organic (4.96) > traditional (12.94) > conventional (17.28) (the higher the value, the worse the soil health status). Conclusion: Results support the soil microbial toolbox as suitable bioindicators of metal pollution in agricultural volcanic soils, highlighting the importance of integrated biomarker-based strategies for the development of the "Trace Metal Footprint" in Andosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard
Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however, the feedback of any shift in functional potential on ecosystem properties related to carbon cycling are poorly understood. Here we show that drought-induced changes in microbial functional diversity and activity shape, and are in turn shaped by, the composition of dissolved and soil-associated carbon. We also demonstrate that a shift in microbial functional traits that favor the productionmore » of hygroscopic compounds alter the efflux of carbon dioxide following soil rewetting. Under drought the composition of the dissolved organic carbon pool changed in a manner consistent with a microbial metabolic response. We hypothesize that this microbial ecophysiological response to changing soil moisture elevates the intracellular carbon demand stimulating extracellular enzyme production, that prompts the observed decline in more complex carbon compounds (e.g., cellulose and lignin). Furthermore, a metabolic response to drought appeared to condition (biologically and physically) the soil, notably through the production of polysaccharides, particularly in experimental plots that had been pre-exposed to a short-term drought. This hysteretic response, in addition to an observed drought-related decline in phosphorus concentration, may have been responsible for a comparatively modest CO 2 efflux following wet-up in drought plots relative to control plots.« less
A microarray for assessing transcription from pelagic marine microbial taxa
Shilova, Irina N; Robidart, Julie C; James Tripp, H; Turk-Kubo, Kendra; Wawrik, Boris; Post, Anton F; Thompson, Anne W; Ward, Bess; Hollibaugh, James T; Millard, Andy; Ostrowski, Martin; J Scanlan, David; Paerl, Ryan W; Stuart, Rhona; Zehr, Jonathan P
2014-01-01
Metagenomic approaches have revealed unprecedented genetic diversity within microbial communities across vast expanses of the world's oceans. Linking this genetic diversity with key metabolic and cellular activities of microbial assemblages is a fundamental challenge. Here we report on a collaborative effort to design MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories), a high-density oligonucleotide microarray that targets functional genes of diverse taxa in pelagic and coastal marine microbial communities. MicroTOOLs integrates nucleotide sequence information from disparate data types: genomes, PCR-amplicons, metagenomes, and metatranscriptomes. It targets 19 400 unique sequences over 145 different genes that are relevant to stress responses and microbial metabolism across the three domains of life and viruses. MicroTOOLs was used in a proof-of-concept experiment that compared the functional responses of microbial communities following Fe and P enrichments of surface water samples from the North Pacific Subtropical Gyre. We detected transcription of 68% of the gene targets across major taxonomic groups, and the pattern of transcription indicated relief from Fe limitation and transition to N limitation in some taxa. Prochlorococcus (eHLI), Synechococcus (sub-cluster 5.3) and Alphaproteobacteria SAR11 clade (HIMB59) showed the strongest responses to the Fe enrichment. In addition, members of uncharacterized lineages also responded. The MicroTOOLs microarray provides a robust tool for comprehensive characterization of major functional groups of microbes in the open ocean, and the design can be easily amended for specific environments and research questions. PMID:24477198
Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard; Hao, Zhao; Ye, Zaw; Bowen, Ben P.; Lim, Hsiao Chien; Nico, Peter S.; Holman, Hoi-Ying; Gilbert, Benjamin; Silver, Whendee L.; Northen, Trent R.; Brodie, Eoin L.
2016-01-01
Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however, the feedback of any shift in functional potential on ecosystem properties related to carbon cycling are poorly understood. Here we show that drought-induced changes in microbial functional diversity and activity shape, and are in turn shaped by, the composition of dissolved and soil-associated carbon. We also demonstrate that a shift in microbial functional traits that favor the production of hygroscopic compounds alter the efflux of carbon dioxide following soil rewetting. Under drought the composition of the dissolved organic carbon pool changed in a manner consistent with a microbial metabolic response. We hypothesize that this microbial ecophysiological response to changing soil moisture elevates the intracellular carbon demand stimulating extracellular enzyme production, that prompts the observed decline in more complex carbon compounds (e.g., cellulose and lignin). Furthermore, a metabolic response to drought appeared to condition (biologically and physically) the soil, notably through the production of polysaccharides, particularly in experimental plots that had been pre-exposed to a short-term drought. This hysteretic response, in addition to an observed drought-related decline in phosphorus concentration, may have been responsible for a comparatively modest CO2 efflux following wet-up in drought plots relative to control plots. PMID:27014243
Bouskill, Nicholas J.; Wood, Tana E.; Baran, Richard; ...
2016-03-15
Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however, the feedback of any shift in functional potential on ecosystem properties related to carbon cycling are poorly understood. Here we show that drought-induced changes in microbial functional diversity and activity shape, and are in turn shaped by, the composition of dissolved and soil-associated carbon. We also demonstrate that a shift in microbial functional traits that favor the productionmore » of hygroscopic compounds alter the efflux of carbon dioxide following soil rewetting. Under drought the composition of the dissolved organic carbon pool changed in a manner consistent with a microbial metabolic response. We hypothesize that this microbial ecophysiological response to changing soil moisture elevates the intracellular carbon demand stimulating extracellular enzyme production, that prompts the observed decline in more complex carbon compounds (e.g., cellulose and lignin). Furthermore, a metabolic response to drought appeared to condition (biologically and physically) the soil, notably through the production of polysaccharides, particularly in experimental plots that had been pre-exposed to a short-term drought. This hysteretic response, in addition to an observed drought-related decline in phosphorus concentration, may have been responsible for a comparatively modest CO 2 efflux following wet-up in drought plots relative to control plots.« less
Cyanobacterial mats: Microanalysis of community metabolism
NASA Technical Reports Server (NTRS)
Cohen, Y.; Bermudes, D.; Fischer, U.; Haddad, R.; Prufert, L.; Scheulderman-Suylen, T.; Shaw, T.
1985-01-01
The microbial communities in two sites were studied using several approaches: (1) light microscopy; (2) the measurement of microprofiles of oxygen and sulfide at the surface of the microbial mat; (3) the study of diurnal variation of oxygen and sulfides; (4) in situ measurement of photosynthesis and sulfate reduction and study of the coupling of these two processes; (5) measurement of glutathione in the upper layers of the microbial mat as a possible oxygen quencher; (6) measurement of reduced iron as a possible intermediate electron donor along the established redoxcline in the mats; (7) measurement of dissolved phosphate as an indicator of processes of break down of organic matter in these systems; and (8) measurement of carbon dioxide in the interstitial water and its delta C-13 in an attempt to understand the flow of CO2 through the systems. Microbial processes of primary production and initial degradation at the most active zone of the microbial mat were analyzed.
Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen
2014-11-01
Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calibration and analysis of genome-based models for microbial ecology.
Louca, Stilianos; Doebeli, Michael
2015-10-16
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Study on distribution of reservoir endogenous microbe and oil displacement mechanism.
Yue, Ming; Zhu, Weiyao; Song, Zhiyong; Long, Yunqian; Song, Hongqing
2017-02-01
In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can't sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.
Toxicity of fluoride to microorganisms in biological wastewater treatment systems.
Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes
2009-07-01
Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).
Yang, Wenhao; Zhang, Taoxiang; Lin, Sen; Ni, Wuzhong
2017-06-01
The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.
Microbial diversity arising from thermodynamic constraints
Großkopf, Tobias; Soyer, Orkun S
2016-01-01
The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705
Membrane biofouling process correlated to the microbial community succession in an A/O MBR.
Chen, Chun-Hong; Fu, Yuan; Gao, Da-Wen
2015-12-01
The microbial community succession of the biofouling layer in a submerged anoxic/oxic membrane biological reactor (A/O MBR) that fed with synthesized domestic wastewater was investigated under three different flux conditions without the changing of the nutrient load. The noticeable microbial community succession and its significant correlation with the metabolic products were observed under the subcritical flux condition. Under the supercritical flux condition, the microbial community shift was in a different pattern compared with that under the subcritical flux condition and it was affected by the increased permeable suction more than the metabolic products. The most abundant microorganisms in the foulants were β-proteobacteria and γ-proteobacteria which can reach more than 20% of the microbial community. However the microorganisms which had significant correlation with the metabolic products were in lower abundance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oral Microbiome Metabolism: From "Who Are They?" to "What Are They Doing?".
Takahashi, N
2015-12-01
Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome. © International & American Associations for Dental Research 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segre, Daniel; Marx, Christopher J.; Northen, Trent
The goal of our project was to implement a pipeline for the systematic, computationally-driven study and optimization of microbial interactions and their effect on lignocellulose degradation and biofuel production. We specifically sought to design and construct artificial microbial consortia that could collectively degrade lignocellulose from plant biomass, and produce precursors of energy-rich biofuels. This project fits into the bigger picture goal of helping identify a sustainable strategy for the production of energy-rich biofuels that would satisfy the existing energy constraints and demand of our society. Based on the observation that complex natural microbial communities tend to be metabolically efficient andmore » ecologically robust, we pursued the study of a microbial system in which the desired engineering function is achieved through division of labor across multiple microbial species. Our approach was aimed at bypassing the complexity of natural communities by establishing a rational approach to design small synthetic microbial consortia. Towards this goal, we combined multiple approaches, including computer modeling of ecosystem-level microbial metabolism, mass spectrometry of metabolites, genetic engineering, and experimental evolution. The microbial production of biofuels from lignocellulose is a complex, multi-step process. Microbial consortia are an ideal approach to consolidated bioprocessing: a community of microorganisms performs a wide variety of functions more efficiently and is more resilient to environmental perturbations than a microbial monoculture. Each organism we chose for this project addresses a specific challenge: lignin degradation (Pseudomonas putida); (hemi)cellulose degradation (Cellulomonas fimi); lignin degradation product demethoxylation (Methylobacterium spp); generation of biofuel lipid precursors (Yarrowia lipolytica). These organisms are genetically tractable, aerobic, and have been used in biotechnological applications. Throughout the project, we have used mass spectrometry to characterize and measure the metabolic inputs and outputs of each of these consortium members, providing valuable information for model refinement, and enabling the establishment of metabolism-mediated interactions. In addition to lignocellulose degradation, we have started addressing the challenge of removing metabolites (e.g. formaldehyde) produced by the demethoxylation of lignin monomers, which can otherwise inhibit microbial growth due to their toxicity. On the computational side, we have implemented genome-scale models for all consortium members, based on KBase reconstructions and literature curation, and we studied small consortia and their properties. Overall, our project has identified a complex landscape of interactions types and metabolic processes relevant to community-level functions, illustrating the challenges and opportunities of microbial community engineering for the transformation of biomass into bioproducts.« less
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0
Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-01-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT’s unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the “symbiotic layout” of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu. PMID:27081850
Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.
Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun
2016-04-01
The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.
Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S.
2016-01-01
Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (tlag) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h−1 of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced tlag, indicating that favorable abiotic conditions activated soil microorganisms. We conclude that soil respiratory responses to short-term changes in environmental conditions are better explained by changes in AMB than in TMB. These results suggest that decomposition models that explicitly represent microbial carbon pools should take into account the active microbial pool, and researchers should be cautious in comparing modeled microbial pool sizes with measurements of TMB. PMID:27148213
Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi
2016-01-04
X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.
Activity-Based Protein Profiling of Microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadler, Natalie C.; Wright, Aaron T.
Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include:more » enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.« less
Monitoring microbial metabolites using an inductively coupled resonance circuit
NASA Astrophysics Data System (ADS)
Karnaushenko, Daniil; Baraban, Larysa; Ye, Dan; Uguz, Ilke; Mendes, Rafael G.; Rümmeli, Mark H.; de Visser, J. Arjan G. M.; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Makarov, Denys
2015-08-01
We present a new approach to monitor microbial population dynamics in emulsion droplets via changes in metabolite composition, using an inductively coupled LC resonance circuit. The signal measured by such resonance detector provides information on the magnetic field interaction with the bacterial culture, which is complementary to the information accessible by other detection means, based on electric field interaction, i.e. capacitive or resistive, as well as optical techniques. Several charge-related factors, including pH and ammonia concentrations, were identified as possible contributors to the characteristic of resonance detector profile. The setup enables probing the ionic byproducts of microbial metabolic activity at later stages of cell growth, where conventional optical detection methods have no discriminating power.
Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars
NASA Technical Reports Server (NTRS)
Levine, J. S.; Summers, M. E.
2003-01-01
A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.
NASA Astrophysics Data System (ADS)
Fike, D. A.; Jones, D. S.; Fischer, W. W.
2011-12-01
Sulfur isotope ratio data have been used to provide significant insights into global biogeochemical cycling over Earth history. In addition to providing a framework for the construction of global redox budgets, these observations also provide the primary constraints on the advent and environmental importance of particular microbial metabolisms. As the chemostratigraphic record has become better resolved in space and time, however, reports of coeval discordant data are increasingly common - both within and between individual sedimentary basins. If accurate, this variability challenges our understanding of the first order behavior of the 'global' sulfur biogeochemical cycle. Some of this discordance may be due to spatial gradients in important oceanographic parameters; however, we think that a more likely culprit is ongoing microbial metabolic activity (that impacts the isotopic composition recorded by geological samples) during both syndepositional sediment reworking and early diagenetic lithification. Modern studies have recently highlighted the efficacy with which microbial activity during sediment remobilization can dramatically alter isotopic profiles. Further, the magnitude of local, microbially driven variations in S isotopes in modern sediments is sufficiently large that uneven incorporation of these signatures during deposition and lithification can explain much of the observed discordance in chemostratigraphic reconstructions of sulfur cycling. Here we attempt to link spatial variability in the sedimentary rock record with understanding of modern microbial systems operating in marine sediments. To that end we examine chemostratigraphic records of sulfur isotope (δ34S) data spanning the terminal Neoproterozoic to early Paleozoic eras and assess their scales of spatial reproducibility. We can gain insight into interpreting the observed patterns in these records by examining modern (bio)sedimentary environments. This understanding also allows us to reflect on and refine time series isotope ratio data that constrain the behavior of the sulfur cycle over long timescales.
Virocell Metabolism: Metabolic Innovations During Host-Virus Interactions in the Ocean.
Rosenwasser, Shilo; Ziv, Carmit; Creveld, Shiri Graff van; Vardi, Assaf
2016-10-01
Marine viruses are considered to be major ecological, evolutionary, and biogeochemical drivers of the marine environment, responsible for nutrient recycling and determining species composition. Viruses can re-shape their host's metabolic network during infection, generating the virocell-a unique metabolic state that supports their specific requirement. Here we discuss the concept of 'virocell metabolism' and its formation by rewiring of host-encoded metabolic networks, or by introducing virus-encoded auxiliary metabolic genes which provide the virocell with novel metabolic capabilities. The ecological role of marine viruses is commonly assessed by their relative abundance and phylogenetic diversity, lacking the ability to assess the dynamics of active viral infection. The new ability to define a unique metabolic state of the virocell will expand the current virion-centric approaches in order to quantify the impact of marine viruses on microbial food webs. Copyright © 2016. Published by Elsevier Ltd.
Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning
NASA Astrophysics Data System (ADS)
Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.
2007-12-01
The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.
NASA Astrophysics Data System (ADS)
Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.
2015-12-01
Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined with genome-enabled reactive flow and transport we simulated the importance of pore network properties including connectivity in regulating metabolic interdependencies between microbial functional guilds.
Impacts of chemical gradients on microbial community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E.; ...
2017-01-17
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobicmore » and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.« less
Impacts of chemical gradients on microbial community structure
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-01-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems. PMID:28094795
Impacts of chemical gradients on microbial community structure.
Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E; Kattelmann, Ines; Sharma, Ritin; Hamann, Emmo; Hargesheimer, Theresa; Kraft, Beate; Lenk, Sabine; Geelhoed, Jeanine S; Hettich, Robert L; Strous, Marc
2017-04-01
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox tower'. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems.
Photosynthesis and early Earth.
Shih, Patrick M
2015-10-05
Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology
Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna
2016-01-01
The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728
Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.
2015-01-01
Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542
Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats
Gomez-Garcia, Maria R; Davison, Michelle; Blain-Hartnung, Matthew; Grossman, Arthur R; Bhaya, Devaki
2011-01-01
Synechococcus sp. represents an ecologically diverse group of cyanobacteria found in numerous environments, including hot-spring microbial mats, where they are spatially distributed along thermal, light and oxygen gradients. These thermophiles engage in photosynthesis and aerobic respiration during the day, but switch to fermentative metabolism and nitrogen fixation at night. The genome of Synechococcus OS-B′, isolated from Octopus Spring (Yellowstone National Park) contains a phn gene cluster encoding a phosphonate (Phn) transporter and a C–P lyase. A closely related isolate, Synechococcus OS-A, lacks this cluster, but contains genes encoding putative phosphonatases (Phnases) that appear to be active only in the presence of the Phn substrate. Both isolates grow well on several different Phns as a sole phosphorus (P) source. Interestingly, Synechococcus OS-B′ can use the organic carbon backbones of Phns for heterotrophic growth in the dark, whereas in the light this strain releases organic carbon from Phn as ethane or methane (depending on the specific Phn available); Synechococcus OS-A has neither of these capabilities. These differences in metabolic strategies for assimilating the P and C of Phn by two closely related Synechococcus spp. are suggestive of niche-specific constraints in the evolution of nutrient assimilation pathways and syntrophic relationships among the microbial populations of the hot-spring mats. Thus, it is critical to evaluate levels of various P sources, including Phn, in thermally active habitats and the potential importance of these compounds in the biogeochemical cycling of P and C (some Phn compounds also contain N) in diverse terrestrial environments. PMID:20631809
Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R
2015-01-01
Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.
Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments.
Vasquez-Cardenas, Diana; van de Vossenberg, Jack; Polerecky, Lubos; Malkin, Sairah Y; Schauer, Regina; Hidalgo-Martinez, Silvia; Confurius, Veronique; Middelburg, Jack J; Meysman, Filip J R; Boschker, Henricus T S
2015-09-01
Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm-scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following (13)C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus. The nanoscale secondary ion mass spectrometry analysis confirmed heterotrophic rather than autotrophic growth of cable bacteria. Still, high bicarbonate uptake was observed in concert with the development of cable bacteria. Clone libraries of 16S complementary DNA showed numerous sequences associated to chemoautotrophic sulphur-oxidizing Epsilon- and Gammaproteobacteria, whereas (13)C-bicarbonate biomarker labelling suggested that these sulphur-oxidizing bacteria were active far below the oxygen penetration. A targeted manipulation experiment demonstrated that chemoautotrophic carbon fixation was tightly linked to the heterotrophic activity of the cable bacteria down to cm depth. Overall, the results suggest that electrogenic sulphur oxidation is performed by a microbial consortium, consisting of chemoorganotrophic cable bacteria and chemolithoautotrophic Epsilon- and Gammaproteobacteria. The metabolic linkage between these two groups is presently unknown and needs further study.
Stone, Wendy; Kroukamp, Otini; Korber, Darren R.; McKelvie, Jennifer; Wolfaardt, Gideon M.
2016-01-01
The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation. PMID:27746774
Active Microbial Methane Production and Organic Matter Degradation in a Devonian Black Shale
NASA Astrophysics Data System (ADS)
Martini, A. M.; Petsch, S. T.; Nuesslein, K.; McIntosh, J. C.
2003-12-01
Microorganisms employ many novel strategies to derive energy and obtain nutrients, and in doing so alter the chemistry of their environments in ways that are significant for formation and transformation of geologic materials. One such strategy is natural gas generation in sedimentary basins. Previous research has shown that stable isotopic signatures of CH4, CO2 and H2O in formation waters of gas-producing black shales indicate a microbial origin for several economically viable natural gas reserves. However, these signatures leave several intriguing issues unaddressed, including the identity of the organisms and their metabolic roles and impacts on mineral, isotopic and biomarker signatures. We hypothesize that the extreme reducing conditions required for sedimentary basin methanogenesis are simply the end product of a cascade of microbial processes, initiated by anaerobic respiration of shale organic matter through NO3, SO4 and/or Fe(III) reduction, secondary processing of anaerobe biomass by fermentative organisms yielding volatile fatty acids and H2, and ultimately CO2 reduction and/or acetate fermentation to produce CH4. This research holds importance for the several aspects of the geochemical carbon cycle. It describes anaerobic hydrocarbon degradation leading to methanogenesis in a sedimentary basin; in many instances this activity has generated economically viable reserves of natural gas. It also provides a benchmark detailing how post-depositional microbial activity in rocks may confound and overprint ancient biosignatures. Interpretation of past environmental conditions depends on molecular and isotopic signatures contained in ancient sedimentary rocks, separated from signatures of metabolically similar modern microbiota living in sedimentary basins. In addition, this research sheds light on an unrecognized and thus unconstrained source of reduced gases to Earth's atmosphere, important for understanding the rates and controls on carbon cycling through geologic time.
Perturbation Experiments: Approaches for Metabolic Pathway Analysis in Bioreactors.
Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk
2016-01-01
In the last decades, targeted metabolic engineering of microbial cells has become one of the major tools in bioprocess design and optimization. For successful application, a detailed knowledge is necessary about the relevant metabolic pathways and their regulation inside the cells. Since in vitro experiments cannot display process conditions and behavior properly, process data about the cells' metabolic state have to be collected in vivo. For this purpose, special techniques and methods are necessary. Therefore, most techniques enabling in vivo characterization of metabolic pathways rely on perturbation experiments, which can be divided into dynamic and steady-state approaches. To avoid any process disturbance, approaches which enable perturbation of cell metabolism in parallel to the continuing production process are reasonable. Furthermore, the fast dynamics of microbial production processes amplifies the need of parallelized data generation. These points motivate the development of a parallelized approach for multiple metabolic perturbation experiments outside the operating production reactor. An appropriate approach for in vivo characterization of metabolic pathways is presented and applied exemplarily to a microbial L-phenylalanine production process on a 15 L-scale.
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; ...
2017-08-11
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, Samuel; Li, Zhou; Chavez, Francisco
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populationsmore » did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone.« less
Phylogenetically conserved resource partitioning in the coastal microbial loop
Bryson, Samuel; Li, Zhou; Chavez, Francisco; Weber, Peter K; Pett-Ridge, Jennifer; Hettich, Robert L; Pan, Chongle; Mayali, Xavier; Mueller, Ryan S
2017-01-01
Resource availability influences marine microbial community structure, suggesting that population-specific resource partitioning defines discrete niches. Identifying how resources are partitioned among populations, thereby characterizing functional guilds within the communities, remains a challenge for microbial ecologists. We used proteomic stable isotope probing (SIP) and NanoSIMS analysis of phylogenetic microarrays (Chip-SIP) along with 16S rRNA gene amplicon and metagenomic sequencing to characterize the assimilation of six 13C-labeled common metabolic substrates and changes in the microbial community structure within surface water collected from Monterey Bay, CA. Both sequencing approaches indicated distinct substrate-specific community shifts. However, observed changes in relative abundance for individual populations did not correlate well with directly measured substrate assimilation. The complementary SIP techniques identified assimilation of all six substrates by diverse taxa, but also revealed differential assimilation of substrates into protein and ribonucleotide biomass between taxa. Substrate assimilation trends indicated significantly conserved resource partitioning among populations within the Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria classes, suggesting that functional guilds within marine microbial communities are phylogenetically cohesive. However, populations within these classes exhibited heterogeneity in biosynthetic activity, which distinguished high-activity copiotrophs from low-activity oligotrophs. These results indicate distinct growth responses between populations that is not apparent by genome sequencing alone. PMID:28800138
Hydrogen Biogeochemistry in Anaerobic and Photosynthetic Ecosystems
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The simple biochemistry of molecular hydrogen is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, a great majority of microbial redox processes involve hydrogen as a reactant, product or potential by-product. Accordingly, the energetics (thermodynamics) of each of these processes is affected by variations in local H2 concentrations. It has long been established that this effect is important in governing microbe-microbe interactions and there are multiple demonstrations that "interspecies hydrogen transfer" can alter the products of, inhibit/stimulate, or even reverse microbial metabolic reactions. In anoxic sediments, H2 concentrations themselves are thought to be controlled by the thermodynamics of the predominant H2-consuming microbial process. In sediments from Cape Lookout Bight, this relationship quantitatively describes the co-variation of H2 concentrations with temperature (for methanogens and sulfate reducers) and with sulfate concentration (for sulfate reducers). The quantitative aspect is import= for two reasons: 1) it permits the modeling of H2-sensitive biogeochemistry, such as anaerobic methane oxidation or pathways of organic matter remineralization, as a function of environmental controls; 2) for such a relationship to be observed requires that intracellular biochemistry and bioenergetics are being directly expressed in a component of the extracellular medium. H2 could therefore be utilized a non-invasive probe of cellular energetic function in intact microbial ecosystems. Based on the latter principle we have measured down-core profiles of H2 and other relevant physico-chemical parameters in order to calculate the metabolic energy yields (DG) that support microbial metabolism in Cape Lookout Bight sediments. Methanogens in this system apparently function with energy yields significantly smaller than the minimum requirements suggested by pure culture studies. Our recent work has extended the study of hydrogen to cyanobacterial mat communities. The large amounts of reducing power generated during photosynthetic activity carry the potential to contribute a swamping term to the H2 economy of the anaerobic microbial populations within the mat - and thereby to alter the population structure and biogeochemical function of the mat as a whole. In hypersaline microbial mats, we observe a distinct diel cycle in H2 production and a substantial corresponding flux. On an early Earth dominated by microbial mats, this transmission of photosynthetic reducing power may have carried important implications for both biospheric and atmospheric evolution.
Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K
2016-09-01
In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.
NASA Astrophysics Data System (ADS)
Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.
2015-12-01
Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.
Gut-Bioreactor and Human Health in Future.
Purohit, Hemant J
2018-03-01
Gut-microbiome provides the complementary metabolic potential to the human system. To understand the active participation and the performance of the microbial community in human health, the concept of gut as a plug-flow reactor with the fed-batch mode of operation can provide better insight. The concept suggests the virtual compartmentalized gut with sequential stratification of the microbial community in response to a typical host genotype. It also provides the analysis plan for gut microbiome; and its relevance in developing health management options under the identified clinical conditions.
Probing soil C metabolism in response to temperature: results from experiments and modeling
NASA Astrophysics Data System (ADS)
Dijkstra, P.; Dalder, J.; Blankinship, J.; Selmants, P. C.; Schwartz, E.; Koch, G. W.; Hart, S.; Hungate, B. A.
2010-12-01
C use efficiency (CUE) is one of the least understood aspects of soil C cycling, has a very large effect on soil respiration and C sequestration, and decreases with elevated temperature. CUE is directly related to substrate partitioning over energy production and biosynthesis. The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We have developed a new stable isotope approach using position-specific 13C-labeled metabolic tracers to measure these fundamental metabolic processes in intact soil communities (1). We use this new approach, combined with models of soil metabolic flux patterns, to analyze the response of microbial energy production, biosynthesis, and CUE to temperature. The method consists of adding small but precise amounts of position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through various metabolic pathways. A simplified metabolic model consisting of 23 reactions is iteratively solved using results of the metabolic tracer experiments and information on microbial precursor demand under different temperatures. This new method enables direct study of fundamental aspects of microbial energy production, C use efficiency, and soil organic matter formation in response to temperature. (1) Dijkstra P, Blankinship JC, Selmants PC, Hart SC, Koch GW, Schwarz E and Hungate BA. Probing metabolic flux patterns of soil microbial communities using parallel position-specific tracer labeling. Soil Biology and Biochemistry (accepted)
Anantharaman, Karthik; Breier, John A; Dick, Gregory J
2016-01-01
Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic 'bins' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy.
NASA Astrophysics Data System (ADS)
Dippold, M. A.; Apostel, C.; Kuzyakov, Y.
2016-12-01
Biogeochemists' view on microbial C transformation in soil has rarely exceed a strongly simplified concept assuming that C gets either oxidized to CO2 via the microbial catabolism or incorporated into biomass via the anabolism. However, life in a C limited environment as challenging as soil requires microbial adaptation strategies at all levels of metabolism. By coupling of position-specific labeling of core metabolites with compound-specific isotope analysis we demonstrated that catabolic oxidation of these metabolites exists in parallel to reductive, energy consuming pathways, reducing them for anabolic purposes. Up to 55% of glucose, incorporated into the glucose derivative glucosamine, first passed glycolysis before allocated back via gluconeogenesis. Similarly, glutamate-derived C is allocated via anaplerotic pathways towards fatty acid synthesis and in parallel to its oxidation in the citric acid cycle. Furthermore, position-specific labeling of rather `cost-intensive' biomass compounds such as fatty acids revealed that intact recycling of metabolites is a crucial microbial adaptation to C scarcity in soils. Both processes are unlikely to occur in pure cultures, where constant growth conditions under high C supply allow a straight unidirectional regulation of C metabolism. However, unstable environmental conditions, C scarcity and interactions between a still unknown diversity of microorganisms in soils are likely to induce the observed metabolic diversity. To understand how microorganisms catalyze the biogeochemical fluxes in soil, a profound understanding of their metabolic adaptation strategies such as recycling or switching between bidirectional fluxes is crucial. Metabolic flux models adapted to soil microbial communities and their regulatory strategies will not only deepen our understanding on the microorganims' reactions to environmental changes but also create the prerequisits for a quantitative prediction of biogeochemical fluxes based on the underlying microbial processes.
Hoek, Milan J A van; Merks, Roeland M H
2017-05-16
The human gut contains approximately 10 14 bacteria, belonging to hundreds of different species. Together, these microbial species form a complex food web that can break down nutrient sources that our own digestive enzymes cannot handle, including complex polysaccharides, producing short chain fatty acids and additional metabolites, e.g., vitamin K. Microbial diversity is important for colonic health: Changes in the composition of the microbiota have been associated with inflammatory bowel disease, diabetes, obesity and Crohn's disease, and make the microbiota more vulnerable to infestation by harmful species, e.g., Clostridium difficile. To get a grip on the controlling factors of microbial diversity in the gut, we here propose a multi-scale, spatiotemporal dynamic flux-balance analysis model to study the emergence of metabolic diversity in a spatial gut-like, tubular environment. The model features genome-scale metabolic models (GEM) of microbial populations, resource sharing via extracellular metabolites, and spatial population dynamics and evolution. In this model, cross-feeding interactions emerge readily, despite the species' ability to metabolize sugars autonomously. Interestingly, the community requires cross-feeding for producing a realistic set of short-chain fatty acids from an input of glucose, If we let the composition of the microbial subpopulations change during invasion of adjacent space, a complex and stratified microbiota evolves, with subspecies specializing on cross-feeding interactions via a mechanism of compensated trait loss. The microbial diversity and stratification collapse if the flux through the gut is enhanced to mimic diarrhea. In conclusion, this in silico model is a helpful tool in systems biology to predict and explain the controlling factors of microbial diversity in the gut. It can be extended to include, e.g., complex nutrient sources, and host-microbiota interactions via the intestinal wall.
Profiling microbial lignocellulose degradation and utilization by emergent omics technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosnow, Joshua J.; Anderson, Lindsey N.; Nair, Reji N.
2016-07-20
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emergent technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzymemore » activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint to advance biofuel production.« less
Profiling microbial lignocellulose degradation and utilization by emergent omics technologies.
Rosnow, Joshua J; Anderson, Lindsey N; Nair, Reji N; Baker, Erin S; Wright, Aaron T
2017-08-01
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.
NASA Astrophysics Data System (ADS)
González, Rodrigo R.; Gutiérrez, Marcelo H.; Quiñones, Renato A.
2007-11-01
The effects of the oxygen minimum zone on the metabolism of the heterotrophic microplankton community (0.22-100 μm) in the Humboldt Current System, as well as the factors controlling its biomass production, remain unknown. Here we compare the effect of four sources of dissolved organic carbon (glucose, oxaloacetate, glycine, leucine) on microbial biomass production (such as ATP-P) and the potential enzymatic activities involved in catabolic pathways under oxic and suboxic conditions. Our results show significant differences ( p < 0.05) in the ATP-P production when induced by the different substrates that are used as dissolved organic carbon herein. The induction of ATP-P production is enhanced from glucose < oxaloacetate < glycine < leucine. Nevertheless, for individual substrates, no significant differences were found between incubation under oxic and suboxic conditions except in the case of leucine. For this amino acid, the induction of ATP-P synthesis was higher under suboxic than oxic conditions. The data sets of all the substrates used showed greater potential ATP-P production under suboxic than oxic conditions. The results of the potential enzymatic activities suggest that malate dehydrogenase has the highest signal of NADH oxidization activity in the microbial assemblage. Furthermore, for all experiments, the malate dehydrogenase activity data set had a significant relationship with ATP-P production. These findings suggest that the microbial community inhabiting the oxygen minimum zone has the same or greater potential growth than the community inhabiting more oxygenated strata of the water column and that malate dehydrogenase is the activity that best represents the metabolic potential of the community.
Impact of Ferrous Iron on Microbial Community of the Biofilm in Microbial Fuel Cells.
Liu, Qian; Liu, Bingfeng; Li, Wei; Zhao, Xin; Zuo, Wenjing; Xing, Defeng
2017-01-01
The performance of microbial electrochemical cells depends upon microbial community structure and metabolic activity of the electrode biofilms. Iron as a signal affects biofilm development and enrichment of exoelectrogenic bacteria. In this study, the effect of ferrous iron on microbial communities of the electrode biofilms in microbial fuel cells (MFCs) was investigated. Voltage production showed that ferrous iron of 100 μM facilitated MFC start-up compared to 150 μM, 200 μM, and without supplement of ferrous iron. However, higher concentration of ferrous iron had an inhibitive influence on current generation after 30 days of operation. Illumina Hiseq sequencing of 16S rRNA gene amplicons indicated that ferrous iron substantially changed microbial community structures of both anode and cathode biofilms. Principal component analysis showed that the response of microbial communities of the anode biofilms to higher concentration of ferrous iron was more sensitive. The majority of predominant populations of the anode biofilms in MFCs belonged to Geobacter , which was different from the populations of the cathode biofilms. An obvious shift of community structures of the cathode biofilms occurred after ferrous iron addition. This study implied that ferrous iron influenced the power output and microbial community of MFCs.
Xiang, Shu-Rong; Shang, Tian-Cui; Chen, Yong; Yao, Tan-Dong
2009-11-01
Glaciers accumulate airborne microorganisms year by year and thus are good archives of microbial communities and their relationship to climatic and environmental changes. Hypotheses have focused on two possible drivers of microbial community composition in glacier systems. One is aeolian deposition, in which the microbial load by aerosol, dust, and precipitation events directly determines the amount and composition of microbial species in glacier ice. The other is postdepositional selection, in which the metabolic activity in surface snow causes microbial community shifts in glacier ice. An additional possibility is that both processes occur simultaneously. Aeolian deposition initially establishes a microbial community in the ice, whereas postdeposition selection strengthens the deposition patterns of microorganisms with the development of tolerant species in surface snow, resulting in varying structures of microbial communities with depth. In this minireview, we examine these postulations through an analysis of physical-chemical and biological parameters from the Malan and Vostok ice cores, and the Kuytun 51 Glacial surface and deep snow. We discuss these and other recent results in the context of the hypothesized mechanisms driving microbial community succession in glaciers. We explore our current gaps in knowledge and point out future directions for research on microorganisms in glacial ecosystems.
High-Fat Diet Consumption Induces Microbiota Dysbiosis and Intestinal Inflammation in Zebrafish.
Arias-Jayo, Nerea; Abecia, Leticia; Alonso-Sáez, Laura; Ramirez-Garcia, Andoni; Rodriguez, Alfonso; Pardo, Miguel A
2018-05-07
Energy-dense foods and overnutrition represent major starting points altering lipid metabolism, systemic inflammation and gut microbiota. The aim of this work was to investigate the effects of a high-fat diet (HFD) over a period of 25 days on intestinal microbiota and inflammation in zebrafish. Microbial composition of HFD-fed animals was analysed and compared to controls by 16S rRNA sequencing and quantitative PCR. The expression level on several genes related to inflammation was tested. Furthermore, microscopic assessment of the intestine was performed in both conditions. The consumption of the HFD resulted in microbial dysbiosis, characterised by an increase in the relative abundance of the phylum Bacteroidetes. Moreover, an emerging intestinal inflammation via NF-κβ activation was confirmed by the overexpression of several genes related to signalling receptors, antimicrobial metabolism and the inflammatory cascade. The intestinal barrier was also damaged, with an increase of goblet cell mucin production. This is the first study performed in zebrafish which suggests that the consumption of a diet enriched with 10% fat changes the intestinal microbial community composition, which was correlated with low-grade inflammation.
NASA Astrophysics Data System (ADS)
Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Rivkina, E.; Onstott, T. C.
2017-12-01
The prevalence of microorganisms in frozen permafrost has been well documented in ancient sediment up to several million years old. However, the long term survivability and metabolic activity of microbes over geological timespans remain underexplored. Siberian permafrost sediment was collected at various depths (1.4m, 11.8 m and 24.8m) to represent a wide range of geological time from thousands to millions of years. Extracellular (eDNA) and intracellular DNA (iDNA) was simultaneously recovered for sequencing to characterize the potentially extinct and extant microbial community. Additionally, aspartic acid racemization assay (D/L Asp) was used to infer the metabolic activity of microbes in ancient permafrost. As compared with the young sample (1.4m), DNA yield and content of aspartic acid dramatically decreased in old samples (11.8m and 24.8m). However, D/L Asp and eDNA/iDNA significantly increased with the geological age. Such findings suggested that ancient microbiomes might be subjected to racemization or even DNA/proteins degradation at subzero temperature over the wide geological time scale. Preliminary characterization of microbial community indicated that the majority of sequences in old samples were identified as bacteria and only a small fraction was identified as archaea from the iDNA pool. While the eDNA and iDNA fractions shared similar dominant taxa at phylum level, the relative abundance of Proteobacteria in eDNA library was much higher than iDNA. By contrast, the phylum affiliated with Firmicutes was more numerically abundant in the iDNA fraction. More dramatic differences were observed between eDNA and iDNA library at lower taxonomic levels. Particularly, the microbial lineages affiliated with the genera Methanoregula, Desulfosporosinus and Syntrophomonas were only detected in the iDNA library. Such taxonomic difference between the relic eDNA and iDNA suggested that numerous species become locally "extinct" whereas many other taxa might survive in ancient sediment. Ultimately, when coupling our current findings to the D/L Asp in cellular proteins and metaproteomics, a better understanding will be achieved about the microbial activity of the extant microbial community and their roles in biogeochemical cycling in ancient permafrost.
Microbial degradation of petroleum hydrocarbons.
Varjani, Sunita J
2017-01-01
Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genome-scale modelling of microbial metabolism with temporal and spatial resolution.
Henson, Michael A
2015-12-01
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.
Yakimov, Michail M; Giuliano, Laura; Cappello, Simone; Denaro, Renata; Golyshin, Peter N
2007-04-01
The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud fluids. The uniqueness of the composition of the active prokaryotic community could be explained by the complex environmental conditions at the site. The interaction of oxygenated warm mud fluids with the cold hypersaline brine of the Urania Basin seems to simultaneously select for various metabolic processes, such as aerobic and anaerobic heterotrophy, sulfide- and methane-dependent chemotrophy along with anaerobic oxidation of methane, sulfate- and metal-reduction.
NASA Astrophysics Data System (ADS)
Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.
2012-12-01
Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.
15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.
NASA Astrophysics Data System (ADS)
Sheik, C.
2017-12-01
Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual biogeochemical role and potential for a cryptic sulfur cycle. Together, Lake Superior sediments offer a glimpse into microbial metabolism in carbon limited environments. Further the pervasiveness of co-metabolic pathways suggests interpretation of isotopic records may be messier than previously thought.
Smith, Maria W.; Herfort, Lydie; Tyrol, Kaitlin; Suciu, Dominic; Campbell, Victoria; Crump, Byron C.; Peterson, Tawnya D.; Zuber, Peter; Baptista, Antonio M.; Simon, Holly M.
2010-01-01
Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results suggest that highly-active particle-attached microbiota in the Columbia River water column may perform dissimilatory nitrate reduction (both dentrification and DNRA) within anoxic particle microniches. PMID:20967204
Koistinen, Ville M; Nordlund, Emilia; Katina, Kati; Mattila, Ismo; Poutanen, Kaisa; Hanhineva, Kati; Aura, Anna-Marja
2017-03-08
Cereal bran is an important source of dietary fiber and bioactive compounds, such as phenolic acids. We aimed to study the phenolic acid metabolism of native and bioprocessed rye bran fortified refined wheat bread and to elucidate the microbial metabolic route of phenolic acids. After incubation in an in vitro colon model, the metabolites were analyzed using two different methods applying mass spectrometry. While phenolic acids were released more extensively from the bioprocessed bran bread and ferulic acid had consistently higher concentrations in the bread type during fermentation, there were only minor differences in the appearance of microbial metabolites, including the diminished levels of certain phenylacetic acids in the bioprocessed bran. This may be due to rye matrix properties, saturation of ferulic acid metabolism, or a rapid formation of intermediary metabolites left undetected. In addition, we provide expansion to the known metabolic pathways of phenolic acids.
Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.; ...
2017-07-10
Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.
Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less
Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L
2017-07-10
Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.
Metabolic regulation and overproduction of primary metabolites
Sanchez, Sergio; Demain, Arnold L.
2008-01-01
Summary Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well‐known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum‐derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement. PMID:21261849
Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B.; Neu, Thomas R.; Hettich, Robert L.
2013-01-01
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies. PMID:23645202
Lu, Shipeng; Chourey, Karuna; Reiche, Marco; Nietzsche, Sandor; Shah, Manesh B; Neu, Thomas R; Hettich, Robert L; Küsel, Kirsten
2013-07-01
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates ("iron snow") at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 10(8) copies g (dry weight)(-1) in the acidic central lake basin (pH 3.3) to 4.0 × 10(10) copies g (dry weight)(-1) in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.
Jaiswal, Deepa; Pandey, Jitendra
2018-04-15
We studied the extracellular enzyme activity (EEA) in the riverbed sediment along a 518km gradient of the Ganga River receiving carbon and nutrient load from varied human sources. Also, we tested, together with substrate-driven stimulation, if the heavy metal accumulated in the sediment inhibits enzyme activities. Because pristine values are not available, we considered Dev Prayag, a least polluted site located 624km upstream to main study stretch, as a reference site. There were distinct increases in enzyme activities in the sediment along the study gradient from Dev Prayag, however, between-site differences were in concordance with sediment carbon(C), nitrogen (N) and phosphorus (P). Fluorescein diacetate hydrolysis (FDAase), β-glucosidase (Glu) and protease activities showed positive correlation with C, N and P while alkaline phosphatase was found negatively correlated with P. Enzyme activities were found negatively correlated with heavy metal, although ecological risk index (E R i ) varied with site and metal species. Dynamic fit curves showed significant positive correlation between heavy metal and microbial metabolic quotient (qCO 2 ) indicating a decrease in microbial activity in response to increasing heavy metal concentrations. This study forms the first report linking microbial enzyme activities to regional scale sediment heavy metal accumulation in the Ganga River, suggests that the microbial enzyme activities in the riverbed sediment were well associated with the proportion of C, N and P and appeared to be a sensitive indicator of C, N and P accumulation in the river. Heavy metal accumulated in the sediment inhibits enzyme activities, although C rich sediment showed relatively low toxicity due probably to reduced bioavailability of the metal. The study has relevance from ecotoxicological as well as from biomonitoring perspectives. Copyright © 2017 Elsevier Inc. All rights reserved.
Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism.
Enright, Elaine F; Griffin, Brendan T; Gahan, Cormac G M; Joyce, Susan A
2018-04-13
Once regarded obscure and underappreciated, the gut microbiota (the microbial communities colonizing the gastrointestinal tract) is gaining recognition as an influencer of many aspects of human health. Also increasingly apparent is the breadth of interindividual variation in these co-evolved microbial-gut associations, presenting novel quests to explore implications for disease and therapeutic response. In this respect, the unearthing of the drug-metabolizing capacity of the microbiota has provided impetus for the integration of microbiological and pharmacological research. This review considers a potential mechanism, 'microbial bile acid metabolism', by which the intricate interplay between the host and gut bacteria may influence drug pharmacokinetics. Bile salts traditionally regarded as biological surfactants, synthesized by the host and biotransformed by gut bacteria, are now also recognized as signalling molecules that affect diverse physiological processes. Accumulating data indicate that bile salts are not equivalent with respect to their physicochemical properties, micellar solubilization capacities for poorly water-soluble drugs, crystallization inhibition tendencies nor potencies for bile acid receptor activation. Herein, the origin, physicochemical properties, physiological functions, plasticity and pharmaceutical significance of the human bile acid pool are discussed. Microbial dependant differences in the composition of the human bile acid pool, simulated intestinal media and commonly used preclinical species is highlighted to better understand in vivo performance predictiveness. While the precise impact of an altered gut microbiome, and consequently bile acid pool, in the biopharmaceutical setting remains largely elusive, the objective of this article is to aid knowledge acquisition through a detailed review of the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruvindy, Rendy; White III, Richard Allen; Neilan, Brett Anthony
Modern microbial mats are potential analogues of some of Earth’s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic nextgeneration sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marinemore » mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.« less
Garcia-Mantrana, Izaskun; Collado, Maria Carmen
2016-08-01
Obesity, particularly in infants, is becoming a significant public health problem that has reached "epidemic" status worldwide. Obese children have an increased risk of developing obesity-related diseases, such as metabolic syndromes and diabetes, as well as increased risk of mortality and adverse health outcomes later in life. Experimental data show that maternal obesity has negative effects on the offspring's health in the short and long term. Increasing evidence suggests a key role for microbiota in host metabolism and energy harvest, providing novel tools for obesity prevention and management. The maternal environment, including nutrition and microbes, influences the likelihood of developing childhood diseases, which may persist and be exacerbated in adulthood. Maternal obesity and weight gain also influence microbiota composition and activity during pregnancy and lactation. They affect microbial diversity in the gut and breast milk. Such microbial changes may be transferred to the offspring during delivery and also during lactation, affecting infant microbial colonisation and immune system maturation. Thus, an adequate nutritional and microbial environment during the peri-natal period may provide a window of opportunity to reduce the risk of obesity and overweight in our infants using targeted strategies aimed at modulating the microbiota during early life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils
NASA Astrophysics Data System (ADS)
Aldorri, Sind; McMillan, Mary; Pereg, Lily
2016-04-01
Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.
Hadjithomas, Michalis; Chen, I-Min A; Chu, Ken; Huang, Jinghua; Ratner, Anna; Palaniappan, Krishna; Andersen, Evan; Markowitz, Victor; Kyrpides, Nikos C; Ivanova, Natalia N
2017-01-04
Secondary metabolites produced by microbes have diverse biological functions, which makes them a great potential source of biotechnologically relevant compounds with antimicrobial, anti-cancer and other activities. The proteins needed to synthesize these natural products are often encoded by clusters of co-located genes called biosynthetic gene clusters (BCs). In order to advance the exploration of microbial secondary metabolism, we developed the largest publically available database of experimentally verified and predicted BCs, the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-ABC) (https://img.jgi.doe.gov/abc/). Here, we describe an update of IMG-ABC, which includes ClusterScout, a tool for targeted identification of custom biosynthetic gene clusters across 40 000 isolate microbial genomes, and a new search capability to query more than 700 000 BCs from isolate genomes for clusters with similar Pfam composition. Additional features enable fast exploration and analysis of BCs through two new interactive visualization features, a BC function heatmap and a BC similarity network graph. These new tools and features add to the value of IMG-ABC's vast body of BC data, facilitating their in-depth analysis and accelerating secondary metabolite discovery. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw
Jiménez, Diego Javier; Chaves-Moreno, Diego; van Elsas, Jan Dirk
2015-01-01
Based on the premise that plant biomass can be efficiently degraded by mixed microbial cultures and/or enzymes, we here applied a targeted metagenomics-based approach to explore the metabolic potential of two forest soil-derived lignocellulolytic microbial consortia, denoted RWS and TWS (bred on wheat straw). Using the metagenomes of three selected batches of two experimental systems, about 1.2 Gb of sequence was generated. Comparative analyses revealed an overrepresentation of predicted carbohydrate transporters (ABC, TonB and phosphotransferases), two-component sensing systems and β-glucosidases/galactosidases in the two consortia as compared to the forest soil inoculum. Additionally, “profiling” of carbohydrate-active enzymes showed significant enrichments of several genes encoding glycosyl hydrolases of families GH2, GH43, GH92 and GH95. Sequence analyses revealed these to be most strongly affiliated to genes present on the genomes of Sphingobacterium, Bacteroides, Flavobacterium and Pedobacter spp. Assembly of the RWS and TWS metagenomes generated 16,536 and 15,902 contigs of ≥10 Kb, respectively. Thirteen contigs, containing 39 glycosyl hydrolase genes, constitute novel (hemi)cellulose utilization loci with affiliation to sequences primarily found in the Bacteroidetes. Overall, this study provides deep insight in the plant polysaccharide degrading capabilities of microbial consortia bred from forest soil, highlighting their biotechnological potential. PMID:26343383
The emerging relevance of the gut microbiome in cardiometabolic health
USDA-ARS?s Scientific Manuscript database
Host metabolic pathways and physiological responses are regulated by signals linking the host to the gut microbial community or microbiome. Here, we draw a spotlight on lipid and bile acid metabolism and inflammatory response as they pertain to cardiometabolic dysfunction. Gut microbial dysbiosis al...
Global pattern and controls of soil microbial metabolic quotient
Xu, Xiaofeng; Schimel, Joshua P.; Janssens, Ivan A.; ...
2017-05-02
The microbial metabolic quotient (MMQ), microbial respiration per unit of biomass, is a fundamental factor controlling heterotrophic respiration, the largest carbon flux in soils. The magnitude and controls of MMQ at regional scale remain uncertain. We compiled a comprehensive data set of MMQ to investigate the global patterns and controls of MMQ in top 30 cm soils. Published MMQ values, generally measured in laboratory microcosms, were adjusted on ambient soil temperature using long-term (30 yr) average site soil temperature and a Q10 = 2. The area-weighted global average of MMQ_Soil is estimated as 1.8 (1.5–2.2) (95% confidence interval) lmol C•hmore » -1•mmol -1 microbial biomass carbon (MBC) with substantial variations across biomes and between cropland and natural ecosystems. Variation was most closely associated with biological factors, followed by edaphic and meteorological parameters. MMQ_Soil was greatest in sandy clay and sandy clay loam and showed a pH maximum of 6.7 - 0.1 (mean ± se). At large scale, MMQ_Soil varied with latitude and mean annual temperature (MAT), and was negatively correlated with microbial N:P ratio, supporting growth rate theory. These trends led to large differences in MMQ_Soil between natural ecosystems and cropland. When MMQ was adjusted to 11°C (MMQ_Ref), the global MAT in the top 30 cm of soils, the area-weighted global averages of MMQ_Ref was 1.5 (1.3–1.8) lmol C•mmol MBC -1•h -1. The values, trends, and controls of MMQ_Soil add to our understanding of soil microbial influences on soil carbon cycling and could be used to represent microbial activity in global carbon models.« less
De Vrieze, Jo; Christiaens, Marlies E R; Walraedt, Diego; Devooght, Arno; Ijaz, Umer Zeeshan; Boon, Nico
2017-03-15
Anaerobic digestion of high-salinity wastewaters often results in process inhibition due to the susceptibility of the methanogenic archaea. The ability of the microbial community to deal with increased salinity levels is of high importance to ensure process perseverance or recovery after failure. The exact strategy of the microbial community to ensure process endurance is, however, often unknown. In this study, we investigated how the microbial community is able to recover process performance following a disturbance through the application of high-salinity molasses wastewater. After a stable start-up, methane production quickly decreased from 625 ± 17 to 232 ± 35 mL CH 4 L -1 d -1 with a simultaneous accumulation in volatile fatty acids up to 20.5 ± 1.4 g COD L -1 , indicating severe process disturbance. A shift in feedstock from molasses wastewater to waste activated sludge resulted in complete process recovery. However, the bacterial and archaeal communities did not return to their original composition as before the disturbance, despite similar process conditions. Microbial community diversity was recovered to similar levels as before disturbance, which indicates that the metabolic potential of the community was maintained. A mild increase in ammonia concentration after process recovery did not influence methane production, indicating a well-balanced microbial community. Hence, given the change in community composition following recovery after salinity disturbance, it can be assumed that microbial community redundancy was the major strategy to ensure the continuation of methane production, without loss of functionality or metabolic flexibility. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Global pattern and controls of soil microbial metabolic quotient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Schimel, Joshua P.; Janssens, Ivan A.
The microbial metabolic quotient (MMQ), microbial respiration per unit of biomass, is a fundamental factor controlling heterotrophic respiration, the largest carbon flux in soils. The magnitude and controls of MMQ at regional scale remain uncertain. We compiled a comprehensive data set of MMQ to investigate the global patterns and controls of MMQ in top 30 cm soils. Published MMQ values, generally measured in laboratory microcosms, were adjusted on ambient soil temperature using long-term (30 yr) average site soil temperature and a Q10 = 2. The area-weighted global average of MMQ_Soil is estimated as 1.8 (1.5–2.2) (95% confidence interval) lmol C•hmore » -1•mmol -1 microbial biomass carbon (MBC) with substantial variations across biomes and between cropland and natural ecosystems. Variation was most closely associated with biological factors, followed by edaphic and meteorological parameters. MMQ_Soil was greatest in sandy clay and sandy clay loam and showed a pH maximum of 6.7 - 0.1 (mean ± se). At large scale, MMQ_Soil varied with latitude and mean annual temperature (MAT), and was negatively correlated with microbial N:P ratio, supporting growth rate theory. These trends led to large differences in MMQ_Soil between natural ecosystems and cropland. When MMQ was adjusted to 11°C (MMQ_Ref), the global MAT in the top 30 cm of soils, the area-weighted global averages of MMQ_Ref was 1.5 (1.3–1.8) lmol C•mmol MBC -1•h -1. The values, trends, and controls of MMQ_Soil add to our understanding of soil microbial influences on soil carbon cycling and could be used to represent microbial activity in global carbon models.« less
Microbial Fe biomineralization in mafic and ultramafic rocks
NASA Astrophysics Data System (ADS)
Templeton, A. S.; Mayhew, L.; McCollom, T.; Trainor, T.
2011-12-01
Fluid-filled microfractures within mafic and ultramafic rocks, such as basalt and peridotite, may be one of the most ubiquitous microbial habitats on the modern and ancient earth. In seafloor and subseafloor systems, one of the dominant energy sources is the oxidation of Fe by numerous potential oxidants under aerobic to anaerobic conditions. In particular, the oxidation of Fe may be directly catalyzed by microbial organisms, or result in the production of molecular hydrogen which can then fuel diverse lithotrophic metabolisms. However, it remains challenging to identify the dominant metabolic activities and unravel the microscale biogeochemical processes occuring within such rock-hosted systems. We are investigating the mechanisms of solid-state Fe-oxidation and biomineralization in basalt, olivine, pyroxenes and basalts, in the presence and absence of microbial organisms that can thrive across the full stability range of water. In this talk we will present synchrotron-based x-ray scattering and spectroscopic analyses of Fe speciation within secondary minerals formed during microbially-mediated vs. abiotic water-rock interactions. Determining the valence state and mineralogy of Fe-bearing phases is critical for determining the water-rock reaction pathways and identifying potential biominerals that may form; therefore, we will highlight new approaches for identifying key Fe transformations within complex geological media. In addition, many of our experimental studies involve the growth of lithotrophic biofilms on well-characterized mineral surfaces in order to determine the chemistry of the microbe-mineral interface during progressive electron-transfer reactions. By coupling x-ray spectroscopy, x-ray diffraction, and electron-microscopy measurements, we will also contrast the evolution of mineral surfaces that undergo microbially-mediated oxidative alteration against minerals surfaces that produce H2 to sustain anaerobic microbial communities.
Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.
Bhattacharya, Sukanta S; Yadav, Jagjit S
2018-01-01
Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Tuohy, Kieran M; Fava, Francesca; Viola, Roberto
2014-05-01
The human gut microbiota has been identified as a possible novel CVD risk factor. This review aims to summarise recent insights connecting human gut microbiome activities with CVD and how such activities may be modulated by diet. Aberrant gut microbiota profiles have been associated with obesity, type 1 and type 2 diabetes and non-alcoholic fatty liver disease. Transfer of microbiota from obese animals induces metabolic disease and obesity in germ-free animals. Conversely, transfer of pathogen-free microbiota from lean healthy human donors to patients with metabolic disease can increase insulin sensitivity. Not only are aberrant microbiota profiles associated with metabolic disease, but the flux of metabolites derived from gut microbial metabolism of choline, phosphatidylcholine and l-carnitine has been shown to contribute directly to CVD pathology, providing one explanation for increased disease risk of eating too much red meat. Diet, especially high intake of fermentable fibres and plant polyphenols, appears to regulate microbial activities within the gut, supporting regulatory guidelines encouraging increased consumption of whole-plant foods (fruit, vegetables and whole-grain cereals), and providing the scientific rationale for the design of efficacious prebiotics. Similarly, recent human studies with carefully selected probiotic strains show that ingestion of viable microorganisms with the ability to hydrolyse bile salts can lower blood cholesterol, a recognised risk factor in CVD. Taken together such observations raise the intriguing possibility that gut microbiome modulation by whole-plant foods, probiotics and prebiotics may be at the base of healthy eating pyramids advised by regulatory agencies across the globe. In conclusion, dietary strategies which modulate the gut microbiota or their metabolic activities are emerging as efficacious tools for reducing CVD risk and indicate that indeed, the way to a healthy heart may be through a healthy gut microbiota.
Liu, Tzu-Wen; Park, Young-Min; Holscher, Hannah D.; Padilla, Jaume; Scroggins, Rebecca J.; Welly, Rebecca; Britton, Steven L.; Koch, Lauren G.; Vieira-Potter, Victoria J.; Swanson, Kelly S.
2015-01-01
The gut microbiota is considered a relevant factor in obesity and associated metabolic diseases, for which postmenopausal women are particularly at risk. Increasing physical activity has been recognized as an efficacious approach to prevent or treat obesity, yet the impact of physical activity on the microbiota remains under-investigated. We examined the impacts of voluntary exercise on host metabolism and gut microbiota in ovariectomized (OVX) high capacity (HCR) and low capacity running (LCR) rats. HCR and LCR rats (age = 27wk) were OVX and fed a high-fat diet (45% kcal fat) ad libitum and housed in cages equipped with (exercise, EX) or without (sedentary, SED) running wheels for 11wk (n = 7-8/group). We hypothesized that increased physical activity would hinder weight gain, increase metabolic health and shift the microbiota of LCR rats, resulting in populations more similar to that of HCR rats. Animals were compared for characteristic metabolic parameters including body composition, lipid profile and energy expenditure; whereas cecal digesta were collected for DNA extraction. 16S rRNA gene-based amplicon Illumina MiSeq sequencing was performed, followed by analysis using QIIME 1.8.0 to assess cecal microbiota. Voluntary exercise decreased body and fat mass, and normalized fasting NEFA concentrations of LCR rats, despite only running one-third the distance of HCR rats. Exercise, however, increased food intake, weight gain and fat mass of HCR rats. Exercise clustered the gut microbial community of LCR rats, which separated them from the other groups. Assessments of specific taxa revealed significant (p<0.05) line by exercise interactions including shifts in the abundances of Firmicutes, Proteobacteria, and Cyanobacteria. Relative abundance of Christensenellaceae family was higher (p = 0.026) in HCR than LCR rats, and positively correlated (p<0.05) with food intake, body weight and running distance. These findings demonstrate that exercise differentially impacts host metabolism and gut microbial communities of female HCR and LCR rats without ovarian function. PMID:26301712
General theory for integrated analysis of growth, gene, and protein expression in biofilms.
Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S
2013-01-01
A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, S; Chourey, Karuna; REICHE, M
Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northernmore » basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.« less