Science.gov

Sample records for metabolism functional polarization

  1. Metabolic Reprograming in Macrophage Polarization

    PubMed Central

    Galván-Peña, Silvia; O’Neill, Luke A. J.

    2014-01-01

    Studying the metabolism of immune cells in recent years has emphasized the tight link existing between the metabolic state and the phenotype of these cells. Macrophages in particular are a good example of this phenomenon. Whether the macrophage obtains its energy through glycolysis or through oxidative metabolism can give rise to different phenotypes. Classically activated or M1 macrophages are key players of the first line of defense against bacterial infections and are known to obtain energy through glycolysis. Alternatively activated or M2 macrophages on the other hand are involved in tissue repair and wound healing and use oxidative metabolism to fuel their longer-term functions. Metabolic intermediates, however, are not just a source of energy but can be directly implicated in a particular macrophage phenotype. In M1 macrophages, the Krebs cycle intermediate succinate regulates HIF1α, which is responsible for driving the sustained production of the pro-inflammatory cytokine IL1β. In M2 macrophages, the sedoheptulose kinase carbohydrate kinase-like protein is critical for regulating the pentose phosphate pathway. The potential to target these events and impact on disease is an exciting prospect. PMID:25228902

  2. Microglial M1/M2 polarization and metabolic states.

    PubMed

    Orihuela, Ruben; McPherson, Christopher A; Harry, Gaylia Jean

    2016-02-01

    Microglia are critical nervous system-specific immune cells serving as tissue-resident macrophages influencing brain development, maintenance of the neural environment, response to injury and repair. As influenced by their environment, microglia assume a diversity of phenotypes and retain the capability to shift functions to maintain tissue homeostasis. In comparison with peripheral macrophages, microglia demonstrate similar and unique features with regards to phenotype polarization, allowing for innate immunological functions. Microglia can be stimulated by LPS or IFN-γ to an M1 phenotype for expression of pro-inflammatory cytokines or by IL-4/IL-13 to an M2 phenotype for resolution of inflammation and tissue repair. Increasing evidence suggests a role of metabolic reprogramming in the regulation of the innate inflammatory response. Studies using peripheral immune cells demonstrate that polarization to an M1 phenotype is often accompanied by a shift in cells from oxidative phosphorylation to aerobic glycolysis for energy production. More recently, the link between polarization and mitochondrial energy metabolism has been considered in microglia. Under these conditions, energy demands would be associated with functional activities and cell survival and thus, may serve to influence the contribution of microglia activation to various neurodegenerative conditions. This review examines the polarization states of microglia and their relationship to mitochondrial metabolism. Additional supporting experimental data are provided to demonstrate mitochondrial metabolic shifts in primary microglia and the BV-2 microglia cell line induced under LPS (M1) and IL-4/IL-13 (M2) polarization. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  3. Sleep and metabolic function

    PubMed Central

    Morselli, Lisa L.; Guyon, Aurore; Spiegel, Karine

    2012-01-01

    Evidence for the role of sleep on metabolic and endocrine function has been reported more than four decades ago. In the past 30 years, the prevalence of obesity and diabetes has greatly increased in industrialized countries, and self-imposed sleep curtailment, now very common, is starting to be recognized as a contributing factor, alongside with increased caloric intake and decreased physical activity. Furthermore, obstructive sleep apnea, a chronic condition characterized by recurrent upper airway obstruction leading to intermittent hypoxemia and sleep fragmentation, has also become highly prevalent as a consequence of the epidemic of obesity and has been shown to contribute, in a vicious circle, to the metabolic disturbances observed in obese patients. In this article, we summarize the current data supporting the role of sleep in the regulation of glucose homeostasis and the hormones involved in the regulation of appetite. We also review the results of the epidemiologic and laboratory studies that investigated the impact of sleep duration and quality on the risk of developing diabetes and obesity, as well as the mechanisms underlying this increased risk. Finally, we discuss how obstructive sleep apnea affects glucose metabolism and the beneficial impact of its treatment, the continuous positive airway pressure. In conclusion, the data available in the literature highlight the importance of getting enough good sleep for metabolic health. PMID:22101912

  4. The Metabolic Prospective and Redox Regulation of Macrophage Polarization

    PubMed Central

    He, Chao; Carter, A Brent

    2016-01-01

    Macrophage plasticity is an important feature of these innate immune cells. Macrophage phenotypes are divided into two categories, the classically activated macrophages (CAM, M1 phenotype) and the alternatively activated macrophages (AAM, M2 phenotype). M1 macrophages are commonly associated with the generation of proinflammatory cytokines, whereas M2 macrophages are anti-inflammatory and often associated with tumor progression and fibrosis development. Macrophages produce high levels of reactive oxygen species (ROS). Recent evidence suggests ROS can potentially regulate macrophage phenotype. In addition, macrophages phenotypes are closely related to their metabolic patterns, particularly fatty acid/cholesterol metabolism. In this review, we briefly summarize recent advances in macrophage polarization with special attention to their relevance to specific disease conditions and metabolic regulation of polarization. Understanding these metabolic switches can facilitate the development of targeted therapies for various diseases. PMID:26962470

  5. Mammalian Polyamine Metabolism and Function

    PubMed Central

    Pegg, Anthony E.

    2009-01-01

    Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518

  6. Functional Alignment of Metabolic Networks.

    PubMed

    Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded

    2016-05-01

    Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.

  7. Kupffer Cell Metabolism and Function

    PubMed Central

    Nguyen-Lefebvre, Anh Thu; Horuzsko, Anatolij

    2015-01-01

    Kupffer cells are resident liver macrophages and play a critical role in maintaining liver functions. Under physiological conditions, they are the first innate immune cells and protect the liver from bacterial infections. Under pathological conditions, they are activated by different components and can differentiate into M1-like (classical) or M2-like (alternative) macrophages. The metabolism of classical or alternative activated Kupffer cells will determine their functions in liver damage. Special functions and metabolism of Kupffer cells suggest that they are an attractive target for therapy of liver inflammation and related diseases, including cancer and infectious diseases. Here we review the different types of Kupffer cells and their metabolism and functions in physiological and pathological conditions. PMID:26937490

  8. Polarized DIS Structure Functions from Neural Networks

    SciTech Connect

    Del Debbio, L.; Guffanti, A.; Piccione, A.

    2007-06-13

    We present a parametrization of polarized Deep-Inelastic-Scattering (DIS) structure functions based on Neural Networks. The parametrization provides a bias-free determination of the probability measure in the space of structure functions, which retains information on experimental errors and correlations. As an example we discuss the application of this method to the study of the structure function g{sub 1}{sup p}(x,Q{sup 2})

  9. Functional Reflective Polarizer for Augmented Reality and Color Vision Deficiency

    DTIC Science & Technology

    2016-03-03

    Functional reflective polarizer for augmented reality and color vision deficiency Ruidong Zhu, Guanjun Tan, Jiamin Yuan, and Shin-Tson Wu* College...polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and...augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective

  10. TRANSVERSE POLARIZATION DISTRIBUTION AND FRAGMENTATION FUNCTIONS

    SciTech Connect

    BOER,D.

    2000-04-11

    The authors discuss transverse polarization distribution and fragmentation functions, in particular, T-odd functions with transverse momentum dependence, which might be relevant for the description of single transverse spin asymmetries. The role of intrinsic transverse momentum in the expansion in inverse powers of the hard scale is elaborated upon. The sin {phi} single spin asymmetry in the process e {rvec p} {r_arrow} e{prime} {pi}{sup +} X as recently reported by the HERMES Collaboration is investigated, in particular, by using the bag model.

  11. The stress polarity pathway: AMPK ‘GIV’-es protection against metabolic insults

    PubMed Central

    Ghosh, Pradipta

    2017-01-01

    Loss of cell polarity impairs organ development and function; it can also serve as one of the first triggers for oncogenesis. In 2006-2007 two groups simultaneously reported the existence of a special pathway for maintaining epithelial polarity in the face of environmental stressors. In this pathway, AMPK, a key sensor of metabolic stress stabilizes tight junctions, preserves cell polarity, and thereby, maintains epithelial barrier functions. Accumulating evidence since has shown that pharmacologic activation of AMPK by Metformin protects the epithelial barrier against multiple environmental and pathological stressful states and suppresses tumorigenesis. How AMPK protects the epithelium remained unknown until recently Aznar et al. identified GIV/Girdin as a novel effector of AMPK at the cell-cell junctions; phosphorylation of GIV at a single site by AMPK appears to be both necessary and sufficient for strengthening tight junctions and preserving cell polarity and epithelial barrier function in the face of energetic stress. Here we review the fundamentals of this specialized signaling pathway that buttresses cell-cell junctions against stress-induced collapse and discuss its pathophysiologic relevance in the context of a variety of diseases, including cancers, diabetes, aging, and the growing list of beneficial effects of the AMPK-activator, Metformin. PMID:28209925

  12. On Minkowski Functionals of CMB polarization

    NASA Astrophysics Data System (ADS)

    Chingangbam, Pravabati; Ganesan, Vidhya; Yogendran, K. P.; Park, Changbom

    2017-08-01

    CMB polarization data is usually analyzed using E and B modes because they are scalar quantities under rotations along the lines of sight and have distinct physical origins. We explore the possibility of using the Stokes parameters Q and U for complementary analysis and consistency checks in the context of searches for non-Gaussianity. We show that the Minkowski Functionals (MFs) of Q, U are invariant under local rotations along the lines of sight even though Q, U are spin-2 variables, for full sky analysis. The invariance does not hold for incomplete sky. For local type primordial non-Gaussianity, when we compare the non-Gaussian deviations of MFs for Q, U to what is obtained for E mode or temperature fluctuations, we find that the amplitude is about an order of magnitude lower and the shapes of the deviations are different. This finding can be useful in distinguishing local type non-Gaussianity from other origins of non-Gaussianity in the observed data. Lastly, we analyze the sensitivity of the amplitudes of the MFs for Q, U and the number density of singularities of the total polarization intensity to the tensor-to-scalar ratio, r, and find that all of them decrease as r increases.

  13. Morphological and functional characterization of bovine oviductal epithelial cell monolayers cultured on polarizing membranes.

    PubMed

    Gómez, E; Uría, H

    1997-01-01

    Several characteristics of oviductal cells, cultured under either polarizing or nonpolarizing conditions, were studied. In vitro produced bovine embryos tested the embryotrophic abilities of the respective conditioned media. Conditioned medium from the apical face of polarized cell monolayers supported higher rates of development to blastocyst and expanded blastocysts. In contrast, conditioned medium from the basal face supported embryo development only to the 8-16 cell stage; however, these embryos were able to continue development to the morula stage when cultured in medium from the apical and basal faces, indicating total cell confluence and a clear functional polarization. At the ultrastructural level, cells cultured in polarizing conditions displayed characteristics nearer to the same cells in vivo and signs of a metabolic activity higher than that in cells cultured under non-polarizing conditions. It can be concluded that cell-polarization, in our culture conditions, is beneficial to embryo development.

  14. Metabolism Is Central to Tolerogenic Dendritic Cell Function

    PubMed Central

    Sim, Wen Jing; Ahl, Patricia Jennifer; Connolly, John Edward

    2016-01-01

    Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential. PMID:26980944

  15. Persistence, entrainment, and function of circadian rhythms in polar vertebrates.

    PubMed

    Williams, Cory T; Barnes, Brian M; Buck, C Loren

    2015-03-01

    Polar organisms must cope with an environment that periodically lacks the strongest time-giver, or zeitgeber, of circadian organization-robust, cyclical oscillations between light and darkness. We review the factors influencing the persistence of circadian rhythms in polar vertebrates when the light-dark cycle is absent, the likely mechanisms of entrainment that allow some polar vertebrates to remain synchronized with geophysical time, and the adaptive function of maintaining circadian rhythms in such environments.

  16. Polar accumulation of the metabolic sensory histidine kinases DcuS and CitA in Escherichia coli.

    PubMed

    Scheu, Patrick; Sdorra, Sven; Liao, Yun-Feng; Wegner, Maria; Basché, Thomas; Unden, Gottfried; Erker, Wolfgang

    2008-08-01

    Signal transduction in prokaryotes is frequently accomplished by two-component regulatory systems in which a histidine protein kinase is the sensory component. Many of these sensory kinases control metabolic processes that do not show an obvious requirement for inhomogeneous distribution within bacterial cells. Here, the sensory kinases DcuS and CitA, two histidine kinases of Escherichia coli, were investigated. Both are membrane-integral and involved in the regulation of carboxylate metabolism. The two-component sensors were fused with yellow fluorescent protein (YFP) and live images of immobilized cells were obtained by confocal laser fluorescence microscopy. The fluorescence of the fusion proteins was concentrated at the poles of the cells, indicating polar accumulation of the sensory kinases. For quantitative evaluation, line profiles of the imaged fluorescence intensities were generated; these revealed that the fluorescence intensity of the polar bright spots was 2.3-8.5 times higher than that of the cytoplasm. With respect to the cylindrical part of the membrane, the values were lower by about 40 %. The polar accumulation was comparable to that of methyl-accepting chemotaxis proteins (MCPs) and MCP-related proteins. The degree of DcuS-YFP localization was independent of the presence of MCP and the expression level of dcuS-yfp (or DcuS concentration). The presence of effector (fumarate or citrate, respectively) increased the polar accumulation by more than 20 %. Cell fractionation demonstrated that polar accumulation was not related to inclusion body formation. Therefore, sensory kinases DcuS and CitA, which regulate metabolic processes without obvious polar function, exhibit polar accumulation.

  17. Computational Functional Analysis of Lipid Metabolic Enzymes.

    PubMed

    Bagnato, Carolina; Have, Arjen Ten; Prados, María B; Beligni, María V

    2017-01-01

    The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.

  18. Computing the hadronic vacuum polarization function by analytic continuation

    DOE PAGES

    Feng, Xu; Hashimoto, Shoji; Hotzel, Grit; ...

    2013-08-29

    We propose a method to compute the hadronic vacuum polarization function on the lattice at continuous values of photon momenta bridging between the spacelike and timelike regions. We provide two independent demonstrations to show that this method leads to the desired hadronic vacuum polarization function in Minkowski spacetime. We present with the example of the leading-order QCD correction to the muon anomalous magnetic moment that this approach can provide a valuable alternative method for calculations of physical quantities where the hadronic vacuum polarization function enters.

  19. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Fu, Yuegang; Liu, Zhiying; Zhang, Lei; Wang, Jiake; Zheng, Yang; Li, Yahong

    2017-03-01

    The polarization aberrations of a complex optical system with multi-element lens have been investigated using a 3D polarization aberration function. The 3D polarization ray-tracing matrix has been combined with the optical path difference to obtain a 3D polarization aberration function, which avoids the need for a complicated phase unwrapping process. The polarization aberrations of a microscope objective have been analyzed to include, the distributions of 3D polarization aberration functions, diattenuation aberration, retardance aberration, and polarization-dependent intensity on the exit pupil. Further, the aberrations created by the field of view and the coating on the distribution rules of 3D polarization aberration functions are discussed in detail. Finally a novel appropriate field of view and wavelength correction is proposed for a polarization aberration function which optimizes the image quality of a multi-element optical system.

  20. Comment on elimination of polarization dependence from optical excitation functions

    SciTech Connect

    Maseberg, Jack W.

    2008-05-15

    The measurement of optical excitation functions excited by electron impact is typically accomplished by recording atomic fluorescence emitted into a small solid angle perpendicular to the incident electron beam. This measured intensity is not proportional to the emission cross section because the fluorescence exhibits an angular distribution and polarization that varies with the energy of the exciting electrons. Typically, a polarizer is set at the ''magic angle'' (54.7 degree sign ) with respect to the electron beam axis to remove this polarization dependence. The literature for the derivation of the magic angle value assumes the polarizing element is perfect. An expression for the angle that accounts for the use of a partial polarizer is presented.

  1. Circadian Clock Control of Liver Metabolic Functions.

    PubMed

    Reinke, Hans; Asher, Gad

    2016-03-01

    The circadian clock is an endogenous biological timekeeping system that synchronizes physiology and behavior to day/night cycles. A wide variety of processes throughout the entire gastrointestinal tract and notably the liver appear to be under circadian control. These include various metabolic functions such as nutrient uptake, processing, and detoxification, which align organ function to cycle with nutrient supply and demand. Remarkably, genetic or environmental disruption of the circadian clock can cause metabolic diseases or exacerbate pathological states. In addition, modern lifestyles force more and more people worldwide into asynchrony between the external time and their circadian clock, resulting in a constant state of social jetlag. Recent evidence indicates that interactions between altered energy metabolism and disruptions in the circadian clock create a downward spiral that can lead to diabetes and other metabolic diseases. In this review, we provide an overview of rhythmic processes in the liver and highlight the functions of circadian clock genes under physiological and pathological conditions; we focus on their roles in regulation of hepatic glucose as well as lipid and bile acid metabolism and detoxification and their potential effects on the development of fatty liver and nonalcoholic steatohepatitis. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. The disturbing function for polar Centaurs and transneptunian objects

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2017-10-01

    The classical disturbing function of the three-body problem is based on an expansion of the gravitational interaction in the vicinity of nearly coplanar orbits. Consequently, it is not suitable for the identification and study of resonances of the Centaurs and transneptunian objects on nearly polar orbits with the Solar system planets. Here, we provide a series expansion algorithm of the gravitational interaction in the vicinity of polar orbits and produce explicitly the disturbing function to fourth order in eccentricity and inclination cosine. The properties of the polar series differ significantly from those of the classical disturbing function: the polar series can model any resonance, as the expansion order is not related to the resonance order. The powers of eccentricity and inclination of the force amplitude of a p:q resonance do not depend on the value of the resonance order |p - q| but only on its parity. Thus, all even resonance order eccentricity amplitudes are ∝e2 and odd ones ∝e to lowest order in eccentricity e. With the new findings on the structure of the polar disturbing function and the possible resonant critical arguments, we illustrate the dynamics of the polar resonances 1:3, 3:1, 2:9 and 7:9 where transneptunian object 471325 could currently be locked.

  3. Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice.

    PubMed

    Li, Xiaodan; Yu, Xiaoyan; Sun, Dewei; Li, Jinwei; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-01-11

    In the present study, effects of deep-fried palm oil, specifically polar compounds generated during the frying process, on animal health including lipid and glucose metabolism and liver functions were investigated. Kunming mice were fed a high-fat diet containing deep-fried palm oil or purified polar compounds for 12 weeks. Their effects on animal health including hepatic lipid profile, antioxidant enzyme activity, serum biochemistry, and glucose tolerance were analyzed. Our results revealed that the consumption of polar compounds was related to the change of lipid deposition in liver and adipose tissue, as well as glucose tolerance alteration in Kunming mice. Correspondingly, the transcription study of genes involved in lipid metabolism including PPARα, Acox1, and Cpt1α indicated that polar compounds probably facilitated the fatty acid oxidation on peroxisomes, whereas lipid oxidation in mitochondria was suppressed. Furthermore, glucose tolerance test (GTT) revealed that a high amount of polar compound intake impaired glucose tolerance, indicating its effect on glucose metabolism in vivo. Our results provide critical information on the effects of polar compounds generated from the deep-frying process of palm oil on animal health, particularly liver functions and lipid and glucose metabolism, which is important for the evaluation of the biosafety of frying oil.

  4. The Sedoheptulose Kinase CARKL Directs Macrophage Polarization through Control of Glucose Metabolism

    PubMed Central

    Haschemi, Arvand; Kosma, Paul; Gille, Lars; Evans, Charles R.; Burant, Charles F.; Starkl, Philipp; Knapp, Bernhard; Haas, Robert; Schmid, Johannes A.; Jandl, Christoph; Amir, Shahzada; Lubec, Gert; Park, Jaehong; Esterbauer, Harald; Bilban, Martin; Brizuela, Leonardo; Pospisilik, J. Andrew; Otterbein, Leo E.; Wagner, Oswald

    2012-01-01

    Summary Immune cells are somewhat unique in that activation responses can alter quantitative phenotypes upwards of 100,000-fold. To date little is known about the metabolic adaptations necessary to mount such dramatic phenotypic shifts. Screening for novel regulators of macrophage activation, we found nonprotein kinases of glucose metabolism among the most enriched classes of candidate immune modulators. We find that one of these, the carbohydrate kinase-like protein CARKL, is rapidly downregulated in vitro and in vivo upon LPS stimulation in both mice and humans. Interestingly, CARKL catalyzes an orphan reaction in the pentose phosphate pathway, refocusing cellular metabolism to a high-redox state upon physiological or artificial downregulation. We find that CARKL-dependent metabolic reprogramming is required for proper M1- and M2-like macrophage polarization and uncover a rate-limiting requirement for appropriate glucose flux in macrophage polarization. PMID:22682222

  5. Functions for diverse metabolic activities in heterochromatin.

    PubMed

    Su, Xue Bessie; Pillus, Lorraine

    2016-03-15

    Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes.

  6. Functions for diverse metabolic activities in heterochromatin

    PubMed Central

    Su, Xue Bessie; Pillus, Lorraine

    2016-01-01

    Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1’s functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes. PMID:26936955

  7. Interaction corrections to the polarization function of graphene

    NASA Astrophysics Data System (ADS)

    Sodemann, I.; Fogler, M. M.

    2012-09-01

    The first-order interaction correction to the irreducible polarization function of pristine graphene is studied at arbitrary relation between momentum and frequency. The results are used to calculate the dielectric function and the dynamical conductivity of graphene beyond the standard random-phase approximation. The computed static dielectric constant compares favorably with recent experiments.

  8. Structural and functional hepatocyte polarity and liver disease

    PubMed Central

    Gissen, Paul; Arias, Irwin M.

    2015-01-01

    Summary Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases. PMID:26116792

  9. Extractions of polarized and unpolarized parton distribution functions

    SciTech Connect

    Jimenez-Delgado, Pedro

    2014-01-01

    An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.

  10. Chiral dynamics of the polarizing fracture functions for baryon production

    NASA Astrophysics Data System (ADS)

    Sivers, Dennis

    2009-04-01

    The concept of spin-directed momentum provides a useful and restrictive framework for describing dynamical mechanisms that can lead to single-spin observables. The value of this framework can be demonstrated by consideration of the polarizing fracture functions, ΔNMB↑/pq(x,z,kTN;Q2), that characterize the production of polarized baryons in the target fragmentation region of semi-inclusive deep-inelastic scattering from an unpolarized target. When Bjorken x is chosen large enough to indicate a hard scattering from a valence quark, the fracture function formalism dynamically selects a quark-diquark basis for baryon structure. Attention to constituent orbital angular momentum in the formation process and its role in contributing to the transverse momentum of the produced baryon illustrates important aspects of the generation of polarization observables.

  11. Conservation of Planar Polarity Pathway Function Across the Animal Kingdom.

    PubMed

    Hale, Rosalind; Strutt, David

    2015-01-01

    Planar polarity is a well-studied phenomenon resulting in the directional coordination of cells in the plane of a tissue. In invertebrates and vertebrates, planar polarity is established and maintained by the largely independent core and Fat/Dachsous/Four-jointed (Ft-Ds-Fj) pathways. Loss of function of these pathways can result in a wide range of developmental or cellular defects, including failure of gastrulation and problems with placement and function of cilia. This review discusses the conservation of these pathways across the animal kingdom. The lack of vital core pathway components in basal metazoans suggests that the core planar polarity pathway evolved shortly after, but not necessarily alongside, the emergence of multicellularity.

  12. The polarization function of a finite number of confined spin polarized fermions

    NASA Astrophysics Data System (ADS)

    Lemmens, Lucien F.; Saeys, Dirk; Brosens, Fons; Devreese, Jozef T.

    2001-03-01

    The Fourier transform of an inhomogeneous two-point correlation function, in space and Euclidean time, is derived for a limited number of spin polarized fermions in an external potential. The formulation is based on the many-body generalization of the Feynman-Kac functional. Special attention is given to the finite number aspects and the implications thereof for the fugacity. An analysis of the correlation function in terms of single particle propagators is obtained, leading to an occupation function representation. For the harmonic model, the temporal Fourier components of the two-point correlation matrix are worked out in the low temperature limit.

  13. The polarization function of a finite number of confined spin polarized fermions

    NASA Astrophysics Data System (ADS)

    Lemmens, L. F.; Saeys, D.; Brosens, F.; Devreese, J. T.

    2001-01-01

    The Fourier transform of an inhomogeneous two-point correlation function, in space and Euclidean time, is derived for a limited number of spin polarized fermions in an external potential. The formulation is based on the many-body generalization of the Feynman-Kac functional. Special attention is given to the finite number aspects and the implications thereof for the fugacity. An analysis of the correlation function in terms of single-particle propagators is obtained, leading to an occupation function representation. For the harmonic model, the temporal Fourier components of the two-point correlation matrix are worked out in the low-temperature limit.

  14. Amino acids: metabolism, functions, and nutrition.

    PubMed

    Wu, Guoyao

    2009-05-01

    Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.

  15. Drug-metabolizing enzymes: mechanisms and functions.

    PubMed

    Sheweita, S A

    2000-09-01

    Drug-metabolizing enzymes are called mixed-function oxidase or monooxygenase and containing many enzymes including cytochrome P450, cytochrome b5, and NADPH-cytochrome P450 reductase and other components. The hepatic cytochrome P450s (Cyp) are a multigene family of enzymes that play a critical role in the metabolism of many drugs and xenobiotics with each cytochrome isozyme responding differently to exogenous chemicals in terms of its induction and inhibition. For example, Cyp 1A1 is particularly active towards polycyclic aromatic hydrocarbons (PAHs), activating them into reactive intermediates those covalently bind to DNA, a key event in the initiation of carcinogenesis. Likewise, Cyp 1A2 activates a variety of bladder carcinogens, such as aromatic amines and amides. Also, some forms of cytochrome P450 isozymes such as Cyp 3A and 2E1 activate the naturally occurring carcinogens (e.g. aflatoxin B1) and N-nitrosamines respectively into highly mutagenic and carcinogenic agents. The carcinogenic potency of PAHs, and other carcinogens and the extent of binding of their ultimate metabolites to DNA and proteins are correlated with the induction of cytochrome P450 isozymes. Phase II drug-metabolizing enzymes such as glutathione S-transferase, aryl sulfatase and UDP-glucuronyl transferase inactivate chemical carcinogens into less toxic or inactive metabolites. Many drugs change the rate of activation or detoxification of carcinogens by changing the activities of phases I and II drug-metabolizing enzymes. The balance of detoxification and activation reactions depends on the chemical structure of the agents, and is subjected to many variables that are a function of this structure, or genetic background, sex, endocrine status, age, diet, and the presence of other chemicals. It is important to realize that the enzymes involved in carcinogen metabolism are also involved in the metabolism of a variety of substrates, and thus the introduction of specific xenobiotics may change

  16. Diet and metabolic state are the main factors determining concentrations of perfluoroalkyl substances in female polar bears from Svalbard.

    PubMed

    Tartu, Sabrina; Bourgeon, Sophie; Aars, Jon; Andersen, Magnus; Lone, Karen; Jenssen, Bjørn Munro; Polder, Anuschka; Thiemann, Gregory W; Torget, Vidar; Welker, Jeffrey M; Routti, Heli

    2017-10-01

    Perfluoroalkyl substances (PFASs) have been detected in organisms worldwide, including Polar Regions. The polar bear (Ursus maritimus), the top predator of Arctic marine ecosystems, accumulates high concentrations of PFASs, which may be harmful to their health. The aim of this study was to investigate which factors (habitat quality, season, year, diet, metabolic state [i.e. feeding/fasting], breeding status and age) predict PFAS concentrations in female polar bears captured on Svalbard (Norway). We analysed two perfluoroalkyl sulfonates (PFSAs: PFHxS and PFOS) and C8-C13 perfluoroalkyl carboxylates (PFCAs) in 112 plasma samples obtained in April and September 2012-2013. Nitrogen and carbon stable isotope ratios (δ(15)N, δ(13)C) in red blood cells and plasma, and fatty acid profiles in adipose tissue were used as proxies for diet. We determined habitat quality based on movement patterns, capture position and resource selection functions, which are models that predict the probability of use of a resource unit. Plasma urea to creatinine ratios were used as proxies for metabolic state (i.e. feeding or fasting state). Results were obtained from a conditional model averaging of 42 general linear mixed models. Diet was the most important predictor of PFAS concentrations. PFAS concentrations were positively related to trophic level and marine diet input. High PFAS concentrations in females feeding on the eastern part of Svalbard, where the habitat quality was higher than on the western coast, were likely related to diet and possibly to abiotic factors. Concentrations of PFSAs and C8-C10 PFCAs were higher in fasting than in feeding polar bears and PFOS was higher in females with cubs of the year than in solitary females. Our findings suggest that female polar bears that are exposed to the highest levels of PFAS are those 1) feeding on high trophic level sea ice-associated prey, 2) fasting and 3) with small cubs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Frequency redistribution function for the polarized two-term atom

    SciTech Connect

    Casini, R.; Landi Degl'Innocenti, M.; Manso Sainz, R.; Landolfi, M.

    2014-08-20

    We present a generalized frequency redistribution function for the polarized two-term atom in an arbitrary magnetic field. This result is derived within a new formulation of the quantum problem of coherent scattering of polarized radiation by atoms in the collisionless regime. The general theory, which is based on a diagrammatic treatment of the atom-photon interaction, is still a work in progress. However, the results anticipated here are relevant enough for the study of the magnetism of the solar chromosphere and of interest for astrophysics in general.

  18. The polarization response function and electrostatic modes of focused beams

    SciTech Connect

    Gnavi, G.; Gratton, F.T.

    1986-02-01

    It is shown that the method of percussion for obtaining the spatial-temporal representation of the polarization response function directly can also be used to study stability problems in nonuniform plasmas, thus providing a physical and mathematical alternative to the traditional approach. As an example, the stability analysis of particle beams is given, focused with cylindrical symmetry through an axis. The integral equation for electrostatic modes is set up with the polarization response, and solved with a technique that provides both the characteristic values and an integral representation for the field. The instability of this model, which is the cylindrical counterpart of the plane symmetric counterstreaming configuration, is then discussed.

  19. SOCS molecules: the growing players in macrophage polarization and function.

    PubMed

    Zhou, Dexi; Chen, Lu; Yang, Kui; Jiang, Hui; Xu, Wenke; Luan, Jiajie

    2017-09-01

    The concept of macrophage polarization is defined in terms of macrophage phenotypic heterogeneity and functional diversity. Cytokines signals are thought to be required for the polarization of macrophage populations toward different phenotypes at different stages in development, homeostasis and disease. The suppressors of cytokine signaling family of proteins contribute to the magnitude and duration of cytokines signaling, which ultimately control the subtle adjustment of the balance between divergent macrophage phenotypes. This review highlights the specific roles and mechanisms of various cytokines family and their negative regulators link to the macrophage polarization programs. Eventually, breakthrough in the identification of these molecules will provide the novel therapeutic approaches for a host of diseases by targeting macrophage phenotypic shift.

  20. Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neuropsychological and metabolic (PET) correlations.

    PubMed Central

    Clarke, S; Assal, G; Bogousslavsky, J; Regli, F; Townsend, D W; Leenders, K L; Blecic, S

    1994-01-01

    A 54-year-old patient who had an isolated small polar thalamic infarct and acute global amnesia with slight frontal type dysfunction but without other neurological dysfunction was studied. Memory improved partially within 8 months. At all stages the impairment was more severe for verbal than non-verbal memory. Autobiographic recollections and newly acquired information tended to be disorganised with respect to temporal order. Procedural memory was unaffected. Both emotional involvement and pleasure in reading were lost. On MRI, the infarct was limited to the left anterior thalamic nuclei and the adjacent mamillothalamic tract. The regional cerebral metabolic rate of glucose (measured with PET) was decreased on the left in the thalamus, amygdala, and posterior cingulate cortex 2 weeks after the infarct, and in the thalamus and posterior cingulate cortex 9 months later. These findings stress the specific role of the left anterior thalamic region in memory and confirm that longlasting amnesia from a thalamic lesion can occur without significant structural damage to the dorsomedial nucleus. Furthermore, they suggest that the anterior thalamic nuclei and possibly their connections with the posterior cingulate cortex play a role in emotional involvement linked to ipsilateral hemispheric functions. Images PMID:8301301

  1. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes.

    PubMed

    Vick-Majors, Trista J; Priscu, John C; Amaral-Zettler, Linda A

    2014-04-01

    High-latitude environments, such as the Antarctic McMurdo Dry Valley lakes, are subject to seasonally segregated light-dark cycles, which have important consequences for microbial diversity and function on an annual basis. Owing largely to the logistical difficulties of sampling polar environments during the darkness of winter, little is known about planktonic microbial community responses to the cessation of photosynthetic primary production during the austral sunset, which lingers from approximately February to April. Here, we hypothesized that changes in bacterial, archaeal and eukaryotic community structure, particularly shifts in favor of chemolithotrophs and mixotrophs, would manifest during the transition to polar night. Our work represents the first concurrent molecular characterization, using 454 pyrosequencing of hypervariable regions of the small-subunit ribosomal RNA gene, of bacterial, archaeal and eukaryotic communities in permanently ice-covered lakes Fryxell and Bonney, before and during the polar night transition. We found vertically stratified populations that varied at the community and/or operational taxonomic unit-level between lakes and seasons. Network analysis based on operational taxonomic unit level interactions revealed nonrandomly structured microbial communities organized into modules (groups of taxa) containing key metabolic potential capacities, including photoheterotrophy, mixotrophy and chemolithotrophy, which are likely to be differentially favored during the transition to polar night.

  2. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    PubMed

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  3. Metabolism and functions of copper in brain.

    PubMed

    Scheiber, Ivo F; Mercer, Julian F B; Dringen, Ralf

    2014-05-01

    Copper is an important trace element that is required for essential enzymes. However, due to its redox activity, copper can also lead to the generation of toxic reactive oxygen species. Therefore, cellular uptake, storage as well as export of copper have to be tightly regulated in order to guarantee sufficient copper supply for the synthesis of copper-containing enzymes but also to prevent copper-induced oxidative stress. In brain, copper is of importance for normal development. In addition, both copper deficiency as well as excess of copper can seriously affect brain functions. Therefore, this organ possesses ample mechanisms to regulate its copper metabolism. In brain, astrocytes are considered as important regulators of copper homeostasis. Impairments of homeostatic mechanisms in brain copper metabolism have been associated with neurodegeneration in human disorders such as Menkes disease, Wilson's disease and Alzheimer's disease. This review article will summarize the biological functions of copper in the brain and will describe the current knowledge on the mechanisms involved in copper transport, storage and export of brain cells. The role of copper in diseases that have been connected with disturbances in brain copper homeostasis will also be discussed.

  4. Dynamic nuclear polarization facilitates monitoring of pyruvate metabolism in trypanosoma brucei.

    PubMed

    Zhuo, You; Cordeiro, Ciro D; Hekmatyar, S Khan; Docampo, Roberto; Prestegard, James H

    2017-09-08

    Dynamic nuclear polarization (DNP) provides sensitivity improvements that make NMR a viable method for following metabolic conversions in real time. There are now many in vivo applications to animal systems and even to diagnosis of human disease. However, application to microbial systems is rare. Here we demonstrate its application to the pathogenic protozoan, Trypanosoma brucei, using hyperpolarized (13)C1- pyruvate as a substrate and compare the parasite metabolism to that of commonly cultured mammalian cell lines, HEK-293 and Hep-G2. Metabolic differences between insect and bloodstream forms of T. brucei were also investigated. Significant differences are noted with respect to lactate, alanine and CO2 production. Conversion of pyruvate to CO2 in the T. brucei bloodstream form provides new support for the presence of an active pyruvate dehydrogenase in this stage. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  5. Spin-polarized Wide Electron Slabs in Functionally Graded Polar Oxide Heterostructures

    PubMed Central

    Ye, Jiandong; Ter Lim, Sze; Bosman, Michel; Gu, Shulin; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Sun, Xiaowei; Teo, Kie Leong

    2012-01-01

    We report on the high mobility wide electron slabs with enhanced correlation effects by tailoring the polarization effects in a functionally graded ZnMgO/ZnO heterostructures. The characteristics of three-dimensional (3D) spreading electrons are evidenced by the capacitance-voltage profiling and the quantization of 3D Fermi surface in magneto-transport measurements. Despite the weak spin-orbit interaction, such electron slabs are spin-polarized with a large zero-field spin splitting energy, which is induced by the carrier-mediated ferromagnetism. Our results suggest that the vast majority of electrons are localized at the surface magnetic moment which does not allow spin manipulations, and only in the region visited by the itinerant carriers that the ferromagnetic exchange interactions via coupling to the surface local moments contribute to the spin transport. The host ferromagnetism is likely due to the formation of Zn cation vacancies on the surface regime induced by the stabilization mechanism and strain-relaxation in ZnMgO polar ionic surface. PMID:22833785

  6. Spin-polarized wide electron slabs in functionally graded polar oxide heterostructures.

    PubMed

    Ye, Jiandong; Ter Lim, Sze; Bosman, Michel; Gu, Shulin; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Sun, Xiaowei; Teo, Kie Leong

    2012-01-01

    We report on the high mobility wide electron slabs with enhanced correlation effects by tailoring the polarization effects in a functionally graded ZnMgO/ZnO heterostructures. The characteristics of three-dimensional (3D) spreading electrons are evidenced by the capacitance-voltage profiling and the quantization of 3D Fermi surface in magneto-transport measurements. Despite the weak spin-orbit interaction, such electron slabs are spin-polarized with a large zero-field spin splitting energy, which is induced by the carrier-mediated ferromagnetism. Our results suggest that the vast majority of electrons are localized at the surface magnetic moment which does not allow spin manipulations, and only in the region visited by the itinerant carriers that the ferromagnetic exchange interactions via coupling to the surface local moments contribute to the spin transport. The host ferromagnetism is likely due to the formation of Zn cation vacancies on the surface regime induced by the stabilization mechanism and strain-relaxation in ZnMgO polar ionic surface.

  7. Self-consistent polarization density functional theory: Application to Argon

    SciTech Connect

    Maerzke, Katie A.; Murdachaew, Garold; Mundy, Christopher J.; Schenter, Gregory K.; Siepmann, J. I.

    2009-03-12

    We present a comprehensive set of results for argon, a case study in weak interactions, using the selfconsistent polarization density functional theory (SCP-DFT). With minimal parameterization, SCPDFT is found is give excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the lattice constant and cohesion energy of the face-centered cubic (fcc) crystal compared to both accurate theoretical and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex systems involving solvation and bond breaking. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  8. Students' Challenges with Polar Functions: Covariational Reasoning and Plotting in the Polar Coordinate System

    ERIC Educational Resources Information Center

    Habre, Samer

    2017-01-01

    Covariational reasoning has been the focus of many studies but only a few looked into this reasoning in the polar coordinate system. In fact, research on student's familiarity with polar coordinates and graphing in the polar coordinate system is scarce. This paper examines the challenges that students face when plotting polar curves using the…

  9. Students' Challenges with Polar Functions: Covariational Reasoning and Plotting in the Polar Coordinate System

    ERIC Educational Resources Information Center

    Habre, Samer

    2017-01-01

    Covariational reasoning has been the focus of many studies but only a few looked into this reasoning in the polar coordinate system. In fact, research on student's familiarity with polar coordinates and graphing in the polar coordinate system is scarce. This paper examines the challenges that students face when plotting polar curves using the…

  10. Free energy functionals for polarization fluctuations: Pekar factor revisited

    DOE PAGES

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-02-13

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. This separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom, within dielectric continuum models. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. We study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. But, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less

  11. Free energy functionals for polarization fluctuations: Pekar factor revisited.

    PubMed

    Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V

    2017-02-14

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  12. Free energy functionals for polarization fluctuations: Pekar factor revisited

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-02-01

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  13. Metabolic Characterization of Polarized M1 and M2 Bone Marrow-derived Macrophages Using Real-time Extracellular Flux Analysis.

    PubMed

    Van den Bossche, Jan; Baardman, Jeroen; de Winther, Menno P J

    2015-11-28

    Specific metabolic pathways are increasingly being recognized as critical hallmarks of macrophage subsets. While LPS-induced classically activated M1 or M(LPS) macrophages are pro-inflammatory, IL-4 induces alternative macrophage activation and these so-called M2 or M(IL-4) support resolution of inflammation and wound healing. Recent evidence shows the crucial role of metabolic reprogramming in the regulation of M1 and M2 macrophage polarization. In this manuscript, an extracellular flux analyzer is applied to assess the metabolic characteristics of naive, M1 and M2 polarized mouse bone marrow-derived macrophages. This instrument uses pH and oxygen sensors to measure the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR), which can be related to glycolytic and mitochondrial oxidative metabolism. As such, both glycolysis and mitochondrial oxidative metabolism can be measured in real-time in one single assay. Using this technique, we demonstrate here that inflammatory M1 macrophages display enhanced glycolytic metabolism and reduced mitochondrial activity. Conversely, anti-inflammatory M2 macrophages show high mitochondrial oxidative phosphorylation (OXPHOS) and are characterized by an enhanced spare respiratory capacity (SRC). The presented functional assay serves as a framework to investigate how particular cytokines, pharmacological compounds, gene knock outs or other interventions affect the macrophage's metabolic phenotype and inflammatory status.

  14. The human metabolic reconstruction Recon 1 directs hypotheses of novel human metabolic functions

    PubMed Central

    2011-01-01

    Background Metabolic network reconstructions formalize our knowledge of metabolism. Gaps in these networks pinpoint regions of metabolism where biological components and functions are "missing." At the same time, a major challenge in the post genomic era involves characterisation of missing biological components to complete genome annotation. Results We used the human metabolic network reconstruction RECON 1 and established constraint-based modelling tools to uncover novel functions associated with human metabolism. Flux variability analysis identified 175 gaps in RECON 1 in the form of blocked reactions. These gaps were unevenly distributed within metabolic pathways but primarily found in the cytosol and often caused by compounds whose metabolic fate, rather than production, is unknown. Using a published algorithm, we computed gap-filling solutions comprised of non-organism specific metabolic reactions capable of bridging the identified gaps. These candidate solutions were found to be dependent upon the reaction environment of the blocked reaction. Importantly, we showed that automatically generated solutions could produce biologically realistic hypotheses of novel human metabolic reactions such as of the fate of iduronic acid following glycan degradation and of N-acetylglutamate in amino acid metabolism. Conclusions The results demonstrate how metabolic models can be utilised to direct hypotheses of novel metabolic functions in human metabolism; a process that we find is heavily reliant upon manual curation and biochemical insight. The effectiveness of a systems approach for novel biochemical pathway discovery in mammals is demonstrated and steps required to tailor future gap filling algorithms to mammalian metabolic networks are proposed. PMID:21962087

  15. Field Metabolic Rate and PCB Adipose Tissue Deposition Efficiency in East Greenland Polar Bears Derived from Contaminant Monitoring Data

    PubMed Central

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J.; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2′,4,4′,55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears. PMID:25101837

  16. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    PubMed

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  17. Star-type polarizer with equal-power splitting function for each polarization based on polarization-dependent defects in two-dimensional photonic-crystal waveguides.

    PubMed

    Lin, Mi; Xi, Xiang; Qiu, Wenbiao; Ai, Yuexia; Wang, Qiong; Liu, Qiang; Ouyang, Zhengbiao

    2016-10-17

    We propose a star-type polarizer with equal-power splitting function for each polarization based on polarization-dependent defects (PDDs) in two-dimensional photonic-crystal waveguides (PCWs). The structure is designed by combining two Y-type PCWs, and two types of PDDs are introduced into the PCWs respectively to provide polarization functions. By using finite-element method and optimizing the parameters of the PDDs, it is demonstrated that different polarizations can only transmit through their own PCWs and output with identical power distributions, i.e., the structure can function as polarizer and equal-power splitter for each polarization at the same time. In addition, by scanning the wavelength of the structure, it is proved that the proposed splitter can work in a wide range of wavelength while keeping high output transmission for both the TE and TM polarizations. Such a structure is useful for polarization-relative multi-channel signal processing for optical communications in the mid- and far-infrared wavelength regions.

  18. Maternal metabolic stress may affect oviduct gatekeeper function.

    PubMed

    Jordaens, Lies; Van Hoeck, Veerle; Maillo, Veronica; Gutierrez-Adan, Alfonso; Marei, Waleed Fawzy A; Vlaeminck, Bruno; Thys, Sofie; Sturmey, Roger G S; Bols, Peter; Leroy, Jo

    2017-03-03

    We hypothesized that elevated non-esterified fatty acids (NEFA) modify in vitro bovine oviduct epithelial cell (BOEC) metabolism and barrier function. Hereto, BOECs were studied in a polarized system with 24h-treatments at day 9: 1) CONTROL (0µM NEFA + 0%EtOH), 2) SOLVENT CONTROL (0µM NEFA + 0.45%EtOH), 3) BASAL NEFA (720µM NEFA + 0.45%EtOH in the basal compartment), 4) APICAL NEFA (720µM NEFA + 0.45%EtOH in the apical compartment). FITC-albumin was used for monolayer permeability assessment, and related to Transepithelial Electric Resistance (TER). Fatty acid (FA), glucose, lactate and pyruvate concentrations were measured in spent medium. Intracellular lipid droplets (LD) and FA-uptake were studied using Bodipy 493/503 and immunolabelling of FA-transporters (FAT/CD36, FABP3 and caveolin1). BOEC-mRNA was retrieved for qRT-PCR. Results revealed that APICAL NEFA reduced relative TER-increase (46.85%) during treatment, and increased FITC-albumin flux (27.59%) compared to other treatments. In BASAL NEFA, FAs were transferred to the apical compartment as free FAs: mostly palmitic and oleic acid increased, respectively 56.0 % and 33.5% of initial FA-concentrations. APICAL NEFA allowed no FA-transfer, but induced LD-accumulation and upregulated FA-transporter expression (↑CD36, ↑FABP3, ↑CAV1-protein-expression). Gene expression in APICAL NEFA indicated increased anti-apoptotic (↑BCL2) and anti-oxidative (↑SOD1) capacity, upregulated lipid metabolism (↑CPT1, ↑ACSL1 and ↓ACACA), and FA-uptake (↑CAV1). All treatments had similar carbohydrate metabolism and oviduct function specific gene expression (=OVGP1, ESR1, FOXJ1). Overall, elevated NEFAs affected BOEC-metabolism and barrier function differently depending on NEFA-exposure side. Data substantiate the concept of the oviduct as a gatekeeper that may actively alter early embryonic developmental conditions.

  19. Function of polar glycerolipids in flower development in Arabidopsis thaliana.

    PubMed

    Nakamura, Yuki

    2015-10-01

    The flower lipidome is an unexplored frontier of plant lipid research as compared with the major advances in photosynthetic or storage organs. However, ample evidence from recent molecular biological studies suggests that lipids play crucial roles in coordinating flower development rather than being an inert end product of metabolism. This review summarizes the current understanding of the function of glycerolipids in flower development in Arabidopsis thaliana. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Matched and Mismatched Metabolic Fuels in Lymphocyte Function

    PubMed Central

    Caro-Maldonado, Alfredo; Gerriets, Valerie A.; Rathmell, Jeffrey C.

    2012-01-01

    Immunological function requires metabolic support to suit the needs of lymphocytes at a variety of distinct differentiation and activation states. It is now evident that the signaling pathways that drive lymphocyte survival and activity can directly control cellular metabolism. This linkage provides a mechanism by which activation and specific signaling pathways provide a supply of appropriate and required nutrients to support cell functions in a pro-active supply rather than consumption-based metabolic model. In this way, the metabolism and fuel choices of lymphocytes are guided to specifically match the anticipated needs. If the fuel choice or metabolic pathways of lymphocytes are dysregulated, however, metabolic checkpoints can become activated to disrupt immunological function. These changes are now shown in several immunological diseases and may open new opportunities to selectively enhance or suppress specific immune functions through targeting of glucose, lipid, or amino acid metabolism. PMID:23290889

  1. Does taurine deficiency cause metabolic bone disease and rickets in polar bear cubs raised in captivity?

    PubMed

    Chesney, Russell W; Hedberg, Gail E; Rogers, Quinton R; Dierenfeld, Ellen S; Hollis, Bruce E; Derocher, Andrew; Andersen, Magnus

    2009-01-01

    Rickets and fractures have been reported in captive polar bears. Taurine (TAU) is key for the conjugation of ursodeoxycholic acid (UDCA), a bile acid unique to bears. Since TAU-conjugated UDCA optimizes fat and fat-soluble vitamin absorption, we asked if TAU deficiency could cause vitamin D malabsorption and lead to metabolic bone disease in captive polar bears. We measured TAU levels in plasma (P) and whole blood (WB) from captive and free-ranging cubs and adults, and vitamin D3 and TAU concentrations in milk samples from lactating sows. Plasma and WB TAU levels were significantly higher in cubs vs captive and free-ranging adult bears. Vitamin D in polar bear milk was 649.2 +/- 569.2 IU/L, similar to that found in formula. The amount of TAU in polar bear milk is 3166.4 +/- 771 nmol/ml, 26-fold higher than in formula. Levels of vitamin D in bear milk and formula as well as in plasma do not indicate classical nutritional vitamin D deficiency. Higher dietary intake of TAU by free-ranging cubs may influence bile acid conjugation and improve vitamin D absorption.

  2. Myosin-X functions in polarized epithelial cells.

    PubMed

    Liu, Katy C; Jacobs, Damon T; Dunn, Brian D; Fanning, Alan S; Cheney, Richard E

    2012-05-01

    Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein-Myo10 localizes to lateral membrane cell-cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis.

  3. MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis

    PubMed Central

    Ouimet, Mireille; Ediriweera, Hasini N.; Gundra, U. Mahesh; Sheedy, Frederick J.; Ramkhelawon, Bhama; Hutchison, Susan B.; Rinehold, Kaitlyn; van Solingen, Coen; Fullerton, Morgan D.; Cecchini, Katharine; Rayner, Katey J.; Steinberg, Gregory R.; Zamore, Phillip D.; Fisher, Edward A.; Loke, P’ng; Moore, Kathryn J.

    2015-01-01

    Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33–mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrophage inflammatory polarization and shapes innate and adaptive immune responses. Macrophage-specific Mir33 deletion increased oxidative respiration, enhanced spare respiratory capacity, and induced an M2 macrophage polarization–associated gene profile. Furthermore, miR-33–mediated M2 polarization required miR-33 targeting of the energy sensor AMP-activated protein kinase (AMPK), but not cholesterol efflux. Notably, miR-33 inhibition increased macrophage expression of the retinoic acid–producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2) and retinal dehydrogenase activity both in vitro and in a mouse model. Consistent with the ability of retinoic acid to foster inducible Tregs, miR-33–depleted macrophages had an enhanced capacity to induce forkhead box P3 (FOXP3) expression in naive CD4+ T cells. Finally, treatment of hypercholesterolemic mice with miR-33 inhibitors for 8 weeks resulted in accumulation of inflammation-suppressing M2 macrophages and FOXP3+ Tregs in plaques and reduced atherosclerosis progression. Collectively, these results reveal that miR-33 regulates macrophage inflammation and demonstrate that miR-33 antagonism is atheroprotective, in part, by reducing plaque inflammation by promoting M2 macrophage polarization and Treg induction. PMID:26517695

  4. Functional modelling of planar cell polarity: an approach for identifying molecular function

    PubMed Central

    2013-01-01

    Background Cells in some tissues acquire a polarisation in the plane of the tissue in addition to apical-basal polarity. This polarisation is commonly known as planar cell polarity and has been found to be important in developmental processes, as planar polarity is required to define the in-plane tissue coordinate system at the cellular level. Results We have built an in-silico functional model of cellular polarisation that includes cellular asymmetry, cell-cell signalling and a response to a global cue. The model has been validated and parameterised against domineering non-autonomous wing hair phenotypes in Drosophila. Conclusions We have carried out a systematic comparison of in-silico polarity phenotypes with patterns observed in vivo under different genetic manipulations in the wing. This has allowed us to classify the specific functional roles of proteins involved in generating cell polarity, providing new hypotheses about their specific functions, in particular for Pk and Dsh. The predictions from the model allow direct assignment of functional roles of genes from genetic mosaic analysis of Drosophila wings. PMID:23672397

  5. Fueling Immunity: Insights into Metabolism and Lymphocyte Function

    PubMed Central

    Pearce, Erika L.; Poffenberger, Maya C.; Chang, Chih-Hao; Jones, Russell G.

    2015-01-01

    Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic and biosynthetic demands of increased cell proliferation and also adapt to changing environmental conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why T cells adopt specific metabolic programs and the impact that these programs have on T cell function and, ultimately, immunological outcome remain unclear. Research on tumor cell metabolism has provided valuable insight into metabolic pathways important for cell proliferation and the influence of metabolites themselves on signal transduction and epigenetic programming. In this Review, we highlight emerging concepts regarding metabolic reprogramming in proliferating cells and discuss their potential impact on T cell fate and function. PMID:24115444

  6. Estrogen and Mitochondria Function in Cardiorenal Metabolic Syndrome

    PubMed Central

    Jia, Guanghong; Aroor, Annayya R.; Sowers, James R.

    2015-01-01

    The cardiorenal metabolic syndrome (CRS) consists of a constellation of cardiac, renal, and metabolic disorders including insulin resistance (IR), obesity, metabolic dyslipidemia, high-blood pressure, and evidence of early cardiac and renal disease. Mitochondria dysfunction often occurs in the CRS, and this dysfunction is promoted by excess reactive oxygen species, genetic factors, IR, aging, and altered mitochondrial biogenesis. Recently, it has been shown that there are important sex-related differences in mitochondria function and metabolic, cardiovascular, and renal components. Sex differences in the CRS have mainly been attributed to the estrogen’s effects that are mainly mediated by estrogen receptor (ER) α, ERβ, and G-protein coupled receptor 30. In this review, we discuss the effects of estrogen on the mitochondrial function, insulin metabolic signaling, glucose transport, lipid metabolism, and inflammatory responses from liver, pancreatic β cells, adipocytes, skeletal muscle, and cardiovascular tissue. PMID:25149220

  7. Metabolic syndrome - dysregulation of adipose tissue endocrine function.

    PubMed

    Horská, Kateřina; Kučerová, Jana; Suchý, Pavel; Kotolová, Hana

    2014-08-01

    Metabolic syndrome, acondition increasing cardiovascular morbidity, mortality and risk for diabetes mellitus type 2, is currently worldwide reaching epidemic proportions. This complex disorder represents an urgent challenge for new pharmacotherapeutic strategies formulation. Pathophysiological mechanisms underlying metabolic syndrome are not completely understood, nevertheless growing evidence is supporting the hypothesis that multiple metabolic dysregulations do contribute to its development. Apotential target for pharmacological intervention is considered to be dysregulation of adipose tissue endocrine/paracrine function. Specific adipokines, proteins secreted by the adipose tissue, with some pleiotropic effects, have been identified with strong association to regulation of energy metabolism, appetite, insulin signaling, tissue insulin sensitivity and the proinflammatory state related to metabolic syndrome. The aim of this paper is to provide a brief overview of endocrine/paracrine functions of the adipose tissue with regard to metabolic syndrome development and pathophysiology and particular adipokines as potential targets for innovative pharmacotherapeutic approaches.

  8. Rhinovirus Disrupts the Barrier Function of Polarized Airway Epithelial Cells

    PubMed Central

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C.; Hershenson, Marc B.

    2008-01-01

    Rationale: Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. Objectives: We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Methods: Primary human airway epithelial cells grown at air–liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (RT) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Measurements and Main Results: Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in RT without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease RT, suggesting a requirement for viral replication. Reduced RT was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-α, IFN-γ and IL-1β reversed corresponding cytokine-induced reductions in RT but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. Conclusions: RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function. PMID:18787220

  9. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    SciTech Connect

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  10. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    PubMed Central

    Everts, Bart; Pearce, Edward J.

    2014-01-01

    Dendritic cells (DCs) are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes. PMID:24847328

  11. Accessing Autonomic Function Can Early Screen Metabolic Syndrome

    PubMed Central

    Dai, Meng; Li, Mian; Yang, Zhi; Xu, Min; Xu, Yu; Lu, Jieli; Chen, Yuhong; Liu, Jianmin; Ning, Guang; Bi, Yufang

    2012-01-01

    Background Clinical diagnosis of the metabolic syndrome is time-consuming and invasive. Convenient instruments that do not require laboratory or physical investigation would be useful in early screening individuals at high risk of metabolic syndrome. Examination of the autonomic function can be taken as a directly reference and screening indicator for predicting metabolic syndrome. Methodology and Principal Findings The EZSCAN test, as an efficient and noninvasive technology, can access autonomic function through measuring electrochemical skin conductance. In this study, we used EZSCAN value to evaluate autonomic function and to detect metabolic syndrome in 5,887 participants aged 40 years or older. The EZSCAN test diagnostic accuracy was analyzed by receiver operating characteristic curves. Among the 5,815 participants in the final analysis, 2,541 were diagnosed as metabolic syndrome and the overall prevalence was 43.7%. Prevalence of the metabolic syndrome increased with the elevated EZSCAN risk level (p for trend <0.0001). Moreover, EZSCAN value was associated with an increase in the number of metabolic syndrome components (p for trend <0.0001). Compared with the no risk group (EZSCAN value 0–24), participants at the high risk group (EZSCAN value: 50–100) had a 2.35 fold increased risk of prevalent metabolic syndrome after the multiple adjustments. The area under the curve of the EZSCAN test was 0.62 (95% confidence interval [CI], 0.61–0.64) for predicting metabolic syndrome. The optimal operating point for the EZSCAN value to detect a high risk of prevalent metabolic syndrome was 30 in this study, while the sensitivity and specificity were 71.2% and 46.7%, respectively. Conclusions and Significance In conclusion, although less sensitive and accurate when compared with the clinical definition of metabolic syndrome, we found that the EZSCAN test is a good and simple screening technique for early predicting metabolic syndrome. PMID:22916265

  12. Regulatory functions of PPARbeta in metabolism: implications for the treatment of metabolic syndrome.

    PubMed

    Grimaldi, Paul A

    2007-08-01

    The prevalence of metabolic disturbances, collectively known as metabolic syndrome, has reached an epidemic proportion in industrialized countries. Lifestyle interventions and pharmacological treatments of such pathologies are only partially efficient and new therapeutic approaches are urgently needed. This review focuses on the recent findings describing the regulatory functions of peroxisome proliferator-activated receptor beta (PPARbeta) on lipid metabolism in several tissues and on the implications of such findings on the therapeutic usefulness of PPARbeta agonists in the treatment of particular features of the metabolic syndrome, such as insulin resistance, obesity, dyslipidemia and cardiac dysfunctions.

  13. Steviol glycosides: chemical diversity, metabolism, and function.

    PubMed

    Ceunen, Stijn; Geuns, Jan M C

    2013-06-28

    Steviol glycosides are a group of highly sweet diterpene glycosides discovered in only a few plant species, most notably the Paraguayan shrub Stevia rebaudiana. During the past few decades, the nutritional and pharmacological benefits of these secondary metabolites have become increasingly apparent. While these properties are now widely recognized, many aspects related to their in vivo biochemistry and metabolism and their relationship to the overall plant physiology of S. rebaudiana are not yet understood. Furthermore, the large size of the steviol glycoside pool commonly found within S. rebaudiana leaves implies a significant metabolic investment and poses questions regarding the benefits S. rebaudiana might gain from their accumulation. The current review intends to thoroughly discuss the available knowledge on these issues.

  14. Dual function lipin proteins and glycerolipid metabolism.

    PubMed

    Harris, Thurl E; Finck, Brian N

    2011-06-01

    Lipin family proteins are emerging as crucial regulators of lipid metabolism. In triglyceride synthesis, lipins act as lipid phosphatase enzymes at the endoplasmic reticular membrane, catalyzing the dephosphorylation of phosphatidic acid to form diacylglycerol, which is the penultimate step in this process. However, lipin proteins are not integral membrane proteins, and can rapidly translocate within the cell. In fact, emerging evidence suggests that lipins also play crucial roles in the nucleus as transcriptional regulatory proteins. Thus, lipins are poised to regulate cellular lipid metabolism at multiple regulatory nodal points. This review summarizes the history of lipin proteins, and discusses the current state of our understanding of lipin biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Biological functions and metabolism of oleoylethanolamide.

    PubMed

    Thabuis, Clémentine; Tissot-Favre, Delphine; Bezelgues, Jean-Baptiste; Martin, Jean-Charles; Cruz-Hernandez, Cristina; Dionisi, Fabiola; Destaillats, Frédéric

    2008-10-01

    The present review is focused on the metabolism and the emerging roles of oleoylethanolamide (OEA) with emphasis on its effects on food intake control and lipid metabolism. The biological mechanism of action, including a non-genomic effect mediated through peroxisome proliferator-activated receptor alpha (PPAR-alpha) and transient receptor potential vanilloid type 1 (TRPV1) receptor, is discussed. The research related to fatty acid ethanolamides has been focused until recently on anandamide and its interaction with cannabinoid receptor subtype 1. The roles of other N-acyl ethanolamine fatty acid derivatives have been neglected until it was demonstrated that OEA can modulate food intake control through interaction with PPAR-alpha. Further investigations demonstrated that OEA modulates lipid and glucose metabolism, and recent study confirmed that OEA is an antagonist of TRVP1. It has been demonstrated that OEA has beneficial effects on health by inducing food intake control, lipid beta-oxidation, body weight loss and analgesic effects. The investigation of the mechanism of action revealed that OEA activates PPAR-alpha and stimulates the vagal nerve through the capsaicin receptor TRPV1. Pre-clinical studies showed that OEA remains active when administered orally.

  16. Calcium metabolism and cardiovascular function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; Orwoll, Shiela; McCarron, David A.

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  17. Calcium metabolism and cardiovascular function after spaceflight

    NASA Technical Reports Server (NTRS)

    Hatton, Daniel C.; Yue, Qi; Dierickx, Jacqueline; Roullet, Chantal; Otsuka, Keiichi; Watanabe, Mitsuaki; Coste, Sarah; Roullet, Jean Baptiste; Phanouvang, Thongchan; Orwoll, Eric; hide

    2002-01-01

    To determine the influence of dietary calcium on spaceflight-induced alterations in calcium metabolism and blood pressure (BP), 9-wk-old spontaneously hypertensive rats, fed either high- (2%) or low-calcium (0.02%) diets, were flown on an 18-day shuttle flight. On landing, flight animals had increased ionized calcium (P < 0.001), elevated parathyroid hormone levels (P < 0.001), reduced calcitonin levels (P < 0.05), unchanged 1,25(OH)(2)D(3) levels, and elevated skull (P < 0.01) and reduced femur bone mineral density. Basal and thrombin-stimulated platelet free calcium (intracellular calcium concentration) were also reduced (P < 0.05). There was a tendency for indirect systolic BP to be reduced in conscious flight animals (P = 0.057). However, mean arterial pressure was elevated (P < 0.001) after anesthesia. Dietary calcium altered all aspects of calcium metabolism (P < 0.001), as well as BP (P < 0.001), but the only interaction with flight was a relatively greater increase in ionized calcium in flight animals fed low- compared with high-calcium diets (P < 0.05). The results indicate that 1) flight-induced disruptions of calcium metabolism are relatively impervious to dietary calcium in the short term, 2) increased ionized calcium did not normalize low-calcium-induced elevations of BP, and 3) parathyroid hormone was paradoxically increased in the high-calcium-fed flight animals after landing.

  18. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism.

    PubMed

    Le Gall, Maude; Tobin, Vanessa; Stolarczyk, Emilie; Dalet, Véronique; Leturque, Armelle; Brot-Laroche, Edith

    2007-12-01

    Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision. 2007 Wiley-Liss, Inc.

  19. Non-metabolic functions of glycolytic enzymes in tumorigenesis.

    PubMed

    Yu, X; Li, S

    2017-05-11

    Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.

  20. A cellular perspective on brain energy metabolism and functional imaging.

    PubMed

    Magistretti, Pierre J; Allaman, Igor

    2015-05-20

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Functional genomics in the study of yeast cell polarity: moving in the right direction

    PubMed Central

    Styles, Erin; Youn, Ji-Young; Mattiazzi Usaj, Mojca; Andrews, Brenda

    2013-01-01

    The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study. PMID:24062589

  2. Functional genomics in the study of yeast cell polarity: moving in the right direction.

    PubMed

    Styles, Erin; Youn, Ji-Young; Mattiazzi Usaj, Mojca; Andrews, Brenda

    2013-01-01

    The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.

  3. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism

    PubMed Central

    Park, Hyeong-Kyu; Ahima, Rexford S.

    2014-01-01

    Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978

  4. Metabolic function of the CTRP family of hormones

    PubMed Central

    Seldin, Marcus M.; Tan, Stefanie Y.; Wong, G. William

    2013-01-01

    Maintaining proper energy balance in mammals entails intimate crosstalk between various tissues and organs. These inter-organ communications are mediated, to a great extent, by secreted hormones that circulate in blood. Regulation of the complex metabolic networks by secreted hormones (e.g., insulin, glucagon, leptin, adiponectin, FGF21) constitutes an important mechanism governing the integrated control of whole-body metabolism. Disruption of hormone-mediated metabolic circuits frequently results in dysregulated energy metabolism and pathology. As part of an effort to identify novel metabolic hormones, we recently characterized a highly conserved family of fifteen secreted proteins, the C1q/TNF-related proteins (CTRP1–15). While related to adiponectin in sequence and structural organization, each CTRP has its own unique tissue expression profile and non-redundant function in regulating sugar and/or fat metabolism. Here, we summarize the current understanding of the physiological functions of CTRPs, emphasizing their metabolic roles. Future studies using gain-of-function and loss-of-function mouse models will provide greater mechanistic insights into the critical role CTRPs play in regulating systemic energy homeostasis. PMID:23963681

  5. Underwater linear polarization: physical limitations to biological functions

    PubMed Central

    Shashar, Nadav; Johnsen, Sönke; Lerner, Amit; Sabbah, Shai; Chiao, Chuan-Chin; Mäthger, Lydia M.; Hanlon, Roger T.

    2011-01-01

    Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200–400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70–80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range. PMID:21282168

  6. Functional modules, structural topology, and optimal activity in metabolic networks.

    PubMed

    Resendis-Antonio, Osbaldo; Hernández, Magdalena; Mora, Yolanda; Encarnación, Sergio

    2012-01-01

    Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is

  7. Thiamine in plants: aspects of its metabolism and functions.

    PubMed

    Goyer, Aymeric

    2010-10-01

    Thiamine diphosphate (vitamin B(1)) plays a fundamental role as an enzymatic cofactor in universal metabolic pathways including glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. In addition, thiamine diphosphate has recently been shown to have functions other than as a cofactor in response to abiotic and biotic stress in plants. Recently, several steps of the plant thiamine biosynthetic pathway have been characterized, and a mechanism of feedback regulation of thiamine biosynthesis via riboswitch has been unraveled. This review focuses on these most recent advances made in our understanding of thiamine metabolism and functions in plants. Phenotypes of plant mutants affected in thiamine biosynthesis are described, and genomics, proteomics, and metabolomics data that have increased further our knowledge of plant thiamine metabolic pathways and functions are summarized. Aspects of thiamine metabolism such as catabolism, salvage, and transport in plants are discussed.

  8. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    PubMed

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  9. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    PubMed Central

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates. PMID:25540776

  10. Strabismus requires Flamingo and Prickle function to regulate tissue polarity in the Drosophila eye.

    PubMed

    Rawls, Amy S; Wolff, Tanya

    2003-05-01

    Tissue polarity in Drosophila is regulated by a number of genes that are thought to function in a complex, many of which interact genetically and/or physically, co-localize, and require other tissue polarity proteins for their localization. We report the enhancement of the strabismus tissue polarity phenotype by mutations in two other tissue polarity genes, flamingo and prickle. Flamingo is autonomously required for the establishment of ommatidial polarity. Its localization is dynamic throughout ommatidial development and is dependent on Frizzled and Notch. Flamingo and Strabismus co-localize for several rows posterior to the morphogenetic furrow and subsequently diverge. While neither of these proteins is required for the other's localization, Prickle localization is influenced by Strabismus function. Our data suggest that Strabismus, Flamingo and Prickle function together to regulate the establishment of tissue polarity in the Drosophila eye.

  11. Biological Polarized-Light Signaling: Environment, Structure, and Function

    DTIC Science & Technology

    2006-02-27

    this question. We will behaviorally test the ability of mantis shrimps for their ability to learn and discriminate this aspect of polarization. We...will also examine reflected light from mantis shrimps , and bioluminescence emission from fireflies, to detennine whether this light truly is circularly...polarized as reported anecdotally. Hypothesis: Mantis shrimps are capable of discriminating targets based solely on differences in their reflection of

  12. A balance of form and function: planar polarity and development of the vestibular maculae.

    PubMed

    Deans, Michael R

    2013-05-01

    The mechanosensory hair cells of the inner ear have emerged as one of the primary models for studying the development of planar polarity in vertebrates. Planar polarity is the polarized organization of cells or cellular structures in the plane of an epithelium. For hair cells, planar polarity is manifest at the subcellular level in the polarized organization of the stereociliary bundle and at the cellular level in the coordinated orientation of stereociliary bundles between adjacent cells. This latter organization is commonly called Planar Cell Polarity and has been described in the greatest detail for auditory hair cells of the cochlea. A third level of planar polarity, referred to as tissue polarity, occurs in the utricular and saccular maculae; two inner ear sensory organs that use hair cells to detect linear acceleration and gravity. In the utricle and saccule hair cells are divided between two groups that have opposite stereociliary bundle polarities and, as a result, are able to detect movements in opposite directions. Thus vestibular hair cells are a unique model system for studying planar polarity because polarization develops at three different anatomical scales in the same sensory organ. Moreover the system has the potential to be used to dissect functional interactions between molecules regulating planar polarity at each of the three levels. Here the significance of planar polarity on vestibular system function will be discussed, and the molecular mechanisms associated with development of planar polarity at each anatomical level will be reviewed. Additional aspects of planar polarity that are unique to the vestibular maculae will also be introduced.

  13. Polarized reflectance and transmittance distribution functions of the ocean surface.

    PubMed

    Hieronymi, Martin

    2016-07-11

    Two aspects of ocean modelling are treated: representation of ocean waves considering all size-classes of waves and tracing of light-interactions at the wavy sea surface. Nonlinear wave profiles are realized accounting for a wide range of climatologically relevant sea states and wind speeds. Polarized ray tracing is used to investigate air-incident and whitecap-free reflectance and transmittance distributions with high angular resolution subject to sea-characterizing parameters, such as significant wave height, peak wave period, wind speed, and surface roughness. Wave-shadowing effects of incident and multiple reflected rays are fully considered. Their influence mostly starts with incidence angles greater than 60°, i.e., when the sun is near the horizon, and is especially pronounced for steep sea states. The net effect of multiple reflections is a redistribution of reflectance and transmittance fractions in their respective hemispheres and a slight increase of the net transmission of light into the sea. Revised reflectance and transmittance distribution functions, RDF and TDF, are provided depending on surface roughness in terms of the mean-square slope; reference is made to other sea state parameters. In comparison with the slope statistics approach, uncertainties related to sun near the horizon are reduced and on average this study yields somewhat higher reflectance values with some variability related to the sea state. By means of provided data, irradiance and radiance reflectances can be computed using desired sky radiance distributions, e.g., clear sky, overcast or partly cloudy sky, as well as wind or sea state information including wave propagation direction.

  14. Functional crosstalk of CAR-LXR and ROR-LXR in drug metabolism and lipid metabolism.

    PubMed

    Xiao, Lei; Xie, Xinni; Zhai, Yonggong

    2010-10-30

    Nuclear receptor crosstalk represents an important mechanism to expand the functions of individual receptors. The liver X receptors (LXR, NR1H2/3), both the α and β isoforms, are nuclear receptors that can be activated by the endogenous oxysterols and other synthetic agonists. LXRs function as cholesterol sensors, which protect mammals from cholesterol overload. LXRs have been shown to regulate the expression of a battery of metabolic genes, especially those involved in lipid metabolism. LXRs have recently been suggested to play a novel role in the regulation of drug metabolism. The constitutive androstane receptor (CAR, NR1I3) is a xenobiotic receptor that regulates the expression of drug-metabolizing enzymes and transporters. Disruption of CAR alters sensitivity to toxins, increasing or decreasing it depending on the compounds. More recently, additional roles for CAR have been discovered. These include the involvement of CAR in lipid metabolism. Mechanistically, CAR forms an intricate regulatory network with other members of the nuclear receptor superfamily, foremost the LXRs, in exerting its effect on lipid metabolism. Retinoid-related orphan receptors (RORs, NR1F1/2/3) have three isoforms, α, β and γ. Recent reports have shown that loss of RORα and/or RORγ can positively or negatively influence the expression of multiple drug-metabolizing enzymes and transporters in the liver. The effects of RORs on expression of drug-metabolizing enzymes were reasoned to be, at least in part, due to the crosstalk with LXR. This review focuses on the CAR-LXR and ROR-LXR crosstalk, and the implications of this crosstalk in drug metabolism and lipid metabolism.

  15. Insulin action in brain regulates systemic metabolism and brain function.

    PubMed

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.

  16. Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

    PubMed

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-04-20

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease.

  17. Metabolic Assessment of Suited Mobility Using Functional Tasks

    NASA Technical Reports Server (NTRS)

    Norcross, J. R.; McFarland, S. M.; Ploutz-Snyder, Robert

    2016-01-01

    Existing methods for evaluating extravehicular activity (EVA) suit mobility have typically focused on isolated joint range of motion or torque, but these techniques have little to do with how well a crewmember functionally performs in an EVA suit. To evaluate suited mobility at the system level through measuring metabolic cost (MC) of functional tasks.

  18. Metabolic Syndrome and Sexual Function in Postmenopausal Women.

    PubMed

    Trompeter, Susan E; Bettencourt, Ricki; Barrett-Connor, Elizabeth

    2016-12-01

    Limited literature suggests that sexual dysfunction in women covaries with the metabolic syndrome. This study examined the association of sexual function with metabolic syndrome and cardiovascular disease in healthy older women. There were 376 postmenopausal, community-dwelling women from the Rancho Bernardo Study (mean baseline age = 73 years) that completed a clinic visit during 1999-2002 and returned the Female Sexual Function Index (FSFI) questionnaire mailed in 2002. Thirty-nine percent reported being sexually active; 41.5% met a diagnosis of metabolic syndrome. The number of metabolic syndrome components was strongly associated with decreased sexual activity, desire, and low sexual satisfaction. Waist girth, diabetes, and hypertension were associated with decreased sexual activity. Elevated triglycerides were associated with low desire. Among the cardiovascular endpoints, heart attack, coronary artery bypass, and angina were associated with decreased sexual activity, but not with sexual desire or satisfaction. Past diagnosis of heart failure, poor circulation, and stroke were not associated with sexual function. Sexually active women with metabolic syndrome met criteria for sexual dysfunction in desire, arousal, orgasm, and satisfaction domains. The FSFI Total Score did not differ significantly between sexually active and inactive women. Metabolic syndrome was associated with decreased sexual activity, desire, and satisfaction in all women and with sexual dysfunction in most domains in sexually active women. Coronary artery disease was more prevalent in women with low sexual activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Circadian rhythms in myocardial metabolism and function

    USDA-ARS?s Scientific Manuscript database

    Circadian rhythms in myocardial function and dysfunction are firmly established in both animal models and humans. For example, the incidence of arrhythmias and sudden cardiac death increases when organisms awaken. Such observations have classically been explained by circadian rhythms in neurohumoral...

  20. Fracture functions and factorization in semi-inclusive polarized DIS

    SciTech Connect

    Florian, D. de; Garcia Canal, C. A.; Sassot, R.

    1996-02-20

    We analize the O({alpha}s) one-particle inclusive cross section in polarized deep inelastic lepton-hadron scattering and discuss the factorization of all the collinear singularities related to the process. This is done using dimensional regularization in the usual MS scheme and in another one, called MSp, which factorizes soft contributions and guarantees the axial current (non)conservation properties.

  1. Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.

    PubMed

    Xie, Ran; Hong, Senlian; Chen, Xing

    2013-10-01

    Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. [Basic mechanisms: structure, function and metabolism of plasma lipoproteins].

    PubMed

    Errico, Teresa L; Chen, Xiangyu; Martin Campos, Jesús M; Julve, Josep; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this work is to present basic information on the lipoprotein physiology. The protein fraction of lipoproteins consists of several apolipoproteins and enzymes whose functions are lipid transport and metabolism. Classification of lipoproteins is based on their density. Chylomicrons, VLDL, IDL, LDL and HDL can be isolated by ultracentrifugation. Both chylomicrons- and VLDL-triglycerides are transported from the intestine and liver, respectively, to the peripheral tissues. The metabolism of VLDL originates IDL and LDL. LDL is the main transporter of cholesterol to extrahepatic tissues. HDL mobilizes cholesterol from peripheral tissues to the liver where it is secreted to bile as free cholesterol or bile salts, a process termed reverse cholesterol transport. Lipoprotein metabolism can be regulated by nuclear receptors that regulate the expression of genes involved in triglyceride and apolipoprotein metabolism. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  3. Generalized nuclear Fukui functions in the framework of spin-polarized density-functional theory

    SciTech Connect

    Chamorro, E.; Proft, F. de; Geerlings, P.

    2005-08-22

    An extension of Cohen's nuclear Fukui function is presented in the spin-polarized framework of density-functional theory (SP-DFT). The resulting new nuclear Fukui function indices {phi}{sub N{alpha}} and {phi}{sub S{alpha}} are intended to be the natural descriptors for the responses of the nuclei to changes involving charge transfer at constant multiplicity and also the spin polarization at constant number of electrons. These generalized quantities allow us to gain new insights within a perturbative scheme based on DFT. Calculations of the electronic and nuclear SP-DFT quantities are presented within a Kohn-Sham framework of chemical reactivity for a sample of molecules, including H{sub 2}O, H{sub 2}CO, and some simple nitrenes (NX) and phosphinidenes (PX), with X=H, Li, F, Cl, OH, SH, NH{sub 2}, and PH{sub 2}. Results have been interpreted in terms of chemical bonding in the context of Berlin's theorem, which provides a separation of the molecular space into binding and antibinding regions.

  4. Phosphatidylserine in the brain: metabolism and function.

    PubMed

    Kim, Hee-Yong; Huang, Bill X; Spector, Arthur A

    2014-10-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.

  5. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential

    PubMed Central

    White, Richard Allen; Power, Ian M.; Dipple, Gregory M.; Southam, Gordon; Suttle, Curtis A.

    2015-01-01

    Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid, and chlorophyll biosynthesis) and carbon fixation (e.g., CO dehydrogenase). The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 < 0.750) with freshwater microbial mats from Cuatro Ciénegas, Mexico, but are more similar to polar Arctic mats (R2 > 0.900). These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale. PMID:26441900

  6. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential.

    PubMed

    White, Richard Allen; Power, Ian M; Dipple, Gregory M; Southam, Gordon; Suttle, Curtis A

    2015-01-01

    Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid, and chlorophyll biosynthesis) and carbon fixation (e.g., CO dehydrogenase). The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R (2) < 0.750) with freshwater microbial mats from Cuatro Ciénegas, Mexico, but are more similar to polar Arctic mats (R (2) > 0.900). These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.

  7. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    PubMed

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  8. Functional and regulatory profiling of energy metabolism in fission yeast.

    PubMed

    Malecki, Michal; Bitton, Danny A; Rodríguez-López, Maria; Rallis, Charalampos; Calavia, Noelia Garcia; Smith, Graeme C; Bähler, Jürg

    2016-11-25

    The control of energy metabolism is fundamental for cell growth and function and anomalies in it are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration. We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth. Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from mitochondrial malfunction. This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast.

  9. Coronary circulatory function in patients with the metabolic syndrome.

    PubMed

    Di Carli, Marcelo F; Charytan, David; McMahon, Graham T; Ganz, Peter; Dorbala, Sharmila; Schelbert, Heinrich R

    2011-09-01

    The metabolic syndrome affects 25% of the U.S. population and greatly increases the risk of diabetes and coronary artery disease (CAD). We tested the hypothesis that the metabolic syndrome is associated with impaired coronary vasodilator function, a marker of atherosclerotic disease activity. Four hundred sixty-two patients at risk for CAD, as defined by a low-density lipoprotein cholesterol ≥ 160 mg/dL with fewer than 2 coronary risk factors, a low-density lipoprotein cholesterol ≥ 130 mg/dL with 2 or more coronary risk factors, or with documented CAD were included. A subset of 234 individuals underwent repeated PET at 1 y. Myocardial blood flow (MBF) and vasodilator reserve were assessed by PET. Modified criteria of the National Cholesterol Education Program, Adult Treatment Panel III were used to characterize the metabolic syndrome. Adenosine- and cold-stimulated MBF were similar in patients with and without metabolic syndrome, whereas baseline MBF showed a stepwise increase with increasing features of the syndrome. Consequently, patients with metabolic syndrome showed a lower coronary flow reserve (CFR) (2.5 ± 1.0) than those without metabolic syndrome (3.0 ± 0.9, P = 0.004). Differences in CFR were no longer present after correcting rest flows for the rate-pressure product. Change in MBF and CFR at 1 y were not different across groups of patients with increasing features of the metabolic syndrome. Patients with metabolic syndrome demonstrate impaired CFR, which is related to the augmentation in resting coronary blood flow caused by hypertension. In high-risk individuals, peak adenosine- and cold-stimulated blood flows are impaired even in the absence of the metabolic syndrome.

  10. Vitamin D metabolism, sex hormones, and male reproductive function.

    PubMed

    Blomberg Jensen, Martin

    2012-08-01

    The spectrum of vitamin D (VD)-mediated effects has expanded in recent years, and VD is now recognized as a versatile signaling molecule rather than being solely a regulator of bone health and calcium homeostasis. One of the recently identified target areas of VD is male reproductive function. The VD receptor (VDR) and the VD metabolizing enzyme expression studies documented the presence of this system in the testes, mature spermatozoa, and ejaculatory tract, suggesting that both systemic and local VD metabolism may influence male reproductive function. However, it is still debated which cell is the main VD target in the testis and to what extent VD is important for sex hormone production and function of spermatozoa. This review summarizes descriptive studies on testicular VD metabolism and spatial distribution of VDR and the VD metabolizing enzymes in the mammalian testes and discusses mechanistic and association studies conducted in animals and humans. The reviewed evidence suggests some effects of VD on estrogen and testosterone biosynthesis and implicates involvement of both systemic and local VD metabolism in the regulation of male fertility potential.

  11. Milk Polar Lipids Affect In Vitro Digestive Lipolysis and Postprandial Lipid Metabolism in Mice.

    PubMed

    Lecomte, Manon; Bourlieu, Claire; Meugnier, Emmanuelle; Penhoat, Armelle; Cheillan, David; Pineau, Gaëlle; Loizon, Emmanuelle; Trauchessec, Michèle; Claude, Mathilde; Ménard, Olivia; Géloën, Alain; Laugerette, Fabienne; Michalski, Marie-Caroline

    2015-08-01

    Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking. We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro. Female Swiss mice were gavaged with 150 μL of an oil-in-water emulsion stabilized with 5.7 mg of either MPLs or soybean PLs (SPLs) and killed after 1, 2, or 4 h. Plasma lipids were quantified and in the small intestine, gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction. Emulsions were lipolyzed in vitro using a static human digestion model; triglyceride (TG) disappearance was followed by thin-layer chromatography. In mice, after 1 h, plasma TGs tended to be higher in the MPL group than in the SPL group (141 μg/mL vs. 90 μg/mL; P = 0.07) and nonesterified fatty acids (NEFAs) were significantly higher (64 μg/mL vs. 44 μg/mL; P < 0.05). The opposite was observed after 4 h with lower TGs (21 μg/mL vs. 35 μg/mL; P < 0.01) and NEFAs (20 μg/mL vs. 32 μg/mL; P < 0.01) in the MPL group compared with the SPL group. This was associated at 4 h with a lower gene expression of apolipoprotein B (Apob) and Secretion Associated, Ras related GTPase 1 gene homolog B (Sar1b), in the duodenum of MPL mice compared with SPL mice (P < 0.05). In vitro, during the intestinal phase, TGs were hydrolyzed more in the MPL emulsion than in the SPL emulsion (decremental AUCs were 1750%/min vs. 180%/min; P < 0.01). MPLs enhance lipid intestinal hydrolysis and promote more rapid intestinal lipid absorption and sharper kinetics of lipemia. Postprandial lipemia in mice can be modulated by emulsifying with MPLs compared with SPLs, partly through differences in chylomicron assembly, and TG hydrolysis rate as observed in vitro. MPLs may thereby contribute to the long-term regulation of lipid metabolism. © 2015 American Society for Nutrition.

  12. Fracture functions and factorization in semi-inclusive polarized DIS

    SciTech Connect

    de Florian, D.; Garcia Canal, C.A.; Sassot, R.

    1996-02-01

    We analize the O({alpha}{sub {ital s}}) one-particle inclusive cross section in polarized deep inelastic lepton-hadron scattering and discuss the factorization of all the collinear singularities related to the process. This is done using dimensional regularization in the usual {ital MS} scheme and in another one, called {ital MS}{sub {ital p}}, which factorizes soft contributions and guarantees the axial current (non)conservation properties. {copyright} {ital 1996 American Institute of Physics.}

  13. Gut microbiota functions: metabolism of nutrients and other food components.

    PubMed

    Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran

    2017-04-09

    The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.

  14. Spin-polarized 3He in a density-functional frame

    NASA Astrophysics Data System (ADS)

    Gatica, S. M.; Hernández, E. S.; Navarro, J.

    1998-11-01

    The properties of spin-polarized liquid helium are analyzed in a density-functional framework. It is shown that the BHN functional [M. Barranco et al., Phys. Rev. B 54, 7394 (1996)] designed to describe the thermodynamics and the response of the unpolarized liquid also reproduces reasonably well recent experimental results at low magnetization. In particular, the present description reproduces the magnetic field data for the weakly polarized liquid, and is also consistent with the existence of a near-metamagnetic transition at a polarization close to 0.2. We indicate the various difficulties associated with the extension of the current scenario to highly and fully magnetized systems.

  15. Wnt Signals Can Function as Positional Cues in Establishing Cell Polarity

    PubMed Central

    Goldstein, Bob; Takeshita, Hisako; Mizumoto, Kota; Sawa, Hitoshi

    2008-01-01

    Summary Wnt signaling plays important roles in cell polarization in diverse organisms, and loss of cell polarity is an early event in tumorigenesis caused by mutations in Wnt pathway genes. Despite this, the precise roles of Wnt proteins in cell polarization have remained elusive. In no organism has it been shown that the asymmetric position of a Wnt signal is essential to establishing a cell’s polarity. Attempts to test this by ubiquitous expression of Wnt genes have suggested that Wnt signals might act only as permissive factors in cell polarization. Here we find, using cell manipulations and ectopic gene expression in C. elegans, that the position from which Wnt signals are presented can determine the polarity of both embryonic and postembryonic cells. Furthermore, the position from which a Wnt signal is presented can determine the polarity of Frizzled receptor localization, suggesting that the polarizing effect of Wnt is likely to be direct. These results demonstrate that Wnt proteins can function as positional cues in establishing cell polarity. PMID:16516841

  16. Atomic and electronic structure of polar oxide interfaces: Electron microscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Lazarov, Vlado

    Polar oxide interfaces are formed when two polar oxide surfaces join. The apparent presence of an electric dipole moment in the repeat unit parallel to the surface/interface closely relate the polar oxide interfaces instability to that of the of polar oxide surfaces. In this thesis, we combined Electron Microscopy and Density Functional Theory to study how the interface polarity affects the atomic and electronic structure of polar oxide interfaces, by using Fe3O4(111)/MgO(111) as a model system. The formation of Fe nanoinclusions found at the interface and within the polar Fe3 O4(111) film is proposed to be new stabilization mechanism for the magnetite film. High-resolution electron microscopy imaging of the interface together with first principle calculations suggest an atomically abrupt substrate-film interface determined with Fe monolayer in octahedral position (FeB). This interface stacking (O/Mg/O/3FeB/O) provides lowest total interface (system) energy and the most effectively screening of the MgO(111) substrate surface polarity. The results of our study suggest that surface polarity could be used as an additional growth parameter in creating novel material structures, such as metals in oxide matrices.

  17. Functional fixedness and functional reduction as common sense reasonings in chemical equilibrium and in geometry and polarity of molecules

    NASA Astrophysics Data System (ADS)

    Furió, C.; Calatayud, M. L.; Bárcenas, S. L.; Padilla, O. M.

    2000-09-01

    Many of the learning difficulties in the specific domain of chemistry are found not only in the ideas already possessed by students but in the strategic and procedural knowledge that is characteristic of everyday thinking. These defects in procedural knowledge have been described as functional fixedness and functional reduction. This article assesses the procedural difficulties of students (grade 12 and first and third year of university) based on common sense reasoning in two areas of chemistry: chemical equilibrium and geometry and polarity of molecules. In the first area, the theme of external factors affecting equilibria (temperature and concentration change) was selected because the explanations given by the students could be analyzed easily. The existence of a functional fixedness where Le Chatelier's principle was almost exclusively applied by rote could be observed, with this being the cause of the incorrect responses given to the proposed items. Functional fixedness of the Lewis structure also led to an incorrect prediction of molecular geometry. When molecular geometry was correctly determined by the students, it seemed that other methodological or procedural difficulties appeared when the task was to determine molecular polarity. The students showed a tendency, in many cases, to reduce the factors affecting molecular polarity in two possible ways: (a) assuming that polarity depends only on shape (geometric functional reduction) or (b) assuming that molecular polarity depends only on the polarity of bonds (bonding functional reduction).

  18. Metabolic Functions of the Lung, Disorders and Associated Pathologies

    PubMed Central

    Alvarado, Alcibey; Arce, Isabel

    2016-01-01

    The primary function of the lungs is gas exchange. Approximately 400 million years ago, the Earth’s atmosphere gained enough oxygen in the gas phase for the animals that emerged from the sea to breathe air. The first lungs were merely primitive air sacs with a few vessels in the walls that served as accessory organs of gas exchange to supplement the gills. Eons later, as animals grew accustomed to a solely terrestrial life, the lungs became highly compartmentalized to provide the vast air-blood surface necessary for O2 uptake and CO2 elimination, and a respiratory control system was developed to regulate breathing in accordance with metabolic demands and other needs. With the evolution and phylogenetic development, lungs were taking a variety of other specialized functions to maintain homeostasis, which we will call the non-respiratory functions of the lung and that often, and by mistake, are believed to have little or no connection with the replacement gas. In this review, we focus on the metabolic functions of the lung, perhaps the least known, and mainly, in the lipid metabolism and blood-adult lung vascular endothelium interaction. When these functions are altered, respiratory disorders or diseases appear, which are discussed concisely, emphasizing how they impact the most important function of the lungs: external respiration. PMID:27635172

  19. Metabolic Functions of the Lung, Disorders and Associated Pathologies.

    PubMed

    Alvarado, Alcibey; Arce, Isabel

    2016-10-01

    The primary function of the lungs is gas exchange. Approximately 400 million years ago, the Earth's atmosphere gained enough oxygen in the gas phase for the animals that emerged from the sea to breathe air. The first lungs were merely primitive air sacs with a few vessels in the walls that served as accessory organs of gas exchange to supplement the gills. Eons later, as animals grew accustomed to a solely terrestrial life, the lungs became highly compartmentalized to provide the vast air-blood surface necessary for O2 uptake and CO2 elimination, and a respiratory control system was developed to regulate breathing in accordance with metabolic demands and other needs. With the evolution and phylogenetic development, lungs were taking a variety of other specialized functions to maintain homeostasis, which we will call the non-respiratory functions of the lung and that often, and by mistake, are believed to have little or no connection with the replacement gas. In this review, we focus on the metabolic functions of the lung, perhaps the least known, and mainly, in the lipid metabolism and blood-adult lung vascular endothelium interaction. When these functions are altered, respiratory disorders or diseases appear, which are discussed concisely, emphasizing how they impact the most important function of the lungs: external respiration.

  20. The spin polarized linear response from density functional theory: Theory and application to atoms

    SciTech Connect

    Fias, Stijn Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.

  1. Metabolic functions of FABPs— mechanisms and therapeutic implications

    PubMed Central

    Hotamisligil, Gökhan S.; Bernlohr, David A.

    2015-01-01

    Intracellular and extracellular interactions with proteins enables the functional and mechanistic diversity of lipids. Fatty acid-binding proteins (FABPs) were originally described as intracellular proteins that can affect lipid fluxes, metabolism and signalling within cells. As the functions of this protein family have been further elucidated, it has become evident that they are critical mediators of metabolism and inflammatory processes, both locally and systemically, and therefore are potential therapeutic targets for immunometabolic diseases. In particular, genetic deficiency and small molecule-mediated inhibition of FABP4 (also known as aP2) and FABP5 can potently improve glucose homeostasis and reduce atherosclerosis in mouse models. Further research has shown that in addition to their intracellular roles, some FABPs are found outside the cells, and FABP4 undergoes regulated, vesicular secretion. The circulating form of FABP4 has crucial hormonal functions in systemic metabolism. In this Review we discuss the roles and regulation of both intracellular and extracellular FABP actions, highlighting new insights that might direct drug discovery efforts and opportunities for management of chronic metabolic diseases. PMID:26260145

  2. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  3. Effect of Metabolic Syndrome on Mitsugumin 53 Expression and Function

    PubMed Central

    Bian, Zehua; Cui, Yuqi; Zhou, Xinyu; Zhou, Xuefeng; Zhang, Bo; Adesanya, T. M. Ayodele; Yi, Frank; Park, Ki Ho; Tan, Tao; Chen, Zhishui; Zhu, Hua

    2015-01-01

    Metabolic syndrome is a cluster of risk factors, such as obesity, insulin resistance, and hyperlipidemia that increases the individual’s likelihood of developing cardiovascular diseases. Patients inflicted with metabolic disorders also suffer from tissue repair defect. Mitsugumin 53 (MG53) is a protein essential to cellular membrane repair. It facilitates the nucleation of intracellular vesicles to sites of membrane disruption to create repair patches, contributing to the regenerative capacity of skeletal and cardiac muscle tissues upon injury. Since individuals suffering from metabolic syndrome possess tissue regeneration deficiency and MG53 plays a crucial role in restoring membrane integrity, we studied MG53 activity in mice models exhibiting metabolic disorders induced by a 6 month high-fat diet (HFD) feeding. Western blotting showed that MG53 expression is not altered within the skeletal and cardiac muscles of mice with metabolic syndrome. Rather, we found that MG53 levels in blood circulation were actually reduced. This data directly contradicts findings presented by Song et. al that indict MG53 as a causative factor for metabolic syndrome (Nature 494, 375-379). The diminished MG53 serum level observed may contribute to the inadequate tissue repair aptitude exhibited by diabetic patients. Furthermore, immunohistochemical analyses reveal that skeletal muscle fibers of mice with metabolic disorders experience localization of subcellular MG53 around mitochondria. This clustering may represent an adaptive response to oxidative stress resulting from HFD feeding and may implicate MG53 as a guardian to protect damaged mitochondria. Therapeutic approaches that elevate MG53 expression in serum circulation may be a novel method to treat the degenerative tissue repair function of diabetic patients. PMID:25950605

  4. Analytical polarization transfer functions for four coupled spins 12 under isotropic mixing conditions

    PubMed

    Luy; Schedletzky; Glaser

    1999-05-01

    Analytical polarization transfer functions are presented for spin systems consisting of four spins 12 with arbitrary coupling constants under isotropic mixing conditions. In addition, simplified transfer functions were derived for symmetric coupling topologies. Based on these transfer functions optimal durations for the mixing period can be determined for correlations of interest. Copyright 1999 Academic Press.

  5. The skin function: a factor of anti-metabolic syndrome.

    PubMed

    Zhou, Shi-Sheng; Li, Da; Zhou, Yi-Ming; Cao, Ji-Min

    2012-04-26

    The body's total antioxidant capacity represents a sum of the antioxidant capacity of various tissues/organs. A decrease in the body's antioxidant capacity may induce oxidative stress and subsequent metabolic syndrome, a clustering of risk factors for type 2 diabetes and cardiovascular disease. The skin, the largest organ of the body, is one of the major components of the body's total antioxidant defense system, primarily through its xenobiotic/drug biotransformation system, reactive oxygen species-scavenging system, and sweat glands- and sebaceous glands-mediated excretion system. Notably, unlike other contributors, the skin contribution is variable, depending on lifestyles and ambient temperature or seasonal variations. Emerging evidence suggests that decreased skin's antioxidant and excretory functions (e.g., due to sedentary lifestyles and low ambient temperature) may increase the risk for metabolic syndrome. This review focuses on the relationship between the variability of skin-mediated detoxification and elimination of exogenous and endogenous toxic substances and the development of metabolic syndrome. The potential role of sebum secretion in lipid and cholesterol homeostasis and its impact on metabolic syndrome, and the association between skin disorders (acanthosis nigricans, acne, and burn) and metabolic syndrome are also discussed.

  6. The skin function: a factor of anti-metabolic syndrome

    PubMed Central

    2012-01-01

    The body’s total antioxidant capacity represents a sum of the antioxidant capacity of various tissues/organs. A decrease in the body’s antioxidant capacity may induce oxidative stress and subsequent metabolic syndrome, a clustering of risk factors for type 2 diabetes and cardiovascular disease. The skin, the largest organ of the body, is one of the major components of the body’s total antioxidant defense system, primarily through its xenobiotic/drug biotransformation system, reactive oxygen species-scavenging system, and sweat glands- and sebaceous glands-mediated excretion system. Notably, unlike other contributors, the skin contribution is variable, depending on lifestyles and ambient temperature or seasonal variations. Emerging evidence suggests that decreased skin’s antioxidant and excretory functions (e.g., due to sedentary lifestyles and low ambient temperature) may increase the risk for metabolic syndrome. This review focuses on the relationship between the variability of skin-mediated detoxification and elimination of exogenous and endogenous toxic substances and the development of metabolic syndrome. The potential role of sebum secretion in lipid and cholesterol homeostasis and its impact on metabolic syndrome, and the association between skin disorders (acanthosis nigricans, acne, and burn) and metabolic syndrome are also discussed. PMID:22537765

  7. Functional Imaging of Tissue Morphology with Polarized Light Scattering Spectroscopy

    NASA Astrophysics Data System (ADS)

    Backman, Vadim

    2001-03-01

    We report a new imaging technique to study the morphology of living epithelial cells in vivo. The method is based on light scattering spectroscopy with polarized light (PLSS) and makes it possible to distinguish between single backscattering from epithelial cell nuclei and multiply scattered light. The spectrum of the single backscattering component is further analyzed to provide quantitative histological information about the epithelial cells such as the size distribution, refractive index, and chromatin content of the cell nuclei. The measurement of cell nuclear morphology is crucial for detection and diagnosis of cancerous and precancerous conditions in many human tissues. The method was successfully applied to image precancerous regions of several tissues. Clinical studies in five organs (esophagus, colon, bladder, oral cavity, and uterine cervix) showed the generality and efficacy of the technique.

  8. Identifying functional microRNAs in macrophages with polarized phenotypes.

    PubMed

    Graff, Joel W; Dickson, Anne M; Clay, Gwendolyn; McCaffrey, Anton P; Wilson, Mary E

    2012-06-22

    Macrophages respond to external stimuli with rapid changes in expression of many genes. Different combinations of external stimuli lead to distinct polarized activation patterns, resulting in a spectrum of possible macrophage activation phenotypes. MicroRNAs (miRNAs) are small, noncoding RNAs that can repress the expression of many target genes. We hypothesized that miRNAs play a role in macrophage polarization. miRNA expression profiles were determined in monocyte-derived macrophages (MDMs) incubated in conditions causing activation toward M1, M2a, M2b, or M2c phenotypes. One miRNA guide strand and seven miRNA passenger strands were significantly altered. Changes were confirmed in MDMs from six separate donors. The amplitude of miRNA expression changes in MDMs was smaller than described studies of monocytes responding to inflammatory stimuli. Further investigation revealed this correlated with higher basal miRNA expression in MDMs compared with monocytes. The regulation of M1- and M2b-responsive miRNAs (miR-27a, miR-29b, miR-125a, miR-146a, miR-155, and miR-222) was similar in differentiated THP-1 cells and primary MDMs. Studies in this model revealed cross-talk between IFNγ- and LPS-associated pathways regulating miRNA expression. Furthermore, expression of M1-associated transcripts was increased in THP-1 cells transfected with mimics of miR-29b, miR-125a-5p, or miR-155. The apparent inflammatory property of miR-29b and miR-125a-5p can be at least partially explained by repression of TNFAIP3, a negative regulator of NF-κB signaling. Overall, these data suggest miRNAs can contribute to changes in macrophage gene expression that occur in different exogenous activating conditions.

  9. Identifying Functional MicroRNAs in Macrophages with Polarized Phenotypes*

    PubMed Central

    Graff, Joel W.; Dickson, Anne M.; Clay, Gwendolyn; McCaffrey, Anton P.; Wilson, Mary E.

    2012-01-01

    Macrophages respond to external stimuli with rapid changes in expression of many genes. Different combinations of external stimuli lead to distinct polarized activation patterns, resulting in a spectrum of possible macrophage activation phenotypes. MicroRNAs (miRNAs) are small, noncoding RNAs that can repress the expression of many target genes. We hypothesized that miRNAs play a role in macrophage polarization. miRNA expression profiles were determined in monocyte-derived macrophages (MDMs) incubated in conditions causing activation toward M1, M2a, M2b, or M2c phenotypes. One miRNA guide strand and seven miRNA passenger strands were significantly altered. Changes were confirmed in MDMs from six separate donors. The amplitude of miRNA expression changes in MDMs was smaller than described studies of monocytes responding to inflammatory stimuli. Further investigation revealed this correlated with higher basal miRNA expression in MDMs compared with monocytes. The regulation of M1- and M2b-responsive miRNAs (miR-27a, miR-29b, miR-125a, miR-146a, miR-155, and miR-222) was similar in differentiated THP-1 cells and primary MDMs. Studies in this model revealed cross-talk between IFNγ- and LPS-associated pathways regulating miRNA expression. Furthermore, expression of M1-associated transcripts was increased in THP-1 cells transfected with mimics of miR-29b, miR-125a-5p, or miR-155. The apparent inflammatory property of miR-29b and miR-125a-5p can be at least partially explained by repression of TNFAIP3, a negative regulator of NF-κB signaling. Overall, these data suggest miRNAs can contribute to changes in macrophage gene expression that occur in different exogenous activating conditions. PMID:22549785

  10. Analysis of polar urinary metabolites for metabolic phenotyping using supercritical fluid chromatography and mass spectrometry.

    PubMed

    Sen, Arundhuti; Knappy, Christopher; Lewis, Matthew R; Plumb, Robert S; Wilson, Ian D; Nicholson, Jeremy K; Smith, Norman W

    2016-06-03

    Supercritical fluid chromatography (SFC) is frequently used for the analysis and separation of non-polar metabolites, but remains relatively underutilised for the study of polar molecules, even those which pose difficulties with established reversed-phase (RP) or hydrophilic interaction liquid chromatographic (HILIC) methodologies. Here, we present a fast SFC-MS method for the analysis of medium and high-polarity (-7≤cLogP≤2) compounds, designed for implementation in a high-throughput metabonomics setting. Sixty polar analytes were first screened to identify those most suitable for inclusion in chromatographic test mixtures; then, a multi-dimensional method development study was conducted to determine the optimal choice of stationary phase, modifier additive and temperature for the separation of such analytes using SFC. The test mixtures were separated on a total of twelve different column chemistries at three different temperatures, using CO2-methanol-based mobile phases containing a variety of polar additives. Chromatographic performance was evaluated with a particular emphasis on peak capacity, overall resolution, peak distribution and repeatability. The results suggest that a new generation of stationary phases, specifically designed for improved robustness in mixed CO2-methanol mobile phases, can improve peak shape, peak capacity and resolution for all classes of polar analytes. A significant enhancement in chromatographic performance was observed for these urinary metabolites on the majority of the stationary phases when polar additives such as ammonium salts (formate, acetate and hydroxide) were included in the organic modifier, and the use of water or alkylamine additives was found to be beneficial for specific subsets of polar analytes. The utility of these findings was confirmed by the separation of a mixture of polar metabolites in human urine using an optimised 7min gradient SFC method, where the use of the recommended column and co

  11. Polarization of an electroactive functional film on titanium for inducing osteogenic differentiation

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengnan; Li, Weiping; He, Tianrui; Qian, Lei; Tan, Guoxin; Ning, Chengyun

    2016-10-01

    To enhance the surface bioactivity of titanium (Ti) prostheses, an electroactive polyvinylidene fluoride (PVDF) film was prepared on a Ti substrate to provide a mimetic of the electrical microenvironment, which facilitated the performance of cell functions. The results of cell proliferation and differentiation assays indicated that polarization of the PVDF-Ti (PTi) altered its surface charge, thus inducing adhesion, proliferation and osteogenic differentiation of cells. The polarized PVDF-Ti (PPTi) may therefore find applications in bone regeneration.

  12. Polarization of an electroactive functional film on titanium for inducing osteogenic differentiation

    PubMed Central

    Zhou, Zhengnan; Li, Weiping; He, Tianrui; Qian, Lei; Tan, Guoxin; Ning, Chengyun

    2016-01-01

    To enhance the surface bioactivity of titanium (Ti) prostheses, an electroactive polyvinylidene fluoride (PVDF) film was prepared on a Ti substrate to provide a mimetic of the electrical microenvironment, which facilitated the performance of cell functions. The results of cell proliferation and differentiation assays indicated that polarization of the PVDF-Ti (PTi) altered its surface charge, thus inducing adhesion, proliferation and osteogenic differentiation of cells. The polarized PVDF-Ti (PPTi) may therefore find applications in bone regeneration. PMID:27762318

  13. Functional analysis of colonic bacterial metabolism: relevant to health?

    PubMed Central

    Hamer, Henrike M.; De Preter, Vicky; Windey, Karen

    2012-01-01

    With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a functional analysis of the microbiota. In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized. To analyze colonic microbial metabolites, the most conventional way is by application of a hypothesis-driven targeted approach, through quantification of selected metabolites from carbohydrate (e.g., short-chain fatty acids) and protein fermentation (e.g., p-cresol, phenol, ammonia, or H2S), secondary bile acids, or colonic enzymes. The application of stable isotope-labeled substrates can provide an elegant solution to study these metabolic pathways in vivo. On the other hand, a top-down approach can be followed by applying metabolite fingerprinting techniques based on 1H-NMR or mass spectrometric analysis. Quantification of known metabolites and characterization of metabolite patterns in urine, breath, plasma, and fecal samples can reveal new pathways and give insight into physiological regulatory processes of the colonic microbiota. In addition, specific metabolic profiles can function as a diagnostic tool for the identification of several gastrointestinal diseases, such as ulcerative colitis and Crohn's disease. Nevertheless, future research will have to evaluate the relevance of associations between metabolites and different disease states. PMID:22016433

  14. Functional analysis of colonic bacterial metabolism: relevant to health?

    PubMed

    Hamer, Henrike M; De Preter, Vicky; Windey, Karen; Verbeke, Kristin

    2012-01-01

    With the use of molecular techniques, numerous studies have evaluated the composition of the intestinal microbiota in health and disease. However, it is of major interest to supplement this with a functional analysis of the microbiota. In this review, the different approaches that have been used to characterize microbial metabolites, yielding information on the functional end products of microbial metabolism, have been summarized. To analyze colonic microbial metabolites, the most conventional way is by application of a hypothesis-driven targeted approach, through quantification of selected metabolites from carbohydrate (e.g., short-chain fatty acids) and protein fermentation (e.g., p-cresol, phenol, ammonia, or H(2)S), secondary bile acids, or colonic enzymes. The application of stable isotope-labeled substrates can provide an elegant solution to study these metabolic pathways in vivo. On the other hand, a top-down approach can be followed by applying metabolite fingerprinting techniques based on (1)H-NMR or mass spectrometric analysis. Quantification of known metabolites and characterization of metabolite patterns in urine, breath, plasma, and fecal samples can reveal new pathways and give insight into physiological regulatory processes of the colonic microbiota. In addition, specific metabolic profiles can function as a diagnostic tool for the identification of several gastrointestinal diseases, such as ulcerative colitis and Crohn's disease. Nevertheless, future research will have to evaluate the relevance of associations between metabolites and different disease states.

  15. Fyn Kinase Activity Is Required for Normal Organization and Functional Polarity of the Mouse Oocyte Cortex

    PubMed Central

    Luo, Jinping; Mcginnis, Lynda K.; Kinsey, William H.

    2014-01-01

    Summary The objective of the present study was to determine whether Fyn kinase participated in signaling events during sperm–egg interactions, sperm incorporation, and meiosis II. The functional requirement of Fyn kinase activity in these events was tested through the use of the protein kinase inhibitor SKI-606 (Bosutinib) and by analysis of Fyn-null oocytes. Suppression of Fyn kinase signaling prior to fertilization caused disruption of the functional polarity of the oocyte with the result that sperm were able to fuse with the oocyte in the immediate vicinity of the meiotic spindle, a region that normally does not allow sperm fusion. The loss of functional polarity was accompanied by disruption of the microvilli and cortical granule-free zone that normally overlie the meiotic spindle. Changes in the distribution of cortical granules and filamentous actin provided further evidence of disorganization of the oocyte cortex. Rho B, a molecular marker for oocyte polarity, was unaffected by suppression of Fyn activity; however, the polarized association of Par-3 with the cortex overlying the meiotic spindle was completely disrupted. The defects in oocyte polarity in Fyn-null oocytes correlated with a failure of the MII chromosomes to maintain a position close to the oocyte cortex which seemed to underlie the above defects in oocyte polarity. This was associated with a delay in completion of meiosis II, however, pronuclei eventually formed and subsequent mitotic cleavages and blastocyst formation occurred normally. PMID:19363790

  16. The polarized structure function of the nucleons with a non-extensive statistical quark model

    SciTech Connect

    Trevisan, Luis A.; Mirez, Carlos

    2013-05-06

    We studied an application of nonextensive thermodynamics to describe the polarized structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution, often used in the statistical models, were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and the chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon and by {Delta}u and {Delta}d of the polarized functions.

  17. Hypothalamic inflammation in the control of metabolic function.

    PubMed

    Valdearcos, Martin; Xu, Allison W; Koliwad, Suneil K

    2015-01-01

    Diet-induced obesity leads to devastating and common chronic diseases, fueling ongoing interest in determining new mechanisms underlying both obesity and its consequences. It is now well known that chronic overnutrition produces a unique form of inflammation in peripheral insulin target tissues, and efforts to limit this inflammation have met with some success in preserving insulin sensitivity in obese individuals. Recently, the activation of inflammatory pathways by dietary excess has also been observed among cells located in the mediobasal hypothalamus, a brain area that exerts central control over peripheral glucose, fat, and energy metabolism. Here we review progress in the field of diet-induced hypothalamic inflammation, drawing key distinctions between metabolic inflammation in the hypothalamus and that occurring in peripheral tissues. We focus on specific stimuli of the inflammatory response, the roles of individual hypothalamic cell types, and the links between hypothalamic inflammation and metabolic function under normal and pathophysiological circumstances. Finally, we explore the concept of controlling hypothalamic inflammation to mitigate metabolic disease.

  18. Metabolic functions of glucocorticoid receptor in skeletal muscle.

    PubMed

    Kuo, Taiyi; Harris, Charles A; Wang, Jen-Chywan

    2013-11-05

    Glucocorticoids (GCs) exert key metabolic influences on skeletal muscle. GCs increase protein degradation and decrease protein synthesis. The released amino acids are mobilized from skeletal muscle to liver, where they serve as substrates for hepatic gluconeogenesis. This metabolic response is critical for mammals' survival under stressful conditions, such as fasting and starvation. GCs suppress insulin-stimulated glucose uptake and utilization and glycogen synthesis, and play a permissive role for catecholamine-induced glycogenolysis, thus preserving the level of circulating glucose, the major energy source for the brain. However, chronic or excess exposure of GCs can induce muscle atrophy and insulin resistance. GCs convey their signal mainly through the intracellular glucocorticoid receptor (GR). While GR can act through different mechanisms, one of its major actions is to regulate the transcription of its primary target genes through genomic glucocorticoid response elements (GREs) by directly binding to DNA or tethering onto other DNA-binding transcription factors. These GR primary targets trigger physiological and pathological responses of GCs. Much progress has been made to understand how GCs regulate protein and glucose metabolism. In this review, we will discuss how GR primary target genes confer metabolic functions of GCs, and the mechanisms governing the transcriptional regulation of these targets. Comprehending these processes not only contributes to the fundamental understanding of mammalian physiology, but also will provide invaluable insight for improved GC therapeutics.

  19. Irisin levels in relation to metabolic and liver functions in Egyptian patients with metabolic syndrome.

    PubMed

    Rizk, Fatma H; Elshweikh, Samah A; Abd El-Naby, Amira Y

    2016-04-01

    Irisin is a new myokine that is suspected to influence metabolic syndrome (MetS). However, there is a great controversy with respect to its level in cases of MetS and its correlation with different metabolic parameters. The present study assesses irisin levels in MetS patients and studies its relationship to metabolic and liver functions to evaluate the possible role of the liver in regulation of this level. Sixty subjects were included in this experiment, who were divided into 3 groups: group I (normal control), group II (MetS patients with normal liver enzymes), and group III (MetS with elevated liver enzymes and fatty liver disease). Serum irisin levels showed significant increases in groups II and III compared with group I, and significant increases in group III compared with group II. Also, irisin levels were positively correlated with body mass index, serum triglycerides, homeostatic model assessment of insulin resistance index (HOMA-IR), and liver enzymes. We concluded that serum irisin levels increased in patients with MetS, especially those with elevated liver enzymes, and had a positive correlation with parameters of lipid metabolism and glucose homeostasis with the possibility of hepatic clearance to irisin.

  20. Formation and function of the polar body contractile ring in Spisula.

    PubMed

    Pielak, Rafal M; Gaysinskaya, Valeriya A; Cohen, William D

    2004-05-15

    Initial studies suggested that spatial organization of the putative polar body contractile ring was determined by the peripheral aster in Spisula [Biol. Bull. 205 (2003) 192]. Here we report detailed supporting observations, including testing of aster and ring function with inhibitors. The metaphase peripheral aster was confirmed to spread cortically in an umbrella-like pattern, with microtubule-poor center. The aster disassembled during anaphase, leaving the spindle docked at the F-actin-poor center of a newly generated cortical F-actin ring that closely approximated the aster in location, measured diameter range, and pattern. Cytochalasin D and latrunculin-B permitted all events except ring and polar body formation. Nocodazole disassembly or taxol stabilization of the peripheral aster produced poorly defined rings or bulging anaphase asters within the ring center, respectively, inhibiting polar body formation. Polar body extrusion occurred at the ring center, the diameter of which diminished. Ring contractility-previously assumed-was verified using blebbistatin, a myosin-II ATPase inhibitor that permitted ring assembly but blocked polar body extrusion. The data support the hypothesis that peripheral aster spreading, perhaps dynein-driven, is causally related to polar body contractile ring formation, with anaphase entry and aster disassembly also required for polar body biogenesis. Previously reported astral spreading during embryonic micromere formation suggests that related mechanisms are involved in asymmetric somatic cytokinesis.

  1. Sialic acid metabolism and sialyltransferases: natural functions and applications

    PubMed Central

    Li, Yanhong

    2012-01-01

    Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases. PMID:22526796

  2. Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism.

    PubMed

    Piriatinskiy, Gadi; Atkinson, Stephen D; Park, Sinwook; Morgenstern, David; Brekhman, Vera; Yossifon, Gilad; Bartholomew, Jerri L; Lotan, Tamar

    2017-08-21

    Myxozoa is a diverse, speciose group of microscopic parasites, recently placed within the phylum Cnidaria. Myxozoans are highly reduced in size and complexity relative to free-living cnidarians, yet they have retained specialized organelles known as polar capsules, akin to the nematocyst stinging capsules of free-living species. Whereas in free-living cnidarians the stinging capsules are used for prey capture or defense, in myxozoans they have the essential function of initiating the host infection process. To explore the evolutionary adaptation of polar capsules to parasitism, we used as a model organism Ceratonova shasta, which causes lethal disease in salmonids. Here, we report the first isolation of C. shasta myxospore polar capsules using a tailored dielectrophoresis-based microfluidic chip. Using electron microscopy and functional analysis we demonstrated that C. shasta tubules have no openings and are likely used to anchor the spore to the host. Proteomic analysis of C. shasta polar capsules suggested that they have retained typical structural and housekeeping proteins found in nematocysts of jellyfish, sea anemones and Hydra, but have lost the most important functional group in nematocysts, namely toxins. Our findings support the hypothesis that polar capsules and nematocysts are homologous organelles, which have adapted to their distinct functions.

  3. Linear polarization of binaries II. Phase function : wQ~(?)Q~? (??)

    NASA Astrophysics Data System (ADS)

    Barman, S. K.

    2000-12-01

    This paper presents a method of calculating linear polarizations in close binaries whose surfaces are distorted due to tidal and rotational forces. Limb-darkening effect has been taken into account. Particles of different sizes are embedded in the outer atmosphere. The law of differential rotation of the primary is considered in analytic form: ??=3D b1 + b2 w2 + b3 w4, where b1, b2 and b3 are constants and w is the distance of a point P (r,?,?) from the axis of rotation of the primary. The atmosphere is assumed to be non-grey, plane-parallel and the phase function is wQ~(?)Q~? (??). Calculations are done with respect to rest frame fixed at the centre of the primary star for several functions as : mass-ratio (q) between the secondary and the primary, polar radius (rp) of the primary, wave-length (?) of the incident light, radius of a particle (1) and angle of inclination (?) with respect to the line of sight. It is noticed that polarization increases with an increase of the radius rp steadily; polarization increases with an increase of the radius of the particle (1), polarization increases with an increase of the mass-ratio q. The method of solution has been applied to several late type binaries to calculate disk integrated linear polarization of light emitted by them. When the mass-ratio q = 0, the general problem reduces to the calculation for a rotationally distorted single (primary) star.

  4. Impact of dispersed fuel oil on cardiac mitochondrial function in polar cod Boreogadus saida.

    PubMed

    Dussauze, Matthieu; Camus, Lionel; Le Floch, Stéphane; Pichavant-Rafini, Karine; Geraudie, Perrine; Coquillé, Nathalie; Amérand, Aline; Lemaire, Philippe; Theron, Michael

    2014-12-01

    In this study, impact of dispersed oil on cardiac mitochondrial function was assessed in a key species of Arctic marine ecosystem, the polar cod Boreogadus saida. Mature polar cod were exposed during 48 h to dispersed oil (mechanically and chemically) and dispersants alone. The increase observed in ethoxyresorufin-O-deethylase activity and polycyclic aromatic hydrocarbon metabolites in bile indicated no difference in contamination level between fish exposed to chemical or mechanical dispersion of oil. Oil induced alterations of O2 consumption of permeabilised cardiac fibres showing inhibitions of complexes I and IV of the respiratory chain. Oil did not induce any modification of mitochondrial proton leak. Dispersants did not induce alteration of mitochondrial activity and did not increase oil toxicity. These data suggest that oil exposure may limit the fitness of polar cod and consequently could lead to major disruption in the energy flow of polar ecosystem.

  5. Light-emitting liquid-crystal cells with polarization switching function: Electrochemiluminescent method

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Horiuchi, Takao; Nose, Toshiaki

    2009-07-01

    A unique light-emitting liquid-crystal (LC) cell that emits polarized light is developed by an electrochemiluminescent (ECL) method; sandwich-type LC cells filled with a nematic LC doped with an organic fluorescent dye are constructed. Luminance and current density characteristics as a function of an applied voltage are investigated under different sample preparation conditions such as mixing temperature and time. It is shown that luminance strongly depends on the abovementioned conditions. From the results of ECL and photoluminescent measurements, we conclude that a significant increase in luminance by heating is attributed to an increase in the molecularly dissolved rubrene concentration. Furthermore, attempts were made to develop a dynamic polarization switch by introducing a pair of crossed interdigitated electrodes. As a result, although a not so high polarization ratio smaller than 2 was obtained, the polarization direction of the emitted light was switched by changing the direction of the in-plane electric field.

  6. Integrins in epithelial cell polarity: using antibodies to analyze adhesive function and morphogenesis.

    PubMed

    Matlin, Karl S; Haus, Brian; Zuk, Anna

    2003-07-01

    Epithelial cells polarize in response to cell-substratum and cell-cell adhesive interactions. Contacts between cells and proteins of the extracellular matrix are mediated by integrin receptors. Of the 24 recognized integrin heterodimers, epithelial cells typically express four or more distinct integrins, with the exact complement dependent on the tissue of origin. Investigation of the roles of integrins in epithelial cell polarization has depended on the use of function-blocking antibodies both to determine ligand specificity of individual integrins and to disrupt and redirect normal morphogenesis. In this article we describe techniques for employing function-blocking anti-integrin antibodies in adhesion assays of the polarized Madin-Darby canine kidney (MDCK) cell line and to demonstrate the involvement of beta1 integrins in collagen-induced tubulocyst formation. These techniques can be easily expanded to other antibodies and epithelial cell lines to characterize specific functions of individual integrins in epithelial morphogenesis.

  7. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues

    SciTech Connect

    Xu, Changcheng; Shanklin, John

    2016-02-03

    One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.

  8. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues

    DOE PAGES

    Xu, Changcheng; Shanklin, John

    2016-02-03

    One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerolsmore » as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.« less

  9. The evolution, metabolism and functions of the apicoplast

    PubMed Central

    Lim, Liting; McFadden, Geoffrey Ian

    2010-01-01

    The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the ‘apicoplast’. The discovery of the apicoplast ushered in an exciting new prospect for drug development against the parasite. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast have further reinforced its ‘plant-like’ characteristics and potential as a drug target. However, we are still not sure why the apicoplast is essential for the parasite's survival. This review explores the origins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle within the parasite we also take a closer look at the transporters decorating the plastid to better understand the metabolic exchanges between the apicoplast and the rest of the parasite cell. PMID:20124342

  10. Use of automatic threshold tracking function with non-low polarization leads: risk for algorithm malfunction.

    PubMed

    Luria, David; Gurevitz, Osnat; Bar Lev, David; Tkach, Yana; Eldar, Michael; Glikson, Michael

    2004-04-01

    The AutoCapture (AC) function of new pacemakers (PM) from St Jude Medical (SJM) was originally recommended for use with low polarization (LP) ventricular leads only.However, recent reports have encouraged the use of the AC function with various leads, including those lacking a special LP design. The objective of this study was to analyze the reliability and safety of the AC algorithm application with different types of pacing leads. The study group comprised 30 consecutive patients with AC PMs connected to three different types of non-LP leads. Ten patients with SJM LP leads served as the control group. The study protocol included a complete AC function test using four different pulse widths (PW). The pacing threshold was independently assessed by a manual/semiautomatic check. Erratic behavior of polarization measurements with increasing PWs was demonstrated in 43% (n = 13) of the study group. Invalid polarization measurements resulted in erroneous algorithm recommendation to apply AC function in 17% (n = 5) of the study patients. Subsequent AC function activation lead to incorrect threshold determination due to missed noncapture in three patients. AC function should be applied with caution with non-LP leads. "Off label" use of these leads may cause erroneous polarization signal measurements which, in some cases, may result in incorrect pacing threshold determination, rendering a potential risk to dependent patients.

  11. Metabolic profile and biological activities of Lavandula pedunculata subsp. lusitanica (Chaytor) Franco: studies on the essential oil and polar extracts.

    PubMed

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Almeida, Carlos; Nogueira, José M F; Romano, Anabela

    2013-12-01

    We investigated the metabolic profile and biological activities of the essential oil and polar extracts of Lavandula pedunculata subsp. lusitanica (Chaytor) Franco collected in south Portugal. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that oxygen-containing monoterpenes was the principal group of compounds identified in the essential oil. Camphor (40.6%) and fenchone (38.0%) were found as the major constituents. High-performance liquid chromatography with diode array detection (HPLC-DAD) analysis allowed the identification of hydroxycinnamic acids (3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids) and flavones (luteolin and apigenin) in the polar extracts, with rosmarinic acid being the main compound in most of them. The bioactive compounds from L. pedunculata polar extracts were the most efficient free-radical scavengers, Fe(2+) chelators and inhibitors of malondialdehyde production, while the essential oil was the most active against acetylcholinesterase. Our results reveal that the subspecies of L. pedunculata studied is a potential source of active metabolites with a positive effect on human health.

  12. Density-functional theory for polar fluids at functionalized surfaces. I. Fluid-wall association

    NASA Astrophysics Data System (ADS)

    Tripathi, Sandeep; Chapman, Walter G.

    2003-12-01

    We present a novel perturbation density-functional theory (DFT) to describe adsorption of associating fluids on surfaces activated with polar sites to which fluid molecules can bond or associate, such as water adsorbing on activated carbon, silica, clay minerals, etc. Association is modeled within the framework of first order thermodynamic perturbation theory (TPT1). In this first of two papers, we explore in detail the changes brought about in a system due to fluid-wall (FW) association. Hence fluid-fluid association is not considered here. However, the theory can be coupled with existing DF theories of associating fluids to study the interplay between the wall-fluid and fluid-fluid association as is shown in a future paper by S. Tripathi. The proposed theory, in excellent agreement with simulations, shows that FW association significantly changes the fluid structure and adsorption behavior. The theory accurately predicts the distribution of bonded and nonbonded species away from the surface, adsorption characteristics and surface coverage over a range of conditions commonly found in several real systems. The most striking feature of the theory is that in addition to properties away from the wall, it also estimates the distribution of the fluid along the surface, or the three-dimensional (3D) structure, despite being one-dimensional (1D) in form.

  13. Measurement of inclusive proton double-spin asymmetries and polarized structure functions

    NASA Astrophysics Data System (ADS)

    Fersch, Robert G., Jr.

    2008-10-01

    The scattering of polarized electrons from a polarized proton target provides a means for studying the internal spin structure of the proton. The CLAS (CEBAF Large Acceptance Spectrometer) EG1b experiment in Hall-B at Jefferson Laboratory measured double-spin inclusive and exclusive electron-nucleon scattering asymmetries using longitudinally polarized frozen NH3 and ND3 targets and a longitudinally polarized electron beam at 4 different energies (1.6, 2.5, 4.2, 5.6 GeV). Extraction of the virtual photon asymmetry Ap1 (for 0.05 GeV2 < Q2 < 5.0 GeV2) provides precision measurements of the polarized proton spin-structure function gp1 in and above the resonance region. Linear regression of data between the varying energies yields new constraints on the virtual photon asymmetry Ap2 (and thus the structure function gp2 ) in the resonance region (for 0.3 GeV2 < Q2 < 1.0 GeV2). Measurements of these structure functions and their moments allows testing of perturbative Quantum Chromodynamics (pQCD) models and evaluation of moments of the structure functions in the Operator Product Expansion. Testing of Chiral Perturbation Theory (chiPT) at Q2 < 0.2 GeV 2 is enabled by the new data. Other applications of polarized structure functions include measurement of foward-spin polarizability, evaluation of high-order corrections in 1H hyperfine splitting, and testing of quark-hadron duality.

  14. Electronic structure and electric polarity of edge-functionalized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Taira, Remi; Yamanaka, Ayaka; Okada, Susumu

    2017-08-01

    On the basis of the density functional theory combined with the effective screening medium method, we studied the electronic structure of graphene nanoribbons with zigzag edges, which are terminated by functional groups. The work function of the nanoribbons is sensitive to the functional groups. The edge state inherent in the zigzag edges is robust against edge functionalization. OH termination causes the injection of electrons into the nearly free electron states situated alongside the nanoribbons, resulting in the formation of free electron channels outside the nanoribbons. We also demonstrated that the polarity of zigzag graphene nanoribbons is controllable by the asymmetrical functionalization of their edges.

  15. Linking community size structure and ecosystem functioning using metabolic theory.

    PubMed

    Yvon-Durocher, Gabriel; Allen, Andrew P

    2012-11-05

    Understanding how biogeochemical cycles relate to the structure of ecological communities is a central research question in ecology. Here we approach this problem by focusing on body size, which is an easily measured species trait that has a pervasive influence on multiple aspects of community structure and ecosystem functioning. We test the predictions of a model derived from metabolic theory using data on ecosystem metabolism and community size structure. These data were collected as part of an aquatic mesocosm experiment that was designed to simulate future environmental warming. Our analyses demonstrate significant linkages between community size structure and ecosystem functioning, and the effects of warming on these links. Specifically, we show that carbon fluxes were significantly influenced by seasonal variation in temperature, and yielded activation energies remarkably similar to those predicted based on the temperature dependencies of individual-level photosynthesis and respiration. We also show that community size structure significantly influenced fluxes of ecosystem respiration and gross primary production, particularly at the annual time-scale. Assessing size structure and the factors that control it, both empirically and theoretically, therefore promises to aid in understanding links between individual organisms and biogeochemical cycles, and in predicting the responses of key ecosystem functions to future environmental change.

  16. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions

    SciTech Connect

    Horn, Paul R. E-mail: mhg@cchem.berkeley.edu; Head-Gordon, Martin E-mail: mhg@cchem.berkeley.edu

    2015-09-21

    The polarization energy in intermolecular interactions treated by self-consistent field electronic structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful complete basis set limit. These problems are addressed by the construction of polarization subspaces based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by fragment electric-field response functions, which can capture effects up to the dipole (D), or quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed using these spaces is assessed. Numerical calculations for the water dimer, water–Na{sup +}, water–Mg{sup 2+}, water–F{sup −}, and water–Cl{sup −} show that the non-orthogonal DQ model is very satisfactory, with small differences relative to the orthogonalized model. Additionally, we prove a fundamental difference between the polarization degrees of freedom in the fragment-blocked approaches and in constrained density schemes. Only the former are capable of properly prohibiting charge delocalization during polarization.

  17. Comprehension of the Electric Polarization as a Function of Low Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Changshi

    2017-01-01

    Polarization response to warming plays an increasingly important role in a number of ferroelectric memory devices. This paper reports on the theoretical explanation of the relationship between polarization and temperature. According to the Fermi-Dirac distribution, the basic property of electric polarization response to temperature in magnetoelectric multiferroic materials is theoretically analyzed. The polarization in magnetoelectric multiferroic materials can be calculated by low temperature using a phenomenological theory suggested in this paper. Simulation results revealed that the numerically calculated results are in good agreement with experimental results of some inhomogeneous multiferroic materials. Numerical simulations have been performed to investigate the influences of both electric and magnetic fields on the polarization in magnetoelectric multiferroic materials. Furthermore, polarization behavior of magnetoelectric multiferroic materials can be predicted by low temperature, electric field and magnetic induction using only one function. The calculations offer an insight into the understanding of the effects of heating and magnetoelectric field on electrical properties of multiferroic materials and offer a potential to use similar methods to analyze electrical properties of other memory devices.

  18. Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila.

    PubMed

    Weir, Peter T; Henze, Miriam J; Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H

    2016-05-11

    Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat exotic sense, called

  19. Anatomical Reconstruction and Functional Imaging Reveal an Ordered Array of Skylight Polarization Detectors in Drosophila

    PubMed Central

    Bleul, Christiane; Baumann-Klausener, Franziska; Labhart, Thomas; Dickinson, Michael H.

    2016-01-01

    Many insects exploit skylight polarization as a compass cue for orientation and navigation. In the fruit fly, Drosophila melanogaster, photoreceptors R7 and R8 in the dorsal rim area (DRA) of the compound eye are specialized to detect the electric vector (e-vector) of linearly polarized light. These photoreceptors are arranged in stacked pairs with identical fields of view and spectral sensitivities, but mutually orthogonal microvillar orientations. As in larger flies, we found that the microvillar orientation of the distal photoreceptor R7 changes in a fan-like fashion along the DRA. This anatomical arrangement suggests that the DRA constitutes a detector for skylight polarization, in which different e-vectors maximally excite different positions in the array. To test our hypothesis, we measured responses to polarized light of varying e-vector angles in the terminals of R7/8 cells using genetically encoded calcium indicators. Our data confirm a progression of preferred e-vector angles from anterior to posterior in the DRA, and a strict orthogonality between the e-vector preferences of paired R7/8 cells. We observed decreased activity in photoreceptors in response to flashes of light polarized orthogonally to their preferred e-vector angle, suggesting reciprocal inhibition between photoreceptors in the same medullar column, which may serve to increase polarization contrast. Together, our results indicate that the polarization-vision system relies on a spatial map of preferred e-vector angles at the earliest stage of sensory processing. SIGNIFICANCE STATEMENT The fly's visual system is an influential model system for studying neural computation, and much is known about its anatomy, physiology, and development. The circuits underlying motion processing have received the most attention, but researchers are increasingly investigating other functions, such as color perception and object recognition. In this work, we investigate the early neural processing of a somewhat

  20. The role of metabolic reprogramming in T cell fate and function

    PubMed Central

    Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica; Herbel, Christoph; Seth, Pankaj; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    T lymphocytes undergo extensive changes in their metabolic properties during their transition through various differentiation states, from naïve to effector to memory or regulatory roles. The cause and effect relationship between metabolism and differentiation is a field of intense investigation. Many recent studies demonstrate the dependency of T cell functional outcomes on metabolic pathways and the possibility of metabolic intervention to modify these functions. In this review, we describe the basic metabolic features of T cells and new findings on how these correlate with various differentiation fates and functions. We also highlight the latest information regarding the main factors that affect T cell metabolic reprogramming. PMID:28356677

  1. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change

    PubMed Central

    Drinkwater, K. F.; Grant, S. M.; Heymans, J. J.; Hofmann, E. E.; Hunt, G. L.; Johnston, N. M.

    2016-01-01

    The determinants of the structure, functioning and resilience of pelagic ecosystems across most of the polar regions are not well known. Improved understanding is essential for assessing the value of biodiversity and predicting the effects of change (including in biodiversity) on these ecosystems and the services they maintain. Here we focus on the trophic interactions that underpin ecosystem structure, developing comparative analyses of how polar pelagic food webs vary in relation to the environment. We highlight that there is not a singular, generic Arctic or Antarctic pelagic food web, and, although there are characteristic pathways of energy flow dominated by a small number of species, alternative routes are important for maintaining energy transfer and resilience. These more complex routes cannot, however, provide the same rate of energy flow to highest trophic-level species. Food-web structure may be similar in different regions, but the individual species that dominate mid-trophic levels vary across polar regions. The characteristics (traits) of these species are also different and these differences influence a range of food-web processes. Low functional redundancy at key trophic levels makes these ecosystems particularly sensitive to change. To develop models for projecting responses of polar ecosystems to future environmental change, we propose a conceptual framework that links the life histories of pelagic species and the structure of polar food webs. PMID:27928038

  2. Voluntary exercise improves hypothalamic and metabolic function in obese mice.

    PubMed

    Laing, Brenton T; Do, Khoa; Matsubara, Tomoko; Wert, David W; Avery, Michael J; Langdon, Erin M; Zheng, Donghai; Huang, Hu

    2016-05-01

    Exercise plays a critical role in regulating glucose homeostasis and body weight. However, the mechanism of exercise on metabolic functions associated with the CNS has not been fully understood. C57BL6 male mice (n=45) were divided into three groups: normal chow diet, high-fat diet (HFD) treatment, and HFD along with voluntary running wheel exercise training for 12 weeks. Metabolic function was examined by the Comprehensive Lab Animal Monitoring System and magnetic resonance imaging; phenotypic analysis included measurements of body weight, food intake, glucose and insulin tolerance tests, as well as insulin and leptin sensitivity studies. By immunohistochemistry, the amount changes in the phosphorylation of signal transducer and activator of transcription 3, neuronal proliferative maker Ki67, apoptosis positive cells as well as pro-opiomelanocortin (POMC)-expressing neurons in the arcuate area of the hypothalamus was identified. We found that 12 weeks of voluntary exercise training partially reduced body weight gain and adiposity induced by an HFD. Insulin and leptin sensitivity were enhanced in the exercise training group verses the HFD group. Furthermore, the HFD-impaired POMC-expressing neuron is remarkably restored in the exercise training group. The restoration of POMC neuron number may be due to neuroprotective effects of exercise on POMC neurons, as evidenced by altered proliferation and apoptosis. In conclusion, our data suggest that voluntary exercise training improves metabolic symptoms induced by HFD, in part through protected POMC-expressing neuron from HFD and enhanced leptin signaling in the hypothalamus that regulates whole-body energy homeostasis. © 2016 Society for Endocrinology.

  3. Gravimetric excitation function of polar motion from the GRACE RL05 solution

    NASA Astrophysics Data System (ADS)

    Nastula, Y.

    2014-12-01

    Impact of land hydrosphere on polar motion excitation is still not as well known as the impact of the angular momentum of the atmosphere and ocean. Satellite mission Gravity Recovery and Climate Experiment (GRACE) from 2002 provides additional information about mass distribution of the land hydrosphere. However, despite the use of similar computational procedures, the differences between GRACE data series made available by the various centers of computations are still considerable. In the paper we compare three series of gravimetric excitation functions of polar motion determined from Rl05 GRACE solution from the Center for Space Research (CSR), the Jet Propulsion Laboratory (JPL) and the GeoForschungsZentrum (GFZ). These data are used to determine the gravimetric polar motion excitation function. Gravimetric signal is compared also with the geodetic residuals computed by subtracting atmospheric and oceanic signals from geodetic excitation functions of polar motion. Gravimetric excitation functions obtained on the basis of JPL data differ significantly from the geodetic residuals while and the series obtained from CSR and GFZ are more compatible.

  4. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis.

    PubMed

    Huang, Tengbo; Kerstetter, Randall A; Irish, Vivian F

    2014-03-01

    The normal biological function of leaves, such as intercepting light and exchanging gases, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of the kan mutant. Arabidopsis APUM23 has been shown to function in pre-rRNA processing and play pleiotropic roles in plant development. The apum23-3 mutant also synergistically interacts with other leaf polarity mutants, affects proliferation of division-competent cells, and alters the expression of important leaf polarity genes. These phenotypes show that APUM23 has critical functions in plant development, particularly in polarity formation. The PUF gene family is conserved across kingdoms yet it has not been well characterized in plants. These results illuminating the functions of APUM23 suggest a novel role for PUF genes in Arabidopsis leaf development.

  5. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis

    PubMed Central

    Huang, Tengbo

    2014-01-01

    The normal biological function of leaves, such as intercepting light and exchanging gasses, relies on proper differentiation of adaxial and abaxial polarity. KANADI (KAN) genes, members of the GARP family, are key regulators of abaxial identity in leaf morphogenesis. This study identified a mutant allele (apum23-3) of APUM23, which encodes a Pumilio/PUF domain protein and acts as an enhancer of the kan mutant. Arabidopsis APUM23 has been shown to function in pre-rRNA processing and play pleiotropic roles in plant development. The apum23-3 mutant also synergistically interacts with other leaf polarity mutants, affects proliferation of division-competent cells, and alters the expression of important leaf polarity genes. These phenotypes show that APUM23 has critical functions in plant development, particularly in polarity formation. The PUF gene family is conserved across kingdoms yet it has not been well characterized in plants. These results illuminating the functions of APUM23 suggest a novel role for PUF genes in Arabidopsis leaf development. PMID:24449383

  6. Relationship between Students' Understanding of Functions in Cartesian and Polar Coordinate Systems

    ERIC Educational Resources Information Center

    Montiel, Mariana; Vidakovic, Draga; Kabael, Tangul

    2009-01-01

    The present study was implemented as a prelude to a study on the generalization of the single variable function concept to multivariate calculus. In the present study we analyze students' mental processes and adjustments, as they are being exposed to single variable calculus with polar coordinates. The results show that there appears to be a…

  7. Vitamin D metabolism and function in the skin.

    PubMed

    Bikle, Daniel D

    2011-12-05

    The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing the enzymatic machinery to metabolize vitamin D to its active metabolite 1,25(OH)(2)D. Furthermore, these cells also express the vitamin D receptor (VDR) that enables them to respond to the 1,25(OH)(2)D they produce. Numerous functions of the skin are regulated by 1,25(OH)(2)D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, and promotion of the hair follicle cycle. Regulation of these actions is exerted by a number of different coregulators including the coactivators DRIP and SRC, the cosuppressor hairless (Hr), and β-catenin. This review will examine the regulation of vitamin D production and metabolism in the skin, and explore the various functions regulated by 1,25(OH)(2)D and its receptor. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Sucrose metabolism gene families and their biological functions.

    PubMed

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  9. Vitamin D Metabolism and Function in the Skin

    PubMed Central

    Bikle, Daniel D

    2011-01-01

    The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing the enzymatic machinery to metabolize vitamin D to its active metabolite 1,25(OH)2D. Furthermore, these cells also express the vitamin D receptor (VDR) that enables them to respond to the 1,25(OH)2D they produce. Numerous functions of the skin are regulated by 1,25(OH)2D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, and promotion of the hair follicle cycle. Regulation of these actions is exerted by a number of different coregulators including the coactivators DRIP and SRC, the cosuppressor hairless (Hr), and β-catenin. This review will examine the regulation of vitamin D production and metabolism in the skin, and explore the various functions regulated by 1,25(OH)2D and its receptor. PMID:21664236

  10. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  11. Hypoxia-induced oxygen tolerance: maintenance of endothelial metabolic function

    SciTech Connect

    Jackson, R.M.; Ann, H.S.; Oparil, S.

    1988-01-01

    Hypoxia (10%-12% O2) preadaptation for 4-7 days effectively protects rats from oxygen toxicity. The present study was designed to investigate the hypothesis that the lung's microvascular endothelium shares in development of oxygen tolerance and therefore that endothelial metabolic function would be protected from oxygen toxicity by prior adaptation to hypoxia. Since pulmonary oxygen toxicity decreases lung capillary angiotensin converting enzyme (ACE) activity, we assayed converting enzyme active sites in an isolated perfused rat lung preparation as a marker for the development of oxygen toxicity and tolerance. Rats were exposed to air, hypoxia (10% O2 for 4 days), hyperoxia (greater than 95% O2 for 2 days) alone, or hypoxia followed immediately by hyperoxia. Lung vascular ACE content was quantitated by measuring the single pass binding of an iodinated-converting enzyme inhibitor, 125I-MK351A, a derivative of lisinopril. Hypoxia adaptation per se had no effect on ACE content reflected in normal 125I-MK351A binding, whereas hyperoxia exposure caused a significant decrease in lung vascular ACE. Hyperoxia-induced decreases in ACE content were prevented partially by hypoxia adaptation, indicating that ACE content on luminal endothelial surfaces was protected from oxygen toxicity. In isolated perfused lungs 125I-MK351A binding reflects development of oxygen tolerance after hypoxia preadaptation and suggests that lung endothelial metabolic function is protected from oxygen toxicity.

  12. Physical, metabolic and developmental functions of the seed coat

    PubMed Central

    Radchuk, Volodymyr; Borisjuk, Ljudmilla

    2014-01-01

    The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction. PMID:25346737

  13. microRNA control of HDL Metabolism and Function

    PubMed Central

    Rayner, Katey J; Moore, Kathryn J.

    2015-01-01

    Recent discoveries of microRNAs (miRNAs) that control HDL abundance and function have expanded our knowledge of the mechanisms regulating this important lipoprotein subclass. miRNAs have been shown to regulate gene networks that control HDL biogenesis and uptake, as well as discrete steps in the reverse cholesterol transport pathway. Furthermore, HDL itself has been shown to selectively transport miRNAs in health and disease, offering new possibilities of how this lipoprotein may alter gene expression in distal target cells and tissues. Collectively, these discoveries offer new insights into the mechanisms governing HDL metabolism and function, and open new avenues for the development of therapeutics for the treatment of cardiovascular disease. PMID:24385511

  14. Metabolism and biological functions of human milk oligosaccharides.

    PubMed

    Bertino, E; Peila, C; Giuliani, F; Martano, C; Cresi, F; Di Nicola, P; Occhi, L; Sabatino, G; Fabris, C

    2012-01-01

    It is well known that breastfeeding is beneficial both for its nutritional properties and for the presence of biologically active compounds. Among these, human milk oligosaccharides (HMOs), representing the third largest fraction of human milk, have been assigned important biological functions, such as prebiotic and immunomodulatory and antimicrobial effects. HMOs are synthesized in the mammary gland by glycosyltransferase enzymes and can be divided in core-oligosaccharides, sialo-oligosaccharides, fucosyl-oligosaccharides and sialo-fucosyl-oligosaccharides on the basis of their chemical structure. Glycosyltransferases enzymes are partially regulated by genetic mechanisms; according to the expression of secretory and Lewis' genes, it is possible to classify human milk in 4 different secretory groups. We hereby present a review of the current knowledge concerning HMOs, their metabolism and main biological functions.

  15. Lipid Droplet Accumulation and Impaired Fat Efflux in Polarized Hepatic Cells: Consequences of Ethanol Metabolism

    PubMed Central

    McVicker, Benita L.; Rasineni, Karuna; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2012-01-01

    Steatosis, an early manifestation in alcoholic liver disease, is associated with the accumulation of hepatocellular lipid droplets (LDs). However, the role ethanol metabolism has in LD formation and turnover remains undefined. Here, we assessed LD dynamics following ethanol and oleic acid treatment to ethanol-metabolizing WIF-B cells (a hybrid of human fibroblasts (WI 38) and Fao rat hepatoma cells). An OA dose-dependent increase in triglyceride and stained lipids was identified which doubled (P < 0.05) in the presence of ethanol. This effect was blunted with the inclusion of an alcohol metabolism inhibitor. The ethanol/ OA combination also induced adipophilin, LD coat protein involved in the attenuation of lipolysis. Additionally, ethanol treatment resulted in a significant reduction in lipid efflux. These data demonstrate that the metabolism of ethanol in hepatic cells is related to LD accumulation, impaired fat efflux, and enhancements in LD-associated proteins. These alterations in LD dynamics may contribute to ethanol-mediated defects in hepatocellular LD regulation and the formation of steatosis. PMID:22506128

  16. Hardness and softness reactivity kernels within the spin-polarized density-functional theory

    SciTech Connect

    Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul

    2005-10-15

    Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r{sup '}-position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined.

  17. Time-dependent density functional theory for strong-field ionization by circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Chirilă, Ciprian C.; Lein, Manfred

    2017-03-01

    By applying time-dependent density functional theory to a two-dimensional multielectron atom subject to strong circularly polarized light pulses, we confirm that the ionization of p orbitals with defined angular momentum depends on the sense of rotation of the applied field. A simple ad-hoc modification of the adiabatic local-density exchange-correlation functional is proposed to remedy its unphysical behavior under orbital depletion.

  18. Analytical polarization and coherence transfer functions for three dipolar coupled spins 12.

    PubMed

    Luy, B; Glaser, S J

    2000-02-01

    Analytical polarization and coherence transfer functions are presented for a spin system consisting of three dipolar coupled homonuclear spins 12 under energy matched conditions. Based on these transfer functions, optimal durations of Hartmann-Hahn mixing periods can be determined for arbitrary dipolar coupling constants D(12), D(13), and D(23). In addition, the dependence of the transfer efficiency on the relative size of the dipolar coupling constants is illustrated.

  19. A semiconductor metasurface with multiple functionalities: A polarizing beam splitter with simultaneous focusing ability

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyung; Woong Yoon, Jae; Jin Jung, Myoung; Kyun Hong, Jong; Ho Song, Seok; Magnusson, Robert

    2014-06-01

    We propose a semiconductor metasurface that simultaneously performs two independent functions: focusing and polarization filtering. The wavefronts of the reflected and transmitted light distributions are precisely manipulated by spatial parametric variation of a subwavelength thin-film Si grating, which inherently possesses polarization filtering properties. We design a 12-μm-wide metasurface containing only nineteen Si grating ridges. Under a 10-μm-wide unpolarized Gaussian beam incidence at wavelength of 1.55 μm, the resulting device shows promising theoretical performance with high power efficiency exceeding 80% and polarization extinction ratio of ˜10 dB with focal spot diameters near 1-2 μm.

  20. Experimental nonalcoholic steatohepatitis compromises ureagenesis, an essential hepatic metabolic function.

    PubMed

    Thomsen, Karen Louise; Grønbæk, Henning; Glavind, Emilie; Hebbard, Lionel; Jessen, Niels; Clouston, Andrew; George, Jacob; Vilstrup, Hendrik

    2014-08-01

    Nonalcoholic steatohepatitis (NASH) is increasing in prevalence, yet its consequences for liver function are unknown. We studied ureagenesis, an essential metabolic liver function of importance for whole body nitrogen homeostasis, in a rodent model of diet-induced NASH. Rats were fed a high-fat, high-cholesterol diet for 4 and 16 wk, resulting in early and advanced experimental NASH, respectively. We examined the urea cycle enzyme mRNAs in liver tissue, the hepatocyte urea cycle enzyme proteins, and the in vivo capacity of urea-nitrogen synthesis (CUNS). Early NASH decreased all of the urea cycle mRNAs to an average of 60% and the ornithine transcarbamylase protein to 10%, whereas the CUNS remained unchanged. Advanced NASH further decreased the carbamoyl phosphate synthetase protein to 63% and, in addition, decreased the CUNS by 20% [from 5.65 ± 0.23 to 4.58 ± 0.30 μmol × (min × 100 g)(-1); P = 0.01]. Early NASH compromised the genes and enzyme proteins involved in ureagenesis, whereas advanced NASH resulted in a functional reduction in the capacity for ureagenesis. The pattern of urea cycle perturbations suggests a prevailing mitochondrial impairment by NASH. The decrease in CUNS has consequences for the ability of the body to adjust to changes in the requirements for nitrogen homeostasis e.g., at stressful events. NASH, thus, in terms of metabolic consequences, is not an innocuous lesion, and the manifestations of the damage seem to be a continuum with increasing disease severity.

  1. Muscle metabolic function and free-living physical activity.

    PubMed

    Hunter, Gary R; Larson-Meyer, D Enette; Sirikul, Bovorn; Newcomer, Bradley R

    2006-11-01

    We have previously shown that muscle metabolic function measured during exercise is related to exercise performance and subsequent 1-yr weight gain. Because it is well established that physical activity is important in weight maintenance, we examined muscle function relationships with free-living energy expenditure and physical activity. Subjects were 71 premenopausal black and white women. Muscle metabolism was evaluated by (31)P magnetic resonance spectroscopy during 90-s isometric plantar flexion contractions (45% maximum). Free-living energy expenditure (TEE) was measured using doubly labeled water, activity-related energy expenditure (AEE) was calculated as 0.9 x TEE - sleeping energy expenditure from room calorimetry, and free-living physical activity (ARTE) was calculated by dividing AEE by energy cost of standard physical activities. At the end of exercise, anaerobic glycolytic rate (ANGLY) and muscle concentration of phosphomonoesters (PME) were negatively related to TEE, AEE, and ARTE (P < 0.05). Multiple regression analysis showed that both PME (partial r = -0.29, <0.02) and ANGLY (partial r = -0.24, P < 0.04) were independently related to ARTE. PME, primarily glucose-6-phosphate and fructose-6-phosphate, was significantly related to ratings of perceived exertion (r = 0.21, P < or = 0.05) during a maximal treadmill test. PME was not related to ARTE after inclusion of RPE in the multiple regression model, suggesting that PME may be obtaining its relationship with ARTE through an increased perception of effort during physical activity. In conclusion, physically inactive individuals tend to be more dependent on anaerobic glycolysis during exercise while relying on a glycolytic pathway that may not be functioning optimally.

  2. Selective functionalization of nanofiber scaffolds to regulate salivary gland epithelial cell proliferation and polarity

    PubMed Central

    Cantara, Shraddha I.; Soscia, David A.; Sequeira, Sharon; Jean-Gilles, Riffard; Castracane, James; Larsen, Melinda

    2012-01-01

    Epithelial cell types typically lose apicobasal polarity when cultured on 2D substrates, but apicobasal polarity is required for directional secretion by secretory cells, such as salivary gland acinar cells. We cultured salivary gland epithelial cells on poly(lactic-co-glycolic acid) (PLGA) nanofiber scaffolds that mimic the basement membrane, a specialized extracellular matrix, and examined cell proliferation and apicobasal polarization. Although cells proliferated on nanofibers, chitosan-coated nanofiber scaffolds stimulated proliferation of salivary gland epithelial cells. Although apicobasal cell polarity was promoted by the nanofiber scaffolds relative to flat surfaces, as determined by the apical localization of ZO-1, it was antagonized by the presence of chitosan. Neither salivary gland acinar nor ductal cells fully polarized on the nanofiber scaffolds, as determined by the homogenous membrane distribution of the mature tight junction marker, occludin. However, nanofiber scaffolds chemically functionalized with the basement membrane protein, laminin-111, promoted more mature tight junctions, as determined by apical localization of occludin but did not affect cell proliferation. To emulate the multifunctional capabilities of the basement membrane, bifunctional PLGA nanofibers were generated. Both acinar and ductal cell lines responded to signals provided by bifunctional scaffolds coupled to chitosan and laminin-111, demonstrating the applicability of such scaffolds for epithelial cell types. PMID:22938763

  3. Exploring metabolic pathways and regulation through functional chemoproteomic and metabolomic platforms.

    PubMed

    Medina-Cleghorn, Daniel; Nomura, Daniel K

    2014-09-18

    Genome sequencing efforts have revealed a strikingly large number of uncharacterized genes, including poorly or uncharacterized metabolic enzymes, metabolites, and metabolic networks that operate in normal physiology, and those enzymes and pathways that may be rewired under pathological conditions. Although deciphering the functions of the uncharacterized metabolic genome is a challenging prospect, it also presents an opportunity for identifying novel metabolic nodes that may be important in disease therapy. In this review, we will discuss the chemoproteomic and metabolomic platforms used in identifying, characterizing, and targeting nodal metabolic pathways important in physiology and disease, describing an integrated workflow for functional mapping of metabolic enzymes.

  4. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function

    PubMed Central

    Sahu, Bhubanananda; Maeda, Akiko

    2016-01-01

    The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs) are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE) cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases. PMID:27879662

  5. Transcriptional Control of Cardiac Fuel Metabolism and Mitochondrial Function

    PubMed Central

    Leone, T.C.; Kelly, D.P.

    2012-01-01

    As a persistent pump, the mammalian heart demands a high-capacity mitochondrial system. Significant progress has been made in delineating the gene regulatory networks that control mitochondrial biogenesis and function in striated muscle. The PPARγ coactivator-1 (PGC-1) coactivators serve as inducible boosters of downstream transcription factors that control the expression of genes involved in mitochondrial energy transduction, ATP synthesis, and biogenesis. PGC-1 gain-of-function and loss-of-function studies targeting two PGC-1 family members, PGC-1α and PGC-1β, have provided solid evidence that these factors are both necessary and sufficient for perinatal mitochondrial biogenesis and maintenance of high-capacity mitochondrial function in postnatal heart. In humans, during the development of heart failure owing to hypertension or obesity-related diabetes, the activity of the PGC-1 coactivators, and several downstream target transcription factors, is altered. Gene targeting studies in mice have demonstrated that loss of PGC-1α and PGC-1β in heart leads to heart failure. Interestingly, the pattern of dysregulation within the PGC-1 transcriptional regulatory circuit distinguishes the heart disease caused by hypertension from that caused by diabetes. This transcriptional regulatory cascade and downstream metabolic pathways should be considered as targets for novel etiology-specific therapeutics aimed at the early stages of heart failure. PMID:22096028

  6. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    PubMed Central

    Krężel, Artur; Maret, Wolfgang

    2017-01-01

    Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms. PMID:28598392

  7. Impact of dietary dairy polar lipids on lipid metabolism of mice fed a high-fat diet.

    PubMed

    Reis, Mariza G; Roy, Nicole C; Bermingham, Emma N; Ryan, Leigh; Bibiloni, Rodrigo; Young, Wayne; Krause, Lutz; Berger, Bernard; North, Mike; Stelwagen, Kerst; Reis, Marlon M

    2013-03-20

    The effect of milk polar lipids on lipid metabolism of liver, adipose tissue, and brain and on composition of intestinal microbiota was investigated. C57BL/6J mice were fed a high-fat diet (HFD) for 5 weeks, followed by 5 weeks with HFD without (control) or supplemented with total polar lipids (TPL), phospholipids (PL), or sphingolipids (SPL). Animals fed SPL showed a tendency for lower triglyceride synthesis (P = 0.058) in the liver, but not in adipose tissue. PL and TPL reduced de novo hepatic fatty acid biosynthesis. The ratio of palmitoleic to palmitic acid in the liver was lower for animals fed SPL or TPL compared to control. There was little effect of the supplementation on the cecal microbiota composition. In the brain, DHA (C22:6) content correlated negatively with tetracosanoic acid (C24:0) after TPL supplementation (-0.71, P = 0.02) but not in control (0.26, P = 0.44). Arachidonic acid (C20:4) was negatively correlated with C24:0 in both groups (TPL, -0.77, P = 0.008; control, -0.81, P = 0.003).

  8. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme

    PubMed Central

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  9. Is there more to learn about functional vitamin D metabolism?

    PubMed

    DeLuca, Hector F

    2015-04-01

    The state of information on the enzymes responsible for the conversion of vitamin D3 to 1α,25-dhydroxyvitamin D3 (1,25-(OH)2D3), the metabolic active form responsible for the well-known function of vitamin D on calcium metabolism and bone mineralization has been briefly reviewed. There remains an unidentified enzyme responsible for 25% of the 25-hydroxylation of vitamin D3, while 75% of serum 25-hydroxyvitamin D3 (25-OH-D3) arises from CYP2R1. The well-established suppression of multiple sclerosis (MS) by sunlight has been confirmed using the mouse model, experimental autoimmune encephalomyelitis (EAE). This suppression results from a narrow band of ultraviolet light (300-315nm) that does not increase serum 25-OH-D3. Thus, UV light suppresses EAE by a mechanism not involving vitamin D. Vitamin D deficiency unexpectedly suppresses the development of EAE. Further, vitamin D receptor knockout in susceptible mice also prevents the development of EAE. On the other hand, deletion of CYP2R1 and the 1α-hydroxylase, CYP27B1, does not impair the development of EAE. Thus, either vitamin D itself or a heretofore-unknown metabolite is needed for the development of a component of the immune system necessary for development of EAE. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  10. Effects of metabolic syndrome on language functions in aging.

    PubMed

    Cahana-Amitay, Dalia; Spiro, Avron; Cohen, Jason A; Oveis, Abigail C; Ojo, Emmanuel A; Sayers, Jesse T; Obler, Loraine K; Albert, Martin L

    2015-02-01

    This study explored effects of the metabolic syndrome (MetS) on language in aging. MetS is a constellation of five vascular and metabolic risk factors associated with the development of chronic diseases and increased risk of mortality, as well as brain and cognitive impairments. We tested 281 English-speaking older adults aged 55-84, free of stroke and dementia. Presence of MetS was based on the harmonized criteria (Alberti et al., 2009). Language performance was assessed by measures of accuracy and reaction time on two tasks of lexical retrieval and two tasks of sentence processing. Regression analyses, adjusted for age, education, gender, diabetes, hypertension, and heart disease, demonstrated that participants with MetS had significantly lower accuracy on measures of lexical retrieval (action naming) and sentence processing (embedded sentences, both subject and object relative clauses). Reaction time was slightly faster on the test of embedded sentences among those with MetS. MetS adversely affects the language performance of older adults, impairing accuracy of both lexical retrieval and sentence processing. This finding reinforces and extends results of earlier research documenting the negative influence of potentially treatable medical conditions (diabetes, hypertension) on language performance in aging. The unanticipated finding that persons with MetS were faster in processing embedded sentences may represent an impairment of timing functions among older individuals with MetS.

  11. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro

    PubMed Central

    Simmers, M. B.; Deering, T. G.; Berry, D. J.; Feaver, R. E.; Hastings, N. E.; Pruett, T. L.; LeCluyse, E. L.; Blackman, B. R.; Wamhoff, B. R.

    2013-01-01

    In vitro primary hepatocyte systems typically elicit drug induction and toxicity responses at concentrations much higher than corresponding in vivo or clinical plasma Cmax levels, contributing to poor in vitro-in vivo correlations. This may be partly due to the absence of physiological parameters that maintain metabolic phenotype in vivo. We hypothesized that restoring hemodynamics and media transport would improve hepatocyte architecture and metabolic function in vitro compared with nonflow cultures. Rat hepatocytes were cultured for 2 wk either in nonflow collagen gel sandwiches with 48-h media changes or under controlled hemodynamics mimicking sinusoidal circulation within a perfused Transwell device. Phenotypic, functional, and metabolic parameters were assessed at multiple times. Hepatocytes in the devices exhibited polarized morphology, retention of differentiation markers [E-cadherin and hepatocyte nuclear factor-4α (HNF-4α)], the canalicular transporter [multidrug-resistant protein-2 (Mrp-2)], and significantly higher levels of liver function compared with nonflow cultures over 2 wk (albumin ∼4-fold and urea ∼5-fold). Gene expression of cytochrome P450 (CYP) enzymes was significantly higher (fold increase over nonflow: CYP1A1: 53.5 ± 10.3; CYP1A2: 64.0 ± 15.1; CYP2B1: 15.2 ± 2.9; CYP2B2: 2.7 ± 0.8; CYP3A2: 4.0 ± 1.4) and translated to significantly higher basal enzyme activity (device vs. nonflow: CYP1A: 6.26 ± 2.41 vs. 0.42 ± 0.015; CYP1B: 3.47 ± 1.66 vs. 0.4 ± 0.09; CYP3A: 11.65 ± 4.70 vs. 2.43 ± 0.56) while retaining inducibility by 3-methylcholanthrene and dexamethasone (fold increase over DMSO: CYP1A = 27.33 and CYP3A = 4.94). These responses were observed at concentrations closer to plasma levels documented in vivo in rats. The retention of in vivo-like hepatocyte phenotype and metabolic function coupled with drug response at more physiological concentrations emphasizes the importance of restoring in vivo physiological transport

  12. Structure-Function Study of Tertiary Amines as Switchable Polarity Solvents

    SciTech Connect

    Aaron D. Wilson; Frederick F. Stewart

    2014-02-01

    A series of tertiary amines have been screened for their function as switchable polarity solvents (SPS). The relative ratios of tertiary amine and carbonate species as well as maximum possible concentration were determined through quantitative 1H and 13C NMR spectroscopy. The viscosities of the polar SPS solutions were measured and ranged from near water in dilute systems through to gel formation at high concentrations. The van't Hoff indices for SPS solutions were measured through freezing point depression studies as a proxy for osmotic pressures. A new form of SPS with an amine : carbonate ratio significantly greater than unity has been identified. Tertiary amines that function as SPS at ambient pressures appear to be limited to molecules with fewer than 12 carbons. The N,N-dimethyl-n-alkylamine structure has been identified as important to the function of an SPS.

  13. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function.

    PubMed

    Bowman, Grant R; Comolli, Luis R; Gaietta, Guido M; Fero, Michael; Hong, Sun-Hae; Jones, Ying; Lee, Julie H; Downing, Kenneth H; Ellisman, Mark H; McAdams, Harley H; Shapiro, Lucy

    2010-04-01

    The bacterium Caulobacter crescentus has morphologically and functionally distinct cell poles that undergo sequential changes during the cell cycle. We show that the PopZ oligomeric network forms polar ribosome exclusion zones that change function during cell cycle progression. The parS/ParB chromosomal centromere is tethered to PopZ at one pole prior to the initiation of DNA replication. During polar maturation, the PopZ-centromere tether is broken, and the PopZ zone at that pole then switches function to act as a recruitment factor for the ordered addition of multiple proteins that promote the transformation of the flagellated pole into a stalked pole. Stalked pole assembly, in turn, triggers the initiation of chromosome replication, which signals the formation of a new PopZ zone at the opposite cell pole, where it functions to anchor the newly duplicated centromere that has traversed the long axis of the cell. We propose that pole-specific control of PopZ function co-ordinates polar development and cell cycle progression by enabling independent assembly and tethering activities at the two cell poles.

  14. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function

    PubMed Central

    Bowman, Grant R.; Comolli, Luis R.; Gaietta, Guido M.; Fero, Michael; Hong, Sun-Hae; Jones, Ying; Lee, Julie H.; Downing, Kenneth H.; Ellisman, Mark H.; McAdams, Harley H.; Shapiro, Lucy

    2010-01-01

    Summary The bacterium Caulobacter crescentus has morphologically and functionally distinct cell poles that undergo sequential changes during the cell cycle. We show that the PopZ oligomeric network forms polar ribosome exclusion zones that change function during cell cycle progression. The parS/ParB chromosomal centromere is tethered to PopZ at one pole prior to the initiation of DNA replication. During polar maturation, the PopZ-centromere tether is broken, and the PopZ zone at that pole then switches function to act as a recruitment factor for the ordered addition of multiple proteins that promote the transformation of the flagellated pole into a stalked pole. Stalked pole assembly, in turn, triggers the initiation of chromosome replication, which signals the formation of a new PopZ zone at the opposite cell pole, where it functions to anchor the newly duplicated centromere that has traversed the long axis of the cell. We propose that pole-specific control of PopZ function co-ordinates polar development and cell cycle progression by enabling independent assembly and tethering activities at the two cell poles. PMID:20149103

  15. Metabolic Incorporation of Azide Functionality into Cellular RNA.

    PubMed

    Nainar, Sarah; Beasley, Samantha; Fazio, Michael; Kubota, Miles; Dai, Nan; Corrêa, Ivan R; Spitale, Robert C

    2016-11-17

    Real-time tracking of RNA expression can provide insight into the mechanisms used to generate cellular diversity, as well as help determine the underlying causes of disease. Here we present the exploration of azide-modified nucleoside analogues and their ability to be metabolically incorporated into cellular RNA. We report robust incorporation of adenosine analogues bearing azide handles at both the 2'- and N6-positions; 5-methylazidouridine was not incorporated into cellular RNA. We further demonstrate selectivity of our adenosine analogues for transcription and polyadenylation. We predict that azidonucleosides will find widespread utility in examining RNA functions inside living cells, as well as in more complex systems such as tissues and living animals. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metabolically active functional food ingredients for weight control.

    PubMed

    Kovacs, E M R; Mela, D J

    2006-02-01

    The scale of the obesity epidemic creates a pressing consumer need as well as an enormous business opportunity for successful development and marketing of food products with added benefits for weight control. A number of proposed functional food ingredients have been shown to act post-absorptively to influence substrate utilization or thermogenesis. Characteristics and supporting data on conjugated linoleic acid, diglycerides, medium-chain triglycerides, green tea, ephedrine, caffeine, capsaicin and calcium, are reviewed here, giving examples of how these could act to alter energy expenditure or appetite control. Consideration is also given to other factors, in addition to efficacy, which must be satisfied to get such ingredients into foods. We conclude that, for each of the safe, putatively metabolically active agents, there remain gaps in clinical evidence or knowledge of mechanisms, which need to be addressed in order to specify the dietary conditions and food product compositions where these ingredients could be of most benefit for weight control.

  17. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  18. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    NASA Astrophysics Data System (ADS)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  19. The Effects of Instrumental Elliptical Polarization on Stellar Point Spread Function Fine Structure

    NASA Technical Reports Server (NTRS)

    Carson, Joseph C.; Kern, Brian D.; Breckinridge, James B.; Trauger, John T.

    2005-01-01

    We present procedures and preliminary results from a study on the effects of instrumental polarization on the fine structure of the stellar point spread function (PSF). These effects are important to understand because the the aberration caused by instrumental polarization on an otherwise diffraction-limited will likely have have severe consequences for extreme high contrast imaging systems such as NASA's planned Terrestrial Planet Finder (TPF) mission and the proposed NASA Eclipse mission. The report here, describing our efforts to examine these effects, includes two parts: 1) a numerical analysis of the effect of metallic reflection, with some polarization-specific retardation, on a spherical wavefront; 2) an experimental approach for observing this effect, along with some preliminary laboratory results. While the experimental phase of this study requires more fine-tuning to produce meaningful results, the numerical analysis indicates that the inclusion of polarization-specific phase effects (retardation) results in a point spread function (PSF) aberration more severe than the amplitude (reflectivity) effects previously recorded in the literature.

  20. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    PubMed Central

    Warshavsky, Vadim; Marucho, Marcelo

    2016-01-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data. PMID:27176352

  1. Investigation of Carbohydrate Metabolism and Transport in Castor Bean Seedlings by Cyclic JCross Polarization Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Heidenreich, M.; Köckenberger, W.; Kimmich, R.; Chandrakumar, N.; Bowtell, R.

    1998-05-01

    NMR experiments using13C-labeled compounds offer the possibility of noninvasive monitoring of carbohydrate transport and metabolism in living plants, but are usually hampered by the low sensitivity of the13C nucleus. The problem of low sensitivity can be overcome by using the cyclicJcross polarization (CYCLCROP) technique, which allows the indirect detection of13C nuclei coupled to1H nuclei with the high NMR sensitivity of protons. We report here on methods for imaging and spectroscopy based on the CYCLCROP technique, and their use in the firstin vivoNMR study of carbohydrate transport and metabolism in castor bean seedlings (Ricinus communis L.). Comprehensive acquisition strategies for the various NMR methods are given, including the procedure for setting up the experiments. In addition, a full analysis of the effect of relaxation on the signals generated from smallJ-coupled spin systems by the CYCLCROP sequence is given, and the high sensitivity of the sequence is demonstrated. In thein vivostudy of six-day-old castor bean seedlings, we were able to measure the uptake of labeled hexoses, supplied in solution to the cotyledons, and their conversion to sucrose, as well as the transport of this sucrose in the vascular bundles. Images of the actual distribution of labeled sucrose in the hypocotyl of the seedling have also been obtained. The resulting data show some evidence for a preferential incorporation of labeled fructose in the process of sucrose synthesis, which decreases with the time of incubation.

  2. Maternal blood metal levels and fetal markers of metabolic function

    SciTech Connect

    Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E.; Ettinger, Adrienne S.; Shapiro, Gabriel D.; Fisher, Mandy; Taback, Shayne; Bouchard, Maryse F.; Monnier, Patricia; Dallaire, Renee; Fraser, William D.

    2015-01-15

    Exposure to metals commonly found in the environment has been hypothesized to be associated with measures of fetal growth but the epidemiological literature is limited. The Maternal–Infant Research on Environmental Chemicals (MIREC) study recruited 2001 women during the first trimester of pregnancy from 10 Canadian sites. Our objective was to assess the association between prenatal exposure to metals (lead, arsenic, cadmium, and mercury) and fetal metabolic function. Average maternal metal concentrations in 1st and 3rd trimester blood samples were used to represent prenatal metals exposure. Leptin and adiponectin were measured in 1363 cord blood samples and served as markers of fetal metabolic function. Polytomous logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association between metals and both high (≥90%) and low (≤10%) fetal adiponectin and leptin levels. Leptin levels were significantly higher in female infants compared to males. A significant relationship between maternal blood cadmium and odds of high leptin was observed among males but not females in adjusted models. When adjusting for birth weight z-score, lead was associated with an increased odd of high leptin. No other significant associations were found at the top or bottom 10th percentile in either leptin or adiponectin models. This study supports the proposition that maternal levels of cadmium influence cord blood adipokine levels in a sex-dependent manner. Further investigation is required to confirm these findings and to determine how such findings at birth will translate into childhood anthropometric measures. - Highlights: • We determined relationships between maternal metal levels and cord blood adipokines. • Cord blood leptin levels were higher among female than male infants. • Maternal cadmium was associated with elevated leptin in male, not female infants. • No significant associations were observed between metals and

  3. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation

    PubMed Central

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-01-01

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge. PMID:25063821

  4. Glycogen metabolism protects against metabolic insult to preserve carotid body function during glucose deprivation.

    PubMed

    Holmes, Andrew P; Turner, Philip J; Carter, Paul; Leadbeater, Wendy; Ray, Clare J; Hauton, David; Buckler, Keith J; Kumar, Prem

    2014-10-15

    The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge.

  5. Sphingolipid Metabolism, Oxidant Signaling, and Contractile Function of Skeletal Muscle

    PubMed Central

    Nikolova-Karakashian, Mariana N.

    2011-01-01

    Abstract Significance Sphingolipids are a class of bioactive lipids that regulate diverse cell functions. Ceramide, sphingosine, and sphingosine-1-phosphate accumulate in tissues such as liver, brain, and lung under conditions of cellular stress, including oxidative stress. The activity of some sphingolipid metabolizing enzymes, chiefly the sphingomyelinases, is stimulated during inflammation and in response to oxidative stress. Ceramide, the sphingomyelinase product, as well as the ceramide metabolite, sphingosine-1-phosphate, can induce the generation of more reactive oxygen species, propagating further inflammation. Recent Advances This review article summarizes information on sphingolipid biochemistry and signaling pertinent to skeletal muscle and describes the potential influence of sphingolipids on contractile function. Critical Issues It encompasses topics related to (1) the pathways for complex sphingolipid biosynthesis and degradation, emphasizing sphingolipid regulation in various muscle fiber types and subcellular compartments; (2) the emerging evidence that implicates ceramide, sphingosine, and sphingosine-1-phosphate as regulators of muscle oxidant activity, and (3) sphingolipid effects on contractile function and fatigue. Future Directions We propose that prolonged inflammatory conditions alter ceramide, sphingosine, and sphingosine-1-phosphate levels in skeletal muscle and that these changes promote the weakness, premature fatigue, and cachexia that plague individuals with heart failure, cancer, diabetes, and other chronic inflammatory diseases. Antioxid. Redox Signal. 15, 2501–2517. PMID:21453197

  6. Executive Functioning and the Metabolic Syndrome: A Project FRONTIER Study

    PubMed Central

    Falkowski, Jed; Atchison, Timothy; DeButte-Smith, Maxine; Weiner, Myron F.; O'Bryant, Sid

    2014-01-01

    Decrements in cognitive functioning have been linked to the metabolic syndrome (MetS), a risk factor for cardiovascular disease defined by the presence of three of the following: elevated blood pressure, increased waist circumference, elevated blood glucose, elevated triglycerides, and low high-density lipoprotein cholesterol. We examined the relationship between four measures of executive functioning (EF) and MetS as diagnosed by National Heart, Lung, and Blood Institute-American Heart Association criteria. MetS was examined in a rural population of 395 persons with a mean age of 61.3 years, 71.4% women, 37.0% Hispanic, 53.7% White non-Hispanic. There was a 61.0% prevalence of MetS. We derived a factor score from the four executive function measures which was used to compare those with and without the syndrome, as well as any additive effects of components of the syndrome. Those with MetS exhibited significantly poorer performance than those without the syndrome. However, there was no additive effect, having more components of the syndrome was not related to lower performance. The presence of MetS was associated with poorer EF in this rural cohort of community dwelling volunteers. PMID:24152591

  7. Tensor-polarized structure functions: Tensor structure of deuteron in 2020's

    NASA Astrophysics Data System (ADS)

    Kumano, S.

    2014-10-01

    We explain spin structure for a spin-one hadron, in which there are new structure functions, in addition to the ones (F1, F2, g1, g2) which exist for the spin-1/2 nucleon, associated with its tensor structure. The new structure functions are b1, b2, b3, and b4 in deep inelastic scattering of a charged-lepton from a spin-one hadron such as the deuteron. Among them, twist- two functions are related by the Callan-Gross type relation b2 = 2xb1 in the Bjorken scaling limit. First, these new structure functions are introduced, and useful formulae are derived for projection operators of b1-4 from a hadron tensor Wμν. Second, a sum rule is explained for b1, and possible tensor-polarized distributions are discussed by using HERMES data in order to propose future experimental measurements and to compare them with theoretical models. A proposal was approved to measure b1 at the Thomas Jefferson National Accelerator Facility (JLab), so that much progress is expected for b1 in the near future. Third, formalisms of polarized proton-deuteron Drell-Yan processes are explained for probing especially tensor- polarized antiquark distributions, which were suggested by the HERMES data. The studies of the tensor-polarized structure functions will open a new era in 2020's for tensor-structure studies in terms of quark and gluon degrees of freedom, which are very different from ordinary descriptions in terms of nucleons and mesons.

  8. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity

    PubMed Central

    Saburi, Sakura; Hester, Ian; Goodrich, Lisa; McNeill, Helen

    2012-01-01

    The atypical cadherin fat (ft) was originally discovered as a tumor suppressor in Drosophila and later shown to regulate a form of tissue patterning known as planar polarity. In mammals, four ft homologs have been identified (Fat1-4). Recently, we demonstrated that Fat4 plays a role in vertebrate planar polarity. Fat4 has the highest homology to ft, whereas other Fat family members are homologous to the second ft-like gene, ft2. Genetic studies in flies and mice imply significant functional differences between the two groups of Fat cadherins. Here, we demonstrate that Fat family proteins act both synergistically and antagonistically to influence multiple aspects of tissue morphogenesis. We find that Fat1 and Fat4 cooperate during mouse development to control renal tubular elongation, cochlear extension, cranial neural tube formation and patterning of outer hair cells in the cochlea. Similarly, Fat3 and Fat4 synergize to drive vertebral arch fusion at the dorsal midline during caudal vertebra morphogenesis. We provide evidence that these effects depend on conserved interactions with planar polarity signaling components. In flies, the transcriptional co-repressor Atrophin (Atro) physically interacts with Ft and acts as a component of Fat signaling for planar polarity. We find that the mammalian orthologs of atro, Atn1 and Atn2l, modulate Fat4 activity during vertebral arch fusion and renal tubular elongation, respectively. Moreover, Fat4 morphogenetic defects are enhanced by mutations in Vangl2, a ‘core’ planar cell polarity gene. These studies highlight the wide range and complexity of Fat activities and suggest that a Fat-Atrophin interaction is a conserved element of planar polarity signaling. PMID:22510986

  9. GREEN'S FUNCTIONS FOR FAR-SIDE SEISMIC IMAGES: A POLAR-EXPANSION APPROACH

    SciTech Connect

    Perez Hernandez, F.; Gonzalez Hernandez, I. E-mail: irenegh@noao.ed

    2010-03-10

    We have computed seismic images of magnetic activity on the far surface of the Sun by using a seismic-holography technique. As in previous works, the method is based on the comparison of waves going in and out of a particular point in the Sun, but we have computed here Green's functions from a spherical polar expansion of the adiabatic wave equations in the Cowling approximation instead of using the ray-path approximation previously used in the far-side holography. A comparison between the results obtained using the ray theory and the spherical polar expansion is shown. We use the gravito-acoustic wave equation in the local plane-parallel limit in both cases and for the latter we take the asymptotic approximation for the radial dependences of Green's function. As a result, improved images of the far side can be obtained from the polar-expansion approximation, especially when combining Green's functions corresponding to two and three skips. We also show that the phase corrections in Green's functions due to the incorrect modeling of the uppermost layers of the Sun can be estimated from the eigenfrequencies of the normal modes of oscillation.

  10. A Precision Measurement of the Neutron Spin Structure Functions Using a Polarized HE-3 Target

    SciTech Connect

    Smith, T

    2003-11-05

    This thesis describes a precision measurement of the neutron spin dependent structure function, g{sub 1}{sup n}(x). The measurement was made by the E154 collaboration at SLAC using a longitudinally polarized, 48.3 GeV electron beam, and a {sup 3}He target polarized by spin exchange with optically pumped rubidium. A target polarization as high as 50% was achieved. The elements of the experiment which pertain to the polarized {sup 3}He target will be described in detail in this thesis. To achieve a precision measurement, it has been necessary to minimize the systematic error from the uncertainty in the target parameters. All of the parameters of the target have been carefully measured, and the most important parameters of the target have been measured using multiple techniques. The polarization of the target was measured using nuclear magnetic resonance techniques, and has been calibrated using both proton NMR and by measuring the shift of the Rb Zeeman resonance frequency due to the {sup 3}He polarization. The fraction of events which originated in the {sup 3}He, as measured by the spectrometers, has been determined using a physical model of the target and the spectrometers. It was also measured during the experiment using a variable pressure {sup 3}He reference cell in place of the polarized {sup 3}He target. The spin dependent structure function g{sub 1}{sup n}(z) was measured in the Bjorken x range of 0.014 < x < 0.7 with an average Q{sup 2} of 5 (GeV/c){sup 2}. One of the primary motivations for this experiment was to test the Bjorken sum rule. Because the experiment had smaller statistical errors and a broader kinematic coverage than previous experiments, the behavior of the spin structure function g{sub 1}{sup n}(x) could be studied in detail at low values of the Bjorken scaling variable x. It was found that g{sub 1}{sup n}(x) has a strongly divergent behavior at low values of x, calling into question the methods commonly used to extrapolate the value of g

  11. Enhanced preconcentration of selected chlorofluorocarbons on multiwalled carbon nanotubes with polar functionalities.

    PubMed

    Saridara, Chutarat; Hussain, Chaudhery Mustansar; Ragunath, Smruti; Mitra, Somenath

    2015-02-01

    Chromatographic monitoring of chlorofluorocarbons in air requires the preconcentration of these highly volatile species. In this paper, we present functionalized multiwalled carbon nanotubes as effective sorbents for a microtrap designed for chlorofluorocarbons preconcentration. Among the commercial carbons and carbon nanotubes studied, functionalization via carboxylation and propyl amine was most effective for dichlorofluoromethane and trichlorofluoromethane (Freon 11), which were selected as representative chlorofluorocarbons. The results show that carbon nanotubes functionalized with a polar groups led to as much as a 300% increase in breakthrough volume and the desorption bandwidth was reduced by 2.5 times.

  12. Metabolism Supports Macrophage Activation

    PubMed Central

    Langston, P. Kent; Shibata, Munehiko; Horng, Tiffany

    2017-01-01

    Macrophages are found in most tissues of the body, where they have tissue- and context-dependent roles in maintaining homeostasis as well as coordinating adaptive responses to various stresses. Their capacity for specialized functions is controlled by polarizing signals, which activate macrophages by upregulating transcriptional programs that encode distinct effector functions. An important conceptual advance in the field of macrophage biology, emerging from recent studies, is that macrophage activation is critically supported by metabolic shifts. Metabolic shifts fuel multiple aspects of macrophage activation, and preventing these shifts impairs appropriate activation. These findings raise the exciting possibility that macrophage functions in various contexts could be regulated by manipulating their metabolism. Here, we review the rapidly evolving field of macrophage metabolism, discussing how polarizing signals trigger metabolic shifts and how these shifts enable appropriate activation and sustain effector activities. We also discuss recent studies indicating that the mitochondria are central hubs in inflammatory macrophage activation. PMID:28197151

  13. Density functional perturbational orbital theory of spin polarization in electronic systems. I. Formalism.

    PubMed

    Seo, Dong-Kyun

    2006-10-21

    A perturbational approach is presented for the general analysis of spin-polarization effect on electronic structures and energies within spin-density functional formalism. Explicit expressions for the changes in Kohn-Sham [Phys. Rev. 140, 1133 (1965)] orbital energies and coefficients as well as for the change in total electronic energy are derived upon using the local spin density and self-interaction-corrected exchange-correlation functionals. The application of the method for atoms provides analytical expressions for the exchange splitting energy and spin-polarization energy. The atomic exchange parameters are obtained from the expressions for the elements with Z=1-92 and they match well with Stoner exchange parameters for 3d metal elements.

  14. Polarity functions' characterization and the mechanism of starch modification by DC glow discharge plasma.

    PubMed

    Khorram, S; Zakerhamidi, M S; Karimzadeh, Z

    2015-01-01

    The wheat starch was investigated, before and after exposure to the argon and oxygen glow discharge plasma, without any added chemical reagents, using a novel media polarity functions method. The mechanisms of modification of starch in plasma discharge irradiation were explained using some methods such as; NMR, IR spectroscopy, Kamlet-Abboud-Taft polarity functions (specific and nonspecific interaction) of modified starch. The starch modification, by plasma treatment, shows valuable changes with plasma gas and relative ionized or active species. Characterizations indicate that argon glow discharge plasma increases crosslink in C-2 site of starch. Also, oxygen plasma discharge irradiation tends to oxidize the OH group in C-6 site of carbonyl group. Furthermore, the reported mechanisms show the highest efficiency, because of the stereo-chemical orientation of active sites of starch and plasma potential of wall in plasma media.

  15. Serrano (sano) functions with the planar cell polarity genes to control tracheal tube length.

    PubMed

    Chung, SeYeon; Vining, Melissa S; Bradley, Pamela L; Chan, Chih-Chiang; Wharton, Keith A; Andrew, Deborah J

    2009-11-01

    Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control.

  16. Proteomic Assessment of Polar Bacteria Phylogeny and Functional Shifts During POM Degradation at 0°C

    NASA Astrophysics Data System (ADS)

    Mikan, M.; Nunn, B. L.; Timmins-Schiffman, E.; Harvey, H. R.

    2016-02-01

    Polar marine bacterial community and metabolic response was tracked over a ten-day shipboard incubation experiment at 0°C, measured by high-mass accuracy tandem mass spectrometry. Planktonic bacteria were collected from Bering Strait surface waters and bottom water of the Chukchi Sea to target bacterial communities with unique metabolic capacities for particulate organic matter (POM) decomposition. From each location, resident POM was concentrated and amended as a treatment to one incubation, with the second as a control. Metagenomics was completed on both incubations and metaproteomics expression was tracked as a function of time. The Bering Strait surface water proteomic signature was dominated by microbial classes Alphaproteobacteria (31%), Gammaproteobacteria (30%) and Flavobacteriia (22%) . TonB-dependent transporter (TBDT) receptors accounted for 20% of the proteins that exhibited an increased abundance before incubation, a quarter of which were attributed to siderophore transport, an important iron chelator. Flavobacteriia and Gammaproteobacteria (48% and 39%, respectively) regulated expression of the TBDT receptors. ATP-binding cassette (ABC) transporter protein expression was controlled by the bacterial family Rhodobacteraceae and included functional groups specific to the transport of polyamines, peptides and branched-chain amino acids. By day 10, 63 proteins in the POM amended incubation increased abundance relative to the control experiment. Bacterial class Flavobacteriia dominated this signature (64%) with TBDT activity, iron-sulfur binding, glutamine biosynthesis, and calcium ion binding. 88 proteins were uniquely identified in the control experiment at day 10, and the population responsible for this set of expressed proteins differed from that of the POM addition experiment. This study demonstrates the potential to use proteomics to link the structures and functions of natural marine bacterial communities.

  17. Direct determination of multipole moments of Cartesian Gaussian functions in spherical polar coordinates.

    PubMed

    Choi, Cheol Ho

    2004-02-22

    A new way of generating the multipole moments of Cartesian Gaussian functions in spherical polar coordinates has been established, bypassing the intermediary of Cartesian moment tensors. A new set of recurrence relations have also been derived for the resulting analytic integral values. The new method furnishes a conceptually simple and numerically efficient evaluation procedure for the multipole moments. The advantages over existing methods are documented. The results are relevant for the linear scaling quantum theories based on the fast multipole method.

  18. (13)C-labeled biochemical probes for the study of cancer metabolism with dynamic nuclear polarization-enhanced magnetic resonance imaging.

    PubMed

    Salamanca-Cardona, Lucia; Keshari, Kayvan R

    2015-01-01

    In recent years, advances in metabolic imaging have become dependable tools for the diagnosis and treatment assessment in cancer. Dynamic nuclear polarization (DNP) has recently emerged as a promising technology in hyperpolarized (HP) magnetic resonance imaging (MRI) and has reached clinical relevance with the successful visualization of [1-(13)C] pyruvate as a molecular imaging probe in human prostate cancer. This review focuses on introducing representative compounds relevant to metabolism that are characteristic of cancer tissue: aerobic glycolysis and pyruvate metabolism, glutamine addiction and glutamine/glutamate metabolism, and the redox state and ascorbate/dehydroascorbate metabolism. In addition, a brief introduction of probes that can be used to trace necrosis, pH changes, and other pathways relevant to cancer is presented to demonstrate the potential that HP MRI has to revolutionize the use of molecular imaging for diagnosis and assessment of treatments in cancer.

  19. [Excretion and metabolism of dopamine in patients with functional dyspepsia].

    PubMed

    Wachowska-Kelly, Patrycja; Stępień, Agnieszka; Romanowski, Marek; Chojnacki, Cezary

    2016-04-01

    Dopamine is one of major neurotransmitter in the central and peripheral nervous system. A significant amount of dopamine is also produced in the visceral nervous system and in gastrointestinal tract, where exhibits inhibitory activity on motility. The aim of the study was to assess the parameters of dopamine secretion and metabolism in patients with functional dyspepsia. The study was conducted in a group of 30 healthy subjects and 60 patients with functional dyspepsia (FD), that met the Rome Criteria III, for epigastric pain syndrome (EPS) and postprandial distress syndrome (PDS). The severity of dyspeptic symptoms was determined using a 10-point Visual-Analogue Scale (VAS). Fasting plasma concentration of dopamine (DA) and the contents of homovanillic acid (HVA) in the urine collection were determined by ELISA. DA concentration in plasma was similar in both clinical forms FD (EPS - 55.6 pg/ml, in patients with PDS - 63.5 pg/ml, p>0.05). Urine excretion of HVA in patients with PDS - 6.63 mg/24 h (p<0.05) was higher than in heathy subjects - 5.65 mg/24 h (p<0.05) and those with EPS - 5.07 mg/24 h (p<0.001). In the group with PDS severity of dyspeptic symptoms showed a positive correlation with the DA concentration in plasma and HVA excretion in the urine. Increased secretion of DA may play a significant role in the pathogenesis of PDS. © 2016 MEDPRESS.

  20. Metabolic syndrome and sexual function in postmenopausal women.

    PubMed

    Dombek, Kathiussa; Capistrano, Emille Joana Medeiros; Costa, Ana Carolina Carioca; Marinheiro, Lizanka Paola Figueiredo

    2016-01-01

    The purpose of this study was to evaluate whether female sexual dysfunction (FSD) is associated with metabolic syndrome (MS) and to identify factors that contribute to FSD in postmenopausal women. This was a cross-sectional study in 111 sexually active women aged 45-65 years. We applied the Female Sexual Function Index (FSFI) to evaluate the participant's sexual function and a structured questionnaire to collect demographic, socioeconomic, clinical, anthropometric, and laboratory data. The prevalences of MS and FSD were 68.5% and 70.3%, respectively. After logistic regression analysis, we identified the following variables associated with FSD: married status (prevalence ratio [PR] 1.69, 95% confidence interval [95% CI] 1.16-2.47, p < 0.01), 6-10 years elapsed since menopause (PR 1.60, 95% CI 1.22-2.09, p < 0.01), occurrence of climacteric symptoms (PR 1.01, 95% CI 1.00-1.02, p = 0.03), and history of sexual abuse (PR 1.40, 95% CI 1.12-1.73, p < 0.01). We found a high prevalence of MS and FSD, but no association between both. Married status, time elapsed since menopause, climacteric symptoms, and history of sexual abuse emerged as factors associated with FSD on multivariate analysis.

  1. Yeast diversity of sourdoughs and associated metabolic properties and functionalities.

    PubMed

    De Vuyst, Luc; Harth, Henning; Van Kerrebroeck, Simon; Leroy, Frédéric

    2016-12-19

    Together with acidifying lactic acid bacteria, yeasts play a key role in the production process of sourdough, where they are either naturally present or added as a starter culture. Worldwide, a diversity of yeast species is encountered, with Saccharomyces cerevisiae, Candida humilis, Kazachstania exigua, Pichia kudriavzevii, Wickerhamomyces anomalus, and Torulaspora delbrueckii among the most common ones. Sourdough-adapted yeasts are able to withstand the stress conditions encountered during their growth, including nutrient starvation as well as the effects of acidic, oxidative, thermal, and osmotic stresses. From a technological point of view, their metabolism primarily contributes to the leavening and flavour of sourdough products. Besides ethanol and carbon dioxide, yeasts can produce metabolites that specifically affect flavour, such as organic acids, diacetyl, higher alcohols from branched-chain amino acids, and esters derived thereof. Additionally, several yeast strains possess functional properties that can potentially lead to nutritional and safety advantages. These properties encompass the production of vitamins, an improvement of the bioavailability of phenolic compounds, the dephosphorylation of phytic acid, the presence of probiotic potential, and the inhibition of fungi and their mycotoxin production. Strains of diverse species are new candidate functional starter cultures, offering opportunities beyond the conventional use of baker's yeast.

  2. Tensor-polarized structure function b1 in the standard convolution description of the deuteron

    NASA Astrophysics Data System (ADS)

    Cosyn, W.; Dong, Yu-Bing; Kumano, S.; Sargsian, M.

    2017-04-01

    Tensor-polarized structure functions of a spin-1 hadron are additional observables, which do not exist for the spin-1 /2 nucleon. They could probe novel aspects of the internal hadron structure. Twist-2 tensor-polarized structure functions are b1 and b2, and they are related by the Callan-Gross-like relation in the Bjorken scaling limit. In this work, we theoretically calculate b1 in the standard convolution description for the deuteron. Two different theoretical models, a basic convolution description and a virtual nucleon approximation, are used for calculating b1, and their results are compared with the HERMES measurement. We found large differences between our theoretical results and the data. Although there is still room to improve by considering higher-twist effects and in the experimental extraction of b1 from the spin asymmetry Az z, there is a possibility that the large differences require physics beyond the standard deuteron model for their interpretation. Future b1 studies could shed light on a new field of hadron physics. In particular, detailed experimental studies of b1 will start soon at the Thomas Jefferson National Accelerator Facility. In addition, there are possibilities to investigate tensor-polarized parton distribution functions and b1 at Fermi National Accelerator Laboratory and a future electron-ion collider. Therefore, further theoretical studies are needed for understanding the tensor structure of the spin-1 deuteron, including a new mechanism to explain the large differences between the current data and our theoretical results.

  3. MAP kinase signaling antagonizes PAR-1 function during polarization of the early Caenorhabditis elegans embryo.

    PubMed

    Spilker, Annina C; Rabilotta, Alexia; Zbinden, Caroline; Labbé, Jean-Claude; Gotta, Monica

    2009-11-01

    PAR proteins (partitioning defective) are major regulators of cell polarity and asymmetric cell division. One of the par genes, par-1, encodes a Ser/Thr kinase that is conserved from yeast to mammals. In Caenorhabditis elegans, par-1 governs asymmetric cell division by ensuring the polar distribution of cell fate determinants. However the precise mechanisms by which PAR-1 regulates asymmetric cell division in C. elegans remain to be elucidated. We performed a genomewide RNAi screen and identified six genes that specifically suppress the embryonic lethal phenotype associated with mutations in par-1. One of these suppressors is mpk-1, the C. elegans homolog of the conserved mitogen activated protein (MAP) kinase ERK. Loss of function of mpk-1 restored embryonic viability, asynchronous cell divisions, the asymmetric distribution of cell fate specification markers, and the distribution of PAR-1 protein in par-1 mutant embryos, indicating that this genetic interaction is functionally relevant for embryonic development. Furthermore, disrupting the function of other components of the MAPK signaling pathway resulted in suppression of par-1 embryonic lethality. Our data therefore indicates that MAP kinase signaling antagonizes PAR-1 signaling during early C. elegans embryonic polarization.

  4. Quantitative dynamic nuclear polarization-NMR on blood plasma for assays of drug metabolism.

    PubMed

    Lerche, Mathilde H; Meier, Sebastian; Jensen, Pernille R; Hustvedt, Svein-Olaf; Karlsson, Magnus; Duus, Jens Ø; Ardenkjaer-Larsen, Jan H

    2011-01-01

    Analytical platforms for the fast detection, identification and quantification of circulating drugs with a narrow therapeutic range are vital in clinical pharmacology. As a result of low drug concentrations, analytical tools need to provide high sensitivity and specificity. Dynamic nuclear polarization-NMR (DNP-NMR) in the form of the hyperpolarization-dissolution method should afford the sensitivity and spectral resolution for the direct detection and quantification of numerous isotopically labeled circulating drugs and their metabolites in single liquid-state NMR transients. This study explores the capability of quantitative in vitro DNP-NMR to assay drug metabolites in blood plasma. The lower limit of detection for the anti-epileptic drug (13)C-carbamazepine and its pharmacologically active metabolite (13)C-carbamazepine-10,11-epoxide is 0.08 µg/mL in rabbit blood plasma analyzed by single-scan (13)C DNP-NMR. An internal standard is used for the accurate quantification of drug and metabolite. Comparison of quantitative DNP-NMR data with an established analytical method (liquid chromatography-mass spectrometry) yields a Pearson correlation coefficient r of 0.99. Notably, all DNP-NMR determinations were performed without analyte derivatization or sample purification other than plasma protein precipitation. Quantitative DNP-NMR is an emerging methodology which requires little sample preparation and yields quantitative data with high sensitivity for therapeutic drug monitoring. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Effect of metabolic syndrome on sexual function in pre- and postmenopausal women.

    PubMed

    Otunctemur, Alper; Dursun, Murat; Ozbek, Emin; Sahin, Suleyman; Besiroglu, Huseyin; Koklu, Ismail; Polat, Emre Can; Erkoc, Mustafa; Danis, Eyyup; Bozkurt, Muammer

    2015-01-01

    Female sexual dysfunction is a prevalent and multidimensional disorder related to many biological, psychological, and social determinants. The authors assessed the effect of one of the many factors affect sexual function-metabolic syndrome-on female sexual function. They equally divided 400 women participants among 4 groups: (a) premenopausal with metabolic syndrome, (b) premenopausal without metabolic syndrome, (c) postmenopausal with metabolic syndrome, and (d) postmenopausal without metabolic syndrome. The authors used the Female Sexual Function Index to assess women's sexual function. Female sexual dysfunction was found more often in both pre- and postmenopausal women with metabolic syndrome (p =.001). Overall Female Sexual Function Index score and satisfaction, pain, and desire domain scores independently of the menopause status showed statistically significant differences across women with metabolic syndrome in comparison with participants with no metabolic syndrome (p <.05). The authors also evaluated the associations among 5 components of metabolic syndrome and Female Sexual Function Index scores. Higher fasting glucose levels were significantly associated with the Female Sexual Function Index score (p <.05). This study shows that sexual dysfunction is more prevalent in pre- and postmenopausal women with the metabolic syndrome.

  6. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology.

    PubMed

    Mapelli, Valeria; Olsson, Lisbeth; Nielsen, Jens

    2008-09-01

    Metabolomics embraces several strategies that aim to quantify cell metabolites in order to increase our understanding of how metabolite levels and interactions influence phenotypes. Metabolic footprinting represents a niche within metabolomics, because it focuses on the analysis of extracellular metabolites. Although metabolic footprinting represents only a fraction of the entire metabolome, it provides important information for functional genomics and strain characterization, and it can also provide scientists with a key understanding of cell communication mechanisms, metabolic engineering and industrial biotechnological processes. Due to the tight and convoluted relationship between intracellular metabolism and metabolic footprinting, metabolic footprinting can provide precious information about the intracellular metabolic status. Hereby, we state that integrative information from metabolic footprinting can assist in further interpretation of metabolic networks.

  7. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress.

    PubMed

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-04-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing.

  8. Metabolic gatekeeper function of B-lymphoid transcription factors.

    PubMed

    Chan, Lai N; Chen, Zhengshan; Braas, Daniel; Lee, Jae-Woong; Xiao, Gang; Geng, Huimin; Cosgun, Kadriye Nehir; Hurtz, Christian; Shojaee, Seyedmehdi; Cazzaniga, Valeria; Schjerven, Hilde; Ernst, Thomas; Hochhaus, Andreas; Kornblau, Steven M; Konopleva, Marina; Pufall, Miles A; Cazzaniga, Giovanni; Liu, Grace J; Milne, Thomas A; Koeffler, H Phillip; Ross, Theodora S; Sánchez-García, Isidro; Borkhardt, Arndt; Yamamoto, Keith R; Dickins, Ross A; Graeber, Thomas G; Müschen, Markus

    2017-02-23

    B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors

  9. Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion.

    PubMed

    Zhao, Yi; Cao, Xiangyu; Gao, Jun; Liu, Xiao; Li, Sijia

    2016-05-16

    We demonstrate a simple reconfigurable metasurface with multiple functions. Anisotropic tiles are investigated and manufactured as fundamental elements. Then, the tiles are combined in a certain sequence to construct a metasurface. Each of the tiles can be adjusted independently which is like a jigsaw puzzle and the whole metasurface can achieve diverse functions by different layouts. For demonstration purposes, we realize polarization conversion, anomalous reflection and diffusion by a jigsaw puzzle metasurface with 6 × 6 pieces of anisotropic tile. Simulated and measured results prove that our method offers a simple and effective strategy for metasurface design.

  10. Association of Metabolic Syndrome With Kidney Function and Histology in Living Kidney Donors

    PubMed Central

    Ohashi, Y.; Thomas, G.; Nurko, S.; Stephany, B.; Fatica, R.; Chiesa, A.; Rule, A. D.; Srinivas, T.; Schold, J. D.; Navaneethan, S. D.; Poggio, E. D.

    2013-01-01

    The selection of living kidney donors is based on a formal evaluation of the state of health. However, this spectrum of health includes subtle metabolic derangements that can cluster as metabolic syndrome. We studied the association of metabolic syndrome with kidney function and histology in 410 donors from 2005 to 2012, of whom 178 donors were systematically followed after donation since 2009. Metabolic syndrome was defined as per the NCEP ATPIII criteria, but using a BMI > 25 kg/m2 instead of waist circumference. Following donation, donors received counseling on lifestyle modification. Metabolic syndrome was present in 50 (12.2%) donors. Donors with metabolic syndrome were more likely to have chronic histological changes on implant biopsies than donors with no metabolic syndrome (29.0% vs. 9.3%, p < 0.001). This finding was associated with impaired kidney function recovery following donation. At last follow-up, reversal of metabolic syndrome was observed in 57.1% of donors with predonation metabolic syndrome, while only 10.8% of donors developed de novo metabolic syndrome (p < 0.001). In conclusion, metabolic syndrome in donors is associated with chronic histological changes, and nephrectomy in these donors was associated with subsequent protracted recovery of kidney function. Importantly, weight loss led to improvement of most abnormalities that define metabolic syndrome. PMID:23865821

  11. Determination of the exchange interaction energy from the polarization expansion of the wave function

    NASA Astrophysics Data System (ADS)

    Gniewek, Piotr; Jeziorski, Bogumił

    2016-10-01

    The exchange contribution to the energy of the hydrogen atom interacting with a proton is calculated from the polarization expansion of the wave function using the conventional surface-integral formula and two formulas involving volume integrals: the formula of the symmetry-adapted perturbation theory (SAPT) and the variational formula recommended by us. At large internuclear distances R , all three formulas yield the correct expression -(2 /e ) R e-R , but they approximate it with very different convergence rates. In the case of the SAPT formula, the convergence is geometric with the error falling as 3-K, where K is the order of the applied polarization expansion. The error of the surface-integral formula decreases exponentially as aK/(K +1 ) , where a =ln2 - 1/2. The variational formula performs best, its error decays as K1 /2[aK/(K+1 ) ] 2 . These convergence rates are much faster than those resulting from approximating the wave function through the multipole expansion. This shows the efficiency of the partial resummation of the multipole series effected by the polarization expansion. Our results demonstrate also the benefits of incorporating the variational principle into the perturbation theory of molecular interactions.

  12. Mitochondrial metabolism, reactive oxygen species, and macrophage function-fishing for insights.

    PubMed

    Hall, Christopher J; Sanderson, Leslie E; Crosier, Kathryn E; Crosier, Philip S

    2014-11-01

    Metabolism and defense mechanisms that protect against pathogens are two fundamental requirements for the survival of multicellular organisms. Research into metabolic disease has revealed these core mechanisms are highly co-dependent. This emerging field of research, termed immunometabolism, focuses on understanding how metabolism influences immunological processes and vice versa. It is now accepted that obesity influences the immune system and that obesity-driven inflammation contributes to many diseases including type 2 diabetes, cardiovascular disease and Alzheimer's disease. The immune response requires the reallocation of nutrients within immune cells to different metabolic pathways to satisfy energy demands and the production of necessary macromolecules. One aspect of immunometabolic research is understanding how these metabolic changes help regulate specific immune cell functions. It is hoped that further understanding of the pathways involved in managing this immunological-metabolic interface will reveal new ways to treat metabolic disease. Given their growing status as principle drivers of obesity-associated inflammation, monocytes/macrophages have received much attention when studying the consequences of inflammation within adipose tissue. Less is known regarding how metabolic changes within macrophages (metabolic reprogramming) influence their immune cell function. In this review, we focus on our current understanding of how monocytes/macrophages alter their intracellular metabolism during the immune response and how these changes dictate specific effector functions. In particular, the immunomodulatory functions of mitochondrial metabolism and mitochondrial reactive oxygen species. We also highlight how the attributes of the zebrafish model system can be exploited to reveal new mechanistic insights into immunometabolic processes.

  13. Dependence of Basipetal Polar Transport of Auxin upon Aerobic Metabolism 1

    PubMed Central

    Wilkins, Malcolm B.; Martin, Mary

    1967-01-01

    The movement of IAA-14C through coleoptile segments of Avena and Zea has been investigated under aerobic and anaerobic conditions. The results are as follows: Zea. Using a 5-mm segment and a 2-hour transport period anaerobic conditions reduced the total uptake of 14C from an apical donor by 74% and the proportion of the total found in the receiving block by at least 45%. Anaerobic conditions reduced total uptake from a basal donor by 58% but no 14C reached the apical receiving block in either air or N2. Uptake from apical and basal donor blocks in N2 is closely similar. The presence of 14C in the basal receiving blocks, and its absence in the apical receiving blocks, in N2 suggests that even in anaerobic conditions movement of IAA is polarized basipetally, although the movement occurs at only a fraction of the rate found in air. Anaerobic conditions induced a similar reduction in basipetal movement of IAA in upper and lower 5-mm segments taken from the apical 10 mm of a Zea coleoptile. Using 10-mm Zea segments no 14C was recovered in the receiving blocks at the basal end of the segment after 2 and 4 hours in N2 whereas large amounts were recovered in air. Avena: Using 5-mm segments and a 2-hour transport period the total uptake of 14C from an apical donor is reduced by 83%. Movement of 14C into the basal donor is totally inhibited in N2. Total uptake of 14C from a basal donor is reduced by 61% in nitrogen and no 14C reached the apical receiving blocks regardless of the atmospheric conditions. A time course for the movement of 14C into the basal and apical receiving blocks through 5-mm segments showed that in air the amount in the basal receivers increased for 4 hours and then remained approximately uniform. In N2 no significant 14C reached the receivers until 6 to 8 hours after the application of donors but even then the amounts were about 12 to 14% of that in aerobic receivers. Movement of 14C into apical receivers was similar in air and in nitrogen and even after

  14. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert.

    PubMed

    Goordial, Jacqueline; Davila, Alfonso; Greer, Charles W; Cannam, Rebecca; DiRuggiero, Jocelyne; McKay, Christopher P; Whyte, Lyle G

    2017-02-01

    Permafrost in the high elevation McMurdo Dry Valleys of Antarctica ranks among the driest and coldest on Earth. Permafrost soils appear to be largely inhospitable to active microbial life, but sandstone lithic microhabitats contain a trophically simple but functional cryptoendolithic community. We used metagenomic sequencing and activity assays to examine the functional capacity of permafrost soils and cryptoendolithic communities in University Valley, one of the most extreme regions in the Dry Valleys. We found metagenomic evidence that cryptoendolithic microorganisms are adapted to the harsh environment and capable of metabolic activity at in situ temperatures, possessing a suite of stress response and nutrient cycling genes to fix carbon under the fluctuating conditions that the sandstone rock would experience during the summer months. We additionally identified genes involved in microbial competition and cooperation within the cryptoendolithic habitat. In contrast, permafrost soils have a lower richness of stress response genes, and instead the metagenome is enriched in genes involved with dormancy and sporulation. The permafrost soils also have a large presence of phage genes and genes involved in the recycling of cellular material. Our results underlie two different habitability conditions under extreme cold and dryness: the permafrost soil which is enriched in traits which emphasize survival and dormancy, rather than growth and activity; and the cryptoendolithic environment that selects for organisms capable of growth under extremely oligotrophic, arid and cold conditions. This study represents the first metagenomic interrogation of Antarctic permafrost and polar cryptoendolithic microbial communities.

  15. Finite element analysis of the dynamic behavior of radially polarized Functionally Graded Piezoelectric (FGP) structures

    NASA Astrophysics Data System (ADS)

    Kandasamy, Ramkumar; Cui, Fangsen

    2016-04-01

    In the traditional layered piezoelectric structures, high stress concentrations could cause the structural failure in interlayer surfaces due to repeated strain reversals. To overcome the performance limitations of these structures, the concept of Functionally Graded Materials (FGMs) has been introduced to improve the lifetime, integrity, and reliability of these structures. In this paper, the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders under different sets of loading are studied. Material properties such as piezoelectric, elastic and permittivity are assumed to change along its thickness, based on a specific gradation function. Four-parameter power law distribution is used to grade the volume fraction of the constituents comprising of PZT-5A and PZT-5H. Material property is assumed to be temperature dependent for a few numerical studies. The present modeling approach is validated by comparing the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders with those reported in the literature. The effects of material composition, loading and boundary conditions on the dynamic behavior of FGP cylinder are described. Since the modeling of functionally graded piezoelectric systems is challenging, the present study can help in the design and analysis of FGP cylinders.

  16. Nonuniqueness of magnetic fields and energy derivatives in spin-polarized density functional theory

    NASA Astrophysics Data System (ADS)

    Gál, T.; Ayers, P. W.; De Proft, F.; Geerlings, P.

    2009-10-01

    The effect of the recently uncovered nonuniqueness of the external magnetic field B(r⃑) corresponding to a given pair of density n(r⃑) and spin density ns(r⃑) on the derivative of the energy functional of spin-polarized density functional theory, and its implications for the definition of chemical reactivity descriptors, is examined. For ground states, the nonuniqueness of B(r⃑) implies the nondifferentiability of the energy functional Ev,B[n,ns] with respect to ns(r⃑). It is shown, on the other hand, that this nonuniqueness allows the existence of the one-sided derivatives of Ev,B[n,ns] with respect to ns(r⃑). Although the N-electron ground state can always be obtained from the minimization of Ev,B[n,ns] without any constraint on the spin number Ns=∫ns(r⃑)dr⃑, the Lagrange multiplier μs associated with the fixation of Ns does not vanish even for ground states. μs is identified as the left- or right-side derivative of the total energy with respect to Ns, which justifies the interpretation of μs as a (spin) chemical potential. This is relevant not only for the spin-polarized generalization of conceptual density functional theory, the spin chemical potential being one of the elementary reactivity descriptors, but also for the extension of the thermodynamical analogy of density functional theory for the spin-polarized case. For higher-order reactivity indices, B(r⃑)'s nonuniqueness has similar implications as for μs, leading to a split of the indices with respect to Ns into one-sided reactivity descriptors.

  17. Nonuniqueness of magnetic fields and energy derivatives in spin-polarized density functional theory.

    PubMed

    Gál, T; Ayers, P W; De Proft, F; Geerlings, P

    2009-10-21

    The effect of the recently uncovered nonuniqueness of the external magnetic field B(r) corresponding to a given pair of density n(r) and spin density n(s)(r) on the derivative of the energy functional of spin-polarized density functional theory, and its implications for the definition of chemical reactivity descriptors, is examined. For ground states, the nonuniqueness of B(r) implies the nondifferentiability of the energy functional E(v,B)[n,n(s)] with respect to n(s)(r). It is shown, on the other hand, that this nonuniqueness allows the existence of the one-sided derivatives of E(v,B)[n,n(s)] with respect to n(s)(r). Although the N-electron ground state can always be obtained from the minimization of E(v,B)[n,n(s)] without any constraint on the spin number N(s)=integraln(s)(r)dr, the Lagrange multiplier mu(s) associated with the fixation of N(s) does not vanish even for ground states. Mu(s) is identified as the left- or right-side derivative of the total energy with respect to N(s), which justifies the interpretation of mu(s) as a (spin) chemical potential. This is relevant not only for the spin-polarized generalization of conceptual density functional theory, the spin chemical potential being one of the elementary reactivity descriptors, but also for the extension of the thermodynamical analogy of density functional theory for the spin-polarized case. For higher-order reactivity indices, B(r)'s nonuniqueness has similar implications as for mu(s), leading to a split of the indices with respect to N(s) into one-sided reactivity descriptors.

  18. Adaptive robust image registration approach based on adequately sampling polar transform and weighted angular projection function

    NASA Astrophysics Data System (ADS)

    Wei, Zhao; Tao, Feng; Jun, Wang

    2013-10-01

    An efficient, robust, and accurate approach is developed for image registration, which is especially suitable for large-scale change and arbitrary rotation. It is named the adequately sampling polar transform and weighted angular projection function (ASPT-WAPF). The proposed ASPT model overcomes the oversampling problem of conventional log-polar transform. Additionally, the WAPF presented as the feature descriptor is robust to the alteration in the fovea area of an image, and reduces the computational cost of the following registration process. The experimental results show two major advantages of the proposed method. First, it can register images with high accuracy even when the scale factor is up to 10 and the rotation angle is arbitrary. However, the maximum scaling estimated by the state-of-the-art algorithms is 6. Second, our algorithm is more robust to the size of the sampling region while not decreasing the accuracy of the registration.

  19. Functional compartmentalization of oxidative and glycolytic metabolism in frog skin

    SciTech Connect

    Skul'skii, I.A.; Lapin, A.V.

    1985-07-01

    One of the basic functions of the epithelial cells of the skin of amphibians is unidirectional transport of Na/sup +/ from the environment into the blood. This transport is carried out in two stages. First, Na/sup +/ is absorbed from the environment by the epithelial cells through their apical membranes. Next, Na/sup +/ is actively drawn into the blood stream with the help of Na-K pumps which are located on the basolateral membranes. Huf, as early as 1957, proposed that ionic homeostasis of Na-transporting epithelial cells may be maintained at the expense of glycolysis, whereas the unidirectional transport of Na/sup +/ requires exclusively energy from oxidative metabolism. At that time, however, little was known about the nature of the Na-K pump and there were no isotopic data on permeability of epithelial cells to Na/sup +/ and K/sup +/. The authors confirm and update Huf's hypothesis in accordance with current knowledge. It was shown that anaerobic conditions (argon atmosphere) and various respiration inhibitors (rotenone, thallium) selectively inhibit unidirectional transport of Na/sup +/, as measured with the help of /sup 22/Na or short-circuit current, without influencing the concentration of sodium and potassium in the cells. The rate of penetration of Na/sup +/ through the apical membrane decrease by at least twice, but, irrespective of a significant flow of Na/sup +/ through the epithelial layer disappears.

  20. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health.

    PubMed

    Landete, J M

    2012-01-01

    Polyphenols are important constituents of food products of plant origin. Fruits, vegetables, and beverages are the main sources of phenolic compounds in the human diet. These compounds are directly related to sensory characteristics of foods such as flavor, astringency and color. Polyphenols are extensively metabolized both in tissues and by the colonic microbiota. Normally, the circulating polyphenols are glucuronidated and/or sulphated and no free aglycones are found in plasma. The presence of phenolic compounds in the diet is beneficial to health due to their antioxidant, anti-inflammatory, and vasodilating properties. The health effects of polyphenols depend on the amount consumed and their bioavailability. Moreover, polyphenols are able to kill or inhibit the growth of microorganisms such as bacteria, fungi, or protozoans. Some dietary polyphenols may have significant effects on the colonic flora providing a type of prebiotic effect. The anti-nutrient properties of polyphenols are also discussed in this paper. The antioxidant, anti-inflammatory, vasodilating, and prebiotic properties of polyphenols make them potential functional foods.

  1. Functions of autophagy in plant carbon and nitrogen metabolism.

    PubMed

    Ren, Chenxia; Liu, Jingfang; Gong, Qingqiu

    2014-01-01

    Carbon and nitrogen are essential components for plant growth. Although models of plant carbon and nitrogen metabolisms have long been established, certain gaps remain unfilled, such as how plants are able to maintain a flexible nocturnal starch turnover capacity over various light cycles, or how nitrogen remobilization is achieved during the reproductive growth stage. Recent advances in plant autophagy have shed light on such questions. Not only does autophagy contribute to starch degradation at night, but it participates in the degradation of chloroplast proteins and even chloroplasts after prolonged carbon starvation, thus help maintain the free amino acid pool and provide substrate for respiration. The induction of autophagy under these conditions may involve transcriptional regulation. Large-scale transcriptome analyses revealed that ATG8e belongs to a core carbon signaling response shared by Arabidopsis accessions, and the transcription of Arabidopsis ATG7 is tightly co-regulated with genes functioning in chlorophyll degradation and leaf senescence. In the reproductive phase, autophagy is essential for bulk degradation of leaf proteins, thus contributes to nitrogen use efficiency (NUE) both under normal and low-nitrogen conditions.

  2. Functional Characterization of Yersinia pestis Aerobic Glycerol Metabolism

    PubMed Central

    Willias, Stephan P.; Chauhan, Sadhana; Motin, Vladimir L.

    2014-01-01

    Yersinia pestis biovar Orientalis isolates have lost the capacity to ferment glycerol. Herein we provide experimental validation that a 93 bp in-frame deletion within the glpD gene encoding the glycerol-3-phosphate dehydrogenase present in all biovar Orientalis strains is sufficient to disrupt aerobic glycerol fermentation. Furthermore, the inability to ferment glycerol is often insured by a variety of additional mutations within the glpFKX operon which prevents glycerol internalization and conversion to glycerol-3-phosphate. The physiological impact of functional glpFKX in the presence of dysfunctional glpD was assessed. Results demonstrate no change in growth kinetics at 26°C and 37°C. Mutants deficient in glpD displayed decreased intracellular accumulation of glycerol-3-phosphate, a characterized inhibitor of cAMP receptor protein (CRP) activation. Since CRP is rigorously involved in global regulation Y. pestis virulence, we tested a possible influence of a single glpD mutation on virulence. Nonetheless, subcutaneous and intranasal murine challenge was not impacted by glycerol metabolism. As quantified by crystal violet assay, biofilm formation of the glpD-deficient KIM6+ mutant was mildly repressed; whereas, chromosomal restoration of glpD in CO92 resulted in a significant increase in biofilm formation. PMID:25220241

  3. CD98 modulates integrin beta1 function in polarized epithelial cells.

    PubMed

    Cai, Songmin; Bulus, Nada; Fonseca-Siesser, Priscila M; Chen, Dong; Hanks, Steven K; Pozzi, Ambra; Zent, Roy

    2005-03-01

    The type II transmembrane protein CD98, best known as the heavy chain of the heterodimeric amino acid transporters (HAT), is required for the surface expression and basolateral localization of this transporter complex in polarized epithelial cells. CD98 also interacts with beta1 integrins resulting in an increase in their affinity for ligand. In this study we explored the role of the transmembrane and cytoplasmic domains of CD98 on integrin-dependent cell adhesion and migration in polarized renal epithelial cells. We demonstrate that the transmembrane domain of CD98 was sufficient, whereas the five N-terminal amino acids of this domain were required for CD98 interactions with beta1 integrins. Overexpression of either full-length CD98 or CD98 lacking its cytoplasmic tail increased cell adhesion and migration, whereas deletion of the five N-terminal amino acids of the transmembrane domain of CD98 abrogated this effect. CD98 and mutants that interacted with beta1 integrins increased both focal adhesion formation and FAK and AKT phosphorylation. CD98-induced cell adhesion and migration was inhibited by addition of phosphoinositol 3-OH kinase (PI3-K) inhibitors suggesting these cell functions are PI3-K-dependent. Finally, CD98 and mutants that interacted with beta1, induced marked changes in polarized renal epithelial cell branching morphogenesis in collagen gels. Thus, in polarized renal epithelial cells, CD98 might be viewed as a scaffolding protein that interacts with basolaterally expressed amino acid transporters and beta1 integrins and can alter diverse cellular functions such as amino acid transport as well as cell adhesion, migration and branching morphogenesis.

  4. Myocardial Function and Lipid Metabolism in the Chronic Alcoholic Animal

    PubMed Central

    Regan, Timothy J.; Khan, Mohammad I.; Ettinger, Philip O.; Haider, Bunyad; Lyons, Michael M.; Oldewurtel, Henry A.; Weber, Marilyn

    1974-01-01

    In view of the variables that obscure the pathogenesis of cardiomyopathy, a study was undertaken in mongrel dogs fed ethanol as 36% of calories for up to 22 mo. Both the experimental and control groups maintained body weight, hematocrit, plasma vitamin, and protein levels. Left ventricular function was evaluated in the intact anesthetized dog using indicator dilution for end-diastolic and stroke volume determinations. During increased afterload with angiotensin, the ethanol group exhibited a larger rise of end-diastolic pressure (P<0.01), whereas end-diastolic and stroke volume responses were significantly less than in controls. Preload increments with saline elicited a significantly higher end-diastolic pressure rise in the ethanol group (P<0.01). No hypertrophy, inflammation, or fibrosis was present and it was postulated that the enhanced diastolic stiffness was related to accumulation of Alcian Blue-positive material in the ventricular interstitium. To evaluate myocardial lipid metabolism, [1-14C]oleic acid was infused systemically. Plasma specific activity and myocardial lipid uptake were similar in both groups. There was a significantly increased incorporation of label into triglyceride, associated with a reduced 14CO2 production, considered the basis for a twofold increment of triglyceride content. In addition, diminished incorporation of [14C]oleic acid into phospholipid was observed accompanied by morphologic abnormalities of cardiac cell membranes. Potassium loss and sodium gain, like the lipid alteration, was more prominent in the subendocardium. Thus, chronic ethanol ingestion in this animal model is associated with abnormalities of ventricular function without evident malnutrition, analogous to the preclinical malfunction described in the human alcoholic. Images PMID:4368946

  5. β-cell function is associated with metabolic syndrome in Mexican subjects

    PubMed Central

    Baez-Duarte, Blanca G; Sánchez-Guillén, María Del Carmen; Pérez-Fuentes, Ricardo; Zamora-Ginez, Irma; Leon-Chavez, Bertha Alicia; Revilla-Monsalve, Cristina; Islas-Andrade, Sergio

    2010-01-01

    Aims The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS) or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects. Material and methods This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study) with headquarters in the city of Puebla, Mexico. The study comprised of 444 subjects of both genders, aged between 18 and 60 years and allocated into two study groups: (1) control group of individuals at metabolic balance without metabolic syndrome and (2) group composed of subjects with metabolic syndrome and diagnosed according to the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Defection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Anthropometric, biochemical, and clinical assessments were carried out. Results Average age of the subjects in the control group (n = 254) was 35.7 ± 11.5 years and 42.0 ± 10.7 years for subjects in the metabolic syndrome group (n = 190). Subjects at metabolic balance without metabolic syndrome showed decreased IS, increased insulin resistance (IR), and altered β-cell function. Individuals with metabolic syndrome showed a high prevalence (P ≤ 0.05) of family history of type 2 diabetes (T2D). This group also showed a significant metabolic imbalance with glucose and insulin levels and lipid profile outside the ranges considered safe to prevent the development of cardiovascular disease and T2D. Conclusion The main finding in this study was the detection of altered β-cell function, decreased IS, an increased IR in subjects at metabolic balance, and the progressive deterioration of β-cell function and IS in subjects with metabolic syndrome as the number of features of metabolic syndrome increases

  6. A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg

    NASA Astrophysics Data System (ADS)

    Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G.

    1993-06-01

    A set of five-component d-type polarization functions has been optimized for the main group elements AlBi at the energetically lowest lying s 2p n electronic states for use with the effective core potentials of Hay and Wadt at the CISD level of theory. Also a set of f-type polarization functions is suggested for the elements Zn, Cd and Hg.

  7. Work function mediated by deposition of ultrathin polar FeO on Pt(111)

    NASA Astrophysics Data System (ADS)

    Lu, Shuangzan; Qin, Zhihui; Guo, Qinmin; Cao, Gengyu

    2017-01-01

    Significant work function changes from bare Pt(111) surface to 1 monolayer and 2 monolayers of ultrathin iron oxide (FeO) films on it are investigated by means of scanning tunneling microscopy/spectroscopy (STM/STS). With FeO layer-by-layer growth, a continuous reduction of the work function along with the surface vacuum level (VL) shifting is observed. We found that the compression of the electron spill-out at the metal-oxide interface and the substantial reconstruction of 2 ML FeO film, respectively, make major contributions to the first and the second reductions of the work function. The rectifying effect in FeO films is also observed, which is attributed to the downward shift of band alignment imposed by the total change in surface dipole. Our work shows that the polar oxide films play an important role to adjust surface electronic structures for enhancing device functionality.

  8. Zirconia--a stationary phase capable of the separation of polar markers of myocardial metabolism in hydrophilic interaction chromatography.

    PubMed

    Kučera, Radim; Kovaříková, Petra; Pasáková-Vrbatová, Ivana; Slaninová, Jitka; Klimeš, Jiří

    2014-05-01

    Creatine, phosphocreatine, and adenine nucleotides are highly polar markers of myocardial metabolism that are poorly retained on RP silica sorbents. Zirconia represents an alternative material to silica with high promise to be used in hydrophilic interaction chromatography (HILIC). This study describes a first systematic investigation of the ability of ZrO2 to separate creatine, phosphocreatine, adenosine 5'-monophosphate, adenosine 5'-diphosphate, and adenosine 5'-triphosphate and compares the results with those obtained on TiO2 . All analytes showed a HILIC-like retention pattern when mobile phases of different strengths were tested. Stronger retention and better column performance were achieved in organic-rich mobile phases as compared to aqueous conditions, where poor retention and insufficient column performance were observed. The effect of mobile phase pH and ionic strength was evaluated as well. The analysis of myocardial tissue demonstrated that all compounds were separated in a relevant biological material and thus proved ZrO2 as a promising phase for HILIC of biological samples that deserves further investigation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analyzing the function of small GTPases by microinjection of plasmids into polarized epithelial cells.

    PubMed

    Cook, Rita Nokes; Ang, Su Fen; Kang, Richard Seung-on; Fölsch, Heike

    2011-05-31

    Epithelial cells polarize their plasma membrane into biochemically and functionally distinct apical and basolateral domains where the apical domain faces the 'free' surfaces and the basolateral membrane is in contact with the substrate and neighboring cells. Both membrane domains are separated by tight junctions, which form a diffusion barrier. Apical-basolateral polarization can be recapitulated successfully in culture when epithelial cells such as Madin-Darby Canine Kidney (MDCK) cells are seeded at high density on polycarbonate filters and cultured for several days. Establishment and maintenance of cell polarity is regulated by an array of small GTPases of the Ras superfamily such as RalA, Cdc42, Rab8, Rab10 and Rab13. Like all GTPases these proteins cycle between an inactive GDP-bound state and an active GTP-bound state. Specific mutations in the nucleotide binding regions interfere with this cycling. For example, Rab13T22N is permanently locked in the GDP-form and thus dubbed 'dominant negative', whereas Rab13Q67L can no longer hydrolyze GTP and is thus locked in a 'dominant active' state. To analyze their function in cells both dominant negative and dominant active alleles of GTPases are typically expressed at high levels to interfere with the function of the endogenous proteins. An elegant way to achieve high levels of overexpression in a short amount of time is to introduce the plasmids encoding the relevant proteins directly into the nuclei of polarized cells grown on filter supports using microinjection technique. This is often combined with the co-injection of reporter plasmids that encode plasma membrane receptors that are specifically sorted to the apical or basolateral domain. A cargo frequently used to analyze cargo sorting to the basolateral domain is a temperature sensitive allele of the vesicular stomatitis virus glycoprotein (VSVGts045). This protein cannot fold properly at 39°C and will thus be retained in the endoplasmic reticulum (ER) while

  10. [The insulin regulation of metabolism of fat acids and glucose next in the realization of biologic function of locomotion].

    PubMed

    Titov, V N

    2012-05-01

    The becoming at the late stages of phylogeny of the biologic function of locomotion, insulin system and the earliest formed function of mitochondria make it possible to align all oxidized substrates in the following sequence: a) fatty acid metabolites C4 - ketone bodies; b) butyric fatty acid short-chained metabolites C6-C10; c) palmitic fatty acid with specific carrier; d) glucose. The mitochondria will begin to oxidize glucose if there will be no ketone bodies in cytosol and no remains of short-chained fatty acids and palmitic fatty acid. According to "the biologic subordination principle" philogenically late insulin can't change the functional characteristics of the phylogeny earliest mitochondria. To "force" the mitochondria starting to oxidize glucose first of all the insulin is to inhibit the biochemical reactions in all cells where releasing of polar non-etherified fatty acids and formation of their polar metabolites occurs. As in case of insulin, the same marked and prolonged hypoglycemia is induced by DL-aminocarnitine. This substance specifically inhibits both activity of carnitine-palmitoilacylaminotrsansferase and flux of acyl-KoA in mitochondria. The pronounced decrease of fatty acids content and their metabolites in matrix force mitochondria to oxidize glucose. It is possible to be validly of opinion that the same philogenically ancient principles as inhibition of activity of carnitine-palmitoilacylaminotrsansferase, decrease of formation of fatty acid metabolites C4 (ketone bodies), short-chained metabolites of palmitic fatty acid and olein mono fatty acid are applied in realization of philogenically late insulin effect. The first insulin effect in the hypoglycemia and biologic exotrophy reaction conditions is targeted to the regulation of fatty acids metabolism. Only second insulin effect is targeted to the glucose metabolic transformation. Therefore, there is a background to consider the diabetes mellitus primarily as a disorder of metabolism of

  11. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    PubMed Central

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  12. Genome-Scale Metabolic Modeling of Archaea Lends Insight into Diversity of Metabolic Function

    PubMed Central

    2017-01-01

    Decades of biochemical, bioinformatic, and sequencing data are currently being systematically compiled into genome-scale metabolic reconstructions (GEMs). Such reconstructions are knowledge-bases useful for engineering, modeling, and comparative analysis. Here we review the fifteen GEMs of archaeal species that have been constructed to date. They represent primarily members of the Euryarchaeota with three-quarters comprising representative of methanogens. Unlike other reviews on GEMs, we specially focus on archaea. We briefly review the GEM construction process and the genealogy of the archaeal models. The major insights gained during the construction of these models are then reviewed with specific focus on novel metabolic pathway predictions and growth characteristics. Metabolic pathway usage is discussed in the context of the composition of each organism's biomass and their specific energy and growth requirements. We show how the metabolic models can be used to study the evolution of metabolism in archaea. Conservation of particular metabolic pathways can be studied by comparing reactions using the genes associated with their enzymes. This demonstrates the utility of GEMs to evolutionary studies, far beyond their original purpose of metabolic modeling; however, much needs to be done before archaeal models are as extensively complete as those for bacteria. PMID:28133437

  13. Using polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function

    NASA Astrophysics Data System (ADS)

    Weisman, Andrew L.

    Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a

  14. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer

  15. Regulated synthesis and functions of laminin 5 in polarized madin-darby canine kidney epithelial cells.

    PubMed

    Mak, Grace Z; Kavanaugh, Gina M; Buschmann, Mary M; Stickley, Shaun M; Koch, Manuel; Goss, Kathleen Heppner; Waechter, Holly; Zuk, Anna; Matlin, Karl S

    2006-08-01

    Renal tubular epithelial cells synthesize laminin (LN)5 during regeneration of the epithelium after ischemic injury. LN5 is a truncated laminin isoform of particular importance in the epidermis, but it is also constitutively expressed in a number of other epithelia. To investigate the role of LN5 in morphogenesis of a simple renal epithelium, we examined the synthesis and function of LN5 in the spreading, proliferation, wound-edge migration, and apical-basal polarization of Madin-Darby canine kidney (MDCK) cells. MDCK cells synthesize LN5 only when subconfluent, and they degrade the existing LN5 matrix when confluent. Through the use of small-interfering RNA to knockdown the LN5 alpha3 subunit, we were able to demonstrate that LN5 is necessary for cell proliferation and efficient wound-edge migration, but not apical-basal polarization. Surprisingly, suppression of LN5 production caused cells to spread much more extensively than normal on uncoated surfaces, and exogenous keratinocyte LN5 was unable to rescue this phenotype. MDCK cells also synthesized laminin alpha5, a component of LN10, that independent studies suggest may form an assembled basal lamina important for polarization. Overall, our findings indicate that LN5 is likely to play an important role in regulating cell spreading, migration, and proliferation during reconstitution of a continuous epithelium.

  16. Blind polarization demultiplexing by constructing a cost function for coherent optical PDM-OFDM.

    PubMed

    Yu, Zhenming; Chen, Minghua; Chen, Hongwei; Yi, Xingwen; Yang, Sigang; Xie, Shizhong

    2015-07-13

    We propose a training symbols-free polarization demultiplexing method by constructing a cost function (CCF-PDM) for coherent optical PDM-OFDM. This method is applicable for high-speed, wide-bandwidth OFDM signals, different subcarrier modulation formats and long-haul transmission. It shows comparable performance with that of conventional method but without overhead and converges fast. Since the neighboring subcarriers experience similar polarization effects, we set the initial matrix parameters by the neighboring subcarrier to reduce the number of iteration for the gradient algorithm and prevent swapping the data of the two orthogonal polarizations. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440 km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960 km SSMF respectively. We compare its performance with that of training symbols. We also analyze the convergence speed of this method.

  17. Regulated Synthesis and Functions of Laminin 5 in Polarized Madin-Darby Canine Kidney Epithelial Cells

    PubMed Central

    Mak, Grace Z.; Kavanaugh, Gina M.; Buschmann, Mary M.; Stickley, Shaun M.; Koch, Manuel; Goss, Kathleen Heppner; Waechter, Holly; Zuk, Anna

    2006-01-01

    Renal tubular epithelial cells synthesize laminin (LN)5 during regeneration of the epithelium after ischemic injury. LN5 is a truncated laminin isoform of particular importance in the epidermis, but it is also constitutively expressed in a number of other epithelia. To investigate the role of LN5 in morphogenesis of a simple renal epithelium, we examined the synthesis and function of LN5 in the spreading, proliferation, wound-edge migration, and apical–basal polarization of Madin-Darby canine kidney (MDCK) cells. MDCK cells synthesize LN5 only when subconfluent, and they degrade the existing LN5 matrix when confluent. Through the use of small-interfering RNA to knockdown the LN5 α3 subunit, we were able to demonstrate that LN5 is necessary for cell proliferation and efficient wound-edge migration, but not apical–basal polarization. Surprisingly, suppression of LN5 production caused cells to spread much more extensively than normal on uncoated surfaces, and exogenous keratinocyte LN5 was unable to rescue this phenotype. MDCK cells also synthesized laminin α5, a component of LN10, that independent studies suggest may form an assembled basal lamina important for polarization. Overall, our findings indicate that LN5 is likely to play an important role in regulating cell spreading, migration, and proliferation during reconstitution of a continuous epithelium. PMID:16775009

  18. Functional and metabolic consequences of skeletal muscle remodeling in hypothyroidism.

    PubMed

    McAllister, R M; Ogilvie, R W; Terjung, R L

    1991-02-01

    Functional and metabolic responses of hypothyroid skeletal muscle were evaluated during steady-state isometric contraction conditions, using an isolated perfused rat hindlimb preparation. Treating rats with propylthiouracil (PTU) for 4-5 mo resulted in a 55% decrease (P less than 0.001) in citrate synthase activity in plantaris muscle and phenotypic remodeling of the plantaris, evident by a threefold increase in type I fiber area and a 13% decrease in type II fiber area. Perfusion of PTU (n = 9) and control (n = 9) rat hindlimbs of similar size, with similar inflow (approximately 10 ml/min) and oxygen content (approximately 20 g/100 ml), resulted in similar oxygen deliveries to the contracting muscles (PTU 11.4 +/- 0.58, control 9.54 +/- 0.75 mumol.min-1.g-1; P greater than 0.05). Ten-minute tetanic contraction (100 ms at 100 Hz) periods at 4, 8, 15, 30, and 45 tetani/min were elicited in consecutive ascending order. Oxygen consumption (VO2) was lower in the PTU group at all contraction frequencies (P less than 0.005), with a decrease in peak VO2 of 44% (PTU 3.01 +/- 0.29, control 5.35 +/- 0.42 mumol.min-1.g-1; P less than 0.001). Oxygen extraction by the PTU muscle was only approximately 25% of that delivered. Developed tension was initially less (15%; P less than 0.05) in the PTU group but declined in a similar manner, as a percent of initial, to that of the control group. The slightly lower absolute tension development of the PTU muscle could not account for the large reduction in VO2.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  20. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  1. The function of oxalic acid in the human metabolism.

    PubMed

    Robertson, Daniel Stewart

    2011-09-01

    Biochemical reactions in cells which involve oxalic acid are described. It is shown that this compound is required for the formation of uracil and orotic acid. The former is a component of RNA which is common to all cells in the human metabolism. On the basis of the biochemical reactions described a possible treatment to relieve the effects of calcium oxalate renal calculi whose origin is related to the metabolic concentration of oxalic acid is proposed.

  2. Gravimetric polar motion excitation functions from different series of gravimetric coefficient

    NASA Astrophysics Data System (ADS)

    Nastula, Jolanta; Książek, Elżbieta

    2014-05-01

    Since its lunch in February, the Gravity Recovery and Climate Experiment (GRACE) has been source of data of temporal changes in Earth's gravity field. These gravity fields can be used to determine the changing mass field of the Earth caused by redistribution of the geophysical fluids, and from that excitations of polar motion. The so-called Level 2 gravity field product are available, in the form of changes in the coefficients: Cnm Snm Since 2002 until the present time there are still attempts to better process these data. In this study we estimate gravimetric excitation of polar motion using a recent series of C21, S21 coefficient. In our calculations we use several series developed by nine centers. Firstly, we compare these gravimetric functions with each other. Then we examine the compatibility of these functions with hydrological signal in observed geodetic excitation function. We focus on seasonal and subseasonal time scales. The main purpose is to explore which from these several solutions are closed to observation.

  3. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 Function in Epidermal Cell PolarityW⃞

    PubMed Central

    Xu, Jian; Scheres, Ben

    2005-01-01

    Vesicle trafficking is essential for the generation of asymmetries, which are central to multicellular development. Core components of the vesicle transport machinery, such as ADP-ribosylation factor (ARF) GTPases, have been studied primarily at the single-cell level. Here, we analyze developmental functions of the ARF1 subclass of the Arabidopsis thaliana multigene ARF family. Six virtually identical ARF1 genes are ubiquitously expressed, and single loss-of-function mutants in these genes reveal no obvious developmental phenotypes. Fluorescence colocalization studies reveal that ARF1 is localized to the Golgi apparatus and endocytic organelles in both onion (Allium cepa) and Arabidopsis cells. Apical-basal polarity of epidermal cells, reflected by the position of root hair outgrowth, is affected when ARF1 mutants are expressed at early stages of cell differentiation but after they exit mitosis. Genetic interactions during root hair tip growth and localization suggest that the ROP2 protein is a target of ARF1 action, but its localization is slowly affected upon ARF1 manipulation when compared with that of Golgi and endocytic markers. Localization of a second potential target of ARF1 action, PIN2, is also affected with slow kinetics. Although extreme redundancy precludes conventional genetic dissection of ARF1 functions, our approach separates different ARF1 downstream networks involved in local and specific aspects of cell polarity. PMID:15659621

  4. Molecular density functional theory: application to solvation and electron-transfer thermodynamics in polar solvents.

    PubMed

    Borgis, Daniel; Gendre, Lionel; Ramirez, Rosa

    2012-03-01

    A molecular density functional theory of solvation is presented. The solvation properties of an arbitrary solute in a given solvent, both described by a molecular force field, can be obtained by minimization of a position- and orientation-dependent free-energy density functional. In the homogeneous reference fluid approximation, the unknown excess term of the functional can be approximated by the angular-dependent direct correlation function of the pure solvent. This function can be extracted from a preliminary MD simulation of the pure solvent by computing the angular-dependent pair distribution function and solving subsequently the molecular Ornstein-Zernike equation. The corresponding functional can then be minimized on a three-dimensional cubic grid for positions and a Gauss-Legendre angular grid for orientations to provide the solvation free energy of embedded molecules at the same time as the solvent three-dimensional microscopic structure. This functional minimization procedure is much more efficient than direct molecular dynamics simulations combined with thermodynamic integration schemes. The approach is shown to be also pertinent to the molecular-level determination of electron-transfer properties such as reaction free energy and reorganization energy. It is illustrated for molecular solvation and photochemical electron-transfer reactions in acetonitrile, a prototypical polar aprotic solvent.

  5. Using cheminformatics for the identification of biological functions of small molecules in metabolic pathway.

    PubMed

    Niu, Bing; Lu, Wencong

    2013-01-01

    Small molecules are involved in metabolic pathways responsible for many biological activities. Therefore it is essential to study them to uncover the unknown biological function of highly complex living systems. It is a crucial step in modern drug discovery to correctly and effectively discover small molecules' biological function since small molecules are related to many protein functions and biological processes. This paper presents the application of cheminformatics approaches in predicting small molecule's (ligand's) biological function in metabolic pathway. Many examples of success in identification and prediction in the area of small molecule metabolic pathway mapping and small molecule-protein interaction prediction have been discussed.

  6. Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization

    PubMed Central

    Desrumaux, Catherine; Lemaire-Ewing, Stéphanie; Ogier, Nicolas; Yessoufou, Akadiri; Hammann, Arlette; Sequeira-Le Grand, Anabelle; Deckert, Valérie; Pais de Barros, Jean-Paul; Le Guern, Naïg; Guy, Julien; Khan, Naim A; Lagrost, Laurent

    2016-01-01

    Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. Conclusions: For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype. PMID:26320740

  7. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    PubMed Central

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  8. A body composition model to estimate mammalian energy stores and metabolic rates from body mass and body length, with application to polar bears.

    PubMed

    Molnár, Péter K; Klanjscek, Tin; Derocher, Andrew E; Obbard, Martyn E; Lewis, Mark A

    2009-08-01

    Many species experience large fluctuations in food availability and depend on energy from fat and protein stores for survival, reproduction and growth. Body condition and, more specifically, energy stores thus constitute key variables in the life history of many species. Several indices exist to quantify body condition but none can provide the amount of stored energy. To estimate energy stores in mammals, we propose a body composition model that differentiates between structure and storage of an animal. We develop and parameterize the model specifically for polar bears (Ursus maritimus Phipps) but all concepts are general and the model could be easily adapted to other mammals. The model provides predictive equations to estimate structural mass, storage mass and storage energy from an appropriately chosen measure of body length and total body mass. The model also provides a means to estimate basal metabolic rates from body length and consecutive measurements of total body mass. Model estimates of body composition, structural mass, storage mass and energy density of 970 polar bears from Hudson Bay were consistent with the life history and physiology of polar bears. Metabolic rate estimates of fasting adult males derived from the body composition model corresponded closely to theoretically expected and experimentally measured metabolic rates. Our method is simple, non-invasive and provides considerably more information on the energetic status of individuals than currently available methods.

  9. On the Modeling of Polar Component of Solvation Energy using Smooth Gaussian-Based Dielectric Function.

    PubMed

    Li, Lin; Li, Chuan; Alexov, Emil

    2014-05-01

    Traditional implicit methods for modeling electrostatics in biomolecules use a two-dielectric approach: a biomolecule is assigned low dielectric constant while the water phase is considered as a high dielectric constant medium. However, such an approach treats the biomolecule-water interface as a sharp dielectric border between two homogeneous dielectric media and does not account for inhomogeneous dielectric properties of the macromolecule as well. Recently we reported a new development, a smooth Gaussian-based dielectric function which treats the entire system, the solute and the water phase, as inhomogeneous dielectric medium (J Chem Theory Comput. 2013 Apr 9; 9(4): 2126-2136.). Here we examine various aspects of the modeling of polar solvation energy in such inhomogeneous systems in terms of the solute-water boundary and the inhomogeneity of the solute in the absence of water surrounding. The smooth Gaussian-based dielectric function is implemented in the DelPhi finite-difference program, and therefore the sensitivity of the results with respect to the grid parameters is investigated, and it is shown that the calculated polar solvation energy is almost grid independent. Furthermore, the results are compared with the standard two-media model and it is demonstrated that on average, the standard method overestimates the magnitude of the polar solvation energy by a factor 2.5. Lastly, the possibility of the solute to have local dielectric constant larger than of a bulk water is investigated in a benchmarking test against experimentally determined set of pKa's and it is speculated that side chain rearrangements could result in local dielectric constant larger than 80.

  10. Identification of functional differences in metabolic networks using comparative genomics and constraint-based models.

    PubMed

    Hamilton, Joshua J; Reed, Jennifer L

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different

  11. Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    PubMed Central

    Hamilton, Joshua J.; Reed, Jennifer L.

    2012-01-01

    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different

  12. The Precision Measurement of the Neutron Spin Structure Function Using Polarized HE-3 Target

    SciTech Connect

    Wang, X

    2004-01-05

    Using a 48.6 GeV polarized electron beam scattering off a polarized {sup 3}He target at Stanford Linear Accelerator Centre (SLAC), they measured the neutron spin structure function g{sub 1}{sup n} over kinematic(x) ranging 0.014 < x <0.7 and 1 < Q{sup 2} < 17GeV{sup 2}. The measurement gave the integral result over the neutron spin structure function {integral}{sub 0.014}{sup 0.7} g{sub 1}{sup n}(x)dx = -0.036 {+-} 0.004(stat) {+-} 0.005(syst) at an average Q{sup 2} = 5GeV{sup 2}. Along with the proton results from SLAC E143 experiment (0.03 < x) and SMC experiment (0.014 < x < 0.03), they find the Bjorken sum rule appears to be largely saturated by the data integrated down to x of 0.014. However, they observe relatively large values for g{sub 1}{sup n} at low x. The result calls into question the usual methods (Regge theory) for extrapolating to x = 0 to find the full neutron integral {integral}{sub 0}{sup t} g{sub 1}{sup n}(x) dx, needed for testing the Quark-Parton Model (QMP).

  13. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments.

    PubMed

    Sadoni, N; Langer, S; Fauth, C; Bernardi, G; Cremer, T; Turner, B M; Zink, D

    1999-09-20

    We investigated the nuclear higher order compartmentalization of chromatin according to its replication timing (Ferreira et al. 1997) and the relations of this compartmentalization to chromosome structure and the spatial organization of transcription. Our aim was to provide a comprehensive and integrated view on the relations between chromosome structure and functional nuclear architecture. Using different mammalian cell types, we show that distinct higher order compartments whose DNA displays a specific replication timing are stably maintained during all interphase stages. The organizational principle is clonally inherited. We directly demonstrate the presence of polar chromosome territories that align to build up higher order compartments, as previously suggested (Ferreira et al. 1997). Polar chromosome territories display a specific orientation of early and late replicating subregions that correspond to R- or G/C-bands of mitotic chromosomes. Higher order compartments containing G/C-bands replicating during the second half of the S phase display no transcriptional activity detectable by BrUTP pulse labeling and show no evidence of transcriptional competence. Transcriptionally competent and active chromatin is confined to a coherent compartment within the nuclear interior that comprises early replicating R-band sequences. As a whole, the data provide an integrated view on chromosome structure, nuclear higher order compartmentalization, and their relation to the spatial organization of functional nuclear processes.

  14. Fukui and dual-descriptor matrices within the framework of spin-polarized density functional theory.

    PubMed

    Alcoba, Diego R; Lain, Luis; Torre, Alicia; Oña, Ofelia B; Chamorro, Eduardo

    2013-06-28

    This work deals with the Fukui and dual reactivity descriptors within the framework of the spin-polarized density functional theory. The first and second derivatives of the electron density and the spin density with respect to the total number of electrons N = Nα + Nβ and with respect to the spin number NS = Nα-Nβ have been formulated by means of reduced density matrices in the representation of the spin-orbitals of a given basis set, providing the matrix extension of those descriptors. The analysis of the eigenvalues and eigenvectors of the Fukui and dual-descriptor matrices yields information on the role played by the molecular orbitals in charge-transfer and spin-polarization processes. This matrix formulation enables determining similarity indices which allows one to evaluate quantitatively the quality of the simple frontier molecular orbital model in conceptual density functional theory. Selected closed- and open-shell systems in different spin symmetries have been studied with this matrix formalism at several levels of electronic correlation. The results confirm the suitability of this approach.

  15. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information

    PubMed Central

    Nägele, Thomas; Fürtauer, Lisa; Nagler, Matthias; Weiszmann, Jakob; Weckwerth, Wolfram

    2016-01-01

    The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian, or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels, and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome, and metabolome has become a common part of many systems biological studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e., first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e., second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities, and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®. PMID:27014700

  16. A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of Metabolic Network Information.

    PubMed

    Nägele, Thomas; Fürtauer, Lisa; Nagler, Matthias; Weiszmann, Jakob; Weckwerth, Wolfram

    2016-01-01

    The functional connection of experimental metabolic time series data with biochemical network information is an important, yet complex, issue in systems biology. Frequently, experimental analysis of diurnal, circadian, or developmental dynamics of metabolism results in a comprehensive and multidimensional data matrix comprising information about metabolite concentrations, protein levels, and/or enzyme activities. While, irrespective of the type of organism, the experimental high-throughput analysis of the transcriptome, proteome, and metabolome has become a common part of many systems biological studies, functional data integration in a biochemical and physiological context is still challenging. Here, an approach is presented which addresses the functional connection of experimental time series data with biochemical network information which can be inferred, for example, from a metabolic network reconstruction. Based on a time-continuous and variance-weighted regression analysis of experimental data, metabolic functions, i.e., first-order derivatives of metabolite concentrations, were related to time-dependent changes in other biochemically relevant metabolic functions, i.e., second-order derivatives of metabolite concentrations. This finally revealed time points of perturbed dependencies in metabolic functions indicating a modified biochemical interaction. The approach was validated using previously published experimental data on a diurnal time course of metabolite levels, enzyme activities, and metabolic flux simulations. To support and ease the presented approach of functional time series analysis, a graphical user interface including a test data set and a manual is provided which can be run within the numerical software environment Matlab®.

  17. Polarization Ray Tracing Calculation of Polarized Bidirectional Reflectance Distribution Function (pBRDF) of Microfaceted Surfaces to Investigate Multiple Reflection Effects

    NASA Astrophysics Data System (ADS)

    Bradley, C. L.; Kupinski, M.; Xu, F.; Diner, D. J.; Chipman, R. A.

    2015-12-01

    Remote sensing algorithms for aerosol retrieval rely on surface reflectance models for the extraction of path radiance of aerosol scattering in top of atmosphere measurements. A well-defined surface boundary condition is necessary due to the variability in the surface albedo and bidirectional reflectance distribution function. Polarization measurements can help constrain the surface model. Prior work features polarization measurements taken by Jet Propulsion Laboratory's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI). This work has shown that an analytical model that assumes singly reflected light from a rough surface comprised of microfacets sufficiently represents the polarized reflectance of natural surfaces (such as grass), but is less successful for manmade objects. For the linear Stokes parameters (I, Q, U), a single reflection of unpolarized light will result in a null U Stokes parameter relative to the scattering plane. However, some GroundMSPI measurements exhibit a non-zero U Stokes parameter. We show that multiple reflections may be a cause for this discrepancy by using a polarization ray trace (PRT) routine to calculate the polarized Bidirectional Reflectance Distribution Function (pBRDF) for a microfaceted surface. While the effect of multiple reflections, particularly for double reflections, is an order of magnitude smaller compared to single reflections, we show non-zero U Stokes parameters generated from multiple reflections. Furthermore, we have found that for illumination-view geometries with scattering angles less than ~45 degrees, Q and U parameters can have similar magnitude. We report on the magnitude of this effect and compare the PRT simulations to non-zero U measurements from GroundMSPI.

  18. Integrating the Kuramoto-Sivashinsky equation in polar coordinates: Application of the distributed approximating functional approach

    SciTech Connect

    Zhang, D.S.; Wei, G.W.; Kouri, D.J. ); Hoffman, D.K. ); Gorman, M.; Palacios, A. ); Gunaratne, G.H. The Institute of Fundamental Studies, Kandy )

    1999-09-01

    An algorithm is presented to integrate nonlinear partial differential equations, which is particularly useful when accurate estimation of spatial derivatives is required. It is based on an analytic approximation method, referred to as distributed approximating functionals (DAF[close quote]s), which can be used to estimate a function and a finite number of derivatives with a specified accuracy. As an application, the Kuramoto-Sivashinsky (KS) equation is integrated in polar coordinates. Its integration requires accurate estimation of spatial derivatives, particularly close to the origin. Several stationary and nonstationary solutions of the KS equation are presented, and compared with analogous states observed in the combustion front of a circular burner. A two-ring, nonuniform counter-rotating state has been obtained in a KS model simulation of such a burner. [copyright] [ital 1999] [ital The American Physical Society

  19. The polarization response function and the dielectric permittivity of a plasma

    SciTech Connect

    Gnavi, G.; Gratton, F.

    1984-09-01

    We give a simple direct derivation of the polarization response function h for linear electrostatic excitations of a plasma (without magnetic field) considering the effect of a percussion on the electrons. The physical meaning of the procedure is discussed, thus bringing into light basic facts of the plasma dielectric behavior. The result h = S/sub p/ fo(x/t) (where f/sub o/ is the electron distribution function in velocity space and /sub p/ the plasma frequency) is obtained without passing through the Vlasov-Poisson equations as in the standard theory. We show that the equivalence between the present method and the classic Landau analysis rests on properties of the Fourier transform applied on velocity space.

  20. Epidermal Polarity Genes in Health and Disease

    PubMed Central

    Tellkamp, Frederik; Vorhagen, Susanne; Niessen, Carien M.

    2014-01-01

    The epidermis of the skin is a highly polarized, metabolic tissue with important innate immune functions. The polarity of the epidermis is, for example, reflected in controlled changes in cell shape that accompany differentiation, oriented cell division, and the planar orientation of hair follicles and cilia. The establishment and maintenance of polarity is organized by a diverse set of polarity proteins that include transmembrane adhesion proteins, cytoskeletal scaffold proteins, and kinases. Although polarity proteins have been extensively studied in cell culture and in vivo in simple epithelia of lower organisms, their role in mammalian tissue biology is only slowly evolving. This article will address the importance of polarizing processes and their molecular regulators in epidermal morphogenesis and homeostasis and discuss how alterations in polarity may contribute to skin disease. PMID:25452423

  1. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    PubMed

    Vitkin, Edward; Shlomi, Tomer

    2012-11-29

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files.

  2. Thyroid function in childhood obesity and metabolic comorbidity.

    PubMed

    Pacifico, Lucia; Anania, Caterina; Ferraro, Flavia; Andreoli, Gian Marco; Chiesa, Claudio

    2012-02-18

    Childhood obesity is a worldwide health problem and its prevalence is increasing steadily and dramatically all over the world. Obese subjects have a much greater likelihood than normal-weight children of acquiring dyslipidemia, elevated blood pressure, and impaired glucose metabolism, which significantly increase their risk of cardiovascular and metabolic diseases. Elevated TSH concentrations in association with normal or slightly elevated free T4 and/or free T3 levels have been consistently found in obese subjects, but the mechanisms underlying these thyroid hormonal changes are still unclear. Whether higher TSH in childhood obesity is adaptive, increasing metabolic rate in an attempt to reduce further weight gain, or indicates subclinical hypothyroidism or resistance and thereby contributes to lipid and/or glucose dysmetabolism, remains controversial. This review highlights current evidence on thyroid involvement in obese children and discusses the current controversy regarding the relationship between thyroid hormonal derangements and obesity-related metabolic changes (hypertension, dyslipidemia, hyperglycemia and insulin resistance, nonalcoholic fatty liver disease) in such population. Moreover, the possible mechanisms linking thyroid dysfunction and pediatric obesity are reviewed. Finally, the potential role of lifestyle intervention as well as of therapy with thyroid hormone in the treatment of thyroid abnormalities in childhood obesity is discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Metabolic fate and function of dietary glutamate in the gut

    USDA-ARS?s Scientific Manuscript database

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as an additive in the form of monosodium glutamate. Evidence from human and animal studies indicates that glutamate is a major oxidative fuel for the gut and that dietary glutamate is extensively metabol...

  4. Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function

    PubMed Central

    Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.

    2015-01-01

    Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346

  5. Density functional theory analysis of the impact of steric interaction on the function of switchable polarity solvents

    DOE PAGES

    McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; ...

    2015-05-04

    Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction withmore » the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.« less

  6. Density functional theory analysis of the impact of steric interaction on the function of switchable polarity solvents

    SciTech Connect

    McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; Wilson, Aaron D.

    2015-05-04

    Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction with the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.

  7. Impact of Metabolism on T-Cell Differentiation and Function and Cross Talk with Tumor Microenvironment

    PubMed Central

    Kouidhi, Soumaya; Elgaaied, Amel Benammar; Chouaib, Salem

    2017-01-01

    The immune system and metabolism are highly integrated and multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. Accumulating evidence indicates that the regulation of nutrient uptake and utilization in T cells is critically important for the control of their differentiation and manipulating metabolic pathways in these cells can shape their function and survival. This review will discuss some potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. It will also describe show subsets of T cells have specific metabolic requirements and signaling pathways that contribute to their respective function. Examples showing the apparent similarity between cancer cell metabolism and T cells during activation are illustrated and finally some mechanisms being used by tumor microenvironment to orchestrate T-cell metabolic dysregulation and the subsequent emergence of immune suppression are discussed. We believe that targeting T-cell metabolism may provide an additional opportunity to manipulate T-cell function in the development of novel therapeutics. PMID:28348562

  8. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells.

    PubMed

    Dukes, Joseph D; Fish, Laura; Richardson, Judith D; Blaikley, Elizabeth; Burns, Samir; Caunt, Christopher J; Chalmers, Andrew D; Whitley, Paul

    2011-09-01

    Genetic screens in Drosophila have identified regulators of endocytic trafficking as neoplastic tumor suppressor genes. For example, Drosophila endosomal sorting complex required for transport (ESCRT) mutants lose epithelial polarity and show increased cell proliferation, suggesting that ESCRT proteins could function as tumor suppressors. In this study, we show for the for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells. Inhibition of ESCRT function caused the tight junction protein claudin-1 to accumulate in intracellular vesicles. In contrast E-cadherin and occludin localization was unaffected. We investigated the cause of this accumulation and show that claudin-1 is constitutively recycled in kidney, colon, and lung epithelial cells, identifying claudin-1 recycling as a newly described feature of diverse epithelial cell types. This recycling requires ESCRT function, explaining the accumulation of intracellular claudin-1 when ESCRT function is inhibited. We further demonstrate that small interfering RNA knockdown of the ESCRT protein Tsg101 causes epithelial monolayers to lose their polarized organization and interferes with the establishment of a normal epithelial permeability barrier. ESCRT knockdown also reduces the formation of correctly polarized three-dimensional cysts. Thus, in mammalian epithelial cells, ESCRT function is required for claudin-1 trafficking and for epithelial cell polarity, supporting the hypothesis that ESCRT proteins function as tumor suppressors.

  9. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells

    PubMed Central

    Dukes, Joseph D.; Fish, Laura; Richardson, Judith D.; Blaikley, Elizabeth; Burns, Samir; Caunt, Christopher J.; Chalmers, Andrew D.; Whitley, Paul

    2011-01-01

    Genetic screens in Drosophila have identified regulators of endocytic trafficking as neoplastic tumor suppressor genes. For example, Drosophila endosomal sorting complex required for transport (ESCRT) mutants lose epithelial polarity and show increased cell proliferation, suggesting that ESCRT proteins could function as tumor suppressors. In this study, we show for the for the first time to our knowledge that ESCRT proteins are required to maintain polarity in mammalian epithelial cells. Inhibition of ESCRT function caused the tight junction protein claudin-1 to accumulate in intracellular vesicles. In contrast E-cadherin and occludin localization was unaffected. We investigated the cause of this accumulation and show that claudin-1 is constitutively recycled in kidney, colon, and lung epithelial cells, identifying claudin-1 recycling as a newly described feature of diverse epithelial cell types. This recycling requires ESCRT function, explaining the accumulation of intracellular claudin-1 when ESCRT function is inhibited. We further demonstrate that small interfering RNA knockdown of the ESCRT protein Tsg101 causes epithelial monolayers to lose their polarized organization and interferes with the establishment of a normal epithelial permeability barrier. ESCRT knockdown also reduces the formation of correctly polarized three-dimensional cysts. Thus, in mammalian epithelial cells, ESCRT function is required for claudin-1 trafficking and for epithelial cell polarity, supporting the hypothesis that ESCRT proteins function as tumor suppressors. PMID:21757541

  10. Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.

    PubMed

    Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry

    2012-04-03

    The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.

  11. The chick retinal pigment epithelium grown on permeable support demonstrates functional polarity

    SciTech Connect

    Koh, S.W.M )

    1989-04-01

    The retinal pigment epithelium (RPE) from the chick embryo was cultured permeable support. Using confluent cultures and analysis of the incubation medium, the present study demonstrates that RPE cells cultured on permeable membrane retain functional polarity, a characteristic of the RPE in vivo. The degree of intercellular permeability in the confluent RPE cultures was estimated by following ({sup 3}H)inulin movement from the apical side to the basal side of the cultures. Twenty-four hours after exposure of the apical side of the culture to ({sup 3}H)inulin, the {sup 3}H concentration in the apical medium remained at 3.4 to 4.4 times of that in the basal medium. When cultures are given 26 hours of ({sup 35}S)methionine, more than 20 bands with molecular weights ranging from 20,000 to > 250,000 Da can be detected in the medium as assessed by autoradiography of SDS-polyacrylamide gels. Electron microscopy of the confluent RPE cultures shows morphological polarization of the cells. The intercellular spaces appear to be closed at the apical side of the cells by junctional complexes consisting of tight junctions, zonular adherens junctions, and gap junctions.

  12. Contrast sensitivity functions to stimuli defined in Cartesian, polar and hyperbolic coordinates.

    PubMed

    Zana, Y; Cavalcanti, A C G T

    2005-01-01

    Recent electrophysiological studies indicate that cells in the LGN, V1, V2, and V4 areas in monkeys are specifically sensitive to Cartesian, polar and hyperbolic stimuli. We have characterized the contrast sensitivity functions (CSF) to stimuli defined in these coordinates with the two-alternatives forced-choice paradigm. CSFs to Cartesian, concentric, and hyperbolic stimuli have had similar shapes, with peak sensitivity at approximately 3 c/deg. However, the Cartesian CSF peak sensitivity has been at least 0.1 log units higher than that to stimuli in any other coordinate system. The concentric-Bessel CSF has a low-pass shape, peaking at 1.5 c/deg or below. The radial CSF has a bell shape with maximum sensitivity at 8 c/360 degrees. Only the concentric-Bessel CSF could be explained in terms of the components of maximum amplitude of the Fourier transform. Neural models, which in previous studies predicted the responses to Cartesian and polar Glass patterns, failed to account for the full CSFs data.

  13. Chemically Functionalized Phosphorene: Two-Dimensional Multiferroics with Vertical Polarization and Mobile Magnetism.

    PubMed

    Yang, Qing; Xiong, Wei; Zhu, Lin; Gao, Guoying; Wu, Menghao

    2017-08-23

    In future nanocircuits based on two-dimensional (2D) materials, the ideal nonvolatile memories (NVMs) would be based on 2D multiferroic materials that can combine both efficient ferroelectric writing and ferromagnetic reading, which remain hitherto unreported. Here we show first-principles evidence that a halogen-intercalated phosphorene bilayer can be multiferroic with most long-sought advantages: its "mobile" magnetism can be controlled by ferroelectric switching upon application of an external electric field, exhibiting either an "on" state with spin-selective and highly p-doped channels, or an "off" state, insulating against both spin and electron transport, which renders efficient electrical writing and magnetic reading. Vertical polarization can be maintained against a depolarizing field, rendering high-density data storage possible. Moreover, all those functions in the halogenated regions can be directly integrated into a 2D phosphorene wafer, similar to n/p channels formed by doping in a silicon wafer. Such formation of multiferroics with vertical polarization robust against a depolarizing field can be attributed to the unique properties of covalently bonded ferroelectrics, distinct from ionic-bonded ferroelectrics, which may be extended to other van der Waals bilayers for the design of NVM in future 2D wafers. Every intercalated adatom can be used to store one bit of data: "0" when binding to the upper layer and "1" when binding to the down layer, giving rise to a possible approach of realizing single atom memory for high-density data storage.

  14. Metabolic network structure and function in bacteria goes beyond conserved enzyme components

    PubMed Central

    Bazurto, Jannell V.; Downs, Diana M.

    2016-01-01

    For decades, experimental work has laid the foundation for our understanding of the linear and branched pathways that are integrated to form the metabolic networks on which life is built. Genetic and biochemical approaches applied in model organisms generate empirical data that correlate genes, gene products and their biological activities. In the post-genomic era, these results have served as the basis for the genome annotation that is routinely used to infer the metabolic capabilities of an organism and mathematically model the presumed metabolic network structure. At large, genome annotation and metabolic network reconstructions have demystified genomic content of non-culturable microorganisms and allowed researchers to explore the breadth of metabolisms in silico. Mis-annotation aside, it is unclear whether in silico reconstructions of metabolic structure from component parts accurately captures the higher levels of network organization and flux distribution. For this approach to provide accurate predictions, one must assume that the conservation of metabolic components leads to conservation of metabolic network architecture and function. This assumption has not been rigorously tested. Here we describe the implications of a recent study (MBio 5;7(1): e01840-15), which demonstrated that conservation of metabolic components was not sufficient to predict network structure and function. PMID:28357363

  15. The human NAD metabolome: Functions, metabolism and compartmentalization

    PubMed Central

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  16. Complex pectin metabolism by gut bacteria reveals novel catalytic functions.

    PubMed

    Ndeh, Didier; Rogowski, Artur; Cartmell, Alan; Luis, Ana S; Baslé, Arnaud; Gray, Joseph; Venditto, Immacolata; Briggs, Jonathon; Zhang, Xiaoyang; Labourel, Aurore; Terrapon, Nicolas; Buffetto, Fanny; Nepogodiev, Sergey; Xiao, Yao; Field, Robert A; Zhu, Yanping; O'Neill, Malcolm A; Urbanowicz, Breeanna R; York, William S; Davies, Gideon J; Abbott, D Wade; Ralet, Marie-Christine; Martens, Eric C; Henrissat, Bernard; Gilbert, Harry J

    2017-03-22

    The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet.

  17. The human NAD metabolome: Functions, metabolism and compartmentalization.

    PubMed

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD(+) and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools.

  18. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    NASA Astrophysics Data System (ADS)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  19. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups.

    PubMed

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-04

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green's function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  20. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid.

    PubMed

    Colegio, Oscar R; Chu, Ngoc-Quynh; Szabo, Alison L; Chu, Thach; Rhebergen, Anne Marie; Jairam, Vikram; Cyrus, Nika; Brokowski, Carolyn E; Eisenbarth, Stephanie C; Phillips, Gillian M; Cline, Gary W; Phillips, Andrew J; Medzhitov, Ruslan

    2014-09-25

    Macrophages have an important role in the maintenance of tissue homeostasis. To perform this function, macrophages must have the capacity to monitor the functional states of their 'client cells': namely, the parenchymal cells in the various tissues in which macrophages reside. Tumours exhibit many features of abnormally developed organs, including tissue architecture and cellular composition. Similarly to macrophages in normal tissues and organs, macrophages in tumours (tumour-associated macrophages) perform some key homeostatic functions that allow tumour maintenance and growth. However, the signals involved in communication between tumours and macrophages are poorly defined. Here we show that lactic acid produced by tumour cells, as a by-product of aerobic or anaerobic glycolysis, has a critical function in signalling, through inducing the expression of vascular endothelial growth factor and the M2-like polarization of tumour-associated macrophages. Furthermore, we demonstrate that this effect of lactic acid is mediated by hypoxia-inducible factor 1α (HIF1α). Finally, we show that the lactate-induced expression of arginase 1 by macrophages has an important role in tumour growth. Collectively, these findings identify a mechanism of communication between macrophages and their client cells, including tumour cells. This communication most probably evolved to promote homeostasis in normal tissues but can also be engaged in tumours to promote their growth.

  1. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    PubMed Central

    Sonnay, Sarah; Gruetter, Rolf; Duarte, João M. N.

    2017-01-01

    Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here, we review state

  2. How Energy Metabolism Supports Cerebral Function: Insights from (13)C Magnetic Resonance Studies In vivo.

    PubMed

    Sonnay, Sarah; Gruetter, Rolf; Duarte, João M N

    2017-01-01

    Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, (1)H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. (1)H-[(13)C] MRS, i.e., indirect detection of signals from (13)C-coupled (1)H, together with infusion of (13)C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of (13)C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct (13)C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  3. Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer.

    PubMed

    Chen, Haiwei; Zhu, Ruidong; Tan, Guanjun; Li, Ming-Chun; Lee, Seok-Lyul; Wu, Shin-Tson

    2017-01-09

    We propose to add a functional reflective polarizer (FRP) in the backlight unit to suppress the crosstalk between red, green and blue color filters of a liquid crystal display (LCD) panel. When incorporated with a commercial two-phosphor-converted white light-emitting diode (2pc-WLED), the color gamut of the LCD can be improved from 92% to 115% NTSC standard, which is comparable to the cadmium-based quantum dot (QD) backlight. If a narrow-band color filter is employed, the color gamut can be further enhanced to 135% NTSC. Our design offers an alternative approach to QDs, while keeping low cost and long lifetime. Such a simple yet efficient approach would find widespread applications for enlarging the color gamut of LCDs.

  4. Planar Cell Polarity Effector Fritz Interacts with Dishevelled and Has Multiple Functions in Regulating PCP

    PubMed Central

    Wang, Ying; Naturale, Victor F.; Adler, Paul N.

    2017-01-01

    The Planar cell Polarity Effector (PPE) genes inturned, fuzzy, and fritz are downstream components in the frizzled/starry night signaling pathway, and their function is instructed by upstream Planar Cell Polarity (PCP) core genes such as frizzled and dishevelled. PPE proteins accumulate asymmetrically in wing cells and function in a protein complex mediated by direct interactions between In and Frtz and In and Fy. How the PCP proteins instruct the accumulation of PPE protein is unknown. We found a likely direct interaction between Dishevelled and Fritz and Dishevelled and Fuzzy that could play a role in this. We previously found that mild overexpression of frtz rescued a weak in allele. To determine if this was due to extra Frtz stabilizing mutant In or due to Frtz being able to bypass the need for In we generate a precise deletion of the inturned gene (inPD). We found that mild overexpression of Fritz partially rescued inPD, indicating that fritz has In independent activity in PCP. Previous studies of PPE proteins used fixed tissues, and did not provide any insights into the dynamic properties of PPE proteins. We used CRISPR/Cas9 genome editing technology to edit the fritz gene to add a green fluorescent protein tag. fritzmNeonGreen provides complete rescue activity and works well for in vivo imaging. Our data showed that Fritz is very dynamic in epidermal cells and preferentially distributed to discrete membrane subdomains (“puncta”). Surprisingly, we found it in stripes in developing bristles. PMID:28258110

  5. Planar Cell Polarity Effector Fritz Interacts with Dishevelled and Has Multiple Functions in Regulating PCP.

    PubMed

    Wang, Ying; Naturale, Victor F; Adler, Paul N

    2017-04-03

    The Planar cell Polarity Effector (PPE) genes inturned, fuzzy, and fritz are downstream components in the frizzled/starry night signaling pathway, and their function is instructed by upstream Planar Cell Polarity (PCP) core genes such as frizzled and dishevelled PPE proteins accumulate asymmetrically in wing cells and function in a protein complex mediated by direct interactions between In and Frtz and In and Fy. How the PCP proteins instruct the accumulation of PPE protein is unknown. We found a likely direct interaction between Dishevelled and Fritz and Dishevelled and Fuzzy that could play a role in this. We previously found that mild overexpression of frtz rescued a weak in allele. To determine if this was due to extra Frtz stabilizing mutant In or due to Frtz being able to bypass the need for In we generate a precise deletion of the inturned gene (in(PD) ). We found that mild overexpression of Fritz partially rescued in(PD) , indicating that fritz has In independent activity in PCP. Previous studies of PPE proteins used fixed tissues, and did not provide any insights into the dynamic properties of PPE proteins. We used CRISPR/Cas9 genome editing technology to edit the fritz gene to add a green fluorescent protein tag. fritz(m)(NeonGreen) provides complete rescue activity and works well for in vivo imaging. Our data showed that Fritz is very dynamic in epidermal cells and preferentially distributed to discrete membrane subdomains ("puncta"). Surprisingly, we found it in stripes in developing bristles. Copyright © 2017 Wang et al.

  6. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases.

    PubMed

    Casero, Robert A; Marton, Laurence J

    2007-05-01

    The polyamines spermidine and spermine and their diamine precursor putrescine are naturally occurring, polycationic alkylamines that are essential for eukaryotic cell growth. The requirement for and the metabolism of polyamines are frequently dysregulated in cancer and other hyperproliferative diseases, thus making polyamine function and metabolism attractive targets for therapeutic intervention. Recent advances in our understanding of polyamine function, metabolic regulation, and differences between normal cells and tumour cells with respect to polyamine biology, have reinforced the interest in this target-rich pathway for drug development.

  7. Impact of Transient Heat Stress on Polar Lipid Metabolism in Seedlings of Wheat Near-Isogenic Lines Contrasting in Resistance to Hessian Fly (Cecidomyiidae) Infestation.

    PubMed

    Currie, Yaleaka; Chen, Ming-Shun; Nickolov, Radoslav; Bai, Guihua; Zhu, Lieceng

    2014-12-01

    Transient heat stress compromises resistance of host plants to Hessian fly, Mayetiola destructor (Say), and other biotic stresses. However, the mechanism for the loss of plant resistance under heat stress remains to be determined. In this study, we determined polar lipid profiles in control and Hessian fly-infested resistant and susceptible wheat seedlings with and without heat stress using an automated electrospray ionization tandem mass spectrometry analysis. Heat stress, alone or in combination with Hessian fly infestation, caused significant reduction in the abundance of total detected polar lipids and double bond index. Changes in lipid profiles in 'Molly' were similar to those in 'Newton' under heat stress. However, changes in lipid profiles in Molly were significantly different from those in Newton following Hessian fly infestation. The combination of heat stress and Hessian fly infestation resulted in unique lipid profiles in comparison with those in plants either treated with heat stress or infested with Hessian fly alone. In addition, a greater impact on lipid metabolism was observed in heat-stressed plants infested with Hessian fly than that in plants treated with either heat stress or Hessian fly alone. Our results suggest that changes in lipid metabolism caused by heat stress may be part of the metabolic pathways through which heat stress suppresses resistance of wheat plants to Hessian fly infestation. © 2014 Entomological Society of America.

  8. Fetuin-A function in systemic mineral metabolism.

    PubMed

    Herrmann, Marietta; Kinkeldey, Anne; Jahnen-Dechent, Willi

    2012-11-01

    Fetuin-A is a liver-derived plasma protein involved in calcified matrix metabolism. Fetuin-A mediates the formation and stabilization of calciprotein particles (CPPs), soluble colloids made of fetuin-A, further serum proteins, and calcium phosphate mineral. CPP formation ensures mineral solubilization and rapid clearance from circulation by macrophages of the mononuclear phagocyte system, thus preventing pathological calcification. Accordingly, low levels of free serum fetuin-A and high serum CPPs are associated with pathological calcification in patients suffering from chronic kidney disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Beyond polarity: functional membrane domains in astrocytes and Müller cells.

    PubMed

    Derouiche, Amin; Pannicke, Thomas; Haseleu, Julia; Blaess, Sandra; Grosche, Jens; Reichenbach, Andreas

    2012-11-01

    Various ependymoglial cells display varying degrees of process specialization, in particular processes contacting mesenchymal borders (pia, blood vessels, vitreous body), or those lining the ventricular surface. Within the neuropil, glial morphology, cellular contacts, and interaction partners are complex. It appears that glial processes contacting neurons, specific parts of neurons, or mesenchymal or ventricular borders are characterized by specialized membranes. We propose a concept of membrane domains in addition to the existing concept of ependymoglial polarity. Such membrane domains are equipped with certain membrane-bound proteins, enabling them to function in their specific environment. This review focuses on Müller cells and astrocytes and discusses exemplary the localization of established glial markers in membrane domains. We distinguish three functional glial membrane domains based on their typical molecular arrangement. The domain of the endfoot specifically displays the complex of dystrophin-associated proteins, aquaporin 4 and the potassium channel Kir4.1. We show that the domain of microvilli and the peripheral glial process in the Müller cell share the presence of ezrin, as do peripheral astrocyte processes. As a third domain, the Müller cell has peripheral glial processes related to a specific subtype of synapse. Although many details remain to be studied, the idea of glial membrane domains may permit new insights into glial function and pathology.

  10. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  11. Polarized cells, polar actions.

    PubMed

    Maddock, J R; Alley, M R; Shapiro, L

    1993-11-01

    The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.

  12. Rodent Models for the Analysis of Tissue Clock Function in Metabolic Rhythms Research

    PubMed Central

    Tsang, Anthony H.; Astiz, Mariana; Leinweber, Brinja; Oster, Henrik

    2017-01-01

    The circadian timing system consists on a distributed network of cellular clocks that together coordinate 24-h rhythms of physiology and behavior. Clock function and metabolism are tightly coupled, from the cellular to the organismal level. Genetic and non-genetic approaches in rodents have been employed to study circadian clock function in the living organism. Due to the ubiquitous expression of clock genes and the intricate interaction between the circadian system and energy metabolism, genetic approaches targeting specific tissue clocks have been used to assess their contribution in systemic metabolic processes. However, special requirements regarding specificity and efficiency have to be met to allow for valid conclusions from such studies. In this review, we provide a brief summary of different approaches developed for dissecting tissue clock function in the metabolic context in rodents, compare their strengths and weaknesses, and suggest new strategies in assessing tissue clock output and the consequences of circadian clock disruption in vivo. PMID:28243224

  13. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    PubMed

    Wang, Xinyan; Li, Wan; Zhang, Yihua; Feng, Yuyan; Zhao, Xilei; He, Yuehan; Zhang, Jun; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  14. High density lipoprotein and metabolic disease: Potential benefits of restoring its functional properties

    PubMed Central

    Klancic, Teja; Woodward, Lavinia; Hofmann, Susanna M.; Fisher, Edward A.

    2016-01-01

    Background High density lipoproteins (HDLs) are thought to be atheroprotective and to reduce the risk of cardiovascular disease (CVD). Besides their antioxidant, antithrombotic, anti-inflammatory, anti-apoptotic properties in the vasculature, HDLs also improve glucose metabolism in skeletal muscle. Scope of the review Herein, we review the functional role of HDLs to improve metabolic disorders, especially those involving insulin resistance and to induce regression of CVD with a particular focus on current pharmacological treatment options as well as lifestyle interventions, particularly exercise. Major conclusions Functional properties of HDLs continue to be considered important mediators to reverse metabolic dysfunction and to regress atherosclerotic cardiovascular disease. Lifestyle changes are often recommended to reduce the risk of CVD, with exercise being one of the most important of these. Understanding how exercise improves HDL function will likely lead to new approaches to battle the expanding burden of obesity and the metabolic syndrome. PMID:27110484

  15. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  16. Polarized Imaging Nephelometer for Field and Aircraft Measurements of Aerosol Phase Function

    NASA Astrophysics Data System (ADS)

    Dolgos, G.; Martins, J.

    2012-12-01

    Aerosols have a significant impact on the radiative balance and water cycle of our planet through influencing atmospheric radiation. Remote sensing of aerosols relies on scattering phase matrix information to retrieve aerosol properties with frequent global coverage. At the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County we developed a new technique to directly measure the aerosol phase function and the degree of linear polarization of the scattered light (two elements of the phase matrix). We designed and built a portable instrument called the Polarized Imaging Nephelometer (PI-Neph). The PI-Neph successfully participated in dozens of flights of the NASA Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project and the Deep Convective Clouds and Chemistry (DC3) project. The ambient aerosol enters the PI-Neph through an inlet and the sample is illuminated by laser light (wavelength of 532 nm); the scattered light is imaged by a stationary wide field of view camera in the scattering angle range of 2° to 178°. (In some cases stray light limited the scattering angle range to 3° to 176°). The PI-Neph measurement of phase function and the AERONET (AErosol RObotic NETwork) retrievals have already been compared in some cases when the aircraft spiraled over AERONET sites, for example at NASA's Wallops Flight Facility, on October 18 2011, as shown in Figure 1. The differences between the PI-Neph and the AERONET retrievals can be attributed to differences between the ambient size distribution and the one sampled inside the aircraft. The data that is resolved with respect to scattering angle is used to compute the volume scattering coefficient. The above mentioned October 18 flight data showed good agreement between the PI-Neph measurements of volume scattering coefficient and the parallel TSI integrating nephelometer measurements. On average the TSI measurements were 1.02 times the PI

  17. Commodity specific rates of temporal discounting: does metabolic function underlie differences in rates of discounting?

    PubMed

    Charlton, Shawn R; Fantino, Edmund

    2008-03-01

    Discounting rates vary as a function of commodity type. Previous studies suggest five potential characteristics of the commodity that could explain these differences: type of reinforcer (primary or secondary), if the commodity is perishable, if the commodity is satiable, if the commodity can be directly consumed, and immediacy of consumption. This paper suggests that these characteristics may best be viewed as related to a more fundamental characteristic: metabolic processing. In order to explore the possibility that metabolic processing underlies changes in discount rates, the difference in discounting between food, money, music CDs, DVDs, and books are compared. Music CDs, DVDs, and books share many characteristics in common with food, including gaining value through a physiological process, but are not directly metabolized. Results are consistent with previous findings of commodity specific discount rates and show that metabolic function plays a role in determining discount rates with those commodities that are metabolized being discounted at a higher rate. These results are interpreted as evidence that the discount rate for different commodities lies along a continuum with those that serve an exchange function rather than a direct function (money) anchoring the low end and those that serve a direct metabolic function capping the high end (food, alcohol, drugs).

  18. Decidual Macrophage Functional Polarization during Abnormal Pregnancy due to Toxoplasma gondii: Role for LILRB4.

    PubMed

    Li, Zhidan; Zhao, Mingdong; Li, Teng; Zheng, Jing; Liu, Xianbing; Jiang, Yuzhu; Zhang, Haixia; Hu, Xuemei

    2017-01-01

    During gestation, Toxoplasma gondii infection produces a series of complications including stillbirths, abortions, and congenital malformations. The inhibitory receptor, LILRB4, which is mainly expressed by professional antigen-presenting cells (especially macrophages and dendritic cells) may play an important immune-regulatory role at the maternal-fetal interface. To assess the role of LILRB4 during T. gondii infection, LILRB4(-/-) and T. gondii infected pregnant mouse models were established. Further, human primary-decidual macrophages were treated with anti-LILRB4 neutralizing antibody and then infected with T. gondii. These in vivo and in vitro models were used to explore the role of LILRB4 in T. gondii-mediated abnormal pregnancy outcomes. The results showed that abnormal pregnancy outcomes were more prevalent in LILRB4(-/-) infected pregnant mice than in wild-type infected pregnant mice. In subsequent experiments, expression levels of LILRB4, M1, and M2 membrane-functional molecules, arginine metabolic enzymes, and related cytokines were assessed in uninfected, infected, LILRB4-neutralized infected, and LILRB4(-/-) infected models. The results demonstrated T. gondii infection to downregulate LILRB4 on decidual macrophages, which strengthened M1 activation functions and weakened M2 tolerance functions by changing M1 and M2 membrane molecule expression, synthesis of arginine metabolic enzymes, and cytokine secretion profiles. These changes contributed to abnormal pregnancy outcomes. The results of this study provide not only a deeper understanding of the immune mechanisms operational during abnormal pregnancy, induced by T. gondii infection, but also identify potential avenues for therapeutic and preventive treatment of congenital toxoplasmosis.

  19. Global and local reactivity of simple substituted nitrenes and phosphinidenes within the spin-polarized density functional theory framework

    NASA Astrophysics Data System (ADS)

    Rincón, Elizabeth; Pérez, Patricia; Chamorro, Eduardo

    2007-11-01

    The local reactivity proclivities in a series of simple substituted nitrenes (N-X) and phosphinidenes (P-X) have been explored for the lowest-lying singlet and triplet electronic states within the framework of spin-polarized density functional theory (SP-DFT). Linear correlations have been found between both the global and local philicities for spin polarization and the vertical singlet-triplet energy gaps. The accumulation and depletion of the electron or spin density can be directly related to the electronegativity of the substituent atoms. The local analysis has been achieved on the basis of a recent implementation of condensed-to-site SP-DFT Fukui functions.

  20. Functional role of polar amino acid residues in Na+/H+ exchangers.

    PubMed Central

    Wiebe, C A; Dibattista, E R; Fliegel, L

    2001-01-01

    Na(+)/H(+) exchangers are a family of ubiquitous membrane proteins. In higher eukaryotes they regulate cytosolic pH by removing an intracellular H(+) in exchange for an extracellular Na(+). In yeast and Escherichia coli, Na(+)/H(+) exchangers function in the opposite direction to remove intracellular Na(+) in exchange for extracellular H(+). Na(+)/H(+) exchangers display an internal pH-sensitivity that varies with the different antiporter types. Only recently have investigations examined the amino acids involved in pH-sensitivity and in cation binding and transport. Histidine residues are good candidates for H(+)-sensing amino acids, since they can ionize within the physiological pH range. Histidine residues have been shown to be important in the function of the E. coli Na(+)/H(+) exchanger NhaA and in the yeast Na(+)/H(+) exchanger sod2. In E. coli, His(225) of NhaA may function to interact with, or regulate, the pH-sensory region of NhaA. In sod2, His(367) is also critical to transport and may be a functional analogue of His(225) of NhaA. Histidine residues are not critical for the function of the mammalian Na(+)/H(+) exchanger, although an unusual histidine-rich sequence of the C-terminal tail has some influence on activity. Other amino acids involved in cation binding and transport by Na(+)/H(+) exchangers are only beginning to be studied. Amino acids with polar side chains such as aspartate and glutamate have been implicated in transport activity of NhaA and sod2, but have not been studied in the mammalian Na(+)/H(+) exchanger. Further studies are needed to elucidate the mechanisms involved in pH-sensitivity and cation binding and transport by Na(+)/H(+) exchangers. PMID:11415429

  1. Metabolic and Demographic Feedbacks Shape the Emergent Spatial Structure and Function of Microbial Communities

    PubMed Central

    Estrela, Sylvie; Brown, Sam P.

    2013-01-01

    Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships), and species spatial organization (structural relationships) are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource) is traded for detoxification (service) and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition), and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies. PMID:24385891

  2. A decomposition of northern polar external magnetic fields using the method of Empirical Orthogonal Functions

    NASA Astrophysics Data System (ADS)

    Shore, Robert; Freeman, Mervyn; Wild, James; Dorrian, Gareth; Gjerloev, Jesper

    2015-04-01

    We describe our application of the Empirical Orthogonal Function (EOF) method to characterise and separate contributions to the variability of the Earth's external magnetic field (EMF), using ground magnetometer measurements. The method (commonly employed in meteorology) analyses the spatio-temporal co-variance of the data to decompose it into dynamically distinct 'modes'. A small number of these modes can cumulatively represent most of the variance of the original data, with the additional aim that a physical meaning can be given to each mode. Since the basis vectors of the decomposition are defined by the data, the EOF method resolves the spatial and temporal structure of the EMF without a priori assumptions, in contrast to other decomposition methods such as Fourier and spherical harmonic expansions. We present the results from a case study focusing on northern high latitudes throughout February 2001, using data from 97 observatories and 78 variometers collated by SuperMAG. We have devised a new baseline in order to make the observatory and variometer data comparable, and subsequently binned the data in an inertial frame. Despite the sparse and irregular station distribution, a complete spatial morphology of the EMF is achieved using a self-consistent iterative infill method. The majority (67%) of the variance in our case-study is described by the first four modes. From the spatial morphology and a comparison of the temporal behaviour of these four modes alongside independent measures, we demonstrate that the leading two modes define the well-known DP2 (Disturbance-Polar 2) and DP1 (Disturbance-Polar 1) current systems, and the other two modes describe the spatial motion of the DP1 and DP2 systems. This practical demonstration is a prelude to producing a model of EMF variations over a whole solar cycle using the full SuperMAG archive from 1996 to 2008.

  3. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells.

    PubMed

    Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A

    2017-08-01

    The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na(+)) and, indirectly, serum potassium (K(+)) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ((22)Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive (22)Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K(+), the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. (22)Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.

  4. Microbial community assembly and metabolic function during mammalian corpse decomposition

    SciTech Connect

    Metcalf, J. L.; Xu, Z. Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E. R.; Song, S. J.; Amir, A.; Larsen, P.; Sangwan, N.; Haarmann, D.; Humphrey, G. C.; Ackermann, G.; Thompson, L. R.; Lauber, C.; Bibat, A.; Nicholas, C.; Gebert, M. J.; Petrosino, J. F.; Reed, S. C.; Gilbert, J. A.; Lynne, A. M.; Bucheli, S. R.; Carter, D. O.; Knight, R.

    2015-12-10

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  5. Biosynthesis, function and metabolic engineering of plant volatile organic compounds.

    PubMed

    Dudareva, Natalia; Klempien, Antje; Muhlemann, Joëlle K; Kaplan, Ian

    2013-04-01

    Plants synthesize an amazing diversity of volatile organic compounds (VOCs) that facilitate interactions with their environment, from attracting pollinators and seed dispersers to protecting themselves from pathogens, parasites and herbivores. Recent progress in -omics technologies resulted in the isolation of genes encoding enzymes responsible for the biosynthesis of many volatiles and contributed to our understanding of regulatory mechanisms involved in VOC formation. In this review, we largely focus on the biosynthesis and regulation of plant volatiles, the involvement of floral volatiles in plant reproduction as well as their contribution to plant biodiversity and applications in agriculture via crop-pollinator interactions. In addition, metabolic engineering approaches for both the improvement of plant defense and pollinator attraction are discussed in light of methodological constraints and ecological complications that limit the transition of crops with modified volatile profiles from research laboratories to real-world implementation.

  6. Complex pectin metabolism by gut bacteria reveals novel catalytic functions

    PubMed Central

    Baslé, Arnaud; Gray, Joseph; Venditto, Immacolata; Briggs, Jonathon; Zhang, Xiaoyang; Labourel, Aurore; Terrapon, Nicolas; Buffetto, Fanny; Nepogodiev, Sergey; Xiao, Yao; Field, Robert A.; Zhu, Yanping; O’Neil, Malcolm A.; Urbanowicz, Breeana R.; York, William S.; Davies, Gideon J.; Abbott, D. Wade; Ralet, Marie-Christine; Martens, Eric C.; Henrissat, Bernard; Gilbert, Harry J.

    2017-01-01

    Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and backbone deconstruction are coordinated, to overcome steric constraints, and that degradation reveals previously undiscovered enzyme families and novel catalytic activities. The degradome informs revision of the current structural model of RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycans in the human diet. PMID:28329766

  7. Microbial community assembly and metabolic function during mammalian corpse decomposition.

    PubMed

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-08

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  8. Microbial community assembly and metabolic function during mammalian corpse decomposition

    USGS Publications Warehouse

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  9. Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function

    PubMed Central

    Alves, Marco G.; Martins, Ana D.; Cavaco, José E.; Socorro, Sílvia; Oliveira, Pedro F.

    2013-01-01

    Blood testis barrier (BTB) is one of the tightest blood-barriers controlling the entry of substances into the intratubular fluid. Diabetes Mellitus (DM) is an epidemic metabolic disease concurrent with falling fertility rates, which provokes severe detrimental BTB alterations. It induces testicular alterations, disrupting the metabolic cooperation between the cellular constituents of BTB, with dramatic consequences on sperm quality and fertility. As Sertoli cells are involved in the regulation of spermatogenesis, providing nutritional support for germ cells, any metabolic alteration in these cells derived from DM may be responsible for spermatogenesis disruption, playing a crucial role in fertility/subfertility associated with this pathology. These cells have a glucose sensing machinery that reacts to hormonal fluctuations and several mechanisms to counteract hyper/hypoglycemic events. The role of DM on Sertoli/BTB glucose metabolism dynamics and the metabolic molecular mechanisms through which DM and insulin deregulation alter its functioning, affecting male reproductive potential will be discussed. PMID:24665384

  10. Structure and function relationships of proteins based on polar profile: a review.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Uversky, Vladimir N

    2016-01-01

    Proteins in the post-genome era impose diverse research challenges, the main are the understanding of their structure-function mechanism, and the growing need for new pharmaceutical drugs, particularly antibiotics that help clinicians treat the ever- increasing number of Multidrug-Resistant Organisms (MDROs). Although, there is a wide range of mathematical-computational algorithms to satisfy the demand, among them the Quantitative Structure-Activity Relationship algorithms that have shown better performance using a characteristic training data of the property searched; their performance has stagnated regardless of the number of metrics they evaluate and their complexity. This article reviews the characteristics of these metrics, and the need to reconsider the mathematical structure that expresses them, directing their design to a more comprehensive algebraic structure. It also shows how the main function of a protein can be determined by measuring the polarity of its linear sequence, with a high level of accuracy, and how such exhaustive metric stands as a "fingerprint" that can be applied to scan the protein regions to obtain new pharmaceutical drugs, and thus to establish how the singularities led to the specialization of the protein groups known today.

  11. Psychosocial and metabolic function by smoking status in individuals with binge eating disorder and obesity.

    PubMed

    Udo, Tomoko; White, Marney A; Barnes, Rachel D; Ivezaj, Valentina; Morgan, Peter; Masheb, Robin M; Grilo, Carlos M

    2016-02-01

    Individuals with binge eating disorder (BED) report smoking to control appetite and weight. Smoking in BED is associated with increased risk for comorbid psychiatric disorders, but its impact on psychosocial functioning and metabolic function has not been evaluated. Participants were 429 treatment-seeking adults (72.4% women; mean age 46.2±11.0years old) with BED comorbid with obesity. Participants were categorized into current smokers (n=66), former smokers (n=145), and never smokers (n=218). Smoking status was unrelated to most historical eating/weight variables and to current eating disorder psychopathology. Smoking status was associated with psychiatric, psychosocial, and metabolic functioning. Compared with never smokers, current smokers were more likely to meet lifetime diagnostic criteria for alcohol (OR=5.51 [95% CI=2.46-12.33]) and substance use disorders (OR=7.05 [95% CI=3.37-14.72]), poorer current physical quality of life, and increased risk for metabolic syndrome (OR=1.80 [95% CI=0.97-3.35]) and related metabolic risks (reduced HDL, elevated total cholesterol). On the other hand, the odds of meeting criteria for lifetime psychiatric comorbidity or metabolic abnormalities were not significantly greater in former smokers, relative to never smokers. Our findings suggest the importance of promoting smoking cessation in treatment-seeking patients with BED and obesity for its potential long-term implications for psychiatric and metabolic functioning.

  12. Polarized transfer functions of the ocean surface for above-surface determination of the vector submarine light field.

    PubMed

    Foster, Robert; Gilerson, Alexander

    2016-11-20

    A method is developed to determine the underwater polarized light field from above sea surface observations. A hybrid approach combining vector radiative transfer simulations and the Monte Carlo method is used to determine the transfer functions of polarized light for wind-driven ocean surfaces. Transfer functions for surface-reflected skylight and upward transmission of light through the sea surface are presented for many common viewing and solar geometries for clear-sky conditions. Sensitivity of reflection matrices to environmental conditions is examined and can vary up to 50% due to wind speed, 25% due to atmospheric aerosol load, and 10% due to radiometer field-of-view. Scalar transmission is largely independent of water type and varies a few percent with wind speed, while polarized components can change up to 10% in high winds. Considerations for determining the water-leaving radiance (scalar or vector) are discussed.

  13. mTORC1-dependent metabolic reprogramming is a prerequisite for Natural Killer cell effector function

    PubMed Central

    Donnelly, Raymond P.; Loftus, Róisín M.; Keating, Sinéad E.; Liou, Kevin T.; Biron, Christine A.; Gardiner, Clair M.; Finlay, David K.

    2014-01-01

    The mammalian target of rapamcyin complex 1 (mTORC1) is a key regulator of cellular metabolism and also has fundamental roles in controlling immune responses. Emerging evidence suggests that these two functions of mTORC1 are integrally linked. However, little is known regarding mTORC1 function in controlling the metabolism and function of natural killer (NK) cells, lymphocytes that play key roles in anti-viral and anti-tumour immunity. This study investigated the hypothesis that mTORC1-controlled metabolism underpins normal NK cell pro-inflammatory function. We demonstrate that mTORC1 is robustly stimulated in NK cells activated in vivo and in vitro. This mTORC1 activity is required for the production of the key NK cell effector molecules IFNγ, important in delivering antimicrobial and immunoregulatory functions, and granzyme B, a critical component of NK cell cytotoxic granules. The data reveal that NK cells undergo dramatic metabolic reprogramming upon activation, up-regulating rates of glucose uptake and glycolysis, and that mTORC1 activity is essential for attaining this elevated glycolytic state. Directly limiting the rate of glycolysis is sufficient to inhibit IFNγ production and granzyme B expression. This study provides the highly novel insight that mTORC1-mediated metabolic reprogramming of NK cells is a prerequisite for the acquisition of normal effector functions. PMID:25261477

  14. Is self-reported physical functioning associated with incident cardiometabolic abnormalities or the metabolic syndrome?

    PubMed

    Ylitalo, Kelly R; Karvonen-Gutierrez, Carrie; McClure, Candace; El Khoudary, Samar R; Jackson, Elizabeth A; Sternfeld, Barbara; Harlow, Siobán D

    2016-05-01

    Physical functioning may be an important pre-clinical marker of chronic disease, used as a tool to identify patients at risk for future cardiometabolic abnormalities. This study evaluated if self-reported physical functioning was associated with the development of cardiometabolic abnormalities or their clustering (metabolic syndrome) over time. Participants (n = 2,254) from the Study of Women's Health Across the Nation who reported physical functioning on the Short Form health survey and had a metabolic syndrome assessment (elevated fasting glucose, blood pressure, triglycerides and waist circumference; reduced HDL cholesterol) in 2000 were included. Discrete survival analysis was used to assess the 10-year risk of developing metabolic syndrome or a syndrome component through 2010. At baseline, the prevalence of metabolic syndrome was 22.0%. Women with substantial limitations (OR = 1.60; 95% CI: 1.12, 2.29) in physical functioning were significantly more likely to develop the metabolic syndrome compared with women reporting no limitations. Self-reported physical functioning was significantly associated with incident hypertension and increased waist circumference. Simple screening tools for cardiometabolic risk in clinical settings are needed. Self-reported physical functioning assessments are simple tools that may allow healthcare providers to more accurately predict the course of chronic conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Effects of metabolic syndrome on the functional outcomes of corticosteroid injection for De Quervain tenosynovitis.

    PubMed

    Roh, Y H; Noh, J H; Gong, H S; Baek, G H

    2017-06-01

    Metabolic syndrome is a constellation of medical conditions that arise from insulin resistance and abnormal adipose deposition and function. In patients with metabolic syndrome and De Quervain tenosynovitis this might affect the outcome of treatment by local corticosteroid injection. A total of 64 consecutive patients with De Quervain tenosynovitis and metabolic syndrome treated with corticosteroid injection were age- and sex-matched with 64 control patients without metabolic syndrome. The response to treatment, including visual analogue scale score for pain, objective findings consistent with De Quervain tenosynovitis (tenderness at first dorsal compartment, Finkelstein test result), and Disability of the Arm, Shoulder, and Hand score were assessed at 6, 12, and 24 weeks follow-up. Treatment failure was defined as persistence of symptoms or surgical intervention. Prior to treatment, patients with metabolic syndrome had mean initial pain visual analogue scale and Disability of the Arm, Shoulder, and Hand scores similar to those in the control group. The proportion of treatment failure in the metabolic syndrome group (43%) was significantly higher than that in the control group (20%) at 6 months follow-up. The pain visual analogue scale scores in the metabolic syndrome group were higher than the scores in the control group at the 12- and 24-week follow-ups. The Disability of the Arm, Shoulder, and Hand scores of the metabolic syndrome group were higher (more severe symptoms) than those of the control group at the 12- and 24-week follow-ups. Although considerable improvements in symptom severity and hand function will likely occur in patients with metabolic syndrome, corticosteroid injection for De Quervain tenosynovitis is not as effective in these patients compared with age- and sex-matched controls in terms of functional outcomes and treatment failure. III.

  16. Obesity and Metabolic Syndrome Affect the Cholinergic Transmission a nd Cognitive Functions.

    PubMed

    Martinelli, Ilenia; Tomassoni, Daniele; Moruzzi, Michele; Traini, Enea; Amenta, Francesco; Tayebati, Seyed Khosrow

    2017-01-01

    Worldwide, at least 2.8 million people die each year as a result of being overweight or obese. Obesity leads to metabolic syndrome, a pathological condition characterized by adverse metabolic effects on blood pressure, cholesterol, triglycerides and insulin resistance. Population- based investigations have suggested that obesity and metabolic syndrome may be associated with poorer cognitive performance. A structured search of bibliographic source (PubMed) was undertaken. The following terms "inflammation and obesity and brain", "cholinergic system and obesity", "cholinergic system and metabolic syndrome", "Cognitive impairment and obesity" and "metabolic syndrome and brain" were used as search strings. Over 200 papers, mainly published in the past 10 years were analysed. The major results regarded keyword "metabolic syndrome and brain" followed by, "Cognitive impairment and obesity", "inflammation and obesity and brain", "cholinergic system and obesity" and "cholinergic system and metabolic syndrome". Most papers were pre-clinical but, in general, they were inhomogeneous. Therefore, the results were cited according their contribution to clarify the molecular involvement of obesity and/or metabolic syndrome in cholinergic impairment. This review focuses on the correlation between brain cholinergic system alterations and high-fat diet, describing the involvement of cholinergic system in inflammatory processes related to metabolic syndrome and obesity, which may lead to cognitive decline. Metabolic syndrome has been suggested as a risk factor for cerebrovascular diseases and has been associated with cognitive impairment in different functional brain domains. Preclinical and clinical studies have identified the cholinergic system as a specific target of metabolic syndrome and obesity. The modifications of cholinergic neurotransmission and its involvement in neuro-inflammation may be related to cognitive impairment that affects obese patients. Copyright© Bentham

  17. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  18. Macrophages and Mitochondria: A Critical Interplay Between Metabolism, Signaling, and the Functional Activity.

    PubMed

    Tur, J; Vico, T; Lloberas, J; Zorzano, A; Celada, A

    2017-01-01

    Macrophages are phagocytic cells that participate in a broad range of cellular functions and they are key regulators of innate immune responses and inflammation. Mitochondria are highly dynamic endosymbiotic organelles that play key roles in cellular metabolism and apoptosis. Mounting evidence suggests that mitochondria are involved in the interplay between metabolism and innate immune responses. The ability of these organelles to alter the metabolic profile of a cell, thereby allowing an appropriate response to each situation, is crucial for the correct establishment of immune responses. Furthermore, mitochondria act as scaffolds for many proteins involved in immune signaling pathways and as such they are able to modulate the function of these proteins. Finally, mitochondria release molecules, such as reactive oxygen species, which directly regulate the immune response. In summary, mitochondria can be considered as core components in the regulation of innate immune signaling. Here we discuss the intricate relationship between mitochondria, metabolism, intracellular signaling, and innate immune responses in macrophages.

  19. Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance.

    PubMed

    Clavel, Thomas; Desmarchelier, Charles; Haller, Dirk; Gérard, Philippe; Rohn, Sascha; Lepage, Patricia; Daniel, Hannelore

    2014-07-01

    The trillions of bacterial cells that colonize the mammalian digestive tract influence both host physiology and the fate of dietary compounds. Gnotobionts and fecal transplantation have been instrumental in revealing the causal role of intestinal bacteria in energy homeostasis and metabolic dysfunctions such as type-2 diabetes. However, the exact contribution of gut bacterial metabolism to host energy balance is still unclear and knowledge about underlying molecular mechanisms is scant. We have previously characterized cecal bacterial community functions and host responses in diet-induced obese mice using omics approaches. Based on these studies, we here discuss issues on the relevance of mouse models, give evidence that the metabolism of cholesterol-derived compounds by gut bacteria is of particular importance in the context of metabolic disorders and that dominant species of the family Coriobacteriaceae are good models to study these functions.

  20. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle

    PubMed Central

    Kinsey, Stephen T.; Locke, Bruce R.; Dillaman, Richard M.

    2011-01-01

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. PMID:21177946

  1. [L-carnitine: metabolism, functions and value in pathology].

    PubMed

    Jacob, C; Belleville, F

    1992-11-01

    Although L-carnitine is not considered as an essential nutrient, endogenous synthesis may fail to ensure adequate L-carnitine levels in neonates, especially those born prematurely. Free L-carnitine is found in many foods, mainly those from animal sources. Absorption of free L-carnitine is virtually complete. Lysine and methionine are necessary ingredients for the biosynthesis of L-carnitine. All tissues in the body can produce deoxy-carnitine but, in humans, the enzyme that enables hydroxylation of deoxy-carnitine to carnitine is found only in the liver, brain and kidneys. Complex exchanges of carnitine and its precursors occur between tissues. Muscles take up carnitine from the bloodstream and contain most of the body carnitine stores. L-carnitine and L-carnitine esters are eliminated mainly through the kidneys, which may play a central role in the homeostasis of this compound. Thyroid hormones adrenocorticotrophin (ACTH), and diet all influence urinary excretion of L-carnitine. Free L-carnitine can be assayed in plasma and urine and is occasionally measured in muscle biopsy specimens. Plasma L-carnitine levels may not accurately reflect L-carnitine body stores. L-carnitine ensures transfer of fatty acids to the mitochondria where they undergo oxidation. This process is associated with production of short-chain acylcarnitine which exit from the mitochondria or peroxisomes. L-carnitine ensures regeneration of coenzyme A and is thus involved in energy metabolism. L-carnitine also ensures elimination of xenobiotic substances. Carnitine deficiencies are common. Currently, these deficiencies are classified into two groups. In deficiencies with myopathy, only the muscles are deficient in L-carnitine, perhaps as a result of a primary anomaly of the L-carnitine transport system in muscles. In systemic deficiencies, L-carnitine levels are low in the plasma and in all body tissues. Systemic L-carnitine deficiencies are usually the result of a variety of disease states

  2. A worm of one's own: how helminths modulate host adipose tissue function and metabolism.

    PubMed

    Guigas, Bruno; Molofsky, Ari B

    2015-09-01

    Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level.

  3. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets.

    PubMed

    Fuchs, Ann-Kathrin; Syrovets, Tatiana; Haas, Karina A; Loos, Cornelia; Musyanovych, Anna; Mailänder, Volker; Landfester, Katharina; Simmet, Thomas

    2016-04-01

    Macrophages are key regulators of innate and adaptive immune responses. Exposure to microenvironmental stimuli determines their polarization into proinflammatory M1 and anti-inflammatory M2 macrophages. M1 exhibit high expression of proinflammatory TNF-α and IL-1β, and M2 promote tissue repair, but likewise support tumor growth and cause immune suppression by expressing IL-10. Thus, the M1/M2 balance critically determines tissue homeostasis. By using carboxyl- (PS-COOH) and amino-functionalized (PS-NH2) polystyrene nanoparticles, the effects of surface decoration on the polarization of human macrophages were investigated. The nanoparticles did not compromise macrophage viability nor did they affect the expression of the M1 markers CD86, NOS2, TNF-α, and IL-1β. By contrast, in M2, both nanoparticles impaired expression of scavenger receptor CD163 and CD200R, and the release of IL-10. PS-NH2 also inhibited phagocytosis of Escherichia coli by both, M1 and M2. PS-COOH did not impair phagocytosis by M2, but increased protein mass in M1 and M2, TGF-β1 release by M1, and ATP levels in M2. Thus, nanoparticles skew the M2 macrophage polarization without affecting M1 markers. Given the critical role of the M1 and M2 polarization for the immunological balance in patients with cancer or chronic inflammation, functionalized nanoparticles might serve as tools for reprogramming the M1/M2 polarization.

  4. Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis.

    PubMed

    Zvonic, Sanjin; Floyd, Z Elizabeth; Mynatt, Randall L; Gimble, Jeffrey M

    2007-03-01

    Circadian oscillators play an indispensable role in the coordination of physiological processes with the cyclic changes in the physical environment. A significant number of recent clinical and molecular studies suggest that circadian biology may play an important role in the regulation of adipose and other metabolic tissue functions. In this discussion, we present the hypothesis that circadian dysfunction may be involved in the pathogenesis of obesity, type 2 diabetes, and the metabolic syndrome.

  5. Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism.

    PubMed

    Espinosa-Jeffrey, Araceli; Nguyen, Kevin; Kumar, Shalini; Toshimasa, Ochiai; Hirose, Ryuji; Reue, Karen; Vergnes, Laurent; Kinchen, Jason; Vellis, Jean de

    2016-12-01

    The primary energy sources of mammalian cells are proteins, fats, and sugars that are processed by well-known biochemical mechanisms that have been discovered and studied in 1G (terrestrial gravity). Here we sought to determine how simulated microgravity (sim-µG) impacts both energy and lipid metabolism in oligodendrocytes (OLs), the myelin-forming cells in the central nervous system. We report increased mitochondrial respiration and increased glycolysis 24 hr after exposure to sim-µG. Moreover, examination of the secretome after 3 days' exposure of OLs to sim-µG increased the Krebs cycle (Krebs and Weitzman, ) flux in sim-µG. The secretome study also revealed a significant increase in the synthesis of fatty acids and complex lipids such as 1,2-dipalmitoyl-GPC (5.67); lysolipids like 1-oleoyl-GPE (4.48) were also increased by microgravity. Although longer-chain lipids were not observed in this study, it is possible that at longer time points OLs would have continued moving forward toward the synthesis of lipids that constitute myelin. For centuries, basic developmental biology research has been the pillar of an array of discoveries that have led to clinical applications; we believe that studies using microgravity will open new avenues to our understanding of the brain in health and disease-in particular, to the discovery of new molecules and mechanisms impossible to unveil while in 1G. © 2016 Wiley Periodicals, Inc.

  6. L-carnitine--metabolic functions and meaning in humans life.

    PubMed

    Pekala, Jolanta; Patkowska-Sokoła, Bozena; Bodkowski, Robert; Jamroz, Dorota; Nowakowski, Piotr; Lochyński, Stanisław; Librowski, Tadeusz

    2011-09-01

    L-Carnitine is an endogenous molecule involved in fatty acid metabolism, biosynthesized within the human body using amino acids: L-lysine and L-methionine, as substrates. L-Carnitine can also be found in many foods, but red meats, such as beef and lamb, are the best choices for adding carnitine into the diet. Good carnitine sources also include fish, poultry and milk. Essentially, L-carnitine transports the chains of fatty acids into the mitochondrial matrix, thus allowing the cells to break down fat and get energy from the stored fat reserves. Recent studies have started to shed light on the beneficial effects of L-carnitine when used in various clinical therapies. Because L-carnitine and its esters help reduce oxidative stress, they have been proposed as a treatment for many conditions, i.e. heart failure, angina and weight loss. For other conditions, such as fatigue or improving exercise performance, L-carnitine appears safe but does not seem to have a significant effect. The presented review of the literature suggests that continued studies are required before L-carnitine administration could be recommended as a routine procedure in the noted disorders. Further research is warranted in order to evaluate the biochemical, pharmacological, and physiological determinants of the response to carnitine supplementation, as well as to determine the potential benefits of carnitine supplements in selected categories of individuals who do not have fatty acid oxidation defects.

  7. Metabolic classification of microbial genomes using functional probes

    PubMed Central

    2012-01-01

    Background Microorganisms able to grow under artificial culture conditions comprise only a small proportion of the biosphere's total microbial community. Until recently, scientists have been unable to perform thorough analyses of difficult-to-culture microorganisms due to limitations in sequencing technology. As modern techniques have dramatically increased sequencing rates and rapidly expanded the number of sequenced genomes, in addition to traditional taxonomic classifications which focus on the evolutionary relationships of organisms, classifications of the genomes based on alternative points of view may help advance our understanding of the delicate relationships of organisms. Results We have developed a proteome-based method for classifying microbial species. This classification method uses a set of probes comprising short, highly conserved amino acid sequences. For each genome, in silico translation is performed to obtained its proteome, based on which a probe-set frequency pattern is generated. Then, the probe-set frequency patterns are used to cluster the proteomes/genomes. Conclusions Features of the proposed method include a high running speed in challenge of a large number of genomes, and high applicability for classifying organisms with incomplete genome sequences. Moreover, the probe-set clustering method is sensitive to the metabolic phenotypic similarities/differences among species and is thus supposed potential for the classification or differentiation of closely-related organisms. PMID:22537274

  8. Plasma protein regulation of platelet function and metabolism.

    PubMed

    Hansen, M S; Bang, N U

    1979-04-02

    This reviews summarizes our evidence suggesting that the plasma protein enviroment influences platelet aggregation potential and metabolic activity. Cationic proteins are capable of restoring the aggreation potential of washed human platelets. The aggregation restoring effect of gamma globulin is inhibited by more anionic proteins in subfractions of Cohn fraction IV and fractions V and VI. Artificial enhancement of the net negative charge of plasma proteins through acylation produces derivatives capable of inhibiting platelet rich plasma. The oxygen consumption of washed human platelets is lower than in platelet rich plasma while the lactate production is identical. Autologus plasma, albumin or IgG immunoglobulin restores the oxygen consumption of washed platelets to values comparable to those obtained for platelet rich plasma, while the lactate production is unaffected. Fibrinogen on IgA myeloma protein increases the lactate production, but not the oxygen consumption. Cyclic AMP levels are considerably lower in washed platelets than in platelet rich plasma. Gamma globulin and albumin causes a futher decrease, which is progressive with time. Fibrinogen causes no change in platelet cyclic AMP content. It is suggested that these observations may in part be explained by the equilibriun between anionic and cationic proteins in the platelet microenvironment. This hypothesis appears applicable in certain situations.

  9. Oligosaccharides in human milk: structural, functional, and metabolic aspects.

    PubMed

    Kunz, C; Rudloff, S; Baier, W; Klein, N; Strobel, S

    2000-01-01

    Research on human milk oligosaccharides (HMOs) has received much attention in recent years. However, it started about a century ago with the observation that oligosaccharides might be growth factors for a so-called bifidus flora in breast-fed infants and extends to the recent finding of cell adhesion molecules in human milk. The latter are involved in inflammatory events recognizing carbohydrate sequences that also can be found in human milk. The similarities between epithelial cell surface carbohydrates and oligosaccharides in human milk strengthen the idea that specific interactions of those oligosaccharides with pathogenic microorganisms do occur preventing the attachment of microbes to epithelial cells. HMOs may act as soluble receptors for different pathogens, thus increasing the resistance of breast-fed infants. However, we need to know more about the metabolism of oligosaccharides in the gastrointestinal tract. How far are oligosaccharides degraded by intestinal enzymes and does oligosaccharide processing (e.g. degradation, synthesis, and elongation of core structures) occur in intestinal epithelial cells? Further research on HMOs is certainly needed to increase our knowledge of infant nutrition as it is affected by complex oligosaccharides.

  10. Myocardial function after polarizing versus depolarizing cardiac arrest with blood cardioplegia in a porcine model of cardiopulmonary bypass†

    PubMed Central

    Aass, Terje; Stangeland, Lodve; Moen, Christian Arvei; Salminen, Pirjo-Riitta; Dahle, Geir Olav; Chambers, David J.; Markou, Thomais; Eliassen, Finn; Urban, Malte; Haaverstad, Rune; Matre, Knut; Grong, Ketil

    2016-01-01

    OBJECTIVES Potassium-based depolarizing St Thomas' Hospital cardioplegic solution No 2 administered as intermittent, oxygenated blood is considered as a gold standard for myocardial protection during cardiac surgery. However, the alternative concept of polarizing arrest may have beneficial protective effects. We hypothesize that polarized arrest with esmolol/adenosine/magnesium (St Thomas' Hospital Polarizing cardioplegic solution) in cold, intermittent oxygenated blood offers comparable myocardial protection in a clinically relevant animal model. METHODS Twenty anaesthetized young pigs, 42 ± 2 (standard deviation) kg on standardized tepid cardiopulmonary bypass (CPB) were randomized (10 per group) to depolarizing or polarizing cardiac arrest for 60 min with cardioplegia administered in the aortic root every 20 min as freshly mixed cold, intermittent, oxygenated blood. Global and local baseline and postoperative cardiac function 60, 120 and 180 min after myocardial reperfusion was evaluated with pressure–conductance catheter and strain by Tissue Doppler Imaging. Regional tissue blood flow, cleaved caspase-3 activity, GRK2 phosphorylation and mitochondrial function and ultrastructure were evaluated in myocardial tissue samples. RESULTS Left ventricular function and general haemodynamics did not differ between groups before CPB. Cardiac asystole was obtained and maintained during aortic cross-clamping. Compared with baseline, heart rate was increased and left ventricular end-systolic and end-diastolic pressures decreased in both groups after weaning. Cardiac index, systolic pressure and radial peak systolic strain did not differ between groups. Contractility, evaluated as dP/dtmax, gradually increased from 120 to 180 min after declamping in animals with polarizing cardioplegia and was significantly higher, 1871 ± 160 (standard error) mmHg/s, compared with standard potassium-based cardioplegic arrest, 1351 ± 70 mmHg/s, after 180 min of reperfusion (P = 0

  11. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance

    PubMed Central

    Dietrich, Christoph G; Götze, Oliver; Geier, Andreas

    2016-01-01

    Liver cirrhosis is the common endpoint of many hepatic diseases and represents a relevant risk for liver failure and hepatocellular carcinoma. The progress of liver fibrosis and cirrhosis is accompanied by deteriorating liver function. This review summarizes the regulatory and functional changes in phase I and phase II metabolic enzymes as well as transport proteins and provides an overview regarding lipid and glucose metabolism in cirrhotic patients. Interestingly, phase I enzymes are generally downregulated transcriptionally, while phase II enzymes are mostly preserved transcriptionally but are reduced in their function. Transport proteins are regulated in a specific way that resembles the molecular changes observed in obstructive cholestasis. Lipid and glucose metabolism are characterized by insulin resistance and catabolism, leading to the disturbance of energy expenditure and wasting. Possible non-invasive tests, especially breath tests, for components of liver metabolism are discussed. The heterogeneity and complexity of changes in hepatic metabolism complicate the assessment of liver function in individual patients. Additionally, studies in humans are rare, and species differences preclude the transferability of data from rodents to humans. In clinical practice, some established global scores or criteria form the basis for the functional evaluation of patients with liver cirrhosis, but difficult treatment decisions such as selection for transplantation or resection require further research regarding the application of existing non-invasive tests and the development of more specific tests. PMID:26755861

  12. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions.

    PubMed

    Saas, Philippe; Varin, Alexis; Perruche, Sylvain; Ceroi, Adam

    2017-01-01

    There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC), another type of innate immune cells. These cells are the main type I interferon (IFN) producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6) or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β). Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis), as well as lipid metabolism (including both cholesterol and fatty acid metabolism) may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR) 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR]) in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment) in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor) may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations where PDC

  13. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions

    PubMed Central

    Saas, Philippe; Varin, Alexis; Perruche, Sylvain; Ceroi, Adam

    2017-01-01

    There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC), another type of innate immune cells. These cells are the main type I interferon (IFN) producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6) or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β). Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis), as well as lipid metabolism (including both cholesterol and fatty acid metabolism) may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR) 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR]) in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment) in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor) may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations where PDC

  14. Physiological Interactions of Nanoparticles in Energy Metabolism, Immune Function and Their Biosafety: A Review.

    PubMed

    Gomes, Antony; Sengupta, Jayeeta; Datta, Poulami; Ghosh, Sourav; Gomes, Aparna

    2016-01-01

    Nanoparticles owing to their unique physico-chemical properties have found its application in various biological processes, including metabolic pathways taking place within the body. This review tried to focus the involvement of nanoparticles in metabolic pathways and its influence in the energy metabolism, a fundamental criteria for the survival and physiological activity of living beings. The human body utilizes energy derived from food resources through a series of biochemical reactions involving several enzymes, co-factors (metals, non-metals, vitamins etc.) through the metabolic pathways (glycolysis, tri carboxylic acid cycle, oxidative phosphorylation, electron transport chain, etc.) in cellular system. Energy metabolism is also involved in the immune networking of the body for self defence and against pathophysiology. The immune system comprises of different cells and tissues, bioactive molecules for self defence and to fight against diseases. In the recent times, it has been reported through in vivo and in vitro studies that nanoparticles have direct influence on body's immune functions, and can modulate immunity by either suppressing or enhancing it. A comprehensive overview of nanoparticles and its involvement in immune function of the body in normal and pathophysiological conditions has been discussed. Considering these perspectives on nanoparticle interaction another important area which has been highlighted is the biosafety issues which are necessary before therapeutic applications. It is expected that development of physiologically compatible nanoparticles controlling energy metabolic processes, immune functions may show new dimension in the pathophysiology linked with energy and immunity.

  15. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation.

    PubMed

    Park, Eun-Jung; Hong, Young-Shick; Lee, Byoung-Seok; Yoon, Cheolho; Jeong, Uiseok; Kim, Younghun

    2016-07-01

    Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries.

  16. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  17. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport.

    PubMed

    Shi, Ya-Fei; Wang, Da-Li; Wang, Chao; Culler, Angela Hendrickson; Kreiser, Molly A; Suresh, Jayanti; Cohen, Jerry D; Pan, Jianwei; Baker, Barbara; Liu, Jian-Zhong

    2015-09-01

    Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.

  18. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  19. Estimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging

    PubMed Central

    Axer, Markus; Strohmer, Sven; Gräßel, David; Bücker, Oliver; Dohmen, Melanie; Reckfort, Julia; Zilles, Karl; Amunts, Katrin

    2016-01-01

    Research of the human brain connectome requires multiscale approaches derived from independent imaging methods ideally applied to the same object. Hence, comprehensible strategies for data integration across modalities and across scales are essential. We have successfully established a concept to bridge the spatial scales from microscopic fiber orientation measurements based on 3D-Polarized Light Imaging (3D-PLI) to meso- or macroscopic dimensions. By creating orientation distribution functions (pliODFs) from high-resolution vector data via series expansion with spherical harmonics utilizing high performance computing and supercomputing technologies, data fusion with Diffusion Magnetic Resonance Imaging has become feasible, even for a large-scale dataset such as the human brain. Validation of our approach was done effectively by means of two types of datasets that were transferred from fiber orientation maps into pliODFs: simulated 3D-PLI data showing artificial, but clearly defined fiber patterns and real 3D-PLI data derived from sections through the human brain and the brain of a hooded seal. PMID:27147981

  20. Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study.

    PubMed

    Mignot, Mélanie; Schammé, Benjamin; Tognetti, Vincent; Joubert, Laurent; Cardinael, Pascal; Peulon-Agasse, Valérie

    2017-09-11

    New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Estimation of boiling points using density functional theory with polarized continuum model solvent corrections.

    PubMed

    Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C

    2011-09-01

    An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed.

  2. Bidirectional reflectance distribution function of thermal control coatings and heat-shielding materials illuminated by polarized light

    NASA Astrophysics Data System (ADS)

    Voschula, I. V.; Dlugunovich, V. A.; Zhumar, A. Yu.

    2013-05-01

    Stokes parameters were measured for radiation reflected in the range 5° to 80° by silver-colored, white, and black thermal control coatings deposited on an aluminum alloy substrate, by green paint on a phenolic plastic surface, and by uncoated carbon-fiber reinforced plastic illuminated by linearly polarized He-Ne laser radiation at an incident angle of -5°. The bidirectional reflectance distribution function of the investigated samples was determined as a function of the view zenith angle.

  3. Measurement of the earthshine polarization in the B, V, R, and I bands as function of phase

    NASA Astrophysics Data System (ADS)

    Bazzon, A.; Schmid, H. M.; Gisler, D.

    2013-08-01

    Context. Earth-like, extrasolar planets may soon become observable with upcoming high contrast polarimeters. Therefore, the characterization of the polarimetric properties of the planet Earth is important for interpreting expected observations and planning of future instruments. Aims: Benchmark values for the polarization signal of integrated light from the planet Earth in broad band filters are derived from new polarimetric observations of the earthshine backscattered from the Moon's dark side. Methods: The fractional polarization of the earthshine pes is measured in the B,V,R, and I filters for Earth-phase angles α between 30° and 110° with a new, specially designed wide field polarimeter. In the observations, the light from the bright lunar crescent is blocked with focal plane masks. Because the entire Moon is imaged, the earthshine observations can be corrected for the stray light from the bright lunar crescent and twilight. The phase dependence of pes is fitted by a function pes = qmaxsin2α. Depending on wavelength λ and the lunar surface albedo a, the polarization of the backscattered earthshine is significantly reduced. To determine the polarization of the planet Earth, we correct our earthshine measurements by a polarization efficiency function for the lunar surface ɛ(λ,a) derived from measurements of lunar samples from the literature. Results: The polarization of the earthshine decreases toward longer wavelengths and is about a factor 1.3 lower for the higher albedo highlands. For mare regions the measured maximum polarization is about qmax,B = 13% for α = 90° (half moon) in the B band. The resulting fractional polarizations for the planet Earth derived from our earthshine measurements and corrected by ɛ(λ,a) are 24.6% for the B band, 19.1% for the V band, 13.5% for the R band, and 8.3% for the I band. Together with the literature values for the spectral reflectivity, we obtain a contrast Cp between the polarized flux of the planet Earth and the

  4. Functional xenobiotic metabolism and efflux transporters in trout hepatocyte spheroid cultures

    PubMed Central

    Uchea, Chibuzor; Chipman, J. Kevin

    2015-01-01

    Prediction of xenobiotic fate in fish is important for the regulatory assessment of chemicals under current legislation. Trout hepatocyte spheroids are a promising in vitro model for this assessment. In this investigation, the gene expression and function for xenobiotic metabolism and cellular efflux were characterised. Using fluorescence, transport and real time PCR analysis, the expression and functionality of a variety of genes related to xenobiotic metabolism and drug efflux were assessed in a range of trout hepatocyte culture preparations. Significantly greater levels of expression of genes involved in xenobiotic metabolism and efflux were measured in spheroids (which have been shown to remain viable in excess of 30 days), compared to hepatocytes cultured using conventional suspension and monolayer culture techniques. A transient decline in the expression of genes related to both xenobiotic metabolism and transport was determined during spheroid development, with a subsequent recovery in older spheroids. The most mature spheroids also exhibited an expression profile most comparable to that reported in vivo. Functionality of efflux transporters in spheroids was also demonstrated using fluorescent markers and specific inhibitors. In conclusion, the more physiologically relevant architecture in spheroid cultures provides a high functional integrity in relation to xenobiotic metabolism and efflux. Together with the enhanced gene expression and longevity of the model, hepatocytes in spheroid culture may prove to be an accurate alternative model to study the mechanisms of these processes in fish liver and provide an assay to determine the bioaccumulation potential of environmental contaminants. PMID:25893091

  5. Adaptive evolution and functional redesign of core metabolic proteins in snakes.

    PubMed

    Castoe, Todd A; Jiang, Zhi J; Gu, Wanjun; Wang, Zhengyuan O; Pollock, David D

    2008-05-21

    Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as "evolutionary redesign" because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution.

  6. The effect of natural organic matter polarity and molecular weight on NDMA formation from two antibiotics containing dimethylamine functional groups.

    PubMed

    Leavey-Roback, Shannon L; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-12-01

    N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory

    PubMed Central

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.

    2011-01-01

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159

  8. The quality of metabolic pathway resources depends on initial enzymatic function assignments: a case for maize.

    PubMed

    Walsh, Jesse R; Schaeffer, Mary L; Zhang, Peifen; Rhee, Seung Y; Dickerson, Julie A; Sen, Taner Z

    2016-11-29

    As metabolic pathway resources become more commonly available, researchers have unprecedented access to information about their organism of interest. Despite efforts to ensure consistency between various resources, information content and quality can vary widely. Two maize metabolic pathway resources for the B73 inbred line, CornCyc 4.0 and MaizeCyc 2.2, are based on the same gene model set and were developed using Pathway Tools software. These resources differ in their initial enzymatic function assignments and in the extent of manual curation. We present an in-depth comparison between CornCyc and MaizeCyc to demonstrate the effect of initial computational enzymatic function assignments on the quality and content of metabolic pathway resources. These two resources are different in their content. MaizeCyc contains GO annotations for over 21,000 genes that CornCyc is missing. CornCyc contains on average 1.6 transcripts per gene, while MaizeCyc contains almost no alternate splicing. MaizeCyc also does not match CornCyc's breadth in representing the metabolic domain; MaizeCyc has fewer compounds, reactions, and pathways than CornCyc. CornCyc's computational predictions are more accurate than those in MaizeCyc when compared to experimentally determined function assignments, demonstrating the relative strength of the enzymatic function assignment pipeline used to generate CornCyc. Our results show that the quality of initial enzymatic function assignments primarily determines the quality of the final metabolic pathway resource. Therefore, biologists should pay close attention to the methods and information sources used to develop a metabolic pathway resource to gauge the utility of using such functional assignments to construct hypotheses for experimental studies.

  9. Resistance Training Effects on Metabolic Function Among Youth: A Systematic Review.

    PubMed

    Bea, Jennifer W; Blew, Robert M; Howe, Carol; Hetherington-Rauth, Megan; Going, Scott B

    2017-08-01

    This systematic review evaluates the relationship between resistance training and metabolic function in youth. PubMed, Embase, Cochrane Library, Web of Science, CINAHL, and ClinicalTrials. gov were searched for articles that (1): studied children (2); included resistance training (3); were randomized interventions; and (4) reported markers of metabolic function. The selected studies were analyzed using the Cochrane Risk-of-Bias Tool. Thirteen articles met inclusion criteria. Mean age ranged from 12.2 to 16.9 years, but most were limited to high school (n = 11) and overweight/obese (n = 12). Sample sizes (n = 22-304), session duration (40-60min), and intervention length (8-52 wks) varied. Exercise frequency was typically 2-3 d/wk. Resistance training was metabolically beneficial compared with control or resistance plus aerobic training in 5 studies overall and 3 out of the 4 studies with the fewest threats to bias (p ≤ .05); each was accompanied by beneficial changes in body composition, but only one study adjusted for change in body composition. Limited evidence suggests that resistance training may positively affect metabolic parameters in youth. Well-controlled resistance training interventions of varying doses are needed to definitively determine whether resistance training can mitigate metabolic dysfunction in youth and whether training benefits on metabolic parameters are independent of body composition changes.

  10. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine

    PubMed Central

    MARCOVINA, SANTICA M.; SIRTORI, CESARE; PERACINO, ANDREA; GHEORGHIADE, MIHAI; BORUM, PEGGY; REMUZZI, GIUSEPPE; ARDEHALI, HOSSEIN

    2013-01-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. PMID:23138103

  11. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential.

  12. Circularly polarized light detection in stomatopod crustaceans: a comparison of photoreceptors and possible function in six species.

    PubMed

    Templin, Rachel M; How, Martin J; Roberts, Nicholas W; Chiou, Tsyr-Huei; Marshall, Justin

    2017-09-15

    A combination of behavioural and electrophysiological experiments have previously shown that two species of stomatopod, Odontodactylus scyllarus and Gonodactylaceus falcatus, can differentiate between left- and right-handed circularly polarized light (CPL), and between CPL and linearly polarized light (LPL). It remains unknown if these visual abilities are common across all stomatopod species, and if so, how circular polarization sensitivity may vary between and within species. A subsection of the midband, a specialized region of stomatopod eyes, contains distally placed photoreceptor cells, termed R8 (retinular cell number 8). These cells are specifically built with unidirectional microvilli and appear to be angled precisely to convert CPL into LPL. They are mostly quarter-wave retarders for human visible light (400-700 nm), as well as being ultraviolet-sensitive linear polarization detectors. The effectiveness of the R8 cells in this role is determined by their geometric and optical properties. In particular, the length and birefringence of the R8 cells are crucial for retardation efficiency. Here, our comparative studies show that most species investigated have the theoretical ability to convert CPL into LPL, such that the handedness of an incoming circular reflection or signal could be discriminated. One species, Haptosquilla trispinosa, shows less than quarter-wave retardance. Whilst some species are known to produce circularly polarized reflections (some Odontodactylus species and G. falcatus, for example), others do not, so a variety of functions for this ability are worth considering. © 2017. Published by The Company of Biologists Ltd.

  13. Dietary Fiber Supplements: Effects in Obesity and Metabolic Syndrome and Relationship to Gastrointestinal Functions

    PubMed Central

    Papathanasopoulos, Athanasios; Camilleri, Michael

    2010-01-01

    Dietary fiber (DF) is a term that reflects to a heterogenous group of natural food sources, processed grains and commercial supplements. Several forms of DF have been used as complementary or alternative agents in the management of manifestations of the metabolic syndrome, including obesity. Not surprisingly, there is a great variation in the biological efficacy of DF in metabolic syndrome and body weight control. Diverse factors and mechanisms have been reported as mediators of the effects of DF on the metabolic syndrome and obesity. Among this array of mechanisms, the modulation of gastric sensorimotor influences appears to be crucial for the effects of DF, but also quite variable. This article focuses on the role, mechanism of action and benefits of different forms of fiber and supplements on obesity and metabolic syndrome, glycemia, dyslipidemia, cardiovascular risk, and explores the effects of DF on gastric sensorimotor function and satiety in mediating these actions of DF. PMID:19931537

  14. Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome.

    PubMed

    Nagao, Koji; Yanagita, Teruyoshi

    2010-03-01

    Metabolic syndrome is a cluster of metabolic disorders, such as abdominal obesity, dyslipidemia, hypertension and impaired fasting glucose, that contribute to increased cardiovascular morbidity and mortality. Although the pathogenesis of metabolic syndrome is complicated and the precise mechanisms have not been elucidated, dietary lipids have been recognized as contributory factors in the development and the prevention of cardiovascular risk clustering. This review explores the physiological functions and molecular actions of medium-chain fatty acids (MCFAs) and medium-chain triglycerides (MCTs) in the development of metabolic syndrome. Experimental studies demonstrate that dietary MCFAs/MCTs suppress fat deposition through enhanced thermogenesis and fat oxidation in animal and human subjects. Additionally, several reports suggest that MCFAs/MCTs offer the therapeutic advantage of preserving insulin sensitivity in animal models and patients with type 2 diabetes.

  15. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  16. Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level

    PubMed Central

    Obel, Linea F.; Müller, Margit S.; Walls, Anne B.; Sickmann, Helle M.; Bak, Lasse K.; Waagepetersen, Helle S.; Schousboe, Arne

    2012-01-01

    Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology. PMID:22403540

  17. Low-normal thyroid function and the pathogenesis of common cardio-metabolic disorders.

    PubMed

    van Tienhoven-Wind, Lynnda J N; Dullaart, Robin P F

    2015-05-01

    Subclinical hypothyroidism may adversely affect the development of cardiovascular disease (CVD). Less is known about the role of low-normal thyroid function, that is higher thyroid-stimulating hormone and/or lower free thyroxine levels within the euthyroid reference range, in the development of cardio-metabolic disorders. This review is focused on the relationship of low-normal thyroid function with CVD, plasma lipids and lipoprotein function, as well as with metabolic syndrome (MetS), chronic kidney disease (CKD) and nonalcoholic fatty liver disease (NAFLD). This narrative review, which includes results from previously published systematic reviews and meta-analyses, is based on clinical and basic research papers, obtained via MEDLINE and PubMed up to November 2014. Low-normal thyroid function could adversely affect the development of (subclinical) atherosclerotic manifestations. It is likely that low-normal thyroid function relates to modest increases in plasma total cholesterol, LDL cholesterol and triglycerides, and may convey pro-atherogenic changes in lipoprotein metabolism and in HDL function. Most available data support the concept that low-normal thyroid function is associated with MetS, insulin resistance and CKD, but not with high blood pressure. Inconsistent effects of low-normal thyroid function on NAFLD have been reported so far. Observational studies suggest that low-normal thyroid function may be implicated in the pathogenesis of CVD. Low-normal thyroid function could also play a role in the development of MetS, insulin resistance and CKD, but the relationship with NAFLD is uncertain. The extent to which low-normal thyroid function prospectively predicts cardio-metabolic disorders has been insufficiently established so far. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  18. Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida.

    PubMed

    Sarand, Inga; Osterberg, Sofia; Holmqvist, Sofie; Holmfeldt, Per; Skärfstad, Eleonore; Parales, Rebecca E; Shingler, Victoria

    2008-05-01

    Comparatively little is known about directed motility of environmental bacteria to common aromatic pollutants. Here, by expressing different parts of a (methyl)phenol-degradative pathway and the use of specific mutants, we show that taxis of Pseudomonas putida towards (methyl)phenols is dictated by its ability to catabolize the aromatic compound. Thus, in contrast to previously described chemoreceptor-mediated chemotaxis mechanisms towards benzoate, naphthalene and toluene, taxis in response to (methyl)phenols is mediated by metabolism-dependent behaviour. Here we show that P. putida differentially expresses three Aer-like receptors that are all polar-localized through interactions with CheA, and that inactivation of the most abundant Aer2 protein significantly decreases taxis towards phenolics. In addition, the participation of a sensory signal transduction protein composed of a PAS, a GGDEF and an EAL domain in motility towards these compounds is demonstrated. The results are discussed in the context of the versatility of metabolism-dependent coupling and the necessity for P. putida to integrate diverse metabolic signals from its native heterogeneous soil and water environments.

  19. Absorption, metabolism, and functions of β-cryptoxanthin

    PubMed Central

    La Frano, Michael R.; Zhu, Chenghao

    2016-01-01

    β-Cryptoxanthin, a carotenoid found in fruits and vegetables such as tangerines, red peppers, and pumpkin, has several functions important for human health. Most evidence from observational, in vitro, animal model, and human studies suggests that β-cryptoxanthin has relatively high bioavailability from its common food sources, to the extent that some β-cryptoxanthin–rich foods might be equivalent to β-carotene–rich foods as sources of retinol. β-Cryptoxanthin is an antioxidant in vitro and appears to be associated with decreased risk of some cancers and degenerative diseases. In addition, many in vitro, animal model, and human studies suggest that β-cryptoxanthin–rich foods may have an anabolic effect on bone and, thus, may help delay osteoporosis. PMID:26747887

  20. Oral administration of nano-titanium dioxide particle disrupts hepatic metabolic functions in a mouse model.

    PubMed

    Yang, Julin; Luo, Min; Tan, Zhen; Dai, Manyun; Xie, Minzhu; Lin, Jiao; Hua, Huiying; Ma, Qing; Zhao, Jinshun; Liu, Aiming

    2017-01-01

    TiO2 nano-particle (TiO2 NP) is widely used in industrial, household necessities, as well as medicinal products. However, the effect of TiO2 NP on liver metabolic function has not been reported. In this study, after mice were orally administered TiO2 NP (21nm) for 14days, the serum and liver tissues were assayed by biochemical analysis, real time quantitative polymerase chain reaction, western blot and transmission electron microscopy. The serum bilirubin was increased in a dose dependent manner. Deposition of TiO2 NP in hepatocytes and the abnormality of microstructures was observed. Expression of metabolic genes involved in the endogenous and exogenous metabolism was modified, supporting the toxic phenotype. Collectively, oral administration of TiO2 NP (21nm) led to deposition of particles in hepatocytes, mitochondrial edema, and the disturbance of liver metabolism function. These data suggested oral administration disrupts liver metabolic functions, which was more sensitive than regular approaches to detect material hepatotoxicity. This study provided useful information for risk analysis and regulation of TiO2 NPs by administration agencies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish

    PubMed Central

    Carten, Juliana Debrito; Bradford, Mary Katherine; Farber, Steven Arthur

    2012-01-01

    Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebrafish (Danio rerio). The method utilizes egg yolk liposomes to deliver different chain length FA analogs (BODIPY-FL) to six day-old larvae. Following liposome incubation, larvae accumulate the analogs throughout their digestive organs, providing a comprehensive readout of organ structure and physiology. Using this assay we have observed that different chain length FAs are differentially transported and metabolized by the larval digestive system. We show that this assay can also reveal structural and metabolic defects in digestive mutants. Because this labeling technique can be used to investigate digestive organ morphology and function, we foresee its application in diverse studies of organ development and physiology. PMID:21968100

  2. Non-invasive evaluation of vasomotor and metabolic functions of microvascular endothelium in human skin.

    PubMed

    Fedorovich, Andrey A

    2012-07-01

    Correlation between metabolic and microhemodynamic processes in skin was assessed through acute pharmacological test with metabolically active Actovegin in 28 healthy volunteers. Laser Doppler flowmetry in combination with wavelet analysis of blood flow oscillations was used to identify functional state of arteriolar-venular areas of microvascular bed in the right forearm skin; capillary blood flow parameters were assessed through computer capillaroscopy in the nail bed of the right hand on the 4th finger. The metabolic effect (improved oxygen uptake and glucose disposal by tissues) was accompanied by significant increase in endothelial rhythm amplitude by 98% (p<0.00006), neurogenic rhythm amplitude by 50% (p<0.003) and myogenic rhythm amplitude by 54% (p<0.03), with capillary blood flow rate increasing by 90μm/s (p<0.04), pericapillary zone reducing by 15μm (p<0.0001) and diastolic blood pressure dropping by 4mm Hg (p<0.02). These results show close correlation between metabolic and microhemodynamic processes, which suggests that the amplitude activity within the range of endothelial rhythm (0.0095-0.021Hz) during laser Doppler flowmetry reflects not only solely vasomotor function but also metabolic function of microvascular endothelium.

  3. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    PubMed Central

    Jahan-Mihan, Alireza; Luhovyy, Bohdan L.; Khoury, Dalia El; Anderson, G. Harvey

    2011-01-01

    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. PMID:22254112

  4. Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract.

    PubMed

    Jahan-Mihan, Alireza; Luhovyy, Bohdan L; El Khoury, Dalia; Anderson, G Harvey

    2011-05-01

    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake.

  5. Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function

    PubMed Central

    Kouidhi, Soumaya; Noman, Muhammad Zaeem; Kieda, Claudine; Elgaaied, Amel Benammar; Chouaib, Salem

    2016-01-01

    It is well recognized that the immune system and metabolism are highly integrated. In this context, multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. This review will discuss different potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. We will also provide a general framework for understanding how tumor microenvironmental metabolism, associated with hypoxic stress, interferes with T-cell priming and expansion. How T-cell metabolism drives T-cell-mediated immunity and how the manipulation of metabolic programing for therapeutic purposes will be also discussed. PMID:27066006

  6. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea.

    PubMed

    Verde, Cinzia; De Rosa, M Cristina; Giordano, Daniela; Mosca, Donato; De Pascale, Donatella; Raiola, Luca; Cocca, Ennio; Carratore, Vitale; Giardina, Bruno; Di Prisco, Guido

    2005-07-15

    Cartilaginous fish are very ancient organisms. In the Antarctic sea, the modern chondrichthyan genera are poorly represented, with only three species of sharks and eight species of skates; the paucity of chondrichthyans is probably an ecological consequence of unusual trophic or habitat conditions in the Southern Ocean. In the Arctic, there are 26 species belonging to the class Chondrichthyes. Fish in the two polar regions have been subjected to different regional histories that have influenced the development of diversity: Antarctic marine organisms are highly stenothermal, in response to stable water temperatures, whereas the Arctic communities are exposed to seasonal temperature variations. The structure and function of the oxygen-transport haem protein from the Antarctic skate Bathyraja eatonii and from the Arctic skate Raja hyperborea (both of the subclass Elasmobranchii, order Rajiformes, family Rajidae) is reported in the present paper. These species have a single major haemoglobin (Hb 1; over 80% of the total). The Bohr-proton and the organophosphate-binding sites are absent. Thus the haemoglobins of northern and southern polar skates appear functionally similar, whereas differences were observed with several temperate elasmobranchs. Such evidence suggests that, in temperate and polar habitats, physiological adaptations have evolved along distinct pathways, whereas, in this case, the effect of the differences characterizing the two polar environments is negligible.

  7. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    PubMed

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  8. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions

    PubMed Central

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2016-01-01

    Background: There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome–gut–brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. Objectives: We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. Methods: We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry–based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. Results: 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Conclusions: Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198–206; http://dx.doi.org/10

  9. Enhanced metabolic and redox activity of vascular aquatic plant Lemna valdiviana under polarization in Direct Photosynthetic Plant Fuel Cell.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2015-12-01

    In this study, duckweed species Lemna valdiviana was investigated as a photoautotrophycally grown biocatalyst in recently developed Direct Photosynthetic Plant Fuel Cell. Stable current outputs, reaching maximum of 226±11 mА/m(2), were achieved during the operating period. The electricity production is associated with electrons generated through the light-dependent reactions in the chloroplasts as well as the respiratory processes in the mitochondria and transferred to the anode via endogenous electron shuttle, synthesized by the plants as a specific response to the polarization. In parallel, a considerable increase in the content of proteins (47%) and reserve carbohydrates (44%) of duckweeds grown under polarization conditions was established by means of biochemical analyses. This, combined with the electricity generation, makes the technology a feasible approach for the duckweed farming. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Mathematical methods to analysis of topology, functional variability and evolution of metabolic systems based on different decomposition concepts.

    PubMed

    Mrabet, Yassine; Semmar, Nabil

    2010-05-01

    Complexity of metabolic systems can be undertaken at different scales (metabolites, metabolic pathways, metabolic network map, biological population) and under different aspects (structural, functional, evolutive). To analyse such a complexity, metabolic systems need to be decomposed into different components according to different concepts. Four concepts are presented here consisting in considering metabolic systems as sets of metabolites, chemical reactions, metabolic pathways or successive processes. From a metabolomic dataset, such decompositions are performed using different mathematical methods including correlation, stiochiometric, ordination, classification, combinatorial and kinetic analyses. Correlation analysis detects and quantifies affinities/oppositions between metabolites. Stoichiometric analysis aims to identify the organisation of a metabolic network into different metabolic pathways on the hand, and to quantify/optimize the metabolic flux distribution through the different chemical reactions of the system. Ordination and classification analyses help to identify different metabolic trends and their associated metabolites in order to highlight chemical polymorphism representing different variability poles of the metabolic system. Then, metabolic processes/correlations responsible for such a polymorphism can be extracted in silico by combining metabolic profiles representative of different metabolic trends according to a weighting bootstrap approach. Finally evolution of metabolic processes in time can be analysed by different kinetic/dynamic modelling approaches.

  11. Divergent Expression and Metabolic Functions of Human Glucuronosyltransferases through Alternative Splicing.

    PubMed

    Rouleau, Michèle; Tourancheau, Alan; Girard-Bock, Camille; Villeneuve, Lyne; Vaucher, Jonathan; Duperré, Anne-Marie; Audet-Delage, Yannick; Gilbert, Isabelle; Popa, Ion; Droit, Arnaud; Guillemette, Chantal

    2016-09-27

    Maintenance of cellular homeostasis and xenobiotic detoxification is mediated by 19 human UDP-glucuronosyltransferase enzymes (UGTs) encoded by ten genes that comprise the glucuronidation pathway. Deep RNA sequencing of major metabolic organs exposes a substantial expansion of the UGT transcriptome by alternative splicing, with variants representing 20% to 60% of canonical transcript expression. Nearly a fifth of expressed variants comprise in-frame sequences that may create distinct structural and functional features. Follow-up cell-based assays reveal biological functions for these alternative UGT proteins. Some isoforms were found to inhibit or induce inactivation of drugs and steroids in addition to perturbing global cell metabolism (energy, amino acids, nucleotides), cell adhesion, and proliferation. This work highlights the biological relevance of alternative UGT expression, which we propose increases protein diversity through the evolution of metabolic regulators from specific enzymes.

  12. Use of carbosilane dendrimer to switch macrophage polarization for the acquisition of antitumor functions

    NASA Astrophysics Data System (ADS)

    Perisé-Barrios, Ana J.; Gómez, Rafael; Corbí, Angel L.; de La Mata, Javier; Domínguez-Soto, Angeles; Muñoz-Fernandez, María A.

    2015-02-01

    Tumor microenvironment favors the escape from immunosurveillance by promoting immunosuppression and blunting pro-inflammatory responses. Since most tumor-associated macrophages (TAM) exhibit an M2-like tumor cell growth promoting polarization, we have studied the role of 2G-03NN24 carbosilane dendrimer in M2 macrophage polarization to evaluate the potential application of dendrimers in tumor immunotherapy. We found that the 2G-03NN24 dendrimer decreases LPS-induced IL-10 production from in vitro generated monocyte-derived M2 macrophages, and also switches their gene expression profile towards the acquisition of M1 polarization markers (INHBA, SERPINE1, FLT1, EGLN3 and ALDH1A2) and the loss of M2 polarization-associated markers (EMR1, IGF1, FOLR2 and SLC40A1). Furthermore, 2G-03NN24 dendrimer decreases STAT3 activation. Our results indicate that the 2G-03NN24 dendrimer can be a useful tool for antitumor therapy by virtue of its potential ability to limit the M2-like polarization of TAM.Tumor microenvironment favors the escape from immunosurveillance by promoting immunosuppression and blunting pro-inflammatory responses. Since most tumor-associated macrophages (TAM) exhibit an M2-like tumor cell growth promoting polarization, we have studied the role of 2G-03NN24 carbosilane dendrimer in M2 macrophage polarization to evaluate the potential application of dendrimers in tumor immunotherapy. We found that the 2G-03NN24 dendrimer decreases LPS-induced IL-10 production from in vitro generated monocyte-derived M2 macrophages, and also switches their gene expression profile towards the acquisition of M1 polarization markers (INHBA, SERPINE1, FLT1, EGLN3 and ALDH1A2) and the loss of M2 polarization-associated markers (EMR1, IGF1, FOLR2 and SLC40A1). Furthermore, 2G-03NN24 dendrimer decreases STAT3 activation. Our results indicate that the 2G-03NN24 dendrimer can be a useful tool for antitumor therapy by virtue of its potential ability to limit the M2-like polarization of TAM

  13. Predicting functional associations from metabolism using bi-partite network algorithms.

    PubMed

    Veeramani, Balaji; Bader, Joel S

    2010-07-14

    Metabolic reconstructions contain detailed information about metabolic enzymes and their reactants and products. These networks can be used to infer functional associations between metabolic enzymes. Many methods are based on the number of metabolites shared by two enzymes, or the shortest path between two enzymes. Metabolite sharing can miss associations between non-consecutive enzymes in a serial pathway, and shortest-path algorithms are sensitive to high-degree metabolites such as water and ATP that create connections between enzymes with little functional similarity. We present new, fast methods to infer functional associations in metabolic networks. A local method, the degree-corrected Poisson score, is based only on the metabolites shared by two enzymes, but uses the known metabolite degree distribution. A global method, based on graph diffusion kernels, predicts associations between enzymes that do not share metabolites. Both methods are robust to high-degree metabolites. They out-perform previous methods in predicting shared Gene Ontology (GO) annotations and in predicting experimentally observed synthetic lethal genetic interactions. Including cellular compartment information improves GO annotation predictions but degrades synthetic lethal interaction prediction. These new methods perform nearly as well as computationally demanding methods based on flux balance analysis. We present fast, accurate methods to predict functional associations from metabolic networks. Biological significance is demonstrated by identifying enzymes whose strong metabolic correlations are missed by conventional annotations in GO, most often enzymes involved in transport vs. synthesis of the same metabolite or other enzyme pairs that share a metabolite but are separated by conventional pathway boundaries. More generally, the methods described here may be valuable for analyzing other types of networks with long-tailed degree distributions and high-degree hubs.

  14. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    PubMed Central

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC. PMID:26967735

  15. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro.

    PubMed

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotra-nsformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two‑dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases.

  16. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro

    PubMed Central

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotransformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two-dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases. PMID:27959388

  17. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression.

    PubMed

    Nantasanti, Sathidpak; Toussaint, Mathilda J M; Youssef, Sameh A; Tooten, Peter C J; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). DDC is metabolized mainly by cytochrome P450 (Cyp)3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC.

  18. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks

    PubMed Central

    2012-01-01

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files. PMID:23194418

  19. Towards stable kinetics of large metabolic networks: Nonequilibrium potential function approach

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Cong; Yuan, Ruo-Shi; Ao, Ping; Xu, Min-Juan; Zhu, Xiao-Mei

    2016-06-01

    While the biochemistry of metabolism in many organisms is well studied, details of the metabolic dynamics are not fully explored yet. Acquiring adequate in vivo kinetic parameters experimentally has always been an obstacle. Unless the parameters of a vast number of enzyme-catalyzed reactions happened to fall into very special ranges, a kinetic model for a large metabolic network would fail to reach a steady state. In this work we show that a stable metabolic network can be systematically established via a biologically motivated regulatory process. The regulation is constructed in terms of a potential landscape description of stochastic and nongradient systems. The constructed process draws enzymatic parameters towards stable metabolism by reducing the change in the Lyapunov function tied to the stochastic fluctuations. Biologically it can be viewed as interplay between the flux balance and the spread of workloads on the network. Our approach allows further constraints such as thermodynamics and optimal efficiency. We choose the central metabolism of Methylobacterium extorquens AM1 as a case study to demonstrate the effectiveness of the approach. Growth efficiency on carbon conversion rate versus cell viability and futile cycles is investigated in depth.

  20. Direct visualization of functional heterogeneity in hepatobiliary metabolism using 6-CFDA as model compound

    PubMed Central

    Lin, Chih-Ju; Li, Feng-Chieh; Lee, Yu-Yang; Tseng, Te-Yu; Chen, Wei-Liang; Hovhannisyan, Vladimir; Kang, Ning; Horton, Nicholas G.; Chiang, Shu-Jen; Xu, Chris; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2016-01-01

    Hepatobiliary metabolism is one of the major functions of the liver. However, little is known of the relationship between the physiological location of the hepatocytes and their metabolic potential. By the combination of time-lapse multiphoton microscopy and first order kinetic constant image analysis, the hepatocellular metabolic rate of the model compound 6-carboxyfluorescein diacetate (6-CFDA) is quantified at the single cell level. We found that the mouse liver can be divided into three zones, each with distinct metabolic rate constants. The sinusoidal uptake coefficients k1 of Zones 1, 2, and 3 are respectively 0.239 ± 0.077, 0.295 ± 0.087, and 0.338 ± 0.133 min−1, the apical excreting coefficients k2 of Zones 1, 2, and 3 are 0.0117 ± 0.0052, 0.0175 ± 0.0052, and 0.0332 ± 0.0195 min−1, respectively. Our results show not only the existence of heterogeneities in hepatobiliary metabolism, but they also show that Zone 3 is the main area of metabolism. PMID:27699121

  1. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance.

    PubMed

    Yoshino, Jun; Conte, Caterina; Fontana, Luigi; Mittendorfer, Bettina; Imai, Shin-ichiro; Schechtman, Kenneth B; Gu, Charles; Kunz, Iris; Rossi Fanelli, Filippo; Patterson, Bruce W; Klein, Samuel

    2012-11-07

    Resveratrol has been reported to improve metabolic function in metabolically abnormal rodents and humans, but it has not been studied in nonobese people with normal glucose tolerance. We conducted a randomized, double-blind, placebo-controlled trial to evaluate the metabolic effects of 12 weeks of resveratrol supplementation (75 mg/day) in nonobese, postmenopausal women with normal glucose tolerance. Although resveratrol supplementation increased plasma resveratrol concentration, it did not change body composition, resting metabolic rate, plasma lipids, or inflammatory markers. A two-stage hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically labeled tracer infusions, demonstrated that resveratrol did not increase liver, skeletal muscle, or adipose tissue insulin sensitivity. Consistent with the absence of in vivo metabolic effects, resveratrol did not affect its putative molecular targets, including AMPK, SIRT1, NAMPT, and PPARGC1A, in either skeletal muscle or adipose tissue. These findings demonstrate that resveratrol supplementation does not have beneficial metabolic effects in nonobese, postmenopausal women with normal glucose tolerance. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria

    PubMed Central

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.

    2009-01-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814

  3. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria.

    PubMed

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W; Gontang, Erin A; McGlinchey, Ryan P; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E; Moore, Bradley S; Jensen, Paul R

    2009-10-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and Salinispora arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with earlier evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in clustered regularly interspaced short palindromic repeat sequences suggest that S. arenicola may possess a higher level of phage immunity, whereas a highly duplicated family of polymorphic membrane proteins provides evidence for a new mechanism of marine adaptation in Gram-positive bacteria.

  4. Metabolic status, gonadotropin secretion, and ovarian function during acute nutrient restriction of beef heifers

    USDA-ARS?s Scientific Manuscript database

    The effect of acute nutritional restriction on metabolic status, gonadotropin secretion, and ovarian function of heifers was determined in 2 experiments. In Exp. 1, 14-mo-old heifers were fed a diet supplying 1.2 × maintenance energy requirements (1.2M). After 10 d, heifers were fed 1.2M or were res...

  5. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity.

    PubMed

    Zvintzou, Evangelia; Lhomme, Marie; Chasapi, Stella; Filou, Serafoula; Theodoropoulos, Vassilis; Xapapadaki, Eva; Kontush, Anatol; Spyroulias, George; Tellis, Constantinos C; Tselepis, Alexandros D; Constantinou, Caterina; Kypreos, Kyriakos E

    2017-09-01

    APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance.

    PubMed

    True, Cadence; Grove, Kevin L; Smith, M Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.

  7. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation.

    PubMed

    van Wijk, Klaas J; Kessler, Felix

    2017-01-25

    Plastoglobuli (PGs) are plastid lipoprotein particles surrounded by a membrane lipid monolayer. PGs contain small specialized proteomes and metabolomes. They are present in different plastid types (e.g., chloroplasts, chromoplasts, and elaioplasts) and are dynamic in size and shape in response to abiotic stress or developmental transitions. PGs in chromoplasts are highly enriched in carotenoid esters and enzymes involved in carotenoid metabolism. PGs in chloroplasts are associated with thylakoids and contain ∼30 core proteins (including six ABC1 kinases) as well as additional proteins recruited under specific conditions. Systems analysis has suggested that chloroplast PGs function in metabolism of prenyl lipids (e.g., tocopherols, plastoquinone, and phylloquinone); redox and photosynthetic regulation; plastid biogenesis; and senescence, including recycling of phytol, remobilization of thylakoid lipids, and metabolism of jasmonate. These functionalities contribute to chloroplast PGs' role in responses to stresses such as high light and nitrogen starvation. PGs are thus lipid microcompartments with multiple functions integrated into plastid metabolism, developmental transitions, and environmental adaptation. This review provides an in-depth overview of PG experimental observations, summarizes the present understanding of PG features and functions, and provides a conceptual framework for PG research and the realization of opportunities for crop improvement. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  8. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance

    PubMed Central

    True, Cadence; Grove, Kevin L.; Smith, M. Susan

    2011-01-01

    Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance. PMID:22645510

  9. Circadian rhythms in myocardial metabolism and contractile function; influence of workload and oleate

    USDA-ARS?s Scientific Manuscript database

    Multiple extra-cardiac stimuli, such as workload and circulating nutrients (e.g., fatty acids), known to influence myocardial metabolism and contractile function exhibit marked circadian rhythms. The aim of the present study was to investigate whether the rat heart exhibits circadian rhythms in its ...

  10. Hydrodynamics-Based Functional Forms of Activity Metabolism: A Case for the Power-Law Polynomial Function in Animal Swimming Energetics

    PubMed Central

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined. PMID:19333397

  11. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    SciTech Connect

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-09-12

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.

  12. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    PubMed Central

    Kuang, Meihua Christina; Hutchins, Paul D; Russell, Jason D; Coon, Joshua J; Hittinger, Chris Todd

    2016-01-01

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation. DOI: http://dx.doi.org/10.7554/eLife.19027.001 PMID:27690225

  13. Impact of perinatal exposure to acetaminophen on hepatocellular metabolic function in offspring

    PubMed Central

    Wu, Ka; Guo, Chao; Lu, Xiuli; Wu, Xinmou; Pan, Hongmei; Su, Min

    2016-01-01

    Acetaminophen (APAP), an over the counter (OTC) medication, is widely used in antipyretic treatment. Although the risk of dose-dependent cytotoxicity has been known, the potential effect of perinatal exposure to acetaminophen on metabolic function in offspring remains uninvestigated. Therefore, we established a prenatally APAP-exposed pregnancy mouse model to assess the possible adverse effect on liver metabolic function in offspring. Biochemical assays were applied in analysis of basic metabolic parameters in postnatal mice. Further, immunoblotting assay was used to assess the expressions of insulin receptor β (IRβ), insulin receptor substrate 1 (IRS1), phospho-Akt and phospho-GSK-3β proteins in liver cells. In addition, hepatic glucose transporter 2 (GLUT2) immunoactivity was determined by using immunohistochemistry staining. Compared with untreated postnatal mice, APAP-exposed offspring induced impaired glucose metabolism, increased plasma insulin level, and reduced liver glycogen content. In addition, APAP exposure decreased the expressions of IRS1 and phospho-GSK-3β, phospho-AKT proteins and down-regulated the level of glucose-import regulator GLUT2 in the liver. Taken together, our preliminary findings indicate that perinatal APAP exposure-impaired hepatic glucose metabolism in offspring may be associated with disturbance of insulin-dependent AKT signaling in the liver. PMID:28078035

  14. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    DOE PAGES

    Kuang, Meihua Christina; Hutchins, Paul D.; Russell, Jason D.; ...

    2016-09-30

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of theGALactose sugar utilization network in two yeast species. Here, we show that theSaccharomyces uvarumnetwork is more active, even as over-induction is prevented by a second co-repressor that the model yeastSaccharomyces cerevisiaelacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systemsmore » and exacerbate this phenotype. Furthermore, we show thatS. cerevisiaeexperiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. Our results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.« less

  15. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    SciTech Connect

    Kuang, Meihua Christina; Hutchins, Paul D.; Russell, Jason D.; Coon, Joshua J.; Hittinger, Chris Todd

    2016-09-30

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of theGALactose sugar utilization network in two yeast species. Here, we show that theSaccharomyces uvarumnetwork is more active, even as over-induction is prevented by a second co-repressor that the model yeastSaccharomyces cerevisiaelacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. Furthermore, we show thatS. cerevisiaeexperiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. Our results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation.

  16. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

    PubMed

    Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J

    2013-12-08

    The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.

  17. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways

    PubMed Central

    2013-01-01

    Background The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. Results We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. Conclusions A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli. PMID:24314206

  18. Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism.

    PubMed

    Saks, V A; Kuznetsov, A V; Vendelin, M; Guerrero, K; Kay, L; Seppet, E K

    2004-01-01

    In this review we analyze the concepts and the experimental data on the mechanisms of the regulation of energy metabolism in muscle cells. Muscular energetics is based on the force-length relationship, which in the whole heart is expressed as a Frank-Starling law, by which the alterations of left ventricle diastolic volume change linearly both the cardiac work and oxygen consumption. The second basic characteristics of the heart is the metabolic stability--almost constant levels of high energy phosphates, ATP and phosphocreatine, which are practically independent of the workload and the rate of oxygen consumption, in contrast to the fast-twitch skeletal muscle with no metabolic stability and rapid fatigue. Analysis of the literature shows that an increase in the rate of oxygen consumption by order of magnitude, due to Frank-Starling law, is observed without any significant changes in the intracellular calcium transients. Therefore, parallel activation of contraction and mitochondrial respiration by calcium ions may play only a minor role in regulation of respiration in the cells. The effective regulation of the respiration under the effect of Frank-Starling law and metabolic stability of the heart are explained by the mechanisms of functional coupling within supramolecular complexes in mitochondria, and at the subcellular level within the intracellular energetic units. Such a complex structural and functional organisation of heart energy metabolism can be described quantitatively by mathematical models.

  19. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization.

    PubMed

    Lelli, Moreno; Gajan, David; Lesage, Anne; Caporini, Marc A; Vitzthum, Veronika; Miéville, Pascal; Héroguel, Florent; Rascón, Fernando; Roussey, Arthur; Thieuleux, Chloé; Boualleg, Malika; Veyre, Laurent; Bodenhausen, Geoffrey; Copéret, Christophe; Emsley, Lyndon

    2011-02-23

    We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra.

  20. Pilot study of pioglitazone and exercise training effects on basal myocardial substrate metabolism and left ventricular function in HIV-positive individuals with metabolic complications.

    PubMed

    Cade, W Todd; Reeds, Dominic N; Overton, E Turner; Herrero, Pilar; Waggoner, Alan D; Laciny, Erin; Bopp, Coco; Lassa-Claxton, Sherry; Gropler, Robert J; Peterson, Linda R; Yarasheski, Kevin E

    2013-01-01

    Individuals with HIV infection and peripheral metabolic complications have impaired basal myocardial insulin sensitivity that is related to left ventricular (LV) diastolic dysfunction. It is unknown whether interventions shown to be effective in improving peripheral insulin sensitivity can improve basal myocardial insulin sensitivity and diastolic function in people with HIV and peripheral metabolic complications. In a pilot study, we evaluated whether the peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist pioglitazone or combined endurance and resistance exercise training improves basal myocardial insulin sensitivity and diastolic function in HIV+ adults with peripheral metabolic complications. Twenty-four HIV+ adults with metabolic complications including peripheral insulin resistance were randomly assigned to 4 months of pioglitazone (PIO; 30 mg/d) or supervised, progressive endurance and resistance exercise training (EXS; 90-120 min/d, 3 d/wk). Basal myocardial substrate metabolism was quantified by radioisotope tracer methodology and positron emission tomography (PET) imaging, and LV function was measured by echocardiography. Twenty participants completed the study. Neither PIO nor EXS resulted in a detectable improvement in basal myocardial insulin sensitivity or diastolic function. Post hoc analyses revealed sample sizes of more than 100 participants are needed to detect significant effects of these interventions on basal myocardial insulin sensitivity and function. PIO or EXS alone did not significantly increase basal myocardial insulin sensitivity or LV diastolic function in HIV+ individuals with peripheral metabolic complications.

  1. Optimizing human hepatocyte models for metabolic phenotype and function: effects of treatment with dimethyl sulfoxide (DMSO).

    PubMed

    Nikolaou, Nikolaos; Green, Charlotte J; Gunn, Pippa J; Hodson, Leanne; Tomlinson, Jeremy W

    2016-11-01

    Primary human hepatocytes are considered to be the "gold standard" cellular model for studying hepatic fatty acid and glucose metabolism; however, they come with limitations. Although the HepG2 cell line retains many of the primary hepatocyte metabolic functions they have a malignant origin and low rates of triglyceride secretion. The aim of this study was to investigate whether dimethyl sulfoxide supplementation in the media of HepG2 cells would enhance metabolic functionality leading to the development of an improved in vitro cell model that closely recapitulates primary human hepatocyte metabolism. HepG2 cells were cultured in media containing 1% dimethyl sulfoxide for 2, 4, 7, 14, and 21 days. Gene expression, protein levels, intracellular triglyceride, and media concentrations of triglyceride, urea, and 3-hydroxybutyrate concentrations were measured. Dimethyl sulfoxide treatment altered the expression of genes involved in lipid (FAS, ACC1, ACC2, DGAT1, DGAT2, SCD) and glucose (PEPCK, G6Pase) metabolism as well as liver functionality (albumin, alpha-1-antitrypsin, AFP). mRNA changes were paralleled by alterations at the protein level. DMSO treatment decreased intracellular triglyceride content and lactate production and increased triglyceride and 3-hydroxybutyrate concentrations in the media in a time-dependent manner. We have demonstrated that the addition of 1% dimethyl sulfoxide to culture media changes the metabolic phenotype of HepG2 cells toward a more primary human hepatocyte phenotype. This will enhance the currently available in vitro model systems for the study of hepatocyte biology related to pathological processes that contribute to disease and their response to specific therapeutic interventions.

  2. Structure and Function of Human Xylulokinase, an Enzyme with Important Roles in Carbohydrate Metabolism*

    PubMed Central

    Bunker, Richard D.; Bulloch, Esther M. M.; Dickson, James M. J.; Loomes, Kerry M.; Baker, Edward N.

    2013-01-01

    d-Xylulokinase (XK; EC 2.7.1.17) catalyzes the ATP-dependent phosphorylation of d-xylulose (Xu) to produce xylulose 5-phosphate (Xu5P). In mammals, XK is the last enzyme in the glucuronate-xylulose pathway, active in the liver and kidneys, and is linked through its product Xu5P to the pentose-phosphate pathway. XK may play an important role in metabolic disease, given that Xu5P is a key regulator of glucose metabolism and lipogenesis. We have expressed the product of a putative human XK gene and identified it as the authentic human d-xylulokinase (hXK). NMR studies with a variety of sugars showed that hXK acts only on d-xylulose, and a coupled photometric assay established its key kinetic parameters as Km(Xu) = 24 ± 3 μm and kcat = 35 ± 5 s−1. Crystal structures were determined for hXK, on its own and in complexes with Xu, ADP, and a fluorinated inhibitor. These reveal that hXK has a two-domain fold characteristic of the sugar kinase/hsp70/actin superfamily, with glycerol kinase as its closest relative. Xu binds to domain-I and ADP to domain-II, but in this open form of hXK they are 10 Å apart, implying that a large scale conformational change is required for catalysis. Xu binds in its linear keto-form, sandwiched between a Trp side chain and polar side chains that provide exquisite hydrogen bonding recognition. The hXK structure provides a basis for the design of specific inhibitors with which to probe its roles in sugar metabolism and metabolic disease. PMID:23179721

  3. THE TWO- AND THREE-POINT CORRELATION FUNCTIONS OF THE POLARIZED FIVE-YEAR WMAP SKY MAPS

    SciTech Connect

    Gjerloew, E.; Eriksen, H. K.; Lilje, P. B.; Banday, A. J.; Gorski, K. M. E-mail: h.k.k.eriksen@astro.uio.n E-mail: Anthony.Banday@cesr.f

    2010-02-10

    We present the two- and three-point real space correlation functions of the five-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and compare the observed functions to simulated LAMBDACDM concordance model ensembles. In agreement with previously published results, we find that the temperature correlation functions are consistent with expectations. However, the pure polarization correlation functions are acceptable only for the 33 GHz band map; the 41, 61, and 94 GHz band correlation functions all exhibit significant large-scale excess structures. Further, these excess structures very closely match the correlation functions of the two (synchrotron and dust) foreground templates used to correct the WMAP data for galactic contamination, with a cross-correlation statistically significant at the 2sigma-3sigma confidence level. The correlation is slightly stronger with respect to the thermal dust template than with the synchrotron template.

  4. Polarity and asymmetric cell division in the control of lymphocyte fate decisions and function.

    PubMed

    Yassin, Mohammed; Russell, Sarah M

    2016-04-01

    Polarity is important in several lymphocyte processes including lymphocyte migration, formation of the immunological synapse, and asymmetric cell division (ACD). While lymphocyte migration and immunological synapse formation are relatively well understood, the role of lymphocyte ACD is less clear. Recent advances in measuring polarity enable more robust analyses of asymmetric cell division. Use of these new methods has produced crucial quantification of ACD at precise phases of lymphocyte development and activation. These developments are leading to a better understanding of the drivers of fate choice during lymphocyte activation and provide a context within which to explain the effects of ACD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development of novel purifiers with appropriate functional groups based on solvent polarities at bulk filtration

    NASA Astrophysics Data System (ADS)

    Kohyama, Tetsu; Kaneko, Fumiya; Ly, Saksatha; Hamzik, James; Jaber, Jad; Yamada, Yoshiaki

    2017-03-01

    Weak-polar solvents like PGMEA (Propylene Glycol Monomethyl Ether Acetate) or CHN (Cyclohexanone) are used to dissolve hydrophobic photo-resist polymers, which are challenging for traditional cleaning methods such as distillation, ion-exchange resins service or water-washing processes. This paper investigated two novel surface modifications to see their effectiveness at metal removal and to understand the mechanism. The experiments yielded effective purification methods for metal reduction, focusing on solvent polarities based on HSP (Hansen Solubility Parameters), and developing optimal purification strategies.

  6. Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials.

    PubMed

    Kobayashi, Takeshi; Lafon, Olivier; Thankamony, Aany S Lilly; Slowing, Igor I; Kandel, Kapil; Carnevale, Diego; Vitzthum, Veronika; Vezin, Hervé; Amoureux, Jean-Paul; Bodenhausen, Geoffrey; Pruski, Marek

    2013-04-21

    We systematically studied the enhancement factor (per scan) and the sensitivity enhancement (per unit time) in (13)C and (29)Si cross-polarization magic angle spinning (CP-MAS) NMR boosted by dynamic nuclear polarization (DNP) of functionalized mesoporous silica nanoparticles (MSNs). Specifically, we separated contributions due to: (i) microwave irradiation, (ii) quenching by paramagnetic effects, (iii) the presence of frozen solvent, (iv) the temperature, as well as changes in (v) relaxation and (vi) cross-polarization behaviour. No line-broadening effects were observed for MSNs when lowering the temperature from 300 to 100 K. Notwithstanding a significant signal reduction due to quenching by TOTAPOL radicals, DNP-CP-MAS at 100 K provided global sensitivity enhancements of 23 and 45 for (13)C and (29)Si, respectively, relative to standard CP-MAS measurements at room temperature. The effects of DNP were also ascertained by comparing with state-of-the-art two-dimensional heteronuclear (1)H{(13)C} and (29)Si{(1)H} correlation spectra, using, respectively, indirect detection or Carr-Purcell-Meiboom-Gill (CPMG) refocusing to boost signal acquisition. This study highlights opportunities for further improvements through the development of high-field DNP, better polarizing agents, and improved capabilities for low-temperature MAS.

  7. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    PubMed

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  8. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves.

    PubMed

    Zhang, Qunfeng; Liu, Meiya; Ruan, Jianyun

    2017-03-20

    As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.

  9. Fatty Aldehyde and Fatty Alcohol Metabolism: Review and Importance for Epidermal Structure and Function

    PubMed Central

    Rizzo, William B.

    2014-01-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493

  10. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function.

    PubMed

    Rizzo, William B

    2014-03-01

    Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. © 2013.

  11. Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders.

    PubMed

    Arenaza-Urquijo, Eider M; Landeau, Brigitte; La Joie, Renaud; Mevel, Katell; Mézenge, Florence; Perrotin, Audrey; Desgranges, Béatrice; Bartrés-Faz, David; Eustache, Francis; Chételat, Gaël

    2013-12-01

    More educated elders are less susceptible to age-related or pathological cognitive changes. We aimed at providing a comprehensive contribution to the neural mechanism underlying this effect thanks to a multimodal approach. Thirty-six healthy elders were selected based on neuropsychological assessments and cerebral amyloid imaging, i.e. as presenting normal cognition and a negative florbetapir-PET scan. All subjects underwent structural MRI, FDG-PET and resting-state functional MRI scans. We assessed the relationships between years of education and i) gray matter volume, ii) gray matter metabolism and iii) functional connectivity in the brain areas showing associations with both volume and metabolism. Higher years of education were related to greater volume in the superior temporal gyrus, insula and anterior cingulate cortex and to greater metabolism in the anterior cingulate cortex. The latter thus showed both volume and metabolism increases with education. Seed connectivity analyses based on this region showed that education was positively related to the functional connectivity between the anterior cingulate cortex and the hippocampus as well as the inferior frontal lobe, posterior cingulate cortex and angular gyrus. Increased connectivity was in turn related with improved cognitive performances. Reinforcement of the connectivity of the anterior cingulate cortex with distant cortical areas of the frontal, temporal and parietal lobes appears as one of the mechanisms underlying education-related reserve in healthy elders.

  12. Serum levels of the myokine irisin in relation to metabolic and renal function.

    PubMed

    Ebert, Thomas; Focke, Denise; Petroff, David; Wurst, Ulrike; Richter, Judit; Bachmann, Anette; Lössner, Ulrike; Kralisch, Susan; Kratzsch, Jürgen; Beige, Joachim; Bast, Ingolf; Anders, Matthias; Blüher, Matthias; Stumvoll, Michael; Fasshauer, Mathias

    2014-04-01

    Irisin has recently been introduced as a novel myokine which reverses visceral obesity and improves glucose metabolism in mice. However, regulation of irisin in humans in relation to renal and metabolic disease has not been comprehensively studied. Serum irisin levels were quantified by ELISA and correlated with anthropometric and biochemical parameters of renal function, glucose and lipid metabolism, as well as inflammation, in 532 patients with stages 1-5 of chronic kidney disease (CKD). Median serum irisin levels adjusted for age, gender, and BMI significantly decreased with increasing CKD stage and lowest concentrations were seen in patients with CKD stage 5. Furthermore, irisin concentrations were associated with facets of the metabolic syndrome including diastolic blood pressure, markers of impaired glucose tolerance, and dyslipidemia in univariate analysis. Moreover, markers of renal function, e.g. glomerular filtration rate, and insulin resistance, e.g. homeostasis model assessment of insulin resistance, remained independently associated with circulating irisin levels in robust multivariate analysis. We show that irisin serum concentrations decrease with increasing CKD stage and are independently and positively predicted by renal function and insulin resistance. The physiological relevance of our findings, as well as the factors contributing to irisin regulation in humans, needs to be further defined in future experiments.

  13. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    SciTech Connect

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  14. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    PubMed

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  15. Functional Fixedness and Functional Reduction as Common Sense Reasonings in Chemical Equilibrium and in Geometry and Polarity of Molecules.

    ERIC Educational Resources Information Center

    Furio, C.; Calatayud, M. L.; Barcenas, S. L.; Padilla, O. M.

    2000-01-01

    Focuses on learning difficulties in procedural knowledge, and assesses the procedural difficulties of grade 12 and first- and third-year university students based on common sense reasoning in two areas of chemistry--chemical equilibrium and geometry, and polarity of molecules. (Contains 55 references.) (Author/YDS)

  16. Functional Fixedness and Functional Reduction as Common Sense Reasonings in Chemical Equilibrium and in Geometry and Polarity of Molecules.

    ERIC Educational Resources Information Center

    Furio, C.; Calatayud, M. L.; Barcenas, S. L.; Padilla, O. M.

    2000-01-01

    Focuses on learning difficulties in procedural knowledge, and assesses the procedural difficulties of grade 12 and first- and third-year university students based on common sense reasoning in two areas of chemistry--chemical equilibrium and geometry, and polarity of molecules. (Contains 55 references.) (Author/YDS)

  17. Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation.

    PubMed

    Kang, Patrick T; Chen, Chwen-Lih; Ohanyan, Vahagn; Luther, Daniel J; Meszaros, J Gary; Chilian, William M; Chen, Yeong-Renn

    2015-11-01

    During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate×MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, "spilled" over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function.

  18. Overexpressing Superoxide Dismutase 2 Induces a Supernormal Cardiac Function by Enhancing Redox-dependent Mitochondrial Function and Metabolic Dilation*

    PubMed Central

    Kang, Patrick T.; Chen, Chwen-Lih; Ohanyan, Vahagn; Luther, Daniel J.; Meszaros, J. Gary; Chilian, William M.; Chen, Yeong-Renn

    2015-01-01

    During heightened cardiac work, O2 consumption by the heart benefits energy production via mitochondria. However, some electrons leak from the respiratory chain and yield superoxide, which is rapidly metabolized into H2O2 by SOD2. To understand the systemic effects of the metabolic dilator, H2O2, we studied mice with cardiac-specific SOD2 overexpression (SOD2-tg), which increases the H2O2 produced by cardiac mitochondria. Contrast echocardiography was employed to evaluate cardiac function, indicating that SOD2-tg had a significantly greater ejection fraction and a lower mean arterial pressure (MAP) that was partially normalized by intravenous injection of catalase. Norepinephrine-mediated myocardial blood flow (MBF) was significantly enhanced in SOD2-tg mice. Coupling of MBF to the double product (Heart Rate × MAP) was increased in SOD2-tg mice, indicating that the metabolic dilator, “spilled” over, inducing systemic vasodilation. The hypothesis that SOD2 overexpression effectively enhances mitochondrial function was further evaluated. Mitochondria of SOD2-tg mice had a decreased state 3 oxygen consumption rate, but maintained the same ATP production flux under the basal and L-NAME treatment conditions, indicating a higher bioenergetic efficiency. SOD2-tg mitochondria produced less superoxide, and had lower redox activity in converting cyclic hydroxylamine to stable nitroxide, and a lower GSSG concentration. EPR analysis of the isolated mitochondria showed a significant decrease in semiquinones at the SOD2-tg Qi site. These results support a more reductive physiological setting in the SOD2-tg murine heart. Cardiac mitochondria exhibited no significant differences in the respiratory control index between WT and SOD2-tg. We conclude that SOD2 overexpression in myocytes enhances mitochondrial function and metabolic vasodilation, leading to a phenotype of supernormal cardiac function. PMID:26374996

  19. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.

    PubMed

    Stahl, Elia; Bellwon, Patricia; Huber, Stefan; Schlaeppi, Klaus; Bernsdorff, Friederike; Vallat-Michel, Armelle; Mauch, Felix; Zeier, Jürgen

    2016-05-02

    Tryptophan-derived, indolic metabolites possess diverse functions in Arabidopsis innate immunity to microbial pathogen infection. Here, we investigate the functional role and regulatory characteristics of indolic metabolism in Arabidopsis systemic acquired resistance (SAR) triggered by the bacterial pathogen Pseudomonas syringae. Indolic metabolism is broadly activated in both P. syringae-inoculated and distant, non-inoculated leaves. At inoculation sites, camalexin, indol-3-ylmethylamine (I3A), and indole-3-carboxylic acid (ICA) are the major accumulating compounds. Camalexin accumulation is positively affected by MYB122, and the cytochrome P450 genes CYP81F1 and CYP81F2. Local I3A production, by contrast, occurs via indole glucosinolate breakdown by PEN2- dependent and independent pathways. Moreover, exogenous application of the defense hormone salicylic acid stimulates I3A generation at the expense of its precursor indol-3-ylmethylglucosinolate (I3M), and the SAR regulator pipecolic acid primes plants for enhanced P. syringae-induced activation of distinct branches of indolic metabolism. In uninfected systemic tissue, the metabolic response is more specific and associated with enhanced levels of the indolics I3A, ICA, and indole-3-carbaldehyde (ICC). Systemic indole accumulation fully depends on functional CYP79B2/3, PEN2, and MYB34/51/122, and requires functional SAR signaling. Genetic analyses suggest that systemically elevated indoles are dispensable for SAR and associated systemic increases of salicylic acid. However, soil-grown but not hydroponically -cultivated cyp79b2/3 and pen2 plants, both defective in indolic secondary metabolism, exhibit pre-induced immunity, which abrogates their intrinsic ability to induce SAR.

  20. Polarizing cues.

    PubMed

    Nicholson, Stephen P

    2012-01-01

    People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues.

  1. mTOR, metabolism, and the regulation of T-cell differentiation and function

    PubMed Central

    Waickman, Adam T; Powell, Jonathan D.

    2012-01-01

    Summary Upon antigen recognition, naive T cells undergo rapid expansion and activation. The energy requirements for this expansion are formidable, and T-cell activation is accompanied by dramatic changes in cellular metabolism. Furthermore, the outcome of antigen engagement is guided by multiple cues derived from the immune microenvironment. Mammalian target of rapamycin (mTOR) is emerging as a central integrator of these signals playing a critical role in driving T-cell differentiation and function. Indeed, multiple metabolic programs are controlled by mTOR signaling. In this review, we discuss the role of mTOR in regulating metabolism and how these pathways intersect with the ability of mTOR to integrate cues that guide the outcome of T-cell receptor engagement. PMID:22889214

  2. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways

    PubMed Central

    Prosser, Gareth A; Larrouy-Maumus, Gerald; de Carvalho, Luiz Pedro S

    2014-01-01

    Recent technological advances in accurate mass spectrometry and data analysis have revolutionized metabolomics experimentation. Activity-based and global metabolomic profiling methods allow simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes, making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By using the metabolome of the relevant organism or close species, these methods capitalize on biological relevance, avoiding the assignment of artificial and non-physiological functions. This review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic activities across diverse biological sources. PMID:24829223

  3. Structure to function of an α-glucan metabolic pathway that promotes Listeria monocytogenes pathogenesis.

    PubMed

    Light, Samuel H; Cahoon, Laty A; Halavaty, Andrei S; Freitag, Nancy E; Anderson, Wayne F

    2016-11-07

    Here we employ a 'systems structural biology' approach to functionally characterize an unconventional α-glucan metabolic pathway from the food-borne pathogen Listeria monocytogenes (Lm). Crystal structure determination coupled with basic biochemical and biophysical assays allowed for the identification of anabolic, transport, catabolic and regulatory portions of the cycloalternan pathway. These findings provide numerous insights into cycloalternan pathway function and reveal the mechanism of repressor, open reading frame, kinase (ROK) transcription regulators. Moreover, by developing a structural overview we were able to anticipate the cycloalternan pathway's role in the metabolism of partially hydrolysed starch derivatives and demonstrate its involvement in Lm pathogenesis. These findings suggest that the cycloalternan pathway plays a role in interspecies resource competition-potentially within the host gastrointestinal tract-and establish the methodological framework for characterizing bacterial systems of unknown function.

  4. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism

    PubMed Central

    Ferris, Heather A.; Perry, Rachel J.; Moreira, Gabriela V.; Shulman, Gerald I.; Horton, Jay D.; Kahn, C. Ronald

    2017-01-01

    Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function. PMID:28096339

  5. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment.

    PubMed

    Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi

    2017-01-01

    Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon-Weaner's H and reciprocal of Simpson's 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity

  6. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment

    PubMed Central

    Wang, Yu; Zhang, Rui; He, Zhili; Van Nostrand, Joy D.; Zheng, Qiang; Zhou, Jizhong; Jiao, Nianzhi

    2017-01-01

    Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with

  7. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions.

  8. Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: a pilot study.

    PubMed

    Kim, Se-Hong; Kim, Minjeong; Ahn, Yu-Bae; Lim, Hyun-Kook; Kang, Sung-Goo; Cho, Jung-Hyoun; Park, Seo-Jin; Song, Sang-Wook

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer's disease (CERAD-K). Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048), word list delayed recall (p = 0.038), word list recognition (p = 0.007), and total CERAD-K score (p = 0.037). However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome. Key pointsMetabolic syndrome (MS) is associated with an increased risk of cognitive impairment.Aerobic exercise improves cognitive function in elderly people and contributes to the prevention of degenerative neurological disease and brain damage. Dance sport is a form of aerobic exercise that has the additional benefits of stimulating the emotions, promoting social interaction, and exposing subjects to acoustic stimulation and music.In the present study, dance exercise for a 6-month period improved cognitive function in older adults with MS. In particular, positive effects were observed in verbal fluency, word list

  9. Effect of Dance Exercise on Cognitive Function in Elderly Patients with Metabolic Syndrome: A Pilot Study

    PubMed Central

    Kim, Se-Hong; Kim, Minjeong; Ahn, Yu-Bae; Lim, Hyun-Kook; Kang, Sung-Goo; Cho, Jung-hyoun; Park, Seo-Jin; Song, Sang-Wook

    2011-01-01

    Metabolic syndrome is associated with an increased risk of cognitive impairment. The purpose of this prospective pilot study was to examine the effects of dance exercise on cognitive function in elderly patients with metabolic syndrome. The participants included 38 elderly metabolic syndrome patients with normal cognitive function (26 exercise group and 12 control group). The exercise group performed dance exercise twice a week for 6 months. Cognitive function was assessed in all participants using the Korean version of the Consortium to Establish a Registry for Alzheimer’s disease (CERAD-K). Repeated-measures ANCOVA was used to assess the effect of dance exercise on cognitive function and cardiometabolic risk factors. Compared with the control group, the exercise group significantly improved in verbal fluency (p = 0.048), word list delayed recall (p = 0.038), word list recognition (p = 0.007), and total CERAD-K score (p = 0.037). However, no significance difference was found in body mass index, blood pressure, waist circumference, fasting plasma glucose, triglyceride, and HDL cholesterol between groups over the 6-month period. In the present study, six months of dance exercise improved cognitive function in older adults with metabolic syndrome. Thus, dance exercise may reduce the risk for cognitive disorders in elderly people with metabolic syndrome. Key points Metabolic syndrome (MS) is associated with an increased risk of cognitive impairment. Aerobic exercise improves cognitive function in elderly people and contributes to the prevention of degenerative neurological disease and brain damage. Dance sport is a form of aerobic exercise that has the additional benefits of stimulating the emotions, promoting social interaction, and exposing subjects to acoustic stimulation and music. In the present study, dance exercise for a 6-month period improved cognitive function in older adults with MS. In particular, positive effects were observed in verbal fluency, word

  10. Design of strategies to study the metabolic profile of highly polar compounds in plasma by reversed-phase liquid chromatography-high resolution mass spectrometry.

    PubMed

    Sánchez-López, Elena; Crego, Antonio L; Marina, María Luisa

    2017-03-24

    Amino acids and related compounds are paramount analytes which are involved in numerous metabolic pathways. Most of these compounds are unable to be retained on Liquid Chromatography with Reversed-Phase stationary phases due to their high hydrophilic character. An interesting strategy is to reduce their polarity through their derivatization with a labelling reagent, such as the commercially available 9-fluorenylmethyloxycarbonyl (FMOC) which forms stable complexes with primary and secondary amine moieties rapidly. Although some derivatization reagents have been employed in the study of metabolic profiles, as far as we know, FMOC has never been employed for this purpose. In this work, it is demonstrated that the use of RP-LCMS(TOF) using a C18 column and FMOC as labelling agent enables the determination of a larger number of hydrophilic compounds (proteinogenic amino acids, non-proteinogenic amino acids, and biogenic amines) when compared to the use of a fully-wettable pentafluorophenyl column in fully-aqueous conditions (gradient starting in 0% of organic solvent) and HILIC column, both without using compound derivatization. Different strategies for plasma protein elimination were also carefully evaluated. Results revealed that ultrafiltration (UF) offered a lower variability from sample to sample when compared to the protein precipitation (PP) method (from 2 to 12 times lower variability found in UF). Additionally, UF preserved a larger number of possible compounds when compared to the PP approach: 4631 unique molecular features with UF, 666 unique molecular features with PP.

  11. Studies on the metabolism and toxicological detection of the amphetamine-like anorectic fenproporex in human urine by gas chromatography-mass spectrometry and fluorescence polarization immunoassay.

    PubMed

    Kraemer, T; Theis, G A; Weber, A A; Maurer, H H

    2000-01-28

    Studies on the metabolism and the toxicological analysis of fenproporex (R,S-3-[(1-phenyl-2-propyl)-amino]-propionitrile, FP) using GC-MS and fluorescence polarization immunoassay are described. The metabolites were identified in urine samples of volunteers by GC-MS after cleavage of conjugates, extraction and acetylation. Besides unchanged FP, fourteen metabolites, including amphetamine, could be identified. Two partially overlapping metabolic pathways could be postulated: ring degradation by one- and two-fold aromatic hydroxylation followed by methylation and side chain degradation by N-dealkylation to amphetamine (AM). A minor pathway leads via beta-hydroxylation of AM to norephedrine. For GC-MS detection, the systematic toxicological analysis procedure including acid hydrolysis, extraction at pH 8-9 and acetylation was suitable (detection limits 50 ng/ml for FP and 100 ng/ml for AM). Excretion studies showed, that only AM but neither FP nor its specific metabolites were detectable 30-60 h after ingestion of 20 mg of FP. Therefore, misinterpretation can occur. The Abbott TDx FPIA amphetamine/methamphetamine II gave positive results up to 58 h. All the positive immunoassay results could be confirmed by the described GC-MS procedure.

  12. Studies on the metabolism and toxicological detection of the amphetamine-like anorectic mefenorex in human urine by gas chromatography-mass spectrometry and fluorescence polarization immunoassay.

    PubMed

    Kraemer, T; Vernaleken, I; Maurer, H H

    1997-11-21

    Studies on the metabolism and on the toxicological analysis of mefenorex [R,S-N-(3-chloropropyl)-alpha-methylphenethylamine, MF] using gas chromatography-mass spectrometry (GC-MS) and fluorescence polarization immunoassay (FPIA) are described. The metabolites were identified in urine samples of volunteers by GC-MS. Besides MF, thirteen metabolites including amphetamine (AM) could be identified and three partially overlapping metabolic pathways could be postulated. For GC-MS detection, the systematic toxicological analysis procedure including acid hydrolysis, extraction at pH 8-9 and acetylation was suitable (detection limits 50 ng/ml for MF and 100 ng/ml for AM). Excretion studies showed, that only AM but neither MF nor its specific metabolites were detectable between 32 and 68 h after ingestion of 80 mg of MF. Therefore, misinterpretation can occur. The Abbott TDx FPIA amphetamine/methamphetamine II gave positive results up to 68 h. All the positive immunoassay results could be confirmed by the described GC-MS procedure.

  13. A coupled polarization-matrix inversion and iteration approach for accelerating the dipole convergence in a polarizable potential function.

    PubMed

    Xie, Wangshen; Pu, Jingzhi; Gao, Jiali

    2009-03-12

    A coupled polarization-matrix inversion and iteration (CPII) method is described to achieve and accelerate the convergence of induced dipoles for condensed phase systems employing polarizable intermolecular potential functions (PIPF). The present PIPF is based on the Thole interaction dipole model in which all atomic pair interactions are considered, including those that are directly bonded covalently. Although induced dipoles can be obtained both by inverting a 3N x 3N polarization-matrix where N is the number of polarizable sites, or by a direct iterative approach, the latter approach is more efficient computationally for large systems in molecular dynamics simulations. It was found that induced dipole moments failed to converge in the direct iterative approach if 1-2, 1-3, and 1-4 intramolecular interactions are included in the Thole model. However, it is necessary to include all intramolecular interactions in the Thole model to yield the correct molecular anisotropic polarizability tensor. To solve this numerical stability problem, we reformulated the Thole interaction dipole model in terms of molecular block matrices, which naturally leads to a coupled, preconditioning algorithm that involves a polarization-matrix inversion term to account for intramolecular interactions, and an iterative procedure to incorporate the mutual polarization effects between different molecules. The CPII method is illustrated by applying to cubic boxes of water and NMA molecules as well as an alanine pentapeptide configuration, and it was shown that the CPII method can achieve convergence for the dipole induction polarization rapidly in all cases, whereas the direct iterative approach failed to reach convergence in these cases. In addition, the CPII reduces the overall computational costs by decreasing the number of iteration steps in comparison with the direct iteration approach in which intramolecular bonded interactions are excluded to ensure that induced dipole convergence is

  14. Isentropic calculation for thermodynamic properties of polarized liquid 3He by considering the effect of spin-dependent correlation function

    NASA Astrophysics Data System (ADS)

    Bordbar, G. H.; Hosseini, S.; Poostforush, A.

    2017-05-01

    Correlations in quantum fluids such as liquid 3He continue to be of high interest to scientists. Based on this prospect, the present work is devoted to study the effects of spin-spin correlation function on the thermodynamic properties of polarized liquid 3He such as pressure, velocity of sound, adiabatic index and adiabatic compressibility along different isentropic paths, using the Lennard-Jones potential and employing the variational approach based on cluster expansion of the energy functional. The inclusion of this correlation improves our previous calculations and leads to good agreements with experimental results.

  15. The function of the aerenchyma in arborescent lycopsids: evidence of an unfamiliar metabolic strategy.

    PubMed

    Green, W A

    2010-08-07

    Most species of the modern family Isoëtaceae (Quillworts) some other modern hydrophytes, use a metabolic pathway for carbon fixation that involves uptake of sedimentary carbon and enrichment of CO(2) in internal gas spaces as a carbon-concentrating mechanism. This metabolism, which is related to 'aquatic CAM', is characterized by morphological, physiological and biochemical adaptations for decreasing photorespirative loss, aerating roots and maintaining high growth rates in anoxic, oligotrophic, stressed environments. Some of the closest relatives of the Isoëtaceae were the 'arborescent lycopsids', which were among the dominant taxa in the coal swamps found in lowland ecosystems during the Carboniferous and Permian periods (approx. 300 Ma). Morphological, ecological and geochemical evidence supports the hypothesis that the arborescent lycopsids had an unusual metabolism similar to that of modern Isoëtaceae and processed a biogeochemically significant proportion of organically fixed carbon over a period of about 100 million years in the late Palaeozoic. The temporal coincidence between the dominance of plants with this metabolism and an anomalous global atmosphere (high O(2); low CO(2)) supports the idea that biosphere feedbacks are important in regulating global climatic homeostasis. The potential influence of this metabolism on the global carbon cycle and its specific adaptive function suggest that it should perhaps be considered a fourth major photosynthetic pathway.

  16. Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock

    PubMed Central

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.

    2015-01-01

    SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300

  17. The function of the aerenchyma in arborescent lycopsids: evidence of an unfamiliar metabolic strategy

    PubMed Central

    Green, W. A.

    2010-01-01

    Most species of the modern family Isoëtaceae (Quillworts) some other modern hydrophytes, use a metabolic pathway for carbon fixation that involves uptake of sedimentary carbon and enrichment of CO2 in internal gas spaces as a carbon-concentrating mechanism. This metabolism, which is related to ‘aquatic CAM’, is characterized by morphological, physiological and biochemical adaptations for decreasing photorespirative loss, aerating roots and maintaining high growth rates in anoxic, oligotrophic, stressed environments. Some of the closest relatives of the Isoëtaceae were the ‘arborescent lycopsids’, which were among the dominant taxa in the coal swamps found in lowland ecosystems during the Carboniferous and Permian periods (approx. 300 Ma). Morphological, ecological and geochemical evidence supports the hypothesis that the arborescent lycopsids had an unusual metabolism similar to that of modern Isoëtaceae and processed a biogeochemically significant proportion of organically fixed carbon over a period of about 100 million years in the late Palaeozoic. The temporal coincidence between the dominance of plants with this metabolism and an anomalous global atmosphere (high O2; low CO2) supports the idea that biosphere feedbacks are important in regulating global climatic homeostasis. The potential influence of this metabolism on the global carbon cycle and its specific adaptive function suggest that it should perhaps be considered a fourth major photosynthetic pathway. PMID:20356894

  18. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell

    PubMed Central

    Skliros, Dimitrios; Kalatzis, Panos G.; Katharios, Pantelis; Flemetakis, Emmanouil

    2016-01-01

    Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage–host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the “schizoT4like” clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection. PMID:27895630

  19. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell.

    PubMed

    Skliros, Dimitrios; Kalatzis, Panos G; Katharios, Pantelis; Flemetakis, Emmanouil

    2016-01-01

    Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage-host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the "schizoT4like" clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD(+) and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.

  20. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.

    PubMed

    Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E